WO2023190579A1 - 滅菌バッグ - Google Patents

滅菌バッグ Download PDF

Info

Publication number
WO2023190579A1
WO2023190579A1 PCT/JP2023/012641 JP2023012641W WO2023190579A1 WO 2023190579 A1 WO2023190579 A1 WO 2023190579A1 JP 2023012641 W JP2023012641 W JP 2023012641W WO 2023190579 A1 WO2023190579 A1 WO 2023190579A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
layer
density polyethylene
bag
base material
Prior art date
Application number
PCT/JP2023/012641
Other languages
English (en)
French (fr)
Inventor
徹 渡邊
憲一 中野
恭範 千葉
敏彦 森
Original Assignee
藤森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社 filed Critical 藤森工業株式会社
Publication of WO2023190579A1 publication Critical patent/WO2023190579A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a sterile bag.
  • Sterilization bags are used as packaging bodies for storing contents such as pharmaceuticals, medical supplies, various cosmetics, and foods.
  • a sterilization bag is a bag-like body formed by stacking a laminate of multiple types of resin films and joining the outer peripheries by heat sealing or the like. After the sterilization bag contains the contents to be sterilized and is sealed, the bag is sterilized by ethylene oxide (EO) gas, gamma ray sterilization, or the like before use.
  • EO ethylene oxide
  • a gap or a through hole that communicates the inside and outside of the packaging bag body is formed in a packaging bag body formed from two types of films made of heat-resistant synthetic resin, and this gap or transparent
  • a sterilization packaging bag has been disclosed in which the holes are covered with a filter material made of a laminated layer of a nonwoven fabric and a heat-resistant plastic film having a large number of protruding small holes (see, for example, Patent Document 1).
  • Patent Document 1 does not consider the tearability of the sterilization packaging bag, and the sterilization packaging bag of Patent Document 1 has a problem in that it is difficult to tear during use. In addition, it is important for sterilization packaging bags to be easy to tear during use, and to maintain sealing properties so that the sterilized state of the object can be maintained until it is used.
  • An object of one aspect of the present invention is to provide a sterilization bag that can be easily torn and opened while maintaining internal sealability.
  • a laminated film in which a sealing layer containing at least one of low-density polyethylene and linear low-density polyethylene and a base layer containing high-density polyethylene are laminated is stacked so that the sealing layer sides face each other, and It includes a seal part whose peripheral parts are welded to each other, and a storage chamber defined by the laminated film and the seal part in which the object to be sterilized is stored, and at least one of the laminated films has a slit that communicates the laminated film.
  • the bag body and a breathable base material provided to cover the slit from the seal layer side of one of the laminated films; Equipped with
  • One embodiment of the sterilization bag according to the present invention can improve tear-opening properties and maintain internal sealability.
  • FIG. 1 is a plan view of a sterilization bag according to an embodiment of the present invention.
  • 2 is a sectional view taken along the line AA in FIG. 1.
  • FIG. FIG. 1 is a schematic cross-sectional view showing an example of the structure of a laminated film. It is a perspective view showing an example of the film extrusion molding device which manufactures each layer of a laminated film. It is a top view showing an air permeable base material.
  • 1 is a flowchart illustrating an example of a method for manufacturing a sterile bag.
  • FIG. 1 is a perspective view of a bag making device for manufacturing sterile bags.
  • FIG. 2 is a plan view showing an example of a sterilization bag.
  • 9 is a sectional view taken along the line BB in FIG. 8.
  • FIG. FIG. 3 is a diagram showing test results of time and EO gas amount in Example 1 and Comparative Example 1.
  • FIG. 1 is a plan view of the sterilization bag according to the present embodiment
  • FIG. 2 is a view taken along the line AA in FIG. 1.
  • the sterilization bag 1 according to the present embodiment includes a bag body 10 filled with an object to be sterilized, and a breathable base material 20.
  • a sterilizing agent is supplied into the bag body 10, and the objects to be sterilized filled in the bag body 10 are sterilized.
  • examples of objects to be sterilized include medical containers, medical devices, medical supplies, pharmaceuticals (drugs), nutritional supplements, food and drinks, cosmetics, and the like.
  • medical containers include containers into which pharmaceuticals, animal and plant cells, tissues, cultured products, and the like are placed, and specific examples include ampoules, vials, syringes, and bags.
  • medical equipment and medical supplies include small medical machines and instruments that can be distributed in sterile bags. Examples of small mechanical instruments include scalpels, knives, scissors, spoons, spatulas, tweezers, catheters, syringes, injection needles, forceps, sutures, suture needles, bandages, gauze, lenses, gloves, finger cots, and the like.
  • the drug may be a substance with high adsorption or permeability to general resins, such as nitroglycerin, albumin, vitamins, trace elements, and radical scavengers, or may be a substance with high adsorption or permeability to general resins, or a pyrazolone derivative, edaravone, or a pharmaceutically acceptable salt thereof.
  • An aqueous solution containing the same may be used.
  • the pyrazolone derivative may have one or more substituents such as an alkyl group, an aromatic group, or a halogen atom on the carbon atom or nitrogen atom of the pyrazolone.
  • Pyrazolone derivatives may form salts with organic acids, inorganic acids, and the like. A plurality of objects to be sterilized of the same or different types may be accommodated in the accommodation space at the same time.
  • the sterilizing agent is not particularly limited as long as it can be used to sterilize objects to be sterilized, such as a bactericidal agent or a disinfectant, and is preferably one that can fill the storage space in the form of gas or steam.
  • the sterilizing agent preferably has adequate permeability to the bag body 10 and is preferably capable of diffusing outward through the bag body 10. Additionally, the sterilant may be degraded within the bag body 10.
  • sterilizing agents include hydrogen peroxide (H 2 O 2 ), ethylene oxide (EO), ozone, and organic peroxides.
  • the organic peroxide include organic peracids such as performic acid and peracetic acid.
  • Other sterilizing agents include aldehyde sterilizing agents such as formaldehyde, chlorine sterilizing agents such as chlorine dioxide, and the like. These two or more sterilizing agents may be used in combination.
  • the bag body 10 is a packaging bag (pouch) formed of a pair of stacked laminated films 100A and 100B.
  • the bag body 10 includes a sealing part 11 in which a pair of laminated films 100A and 100B are stacked so as to face each other and their outer peripheral edges are welded together, and a storage chamber defined by the pair of laminated films 100 and the sealing part 11. 12, and an opening 13 where the outer peripheral edges of the pair of laminated films 100 are not welded to each other.
  • the storage chamber 12 is a space in which objects to be sterilized are stored.
  • the opening 13 is an unfused gap between the facing laminated films 100, and may be welded or the like after the storage chamber 12 is filled with the object to be sterilized.
  • the bag main body 10 is a three-sided bag
  • the form of the bag main body 10 is not particularly limited. It can be applied to large bags such as bags and drum inner bags.
  • the laminated film 100A has a plurality of slits (cuts) 101 on its main surface that communicate with the laminated film 100A.
  • the slit 101 may be formed in the laminated film 100B, or may be formed in both the laminated film 100A and the laminated film 100B.
  • the plurality of slits 101 may be formed in a line so as to form linear perforations on the main surface of the laminated film 100A, or may be formed in plurality so that linear perforations are lined up in parallel.
  • the plurality of slits 101 are formed from one long side of the laminated film 100A to the other long side, but they may be formed only in a portion between the long sides of the laminated film 100A.
  • the length of the slit 101 and the interval between adjacent slits 101 in the length direction or width direction of the slit 101 depend on the size or shape of the laminated film 100A or the slit 101, the area in which the slit 101 is formed, etc. , may be set to any distance as appropriate. For example, when the length of the slits 101 is approximately 1 mm, the distance between the slits 101 in the length direction of the slits 101 may be approximately 2 mm, and the distance between the slits 101 in the width direction of the slits 101 may be approximately 5 mm.
  • the laminated film 100 is provided by laminating a sealing layer containing at least one of low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) as a main component, and a sealing layer containing high-density polyethylene (HDPE). It can be formed by overlapping and welding the sealing layers of a laminated film having a base material layer as a main component so as to face each other. Further, the laminated film 100 may have layers other than the seal layer and the base material layer, for example, at least one of high density polyethylene and low density polyethylene is provided between the seal layer and the base material layer. It may also include an intermediate layer that is included as a main component. The laminated film 100 may have two or more of each of a seal layer, a base layer, and an intermediate layer.
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • HDPE high-density polyethylene
  • the main component refers to a content of 50 wt% or more, preferably 90 wt% or more, more preferably 99 wt% or more.
  • Low-density polyethylene and linear low-density polyethylene refer to polyethylene with a density of about 0.911 g/m 3 to 0.940 g/m 3 .
  • High-density polyethylene refers to polyethylene with a density of about 0.941 g/m 3 to 0.970 g/m 3 .
  • FIG. 3 is a schematic cross-sectional view showing an example of the configuration of the laminated film 100.
  • the laminated film 100A may include a sealing layer 110, an intermediate layer 120, and a base material layer 130, which are laminated in this order from the sealing layer 110 side.
  • the sealing layer 110 contains at least one of low-density polyethylene and linear low-density polyethylene as a main component, is substantially composed of at least one of low-density polyethylene and linear low-density polyethylene, and contains low-density polyethylene and Preferably, it is made of at least one of linear low-density polyethylene.
  • the sealing layer 110 preferably contains low-density polyethylene, since the bag body 10 exhibits sealing properties.
  • the low-density polyethylene contained in the seal layer 110 is not particularly limited as long as it has a density of about 0.911 g/m 3 to 0.925 g/m 3 , and general low-density polyethylene can be used.
  • the linear low-density polyethylene contained in the sealing layer 110 is usually made by copolymerizing ⁇ -olefin with 4 or more carbon atoms and introducing short chain branches, so that the linear low-density polyethylene has few long chain branches and a linear structure. It has a molecular structure.
  • Examples of the ⁇ -olefin copolymerized with linear low density polyethylene include 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, and the like.
  • linear low-density polyethylene included in the seal layer 110 examples include resins polymerized using a Ziegler-Natta catalyst, resins polymerized using a single-site catalyst, and the like.
  • Linear low-density polyethylene polymerized using a single-site catalyst is preferred because it has a narrow molecular weight distribution and excellent mechanical properties.
  • single-site catalysts include metallocene catalysts.
  • metallocene-based catalysts include catalysts containing metallocene compounds containing a ligand having a cyclopentadienyl skeleton and whose metal is zirconium, hafnium, or the like.
  • linear low-density polyethylene included in the seal layer 110 include the Harmolex (registered trademark) series manufactured by Nippon Polyethylene Co., Ltd. and the Nipolon (registered trademark) series manufactured by Tosoh Corporation.
  • the seal layer 110 may contain one type of linear low-density polyethylene, or two or more types.
  • the flexural modulus of the linear low density polyethylene contained in the seal layer 110 is preferably 200 MPa to 500 MPa, more preferably 300 MPa to 450 MPa, and even more preferably 360 MPa to 400 MPa. If the flexural modulus of the linear low-density polyethylene contained in the seal layer 110 is within the above-mentioned preferred range, the seal layer 110 has appropriate flexibility and can exhibit adhesiveness to the intermediate layer 120.
  • the bending elastic modulus can be measured by a method based on JIS K7171:2016 (ISO 178:2010).
  • the melt flow rate (MFR) of linear low-density polyethylene is 0.1 g/10 minutes to 10 g when measured based on JIS K 7210-1:2014 (ISO 1133-1:2011) (230°C, 21N load) /10 minutes is preferable, and 0.5 g/10 minutes to 5 g/10 minutes is more preferable. If the MFR of the linear low-density polyethylene is within the above-mentioned preferred range, when the seal layer 110 is formed by extrusion molding, etc., the extrudability is relatively stable and molding defects are suppressed, so that the film form is stable. This makes molding easier, and the occurrence of molding defects such as burrs on the seal layer 110 during molding can be suppressed.
  • the melting point of the linear low density polyethylene is preferably 120°C to 135°C, more preferably 122°C to 128°C.
  • the density of the linear low density polyethylene is preferably 0.915g/cm 3 to 0.940g/cm 3 , more preferably 0.920g/cm 3 to 0.930g/cm 3 .
  • the content of linear low density polyethylene is preferably 80% by mass to 100% by mass, more preferably 85% by mass to 95% by mass. If the content of the linear low density polyethylene is within the above preferred range, the seal layer 110 has sufficient flexibility and can exhibit adhesion to the intermediate layer 120.
  • At least a portion of the low-density polyethylene and linear low-density polyethylene contained in the seal layer 110 may be plant-derived polyethylene obtained by polymerizing ethylene produced from plants.
  • the low-density polyethylene and linear low-density polyethylene contained in the seal layer 110 may be recycled polyethylene obtained by recycling polyethylene products.
  • the recycled polyethylene may be mechanically recycled polyethylene or chemically recycled polyethylene.
  • the thickness of the sealing layer 110 is preferably 5 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m, and even more preferably 8 ⁇ m to 20 ⁇ m.
  • the intermediate layer 120 is provided between the seal layer 110 and the base material layer 130, contains at least one of high-density polyethylene and low-density polyethylene as a main component, and is substantially made of at least one of high-density polyethylene and low-density polyethylene. It may be made of at least one of high-density polyethylene and low-density polyethylene.
  • the intermediate layer 120 preferably contains high-density polyethylene from the viewpoint of exhibiting tear-opening properties of the laminated negative film.
  • high-density polyethylene contained in the intermediate layer 120 general high-density polyethylene can be used.
  • the low-density polyethylene used in the intermediate layer 120 is the same as the seal layer 110, so details will be omitted.
  • At least a portion of the high-density polyethylene and low-density polyethylene contained in the intermediate layer 120 may be plant-derived polyethylene obtained by polymerizing ethylene produced from plants.
  • At least a portion of the high-density polyethylene and low-density polyethylene contained in the intermediate layer 120 may be recycled polyethylene obtained by recycling polyethylene products.
  • the recycled polyethylene may be mechanically recycled polyethylene or chemically recycled polyethylene.
  • the thickness of the intermediate layer 120 is preferably 3 ⁇ m to 75 ⁇ m, more preferably 5 ⁇ m to 60 ⁇ m, and even more preferably 15 ⁇ m to 45 ⁇ m.
  • the base layer 130 is provided on the main surface of the base layer 130, contains high-density polyethylene as a main component, is substantially composed of high-density polyethylene, and is preferably composed of high-density polyethylene.
  • the intermediate layer 120 is preferably made of high-density polyethylene, since the bag body 10 exhibits tear-opening properties.
  • the high-density polyethylene used in the base layer 130 is the same as that in the intermediate layer 120, so the details will be omitted.
  • the thickness of the base layer 130 is preferably 3 ⁇ m to 50 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m, and even more preferably 8 ⁇ m to 20 ⁇ m.
  • the laminated film 100A may have two or more of each of the seal layer 110, the intermediate layer 120, and the base layer 130, or may have other layers.
  • the laminated films 100A and 100B have three layers: a sealing layer 110, an intermediate layer 120, and a base material layer 130, but as described above, a plurality of any of these layers may be provided.
  • the laminated film 100A may include five layers in which the sealing layer 110, the intermediate layer 120, the base material layer 130, the intermediate layer 120, and the base material layer 130 are laminated in this order, or the sealing layer 110, the intermediate layer 120, and the base material layer 130 may be laminated in this order. It may include seven layers in which the material layer 130, the intermediate layer 120, the base material layer 130, the intermediate layer 120, and the base material layer 130 are laminated in this order.
  • each layer constituting the laminated film 100 that is, the sealing layer 110, the intermediate layer 120, the base layer 130, etc.
  • the materials constituting each layer constituting the laminated film 100 are provided with the following properties in order to improve the appearance of the container, stabilize quality, and provide other required performance.
  • various additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, and antiblocking agents may be contained within a range that does not impair safety and hygiene.
  • each layer constituting the laminated film 100 is not particularly limited, but a T-die molding method, an inflation molding method, etc. can be used.
  • T-die molding method after T-die molding, each layer constituting the laminated film 100 may be formed into a film (sheet) or the like, and then rapidly cooled with a cooling roll.
  • the laminated film 100 may have other layers laminated thereon as necessary, such as a heat seal layer and a base material. That is, an adhesive layer or an anchor layer may be interposed between each layer, or the layers may be laminated so that they are in direct contact with each other. As other layers, one layer or a plurality of layers such as a reinforcing layer, a gas barrier layer, a light shielding layer, a printing layer, etc. can be selected as appropriate.
  • the heat-sealing layer is a layer used for heat-sealing, and is arranged as the innermost layer in contact with the contents as a packaging material.
  • Heat sealing is a method of bonding by melting a heat seal layer, but the sealing method is not particularly limited, and examples include hot plate sealing, ultrasonic sealing, high frequency sealing, impulse sealing, and the like.
  • the base material may be on the other outermost surface of the laminate opposite to the heat seal layer, or may be laminated inside the other outermost surface.
  • the total thickness of the laminated film 100 can be designed as appropriate, and from the viewpoint of the balance between required performance (for example, transparency, flexibility, etc.) and cost (for example, productivity, material cost, etc.), for example, It is preferably 20 ⁇ m to 150 ⁇ m, more preferably 30 ⁇ m to 120 ⁇ m, and even more preferably 40 ⁇ m to 90 ⁇ m.
  • the thickness ratio of each layer of the sealing layer 110, the intermediate layer 120, and the base material layer 130 is appropriately designed depending on the application of the container formed using the laminated film 100, and is, for example, 1:1:1 to 1:5. :1 is preferable, and 1:2:1 to 1:3:1 is more preferable.
  • each of the seal layer 110, intermediate layer 120, and base layer 130 may be, for example, 15 ⁇ m, 30 ⁇ m, and 15 ⁇ m, respectively.
  • the method for manufacturing the laminated film 100 is not particularly limited, and each layer constituting the laminated film 100 may be laminated as appropriate by an extrusion lamination method, a dry lamination method, a coextrusion method, or a combination of two or more of these methods. do it.
  • the laminated film 100 when manufacturing the laminated film 100, as shown in FIG. 3, when the laminated film 100 has three layers, a sealing layer 110, a base material layer 130, and an intermediate layer 120, which are laminated by a co-extrusion method, an adhesive is applied between these three layers. They can be laminated without intervening layers or anchor agent layers.
  • each layer of the seal layer 110, the intermediate layer 120, and the base material layer 130 is formed using a resin constituting each layer of the seal layer 110, the intermediate layer 120, or the base material layer 130 using a film extrusion molding machine 30.
  • the film 31 can be formed by extrusion and uniaxial stretching in the transverse direction. Then, the resin film 31 forming each layer of the seal layer 110, intermediate layer 120, and base material layer 130 is set in a laminating device (not shown) and fed out, and the seal layer 110, intermediate layer 120, and base material layer 130 are bonded together. Ru.
  • the original fabric of the laminated film 100 in the form of a long continuous sheet is formed.
  • polyethylene which serves as an interlayer adhesive layer
  • polyethylene which serves as an interlayer adhesive layer
  • the seal layer 110, the intermediate layer 120, or the base material layer 130 are bonded together via the interlayer adhesive layer, and the original fabric of the laminated film 100 in the form of a long continuous sheet is laminated.
  • the laminated film 100 has a tear strength in the transport direction (MD) of the laminated film 100 at the time of forming the laminated film 100, which is preferably 26 N or less, more preferably 20 N or less, and even more preferably 16 N or less. be. If the tear strength is 23N or less, the tear-openability of the bag body 10 can be improved.
  • MD transport direction
  • the tensile strength of the laminated film 100 in the transport direction (MD) direction during formation of the laminated film 100 is preferably 21 N/15 mm or more.
  • the tensile strength of the laminated film 100 in the direction (TD direction) orthogonal to the transport direction of the laminated film 100 at the time of forming the laminated film 100 is 15 N/15 mm or more. Note that the tensile strength is calculated using a laminated film with a width of 15 mm square in accordance with JIS Z 0238.
  • the tensile strength of the laminated film 100 in the MD direction at the time of forming the laminated film 100 is 21 N/15 mm or more, and the tensile strength of the laminated film 100 in the TD direction is preferably 15N/15mm or more.
  • the tensile elongation of the laminated film 100 in the transport direction (MD) direction during formation of the laminated film 100 is preferably 400% or more. Moreover, it is preferable that the tensile elongation of the laminated film 100 in the direction (TD direction) orthogonal to the transport direction of the laminated film 100 at the time of forming the laminated film 100 is 600% or more.
  • the tensile elongation of the laminated film 100 in the transport direction at the time of forming the laminated film 100 is 400% or more, and the tensile elongation of the laminated film 100 in the TD direction is 400% or more. It is preferable that the degree is 600% or more.
  • the breathable base material 20 is provided on the seal layer side of the laminated film 100A so as to cover one of the laminated films 100A with the slit 101 of the laminated film 100A.
  • the breathable base material 20 has a plurality of cuts 21 on a surface different from the seal layer side of the laminated film 100A.
  • the cut 21 is formed to correspond to the longitudinal direction of the breathable base material 20.
  • the cut 21 may penetrate through the breathable base material 20 or may extend halfway through the breathable base material 20.
  • the longitudinal direction of the cut 21 is formed along the conveyance direction of the laminated film 100.
  • sterilized paper for example, kraft paper and glassine paper, which are permeable to water vapor and ethylene oxide but not permeable to bacteria, can be used. Specifically, sterile paper manufactured by Tokushu Paper Co., Ltd. and Tomegawa Paper Manufacturing Co., Ltd. can be mentioned.
  • the cuts 21 are preferably formed in the same direction as the slits 101 of the laminated film 100.
  • the sterilization bag 1 may include an indicator in a portion between the layers of the laminated film 100 that constitutes the inside of the bag body 10.
  • the indicator commonly used indicators can be used.
  • the sterilizing agent supplied into the bag body 10 sterilizes the object to be sterilized filled in the bag body 10 and then passes through the bag body 10.
  • the status of sterilization such as whether sterilization has been completed, can be confirmed from the outside.
  • the sterilization bag 1 When the sterilization bag 1 is sterilized, it is placed in a sterilization chamber of a sterilizer, and the sterilizing agent present in the sterilization chamber enters the bag body 10 through the air-permeable base material 20, causing the inside of the bag body 10 to be sterilized. Sterilize the object to be sterilized.
  • the sterilizing agent that has passed through the breathable base material 20 and entered the bag body 10 sterilizes the object to be sterilized, and then passes through the laminated film 100 that constitutes the bag body 10 and is released to the outside.
  • the sterilizing agent that has entered the bag body 10 discolors the indicator ink and is released to the outside.
  • the laminated film 100 constituting the bag body 10 is transparent, the discoloration of the indicator ink can be confirmed from the outside of the sterilization bag 1.
  • the sterilization bag 1 includes the bag body 10 and the breathable base material 20, and the bag body 10 includes a seal containing at least one of low-density polyethylene and linear low-density polyethylene. It is composed of a laminated film in which a layer and a base layer containing high-density polyethylene are laminated.
  • the bag body 10 can be made easy to tear by providing a base material layer containing high-density polyethylene on the surface side (outside), and can be made easy to tear by providing a sealing layer containing low-density polyethylene on the back layer side (outside). 12 can be maintained. Therefore, by including the bag body 10, the sterilization bag 1 can improve the tear-openability and maintain the sealability of the storage chamber 12.
  • the sterilization bag 1 is composed of the bag body 10 formed of the laminated film 100 and the air permeable base material 20.
  • conventional sterilization bags are generally made of a heat-resistant material such as polyethylene terephrate (PET) or nylon (Ny) on the surface layer of the bag body from the viewpoint of sealability during bag manufacturing. It was composed of a laminated film having a sealant film such as L-LDPE, LDPE, or PP that has sealing properties.
  • the inventor of the present application aimed to streamline the production of sterilization bags, reduce costs, and improve the environment. With this in mind, we focused on creating a product made of a single material. Then, in manufacturing the sterilization bag 1, the inventor of the present invention formed the laminated film 100 that constitutes the bag body 10 from polyethylene, and formed the breathable base material 20, which becomes the ventilation portion of the sterilization bag 1, from HDPE. It has been found that the sterilization bag 1 can be made of a single material, polyethylene.
  • the inventor of the present application has determined that the base material layer located on the surface of the laminated film 100 is formed of HDPE, and the intermediate layer is formed of HDPE or LDPE, in order that the bag body 10 exhibits sealing properties. It has been found that sealing can be facilitated by forming a sealing layer of LDPE or L-LDPE and creating a temperature difference between the melting points of the base layer and the sealing layer.
  • L-LDPE has high sealing strength, it has a property that it is difficult to cut by hand.
  • the inventor of the present application has focused on the fact that it is advantageous to use LDPE for the sealing layer when hand tearability is taken into consideration, and if LDPE is used as the sealing layer for the laminated film 100, the bag body 10 has sufficient sealing strength. We have found that it is possible to have
  • the sterilization bag 1 may include an intermediate layer 120 between the seal layer 110 and the base layer 130 of the laminated film 100.
  • the intermediate layer 120 includes high-density polyethylene or low-density polyethylene, the bag body 10 can be easily torn or the airtightness of the storage chamber 12 can be further improved. Therefore, the sterilization bag 1 can further improve tear-openability and sealability of the storage chamber 12.
  • the sterilization bag 1 may include high-density polyethylene in the middle layer 120. Thereby, the bag main body 10 can more reliably improve tear-opening properties. Therefore, the sterilization bag 1 can more reliably improve tear-openability.
  • the sterilization bag 1 may include low density polyethylene in the sealing layer 110. Thereby, the bag main body 10 can further improve the airtightness of the storage chamber 12. Therefore, the sterilization bag 1 can improve the sealing performance of the storage chamber 12 more reliably.
  • the thickness of the laminated film 100 can be 30 ⁇ m to 120 ⁇ m. Thereby, even if the laminated film 100 is made thin, the bag main body 10 can achieve both ease of tearing and sealability of the storage chamber 12. Therefore, the sterilization bag 1 can maintain a balance between maintaining the sealing performance of the storage chamber 12 while improving tear-openability.
  • the longitudinal direction of the slit 101 formed in one of the laminated films 100A can be provided along the conveyance direction of the laminated film 100A.
  • the longitudinal direction of the slit 101 parallel to the conveyance direction of the laminated film 100, it can be easily formed in the laminated film 100A when forming the bag body 10, so that deformation of the slit 101 can be reduced. Therefore, the sterilization bag 1 can maintain the sealing performance of the storage chamber 12 with higher accuracy.
  • the sterilization bag 1 can have a plurality of cuts 21 formed in the breathable base material 20 on a surface different from the seal layer side of the laminated film 100 so as to correspond to the longitudinal direction of the slit 101. Thereby, the air permeability of the air permeable base material 20 can be increased substantially uniformly over the entire surface. Therefore, the sterilization bag 1 can maintain the sealing performance of the storage chamber 12 with higher accuracy.
  • the sterilization bag 1 can use a band-shaped breathable sterile paper as the breathable base material 20. Thereby, the sterilization bag 1 can sterilize the air that enters the storage chamber 12, so that the sterilization state of the object to be sterilized stored in the storage chamber 12 can be maintained more reliably.
  • the sterilization bag 1 can have a breathable base material made of polyethylene resin.
  • the bag body 10 and the breathable base material 20 constituting the sterilization bag 1 can be made of the same polyethylene material, which improves the tear-openability and maintains the sealing performance of the storage chamber 12. , can have excellent recyclability.
  • FIG. 6 is a flowchart illustrating an example of a method for manufacturing a sterile bag according to this embodiment.
  • one of the two laminated films 100 in which a sealing layer 110, an intermediate layer 120, and a base material layer 130 are laminated one of which is a laminated film 100A, has inner and outer surfaces.
  • a communicating slit 101 is formed along the transport direction of the laminated film 100A (slit forming step: step S11).
  • a breathable base material 20 is provided on the seal layer 110 side surface of the laminated film 100A in which the slits are formed so as to cover the slits 101 (breathable base material covering step: step S12).
  • the breathable base material 20 is bonded to the surface of the laminated film 100A on the seal layer 110 side so as to cover the slit 101 by a general bonding method such as welding (heat sealing).
  • the two laminated films 100A and 100B are overlapped so that the seal layer sides face each other, and the outer peripheral edges of the two laminated films 100A and 100B are welded together.
  • a seal portion is formed by welding while leaving an unfilled opening (welding process: step S13).
  • each laminated film 100 is the flow direction of the original fabric 41 of the laminated film.
  • the original fabric 41 of the laminated film located below may be conveyed in a folded state to one side in the width direction between the original fabrics 41 of the two laminated films.
  • a sterile bag 1 is formed, provided with a material 20 (see FIG. 1).
  • the lateral direction of the sterilization bag 1 is the direction of movement in the bag making device 40.
  • the sterilization bag 1 is cut out one by one by the cutting part 44.
  • the sterilization bag 1 is placed into the storage chamber 12 through the opening 13 of the bag body 10, and the opening 13 is heat-sealed, and then the sterilization bag 1 is placed in the sterilization chamber of the sterilizer and sterilized.
  • the sterilizing agent supplied into the room enters the bag body 10 through the air-permeable base material 20 and sterilizes the objects to be sterilized within the bag body 10.
  • the method for manufacturing a sterilization bag it is possible to manufacture the sterilization bag 1 as described above, which has high tearability and maintains internal sealability.
  • the sterilization bag manufacturing method includes the slit forming step (step S11), the slits 101 can be formed in the laminated film 100A along the conveyance direction of the laminated film 100A.
  • the slits 101 can be formed in advance on a flat area of the bag body 10 without steps, such as on the surface of the laminated film 100A or the laminated film 100B. Even if the edges of the film 100B are not sealed and fused, the sterilization bag 1 can be manufactured with high productivity without impairing its functionality.
  • the sterilization bag 200 is manufactured by sealing an end 211A of one laminated film 210A of a pair of laminated films 210 and an end 211B of the other laminated film 210B to a gas permeable film 220, respectively.
  • a step is created in the sealing portion between the laminated film 210A and the laminated film 210B by the thickness of the gas permeable film 220, which makes heat sealing difficult and production efficiency poor. Further, if the heat sealing is not performed sufficiently, the sterilization bag 200 may not be able to obtain sufficient sealing performance, strength, etc.
  • the laminated film 210 has a three-layer structure of a sealing layer, an intermediate layer, and a base material layer
  • low-density polyethylene or linear low-density polyethylene is generally used for the sealing layer, and for the intermediate layer and base material layer.
  • High density polyethylene is used.
  • the laminated film 210 has such a layer configuration, the difference in melting temperature between the high-density polyethylene that constitutes the base layer of the laminated film 210 and the low-density polyethylene or linear low-density polyethylene that constitutes the sealing layer is low. Therefore, it is difficult to select optimal conditions for heat sealing, and the production efficiency of the sterilization bag 200 deteriorates.
  • the method for manufacturing a sterilization bag includes a step of covering the breathable base material (step S12) and a step of welding (step S13), so the sealing layer 110 side of the laminated film 100A in which slits have been formed in advance
  • the air-permeable base material 20 is provided on the surface of the bag so as to cover the slit 101, and the outer peripheral edges of the two laminated films 100A and 100B are welded together to form a bag. Therefore, according to the method for manufacturing a sterilization bag, the laminated film 100A and the laminated film 100B can be welded to each other without creating a step in the seal portion 11, so the sterilization bag 1 can be manufactured with high productivity without impairing the function of the sterilization bag 1. can be manufactured. In addition, according to the method for manufacturing the sterilization bag, since it is difficult for the seal portion 11 to have insufficient heat sealing, the sterilization bag 1 has sufficient sealing performance and strength, and provides a highly reliable sterilization bag. can do.
  • the sterilization bag 1 since the sterilization bag 1 has the above-mentioned characteristics, it can accommodate medical containers, medical devices, medical supplies, medicines, nutritional supplements, food and drink, cosmetics, etc., and can be sterilized. It can be suitably used as a bag to be used.
  • Example 1> [Preparation of sterile bag] (Preparation of laminated film) Low-density polyethylene (InnoPlus LD2426H, manufactured by PTT Global Chemical Public Company Limited) was used to form the sealing layer that constitutes the laminated film, and high-density polyethylene (InnoPlus HD3355F, manufactured by PTT Global Chemical Public Company Limited) was used to form the intermediate layer and base layer. Limited) was used. Using a T-die type multilayer film forming machine, low density polyethylene, high density polyethylene, and high density polyethylene were extruded by a coextrusion method to produce a laminated film in which a sealing layer, an intermediate layer, and a base material layer were laminated in this order. . The thicknesses of the seal layer, intermediate layer, and base material layer were 15 ⁇ m, 30 ⁇ m, and 15 ⁇ m, and a laminated film with a thickness of 60 ⁇ m was produced.
  • the produced laminated film was cut into a predetermined size (width 15 mm x length 100 mm) to produce a rectangular test piece 1.
  • the laminated film was cut so that the short direction of the test piece corresponded to the conveyance direction (MD direction) of the laminated film, and the longitudinal direction of the test piece corresponded to the direction perpendicular to the conveyance direction of the laminated film (TD direction).
  • MD direction conveyance direction
  • TD direction direction perpendicular to the conveyance direction of the laminated film
  • the tensile elongation (unit: %) in the transverse direction of the laminated film, that is, the transport direction of the laminated film was measured using an autograph to evaluate the tensile properties of the laminated film.
  • Three test pieces were each prepared, and the average value of the measured values of the three test pieces was taken as the tensile elongation of the test piece of each thickness. When the tensile elongation was 400% or more, the tensile elongation was evaluated to be good.
  • Table 1 shows the measurement results of the tensile elongation of the laminated film.
  • a pouch which is a bag body measuring 300 mm x 360 mm, was produced.
  • Ethylene oxide (EO) gas was put into the prepared sterilization bag as a sterilizing agent, and the amount of gas in the storage chamber was measured.
  • FIG. 10 shows the relationship between time and EO gas amount.
  • Example 2 A laminated film was produced in the same manner as in Example 1, except that the sealing layer was formed using linear low-density polyethylene (InnoPlus LL7410D1, manufactured by PTT Global Chemical Public Company Limited). Table 1 shows the results of measuring the tensile strength and tensile elongation of the produced laminated film.
  • Table 1 shows the results of measuring the tensile strength and tensile elongation of the produced laminated film.
  • Example 1 ⁇ Comparative example 1>
  • the laminated film did not have an intermediate layer and had a two-layer structure consisting of a sealing layer and a base material layer, the thickness of the sealing layer was 50 ⁇ m, and the sealing layer was made of PET and had a thickness of 12 ⁇ m.
  • "Tyvek (registered trademark) 1059B" was used for sterilized paper.
  • FIG. 10 shows the relationship between time and gas amount.
  • Example 1 the amount of EO gas in the storage chamber of the sterilization bag was about 1633 ⁇ g/g on day 0, and gradually decreased with time, but even on the second day. It was about 373 ⁇ g/g, and even on the third day it was about 170 ⁇ g/g. After the second day, the amount of EO gas in the storage chamber of the sterilization bag hardly decreased, and was approximately the same amount as in Comparative Example 1.
  • the sterilization bag obtained in Example 1 can improve the tearability and maintain the sealability of the storage chamber. Therefore, when the sterilization bag obtained in Example 1 is used as a sterilization bag, it can be easily torn and the sterilizing agent can be taken inside and stably retained for a long period of time, so that it maintains its function as a sterilization bag. However, it can be said that the object to be sterilized can be easily taken out and used.
  • aspects of the embodiment of the present invention are, for example, as follows.
  • Laminated films in which a sealing layer containing at least one of low-density polyethylene and linear low-density polyethylene and a base layer containing high-density polyethylene are laminated so that the sealing layer sides face each other.
  • the laminated film is provided with a sealing part whose outer peripheral edges are welded to each other, and a storage chamber defined by the laminated film and the sealing part and in which the object to be sterilized is stored, and the laminated film is communicated with at least one of the laminated films.
  • a bag body having a slit; a breathable base material provided to cover the slit from the seal layer side of one of the laminated films; Sterile bag with.
  • the laminated film includes an intermediate layer containing at least one of high-density polyethylene and low-density polyethylene between the seal layer and the base layer.
  • the intermediate layer includes the high-density polyethylene.
  • the seal layer includes the low-density polyethylene.
  • the laminated film has a thickness of 30 ⁇ m to 120 ⁇ m.
  • ⁇ 6> The sterilization bag according to any one of ⁇ 1> to ⁇ 5>, wherein the longitudinal direction of the slit is provided along the conveyance direction of the laminated film.
  • the breathable base material has a plurality of incisions formed on a surface different from the seal layer side of the laminated film so as to correspond to the longitudinal direction of the slit. or a sterile bag as described in one of the above.
  • the breathable base material is a band-shaped breathable sterile paper.
  • ⁇ 9> The sterilization bag according to any one of ⁇ 1> to ⁇ 8>, wherein the object to be sterilized is a pharmaceutical or a medical product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Bag Frames (AREA)

Abstract

本発明に係る滅菌バッグは、低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一つを含むシール層と、高密度ポリエチレンを含む基材層とが積層された積層フィルムを前記シール層側が対向するように重ね合わせて互いの外周縁部同士を溶着したシール部と、前記積層フィルム及び前記シール部によって画定され、滅菌対象物が保存される収容室とを備え、少なくとも一方の前記積層フィルムに前記積層フィルムを連通したスリットを有するバッグ本体と、前記スリットを一方の前記積層フィルムの前記シール層側から被覆するように設けられた通気性基材と、を備える。

Description

滅菌バッグ
 本発明は、滅菌バッグに関する。
 医薬品、医療用品、各種化粧品及び食品等の内容品を収納する包装体として滅菌バッグがある。滅菌バッグは、複数種の樹脂フィルムを積層した積層体を重ね合わせて外周をヒートシール等によって接合されることで形成された袋状体である。滅菌バッグは、滅菌対象物である内容品を収容して封止された後、使用される前にエチレンオキサイド(EO)ガスやγ線滅菌等で滅菌処理される。
 このような滅菌バッグとして、例えば、耐熱性を有する合成樹脂製の2種類のフィルムから形成された包装袋本体に包装袋本体の内外を連通する間隙又は透孔を形成すると共に、この間隙又は透孔を不織布と多数の小孔が突設された耐熱性プラスチックフィルムとを積層したフィルター材で被覆した滅菌用包装袋が開示されている(例えば、特許文献1参照)。
日本国実開平4-21481号公報
 しかしながら、特許文献1は滅菌用包装袋の引裂き開封性について検討されておらず、特許文献1の滅菌用包装袋は使用時に引裂き難い、という問題があった。また、滅菌用包装袋では、使用時において引裂き易くすると共に、滅菌対象物を使用するまで滅菌処理された状態を維持できるようにシール性を維持することが重要である。
 本発明の一態様は、引裂き開封性を高めると共に内部のシール性を維持することができる滅菌バッグを提供することを目的とする。
 本発明に係る滅菌バッグの一態様は、
 低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一つを含むシール層と、高密度ポリエチレンを含む基材層とが積層された積層フィルムを前記シール層側が対向するように重ね合わせて互いの外周縁部同士を溶着したシール部と、前記積層フィルム及び前記シール部によって画定され、滅菌対象物が保存される収容室とを備え、少なくとも一方の前記積層フィルムに前記積層フィルムを連通したスリットを有するバッグ本体と、
 前記スリットを一方の前記積層フィルムの前記シール層側から被覆するように設けられた通気性基材と、
を備える。
 本発明に係る滅菌バッグの一態様は、引裂き開封性を高めると共に内部のシール性を維持することができる。
本発明の実施形態に係る滅菌バッグの平面図である。 図1のA-A方向視の断面図である。 積層フィルムの構成の一例を示す概略断面図である。 積層フィルムの各層を製造するフィルム押出成形装置の一例を示す斜視図である。 通気性基材を示す平面図である。 滅菌バッグを製造する方法の一例を示すフローチャートである。 滅菌バッグを製造する製袋装置の斜視図である。 滅菌バッグの一例を示す平面図である。 図8のB-B方向視の断面図である。 実施例1及び比較例1の時間とEOガス量との試験結果を示す図である。
 以下、本発明の実施の形態について、詳細に説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の符号を付して、重複する説明は省略する。また、図面における各部材の縮尺は実際とは異なる場合がある。本明細書において数値範囲を示す「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。
<滅菌バッグ>
 本発明の実施形態に係る滅菌バッグについて説明する。図1は、本実施形態に係る滅菌バッグの平面図であり、図2は、図1のA-A方向視の図である。図1及び図2に示すように、本実施形態に係る滅菌バッグ1は、滅菌対象物が充填されるバッグ本体10と、通気性基材20とを備える。滅菌バッグ1は、バッグ本体10内に滅菌剤を供給してバッグ本体10内に充填された滅菌対象物の滅菌処理が行われる。
 なお、本実施形態において、滅菌対象物は、医療用容器、医療機器、医療用品、医薬品(薬剤)、栄養剤、飲食物及び化粧品等が挙げられる。医療用容器としては、医薬品、動植物の細胞、組織及び培養物等が投入される容器等であり、具体的には、アンプル、バイヤル、シリンジ及びバッグ等が挙げられる。医療機器及び医療用品としては、滅菌バッグに収容して流通し得る医療用の小型の機械器具等が挙げられる。小型の機械器具等としては、メス、ナイフ、はさみ、さじ、へら、ピンセット、カテーテル、シリンジ、注射針、鉗子、縫合糸、縫合針、包帯、ガーゼ、レンズ、手袋及び指サック等が挙げられる。医薬品は、ニトログリセリン、アルブミン、ビタミン類、微量元素、ラジカル捕捉剤等、一般の樹脂に対する吸着性又は透過性が高い物質でもよいし、ピラゾロン誘導体であるエダラボン又はその薬学的に許容され得る塩を含有する水溶液でもよい。ピラゾロン誘導体は、ピラゾロンの炭素原子又は窒素原子にアルキル基、芳香族基、ハロゲン原子等の置換基を1以上有してもよい。ピラゾロン誘導体は、有機酸、無機酸等と塩類を形成していてもよい。同一又は異なる種類の複数の滅菌対象物が収容空間に同時に収容されてもよい。
 滅菌剤は、殺菌剤、消毒剤等、滅菌対象物の滅菌に使用できる薬剤であれば特に限定されず、ガス又は蒸気として収容空間に充満させることができるものが好ましい。滅菌剤は、バッグ本体10に対して適度な透過性を有することが好ましく、バッグ本体10を介して外側に拡散できることが好ましい。また、滅菌剤は、バッグ本体10内で分解されてもよい。滅菌剤としては、例えば、過酸化水素(H)、エチレンオキサイド(EO)、オゾン及び有機過酸化物等が挙げられる。有機過酸化物としては、過ギ酸、過酢酸等の有機過酸が挙げられる。その他の滅菌剤としては、ホルムアルデヒド等のアルデヒド系滅菌剤、二酸化塩素等の塩素系滅菌剤等が挙げられる。これら2種以上の滅菌剤は併用してもよい。
[バッグ本体]
 バッグ本体10は、重ね合わされた一対の積層フィルム100A及び100Bで形成された包装袋(パウチ)である。バッグ本体10は、一対の積層フィルム100A及び100B同士を対向するように重ね合わせて互いの外周縁部同士を溶着したシール部11と、一対の積層フィルム100及びシール部11によって画定された収容室12と、一対の積層フィルム100の互いの外周縁部同士が溶着されていない開口部13とを有する。収容室12は、滅菌対象物が保存されるための空間である。開口部13は、対向する積層フィルム100同士の間の融着されていない隙間であり、収容室12に滅菌対象物が充填された後、溶着等されてよい。
 バッグ本体10は、三方袋としているが、バッグ本体10の形態は、特に限定されず、四方袋、合掌貼り袋、ガゼット袋、自立袋等の小型の袋の他に、バッグインボックス用の内袋及びドラム缶内装袋等の大型の袋等に適用できる。
 積層フィルム100Aは、その主面に積層フィルム100Aを連通した複数のスリット(切れ目)101を有する。なお、スリット101は、積層フィルム100Bに形成されてもよいし、積層フィルム100A及び積層フィルム100Bの両方に形成されてもよい。
 複数のスリット101は、積層フィルム100Aの主面に直線状のミシン目となるように一列形成されてもよいし、直線状のミシン目が並列に並ぶように複数形成されてもよい。図1では、複数のスリット101が、積層フィルム100Aの一方の長辺から他方に長辺にかけて形成されているが、積層フィルム100Aの長辺同士の間の一部にのみ形成されてもよい。
 スリット101の長さと、スリット101の長さ方向又は幅方向において隣接するスリット101同士の間隔とは、積層フィルム100A又はスリット101の大きさ又は形状と、スリット101の形成される領域等に応じて、適宜任意の距離に設定してよい。例えば、スリット101の長さが約1mmである場合、スリット101の長さ方向におけるスリット101同士の間隔は約2mmとし、スリット101の幅方向におけるスリット101同士の間隔は約5mmとしてもよい。
(積層フィルム)
 積層フィルム100は、低密度ポリエチレン(LDPE)及び直鎖状低密度ポリエチレン(LLDPE)の少なくとも一つを主成分として含むシール層と、シール層に積層して設けられ、高密度ポリエチレン(HDPE)を主成分として含む基材層とを有する積層フィルムのシール層同士を対向するように重ね合わせて溶着させることで形成することができる。また、積層フィルム100は、シール層及び基材層以外の他の層を有してもよく、例えば、シール層と基材層との間に、高密度ポリエチレン及び低密度ポリエチレンの少なくとも一つを主成分として含む中間層を含んでもよい。積層フィルム100は、シール層、基材層及び中間層の各層を2層以上有してもよい。
 なお、主成分とは、含有量が50wt%以上であることをいい、好ましくは90wt%以上、より好ましくは99wt%以上であることをいう。
 低密度ポリエチレン及び直鎖状低密度ポリエチレンは、密度が0.911g/m~0.940g/m程度のポリエチレンをいう。高密度ポリエチレンは、密度0.941g/m~0.970g/m程度のポリエチレンをいう。
-積層フィルムの層構成-
 積層フィルム100の層構成について説明する。図3は、積層フィルム100の構成の一例を示す概略断面図である。図3に示すように、積層フィルム100Aは、シール層110、中間層120及び基材層130を、シール層110側からこの順に積層して備えてよい。
(シール層)
 シール層110は、低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一つを主成分として含み、低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一つから実質的に構成され、低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一つから構成されることが好ましい。シール層110は、バッグ本体10がシール性を発揮する点から、低密度ポリエチレンを含むことが好ましい。
 シール層110に含まれる低密度ポリエチレンとしては、密度が0.911g/m~0.925g/m程度のポリエチレンであれば特に限定されず、一般的な低密度ポリエチレンを用いることができる。
 シール層110に含まれる直鎖状低密度ポリエチレンは、通常、炭素数4以上のα-オレフィンを共重合させ、短鎖の分岐を導入することで、長鎖の分岐が少なく、直鎖状の分子構造を有する。直鎖状低密度ポリエチレンに共重合されるα-オレフィンとしては、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン等が挙げられる。
 シール層110に含まれる直鎖状低密度ポリエチレンの種類としては、チーグラー・ナッタ触媒を用いて重合された樹脂、シングルサイト系触媒を用いて重合された樹脂等が挙げられる。シングルサイト系触媒を用いて重合された直鎖状低密度ポリエチレンは、分子量分布が狭く、機械的特性に優れるので好ましい。シングルサイト系触媒としては、メタロセン系触媒が挙げられる。メタロセン系触媒としては、シクロペンタジエニル骨格を有する配位子を含み、金属がジルコニウム、ハフニウム等であるメタロセン化合物を含む触媒が挙げられる。
 シール層110に含まれる直鎖状低密度ポリエチレンとしては、具体的には、日本ポリエチレン社製のハーモレックス(登録商標)シリーズ、東ソー社製のニポロン(登録商標)シリーズ等が挙げられる。
 シール層110に含まれる直鎖状低密度ポリエチレンは、一種でもよいし、二種以上でもよい。
 シール層110に含まれる直鎖状低密度ポリエチレンの曲げ弾性率は、200MPa~500MPaであることが好ましく、300MPa~450MPaであることがより好ましく、360MPa~400MPaであることがさらに好ましい。シール層110に含まれる直鎖状低密度ポリエチレンの曲げ弾性率が上記の好ましい範囲内であれば、シール層110は、適度な柔軟性を有すると共に中間層120に対する接着性を発揮できる。
 なお、曲げ弾性率は、JIS K7171:2016(ISO 178:2010)に準拠する方法によって測定できる。
 直鎖状低密度ポリエチレンのメルトフローレート(MFR)は、JIS K 7210-1:2014(ISO 1133-1:2011)に基づく測定(230℃、21N荷重)において、0.1g/10分~10g/10分が好ましく、0.5g/10分~5g/10分がより好ましい。直鎖状低密度ポリエチレンのMFRが上記の好ましい範囲内であれば、シール層110を押出成形等して形成する場合、押出性が比較的安定し、成形不良が抑えられるので、フィルム状に安定して成形し易くなり、成形時にシール層110にバリ等の成形不良が生じることが抑えられる。
 直鎖状低密度ポリエチレンの融点は、120℃~135℃が好ましく、122℃~128℃がより好ましい。
 直鎖状低密度ポリエチレンの密度は、0.915g/cm~0.940g/cmが好ましく、0.920g/cm~0.930g/cmがより好ましい。
 直鎖状低密度ポリエチレンの含有量は、80質量%~100質量%であることが好ましく、85質量%~95質量%であることがさらに好ましい。直鎖状低密度ポリエチレンの含有量が上記の好ましい範囲内であれば、シール層110は十分な柔軟性を有すると共に中間層120に対する接着性を発揮できる。
 シール層110に含まれる低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一部は、植物から生成したエチレンを重合させてなる植物由来ポリエチレンでもよい。
 また、シール層110に含まれる低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一部は、ポリエチレン製品をリサイクルしたリサイクルポリエチレンであってもよい。リサイクルポリエチレンは、メカニカルリサイクルされたポリエチレンでもよいし、ケミカルリサイクルされたポリエチレンでもよい。
 シール層110の厚さは、5μm~50μmが好ましく、10μm~30μmがより好ましく、8μm~20μmがさらに好ましい。
(中間層)
 中間層120は、シール層110と基材層130との間に設けられ、高密度ポリエチレン及び低密度ポリエチレンの少なくとも一つを主成分として含み、高密度ポリエチレン及び低密度ポリエチレンの少なくとも一つから実質的に構成され、高密度ポリエチレン及び低密度ポリエチレンの少なくとも一つから構成されてもよい。中間層120は、積層負フィルムの引裂き開封性を発揮する点から、高密度ポリエチレンを含むことが好ましい。
 中間層120に含まれる高密度ポリエチレンとしては、一般的な高密度ポリエチレンを用いることができる。
 中間層120で用いられる低密度ポリエチレンは、シール層110と同様であるため、詳細は省略する。
 中間層120に含まれる高密度ポリエチレン及び低密度ポリエチレンの少なくとも一部は、植物から生成したエチレンを重合させてなる植物由来ポリエチレンでもよい。
 中間層120に含まれる高密度ポリエチレン及び低密度ポリエチレンの少なくとも一部は、ポリエチレン製品をリサイクルしたリサイクルポリエチレンであってもよい。リサイクルポリエチレンは、メカニカルリサイクルされたポリエチレンでもよいし、ケミカルリサイクルされたポリエチレンでもよい。
 中間層120の厚さは、3μm~75μmが好ましく、5μm~60μmがより好ましく、15μm~45μmがさらに好ましい。
(基材層)
 基材層130は、基材層130の主面に設けられ、高密度ポリエチレンを主成分として含み、高密度ポリエチレンから実質的に構成され、高密度ポリエチレンから構成されることが好ましい。中間層120は、バッグ本体10が引裂き開封性を発揮する点から、高密度ポリエチレンからなることが好ましい。基材層130で用いられる高密度ポリエチレンは、中間層120と同様であるため、詳細は省略する。
 基材層130の厚さは、3μm~50μmが好ましく、5μm~30μmがより好ましく、8μm~20μmがさらに好ましい。
 積層フィルム100Aは、シール層110、中間層120及び基材層130の各層の何れかを2層以上有してもよいし、他の層を有してもよい。
 積層フィルム100A及び100Bは、シール層110、中間層120及び基材層130の3層を有しているが、上述の通り、これらの層の何れかを複数備えてもよい。例えば、積層フィルム100Aは、シール層110、中間層120、基材層130、中間層120及び基材層130をこの順に積層した5層を含んでもよいし、シール層110、中間層120、基材層130、中間層120、基材層130、中間層120及び基材層130をこの順に積層した7層を含んでもよい。
 積層フィルム100を構成する各層、即ち、シール層110、中間層120及び基材層130等を構成する材料には、容器外観の向上や品質の安定化、その他必要とされる性能を付与するために、安全性及び衛生性を損なわない範囲で、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、ブロッキング防止剤等の各種添加剤等を含有してもよい。
 積層フィルム100を構成する各層を成形する方法は、特に限定されないが、Tダイ成形法、インフレーション成形法等を用いることができる。Tダイ成形法を用いる場合、Tダイ成形後に、積層フィルム100を構成する各層をフィルム(シート)等とした後、冷却ロールで急冷してもよい。積層フィルム100を構成する各層のフィルム等を連続的に成形する場合には、成形後に、積層フィルム100を構成する各層のフィルム等の長尺成形体を巻き取ると、生産性に優れるため、好ましい。
 積層フィルム100は、ヒートシール層及び基材等、必要に応じて他の層を積層してもよい。即ち、各層間には接着剤層又はアンカー剤層を介してもよいし、層間が直接接するように積層されていてもよい。他の層としては、補強層、ガスバリア層、遮光層、印刷層等、適宜、一層又は複数層を選択することができる。ヒートシール層とは、ヒートシールに用いられる層であり、包装材料としては内容品に接する最内層に配置される。ヒートシールは、ヒートシール層を溶融させることにより接着させる方法であるが、シール方法は特に限定されず、熱板シール、超音波シール、高周波シール、インパルスシール等が挙げられる。基材は、積層体のうちヒートシール層とは反対側である他方の最表面であってもよいし、他方の最表面より内側に積層されてもよい。
 積層フィルム100の総厚みは、適宜設計可能であり、必要とされる性能(例えば、透明性、柔軟性等)及びコスト(例えば、生産性、材料費等)とのバランスの観点から、例えば、20μm~150μmが好ましく、30μm~120μmであることがより好ましく、40μm~90μmであることがさらに好ましい。
 シール層110、中間層120及び基材層130の各層の厚さの比は、積層フィルム100を用いて成形される容器の用途等に適宜設計され、例えば、1:1:1~1:5:1が好ましく、1:2:1~1:3:1がより好ましい。
 シール層110、中間層120及び基材層130の各層の厚さとしては、例えば、それぞれ、15μm、30μm及び15μmとしてもよい。
 積層フィルム100の製造方法としては、特に限定されることなく、押出ラミネート工法、ドライラミネート工法、共押出工法、又はこれらのうち2以上の工法の併用により、積層フィルム100を構成する各層を適宜積層すればよい。
 積層フィルム100の製造時に、積層フィルム100が、図3に示すように、シール層110、基材層130及び中間層120の3層を共押出工法で積層すると、これら3層の間が接着剤層又はアンカー剤層を介することなく積層させることができる。
 シール層110、中間層120及び基材層130の各層は、例えば、図4に示すように、フィルム押出成形機30によって、シール層110、中間層120又は基材層130の各層を構成する樹脂フィルム31が押出及び横方向に一軸延伸成形されることで形成できる。そして、シール層110、中間層120及び基材層130の各層を形成する樹脂フィルム31が不図示のラミネート装置にセットされて繰り出され、シール層110、中間層120及び基材層130が貼り合わされる。これにより、長尺連続シート状の積層フィルム100の原反が成形される。
 また、シール層110、中間層120又は基材層130の各層を構成する樹脂フィルム31の間に層間接着層となるポリエチレンが溶融状態で押し出されてサンドイッチされる。これによって、シール層110、中間層120又は基材層130が層間接着層を介して貼り合わされ、長尺連続シート状の積層フィルム100の原反がラミネート成形される。
 積層フィルム100は、積層フィルム100の形成時における積層フィルム100の搬送方向(MD)方向での引裂き強度は、26N以下であることが好ましく、より好ましくは20N以下であり、さらに好ましくは16N以下である。引裂き強度が23N以下であれば、バッグ本体10の引裂き開封性を高めることができる。
 積層フィルム100は、その厚さが15mmである場合に、積層フィルム100の形成時における積層フィルム100の搬送方向(MD)方向での引張強度は、21N/15mm以上であることが好ましい。また、積層フィルム100の形成時における積層フィルム100の搬送方向と直交する方向(TD方向)の引張強度は、15N/15mm以上であることが好ましい。なお、引張強度は、JIS Z 0238に準拠して、幅15mm四方の積層フィルムを用いて算出される。
 積層フィルム100は、その厚さが5mmである場合においても、積層フィルム100の形成時における積層フィルム100のMD方向の引張強度は、21N/15mm以上であり、積層フィルム100のTD方向の引張強度は、15N/15mm以上であることが好ましい。
 積層フィルム100は、その厚さが15mmである場合に、積層フィルム100の形成時における積層フィルム100の搬送方向(MD)方向での引張伸度は、400%以上であることが好ましい。また、積層フィルム100の形成時における積層フィルム100の搬送方向と直交する方向(TD方向)の引張伸度は、600%以上であることが好ましい。
 積層フィルム100は、その厚さが5mmである場合においても、積層フィルム100の形成時における積層フィルム100の搬送方向の引張伸度は、400%以上であり、積層フィルム100のTD方向の引張伸度は、600%以上であることが好ましい。
[通気性基材]
 通気性基材20は、図1及び図2に示すように、積層フィルム100Aのスリット101を一方の積層フィルム100Aを被覆するように、積層フィルム100Aのシール層側に設けられている。
 通気性基材20は、図5に示すように、積層フィルム100Aのシール層側とは異なる面に複数の切り込み21を有する。
 切り込み21は、通気性基材20の長手方向に対応するように形成されていることが好ましい。
 切り込み21は、通気性基材20を貫通してもよいし、通気性基材20の途中まででもよい。
 切り込み21は、その長手方向が積層フィルム100の搬送方向に沿って形成されることが好ましい。
 通気性基材20としては、表面に複数の切り込みが形成できればよく、例えば、滅菌紙を用いることができる。滅菌紙としては、例えば、水蒸気及びエチレンオキサイドは透過するが細菌は透過しないクラフト紙及びグラシン紙等を使用でき、具体的には、特種製紙株式会社製及び株式会社巴川製紙所製の滅菌紙等が挙げられる。
 切り込み21は、積層フィルム100のスリット101と同じ向きに形成されていることが好ましい。
 滅菌バッグ1は、バッグ本体10内を構成する積層フィルム100の層間の一部にインジケータを備えてもよい。インジケータとしては、一般的に使用されるインジケータを用いることができる。バッグ本体10内に充填された滅菌対象物が滅菌処理される際、バッグ本体10内に供給した滅菌剤がバッグ本体10内に充填された滅菌対象物を滅菌した後、バッグ本体10を透過してインジケータを変色させることで、滅菌の完了の有無等、滅菌の状態を外部から確認できる。
 滅菌バッグ1は、滅菌処理される際、滅菌装置の滅菌室内に置かれて、滅菌室内に存在する滅菌剤が通気性基材20を通ってバッグ本体10内に侵入し、バッグ本体10内の滅菌対象物を滅菌する。
 通気性基材20を通過し、バッグ本体10内に侵入した滅菌剤は、滅菌対象物を滅菌した後、バッグ本体10を構成する積層フィルム100を透過して外部に放出される。バッグ本体10を構成する積層フィルム100の層間の一部にインジケータが設けられる場合、バッグ本体10内に侵入した滅菌剤は、インジケータインキを変色させて外部に放出される。また、バッグ本体10を構成する積層フィルム100は透明であるため、インジケータインキの変色は滅菌バッグ1の外側から確認できる。
 このように、本実施形態に係る滅菌バッグ1は、バッグ本体10と、通気性基材20とを備え、バッグ本体10は、低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一つを含むシール層と、高密度ポリエチレンを含む基材層とが積層された積層フィルムで構成されている。バッグ本体10は、表層側(外側)に高密度ポリエチレンを含む基材層を設けることで引裂き易くすることができ、裏層側(外側)に低密度ポリエチレンを含むシール層を設けることで収容室12内の機密性を維持することができる。よって、滅菌バッグ1は、バッグ本体10を備えることで、引裂き開封性を高めると共に収容室12のシール性を維持することができる。
 即ち、滅菌バッグ1は、上記の通り、積層フィルム100で形成されたバッグ本体10と、通気性を持つ通気性基材20とで構成されている。積層フィルム100の構成に関して、従来の滅菌バッグは、一般に、製袋時、シール適性の観点から、バッグ本体は、表層にポリエチレンテレフラレート(PET)、ナイロン(Ny)等の耐熱性をもった材質と、シール性を有するL-LDPE、LDPE、PP等のシーラントフィルムを有する積層フィルムで構成されていた。
 本願発明者は、積層フィルムで形成されたバッグ本体と、紙及び不織布等で形成された通気性基材とで構成された滅菌バッグの開発に当たり、滅菌バッグの製造の合理化及びコスト低減と、環境対応を考慮して、単一素材で構成して製品化を図ることに着目した。そして、本願発明者は、滅菌バッグ1の製造に当たり、バッグ本体10を構成する積層フィルム100をポリエチレンで形成し、滅菌バッグ1の通気部分となる通気性基材20をHDPEで形成することで、滅菌バッグ1を単一の素材であるポリエチレンで形成できることを見出した。
 また、本願発明者は、滅菌バッグ1の製造に当たり、バッグ本体10がシール性を発揮する点から、積層フィルム100は表層に位置する基材層をHDPEで形成し、中間層をHDPE又はLDPEで形成し、シール層をLDPE又はL-LDPEで形成して、基材層とシール層との融点に温度差を付けることでシールし易くできることを見出した。
 さらに、L-LDPEは高いシール強度を有するが、手切れ性に難があるという性質を有する。本願発明者は、手切れ性を考慮に入れると、シール層にはLDPEを用いると優位であることに着目し、積層フィルム100をシール層としてLDPEを用いれば、バッグ本体10は十分なシール強度を有することができることを見出した。
 滅菌バッグ1は、積層フィルム100のシール層110と基材層130との間に中間層120を含むことができる。中間層120が高密度ポリエチレン又は低密度ポリエチレンを含むことで、バッグ本体10は、引裂き易さ又は収容室12の機密性をより高めることができる。よって、滅菌バッグ1は、引裂き開封性及び収容室12のシール性をより向上させることができる。
 滅菌バッグ1は、中間層120に高密度ポリエチレンを含むことができる。これにより、バッグ本体10は引裂き開封性をより確実に高めることができる。よって、滅菌バッグ1は、引裂き開封性をより確実に高めることができる。
 滅菌バッグ1は、シール層110に低密度ポリエチレンを含むことができる。これにより、バッグ本体10は収容室12の機密性をより高めることができる。よって、滅菌バッグ1は、収容室12のシール性をより確実に向上させることができる。
 滅菌バッグ1は、積層フィルム100の厚みを、30μm~120μmとすることができる。これにより、積層フィルム100を薄くしても、バッグ本体10は引裂き易さと収容室12のシール性との両立を図ることができる。よって、滅菌バッグ1は、引裂き開封性を高めつつ収容室12のシール性の維持のバランスを保つことができる。
 滅菌バッグ1は、一方の積層フィルム100Aに形成したスリット101の長手方向を、積層フィルム100Aの搬送方向に沿って設けることができる。スリット101の長手方向を積層フィルム100の搬送方向に沿った方向とすることで、バッグ本体10の形成時に積層フィルム100Aに簡易に形成できるため、スリット101の変形を低減することができる。よって、滅菌バッグ1は、収容室12のシール性をより精度良く維持することができる。
 滅菌バッグ1は、通気性基材20に、積層フィルム100のシール層側とは異なる面にスリット101の長手方向に対応するように形成された複数の切り込み21を有することができる。これにより、通気性基材20は全面で略均一に通気性を高めることができる。よって、滅菌バッグ1は、収容室12のシール性をより精度良く維持することができる。
 滅菌バッグ1は、通気性基材20に帯状の通気性滅菌紙を用いることができる。これにより、滅菌バッグ1は、収容室12に侵入する空気を滅菌することができるため、収容室12に収容された滅菌対象物の滅菌状態をより確実に維持することができる。
 滅菌バッグ1は、通気性基材をポリエチレン系樹脂で形成することができる。これにより、滅菌バッグ1は、滅菌バッグ1を構成するバッグ本体10及び通気性基材20を全て同一素材のポリエチレンで形成できるため、引裂き開封性を高め、収容室12のシール性を維持すると共に、優れたリサイクル性を有することができる。
<滅菌バッグの製造方法>
 本発明の実施形態に係る滅菌バッグを製造する方法の一例について説明する。図6は、本実施形態に係る滅菌バッグを製造する方法の一例を示すフローチャートである。図6に示すように、本実施形態に係る滅菌バッグでは、シール層110と中間層120と基材層130とが積層された2枚の積層フィルム100のうち、一方の積層フィルム100Aに内外を連通するスリット101を積層フィルム100Aの搬送方向に沿って形成する(スリット形成工程:ステップS11)。
 次に、スリットが形成された積層フィルム100Aのシール層110側の面にスリット101を被覆するように通気性基材20を設ける(通気性基材の被覆工程:ステップS12)。
 通気性基材20は、溶着(ヒートシール)等の一般的な接合方法によりスリット101を被覆するように積層フィルム100Aのシール層110側の面に接合される。
 次に、2つの積層フィルム100A及び100Bの搬送方向に沿って、2つの積層フィルム100A及び100Bをシール層側が対向するように重ね合わせて、2つの積層フィルム100A及び100Bの外周縁部同士を溶着されていない開口部を残しつつ溶着してシール部を形成する(溶着工程:ステップS13)。
 例えば、図7に示すように、製袋装置40に、2つの長尺連続シート状の積層フィルムの原反41がロール状態にセットされると共に、送り機構42によって流れ方向に沿って送られる。各積層フィルム100の搬送方向(MD方向)aは、積層フィルムの原反41の流れ方向ととする。
 このとき、2つ積層フィルムの原反41同士間の幅方向の一側部に、下方に位置する積層フィルムの原反41が二つ折り状態で搬送されてよい。
 続いて、ヒートシール部43で、積層フィルムの原反41の所定箇所同士が融着(ヒートシール)されることによって、三方が封止され、一方の積層フィルム100Aのシール層に、通気性基材20(図1参照)が設けられた滅菌バッグ1が形成される。滅菌バッグ1の横方向が製袋装置40における進行方向となる。
 切断部44によって、滅菌バッグ1が1つずつに切り出される。
 その後、滅菌バッグ1は、バッグ本体10の開口部13から滅菌対象物を収容室12内に入れて開口部13をヒートシールした後、滅菌バッグ1を滅菌装置の滅菌室内に設置して、滅菌室内に供給された滅菌剤が通気性基材20を通ってバッグ本体10内に侵入し、バッグ本体10内の滅菌対象物を滅菌する。
 滅菌バッグの製造方法によれば、上記のような、引裂き開封性が高く、内部のシール性が維持された滅菌バッグ1を製造することができる。
 滅菌バッグの製造方法は、スリット形成工程(ステップS11)を含むため、積層フィルム100Aの搬送方向に沿ってスリット101を積層フィルム100Aに形成できる。滅菌バッグの製造方法は、事前にスリット101を積層フィルム100A又は積層フィルム100Bの表面のようにバッグ本体10の段差のない平坦な場所に形成できるため、通気性基材20を積層フィルム100A又は積層フィルム100Bの端でシールして融着させなくても、滅菌バッグ1としての機能面を損なわずに生産性良く製造することができる。
 例えば、シール層、中間層及び基材層の3層構造からなる積層フィルムと、滅菌紙等のガス透過フィルムとをシールして滅菌バッグを製造する場合、図8及び図9に示すように、滅菌バッグ200は、一対の積層フィルム210の内の一方の積層フィルム210Aの端211Aと他方の積層フィルム210Bの端211Bとをそれぞれガス透過フィルム220にシールすることで製造される。このような滅菌バッグ200では、ガス透過フィルム220の厚みの分だけ、積層フィルム210Aと積層フィルム210Bとのシール部分に段差が生じるため、ヒートシールし難く、生産効率が悪い。また、ヒートシールが十分行われていないと、滅菌バッグ200は十分なシール性及び強度等を得られない可能性がある。
 さらに、積層フィルム210がシール層、中間層及び基材層の3層構造からなる場合、一般に、シール層には低密度ポリエチレン又は直鎖状低密度ポリエチレンが用いられ、中間層及び基材層には高密度ポリエチレンが用いられる。積層フィルム210がこのような層構成である場合、積層フィルム210の基材層を構成する高密度ポリエチレンと、シール層を構成する低密度ポリエチレン又は直鎖状低密度ポリエチレンとの溶融温度差が低いため、ヒートシールに最適な条件が選択し難いため、滅菌バッグ200の生産効率が悪くなる。
 本実施形態においては、滅菌バッグの製造方法は、通気性基材の被覆工程(ステップS12)及び溶着工程(ステップS13)を含むため、事前にスリットが形成された積層フィルム100Aのシール層110側の面にスリット101を被覆するように通気性基材20を設け、2つの積層フィルム100A及び100Bの外周縁部同士を溶着して製袋できる。このため、滅菌バッグの製造方法によれば、積層フィルム100Aと積層フィルム100Bとのシール部11に段差を生じることなく溶着できるため、滅菌バッグ1としての機能を損なわず、生産性良く滅菌バッグ1を製造することができる。また、滅菌バッグの製造方法によれば、シール部11にヒートシールが不十分な部分が生じ難いため、滅菌バッグ1は十分なシール性及び強度等を有し、信頼性の高い滅菌バッグを提供することができる。
 以上のように、滅菌バッグ1は、上記のような特性を有することから、医療用容器、医療機器、医療用品、医薬品(薬剤)、栄養剤、飲食物及び化粧品等を収容し、滅菌処理が施されるバッグとして好適に用いることができる。
 以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更等を行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 以下、例を示して実施形態を更に具体的に説明するが、実施形態はこれらの例により限定されるものではない。
<実施例1>
[滅菌バッグの作製]
(積層フィルムの作製)
 積層フィルムを構成するシール層の形成に低密度ポリエチレン(InnoPlus LD2426H、PTT Global Chemical Public Company Limited社製)を用い、中間層及び基材層の形成に高密度ポリエチレン(InnoPlus HD3355F、PTT Global Chemical Public Company Limited社製)を用いた。Tダイ式多層製膜機を用いて、低密度ポリエチレン、高密度ポリエチレン及び高密度ポリエチレンを共押出工法により押し出して、シール層、中間層及び基材層がこの順に積層された積層フィルムを作製した。シール層、中間層及び基材層の各層の厚みは、15μm、30μm及び15μmとし、厚みが60μmの積層フィルムを作製した。
(積層フィルムの評価)
 作製した積層フィルムを所定の大きさ(幅15mm×長さ100mm)に切断し、矩形状の試験片1を作製した。積層フィルムは、試験片の短手方向が積層フィルムの搬送方向(MD方向)に相当し、試験片の長手方向が積層フィルムの搬送方向と直交する方向(TD方向)に相当するように切断した。JIS K 7127に準拠して、作製した積層フィルムの引張強度と引張伸度を測定して引張り性を評価すると共に、引裂き強度を測定して引裂き開封性を評価した。
-積層フィルムの引張強度の測定-
 JIS Z 0238に準拠して、積層フィルムの短手方向、即ち、積層フィルムの搬送方向における、幅15mmの積層フィルムの引張強度(単位:N/15mm)を算出し、積層フィルムの引張性を評価した。試験片は、それぞれ3つ準備し、3つの試験片の測定値の平均値をそれぞれの厚さの試験片の引張強度とした。引張強度が21N/15mm以上の場合には、引張伸度は良好であると評価した。積層フィルムの引張強度の測定結果を表1に示す。
-積層フィルムの引張伸度の測定-
 オートグラフにより、積層フィルムの短手方向、即ち、積層フィルムの搬送方向における引張伸度(単位:%)を測定し、積層フィルムの引張性を評価した。試験片は、それぞれ3つ準備し、3つの試験片の測定値の平均値をそれぞれの厚さの試験片の引張伸度とした。引張伸度が400%以上の場合には、引張伸度は良好であると評価した。積層フィルムの引張伸度の測定結果を表1に示す。
-積層フィルムの引裂き強度の測定-
 JIS K 7128-2(エルメンドルフ引裂法)に準拠して、引裂き強度(単位:N)を測定した。積層フィルムを7枚重ねて、積層フィルムの短手方向、即ち、積層フィルムの搬送方向における引裂き強度(単位:N)を測定し、引裂き開封性を評価した。試験片は3つ準備し、3つの試験片の測定値の平均値を用いた。引裂き強度が26N以下の場合には、引裂き開封性は良好であると評価した。引裂き強度の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(バッグ本体の作製)
 作製した積層フィルムのうち、一方の積層フィルムに、長さ1mmのスリット(切れ目)を2mm程度の間隔で5個形成した直線状のミシン目を、5mm程度の間隔を空けて、5本並列に形成した。この直線状のミシン目は、一方の積層フィルムの短手方向と略平行となるように形成した。その後、シール層側の表面に矩形状の滅菌紙(高密度ポリエチレン製不織布、「タイベック2FS」、デュポン社製)をヒートシールした。滅菌紙は、その長手方向が積層フィルムの短手方向に沿うように配置した。その後、一方の積層フィルムと他方の積層フィルムを用いて、最内層であるシール層同士を重ね合わせ、開口部(短手側の一辺)を除いて積層体の外周をヒートシールし、外寸が300mm×360mmとなるバッグ本体であるパウチを作製した。
(滅菌バッグの作製)
 バッグ本体の外周シール幅が5mmとなるようにトリミングした後、バッグ本体の開口部を溶着し、滅菌バッグを作製した。滅菌バッグは3個作製し、3個の滅菌バッグの平均値を用いた。
[滅菌処理後の外観の評価]
 作製した滅菌バッグ内に滅菌剤としてエチレンオキサイド(EO)ガスを入れて、保存室内のガス量を測定した。時間とEOガス量との関係を図10に示す。
<実施例2>
 実施例1において、シール層を直鎖状低密度ポリエチレン(InnoPlus LL7410D1、PTT Global Chemical Public Company Limited社製)を用いて形成したこと以外は、実施例1と同様に行い、積層フィルムを作製した。作製した積層フィルムの引張強度と引張伸度との測定結果を表1に示す。
<比較例1>
 実施例1において、積層フィルムは、中間層を備えず、シール層及び基材層からなる2層構成とし、シール層の厚さを50μmnとし、シール層をPETで形成して厚さを12μmとし、滅菌紙に「タイベック(登録商標)1059B」を用いた。それ以外は、実施例1と同様に行った。時間とガス量との関係を図10に示す。
 図10に示すように、実施例1では、滅菌バッグの収容室内のEOガス量は、0日目では約1633μg/gであり、その後、時間の経過と共に徐々に低下したが、2日目でも約373μg/gあり、3日目でも約170μg/gあった。2日目以降は滅菌バッグの収容室内のEOガス量は殆ど低下せず、比較例1と略同じ量であった。
 よって、実施例1により得られた滅菌バッグは、引裂き開封性を高めると共に収容室のシール性を維持することができる。したがって、実施例1により得られた滅菌バッグは、滅菌バッグとして用いる場合、引裂き易くすると共に、滅菌剤を内部に取り込み、長期間安定して保持することができるため、滅菌バッグとしての機能を維持しつつ、滅菌対象物を簡易に取り出して使用できるといえる。
 なお、本発明の実施形態の態様は、例えば、以下の通りである。
<1> 低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一つを含むシール層と、高密度ポリエチレンを含む基材層とが積層された積層フィルムを前記シール層側が対向するように重ね合わせて互いの外周縁部同士を溶着したシール部と、前記積層フィルム及び前記シール部によって画定され、滅菌対象物が保存される収容室とを備え、少なくとも一方の前記積層フィルムに前記積層フィルムを連通したスリットを有するバッグ本体と、
 前記スリットを一方の前記積層フィルムの前記シール層側から被覆するように設けられた通気性基材と、
を備える滅菌バッグ。
<2> 前記積層フィルムは、前記シール層と前記基材層との間に、高密度ポリエチレン及び低密度ポリエチレンの少なくとも一つを含む中間層を含む<1>に記載の滅菌バッグ。
<3> 前記中間層は、前記高密度ポリエチレンを含む<2>に記載の滅菌バッグ。
<4> 前記シール層は、前記低密度ポリエチレンを含む<1>~<3>の何れか一つに記載の滅菌バッグ。
<5> 前記積層フィルムの厚みが、30μm~120μmである<1>~<4>の何れか一つに記載の滅菌バッグ。
<6> 前記スリットの長手方向が、前記積層フィルムの搬送方向に沿って設けられる<1>~<5>の何れか一つに記載の滅菌バッグ。
<7> 前記通気性基材は、前記積層フィルムの前記シール層側とは異なる面に前記スリットの長手方向に対応するように形成された複数の切り込みを有する<1>~<6>の何れか一つに記載の滅菌バッグ。
<8> 前記通気性基材が、帯状の通気性滅菌紙である<1>~<7>の何れか一つに記載の滅菌バッグ。
<9> 前記滅菌対象物が、医薬品又は医療用品である<1>~<8>の何れか一つに記載の滅菌バッグ。
 本出願は、2022年3月31日に日本国特許庁に出願した特願2022-60268号に基づいて優先権を主張し、前記出願に記載された全ての内容を援用する。
 1 滅菌バッグ
 10 バッグ本体
 11 シール部
 12 収容室
 13 開口部
 20 通気性基材
 21 切り込み
 100、100A、100B 積層フィルム
 101 スリット
 110 シール層
 120 中間層
 130 基材層

Claims (9)

  1.  低密度ポリエチレン及び直鎖状低密度ポリエチレンの少なくとも一つを含むシール層と、高密度ポリエチレンを含む基材層とが積層された積層フィルムを前記シール層側が対向するように重ね合わせて互いの外周縁部同士を溶着したシール部と、前記積層フィルム及び前記シール部によって画定され、滅菌対象物が保存される収容室とを備え、少なくとも一方の前記積層フィルムに前記積層フィルムを連通したスリットを有するバッグ本体と、
     前記スリットを一方の前記積層フィルムの前記シール層側から被覆するように設けられた通気性基材と、
    を備える滅菌バッグ。
  2.  前記積層フィルムは、前記シール層と前記基材層との間に、高密度ポリエチレン及び低密度ポリエチレンの少なくとも一つを含む中間層を含む請求項1に記載の滅菌バッグ。
  3.  前記中間層は、前記高密度ポリエチレンを含む請求項2に記載の滅菌バッグ。
  4.  前記シール層は、前記低密度ポリエチレンを含む請求項1に記載の滅菌バッグ。
  5.  前記積層フィルムの厚みが、30μm~120μmである請求項1に記載の滅菌バッグ。
  6.  前記スリットの長手方向が、前記積層フィルムの搬送方向に沿って設けられる請求項1に記載の滅菌バッグ。
  7.  前記通気性基材は、前記積層フィルムの前記シール層側とは異なる面に前記スリットの長手方向に対応するように形成された複数の切り込みを有する請求項1に記載の滅菌バッグ。
  8.  前記通気性基材が、帯状の通気性滅菌紙である請求項1に記載の滅菌バッグ。
  9.  前記滅菌対象物が、医薬品又は医療用品である請求項1に記載の滅菌バッグ。
PCT/JP2023/012641 2022-03-31 2023-03-28 滅菌バッグ WO2023190579A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060268 2022-03-31
JP2022060268A JP2023150916A (ja) 2022-03-31 2022-03-31 滅菌バッグ

Publications (1)

Publication Number Publication Date
WO2023190579A1 true WO2023190579A1 (ja) 2023-10-05

Family

ID=88201840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012641 WO2023190579A1 (ja) 2022-03-31 2023-03-28 滅菌バッグ

Country Status (2)

Country Link
JP (1) JP2023150916A (ja)
WO (1) WO2023190579A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358430U (ja) * 1989-10-11 1991-06-06
JPH04266759A (ja) * 1991-02-21 1992-09-22 Showa Denko Kk 医療用バッグ
JP2001225426A (ja) * 2000-02-15 2001-08-21 Japan Polyolefins Co Ltd 積層体およびその製造方法ならびにその成形体
US20100028575A1 (en) * 2006-09-25 2010-02-04 Steven Vanhamel High integrity composite bags adapted for steam sterilization
JP2021013762A (ja) * 2020-11-02 2021-02-12 フジモリ産業株式会社 滅菌袋

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358430U (ja) * 1989-10-11 1991-06-06
JPH04266759A (ja) * 1991-02-21 1992-09-22 Showa Denko Kk 医療用バッグ
JP2001225426A (ja) * 2000-02-15 2001-08-21 Japan Polyolefins Co Ltd 積層体およびその製造方法ならびにその成形体
US20100028575A1 (en) * 2006-09-25 2010-02-04 Steven Vanhamel High integrity composite bags adapted for steam sterilization
JP2021013762A (ja) * 2020-11-02 2021-02-12 フジモリ産業株式会社 滅菌袋

Also Published As

Publication number Publication date
JP2023150916A (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
US10710759B2 (en) Packaging method to enable re-sterilization of medical device
US7631760B2 (en) Dual compartment pouch
US20110127188A1 (en) Method of Using Coextruded Film for Sterile Barrier System to Deliver Seal and Peel Characteristics
US8252396B2 (en) EVOH barrier film with reduced autoclave shock
EP2335636A2 (en) Sterilizable package having breathable membrane for the packaging of medical devices
JP4702245B2 (ja) 共押出多層フィルム、並びに該フィルムを用いたラミネートフィルム及び包装材
JP2015534897A (ja) 滅菌袋
WO2009143551A1 (en) Sterilisation wrap
WO2023190579A1 (ja) 滅菌バッグ
WO2023190582A1 (ja) 滅菌バッグ
WO2023190580A1 (ja) 滅菌バッグの製造方法
WO2023190581A1 (ja) 滅菌バッグ
JP2023152769A (ja) 滅菌バッグ
US10973602B2 (en) Pouches with multi-layer walls for improved durability and protection of medical devices
JP2023148791A (ja) 加熱処理用バッグ
Czerniawski Flexible packaging of disposable medical devices—A review
AU2013100420A4 (en) Sterilisation Wrap
Lockhart et al. Packaging of healthcare products
JP2009234044A (ja) 医療製袋用積層フィルム及びこれを用いた医療用製袋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401006302

Country of ref document: TH