WO2023190265A1 - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film Download PDF

Info

Publication number
WO2023190265A1
WO2023190265A1 PCT/JP2023/012045 JP2023012045W WO2023190265A1 WO 2023190265 A1 WO2023190265 A1 WO 2023190265A1 JP 2023012045 W JP2023012045 W JP 2023012045W WO 2023190265 A1 WO2023190265 A1 WO 2023190265A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
film
less
biaxially oriented
measurement
Prior art date
Application number
PCT/JP2023/012045
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 佐藤
敏弘 千代
卓司 東大路
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023190265A1 publication Critical patent/WO2023190265A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a biaxially oriented polyester film having at least one surface provided with a surface having specific properties.
  • polyester resin Due to its good processability, polyester resin is used in various industrial fields. Furthermore, products processed into film from these polyester resins (polyester films) play an important role in today's life, such as in industrial applications, optical product applications, packaging applications, and magnetic recording tape applications.
  • next-generation products will require very precise processing with a wiring width of 2 to 5 ⁇ m, and if particles are contained on the ultraviolet light irradiated surface (non-resist coated surface) of the support film, the ultraviolet light caused by the particles will be The resist shape may become non-uniform due to the scattering of the resist. For this reason, the ultraviolet light irradiated surface (non-resist-coated surface) of the support film is required to have smoother surface than ever before in addition to smoothness against the process metal roll. In addition to smoothing the resist-uncoated surface, it is also important to ensure smoothness between the resist-coated surface and the resist-uncoated surface in order to ensure film winding properties.
  • a polyester film is formed into a film in a manufacturing process and then wound into a roll shape. At this time, if the film surface is too smooth, the films will adhere to each other, resulting in poor film winding properties. Therefore, there is a known method of roughening the film surface to a certain extent (forming protrusions on the film surface) by adding particles to the film to ensure film windability (for example, Patent Document 1 ⁇ 4).
  • Patent Document 2 discloses a method of coating and laminating a particle-containing layer on the surface of a film.
  • coating layer components may fall off, and there is a concern that the falling coating layer components may affect the formation of a fine wiring resist.
  • Patent Document 3 discloses a method for forming fine protrusions that does not depend on particles by subjecting the film surface on the resist-coated side to plasma surface treatment using atmospheric pressure glow discharge.
  • nano-sized protrusions formed by this method are used in the winding process of the film with a structure in which the non-resist coated side is smoothed, and in the metal roll during transportation.
  • a high tension is applied to the film in a state of contact, there is a concern that the protrusions on the film surface will adhere to the film surface or the metal roll and be crushed, resulting in a decrease in slipperiness.
  • Patent Document 4 discloses a method that uses particles in combination with plasma surface treatment using atmospheric pressure glow discharge. Reinforcement of the surface protrusions by the particles is effective in improving the winding properties of the film in the film forming process, the slipperiness with metal rolls, and suppressing wrinkles and misalignment during winding.
  • smoothness better than that of the metal roll used in the film forming process and slipperiness against small-diameter rolls are required. Therefore, there is still a trade-off relationship between the slipperiness against the metal roll in the dry film resist process and the uniformity of the fine wiring resist shape, and it is difficult to achieve both.
  • an object of the present invention is to provide a biaxially oriented polyester film that is capable of achieving both a smooth resist-uncoated surface, slipperiness against a metal roll, and uniformity of the fine wiring resist shape.
  • the present invention has the following configuration. That is, [1] A biaxially oriented polyester film in which at least one surface is a surface A that satisfies (1a) and (2a) below when observed with AFM in a 5 ⁇ m square field under condition I below.
  • the number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 ⁇ m or more, and 500 pieces/5 ⁇ m or less
  • the average cross-sectional area of the valley areas with a height of -2 nm or less from the reference plane is 2000nm 2 or more, 8000nm 2 or less
  • ⁇ Measurement field of view 5 ⁇ m square ⁇ Sample line: 512 ⁇ Peak Force SetPoint: 0.0195V to 0.0205V ⁇ Feedback Gain: 10-20 ⁇ LP Deflection BW: 40kHz ⁇ ScanAsyst Noise Threshold: 0.5nm ⁇ Sample preparation: 23°C, 65%RH, left standing for 24 hours ⁇ AFM measurement environment: 23°C, 65%RH ⁇ Measurement sample preparation method: Paste double-sided tape on one side of an AFM sample disk (diameter 15 mm), and then attach the AFM sample disk and the surface of a biaxially oriented polyester film cut out to approximately 15 mm x 13 mm (longitudinal direction x width direction).
  • Measurement surface and the opposite side are pasted together to form a measurement sample.
  • ⁇ Number of measurements for measurement samples Change the location so that each measurement sample is separated by at least 5 ⁇ m, and perform measurements 20 times.
  • ⁇ Measurement value Analyze the images of the 20 measured locations, measure each numerical value, and treat the average value as each numerical value of the measurement sample.
  • ⁇ Calculation of valley area> The film surface image obtained under the conditions described in ⁇ AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface.
  • the reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below.
  • the Mean values of Total Count and Area which are calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, are the number of valley regions less than -2 nm from the height reference plane and the average cross-sectional area, respectively.
  • ⁇ Flatten processing> ⁇ Flatten Order: 3rd ⁇ Flatten Z Thresholding Direction: No theresholding ⁇ Find Threshold for: the whole image ⁇ Flatten Z Threshold %: 0.00% ⁇ Mark Excluded Data: Yes ⁇ Particle Analysis mode setting> (Detect tab) ⁇ Threshold Height: -2.00nm ⁇ Feature Direction: Below ⁇ X Axis: Absolute ⁇ Number Histogram Bins: 512 ⁇ Histogram Filter Cutoff: 0.00 nm ⁇ Min Peak to Peak: 1.00 nm ⁇ Left Peak Cutoff: 0.00000% ⁇ Right Peak Cutoff: 0.00000% (Modify tab) ⁇ Boughbirhood
  • O1s-A/O1s-a>1.000, C1s+O1s+N1s 100
  • the thickness removed by argon etching is confirmed by measuring the thickness before and after argon etching through cross-sectional observation using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the etched surface a is subjected to measurement of each element type under the same conditions as the XPS measurement conditions described above.
  • ESCA 5800 manufactured by ULVAC-PHI
  • Data processing conditions> Using the analysis software "MultiPak", the concentration of each element is determined from the ratio of the integral values of the XPS spectra of C1s, O1s, and N1s obtained by narrow measurement.
  • the surface A' is a surface A that satisfies the following (1a) and (2a) when observed with AFM in a 5 ⁇ m square field of view under the following condition I. , the biaxially oriented polyester film according to [2].
  • the number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 ⁇ m or more, and 500 pieces/5 ⁇ m or less
  • the average cross-sectional area of the valley areas with a height of -2 nm or less from the reference plane is 2000 nm 2 or more, 8000 nm 2 or less
  • Condition I Same conditions as Condition I described in [1].
  • [4] The biaxially oriented polyester film according to [1] or [3], which satisfies the following (1b) and (2b) when the surface A is observed by AFM with a 5 ⁇ m square field of view under the condition I.
  • the number of valley regions with a height of -2 nm or less from the reference plane is 150 pieces/5 ⁇ m ⁇ or more, and 450 pieces/5 ⁇ m ⁇ or less
  • the average cross-sectional area of the valley regions with a height of -2 nm or less from the reference plane is 4000 nm 2 or more, 6500 nm 2 or less [5]
  • the number of mountain regions with a height of +3 nm or more from the reference surface is 50
  • the number of mountain areas is calculated by the following method. ⁇ Calculation of number of mountain areas>
  • the film surface image obtained under the conditions described in ⁇ AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface.
  • the reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below.
  • the Total Count which is calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, is the number of mountain regions with a height of +3 nm or more from the reference plane.
  • ⁇ Particle Analysis mode setting> (Detect tab) ⁇ Threshold Height: 3.00nm ⁇ Feature Direction: Above ⁇ X Axis: Absolute ⁇ Number Histogram Bins: 512 ⁇ Histogram Filter Cutoff: 0.00 nm ⁇ Min Peak to Peak: 1.00 nm ⁇ Left Peak Cutoff: 0.00000% ⁇ Right Peak Cutoff: 0.00000% (Modify tab) ⁇ Boughbirhood Size:3 ⁇ Number Pixels Off: 1 ⁇ Do not perform any Dilate/Erode operations.
  • ⁇ Calculation of average cross-sectional area of mountain area> The film surface image obtained under the conditions described in ⁇ AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface.
  • the reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below.
  • the Mean value of Area which is calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, is the average cross-sectional area of the mountain region with a height of +3 nm or more from the reference plane.
  • ⁇ Particle Analysis mode setting> (Detect tab) ⁇ Threshold Height: 3.00nm ⁇ Feature Direction: Above ⁇ X Axis: Absolute ⁇ Number Histogram Bins: 512 ⁇ Histogram Filter Cutoff: 0.00 nm ⁇ Min Peak to Peak: 1.00nm ⁇ Left Peak Cutoff: 0.00000% ⁇ Right Peak Cutoff: 0.00000% (Modify tab) ⁇ Boughbirhood Size:3 ⁇ Number Pixels Off: 1 ⁇ Do not perform any Dilate/Erode operations.
  • Kurtosis is 2.0 or more and 10.0 or less when the surface A is observed with AFM in a 5 ⁇ m square field of view under the above ⁇ AFM measurement method> under the above condition I [1], [3] The biaxially oriented polyester film according to any one of [6]. The kurtosis is determined by the following method.
  • Arithmetic mean height is 0.5 nm or more and 2.0 nm or less
  • Maximum protrusion height is 20 nm or more and 150 nm or less
  • Condition III ⁇ Scanning white interference microscopy measurement method> A 6 cm x 6 cm sample was taken from the biaxially oriented polyester film, and each sample was examined using a scanning white interference microscope (equipment: "VertScan” (registered trademark) VS1540 manufactured by Hitachi High-Tech Science Co., Ltd.). Surface B is measured using a 50x objective lens, the measurement mode is set to WAVE mode, and 90 visual fields are measured with a measurement area of 113 ⁇ m ⁇ 113 ⁇ m.
  • the sample set is measured by setting the sample on a stage so that the measurement Y-axis is in the longitudinal direction of the sample film (the direction in which the film is wound).
  • measure so that the measurement Y-axis is in one arbitrary direction of the sample film, then measure so that it is in the direction rotated 120 degrees, and then again 120 degrees.
  • the sample is measured in the rotated direction, and the average of the measurement results is taken as the characteristic of that sample.
  • the sample film to be measured is sandwiched between two metal frames containing rubber gaskets, and the sample surface is measured with the film in the frame stretched (sagging and curling removed).
  • the obtained microscopic image is subjected to image processing under the following conditions using surface analysis software VS-Viewer Version 10.0.3.0 built into the microscope.
  • Image processing conditions Image processing is performed in the following order.
  • ⁇ Interpolation processing Complete interpolation
  • ⁇ Filter processing Median (3 x 3 pixels)
  • ⁇ Surface correction 4th order
  • the surface A was measured using the scanning white interference microscopy method, and for each measurement image that was processed under the image processing conditions, the ISO parameter analysis within the surface analysis software was performed with the following analysis conditions: "Parameters" and output the obtained numerical value group to the parameter sheet field.
  • Sa is the arithmetic mean height
  • Sp is the maximum protrusion height
  • 80 fields of view are obtained by excluding the upper and lower 5 fields from the value of each field of view.
  • the average values at are the arithmetic mean height and maximum protrusion height of the surface B, respectively.
  • ISO parameter analysis processing is performed under the following conditions.
  • NP1 is the number of coarse particles with a major diameter of 2.0 ⁇ m or more when observing 30 fields of view of an area of 1 ⁇ m in the thickness direction x 220 ⁇ m in the longitudinal direction x 290 ⁇ m in the width direction from the surface B using a laser microscope, then NP1 is 20 or less, the biaxially oriented polyester film according to any one of [1] to [10].
  • the film dimensional change rate when increasing the film temperature from 90°C to 130°C is ⁇ L90-130°C (ppm/°C)
  • the width direction (TD direction) and longitudinal direction (MD direction) The biaxially oriented polyester film according to any one of [1] to [11], wherein at least one direction is -50 or more and 150 or less.
  • the biaxially oriented polyester film according to any one of [1] to [12] which is used as a film for a dry film resist support.
  • the biaxially oriented polyester film according to any one of [1] to [12] which is used as a support film for green sheet molding in the process of manufacturing a multilayer ceramic capacitor.
  • the biaxially oriented polyester film of the present invention has at least one surface having specific properties, so it has excellent smoothness and slipperiness, and also has excellent toughness, and has a resist-uncoated surface. With a structure in which the film is smoothed, it is possible to achieve both film winding properties, smoothness on a metal roll, and uniformity of the fine wiring resist shape.
  • biaxially oriented polyester films of the first embodiment and the second embodiment are included in biaxially oriented polyester films.
  • the biaxially oriented polyester film of the first embodiment and the biaxially oriented polyester film of the second embodiment may be collectively referred to as the biaxially oriented polyester film of the present invention.
  • the "biaxially oriented polyester film” in the present invention refers to a film containing polyester resin as a main component.
  • the main component here refers to a component that is contained in an amount exceeding 50% by mass in 100% by mass of all components of the film.
  • the polyester resin referred to in the present invention is obtained by polycondensing a dicarboxylic acid component and a diol component.
  • a constituent component shows the minimum unit which can be obtained by hydrolyzing polyester.
  • dicarboxylic acid constituents constituting the polyester include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid.
  • -Aromatic dicarboxylic acids such as naphthalene dicarboxylic acid, 4,4'-diphenyl dicarboxylic acid, and 4,4'-diphenyl ether dicarboxylic acid, or ester derivatives thereof.
  • examples of the diol constituents constituting the polyester include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3- Examples include aliphatic diols such as butanediol, alicyclic diols such as cyclohexanedimethanol and spiroglycol, and those in which a plurality of the above-mentioned diols are connected.
  • polyester resins used in the present invention include, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene-2,6-naphthalene dicarboxylate (PEN), and PET.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene-2,6-naphthalene dicarboxylate
  • PET PET
  • polyesters in which isophthalic acid or naphthalene dicarboxylic acid is copolymerized as part of the dicarboxylic acid component of PET and polyesters in which cyclohexanedimethanol, spiroglycol, and diethylene glycol are copolymerized as part of the diol component of PET.
  • polyethylene terephthalate is particularly preferred.
  • polyester film in the biaxially oriented polyester film of the present invention is biaxially oriented, the mechanical strength of the film is improved, wrinkles are less likely to form, and winding properties can be improved. Furthermore, by applying uniform stretching stress during the stretching process, the surface smoothness can be made uniform throughout the film.
  • polyester orientation refers to one that exhibits a biaxial orientation pattern in wide-angle X-ray diffraction.
  • a polyester film can generally be obtained by stretching an unstretched thermoplastic resin sheet in the longitudinal and width directions of the sheet, and then subjecting it to heat treatment to complete crystal orientation. Detailed film forming conditions will be described later.
  • One surface of the biaxially oriented polyester film of the first embodiment is a surface A that satisfies the following (1a) and (2a) when observed with an AFM in a 5 ⁇ m square field of view under the following condition I.
  • (1a) The number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 ⁇ m or more, and 500 pieces/5 ⁇ m or less
  • (2a) The average cross-sectional area of the valley areas with a height of -2 nm or less from the reference plane is 2000nm 2 or more, 8000nm 2 or less
  • Condition I ⁇ AFM measurement method> ⁇ Device: Bruker Atomic Force Microscope (AFM) Dimention Icon with ScanAsyst ⁇ Cantilever: Silicon nitride probe ScanAsyst Air ⁇ Scanning mode: ScanAsyst ⁇ Scanning speed: 0.977Hz - Scanning direction: Scanning is performed in the width direction
  • ⁇ Measurement field of view 5 ⁇ m square ⁇ Sample line: 512 ⁇ Peak Force SetPoint: 0.0195V to 0.0205V ⁇ Feedback Gain: 10-20 ⁇ LP Deflection BW: 40kHz ⁇ ScanAsyst Noise Threshold: 0.5nm ⁇ Sample preparation: 23°C, 65%RH, left standing for 24 hours ⁇ AFM measurement environment: 23°C, 65%RH ⁇ Measurement sample preparation method: Paste double-sided tape on one side of an AFM sample disk (diameter 15 mm), and cut out the AFM sample disk and the biaxially oriented polyester film of the present invention into a size of approximately 15 mm x 13 mm (longitudinal direction x width direction).
  • the surface opposite to the surface is pasted together to form a measurement sample.
  • ⁇ Number of measurements for measurement samples Change the location so that each measurement sample is separated by at least 5 ⁇ m, and perform measurements 20 times.
  • ⁇ Measurement value Analyze the images of the 20 measured locations, measure each numerical value, and treat the average value as each numerical value of the measurement sample.
  • ⁇ Calculation of valley area> The film surface image obtained under the conditions described in ⁇ AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface.
  • the reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below.
  • the Mean values of Total Count and Area which are calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, are the number of valley regions less than -2 nm from the height reference plane and the average cross-sectional area, respectively.
  • ⁇ Flatten processing> ⁇ Flatten Order: 3rd ⁇ Flatten Z Thresholding Direction: No theresholding ⁇ Find Threshold for: the whole image ⁇ Flatten Z Threshold %: 0.00% ⁇ Mark Excluded Data: Yes ⁇ Particle Analysis mode setting> (Detect tab) ⁇ Threshold Height: -2.00nm ⁇ Feature Direction: Below ⁇ X Axis: Absolute ⁇ Number Histogram Bins: 512 ⁇ Histogram Filter Cutoff: 0.00 nm ⁇ Min Peak to Peak: 1.00 nm ⁇ Left Peak Cutoff: 0.00000% ⁇ Right Peak Cutoff: 0.00000% (Modify tab) ⁇ Boughbirhood
  • the number of valley regions having a height of -2 nm or less from the reference plane in the above (1a) and the average of the valley regions having a height of -2 nm or less from the reference plane in the above (2a) The cross-sectional area shows that the surface of the biaxially oriented polyester film is densely formed with valley regions that are concave portions.
  • the surface A of the biaxially oriented polyester film and the surface B opposite to the surface A in the thickness direction are wound up with a configuration in which a smooth resist-uncoated surface, which will be described later, is formed. Even if the convex mountain areas are deformed by pressure and come into close contact with the smooth film surface or metal roll, even if they come into contact with metal rolls during transportation during the resist molding process, they will not form concave areas.
  • the valley region reduces the contact area, making it possible to ensure slipperiness.
  • the slipperiness may decrease because it is not sufficient to suppress the smooth film surface or adhesion with the metal roll. If the number is more than 500 pieces/5 ⁇ m square, the uniformity of the shape of the molded resist may be impaired.
  • the number of valley regions having a height of ⁇ 2 nm or less from the reference plane is preferably 150/5 ⁇ m or more, more preferably 200/5 ⁇ m or more, and still more preferably 300/5 ⁇ m or more.
  • the number of valley regions having a height of ⁇ 2 nm or less from the reference plane is preferably 480 pieces/5 ⁇ m ⁇ or less, more preferably 460 pieces/5 ⁇ m ⁇ or less, and even more preferably 450 pieces/5 ⁇ m ⁇ or less.
  • the average cross-sectional area of the valley region at a height of ⁇ 2 nm or less from the reference plane is less than 2000 nm 2 , it may not be sufficient to suppress adhesion to the metal roll, and the slipperiness may decrease. If the average cross-sectional area of the valley region at a height of ⁇ 2 nm or less from the reference plane is larger than 8000 nm 2 , the uniformity of the shape of the molded resist may be impaired.
  • the average cross-sectional area of the valley region at a height of ⁇ 2 nm or less from the reference plane is preferably 3000 nm 2 or more, more preferably 3400 nm 2 or more, and still more preferably 4000 nm 2 or more.
  • the average cross-sectional area of the valley region at a height of ⁇ 2 nm or less from the reference plane is preferably 7500 nm 2 or less, more preferably 7000 nm 2 or less, and still more preferably 6500 nm 2 or less.
  • the method for forming the uneven shape on the film surface is not particularly limited, but examples include a method of transferring the shape to the surface using a mold like nanoimprint, corona treatment using UV irradiation or arc discharge, plasma treatment using glow discharge, etc. surface treatment.
  • UV irradiation, corona treatment using arc discharge, and plasma treatment using atmospheric pressure glow discharge are preferable, as they ensure uniformity of treatment and less damage to the film.
  • Plasma treatment using atmospheric pressure glow discharge is more preferred.
  • Atmospheric pressure here is in the range of 700 Torr to 780 Torr.
  • a film to be treated is introduced between opposing electrodes and a ground roll, a plasma-excitable gas is introduced into the device, and a high-frequency voltage is applied between the electrodes to excite the gas into plasma. Glow discharge occurs between the electrodes. As a result, the surface of the film is finely ashed and protrusions are formed.
  • a plasma-excitable gas refers to a gas that can be plasma-excited under the conditions described above.
  • the plasma-excitable gas include rare gases such as argon, helium, neon, krypton, and xenon, nitrogen, carbon dioxide, oxygen, fluorocarbons such as tetrafluoromethane, and mixtures thereof.
  • one type of plasma-excitable gas may be used alone, or two or more types may be combined at an arbitrary mixing ratio.
  • the number and average cross-sectional area of valley regions having a height of -2 nm or less from the reference plane of the film surface can be controlled within the above ranges by adding water vapor to the plasma-excitable gas and controlling the humidity.
  • water vapor By adding water vapor to the plasma-excitable gas, active species H * and OH * are generated, promoting the extraction of H elements from the molecular chains on the surface of the polyester film, and ashing deeply inward from the film surface.
  • a deep valley region which is a concave portion, is formed.
  • the amount of water vapor added to the plasma-excitable gas is controlled by the temperature and humidity of the plasma-excitable gas, and can be adjusted by controlling the humidity according to a temperature suitable for the process temperature.
  • the amount of water vapor contained in the plasma excitable gas is preferably 5 g/m 3 or more and 130 g/m 3 or less, and a more preferable lower limit is 20 g/m 3 or more.
  • the amount of water vapor contained in the plasma-excitable gas is 5 g/m 3 or more, ashing from the film surface to the inside can sufficiently proceed, and insufficient formation of valley regions can be suppressed.
  • the amount of water vapor contained in the plasma-excitable gas is 130 g/ m3 or less, it is possible to suppress the progress of excessive ashing on the entire film surface and prevent the reduction of the valley area. It is possible to suppress the occurrence of dew condensation and ensure stable processing.
  • the frequency of the high frequency voltage in plasma treatment is preferably in the range of 1 kHz to 100 kHz.
  • the discharge treatment intensity (E value) determined by the following method is preferably in the range of 10 to 2000 W ⁇ min/m 2 from the viewpoint of protrusion formation, more preferably 100 to 500 W ⁇ min/m 2 , More preferably, it is 200 to 400 W ⁇ min/m 2 . If the discharge treatment strength (E value) is too low, protrusions may not be formed sufficiently, and if the discharge treatment strength (E value) is too high, the film will be damaged or ashing will progress, which is not desirable. Protrusions may not be formed. Preferable protrusions can be formed by controlling the intensity of the discharge treatment depending on the amount of water vapor contained in the plasma-excitable gas and the intrinsic viscosity (IV) of the treated surface resin, which will be described later.
  • E value Vp ⁇ Ip/(S ⁇ Wt)
  • Vp Applied voltage
  • Ip Applied current
  • S Processing speed (m/min)
  • Wt processing width (m)
  • the surface temperature of the film at the time of surface treatment is 150° C. or less.
  • the temperature is more preferably 100°C or lower, most preferably 50°C or lower.
  • the surface temperature of the film at the time of surface treatment is 150° C. or lower, crystallization of the film is suppressed, formation of coarse protrusions on the surface is prevented, and ashing can proceed satisfactorily.
  • the surface temperature should be 10°C or higher, more preferably 15°C or higher, and even more preferably 25°C or higher. is preferred.
  • the surface treatment temperature can be adjusted by cooling the surface opposite to the treated surface with a cooling roll or the like.
  • the intrinsic viscosity (IV) of the resin of the layer constituting the surface to be surface treated is 0.45 dl/g or more and 0.70 dl/g or less. It is preferable that there be. IV is a number that reflects the length of the molecular chain, and the shorter the molecular chain, the easier it is for polyester molecules to orient and crystallize during stretching and heat treatment, so IV (dl/g) should be 0.70 dl/g or less. By doing so, it is possible to promote the formation of protrusions in the biaxial stretching film forming process and improve slipperiness.
  • the short molecular chains increase the molecular mobility of the surface, so when it comes into contact with a laminating roll heated to a temperature of 90 to 120 degrees Celsius, the surface softens and becomes easier to follow the roll. This can suppress wrinkles and air bubbles during lamination.
  • IVP1 0.45 dl/g or more, it is easy to clearly form crystalline parts and amorphous parts in the same molecular chain, so it is possible to form finer protrusions by atmospheric pressure glow discharge treatment. This is preferred because it is easy.
  • the intrinsic viscosity (IV) of the resin of the layer constituting the surface to be surface treated is more preferably 0.50 dl/g or more and 0.60 dl/g or less, and 0.50 dl/g or more and 0.60 dl/g or less. More preferably 55 dl/g or more and 0.60 dl/g or less.
  • the biaxially oriented polyester film of the second embodiment has the respective element concentrations C1s-A, O1s-A and N1s-A obtained by XPS measurement of at least one surface A', and the thickness from the surface layer of the surface A'.
  • the thickness removed by argon etching is confirmed by measuring the thickness before and after argon etching through cross-sectional observation using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the O element concentration of the surface A' is O1s-A/O1s-B>1.000, ashing by atmospheric pressure plasma treatment using the plasma-excitable gas containing water vapor is sufficiently promoted, resulting in a smooth surface. Improves slipperiness on film surfaces and metal rolls.
  • the O element concentration on the surface A' of the biaxially oriented polyester film is more preferably O1s-A/O1s-B ⁇ 1.010, and even more preferably O1s-A/O1s-B ⁇ 1.020.
  • the upper limit of O1s-A/O1s-B is not particularly limited, but is usually preferably 5.000 or less.
  • the amount of water vapor contained in the plasma excitable gas is set to 5 g/ m3 or more, and the discharge It is preferable to perform the treatment at a treatment intensity (E value) of 10 to 2000 W ⁇ min/m 2 , more preferably, the amount of water vapor contained in the plasma excitable gas is 20 g/m 3 or more, and the discharge treatment intensity (E value) ) It is preferable to perform the treatment in the range of 50 to 500 W ⁇ min/m 2 , more preferably in the range of 100 to 400 W ⁇ min/m 2 .
  • the surface A' of the biaxially oriented polyester film of the second embodiment was observed in the following (1a) and (2a) when observed with an AFM with a 5 ⁇ m square field of view under the condition I described above in the section (first embodiment). It is preferable that surface A satisfies the following. If the surface A′ of the second embodiment is a surface A, such surface A is similar to the surface A described above in the section of the first embodiment.
  • the number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 ⁇ m or more, and 500 pieces/5 ⁇ m or less
  • the average cross-sectional area of the valley regions with a height of -2 nm or less from the reference plane is 2000nm 2 or more, 8000nm 2 or less
  • the number of mountain regions with a height of +3 nm or more from the reference surface is 50 / 5 ⁇ m or more, 200 / It is preferably 5 ⁇ m ⁇ or less.
  • the average cross-sectional area of the peak region at a height of +3 nm or more from the reference plane is 3000 nm 2 or more and 7000 nm. It is preferably 2 or less.
  • ⁇ AFM measurement method> ⁇ Device: Bruker Atomic Force Microscope (AFM) Dimention Icon with ScanAsyst ⁇ Cantilever: Silicon nitride probe ScanAsyst Air ⁇ Scanning mode: ScanAsyst ⁇ Scanning speed: 0.977Hz ⁇ Scanning direction: Scan in the width direction of the measurement sample prepared by the method described below ⁇ Measurement field of view: 5 ⁇ m square ⁇ Sample line: 512 ⁇ Peak Force SetPoint: 0.0195V to 0.0205V ⁇ Feedback Gain: 10-20 ⁇ LP Deflection BW: 40kHz ⁇ ScanAsyst Noise Threshold: 0.5nm ⁇ Sample preparation: 23°C, 65%RH, left standing for 24 hours ⁇ AFM measurement environment: 23°C, 65%RH ⁇ Measurement sample preparation method: Paste double-sided tape on one side of an AFM sample disk (d
  • the surface opposite to the surface is pasted together to form a measurement sample.
  • - Number of sample measurements Measure 20 times at different locations so that each sample is separated by at least 5 ⁇ m.
  • ⁇ Measurement values Analyze the images of the 20 measured locations, measure each numerical value, and treat the average value as each numerical value of the sample.
  • the film surface image obtained by the above ⁇ AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface.
  • the reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below.
  • the Mean values of Total Count and Area which are calculated by setting the items of the Detect tab in the Particle Analysis analysis mode as shown below, are respectively the number of mountain regions with a height of +3 nm or more from the reference plane and the average cross-sectional area.
  • the number of peak regions with a height of +3 nm or more from the reference surface is 50/5 ⁇ m or more and 200/5 ⁇ m or less, indicating that protrusions are densely formed on the surface of the biaxially oriented polyester film.
  • the number of mountain regions with a height of +3 nm or more from the reference surface is 50/5 ⁇ m or more, the increase in the area where the films come into close contact with each other is suppressed when the biaxially oriented polyester film is wound into a roll in the manufacturing process. This can reduce frictional force and improve slipperiness. Since the number of mountain regions with a height of +3 nm or more from the reference surface is 200 pieces/5 ⁇ m or less, when the biaxially oriented polyester film of the present invention is used as an ultraviolet light irradiation surface during resist molding, ultraviolet light can penetrate inside the film. It is possible to suppress scattering on the surface and improve the uniformity of the resist shape.
  • the number of mountain regions having a height of +3 nm or more from the reference plane is preferably 50 pieces/5 ⁇ m ⁇ or more, and more preferably 70 pieces/5 ⁇ m ⁇ or more.
  • the average cross-sectional area of the mountain region with a height of +3 nm or more from the reference plane is 3000 nm 2 or more and 7000 nm 2 or less indicates that fine protrusions are formed.
  • the average cross-sectional area of the peak region By having an average cross-sectional area of the peak region at a height of +3 nm or more from the reference surface of 3000 nm2 or more, the increase in the area that comes into close contact with the metal roll in the resist forming process is suppressed, and the frictional force is reduced and slipperiness is improved. It can be improved.
  • the average cross-sectional area of the peak region By setting the average cross-sectional area of the peak region with a height of +3 nm or more from the reference surface to 7000 nm2 or less, when the biaxially oriented polyester film of the present invention is used as an ultraviolet light irradiation surface during resist molding, ultraviolet light will not penetrate inside the film or Scattering on the surface can be suppressed and the uniformity of the resist shape can be improved.
  • the average cross-sectional area of the mountain region having a height of +3 nm or more from the reference plane is preferably 3000 nm 2 or more, more preferably 3500 nm 2 or more, and still more preferably 4000 nm 2 or more. Further, the average cross-sectional area of the mountain region having a height of +3 nm or more from the reference plane is preferably 7000 nm 2 or less, more preferably 6800 nm 2 or less, and still more preferably 6500 nm 2 or less.
  • Examples of methods for bringing the number and average cross-sectional area of mountain regions with a height of +3 nm or more from the reference surface into the above range include a method of plasma treatment with a plasma-excitable gas containing water vapor, a method of plasma treatment with a plasma-excitable gas containing water vapor, and a method of treating the surface of a biaxially oriented polyester film. Examples include a method of incorporating particles into the liquid.
  • An embodiment of the biaxially oriented polyester film of the present invention has (1a) the number of valley regions with a height of -2 nm or less from the reference plane of 100 or more/5 ⁇ m ⁇ or less than 500/5 ⁇ m ⁇ , (2a) standards
  • the kurtosis is 2.0 or more and 10.0 or less when observing surface A with an AFM in a 5 ⁇ m square field of view, where the average cross-sectional area of the valley region at a height of -2 nm or less from the surface is 2000 nm 2 or more and 8000 nm 2 or less. It is preferable.
  • a kurtosis of 2.0 or more and 10.0 or less when observed with AFM in a 5 ⁇ m square field of view indicates that particles are substantially absent or present at an extremely low concentration on the surface of the biaxially oriented polyester film. It shows. Due to the fact that particles are substantially absent or present at an extremely low concentration on the surface of the biaxially oriented polyester film, the resist shape obtained when the biaxially oriented polyester film of the present invention is used as the surface irradiated with ultraviolet light during resist molding. uniformity can be improved. When particles are contained on the surface of the biaxially oriented polyester film of the present invention, it is preferable to control the particle diameter and particle concentration so that the kurtosis falls within the above range.
  • the biaxially oriented polyester film of the present invention preferably has a kurtosis of 2.0 or more, more preferably 2.5 or more, still more preferably 3.0 or more when surface A is observed with AFM in a 5 ⁇ m square field of view. be. Further, the kurtosis is preferably 10.0 or less, more preferably 8.0 or less, still more preferably 5.0 or less.
  • the biaxially oriented polyester film of the present invention has the respective element concentrations C1s-A, O1s-A, and N1s-A obtained by XPS measurement of the surface A, and the surface a etched to a thickness of 500 nm from the surface layer of the surface A.
  • Each element concentration C1s-a, O1s-B and N1s-a obtained by XPS measurement of surface a etched to a thickness of 500 nm from the surface layer of surface A is N1s-A/N1s-a ⁇ 2.000.
  • N element is added to the surface of the biaxially oriented polyester film by atmospheric pressure plasma treatment using the plasma-excitable gas. shows that they are connected.
  • the valley area on the surface of the biaxially oriented polyester film can be easily controlled within a preferable range, and a decrease in slipperiness during long-term storage can be suppressed.
  • nitrogen gas is used as the main component of the plasma excitable gas in the atmospheric pressure plasma treatment, and the discharge treatment intensity (E value) is adjusted to 10 to 2000 W. It is preferable to perform the plasma treatment at a power of min/m 2 , more preferably to perform the plasma treatment at a power of 50 to 500 W ⁇ min/m 2 , and even more preferably to perform the plasma treatment at a power of 100 to 400 W ⁇ min/m 2 .
  • the main component here refers to 50% by weight or more in the plasma excitable gas.
  • the biaxially oriented polyester film of the present invention has each element concentration C1s-A, O1s-A, and N1s-A measured by XPS on the surface, and XPS measured in the depth direction at an ion etching rate of 1.8 nm/min.
  • Each element concentration C1s-a, O1s-a and N1s-a preferably satisfies N1s-A/N1s-a ⁇ 2.000, more preferably N1s-A/N1s-a ⁇ 2.500.
  • the upper limit of N1s-A/N1s-a is not particularly limited, but it is usually preferably 10.000 or less.
  • the biaxially oriented polyester film of the present invention satisfies the following (1c) and (2c) when surface A and surface B opposite in the thickness direction are observed by ⁇ scanning white interference microscopy> under condition III below. It is preferable.
  • (1c) Arithmetic mean height is 0.5 nm or more and 2.0 nm or less
  • (2c) Maximum protrusion height is 20 nm or more and 150 nm or less
  • ⁇ Scanning white interference microscopy measurement method> A 6 cm x 6 cm sample was taken from the biaxially oriented polyester film, and each sample was examined using a scanning white interference microscope (equipment: "VertScan” (registered trademark) VS1540 manufactured by Hitachi High-Tech Science Co., Ltd.). Surface B is measured using a 50x objective lens, the measurement mode is set to WAVE mode, and 90 visual fields are measured with a measurement area of 113 ⁇ m ⁇ 113 ⁇ m. The sample set is measured by setting the sample on a stage so that the measurement Y-axis is in the longitudinal direction of the sample film (the direction in which the film is wound).
  • ISO parameter analysis processing is performed under the following conditions.
  • ⁇ S-Filter Automatic/Normal probability paper Number of divisions: 300 Upper limit of calculation range: 3.000 Lower limit of calculation range: -3.000 - Parameters: Select "Height Parameters” - Output: Select "Parameter List”.
  • the arithmetic mean height of surface A and surface B facing each other in the thickness direction is 0.5 nm or more and 2.0 nm or less indicates that the surface roughness of surface B, which is a resist-uncoated surface, is controlled. .
  • the transportability in the manufacturing process of the biaxially oriented polyester film of the present invention can be improved.
  • the slipperiness in the resist molding process is improved and the uniformity of the resist shape obtained. can be increased.
  • the arithmetic mean height of surface B of the biaxially oriented polyester film of the present invention there is a method of containing particles in the layer constituting surface B (P2 layer). It is preferable to control the particle diameter and particle concentration so that the arithmetic mean height falls within the above range.
  • the surface of the biaxially oriented polyester film is prevented from becoming extremely smooth, and the biaxially oriented polyester film of the present invention can be produced. It is possible to suppress a decrease in slipperiness during the process and a decline in slipperiness against a metal roll in the resist forming process.
  • the arithmetic mean height of the surface A and the surface B facing each other in the thickness direction is preferably 0.5 nm or more, more preferably 0.7 nm or more, and still more preferably 0.9 nm or more. Further, the arithmetic mean height is preferably 2.0 nm or less, more preferably 1.8 nm or less, still more preferably 1.6 nm or less.
  • the maximum protrusion height of surface B which faces surface A in the thickness direction, is 20 nm or more and 150 nm or less indicates that the surface roughness of surface B, which is a non-resist coated surface, is controlled and does not contain coarse particles. It shows.
  • the slipperiness in the resist molding process is improved and the uniformity of the resist shape obtained. can be increased.
  • a method for making the maximum protrusion height of the surface B of the biaxially oriented polyester film of the present invention within the above range there is a method of containing particles in the layer (P2 layer) constituting the surface B. In this case, it is preferable to control the particle diameter, particle concentration, and thickness of the layer (P2 layer) constituting surface B so that the maximum protrusion height falls within the above range.
  • the surface of the biaxially oriented polyester film is prevented from becoming extremely smooth, and in the manufacturing process of the biaxially oriented polyester film of the present invention. It is possible to suppress a decrease in slipperiness, a decrease in winding quality when winding into a roll, and a decrease in slipperiness against a metal roll in the resist forming process.
  • the maximum protrusion height of surface B opposite to surface A in the thickness direction is 150 nm or less, coarse irregularities on the surface of the biaxially oriented polyester film are reduced, and surface B of the biaxially oriented polyester film of the present invention can be resist-molded.
  • the surface is sometimes irradiated with ultraviolet light, scattering of the ultraviolet light inside or on the surface of the film can be suppressed to improve the uniformity of the resist shape.
  • the maximum protrusion height of surface B that faces surface A in the thickness direction is preferably 20 nm or more, more preferably 50 nm or more. Further, the maximum protrusion height is preferably 150 nm or less, more preferably 130 nm or less.
  • the biaxially oriented polyester film of the present invention was observed by observing the surface A and the surface B opposite to the surface A in the thickness direction using the ⁇ scanning white interference microscopy method> under the above condition III. It is preferable that the skewness Ssk-A and the skewness Ssk-B calculated by -Calculation of B satisfy the following (1d), (2d), and (3d).
  • (1d) Ssk-A is -0.1 or more and 1.0 or less
  • Ssk-B is 1.0 or more and 4.0 or less
  • (3d) Ssk-B -Ssk-A is 0.1 or more and 3.0 or less
  • Skewness Ssk generally indicates the symmetry of the distribution of peaks and valleys in the surface shape.
  • Ssk 0, the distribution of peaks and valleys is vertically symmetrical, and when Ssk > 0, the distribution of peaks and valleys is symmetrical. This indicates that there are many valleys, and when Ssk ⁇ 0, there are many valleys.
  • the skewness Ssk-A of the surface A is -0.1 or more and 1.0 or less indicates that minute protrusions (mountains) are formed on the surface A. There is.
  • the skewness of the surface A of the biaxially oriented polyester film within the above range, when the surface A of the biaxially oriented polyester film of the present invention is used as a resist coated surface during resist molding, the unevenness of the surface A is transferred to the resist.
  • the uniformity of the resist shape can be improved and the occurrence of resist defects can be suppressed.
  • skewness Ssk-A of surface A is subjected to atmospheric pressure glow discharge treatment using the plasma-excitable gas containing water vapor described above to form microprotrusions.
  • This can be achieved by having the skewness Ssk-A of the surface A of -0.1 or more, the surface A of the biaxially oriented polyester film is prevented from becoming extremely smooth, and the skewness Ssk-A of the biaxially oriented polyester film of the present invention is prevented from becoming extremely smooth. It is possible to suppress a decrease in slipperiness and a decrease in winding quality when winding into a roll.
  • the skewness Ssk-A of surface A is 1.0 or less, which prevents the formation of many large protrusions on surface A of the biaxially oriented polyester film, improves shape uniformity during resist formation, and suppresses the occurrence of resist defects. can.
  • the average primary particle diameter of the particles is preferably 100 nm or less, more preferably 70 nm or less. By having an average primary particle diameter of 100 nm or less, it is possible to prevent the skewness Ssk-A from becoming larger than 1.0, and to suppress the transfer of unevenness to the resist and the decrease in the uniformity of the resist shape.
  • the content of particles contained in the layer constituting surface A is preferably 0.7% by mass or less, and 0.3% by mass or less based on the mass of the entire layer constituting surface A (P1 layer). It is preferable that there be.
  • the surface A skewness Ssk-A of the biaxially oriented polyester film of the present invention is preferably -0.1 or more, more preferably 0.0 or more, and still more preferably 0.1 or more. Further, the skewness Ssk-A is preferably 1.0 or less, more preferably 0.7 or less, still more preferably 0.5 or less.
  • the skewness Ssk-B of the surface A and the surface B facing each other in the thickness direction is 1.0 or more and 4.0 or less.
  • the skewness increases or decreases depending on the content of the particles and the particle size of the largest particle among the contained particles.
  • the fact that the skewness Ssk-B is 1.0 or more and 4.0 or less indicates that the distribution (number, height, length) of protrusions (crests) on the surface B is controlled, and the skewness Ssk-B is 1.0 or more and 4.0 or less.
  • the average primary particle content of the particles contained in the P2 layer is This can be achieved by controlling the diameter and the thickness of the P2 layer.
  • the average primary particle size of the particles having the largest average primary particle size among the particles contained in the layer constituting surface B is 50 nm or more and 250 nm or less, more preferably 100 nm or more and 200 nm or less. If the average primary particle size of the particles with the largest average primary particle size among the particles contained in the P2 layer is 50 nm or more, the skewness Ssk-B can be prevented from becoming less than 1.0, and the slippage with the film or metal roll can be prevented. It can suppress the decline in sexual performance.
  • the average primary particle size of the particles with the largest average primary particle size among the particles contained in the P2 layer is too large, the content of the particles with the largest average primary particle size among the particles contained in the P2 layer, which will be described later, Even if the thickness of the P2 layer is adjusted, the skewness Ssk-B may become larger than 4.0, and if the surface is irradiated with ultraviolet light during the resist shape, the ultraviolet light will be scattered inside and on the film surface, causing the resist shape to deteriorate. uniformity may be impaired.
  • the average primary particle diameter here refers to that determined under the following conditions. Observe the cross section of the film at a magnification of 10,000 times using a transmission electron microscope (TEM). At this time, if particles of 1 cm or less are confirmed on the photograph, the TEM observation magnification is changed to 50,000 times and observed. The section thickness of the TEM was approximately 100 nm, and 100 fields of view were measured at different locations. The equivalent circular diameter was determined for all the dispersed particles photographed. The horizontal axis represents the equivalent circular diameter, and the vertical axis represents the equivalent circular diameter of the particles. The number distribution of particles was plotted as the number of particles, and the equivalent circular equivalent diameter of the peak value was taken as the average primary particle diameter of the particles.
  • TEM transmission electron microscope
  • the number distribution of the equivalent circle diameter is a distribution having two or more peaks.
  • the equivalent circular equivalent diameter of each peak value is taken as the average primary particle diameter of each particle.
  • Measuring device Transmission electron microscope (TEM) Hitachi model H-7100FA Measuring conditions: Accelerating voltage 100kV Measurement magnification: 10,000 times, 50,000 times Sample preparation: Ultra thin film section method Observation surface: TD-ZD cross section (TD: width direction, ZD: thickness direction)
  • Either inorganic particles or organic particles may be used as the particles having the largest average primary particle diameter among the particles contained in the P2 layer.
  • inorganic particles include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, zinc sulfide, calcium phosphate, mica, mica, titanium mica, zeolite, talc, clay, kaolin, Examples include lithium fluoride, calcium fluoride, montmorillonite, zirconia, wet silica, dry silica, and colloidal silica.
  • the content of particles with the largest average primary particle diameter among the particles contained in the P2 layer is 0.005% by mass or more and 0.030% by mass based on the entire weight of the P2 layer in order to achieve both resist properties and slipperiness. % or less, more preferably 0.008% by mass or more and 0.020% by mass or less. If the content of particles with the largest average primary particle diameter among the particles contained in the layer constituting surface B is less than 0.005% by mass, sufficient peaks will not be formed on the surface, resulting in skewness Ssk-B. is less than 1.0, and there is a possibility that the slipperiness with the film or metal roll may be impaired. If the content is more than 0.030% by mass, the skewness Ssk-B may become greater than 4.0, and there is a concern that the uniformity of the resist shape may deteriorate.
  • the thickness of the layer (P2 layer) including surface B is preferably 0.05 ⁇ m or more and 0.4 ⁇ m or less.
  • the thickness of the P2 layer is 0.05 ⁇ m or more, detachment of the contained particles is suppressed, and the formation of protrusions by the particles inside the P2 layer is sufficient, which can ensure slipperiness with the film and metal roll.
  • the thickness of the P2 layer is 0.4 ⁇ m or less, an increase in the total number of particles contained in the P2 layer can be suppressed, and wobbling in the resist shape can be prevented.
  • the thickness of the P2 layer included in the surface B is more preferably 0.10 ⁇ m or more and 0.35 ⁇ m or less, and even more preferably 0.15 ⁇ m or more and 0.30 ⁇ m or less.
  • the skewness Ssk-B of the surface A and the surface B facing each other in the thickness direction of the biaxially oriented polyester film of the present invention is preferably 1.0 or more, more preferably 1.2 or more, and even more preferably 1.5. That's all. Further, the skewness Ssk-B is preferably 4.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less.
  • the skewness difference (Ssk-B)-(Ssk-A) between surface A and surface B of the biaxially oriented polyester film of the present invention is preferably 0.1 or more and 3.0 or less.
  • the difference in skewness between surfaces A and B indicates that the difference in shape between surfaces A and B is small after Ssk-A and Ssk-B are controlled as described above.
  • (Ssk-B)-(Ssk-A) is 0.1 or more, the formation of protrusions on the surface B is sufficient, and the slipperiness with the film or metal roll can be ensured.
  • the surface shapes of surface A and surface B can be This can be achieved by controlling the
  • the skewness Ssk difference (Ssk-A)-(Ssk-B) between surface A and surface B of the biaxially oriented polyester film of the present invention is preferably 0.1 or more, more preferably 0.3 or more, and even more preferably 0. .5 or more.
  • the skewness difference (Ssk-B)-(Ssk-A) is preferably 3.0 or less, more preferably 2.5 or less, still more preferably 2.0 or less.
  • the number of coarse particles with a major diameter of 2.0 ⁇ m or more existing in a region of 3 ⁇ m in the film thickness direction observed from the surface B side with an optical microscope is set as N (pieces/8.25 mm 2 ). In this case, it is preferable that N be 20 or less.
  • the long axis here refers to the longest major axis dimension of a rectangular parallelepiped circumscribing the projected view of the large object in an image of the large object obtained when the film is observed perpendicularly from the surface B side.
  • the range of N (pieces/8.25 mm 2 ) is preferably 10 or less, more preferably 8 or less.
  • the method of setting the preferable range of N is a method that uses a polymer melted and extruded with an extruder. This is a method of filtering the information using a filter. Particles contained in the biaxially oriented polyester film, catalyst residues from the polymerization of the polyester resin, and very small foreign matter that enter the film from outside the film forming process will cause coarse protrusion defects if they enter the film. It is effective to use a highly accurate one that can capture 95% or more of foreign particles with a diameter of 5 ⁇ m or more. Furthermore, when particle master pellets are used to incorporate particles into the biaxially oriented polyester film of the present invention, it is more preferable to use a similar filter when preparing the particle master pellets.
  • a highly concentrated particle master pellet is made in advance, and the particles are added during film formation.
  • An effective method is to adjust the particle content by diluting the particles with a polyester resin that does not substantially contain the particles.
  • the intrinsic viscosity of the polyester resin that does not contain particles is reduced. It is possible.
  • the intrinsic viscosity of the particle master pellet is higher than or the same as that of the polyester resin that does not contain particles, the dispersibility of particles decreases and the distance between particles becomes shorter, resulting in larger particle aggregates.
  • coarse particles with a major diameter of 2.0 ⁇ m or more to increase in the above-mentioned region of 3 ⁇ m in the film thickness direction.
  • the particle content of the particle master pellet used to contain the particles of the biaxially oriented polyester film of the present invention is as follows: It is preferably 0.5% by mass or less, more preferably 0.3% by mass or less based on the weight of the master pellet. If the particle content of the particle master pellet, which is the particle with the largest particle size among the particles added to the layer constituting surface B, is 0.5% by mass or less, the polyester resin does not substantially contain particles during film formation. When added to and dispersed in a film, it is possible to suppress an increase in the number of coarse particles having a major axis of 2.0 ⁇ m or more existing in the above-mentioned region of 3 ⁇ m in the film thickness direction due to particle aggregation.
  • the particle content of the particle master pellet used when containing the particles of the biaxially oriented polyester film of the present invention is as follows:
  • the amount is preferably 2.0% by mass or less, more preferably 1.5% by mass or less, based on the weight of the particle master pellet.
  • the width direction (TD direction) when the film dimensional change rate is ⁇ L90-130°C (ppm/°C) when the film temperature is raised from 90°C to 130°C, the width direction (TD direction), It is preferable that at least one direction in the longitudinal direction (MD direction) is -50 or more and 150 or less.
  • the film dimensional change rate ⁇ L90-130°C (ppm/°C) when the film temperature is raised from 90°C to 130°C is a value obtained by thermomechanical analysis (TMA) measurement described below.
  • TMA thermomechanical analysis
  • This is a value representing the dimensional change rate when the biaxially oriented polyester film of the present invention is heated with a high-temperature laminating roll in the lamination process, and if the value is positive, it will expand, and if the value is negative, it will shrink. It is a value that represents By setting the ⁇ L90-130°C (ppm/°C) to -50 or more, the thermal shrinkage can be reduced to an appropriate range.
  • the biaxially oriented polyester film undergoes greater heat shrinkage than the conventional resist layer, causing curling on the biaxially oriented polyester side and causing the resist layer to peel off from the copper foil substrate that is in close contact with it.
  • lifting may occur between the copper foil substrate and the resist layer, but this can be suppressed in the present invention.
  • the lower limit of ⁇ L90-130°C (ppm/°C) is more preferably 0 or more.
  • the thermal expansion can be reduced to an appropriate range.
  • the biaxially oriented polyester film expands more than the conventional resist layer, which causes the resist layer attached to the biaxially oriented polyester film to be stretched excessively, causing minute defects in the resist layer.
  • lifting may occur between the copper foil substrate and the resist layer starting from this point, but the present invention can suppress this.
  • the upper limit of ⁇ L90-130°C (ppm/°C) is more preferably 100 or less.
  • heat treatment and relaxation treatment in the width direction are carried out in the transverse stretching step when forming a biaxially stretched polyester film, which will be described later.
  • This can be achieved by subjecting the biaxially stretched film to a heat treatment at a temperature above a certain temperature and at the same time subjecting it to relaxation treatment at a temperature above a certain temperature.
  • the laminated polyester film is heat treated at a temperature of 221°C or more and 240°C or less, and at the same temperature as the heat treatment temperature, a relaxation treatment is performed at a rate of 1% or more and 4% or less in the width direction.
  • a relaxation treatment is performed at a rate of 1% or more and 4% or less in the width direction.
  • a more preferable range of the heat treatment temperature is 225°C or more and 240°C or less, most preferably 230°C or more and 240°C or less. Further, as a preferable range of the ratio of relaxation treatment in the width direction performed at the heat treatment temperature, the lower limit is more preferably 1.5% or more, and the upper limit is more preferably 2.5% or less.
  • the relaxation treatment in the width direction was performed. After that, it is preferable to perform a relaxation treatment in the width direction at a temperature of 90° C. or more and 150° C. or less, which corresponds to the laminating temperature range, at a rate of 0.5% or more and 3% or less. This is because by performing the relaxation treatment in the width direction at the above temperature, the polyester resin molecular chains within the film take on a stable structure at the lamination processing temperature.
  • the relaxation treatment method performed at a temperature of 90°C or more and 150°C or less, it is more preferable to perform the relaxation treatment in the width direction two or more times in two different temperature ranges, and at a temperature of 115°C or more and 150°C or less.
  • Relaxation treatment is performed in the width direction at a rate of 0.5% or more and 2.0% or less, and then relaxation treatment is performed in the width direction at a rate of 0.3% or more and 2.0% or less at a temperature of 90°C or more and less than 115°C.
  • the lower limit of the ratio of relaxation treatment in the width direction (relaxation treatment) performed at a temperature of 115° C. or higher and 150° C. or lower is more preferably 1.0% or more, and the upper limit is more preferably 1.8% or less. .
  • the lower limit is more preferably 0.5% or more, and the upper limit is more preferably 1.5% or less. , more preferably 0.8% or less.
  • the total percentage of relaxation treatments performed at each temperature after the heat treatment is 5% or less.
  • the total relaxation treatment ratio is 4.5% or less.
  • the ⁇ L90-130°C (ppm/°C) is -50 or more and 150 or less.
  • a more preferable form is that the direction is the width direction (TD direction) of the roll during lamination.
  • the biaxially oriented polyester film of the present invention can be suitably used as a film for a dry film resist support.
  • the surface is observed with AFM in a 5 ⁇ m square field of view, at least one surface has (1a) the number of valley regions with a height of -2 nm or less from the reference surface of 100 pieces/5 ⁇ m ⁇ or more, and 500 pieces/5 ⁇ m ⁇ or less, (2a)
  • a biaxially oriented polyester film which is surface A, where the average cross-sectional area of the valley region at a height of -2 nm or less from the reference plane satisfies 2000 nm 2 or more and 8000 nm 2 or less as a resist coating surface during resist molding. , it exhibits excellent sliding properties on metal rolls during the manufacturing process without impairing the uniformity of the resist shape, and can also improve the winding performance when winding into a roll.
  • the biaxially oriented polyester film of the present invention can be suitably used as a support film for green sheet molding in the process of manufacturing a multilayer ceramic capacitor.
  • the surface is observed with AFM in a 5 ⁇ m square field of view, at least one surface has (1a) the number of valley regions with a height of -2 nm or less from the reference surface of 100 pieces/5 ⁇ m ⁇ or more and 500 pieces/5 ⁇ m ⁇ or less, (2a)
  • a biaxially oriented polyester film which is surface A, where the average cross-sectional area of the valley region at a height of -2 nm or less from the reference plane satisfies 2000 nm 2 or more and 8000 nm 2 or less, as the ceramic slurry coating surface, the ceramic layer It exhibits excellent sliding properties on metal rolls in the manufacturing process without transferring unevenness to the surface, and can improve the winding performance when winding into a roll.
  • the biaxially oriented polyester film of the present invention includes a layer containing surface A (P1 layer) and a layer facing the P1 layer (P2 layer), and has two or more layers in which the P1 layer and the P2 layer are arranged on the outermost surface.
  • the structure (P1 layer/P2 layer or P1 layer/P3 layer/P2 layer structure) is preferable.
  • a three-layer structure is preferred from the viewpoint of achieving both optical properties and slipperiness by adjusting the amount of particles added in each layer.
  • the method of laminating other resin layers such as the P1 layer, P2 layer, and P3 layer is not particularly limited, but examples include the coextrusion method described below, and the method of adding other resin layer raw materials to the film in the middle of film formation into an extruder. Examples include a method of melt-extruding the film and laminating it while extruding it from a die (melt lamination method), and a method of laminating the films after film formation with an adhesive layer interposed therebetween. Among these, the coextrusion method is preferred because it allows the formation of protrusions by the above-mentioned surface treatment and lamination at the same time.
  • each layer may contain particles within a range that does not impair the characteristics of the present invention.
  • the biaxially oriented polyester film of the present invention may contain particles, it may contain organic particles, inorganic particles, or both.
  • the biaxially oriented polyester film of the present invention preferably has a thickness of 10 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 40 ⁇ m or less. Particularly preferably, the thickness is 15 ⁇ m or more and 20 ⁇ m or less.
  • the thickness is 15 ⁇ m or more and 20 ⁇ m or less.
  • the intrinsic viscosity (IV) of the biaxially oriented polyester film of the present invention is preferably 0.45 or more, more preferably 0.50 or more.
  • IV is a number that reflects the length of the molecular chain, and the longer the molecular chain, the easier it is to clearly form crystalline and amorphous parts within the same molecular chain. This is preferred because it facilitates the formation of fine protrusions.
  • the surface free energy (mN/m) of the surface A of the biaxially oriented polyester film of the present invention is preferably 40 or more and 48 or less, more preferably 43 or more and 45 or less.
  • the surface free energy (mN/m) is 40 or more and 48 or less, it is possible to improve the adhesion when laminating another layer on the A side and suppress the occurrence of defects.
  • the film forming method described below which includes a step of subjecting the film surface to atmospheric pressure glow discharge treatment and then heat treatment, the functional groups formed by ashing by atmospheric pressure glow discharge treatment lose their activity through heat treatment, thereby improving the surface free energy. It can be a range.
  • the biaxially oriented polyester film of the present invention preferably has a tear propagation resistance of 4,500 mN/mm or more and 10,000 mN/mm or less in the longitudinal direction and the width direction, which are the film forming line directions.
  • the tear propagation resistance in the longitudinal direction and the width direction is more preferably 4500 mN/mm or more and 8000 mN/mm or less, and even more preferably 5000 mN/mm or more and 7000 mN/mm or less.
  • the area magnification (stretching ratio in the longitudinal direction x stretching ratio in the width direction) during production of the biaxially oriented polyester film is preferably 10 times or more and 25 times or less.
  • heat treatment is performed, and the temperature of the heat treatment can be controlled by setting the temperature at which the polyester is used (melting point -40° C.) or higher and lower than the melting point.
  • a conventional polymerization method can be used to obtain the polyester used in the present invention.
  • a dicarboxylic acid component such as terephthalic acid or its ester-forming derivative is transesterified or esterified with a diol component such as ethylene glycol or its ester-forming derivative by a known method, and then a melt polymerization reaction is performed. You can get it by doing. Further, if necessary, the polyester obtained by the melt polymerization reaction may be subjected to a solid phase polymerization reaction at a temperature below the melting point temperature of the polyester.
  • the polyester film in the present invention can be obtained by conventionally known manufacturing methods, but by manufacturing the stretching and heat treatment steps under the following conditions, at least one surface can be made into surface A having the preferable physical properties as described above. I can do it.
  • a method for manufacturing the polyester film in the present invention for example, if necessary, a method (melt casting method) in which dried raw materials are heated and melted in an extruder and extruded from a die onto a cooled cast drum to form a sheet.
  • Other methods include, for example, dissolving the raw material in a solvent, extruding the solution from a die onto a support such as a cast drum or endless belt to form a film, and then drying and removing the solvent from the film layer to form a sheet.
  • a processing method (solution casting method), etc. may also be mentioned.
  • an extruder is used for each layer constituting the laminated polyester film, the raw materials for each layer are melted, and the raw materials for each layer are melted and transferred to a confluence between the extrusion device and the die.
  • a preferred method is to stack the materials in a molten state in an apparatus, introduce them into a die, extrude them from the die onto a cast drum, and process them into a sheet to obtain a laminated sheet.
  • the laminated sheet processed into a sheet is cooled and solidified by static electricity on a cast drum whose surface temperature is preferably cooled to 20° C. or higher and 60° C. or lower to produce an unstretched sheet.
  • the temperature of the cast drum is more preferably 25°C or more and 60°C or less, and even more preferably 40°C or more and 55°C or less.
  • the unstretched sheet is subjected to surface treatment.
  • the surface treatment include methods such as nanoimprinting in which a shape is transferred to the surface using a mold, corona treatment using ultraviolet light irradiation or arc discharge, plasma treatment using glow discharge, and the like. These surface treatments may be carried out immediately after obtaining the unstretched sheet, after slight stretching, or after stretching in the longitudinal and/or lateral directions, but in the present invention it is preferable to surface-treat the unstretched sheet.
  • the surface to be surface-treated may be either the surface that was in contact with the cast drum (drum surface) or the surface that is not in contact with the cast drum (non-drum surface). At this time, the surface temperature of the film surface to be surface-treated is controlled so as not to become too high.
  • the stretching method include a sequential biaxial stretching method and a simultaneous biaxial stretching method.
  • a sequential biaxial stretching method in which stretching is performed first in the longitudinal direction and then in the width direction is preferred from the viewpoint of obtaining the biaxially oriented polyester film of the present invention without stretching tearing.
  • the area magnification (stretching ratio in the longitudinal direction x stretching ratio in the width direction) is preferably 10 times or more and 25 times or less, more preferably 12 times or more and 20 times or less.
  • the shape imparted to the unstretched film is subdivided, and a more desirable surface shape, especially the number of valley regions with a height of -2 nm or less from the reference plane, and the average cross-sectional area are set within a desirable range. It can be done.
  • the area magnification By setting the area magnification to 10 times or more, it is possible to prevent the valley region having a height of ⁇ 2 nm or less from the reference plane from decreasing or from decreasing the average cross-sectional area.
  • By setting the area magnification to 25 times or less tearing due to stretching can be suppressed.
  • the heat treatment temperature is preferably (melting point -40)°C or higher and lower than the melting point of the thermoplastic resin used, more preferably (melting point -40)°C or higher and (melting point -15)°C or lower.
  • thermoplastic resin used is a crystalline polyester such as PET or PEN
  • the shape is imparted to the unstretched film by the ashing effect of atmospheric pressure glow discharge treatment
  • the remaining crystalline portions are removed by the ashing treatment. It is divided into small parts by stretching, and then by heat treatment, crystals grow using the parts as nuclei, so that the protrusion shape can be made into a preferable shape.
  • the heat treatment temperature By setting the heat treatment temperature to a melting point of ⁇ 40° C. or higher, sufficient crystal growth is achieved. Melting of the protrusions can be suppressed by setting the heat treatment temperature to below the melting point.
  • ⁇ Flatten processing> The film surface image obtained under the above observation conditions is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). The obtained height sensor image of the film surface is subjected to flatten processing.
  • the reference plane of the film surface is a plane with a height of 0 nm determined under the flatten processing conditions described above.
  • ⁇ Particle Analysis mode setting> (Detect tab) ⁇ Threshold Height: -2.00nm ⁇ Feature Direction: Below ⁇ X Axis: Absolute ⁇ Number Histogram Bins: 512 ⁇ Histogram Filter Cutoff: 0.00nm ⁇ Min Peak to Peak: 1.00nm ⁇ Left Peak Cutoff: 0.00000% ⁇ Right Peak Cutoff: 0.00000% (Modify tab) ⁇ Boughbirhood Size:3 ⁇ Number Pixels Off: 1 ⁇ Do not perform any Dilate/Erode operations.
  • the average values of the Total Count and Area Mean values at 20 locations are the number and average cross-sectional area of valley regions that are +3 nm or more from the height reference plane, respectively.
  • ⁇ Particle Analysis mode setting> (Detect tab) ⁇ Threshold Height: 3.00nm ⁇ Feature Direction: Above ⁇ X Axis: Absolute ⁇ Number Histogram Bins: 512 ⁇ Histogram Filter Cutoff: 0.00nm ⁇ Min Peak to Peak: 1.00nm ⁇ Left Peak Cutoff: 0.00000% ⁇ Right Peak Cutoff: 0.00000% (Modify tab) ⁇ Boughbirhood Size:3 ⁇ Number Pixels Off: 1 ⁇ Do not perform any Dilate/Erode operations.
  • Kurtosis is determined as the average value of 20 Kurtosis values calculated by setting each item of the tab and Peak Inputs tab as follows.
  • ⁇ Etching conditions in the depth direction> A thickness of 500 nm ⁇ 10 nm is removed by sputter etching from the surface A' of the biaxially oriented polyester film thermoplastic resin film using argon ions. The thickness removed by argon etching is confirmed by measuring the thickness before and after argon etching through cross-sectional observation using a transmission electron microscope (TEM). The obtained etched surface a is subjected to measurement of each element type under the same conditions as the XPS measurement conditions described above.
  • O element concentration ratio O1s-A/O1s-a From the O1s-A of the surface A obtained under the above XPS measurement conditions and data processing conditions and the O1s-a obtained by XPS measurement of the surface a etched to a thickness of 500 nm from the surface layer of the surface A, the O element concentration ratio is determined. Calculate O1s-A/O1s-a.
  • N element concentration ratio N1s-A/N1s-a From the N1s-A of the surface A obtained under the above XPS measurement conditions and data processing conditions and the N1s-a obtained by XPS measurement of the surface a etched to a thickness of 500 nm from the surface layer of the surface A, the N element concentration ratio is determined. Calculate N1s-A/N1s-a.
  • Sa is the arithmetic mean height
  • Sp is the maximum protrusion height
  • Ssk is the skewness
  • each field of view is The average value of 80 visual fields excluding the upper and lower 5 visual fields from the value is defined as the arithmetic mean height, maximum protrusion height, and skewness, respectively.
  • ISO parameter analysis conditions > ISO parameter analysis processing is performed under the following conditions.
  • ⁇ S-Filter Automatic/Normal probability paper Number of divisions: 300 Upper limit of calculation range: 3.000 Lower limit of calculation range: -3.000 - Parameters: Select "Height Parameters" - Output: Select "Parameter List”.
  • the film thickness is determined by measuring the thickness at five arbitrary locations using a dial gauge in accordance with JIS K7130 (1992) A-2 method, with 10 films stacked one on top of the other. The average value is divided by 10 to determine the film thickness.
  • the thickness of each layer was determined by the following method. A cross section of the film is cut out using a microtome in a direction parallel to the film width direction. The cross section is observed with a scanning electron microscope at a magnification of 5000 times, and the thickness ratio of each laminated layer is determined. The thickness of each layer is calculated from the obtained lamination ratio and the film thickness described above.
  • a copolymer consisting of methacrylic acid, methyl methacrylate, ethyl acrylate, and butyl methacrylate as a thermoplastic resin, and trimethylolpropane triacrylate and polyethylene glycol (number average molecular weight 600) dimethacrylate as photosensitive materials.
  • a mixture consisting of benzophenone and dimethylaminobenzophenone as photopolymerization initiators, hydroquinone as a stabilizer, and methyl violet as a coloring agent is used.
  • SEM scanning electron microscope
  • Fine wiring resist shape evaluation Regarding the 30 resist wiring patterns observed in the previous section (i), calculate the number of wiring patterns in which there is a missing part of 0.5 ⁇ m or more in the linear shape on the long side of the upper surface of the wiring pattern. Confirm and evaluate the fine wiring resist shape of the film as follows.
  • D The number of chips is 11 or more. In terms of fine wiring resist shape evaluation, A to C are good, and A is the best among them.
  • Fine wiring pinhole defect Regarding the 30 resist wiring patterns observed in the previous section (i), calculate the number of wiring patterns that have a missing part of 0.5 ⁇ m or more in the linear shape on the long side of the top surface of the wiring pattern. After checking, the film is evaluated for fine wiring pinhole defects as follows. A: The number of pinholes is 0. B: The number of pinholes is 1 or more and 5 or less. C: The number of pinholes with pinhole defects is 6 or more and 10 or less. D: The number of pinhole defects exceeds 10. In terms of fine wiring pinhole defect evaluation, A to C are good, and A is the best among them.
  • an addition reaction silicone resin (trade name: LTC750A, manufactured by Toray Dow Corning Silicone Co., Ltd.) and 2 parts by weight of a platinum catalyst (trade name: SRX212, manufactured by Toray Dow Corning Silicone Co., Ltd.) were added.
  • a coating liquid adjusted to have a solid content of 5% by weight is applied by gravure coating so that the coating thickness after drying is 0.1 ⁇ m, dried and cured at 120° C. for 30 seconds, and then wound up to obtain a release film.
  • a ceramic slurry 100 parts by weight of barium titanate (product name: HPBT-1, manufactured by Fuji Titanium Industries, Ltd.), 10 parts by weight of polyvinyl butyral (product name: BL-1, manufactured by Sekisui Chemical Co., Ltd.), and 5 parts by weight of dibutyl phthalate. Glass beads with a number average particle size of 2 mm are added to 60 parts by weight of toluene-ethanol (weight ratio 30:30), mixed and dispersed in a jet mill for 20 hours, and then filtered to prepare a paste. The obtained ceramic slurry is applied onto a release film using a die coater so that the thickness after drying is 2 ⁇ m, dried, and wound up to obtain a green sheet.
  • barium titanate product name: HPBT-1, manufactured by Fuji Titanium Industries, Ltd.
  • polyvinyl butyral product name: BL-1, manufactured by Sekisui Chemical Co., Ltd.
  • dibutyl phthalate 5 parts by weight of dibutyl phthal
  • a weight with a load of 1 kg is placed on top of the metal sample plate, and the metal sample plate is placed in close contact with the surface A of the sample or the surface B opposite to the surface A in the thickness direction by leaving it for 20 seconds.
  • the maximum value of the load (N; in newton units) detected when the attached thread is pulled under the following conditions is measured. Measurements were performed seven times, and the average value of the five measured values, excluding the top one and one bottom score, was taken as the slipperiness of the sample with respect to the metal sample plate, and evaluated as follows. AA to C are good, and AA is the best among them.
  • Static friction coefficient is less than 1.0
  • the laminated polyester film for dry film resist of the present invention was cut out into 11 mm x 0.75 mm (8.25 mm 2 ), and after focusing on the surface of the film P2 layer using an optical microscope (ECLIPSE LV100 manufactured by Nikon). , While shifting the focus to the inside of the film in the film thickness direction, an area from the film surface to 3 ⁇ m in the film thickness direction was observed. Measure the number of pieces.
  • the major axis here refers to the longest major axis dimension of a rectangular parallelepiped circumscribing the projected view of the coarse object in an image of the coarse object obtained when the film is vertically observed from the P2 layer side.
  • Lamination processing conditions Lamination conveyance speed: 2m/min
  • Lamination roll temperature 100°C
  • Lamination pressure 0.5MPa
  • the suitability for lamination at 100°C is evaluated by visually checking an A4 size laminated sample of a copper foil substrate and a biaxially oriented polyester film sample when the laminating roll temperature is 100°C.
  • 100°C laminate void evaluation (1) a. and b.
  • a to C are good, and A is the best among them.
  • (2) 100°C lamination wrinkle evaluation Visually inspect 10 A4 size laminate samples of copper foil substrates and biaxially oriented polyester samples laminated at 100°C using the laminating roll temperature used in the previous section (1). The presence or absence of wrinkles with a length of 1 cm or more was confirmed and evaluated as follows.
  • melt-polymerized PET substantially free of particles.
  • the resulting melt-polymerized PET had a glass transition temperature of 81°C, a melting point of 255°C, and an intrinsic viscosity of 0.62.
  • melt-polymerized PET substantially free of particles.
  • the resulting melt-polymerized PET had a glass transition temperature of 81°C, a melting point of 255°C, and an intrinsic viscosity of 0.50.
  • melt-polymerized PET substantially free of particles.
  • the resulting melt-polymerized PET had a glass transition temperature of 81°C, a melting point of 255°C, and an intrinsic viscosity of 0.40.
  • melt-polymerized PET substantially free of particles.
  • the resulting melt-polymerized PET had a glass transition temperature of 81°C, a melting point of 255°C, and an intrinsic viscosity of 0.80.
  • ⁇ Manufacture of MB-C> During the polymerization of PET-1, a cross-linked polystyrene particle slurry (cross-linked polystyrene-1) with a particle size of 300 nm dispersed in water at a particle concentration of 20% was added so that the amount added to PET was 1% by mass, and the PET base was Particle master pellets MB-C were obtained.
  • PET-1 master pellet MB-A (contains silica-1), master pellet MB-B (contains silica-2), master pellet MB-C (contains crosslinked polystyrene-1), master pellet MB-D (crosslinked polystyrene-1)
  • master pellet MB-A contains silica-1
  • master pellet MB-B contains silica-2
  • master pellet MB-C contains crosslinked polystyrene-1
  • master pellet MB-D crosslinked polystyrene-1
  • the amount of PET-1 and each master pellet added was the same as the amount of layers P1 to P3 listed in Table 1, and extrusion was carried out using each of the three extruders.
  • the treated unstretched film was sequentially stretched 3.5 times in the longitudinal direction and 4.0 times in the width direction using a biaxial stretching machine, for a total of 14.0 times, and then heat-treated at 230° C. under a constant length. Thereafter, relaxation treatment was performed in the width direction to obtain a biaxially oriented polyester film with a thickness of 16 ⁇ m.
  • Table 4 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 4, the surface properties of Surface A could be made good, and the film was good in all of slipperiness, uniformity of resist shape, green sheet shape, high temperature lamination property, and toughness.
  • Example 2 A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that the plasma treatment conditions were changed as shown in Table 1.
  • Table 4 shows the properties of the obtained biaxially oriented polyester film.
  • the biaxially oriented polyester film obtained in Example 2 was able to have better surface properties on surface A, although the amount of water vapor in the plasma treatment atmosphere was lower than in Example 1.
  • the film had good properties in terms of slipperiness, uniformity of resist shape, green sheet shape, high-temperature lamination properties, and toughness.
  • the biaxially oriented polyester films obtained in Examples 3 and 4 had a lower plasma treatment intensity than in Example 1, so although the number of valley regions and peak regions and the average cross-sectional area were smaller, The film had sufficiently good properties in terms of uniformity, resist shape, uniformity of green sheet shape, high temperature lamination property, and toughness.
  • Example 5 A biaxially oriented film was obtained in the same manner as in Example 1, except that the resin constituting the P1 layer had the composition shown in Table 1.
  • Table 4 shows the properties of the obtained biaxially oriented polyester film.
  • the biaxially oriented polyester film obtained in Example 5 had a larger kurtosis on the surface A than in Example 1 due to the addition of alumina particles to the layer constituting the surface A, and the resist Although the resist evaluation of shape and pinhole defects was slightly inferior to that of Example 1, the film had sufficiently good slip properties, resist shape, uniformity of green sheet shape, high-temperature lamination properties, and toughness.
  • Example 6 In addition, in the biaxially oriented polyester film obtained in Example 6, the kurtosis of the surface A was larger than that of Example 1 due to the addition of silica particles to the layer constituting the surface A, and the resist shape and pinhole defects were reduced. Although the resist evaluation was slightly inferior to that of Example 1, the film had sufficiently good slip properties, resist shape, uniformity of green sheet shape, high temperature lamination properties, and toughness.
  • Example 7 A biaxially oriented film was obtained in the same manner as in Example 1, except that the resin constituting the P2 layer had the composition shown in Tables 1 and 2. The properties of the obtained biaxially oriented polyester film are shown in Tables 4 and 5.
  • the biaxially oriented polyester film obtained in Example 7 has an arithmetic mean height of surface B, a maximum protrusion height of Now, the skewness Ssk-B becomes smaller, and L/S of resist shape evaluation is 4/4 ⁇ m.
  • the film was better than Example 1 in the evaluation based on the wiring pattern. Furthermore, the film had sufficiently good slip properties, uniformity of green sheet shape, high-temperature lamination properties, and toughness.
  • the biaxially oriented polyester films obtained in Examples 8 and 9 had arithmetic average Although the height, maximum protrusion height, and skewness Ssk-B are smaller, and the slipperiness is inferior to Example 7, the slipperiness, resist shape, uniformity of green sheet shape, high-temperature lamination property, and toughness are all sufficient. It was a good film.
  • Example 10 A biaxially oriented film was obtained in the same manner as in Example 8, except that the resin constituting the P1 layer had the composition shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
  • the intrinsic viscosity of the resin constituting surface A was made smaller than in Example 8, so that the trough and peak regions of surface A were The number of films and the average cross-sectional area were increased, and the slipperiness between the films was better than that of Example 8. Furthermore, the film had sufficiently good slip properties, uniformity of resist shape, green sheet shape, high temperature lamination properties, and toughness.
  • Example 11 12 A biaxially oriented film was obtained in the same manner as in Example 10, except that the plasma treatment conditions for Surface A were as shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
  • the biaxially oriented polyester film obtained in Example 11 had a lower number of trough areas, peak areas, and average cross-sectional area on surface A than Example 10 due to the reduced plasma treatment intensity.
  • the film had a better uniformity of resist shape than Example 10.
  • the film had sufficiently good slip properties, uniformity of green sheet shape, high temperature lamination properties, and toughness.
  • the biaxially oriented polyester film obtained in Example 12 had lower plasma treatment strength than Example 11, so that the trough and peak areas of surface A were lower than in Example 11. Although the number of particles and the average cross-sectional area are reduced, and the slipperiness is inferior to that of Example 10, the film has sufficiently good slipperiness, resist shape, uniformity of green sheet shape, high-temperature lamination properties, and toughness. there were.
  • Example 13 A biaxially oriented film was obtained in the same manner as in Example 11, except that the resin constituting the P1 layer had the composition shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
  • the biaxially oriented polyester film obtained in Example 13 had a lower average cross-sectional area of the valley region of surface A than Example 11 because the intrinsic viscosity of the resin was lower than that of Example 11. increased, and although the uniformity of resist shape was inferior to that of Example 11, the film had sufficiently good slip properties, uniformity of resist shape, green sheet shape, high-temperature lamination properties, and toughness. .
  • Example 14 A biaxially oriented film was obtained in the same manner as in Example 11, except that the resin extrusion filter constituting the P1 layer was used as shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
  • the biaxially oriented polyester film obtained in Example 14 has an increased number of coarse particles with a major axis of 2.0 ⁇ m or more than in Example 11, and the resist shape is more uniform than in Example 11.
  • the film had sufficiently good slip properties, resist shape, uniformity of green sheet shape, high-temperature lamination properties, and toughness.
  • Example 15 A biaxially oriented film was obtained in the same manner as in Example 11, except that the stretching and relaxing conditions in the width direction were as shown in Table 2.
  • Table 5 shows the properties of the obtained biaxially oriented polyester film.
  • the biaxially oriented polyester film obtained in Example 15 had a higher dimensional change rate in the stretching direction when the film temperature was changed from 90°C in the width direction to 130°C than in Example 11. Although the film was larger and its high-temperature lamination properties were inferior to those of Example 11, the film had sufficiently good slip properties, resist shape, uniformity of green sheet shape, high-temperature lamination properties, and toughness.
  • Example 1 A biaxially oriented polyester film was obtained under the same conditions as in Example 1 except that no plasma treatment was performed.
  • Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, the biaxially oriented polyester film obtained in Comparative Example 1 has a small number of trough areas and peak areas on surface A, and a small average cross-sectional area, and has a low slipperiness with metal plates and slippage between films. It was a film of inferior quality.
  • Example 2 A biaxially oriented polyester film was obtained under the same conditions as in Example 1 except that the plasma treatment was performed in a nitrogen atmosphere containing no water vapor.
  • Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, the biaxially oriented polyester film obtained in Comparative Example 2 had small valley areas, small number of peak areas, and average cross-sectional area on surface A, and was a film with poor sliding properties with metal plates. Ta.
  • Example 3 A biaxially oriented polyester film was obtained under the same conditions as in Example 1, except that the plasma treatment atmosphere was set to a temperature of 20° C./humidity of 23.5% RH and an amount of water vapor in the atmosphere was set to 4 g/m 3 .
  • Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, the biaxially oriented polyester film obtained in Comparative Example 3 had small valley areas, small number of peak areas, and average cross-sectional area on surface A, and was a film with poor sliding properties with metal. .
  • Example 4 A biaxially oriented polyester film was obtained under the same conditions as in Example 1, except that the plasma treatment was performed in a nitrogen atmosphere containing no water vapor and the heat setting temperature was 245°C.
  • Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, in the biaxially oriented polyester film obtained in Comparative Example 4, the number of valley areas and peak areas on surface A, and the average cross-sectional area exceeded the good range, and the resist shape was poor and the toughness was poor. It was also a low film.
  • Example 5 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the resin constituting the P1 layer had the composition shown in the table and the plasma treatment was not performed.
  • Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, in the biaxially oriented film obtained in Comparative Example 5, the number of peak regions on surface A, the average cross-sectional area, and the kurtosis exceeded the good range, and the resist evaluation of resist shape and pinhole defects The film had poor sliding properties with the metal plate due to the small number of valley regions.
  • Example 6 A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that the resin constituting the P1 layer had the composition shown in the table. Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, in the obtained biaxially oriented film, the number of valley regions on surface A is smaller than the good range, and the number of peak regions and the average cross-sectional area are less than the good range, so the metal The film had poor sliding properties between the plate and the film. Further, since the average cross-sectional area of the valley region exceeded a good range, the film had poor uniformity in resist evaluation.
  • Example 7 A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that the resin constituting the P1 layer had the composition shown in the table.
  • Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, the obtained biaxially oriented film is a film with poor slipperiness between the metal plate and the film because the number of valley areas, the number of peak areas, and the average cross-sectional area of the surface A are less than a good range. there were.

Abstract

Provided is a biaxially oriented polyester film capable of achieving both sliding properties with respect to metal rolls and uniformity of fine wiring resist shape. A biaxially oriented polyester film configured such that at least one surface is a surface A that satisfies (1a) and (2a) when observed using AFM with a 5-μm-square field of view under specific conditions. (1a) The number of valley regions having a height from a reference plane of −2 nm or lower ranges from 100/5 μm□ to 500/5 μm□ inclusive. (2a) The average cross-sectional area of valley regions having a height from a reference plane of −2 nm or lower ranges from 2000 nm2 to 8000 nm2 inclusive.

Description

二軸配向ポリエステルフィルムBiaxially oriented polyester film
 本発明は、特定の特性を有する面を少なくとも一方の表面に設けた二軸配向ポリエステルフィルムに関するものである。 The present invention relates to a biaxially oriented polyester film having at least one surface provided with a surface having specific properties.
 ポリエステル樹脂はその加工性の良さから、様々な工業分野に利用されている。また、これらポリエステル樹脂をフィルム状に加工した製品(ポリエステルフィルム)は、工業用途、光学製品用途、包装用途又は磁気記録テープ用途など、今日の生活において重要な役割を果たしている。 Due to its good processability, polyester resin is used in various industrial fields. Furthermore, products processed into film from these polyester resins (polyester films) play an important role in today's life, such as in industrial applications, optical product applications, packaging applications, and magnetic recording tape applications.
 近年、電子情報機器において、小型化、高集積化が進み、それに伴って、電子情報機器の配線も微細化が進展している。これら電子情報機器の微細な配線の作製には、透明なフィルムを支持体とし、表面に光硬化性の樹脂層(レジスト層)を設けたものを薄膜銅が張り合わされた基板と密着させ、フィルムごとフォトレジスト技術を用いて銅配線形状を描写し、フィルム剥離後ドライフィルムレジスト工法を用いることが多い。 In recent years, electronic information equipment has become smaller and more highly integrated, and along with this, the wiring of electronic information equipment has also become smaller. In order to produce fine wiring for these electronic information devices, a transparent film is used as a support, and a photocurable resin layer (resist layer) is provided on the surface, and the film is brought into close contact with a substrate on which a thin film of copper is laminated. In many cases, the copper wiring shape is drawn using photoresist technology, and then a dry film resist method is used after the film is peeled off.
 次世代製品では配線幅が2~5μmと非常に精細な加工を行うことが必要になるとされ、支持体フィルムの紫外光照射面(レジスト非塗工面)に粒子を含有する場合、粒子による紫外光の散乱によりレジスト形状が不均一となる可能性がある。このため、支持体フィルムの紫外光照射面(レジスト非塗工面)には、工程金属ロールに対する滑り性に加えて従来以上に平滑な表面であることが求められている。また、レジスト非塗工面の平滑化に併せてフィルムの巻き取り性を確保するため、レジスト塗工面とレジスト非塗工面との滑り性を確保することが重要となっている。 It is said that next-generation products will require very precise processing with a wiring width of 2 to 5 μm, and if particles are contained on the ultraviolet light irradiated surface (non-resist coated surface) of the support film, the ultraviolet light caused by the particles will be The resist shape may become non-uniform due to the scattering of the resist. For this reason, the ultraviolet light irradiated surface (non-resist-coated surface) of the support film is required to have smoother surface than ever before in addition to smoothness against the process metal roll. In addition to smoothing the resist-uncoated surface, it is also important to ensure smoothness between the resist-coated surface and the resist-uncoated surface in order to ensure film winding properties.
 一般に、ポリエステルフィルムは、製造工程にて製膜した後、ロール形状に巻き取られる。この時、フィルム表面が平滑すぎるとフィルム同士が密着するため、フィルムの巻取り性が悪化する。そのため、フィルムの巻取り性を担保するためにフィルムに粒子を添加・含有させることで、フィルム表面を一定程度荒らす(フィルム表面に突起を形成させる)方法が知られている(例えば、特許文献1~4)。 Generally, a polyester film is formed into a film in a manufacturing process and then wound into a roll shape. At this time, if the film surface is too smooth, the films will adhere to each other, resulting in poor film winding properties. Therefore, there is a known method of roughening the film surface to a certain extent (forming protrusions on the film surface) by adding particles to the film to ensure film windability (for example, Patent Document 1 ~4).
日本国特開2013-022778号公報Japanese Patent Application Publication No. 2013-022778 日本国特開2022-19775号公報Japanese Patent Application Publication No. 2022-19775 日本国特開2019-044157号公報Japanese Patent Application Publication No. 2019-044157 日本国特開2021-109441号公報Japanese Patent Application Publication No. 2021-109441
 しかしながら、特許文献1に示される様な粒子によるフィルム表面への突起形成では、粒子によるレジスト硬化時の紫外光散乱によりレジスト形状が不均一となる課題がある。特許文献2では、フィルム表面に粒子含有層を塗工積層する手法が示されている。しかし、当該塗工層は金属ロールとの接触において塗工層成分の脱落が発生することがあり、脱落した塗工層成分が微細配線レジストの形成に影響を及ぼす懸念がある。 However, in the formation of protrusions on the film surface using particles as shown in Patent Document 1, there is a problem that the resist shape becomes non-uniform due to ultraviolet light scattering caused by the particles when the resist is cured. Patent Document 2 discloses a method of coating and laminating a particle-containing layer on the surface of a film. However, when the coating layer comes into contact with a metal roll, coating layer components may fall off, and there is a concern that the falling coating layer components may affect the formation of a fine wiring resist.
 特許文献3では粒子に依らない突起形成法としてレジスト塗工面側のフィルム表面に大気圧グロー放電によるプラズマ表面処理を行い微細な突起を形成する方法が示されている。しかし、かかる手法で形成されるナノサイズの突起は、次世代微細配線形成のためのドライフィルムレジスト工程において、レジスト非塗工面側が平滑化した構成におけるフィルムの巻き取り工程や、搬送時に金属ロールに接触した状態で高い張力がフィルムにかかった際に、フィルム表面の突起がフィルム表面や金属ロールに密着して潰れて滑り性が低下する懸念がある。 Patent Document 3 discloses a method for forming fine protrusions that does not depend on particles by subjecting the film surface on the resist-coated side to plasma surface treatment using atmospheric pressure glow discharge. However, in the dry film resist process for forming next-generation fine wiring, nano-sized protrusions formed by this method are used in the winding process of the film with a structure in which the non-resist coated side is smoothed, and in the metal roll during transportation. When a high tension is applied to the film in a state of contact, there is a concern that the protrusions on the film surface will adhere to the film surface or the metal roll and be crushed, resulting in a decrease in slipperiness.
 特許文献4では大気圧グロー放電によるプラズマ表面処理と粒子を併用した方法が示されている。該粒子による表面突起の補強により製膜工程でのフィルムの巻き取り性や金属ロールとの滑り性や、巻き取り時の巻きシワ、巻きずれ抑制には効果がある。しかし、次世代微細配線を形成するためのドライフィルムレジスト工程では、製膜工程での金属ロール以上の平滑性及び小径ロールに対する滑り性が求められている。そのため、ドライフィルムレジスト工程での金属ロールに対する滑り性と微細配線レジスト形状の均一性とは、依然としてトレードオフの関係となっており、両立が困難である。 Patent Document 4 discloses a method that uses particles in combination with plasma surface treatment using atmospheric pressure glow discharge. Reinforcement of the surface protrusions by the particles is effective in improving the winding properties of the film in the film forming process, the slipperiness with metal rolls, and suppressing wrinkles and misalignment during winding. However, in the dry film resist process for forming next-generation fine wiring, smoothness better than that of the metal roll used in the film forming process and slipperiness against small-diameter rolls are required. Therefore, there is still a trade-off relationship between the slipperiness against the metal roll in the dry film resist process and the uniformity of the fine wiring resist shape, and it is difficult to achieve both.
 したがって、本発明は、平滑なレジスト非塗工面および金属ロールに対する滑り性と微細配線レジスト形状の均一性とを両立し得る二軸配向ポリエステルフィルムの提供を目的とする。 Therefore, an object of the present invention is to provide a biaxially oriented polyester film that is capable of achieving both a smooth resist-uncoated surface, slipperiness against a metal roll, and uniformity of the fine wiring resist shape.
 平滑なレジスト非塗工面および金属ロールに対する滑り性と微細配線レジスト形状の均一性とを両立するため、本発明は以下の構成を取る。すなわち、
[1]少なくとも一方の表面が、下記条件Iにて5μm角視野でAFM観察した際に、下記(1a)及び(2a)を満たす表面Aである、二軸配向ポリエステルフィルム。
(1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下
(2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下
条件I:
<AFM測定方法>
・装置:Bruker社製 原子間力顕微鏡(AFM)Dimention Icon with ScanAsyst
・カンチレバー:窒化ケイ素製プローブ ScanAsyst Air
・走査モード:ScanAsyst
・走査速度:0.977Hz
・走査方向:後述する方法にて作製した測定サンプルの幅方向に走査を行う。
・測定視野:5μm四方
・サンプルライン:512
・Peak Force SetPoint:0.0195V~0.0205V
・Feedback Gain:10~20
・LP Deflection BW:40 kHz
・ScanAsyst Noise Threshold: 0.5nm
・サンプル調整:23℃、65%RH、24時間静置
・AFM測定環境:23℃、65%RH
・測定サンプルの作製方法:AFM試料ディスク(直径15mm)の片面に両面テープを貼りつけ、AFM試料ディスクと、約15mm×13mm(長手方向×幅方向)に切り出した二軸配向ポリエステルフィルムの前記表面(測定面)とは逆側の面とを張り合わせ、測定サンプルとする。
・測定サンプルの測定回数:各測定サンプル同士が少なくとも5μm以上離れるように場所を変え、20回測定を行う。
・測定値:測定した20か所の画像に関して解析を行い、各数値を測定しその平均値を測定サンプルの持つ各数値として扱う。
<谷領域の算出>
 前記<AFM測定方法>に記載の条件により得られるフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像にFlatten処理を実施する。基準面とは下記のFlatten処理条件において決定される高さが0nmの面である。Particle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるTotal CountとAreaのMean値をそれぞれ高さの基準面から-2nm以下の谷領域の個数、平均断面積とする。
<Flatten処理>
・Flatten Order:3rd
・Flatten Z Threshholding Direction:No theresholding
・Find Threshold for:the whole image
・Flatten Z Threshold %:0.00 %
・Mark Excluded Data:Yes
<Particle Analysisモード設定>
(Detectタブ)
・Threshold Height:-2.00nm
・Feature Direction:Below
・X Axis:Absolute
・Number Histogram Bins:512
・Histogram Filter Cutoff:0.00 nm
・Min Peak to Peak:1.00 nm
・Left Peak Cutoff:0.00000%
・Right Peak Cutoff:0.00000%
(Modifyタブ)
・Beughbirhood Size:3
・Number Pixels Off:1
・一切のDilate/Erode操作を行わない。
(Selectタブ)
・Image Cursor Mode:Particle Select
・Bound Particles:Yes
・Non-Representative Particles:No
・Height Reference:Relative To Max Peak
・Number Histogram Bins:50
[2]少なくとも一方の表面A’をXPS測定することで得られる各元素濃度C1s-A、O1s-A及びN1s-Aと、前記表面A’の表層から厚み500nmをエッチングした表面aをXPS測定することで得られる各元素濃度C1s-a、O1s-a及びN1s-aとが次式を満たす二軸配向ポリエステルフィルム。XPSは下記条件IIにて測定する。
 O1s-A/O1s-a>1.000、なお、C1s+O1s+N1s=100
条件II:
<XPS測定条件>
・アルバックファイ社製 光電子分光分析装置ESCA5700
・使用線源:Mg
・測定角度:45°
・積算回数:6回
・ナロースキャン対象の元素種:C1s、O1s、N1s
・Neutralization:ON
<深さ方向のエッチング条件>
 アルゴンイオンを用いて二軸配向ポリエステルフィルムの表面から厚み500nm±10nmをスパッタエッチングして除去する。アルゴンエッチングにより除去した厚みは、透過型電子顕微鏡(TEM)による断面観察でアルゴンエッチング前後の厚みを測定することで確認する。得られたエッチング済みの前記表面aを上記XPS測定条件と同様にして各元素種の測定を実施する。
・装置:ESCA 5800(アルバックファイ社製)
・イオンエッチング条件:Arガスクラスターイオン(Ar-GCIB)
・イオンエッチング速度:1.8nm/min
<データ処理条件>
 解析ソフト「MultiPak」を用いて、ナロー測定により得られる、C1s、O1s及びN1sのXPSスペクトルの積分値の比より各元素濃度を求める。
・スムージング補正:Point9
・バックグラウンド補正:OFF SET
・シフト補正:C-C結合を284eVに補正
[3]前記表面A’が、下記条件Iにて5μm角視野でAFM観察した際に、下記(1a)及び(2a)を満たす表面Aである、[2]に記載の二軸配向ポリエステルフィルム。
(1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下
(2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下
条件I:[1]に記載の条件Iと同じ条件とする。
[4]前記表面Aを前記条件Iにて5μm角視野でAFM観察した際に、下記(1b)及び(2b)を満たす[1]または[3]に記載の二軸配向ポリエステルフィルム。
(1b)基準面からの高さ-2nm以下の谷領域の個数が150個/5μm□以上、450個/5μm□以下
(2b)基準面から高さ-2nm以下の谷領域の平均断面積が4000nm以上、6500nm以下
[5]前記表面Aを前記条件Iにおける前記<AFM測定方法>にて5μm角視野でAFM観察した際に、基準面から高さ+3nm以上の山領域の個数が50個/5μm□以上、200個/5μm□以下である[1]、[3]及び[4]のいずれか1に記載の二軸配向ポリエステルフィルム。前記山領域の個数は、下記方法により算出される。
<山領域の個数の算出>
 前記<AFM測定方法>に記載の条件により得られるフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像にFlatten処理を実施する。基準面とは下記のFlatten処理条件において決定される高さが0nmの面である。Particle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるTotal Countを基準面から高さ+3nm以上の山領域の個数とする。
<Particle Analysisモード設定>
(Detectタブ)
・Threshold Height:3.00nm
・Feature Direction:Above
・X Axis:Absolute
・Number Histogram Bins:512
・Histogram Filter Cutoff:0.00 nm
・Min Peak to Peak:1.00 nm
・Left Peak Cutoff:0.00000%
・Right Peak Cutoff:0.00000%
(Modifyタブ)
・Beughbirhood Size:3
・Number Pixels Off:1
・一切のDilate/Erode操作を行わない。
(Selectタブ)
・Image Cursor Mode:Particle Select
・Bound Particles:Yes
・Non-Representative Particles:No
・Height Reference:Relative To Max Peak
・Number Histogram Bins:50
[6]前記表面Aを前記条件Iにおける前記<AFM測定方法>にて5μm角視野でAFM観察した際に、基準面から高さ+3nm以上の山領域の平均断面積が3000nm以上、7000nm以下、である[1]、[3]~[5]のいずれか1に記載の二軸配向ポリエステルフィルム。前記山領域の平均断面積は、下記方法により算出される。
<山領域の平均断面積の算出>
 前記<AFM測定方法>に記載の条件により得られるフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像にFlatten処理を実施する。基準面とは下記のFlatten処理条件において決定される高さが0nmの面である。Particle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるAreaのMean値を基準面から高さ+3nm以上の山領域の平均断面積とする。
<Particle Analysisモード設定>
(Detectタブ)
・Threshold Height:3.00nm
・Feature Direction:Above
・X Axis:Absolute
・Number Histogram Bins:512
・Histogram Filter Cutoff:0.00 nm
・Min Peak to Peak:1.00nm
・Left Peak Cutoff:0.00000%
・Right Peak Cutoff:0.00000%
(Modifyタブ)
・Beughbirhood Size:3
・Number Pixels Off:1
・一切のDilate/Erode操作を行わない。
(Selectタブ)
・Image Cursor Mode:Particle Select
・Bound Particles:Yes
・Non-Representative Particles:No
・Height Reference:Relative To Max Peak
・Number Histogram Bins:50
[7]前記表面Aを前記条件Iにおける前記<AFM測定方法>にて5μm角視野でAFM観察した際に、クルトシスが2.0以上、10.0以下である[1]、[3]~[6]のいずれか1に記載の二軸配向ポリエステルフィルム。前記クルトシスは、下記方法により求める。
<クルトシスの測定方法>
 二軸配向ポリエステルフィルムの表面を前記条件Iにおける前記<AFM測定方法>にて観察した後、前記条件IにおけるFlatten処理を実施し、解析ソフト(NanoScope Analysis Version 1.40)のRoughness解析モードで得られた表面像の全範囲を指定し、STOP Band InputsタブおよびPeak Inputsタブの各項目を以下に設定することで算出されるKurtosis値の20個所の平均値をクルトシスとする。
(STOP Band Inputsタブ)
Use Threshold:Off
Threshold Height:0.00nm
Feature Direction:Above
Number Histogram Bins:512
Boundary Particles:Yes
Non-Representative Particles:No
Particle Filter Sigma:1.00
(Peak Inputsタブ)
Peak:On
Peak threshold reference:Zero
Peak threshold value type:Absolute value
Peak threshold value:0.00nm
Zero Crossing:On
[8]前記表面Aを下記条件IIにてXPS測定することで得られる各元素濃度C1s-A、O1s-A及びN1s-Aと、前記表面Aの表層から厚み500nmをエッチングした表面aをXPS測定することで得られる各元素濃度C1s-a、O1s-a及びN1s-aとが次式を満たす[3]~[7]のいずれか1に記載の二軸配向ポリエステルフィルム。
N1s-A/N1s-a≧2.000、なお、C1s+O1s+N1s=100
条件II:[2]に記載の条件IIと同じ条件とする。
[9]前記表面Aと厚み方向に対向する表面Bが下記条件IIIにおける<走査型白色干渉顕微鏡測定法>にて観察した際に下記(1c)及び(2c)を満たす[1]~[8]のいずれか1に記載の二軸配向ポリエステルフィルム。
(1c)算術平均高さが0.5nm以上、2.0nm以下
(2c)最大突起高さが20nm以上、150nm以下
条件III:
<走査型白色干渉顕微鏡測定法>
 二軸配向ポリエステルフィルムより6cm×6cmのサンプリングを行い、それぞれのサンプルについて、走査型白色干渉顕微鏡(装置:日立ハイテクサイエンス社製“VertScan”(登録商標) VS1540)を用い、二軸配向ポリエステルフィルムにおける表面Bを、50倍対物レンズを使用し測定モードをWAVEモードに設定し、測定面積113μm×113μmで90視野測定を行う。サンプルセットは、測定Y軸がサンプルフィルムの長手方向(フィルムが巻き取られている方向)となるようにサンプルをステージにセットして測定する。なお、長手方向が分からないサンプルの場合は、測定Y軸がサンプルフィルムの任意の1方向となるようして測定し、その後120度回転させた方向となるようして測定し、さらにその後120度回転させた方向となるようにして測定し、それぞれの測定結果の平均をそのサンプル有する特性とする。また測定するサンプルフィルムは、ゴムパッキンの入った2枚の金属フレームに挟み込むことで、フレーム内のフィルムが張った状態(サンプルのたるみやカールを除した状態)にしてサンプル表面の測定を行う。
 得られた顕微鏡像について、該顕微鏡に内蔵された表面解析ソフトウェアVS-Viewer Version 10.0.3.0にて、下記条件にて画像処理を施す。
(画像処理条件)
 下記の順にて画像処理を行う。
・補間処理  :完全補間
・フィルタ処理:メジアン(3×3ピクセル)
・面補正   :4次
<算術平均高さおよび最大突起高さの算出>
 前記表面Aに関して前記走査型白色干渉顕微鏡測定法での測定を行い、前記画像処理条件にて画像処理を行った各測定画像に関して、表面解析ソフトウェア内のISOパラメータ解析において以下の解析条件と共に「Height Parameters」を選択し得られた数値群をパラメータシート欄に出力することで得られるSaを算術平均高さ、Spを最大突起高さとして求め、各視野の値から上下5視野を除外した80視野での平均値をそれぞれ前記表面Bの算術平均高さ、最大突起高さとする。
(ISOパラメータ解析条件)
 下記の条件にてISOパラメータ解析処理を行う。
・S-Filter:自動
・正規確率紙
 分割数     :300
 計算範囲の上限 :3.000
 計算範囲の下限 :-3.000
・パラメータ   :「Height Parameters」を選択
・出力      :「パラメータリスト」を選択
(パラメータシート出力)
 前記ISOパラメータ解析によって表示される「ISOパラメータ」ウインドウ中の「Height Parameters」を選択し「パラメータシートに追加」を行うことで「パラメータシート」ウインドウの「ISOパラメータ」タブで表示される「Sa」を前記表面Bの算術平均高さ、「Sp」を前記表面Bの最大突起高さとして用いる。
[10]前記表面Aと前記表面Bとを前記条件IIIにおける前記<走査型白色干渉顕微鏡測定法>にて観察し、下記<スキューネスSsk-AおよびSsk-Bの算出>により算出されるスキューネスSsk-A、スキューネスSsk-Bが下記(1d)、(2d)及び(3d)を満たす[1]~[9]のいずれか1に記載の二軸配向ポリエステルフィルム。
(1d)Ssk-Aが-0.1以上1.0以下
(2d)Ssk-Bが1.0以上4.0以下
(3d)Ssk-B-Ssk-Aが0.1以上3.0以下
<スキューネスSsk-AおよびSsk-Bの算出>
 前記表面Aおよび前記表面Bに関して前記走査型白色干渉顕微鏡測定法で90視野の測定を行い、前記条件IIIにおける前記画像処理条件にて画像処理を行った各測定画像に関して、表面解析ソフトウェア内のISOパラメータ解析において以下の解析条件と共に「Height Parameters」を選択し得られた数値群をパラメータシート欄に出力することで得られるSskをスキューネスとして求め、各視野の値から上下5視野を除外した80視野での平均値を測定面のスキューネスSskとする。
(ISOパラメータ解析条件)
 下記の条件にてISOパラメータ解析処理を行う。
・S-Filter:自動
・正規確率紙
 分割数     :300
 計算範囲の上限 :3.000
 計算範囲の下限 :-3.000
・パラメータ   :「Height Parameters」を選択
・出力      :「パラメータリスト」を選択
(パラメータシート出力)
 前記ISOパラメータ解析によって表示される「ISOパラメータ」ウインドウ中の「Height Parameters」を選択し「パラメータシートに追加」を行うことで「パラメータシート」ウインドウの「ISOパラメータ」タブで表示される「Ssk」をフィルム表面のスキューネスSskとして用いる。
[11]前記表面Bから、レーザー顕微鏡により厚み方向1μm×長手方向220μm×幅方向290μmの領域を30視野観察したときの長径2.0μm以上の粗大物の数をNP1(個)とし場合に、NP1が20以下である、[1]~[10]のいずれか1に記載の二軸配向ポリエステルフィルム。
[12]フィルム温度を90℃から130℃まで昇温する際のフィルム寸法変化率をΔL90-130℃(ppm/℃)とした場合に、幅方向(TD方向)、長手方向(MD方向)の少なくとも一方向が-50以上150以下である[1]~[11]のいずれか1に記載の二軸配向ポリエステルフィルム。
[13]ドライフィルムレジスト支持体用フィルムとして用いられる[1]~[12]のいずれか1に記載の二軸配向ポリエステルフィルム。
[14]積層セラミックコンデンサーを製造する工程においてグリーンシート成形の支持体用フィルムとして用いられる[1]~[12]のいずれか1に記載の二軸配向ポリエステルフィルム。
In order to achieve both a smooth resist-uncoated surface, slipperiness against a metal roll, and uniformity of the fine wiring resist shape, the present invention has the following configuration. That is,
[1] A biaxially oriented polyester film in which at least one surface is a surface A that satisfies (1a) and (2a) below when observed with AFM in a 5 μm square field under condition I below.
(1a) The number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 μm or more, and 500 pieces/5 μm or less (2a) The average cross-sectional area of the valley areas with a height of -2 nm or less from the reference plane is 2000nm 2 or more, 8000nm 2 or less Condition I:
<AFM measurement method>
・Device: Bruker Atomic Force Microscope (AFM) Dimention Icon with ScanAsyst
・Cantilever: Silicon nitride probe ScanAsyst Air
・Scanning mode: ScanAsyst
・Scanning speed: 0.977Hz
- Scanning direction: Scanning is performed in the width direction of the measurement sample prepared by the method described below.
・Measurement field of view: 5 μm square ・Sample line: 512
・Peak Force SetPoint: 0.0195V to 0.0205V
・Feedback Gain: 10-20
・LP Deflection BW: 40kHz
・ScanAsyst Noise Threshold: 0.5nm
・Sample preparation: 23℃, 65%RH, left standing for 24 hours ・AFM measurement environment: 23℃, 65%RH
・Measurement sample preparation method: Paste double-sided tape on one side of an AFM sample disk (diameter 15 mm), and then attach the AFM sample disk and the surface of a biaxially oriented polyester film cut out to approximately 15 mm x 13 mm (longitudinal direction x width direction). (Measurement surface) and the opposite side are pasted together to form a measurement sample.
・Number of measurements for measurement samples: Change the location so that each measurement sample is separated by at least 5 μm, and perform measurements 20 times.
・Measurement value: Analyze the images of the 20 measured locations, measure each numerical value, and treat the average value as each numerical value of the measurement sample.
<Calculation of valley area>
The film surface image obtained under the conditions described in <AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface. The reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below. The Mean values of Total Count and Area, which are calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, are the number of valley regions less than -2 nm from the height reference plane and the average cross-sectional area, respectively.
<Flatten processing>
・Flatten Order: 3rd
・Flatten Z Thresholding Direction: No theresholding
・Find Threshold for: the whole image
・Flatten Z Threshold %: 0.00%
・Mark Excluded Data: Yes
<Particle Analysis mode setting>
(Detect tab)
・Threshold Height: -2.00nm
・Feature Direction: Below
・X Axis: Absolute
・Number Histogram Bins: 512
・Histogram Filter Cutoff: 0.00 nm
・Min Peak to Peak: 1.00 nm
・Left Peak Cutoff: 0.00000%
・Right Peak Cutoff: 0.00000%
(Modify tab)
・Boughbirhood Size:3
・Number Pixels Off: 1
・Do not perform any Dilate/Erode operations.
(Select tab)
・Image Cursor Mode: Particle Select
・Bound Particles: Yes
・Non-Representative Particles: No
・Height Reference: Relative To Max Peak
・Number Histogram Bins: 50
[2] Element concentrations C1s-A, O1s-A, and N1s-A obtained by XPS measurement of at least one surface A', and XPS measurement of surface a etched to a thickness of 500 nm from the surface layer of surface A'. A biaxially oriented polyester film in which each of the element concentrations C1s-a, O1s-a and N1s-a obtained by the above method satisfies the following formula. XPS is measured under the following condition II.
O1s-A/O1s-a>1.000, C1s+O1s+N1s=100
Condition II:
<XPS measurement conditions>
・Photoelectron spectrometer ESCA5700 manufactured by ULVAC-PHI
・Radiation source used: Mg
・Measurement angle: 45°
・Number of integration: 6 times ・Narrow scan target element types: C1s, O1s, N1s
・Neutralization: ON
<Etching conditions in the depth direction>
A thickness of 500 nm±10 nm is removed by sputter etching from the surface of the biaxially oriented polyester film using argon ions. The thickness removed by argon etching is confirmed by measuring the thickness before and after argon etching through cross-sectional observation using a transmission electron microscope (TEM). The etched surface a is subjected to measurement of each element type under the same conditions as the XPS measurement conditions described above.
・Device: ESCA 5800 (manufactured by ULVAC-PHI)
・Ion etching conditions: Ar gas cluster ion (Ar-GCIB)
・Ion etching speed: 1.8nm/min
<Data processing conditions>
Using the analysis software "MultiPak", the concentration of each element is determined from the ratio of the integral values of the XPS spectra of C1s, O1s, and N1s obtained by narrow measurement.
・Smoothing correction: Point 9
・Background correction: OFF SET
・Shift correction: Correct the C-C bond to 284 eV [3] The surface A' is a surface A that satisfies the following (1a) and (2a) when observed with AFM in a 5 μm square field of view under the following condition I. , the biaxially oriented polyester film according to [2].
(1a) The number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 μm or more, and 500 pieces/5 μm or less (2a) The average cross-sectional area of the valley areas with a height of -2 nm or less from the reference plane is 2000 nm 2 or more, 8000 nm 2 or less Condition I: Same conditions as Condition I described in [1].
[4] The biaxially oriented polyester film according to [1] or [3], which satisfies the following (1b) and (2b) when the surface A is observed by AFM with a 5 μm square field of view under the condition I.
(1b) The number of valley regions with a height of -2 nm or less from the reference plane is 150 pieces/5 μm□ or more, and 450 pieces/5 μm□ or less (2b) The average cross-sectional area of the valley regions with a height of -2 nm or less from the reference plane is 4000 nm 2 or more, 6500 nm 2 or less [5] When the surface A is observed with AFM in a 5 μm square field of view under the above-mentioned <AFM measurement method> under the above-mentioned condition I, the number of mountain regions with a height of +3 nm or more from the reference surface is 50 The biaxially oriented polyester film according to any one of [1], [3], and [4], wherein the biaxially oriented polyester film has a number of particles/5 μm□ or more and 200 pieces/5 μm□ or less. The number of mountain areas is calculated by the following method.
<Calculation of number of mountain areas>
The film surface image obtained under the conditions described in <AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface. The reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below. The Total Count, which is calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, is the number of mountain regions with a height of +3 nm or more from the reference plane.
<Particle Analysis mode setting>
(Detect tab)
・Threshold Height: 3.00nm
・Feature Direction: Above
・X Axis: Absolute
・Number Histogram Bins: 512
・Histogram Filter Cutoff: 0.00 nm
・Min Peak to Peak: 1.00 nm
・Left Peak Cutoff: 0.00000%
・Right Peak Cutoff: 0.00000%
(Modify tab)
・Boughbirhood Size:3
・Number Pixels Off: 1
・Do not perform any Dilate/Erode operations.
(Select tab)
・Image Cursor Mode: Particle Select
・Bound Particles: Yes
・Non-Representative Particles: No
・Height Reference: Relative To Max Peak
・Number Histogram Bins: 50
[6] When the surface A is observed by AFM with a 5 μm square field of view under the above condition I under the above <AFM measurement method>, the average cross-sectional area of the mountain region with a height of +3 nm or more from the reference plane is 3000 nm 2 or more, 7000 nm 2 The biaxially oriented polyester film according to any one of [1], [3] to [5] below. The average cross-sectional area of the mountain area is calculated by the following method.
<Calculation of average cross-sectional area of mountain area>
The film surface image obtained under the conditions described in <AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface. The reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below. The Mean value of Area, which is calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, is the average cross-sectional area of the mountain region with a height of +3 nm or more from the reference plane.
<Particle Analysis mode setting>
(Detect tab)
・Threshold Height: 3.00nm
・Feature Direction: Above
・X Axis: Absolute
・Number Histogram Bins: 512
・Histogram Filter Cutoff: 0.00 nm
・Min Peak to Peak: 1.00nm
・Left Peak Cutoff: 0.00000%
・Right Peak Cutoff: 0.00000%
(Modify tab)
・Boughbirhood Size:3
・Number Pixels Off: 1
・Do not perform any Dilate/Erode operations.
(Select tab)
・Image Cursor Mode: Particle Select
・Bound Particles: Yes
・Non-Representative Particles: No
・Height Reference: Relative To Max Peak
・Number Histogram Bins: 50
[7] Kurtosis is 2.0 or more and 10.0 or less when the surface A is observed with AFM in a 5 μm square field of view under the above <AFM measurement method> under the above condition I [1], [3] The biaxially oriented polyester film according to any one of [6]. The kurtosis is determined by the following method.
<How to measure kurtosis>
After observing the surface of the biaxially oriented polyester film using the above <AFM measurement method> under the above conditions I, the Flatten process under the above conditions I was performed, and the results were obtained using the Roughness analysis mode of the analysis software (NanoScope Analysis Version 1.40). The average value of the 20 Kurtosis values calculated by specifying the entire range of the surface image obtained and setting each item in the STOP Band Inputs tab and the Peak Inputs tab as follows is set as Kurtosis.
(STOP Band Inputs tab)
Use Threshold:Off
Threshold Height: 0.00nm
Feature Direction: Above
Number Histogram Bins: 512
Boundary Particles: Yes
Non-Representative Particles: No
Particle Filter Sigma:1.00
(Peak Inputs tab)
Peak: On
Peak threshold reference: Zero
Peak threshold value type: Absolute value
Peak threshold value: 0.00nm
Zero Crossing: On
[8] Each element concentration C1s-A, O1s-A, and N1s-A obtained by XPS measurement of the surface A under the following condition II, and the XPS of the surface a etched to a thickness of 500 nm from the surface layer of the surface A. The biaxially oriented polyester film according to any one of [3] to [7], wherein each element concentration C1s-a, O1s-a and N1s-a obtained by measurement satisfies the following formula.
N1s-A/N1s-a≧2.000, C1s+O1s+N1s=100
Condition II: Same condition as Condition II described in [2].
[9] The surface B opposite to the surface A in the thickness direction satisfies the following (1c) and (2c) when observed by <scanning white interference microscopy> under the following condition III [1] to [8] ] The biaxially oriented polyester film according to any one of the above.
(1c) Arithmetic mean height is 0.5 nm or more and 2.0 nm or less (2c) Maximum protrusion height is 20 nm or more and 150 nm or less Condition III:
<Scanning white interference microscopy measurement method>
A 6 cm x 6 cm sample was taken from the biaxially oriented polyester film, and each sample was examined using a scanning white interference microscope (equipment: "VertScan" (registered trademark) VS1540 manufactured by Hitachi High-Tech Science Co., Ltd.). Surface B is measured using a 50x objective lens, the measurement mode is set to WAVE mode, and 90 visual fields are measured with a measurement area of 113 μm×113 μm. The sample set is measured by setting the sample on a stage so that the measurement Y-axis is in the longitudinal direction of the sample film (the direction in which the film is wound). In addition, in the case of a sample whose longitudinal direction is unknown, measure so that the measurement Y-axis is in one arbitrary direction of the sample film, then measure so that it is in the direction rotated 120 degrees, and then again 120 degrees. The sample is measured in the rotated direction, and the average of the measurement results is taken as the characteristic of that sample. The sample film to be measured is sandwiched between two metal frames containing rubber gaskets, and the sample surface is measured with the film in the frame stretched (sagging and curling removed).
The obtained microscopic image is subjected to image processing under the following conditions using surface analysis software VS-Viewer Version 10.0.3.0 built into the microscope.
(Image processing conditions)
Image processing is performed in the following order.
・Interpolation processing: Complete interpolation ・Filter processing: Median (3 x 3 pixels)
・Surface correction: 4th order <Calculation of arithmetic mean height and maximum protrusion height>
The surface A was measured using the scanning white interference microscopy method, and for each measurement image that was processed under the image processing conditions, the ISO parameter analysis within the surface analysis software was performed with the following analysis conditions: "Parameters" and output the obtained numerical value group to the parameter sheet field. Sa is the arithmetic mean height, Sp is the maximum protrusion height, and 80 fields of view are obtained by excluding the upper and lower 5 fields from the value of each field of view. The average values at are the arithmetic mean height and maximum protrusion height of the surface B, respectively.
(ISO parameter analysis conditions)
ISO parameter analysis processing is performed under the following conditions.
・S-Filter: Automatic/Normal probability paper Number of divisions: 300
Upper limit of calculation range: 3.000
Lower limit of calculation range: -3.000
・Parameter: Select "Height Parameters" ・Output: Select "Parameter list" (parameter sheet output)
By selecting "Height Parameters" in the "ISO Parameters" window displayed by the ISO parameter analysis and clicking "Add to Parameter Sheet", "Sa" displayed in the "ISO Parameters" tab of the "Parameter Sheet" window is used as the arithmetic mean height of the surface B, and "Sp" is used as the maximum protrusion height of the surface B.
[10] The surface A and the surface B are observed by the <scanning white interference microscopy method> under the above condition III, and the skewness Ssk is calculated by the following <calculation of skewness Ssk-A and Ssk-B>. -A, the biaxially oriented polyester film according to any one of [1] to [9], wherein the skewness Ssk-B satisfies the following (1d), (2d) and (3d).
(1d) Ssk-A is -0.1 or more and 1.0 or less (2d) Ssk-B is 1.0 or more and 4.0 or less (3d) Ssk-B-Ssk-A is 0.1 or more and 3.0 or less <Calculation of skewness Ssk-A and Ssk-B>
Regarding the surface A and the surface B, 90 fields of view were measured by the scanning white interference microscopy method, and for each measurement image processed under the image processing conditions in the condition III, the ISO in the surface analysis software In the parameter analysis, select "Height Parameters" with the following analysis conditions and output the obtained numerical value group to the parameter sheet field. Ssk obtained as skewness is calculated, and 80 fields of view are obtained by excluding the upper and lower 5 fields from the value of each field of view. Let the average value of the measurement surface be the skewness Ssk of the measurement surface.
(ISO parameter analysis conditions)
ISO parameter analysis processing is performed under the following conditions.
・S-Filter: Automatic/Normal probability paper Number of divisions: 300
Upper limit of calculation range: 3.000
Lower limit of calculation range: -3.000
・Parameter: Select "Height Parameters" ・Output: Select "Parameter list" (parameter sheet output)
Select "Height Parameters" in the "ISO Parameters" window displayed by the ISO parameter analysis and click "Add to Parameter Sheet" to select "Ssk" displayed in the "ISO Parameters" tab of the "Parameter Sheet" window. is used as the skewness Ssk of the film surface.
[11] When NP1 (pieces) is the number of coarse particles with a major diameter of 2.0 μm or more when observing 30 fields of view of an area of 1 μm in the thickness direction x 220 μm in the longitudinal direction x 290 μm in the width direction from the surface B using a laser microscope, then NP1 is 20 or less, the biaxially oriented polyester film according to any one of [1] to [10].
[12] When the film dimensional change rate when increasing the film temperature from 90°C to 130°C is ΔL90-130°C (ppm/°C), the width direction (TD direction) and longitudinal direction (MD direction) The biaxially oriented polyester film according to any one of [1] to [11], wherein at least one direction is -50 or more and 150 or less.
[13] The biaxially oriented polyester film according to any one of [1] to [12], which is used as a film for a dry film resist support.
[14] The biaxially oriented polyester film according to any one of [1] to [12], which is used as a support film for green sheet molding in the process of manufacturing a multilayer ceramic capacitor.
 本発明の二軸配向ポリエステルフィルムは、少なくとも一方の表面が特定の特性を有する面であることにより、優れた平滑性及び易滑性を有し、さらに優れた靭性を有し、レジスト非塗工面を平滑化した構成でのフィルム巻き取り性および金属ロールに対する滑り性と微細配線レジスト形状の均一性とを両立し得る。 The biaxially oriented polyester film of the present invention has at least one surface having specific properties, so it has excellent smoothness and slipperiness, and also has excellent toughness, and has a resist-uncoated surface. With a structure in which the film is smoothed, it is possible to achieve both film winding properties, smoothness on a metal roll, and uniformity of the fine wiring resist shape.
 以下、本発明を詳細に説明する。なお、本明細書において数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 Hereinafter, the present invention will be explained in detail. In addition, in this specification, "~" indicating a numerical range is used to include the numerical values described before and after it as a lower limit value and an upper limit value, unless otherwise specified.
 以下、二軸配向ポリエステルフィルムの具体的な実施形態として、第1実施形態と第2実施形態とを挙げて説明する。第1実施形態及び第2実施形態の二軸配向ポリエステルフィルムは二軸配向ポリエステルフィルムに含まれる。本明細書において、第1実施形態の二軸配向ポリエステルフィルムと、第2実施形態に係る二軸配向ポリエステルフィルムとを総称して、本発明の二軸配向ポリエステルフィルムという場合がある。 Hereinafter, a first embodiment and a second embodiment will be described as specific embodiments of the biaxially oriented polyester film. The biaxially oriented polyester films of the first embodiment and the second embodiment are included in biaxially oriented polyester films. In this specification, the biaxially oriented polyester film of the first embodiment and the biaxially oriented polyester film of the second embodiment may be collectively referred to as the biaxially oriented polyester film of the present invention.
〔ポリエステル樹脂〕
 本発明における「二軸配向ポリエステルフィルム」とは、ポリエステル樹脂を主成分とするフィルムを示す。ここでいう主成分とはフィルムの全成分100質量%において、50質量%を超えて含有している成分を示す。
[Polyester resin]
The "biaxially oriented polyester film" in the present invention refers to a film containing polyester resin as a main component. The main component here refers to a component that is contained in an amount exceeding 50% by mass in 100% by mass of all components of the film.
 また、本発明で言うポリエステル樹脂はジカルボン酸構成成分とジオール構成成分を重縮合してなるものである。なお、本明細書内において、構成成分とはポリエステルを加水分解することで得ることが可能な最小単位のことを示す。 Furthermore, the polyester resin referred to in the present invention is obtained by polycondensing a dicarboxylic acid component and a diol component. In addition, within this specification, a constituent component shows the minimum unit which can be obtained by hydrolyzing polyester.
 かかるポリエステルを構成するジカルボン酸構成成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸、もしくはそのエステル誘導体が挙げられる。 Examples of the dicarboxylic acid constituents constituting the polyester include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. -Aromatic dicarboxylic acids such as naphthalene dicarboxylic acid, 4,4'-diphenyl dicarboxylic acid, and 4,4'-diphenyl ether dicarboxylic acid, or ester derivatives thereof.
 また、かかるポリエステルを構成するジオール構成成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコールなどの脂環式ジオール類、上述のジオールが複数個連なったものなどが挙げられる。 In addition, examples of the diol constituents constituting the polyester include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3- Examples include aliphatic diols such as butanediol, alicyclic diols such as cyclohexanedimethanol and spiroglycol, and those in which a plurality of the above-mentioned diols are connected.
 本発明において用いられるポリエステル樹脂としては、機械特性、透明性の観点から、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン-2,6-ナフタレンジカルボキシレート(PEN)、およびPETのジカルボン酸成分の一部にイソフタル酸やナフタレンジカルボン酸を共重合したもの、PETのジオール成分の一部にシクロヘキサンジメタノール、スピログリコール、ジエチレングリコールを共重合したポリエステルが挙げられる。その中でも特にポリエチレンテレフタレートが好ましい。 From the viewpoint of mechanical properties and transparency, polyester resins used in the present invention include, for example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene-2,6-naphthalene dicarboxylate (PEN), and PET. Examples include polyesters in which isophthalic acid or naphthalene dicarboxylic acid is copolymerized as part of the dicarboxylic acid component of PET, and polyesters in which cyclohexanedimethanol, spiroglycol, and diethylene glycol are copolymerized as part of the diol component of PET. Among these, polyethylene terephthalate is particularly preferred.
 本発明の二軸配向ポリエステルフィルムにおけるポリエステルフィルムは二軸配向していることにより、フィルムの機械強度が向上することでシワが入りにくくなり、巻取り性を向上し得る。また、延伸工程において均一な延伸応力をかけることで表面の平滑性をフィルム全域において均一にし得る。 Since the polyester film in the biaxially oriented polyester film of the present invention is biaxially oriented, the mechanical strength of the film is improved, wrinkles are less likely to form, and winding properties can be improved. Furthermore, by applying uniform stretching stress during the stretching process, the surface smoothness can be made uniform throughout the film.
 ここでいう二軸配向とは、広角X線回折で二軸配向のパターンを示すものをいう。ポリエステルフィルムは、一般に未延伸状態の熱可塑性樹脂シートをシート長手方向および幅方向に延伸し、その後熱処理を施し結晶配向を完了させることにより、得ることができる。詳しい製膜条件に関しては後述する。 The term "biaxial orientation" as used herein refers to one that exhibits a biaxial orientation pattern in wide-angle X-ray diffraction. A polyester film can generally be obtained by stretching an unstretched thermoplastic resin sheet in the longitudinal and width directions of the sheet, and then subjecting it to heat treatment to complete crystal orientation. Detailed film forming conditions will be described later.
(第1実施形態)
 第1実施形態の二軸配向ポリエステルフィルムは、一方の表面が、下記条件Iにて5μm角視野でAFM観察した際に、下記(1a)及び(2a)を満たす表面Aである。
(1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下
(2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下
条件I:
<AFM測定方法>
・装置:Bruker社製 原子間力顕微鏡(AFM)Dimention Icon with ScanAsyst
・カンチレバー:窒化ケイ素製プローブ ScanAsyst Air
・走査モード:ScanAsyst
・走査速度:0.977Hz
・走査方向:後述する方法にて作製した測定サンプルの幅方向に走査を行う。
・測定視野:5μm四方
・サンプルライン:512
・Peak Force SetPoint:0.0195V~0.0205V
・Feedback Gain:10~20
・LP Deflection BW:40 kHz
・ScanAsyst Noise Threshold: 0.5nm
・サンプル調整:23℃、65%RH、24時間静置
・AFM測定環境:23℃、65%RH
・測定サンプルの作製方法:AFM試料ディスク(直径15mm)の片面に両面テープを貼りつけ、AFM試料ディスクと、約15mm×13mm(長手方向×幅方向)に切り出した本発明の二軸配向ポリエステルフィルムの前記表面(測定面)とは逆側の面とを張り合わせ、測定サンプルとする。
・測定サンプルの測定回数:各測定サンプル同士が少なくとも5μm以上離れるように場所を変え、20回測定を行う。
・測定値:測定した20か所の画像に関して解析を行い、各数値を測定しその平均値を測定サンプルの持つ各数値として扱う。
<谷領域の算出>
 前記<AFM測定方法>に記載の条件により得られるフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像にFlatten処理を実施する。基準面とは下記のFlatten処理条件において決定される高さが0nmの面である。Particle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるTotal CountとAreaのMean値をそれぞれ高さの基準面から-2nm以下の谷領域の個数、平均断面積とする。
<Flatten処理>
・Flatten Order:3rd
・Flatten Z Threshholding Direction:No theresholding
・Find Threshold for:the whole image
・Flatten Z Threshold %:0.00 %
・Mark Excluded Data:Yes
<Particle Analysisモード設定>
(Detectタブ)
・Threshold Height:-2.00nm
・Feature Direction:Below
・X Axis:Absolute
・Number Histogram Bins:512
・Histogram Filter Cutoff:0.00 nm
・Min Peak to Peak:1.00 nm
・Left Peak Cutoff:0.00000%
・Right Peak Cutoff:0.00000%
(Modifyタブ)
・Beughbirhood Size:3
・Number Pixels Off:1
・一切のDilate/Erode操作を行わない。
(Selectタブ)
・Image Cursor Mode:Particle Select
・Bound Particles:Yes
・Non-Representative Particles:No
・Height Reference:Relative To Max Peak
・Number Histogram Bins:50
(First embodiment)
One surface of the biaxially oriented polyester film of the first embodiment is a surface A that satisfies the following (1a) and (2a) when observed with an AFM in a 5 μm square field of view under the following condition I.
(1a) The number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 μm or more, and 500 pieces/5 μm or less (2a) The average cross-sectional area of the valley areas with a height of -2 nm or less from the reference plane is 2000nm 2 or more, 8000nm 2 or less Condition I:
<AFM measurement method>
・Device: Bruker Atomic Force Microscope (AFM) Dimention Icon with ScanAsyst
・Cantilever: Silicon nitride probe ScanAsyst Air
・Scanning mode: ScanAsyst
・Scanning speed: 0.977Hz
- Scanning direction: Scanning is performed in the width direction of the measurement sample prepared by the method described below.
・Measurement field of view: 5 μm square ・Sample line: 512
・Peak Force SetPoint: 0.0195V to 0.0205V
・Feedback Gain: 10-20
・LP Deflection BW: 40kHz
・ScanAsyst Noise Threshold: 0.5nm
・Sample preparation: 23℃, 65%RH, left standing for 24 hours ・AFM measurement environment: 23℃, 65%RH
・Measurement sample preparation method: Paste double-sided tape on one side of an AFM sample disk (diameter 15 mm), and cut out the AFM sample disk and the biaxially oriented polyester film of the present invention into a size of approximately 15 mm x 13 mm (longitudinal direction x width direction). The surface opposite to the surface (measurement surface) is pasted together to form a measurement sample.
・Number of measurements for measurement samples: Change the location so that each measurement sample is separated by at least 5 μm, and perform measurements 20 times.
・Measurement value: Analyze the images of the 20 measured locations, measure each numerical value, and treat the average value as each numerical value of the measurement sample.
<Calculation of valley area>
The film surface image obtained under the conditions described in <AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface. The reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below. The Mean values of Total Count and Area, which are calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, are the number of valley regions less than -2 nm from the height reference plane and the average cross-sectional area, respectively.
<Flatten processing>
・Flatten Order: 3rd
・Flatten Z Thresholding Direction: No theresholding
・Find Threshold for: the whole image
・Flatten Z Threshold %: 0.00%
・Mark Excluded Data: Yes
<Particle Analysis mode setting>
(Detect tab)
・Threshold Height: -2.00nm
・Feature Direction: Below
・X Axis: Absolute
・Number Histogram Bins: 512
・Histogram Filter Cutoff: 0.00 nm
・Min Peak to Peak: 1.00 nm
・Left Peak Cutoff: 0.00000%
・Right Peak Cutoff: 0.00000%
(Modify tab)
・Boughbirhood Size:3
・Number Pixels Off: 1
・Do not perform any Dilate/Erode operations.
(Select tab)
・Image Cursor Mode: Particle Select
・Bound Particles: Yes
・Non-Representative Particles: No
・Height Reference: Relative To Max Peak
・Number Histogram Bins: 50
 第1実施形態の二軸配向ポリエステルフィルムにおける、前記(1a)の基準面からの高さ-2nm以下の谷領域の個数および前記(2a)の基準面から高さ-2nm以下の谷領域の平均断面積は、二軸配向ポリエステルフィルム表面が凹部となる谷領域が緻密に形成されていることを示している。 In the biaxially oriented polyester film of the first embodiment, the number of valley regions having a height of -2 nm or less from the reference plane in the above (1a) and the average of the valley regions having a height of -2 nm or less from the reference plane in the above (2a) The cross-sectional area shows that the surface of the biaxially oriented polyester film is densely formed with valley regions that are concave portions.
 前記凹部となる谷領域が緻密に存在することにより、二軸配向ポリエステルフィルムの表面Aと該表面Aと厚み方向に対向する表面Bを後述する平滑なレジスト非塗工面とした構成での巻き取り工程や、レジスト成形加工工程において搬送される際に金属ロールと接触した場合においても、凸部である山領域が仮に圧力で変形して平滑なフィルム表面や金属ロールに密着したとしても、凹部となる谷領域が接触面積を低減することで滑り性を確保することが可能となる。 Due to the dense presence of the valley regions serving as the recesses, the surface A of the biaxially oriented polyester film and the surface B opposite to the surface A in the thickness direction are wound up with a configuration in which a smooth resist-uncoated surface, which will be described later, is formed. Even if the convex mountain areas are deformed by pressure and come into close contact with the smooth film surface or metal roll, even if they come into contact with metal rolls during transportation during the resist molding process, they will not form concave areas. The valley region reduces the contact area, making it possible to ensure slipperiness.
 基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□未満の場合、平滑なフィルム表面や金属ロールとの密着を抑制するのに十分でないために滑り性が低下する場合があり、500個/5μm□よりも多い場合には成形したレジストの形状の均一性が損なわれる場合がある。基準面からの高さ-2nm以下の谷領域の個数は、好ましくは150個/5μm□以上、より好ましくは200個/5μm□以上であり、さらに好ましくは300個/5μm□以上である。また、基準面からの高さ-2nm以下の谷領域の個数は、好ましくは480個/5μm□以下、より好ましくは460個/5μm□以下、さらに好ましくは450個/5μm□以下である。 If the number of valley regions with a height of -2 nm or less from the reference surface is less than 100/5 μm□, the slipperiness may decrease because it is not sufficient to suppress the smooth film surface or adhesion with the metal roll. If the number is more than 500 pieces/5 μm square, the uniformity of the shape of the molded resist may be impaired. The number of valley regions having a height of −2 nm or less from the reference plane is preferably 150/5 μm or more, more preferably 200/5 μm or more, and still more preferably 300/5 μm or more. Further, the number of valley regions having a height of −2 nm or less from the reference plane is preferably 480 pieces/5 μm□ or less, more preferably 460 pieces/5 μm□ or less, and even more preferably 450 pieces/5 μm□ or less.
 基準面から高さ-2nm以下の谷領域の平均断面積が2000nm未満の場合、金属ロールとの密着を抑制するのに十分でないために滑り性が低下する場合がある。基準面から高さ-2nm以下の谷領域の平均断面積が8000nmよりも大きい場合には成形したレジストの形状の均一性が損なわれる場合がある。基準面から高さ-2nm以下の谷領域の平均断面積は、好ましくは3000nm以上、より好ましくは3400nm以上、さらに好ましくは4000nm以上である。基準面から高さ-2nm以下の谷領域の平均断面積は、好ましくは7500nm以下であり、より好ましくは7000nm以下、さらに好ましくは6500nm以下である。 If the average cross-sectional area of the valley region at a height of −2 nm or less from the reference plane is less than 2000 nm 2 , it may not be sufficient to suppress adhesion to the metal roll, and the slipperiness may decrease. If the average cross-sectional area of the valley region at a height of −2 nm or less from the reference plane is larger than 8000 nm 2 , the uniformity of the shape of the molded resist may be impaired. The average cross-sectional area of the valley region at a height of −2 nm or less from the reference plane is preferably 3000 nm 2 or more, more preferably 3400 nm 2 or more, and still more preferably 4000 nm 2 or more. The average cross-sectional area of the valley region at a height of −2 nm or less from the reference plane is preferably 7500 nm 2 or less, more preferably 7000 nm 2 or less, and still more preferably 6500 nm 2 or less.
 フィルム表面に凹凸形状を形成するための方法は特に限定されないが、例えば、ナノインプリントのようにモールドを用いて表面に形状を転写させる方法、UV照射やアーク放電によるコロナ処理、グロー放電によるプラズマ処理などの表面処理が挙げられる。 The method for forming the uneven shape on the film surface is not particularly limited, but examples include a method of transferring the shape to the surface using a mold like nanoimprint, corona treatment using UV irradiation or arc discharge, plasma treatment using glow discharge, etc. surface treatment.
 インラインでの製膜適応性や微細な突起の形成個数の観点からは、UV照射、アーク放電によるコロナ処理、大気圧グロー放電によるプラズマ処理が好ましく、処理の均一性やフィルムへのダメージが少ないことから大気圧グロー放電によるプラズマ処理が更に好ましい。ここでいう大気圧とは700Torr~780Torrの範囲である。 From the viewpoint of in-line film forming adaptability and the number of fine protrusions formed, UV irradiation, corona treatment using arc discharge, and plasma treatment using atmospheric pressure glow discharge are preferable, as they ensure uniformity of treatment and less damage to the film. Plasma treatment using atmospheric pressure glow discharge is more preferred. Atmospheric pressure here is in the range of 700 Torr to 780 Torr.
 大気圧グロー放電処理は、相対する電極とアースロール間に処理対象のフィルムを導き、装置中にプラズマ励起性気体を導入し、電極間に高周波電圧を印加することにより、該気体をプラズマ励起させ電極間においてグロー放電を行うものである。これによりフィルム表面が微細にアッシングされ突起が形成する。 In atmospheric pressure glow discharge treatment, a film to be treated is introduced between opposing electrodes and a ground roll, a plasma-excitable gas is introduced into the device, and a high-frequency voltage is applied between the electrodes to excite the gas into plasma. Glow discharge occurs between the electrodes. As a result, the surface of the film is finely ashed and protrusions are formed.
 プラズマ励起性気体とは前記のような条件においてプラズマ励起されうる気体をいう。プラズマ励起性気体としては、例えば、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガス、窒素、二酸化炭素、酸素、またはテトラフルオロメタンのようなフロン類およびそれらの混合物などが挙げられる。また、プラズマ励起性気体は、1種類を単独で用いてもよく、2種類以上を任意の混合比で組み合わせてもよい。 A plasma-excitable gas refers to a gas that can be plasma-excited under the conditions described above. Examples of the plasma-excitable gas include rare gases such as argon, helium, neon, krypton, and xenon, nitrogen, carbon dioxide, oxygen, fluorocarbons such as tetrafluoromethane, and mixtures thereof. Furthermore, one type of plasma-excitable gas may be used alone, or two or more types may be combined at an arbitrary mixing ratio.
 フィルム表面の基準面から高さ-2nm以下の谷領域の個数および平均断面積を前記の範囲とするためにはプラズマ励起性気体に水蒸気を添加して湿度を制御することで達成できる。プラズマ励起性気体に水蒸気を添加することで活性種であるH、OHが発生し、ポリエステルフィルム表面の分子鎖からのH元素の引き抜きが促進され、フィルム表面から内側へ深くアッシングされることにより凹部である谷領域が深く形成される。 The number and average cross-sectional area of valley regions having a height of -2 nm or less from the reference plane of the film surface can be controlled within the above ranges by adding water vapor to the plasma-excitable gas and controlling the humidity. By adding water vapor to the plasma-excitable gas, active species H * and OH * are generated, promoting the extraction of H elements from the molecular chains on the surface of the polyester film, and ashing deeply inward from the film surface. As a result, a deep valley region, which is a concave portion, is formed.
 プラズマ励起性気体への水蒸気添加量はプラズマ励起性気体の温湿度により制御され、工程温度に適した温度に応じて湿度をコントロールすることで調整可能である。プラズマ励起性気体に含有される水蒸気量としては、5g/m以上、130g/m以下であることが好ましく、さらに好ましい下限は20g/m以上である。 The amount of water vapor added to the plasma-excitable gas is controlled by the temperature and humidity of the plasma-excitable gas, and can be adjusted by controlling the humidity according to a temperature suitable for the process temperature. The amount of water vapor contained in the plasma excitable gas is preferably 5 g/m 3 or more and 130 g/m 3 or less, and a more preferable lower limit is 20 g/m 3 or more.
 プラズマ励起性気体に含有される水蒸気量が5g/m以上であると、フィルム表面から内側へのアッシングを十分に進行させて、谷領域の形成が不十分になるのを抑制できる。プラズマ励起性気体に含有される水蒸気量が130g/m以下であるとフィルム表面全体での過剰なアッシングの進行を抑制して谷領域の減少を防止でき、また、大気圧グロー放電処理工程内における結露の発生を抑えて安定した処理を担保し得る。 When the amount of water vapor contained in the plasma-excitable gas is 5 g/m 3 or more, ashing from the film surface to the inside can sufficiently proceed, and insufficient formation of valley regions can be suppressed. When the amount of water vapor contained in the plasma-excitable gas is 130 g/ m3 or less, it is possible to suppress the progress of excessive ashing on the entire film surface and prevent the reduction of the valley area. It is possible to suppress the occurrence of dew condensation and ensure stable processing.
 プラズマ処理における高周波電圧の周波数は1kHz~100kHzの範囲が好ましい。また、以下方法で求められる放電処理強度(E値)は、10~2000W・min/mの範囲で処理することが突起形成の観点から好ましく、より好ましくは100~500W・min/m、さらに好ましくは200~400W・min/mである。放電処理強度(E値)が低すぎると、突起が十分に形成されない場合があり、放電処理強度(E値)が高すぎると、フィルムにダメージを与えてしまう、または、アッシングが進行し、好ましい突起が形成されない場合がある。放電処理強度を前記プラズマ励起性気体に含有される水蒸気量と後述する処理面樹脂の固有粘度(IV)に応じて制御することで好ましい突起を形成できる。 The frequency of the high frequency voltage in plasma treatment is preferably in the range of 1 kHz to 100 kHz. In addition, the discharge treatment intensity (E value) determined by the following method is preferably in the range of 10 to 2000 W·min/m 2 from the viewpoint of protrusion formation, more preferably 100 to 500 W·min/m 2 , More preferably, it is 200 to 400 W·min/m 2 . If the discharge treatment strength (E value) is too low, protrusions may not be formed sufficiently, and if the discharge treatment strength (E value) is too high, the film will be damaged or ashing will progress, which is not desirable. Protrusions may not be formed. Preferable protrusions can be formed by controlling the intensity of the discharge treatment depending on the amount of water vapor contained in the plasma-excitable gas and the intrinsic viscosity (IV) of the treated surface resin, which will be described later.
<放電処理強度(E値)の求め方>
E=Vp×Ip/(S×Wt)
E:E値(W・min/m
Vp:印加電圧(V)
Ip:印加電流(A)
S:処理速度(m/min)
Wt:処理幅(m)
<How to determine discharge treatment strength (E value)>
E=Vp×Ip/(S×Wt)
E: E value (W・min/m 2 )
Vp: Applied voltage (V)
Ip: Applied current (A)
S: Processing speed (m/min)
Wt: processing width (m)
 第1実施形態の二軸配向ポリエステルフィルムに上記の表面処理を施す場合、表面処理時のフィルムの表面温度を150℃以下にすることが好ましい。更に好ましくは100℃以下、最も好ましくは50℃以下である。 When the biaxially oriented polyester film of the first embodiment is subjected to the above surface treatment, it is preferable that the surface temperature of the film at the time of surface treatment is 150° C. or less. The temperature is more preferably 100°C or lower, most preferably 50°C or lower.
 表面処理時のフィルムの表面温度が150℃以下であるとフィルムの結晶化が進行するのを抑制し、表面における粗大突起の形成を防止して、アッシングを十分に進行し得る。一方、フィルムの表面温度が低すぎると、アッシングが起こりにくく、好ましい突起が形成されにくい場合があるため、表面温度は10℃以上、より好ましくは15℃以上、更に好ましくは25℃以上とすることが好ましい。また、表面処理温度は処理面と反対側の面を冷却ロール等で冷却することで調整できる。 When the surface temperature of the film at the time of surface treatment is 150° C. or lower, crystallization of the film is suppressed, formation of coarse protrusions on the surface is prevented, and ashing can proceed satisfactorily. On the other hand, if the surface temperature of the film is too low, ashing may be difficult to occur and desirable protrusions may be difficult to form. Therefore, the surface temperature should be 10°C or higher, more preferably 15°C or higher, and even more preferably 25°C or higher. is preferred. Further, the surface treatment temperature can be adjusted by cooling the surface opposite to the treated surface with a cooling roll or the like.
 第1実施形態の二軸配向ポリエステルフィルムに上記の表面処理を施す場合、表面処理を施す表面を構成する層の樹脂の固有粘度(IV)は0.45dl/g以上0.70dl/g以下であることが好ましい。IVは分子鎖の長さを反映した数字であり、分子鎖が短い方が延伸・熱処理を行った際にポリエステル分子が配向・結晶化しやすく、IV(dl/g)を0.70dl/g以下とすることで二軸延伸製膜工程での突起形成を促進し滑り性を向上させることができる。またラミネート加工工程においては、分子鎖が短いことで表面の分子運動性が高まるため、90~120℃の温度に加熱されたラミネートロールと接触した際に表面が軟化しロールに追従しやすくなることでラミネート加工時のシワや気泡の混入を抑制できる。IVP1を0.45dl/g以上とすることで、同一分子鎖の中で結晶部と非晶部を明確に形成しやすいため、大気圧グロー放電処理することでより微細な突起を形成することが容易となるため好ましい。二軸配向ポリエステルフィルムに上記の表面処理を施す場合、表面処理を施す表面を構成する層の樹脂の固有粘度(IV)は0.50dl/g以上0.60dl/g以下がより好ましく、0.55dl/g以上0.60dl/g以下がさらに好ましい。 When the above surface treatment is applied to the biaxially oriented polyester film of the first embodiment, the intrinsic viscosity (IV) of the resin of the layer constituting the surface to be surface treated is 0.45 dl/g or more and 0.70 dl/g or less. It is preferable that there be. IV is a number that reflects the length of the molecular chain, and the shorter the molecular chain, the easier it is for polyester molecules to orient and crystallize during stretching and heat treatment, so IV (dl/g) should be 0.70 dl/g or less. By doing so, it is possible to promote the formation of protrusions in the biaxial stretching film forming process and improve slipperiness. In addition, in the laminating process, the short molecular chains increase the molecular mobility of the surface, so when it comes into contact with a laminating roll heated to a temperature of 90 to 120 degrees Celsius, the surface softens and becomes easier to follow the roll. This can suppress wrinkles and air bubbles during lamination. By setting IVP1 to 0.45 dl/g or more, it is easy to clearly form crystalline parts and amorphous parts in the same molecular chain, so it is possible to form finer protrusions by atmospheric pressure glow discharge treatment. This is preferred because it is easy. When performing the above surface treatment on a biaxially oriented polyester film, the intrinsic viscosity (IV) of the resin of the layer constituting the surface to be surface treated is more preferably 0.50 dl/g or more and 0.60 dl/g or less, and 0.50 dl/g or more and 0.60 dl/g or less. More preferably 55 dl/g or more and 0.60 dl/g or less.
(第2実施形態)
 第2実施形態の二軸配向ポリエステルフィルムは、少なくとも一方の表面A’をXPS測定することで得られる各元素濃度C1s-A、O1s-A及びN1s-Aと、該表面A’の表層から厚み500nmをエッチングした表面aをXPS測定することで得られる各元素濃度C1s-B、O1s-B及びN1s-Bとが次式を満たす。XPSは下記条件IIにて測定する。
O1s-A/O1s-a>1.000、なお、C1s+O1s+N1s=100
(Second embodiment)
The biaxially oriented polyester film of the second embodiment has the respective element concentrations C1s-A, O1s-A and N1s-A obtained by XPS measurement of at least one surface A', and the thickness from the surface layer of the surface A'. The respective element concentrations C1s-B, O1s-B, and N1s-B obtained by XPS measurement of the surface a etched by 500 nm satisfy the following formula. XPS is measured under the following condition II.
O1s-A/O1s-a>1.000, C1s+O1s+N1s=100
条件II:
<XPS測定条件>
・アルバックファイ社製 光電子分光分析装置ESCA5700
・使用線源:Mg
・測定角度:45°
・積算回数:6回
・ナロースキャン対象の元素種:炭素元素(C1s)、酸素元素(O1s)、窒素元素(N1s)
・Neutralization:ON
<深さ方向のエッチング条件>
 アルゴンイオンを用いて二軸配向ポリエステルフィルムの表面から厚み500nm±10nmをスパッタエッチングして除去する。アルゴンエッチングにより除去した厚みは、透過型電子顕微鏡(TEM)による断面観察でアルゴンエッチング前後の厚みを測定することで確認する。得られたエッチング済み表面aを上記XPS測定条件と同様にして各元素種の測定を実施する。
・装置:ESCA 5800(アルバックファイ社製)
・イオンエッチング条件:Arガスクラスターイオン(Ar-GCIB)
・イオンエッチング速度:1.8nm/min
<データ処理条件>
 解析ソフト「MultiPak」を用いて、ナロー測定により得られた、C1s、O1s及びN1sのXPSスペクトルの積分値の比より得られた各元素濃度を用いて、C1s、O1s及びN1sの3元素の元素濃度の合計を100atm%と規格化した元素濃度を求める。C1s、O1s及びN1s以外の元素が検出された場合もC1s、O1s及びN1sの3元素の元素濃度合計を100atm%として規格化を行う。
・スムージング補正:Point9
・バックグラウンド補正:OFF SET
・シフト補正:C-C結合を284eVに補正
Condition II:
<XPS measurement conditions>
・Photoelectron spectrometer ESCA5700 manufactured by ULVAC-PHI
・Radiation source used: Mg
・Measurement angle: 45°
・Number of integration: 6 times ・Narrow scan target element types: carbon element (C1s), oxygen element (O1s), nitrogen element (N1s)
・Neutralization: ON
<Etching conditions in the depth direction>
A thickness of 500 nm±10 nm is removed by sputter etching from the surface of the biaxially oriented polyester film using argon ions. The thickness removed by argon etching is confirmed by measuring the thickness before and after argon etching through cross-sectional observation using a transmission electron microscope (TEM). The obtained etched surface a is subjected to measurement of each element type under the same conditions as the XPS measurement conditions described above.
・Device: ESCA 5800 (manufactured by ULVAC-PHI)
・Ion etching conditions: Ar gas cluster ion (Ar-GCIB)
・Ion etching speed: 1.8nm/min
<Data processing conditions>
Using the analysis software "MultiPak", the three elements of C1s, O1s and N1s were determined using the concentration of each element obtained from the ratio of the integral values of the XPS spectra of C1s, O1s and N1s obtained by narrow measurement. The element concentration is determined by normalizing the total concentration to 100 atm%. Even when elements other than C1s, O1s, and N1s are detected, normalization is performed by setting the total element concentration of the three elements C1s, O1s, and N1s to 100 atm %.
・Smoothing correction: Point 9
・Background correction: OFF SET
・Shift correction: Correct C-C coupling to 284eV
 表面A’のO元素濃度がO1s-A/O1s-B>1.000である場合、二軸配向ポリエステルフィルムの内部よりも表面の方がO元素の元素濃度が高いことを示しており、前記水蒸気を含有するプラズマ励起性気体を用いた大気圧プラズマ処理によりフィルム表面が極一部が酸化反応していることを表している。フィルム表面に酸化反応が促進されると、本発明の二軸配向ポリエステルフィルムの表面に好ましい谷領域が形成されやすく、平滑なフィルム表面や金属ロールに対する密着を抑制できるため滑り性が向上する傾向がある。 When the O element concentration on the surface A' is O1s-A/O1s-B>1.000, this indicates that the O element concentration is higher on the surface than in the inside of the biaxially oriented polyester film, and the above-mentioned This indicates that a small portion of the film surface has undergone an oxidation reaction due to atmospheric pressure plasma treatment using a plasma-excitable gas containing water vapor. When the oxidation reaction is promoted on the film surface, preferable valley regions are likely to be formed on the surface of the biaxially oriented polyester film of the present invention, and the smooth film surface and adhesion to metal rolls can be suppressed, which tends to improve slipperiness. be.
 表面A’のO元素濃度がO1s-A/O1s-B>1.000であることにより、前記水蒸気を含有するプラズマ励起性気体を用いた大気圧プラズマ処理によるアッシングが十分に促進され、平滑なフィルム表面や金属ロールに対する滑り性を向上できる。 Since the O element concentration of the surface A' is O1s-A/O1s-B>1.000, ashing by atmospheric pressure plasma treatment using the plasma-excitable gas containing water vapor is sufficiently promoted, resulting in a smooth surface. Improves slipperiness on film surfaces and metal rolls.
 二軸配向ポリエステルフィルムの、表面A’のO元素濃度はO1s-A/O1s-B≧1.010がより好ましく、O1s-A/O1s-B≧1.020がさらに好ましい。O1s-A/O1s-Bの上限は特に限定されないが、通常、5.000以下であることが好ましい。 The O element concentration on the surface A' of the biaxially oriented polyester film is more preferably O1s-A/O1s-B≧1.010, and even more preferably O1s-A/O1s-B≧1.020. The upper limit of O1s-A/O1s-B is not particularly limited, but is usually preferably 5.000 or less.
 二軸配向ポリエステルフィルムの、表面A’のO元素濃度をO1s-A/O1s-B>1.000とするには、プラズマ励起性気体に含有される水蒸気量を5g/m以上として、放電処理強度(E値)10~2000W・min/mの範囲で処理することが好ましく、より好ましくはプラズマ励起性気体に含有される水蒸気量を20g/m以上として、放電処理強度(E値)50~500W・min/mの範囲で処理することが好ましく、100~400W・min/mの範囲で処理することがさらに好ましい。 In order to make the O element concentration on the surface A' of the biaxially oriented polyester film O1s-A/O1s-B>1.000, the amount of water vapor contained in the plasma excitable gas is set to 5 g/ m3 or more, and the discharge It is preferable to perform the treatment at a treatment intensity (E value) of 10 to 2000 W・min/m 2 , more preferably, the amount of water vapor contained in the plasma excitable gas is 20 g/m 3 or more, and the discharge treatment intensity (E value) ) It is preferable to perform the treatment in the range of 50 to 500 W·min/m 2 , more preferably in the range of 100 to 400 W·min/m 2 .
 第2実施形態の二軸配向ポリエステルフィルムにおける表面A’は、(第1実施形態)の項にて上記した条件Iにて5μm角視野でAFM観察した際に、下記(1a)及び(2a)を満たす表面Aであることが好ましい。第2実施形態の表面A’が表面Aである場合、かかる表面Aは第1実施形態の項において上述した表面Aと同様である。
(1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下
(2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下
The surface A' of the biaxially oriented polyester film of the second embodiment was observed in the following (1a) and (2a) when observed with an AFM with a 5 μm square field of view under the condition I described above in the section (first embodiment). It is preferable that surface A satisfies the following. If the surface A′ of the second embodiment is a surface A, such surface A is similar to the surface A described above in the section of the first embodiment.
(1a) The number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 μm or more, and 500 pieces/5 μm or less (2a) The average cross-sectional area of the valley regions with a height of -2 nm or less from the reference plane is 2000nm 2 or more, 8000nm 2 or less
 本発明の二軸配向ポリエステルフィルムは、下記条件にて表面Aを5μm角視野でAFM観察した際に、基準面から高さ+3nm以上の山領域の個数が50個/5μm□以上、200個/5μm□以下、であることが好ましい。 In the biaxially oriented polyester film of the present invention, when surface A is observed with an AFM in a 5 μm square field of view under the following conditions, the number of mountain regions with a height of +3 nm or more from the reference surface is 50 / 5 μm or more, 200 / It is preferably 5 μm□ or less.
 また、本発明の二軸配向ポリエステルフィルムは、下記条件にて表面Aを5μm角視野でAFM観察した際に、基準面から高さ+3nm以上の山領域の平均断面積が、3000nm以上、7000nm以下であることが好ましい。 In addition, in the biaxially oriented polyester film of the present invention, when the surface A is observed with AFM in a 5 μm square field of view under the following conditions, the average cross-sectional area of the peak region at a height of +3 nm or more from the reference plane is 3000 nm 2 or more and 7000 nm. It is preferably 2 or less.
<AFM測定方法>
・装置:Bruker社製 原子間力顕微鏡(AFM)Dimention Icon with ScanAsyst
・カンチレバー:窒化ケイ素製プローブ ScanAsyst Air
・走査モード:ScanAsyst
・走査速度:0.977Hz
・走査方向:後述する方法にて作製した測定サンプルの幅方向に走査を行う
・測定視野:5μm四方
・サンプルライン:512
・Peak Force SetPoint:0.0195V~0.0205V
・Feedback Gain:10~20
・LP Deflection BW:40kHz
・ScanAsyst Noise Threshold:0.5nm
・サンプル調整:23℃、65%RH、24時間静置
・AFM測定環境:23℃、65%RH
・測定サンプル作製方法:AFM試料ディスク(直径15mm)の片面に両面テープを貼りつけ、AFM試料ディスクと、約15mm×13mm(長手方向×幅方向)に切り出した本発明の二軸配向ポリエステルフィルムの前記表面(測定面)とは逆側の面とを張り合わせ、測定サンプルとする。
・サンプル測定回数:各サンプル同士が少なくとも5μm以上離れるように場所を変え、20回測定を行う。
・測定値:測定した20か所の画像に関して解析を行い、各数値を測定しその平均値をサンプルの持つ各数値として扱う。
<AFM measurement method>
・Device: Bruker Atomic Force Microscope (AFM) Dimention Icon with ScanAsyst
・Cantilever: Silicon nitride probe ScanAsyst Air
・Scanning mode: ScanAsyst
・Scanning speed: 0.977Hz
・Scanning direction: Scan in the width direction of the measurement sample prepared by the method described below ・Measurement field of view: 5 μm square ・Sample line: 512
・Peak Force SetPoint: 0.0195V to 0.0205V
・Feedback Gain: 10-20
・LP Deflection BW: 40kHz
・ScanAsyst Noise Threshold: 0.5nm
・Sample preparation: 23℃, 65%RH, left standing for 24 hours ・AFM measurement environment: 23℃, 65%RH
・Measurement sample preparation method: Paste double-sided tape on one side of an AFM sample disk (diameter 15 mm), and cut out the AFM sample disk and the biaxially oriented polyester film of the present invention to approximately 15 mm x 13 mm (longitudinal direction x width direction). The surface opposite to the surface (measurement surface) is pasted together to form a measurement sample.
- Number of sample measurements: Measure 20 times at different locations so that each sample is separated by at least 5 μm.
・Measurement values: Analyze the images of the 20 measured locations, measure each numerical value, and treat the average value as each numerical value of the sample.
<山領域の算出>
 前記<AFM測定方法>により得られたフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像にFlatten処理を実施する。基準面とは下記のFlatten処理条件において決定される高さが0nmの面である。Particle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるTotal CountとAreaのMean値をそれぞれ基準面から高さ+3nm以上の山領域の個数、平均断面積とする。
<Calculation of mountain area>
The film surface image obtained by the above <AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface. The reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below. The Mean values of Total Count and Area, which are calculated by setting the items of the Detect tab in the Particle Analysis analysis mode as shown below, are respectively the number of mountain regions with a height of +3 nm or more from the reference plane and the average cross-sectional area.
<Flatten処理>
・Flatten Order:3rd
・Flatten Z Threshholding Direction:No theresholding
・Find Threshold for:the whole image
・Flatten Z Threshold %:0.00%
・Mark Excluded Data:Yes
<Particle Analysisモード設定>
(Detectタブ)
・Threshold Height:3.00nm
・Feature Direction:Above
・X Axis:Absolute
・Number Histogram Bins:512
・Histogram Filter Cutoff:0.00nm
・Min Peak to Peak:1.00nm
・Left Peak Cutoff:0.00000%
・Right Peak Cutoff:0.00000%
(Modifyタブ)
・Beughbirhood Size:3
・Number Pixels Off:1
・一切のDilate/Erode操作を行わない。
(Selectタブ)
・Image Cursor Mode:Particle Select
・Bound Particles:Yes
・Non-Representative Particles:No
・Height Reference:Relative To Max Peak
・Number Histogram Bins:50
<Flatten processing>
・Flatten Order: 3rd
・Flatten Z Thresholding Direction: No theresholding
・Find Threshold for: the whole image
・Flatten Z Threshold %: 0.00%
・Mark Excluded Data: Yes
<Particle Analysis mode setting>
(Detect tab)
・Threshold Height: 3.00nm
・Feature Direction: Above
・X Axis: Absolute
・Number Histogram Bins: 512
・Histogram Filter Cutoff: 0.00nm
・Min Peak to Peak: 1.00nm
・Left Peak Cutoff: 0.00000%
・Right Peak Cutoff: 0.00000%
(Modify tab)
・Boughbirhood Size:3
・Number Pixels Off: 1
・Do not perform any Dilate/Erode operations.
(Select tab)
・Image Cursor Mode: Particle Select
・Bound Particles: Yes
・Non-Representative Particles: No
・Height Reference: Relative To Max Peak
・Number Histogram Bins: 50
 基準面から高さ+3nm以上の山領域の個数が50個/5μm□以上、200個/5μm□以下であることは、二軸配向ポリエステルフィルムの表面に突起が緻密に形成されていることを示しており、基準面から高さ+3nm以上の山領域の個数を前記範囲とすることで、本発明の二軸配向ポリエステルフィルムの製造工程においてロール形状で巻き取る場合のフィルム同士の滑り性高めることができ、巻きシワや巻きずれを抑制できる。また、本発明の二軸配向ポリエステルフィルムをレジスト成形時に紫外光照射面とした際に得られるレジスト形状の均一性を両立できる。 The number of peak regions with a height of +3 nm or more from the reference surface is 50/5 μm or more and 200/5 μm or less, indicating that protrusions are densely formed on the surface of the biaxially oriented polyester film. By setting the number of peak regions with a height of +3 nm or more from the reference plane within the above range, it is possible to improve the slipperiness between the films when wound into a roll shape in the manufacturing process of the biaxially oriented polyester film of the present invention. It is possible to suppress winding wrinkles and misalignment. Further, it is possible to achieve both uniformity of resist shape obtained when the biaxially oriented polyester film of the present invention is used as a surface irradiated with ultraviolet light during resist molding.
 基準面から高さ+3nm以上の山領域の個数が50個/5μm□以上であることにより、二軸配向ポリエステルフィルムの製造工程においてロール形状で巻き取る際にフィルム同士の密着する面積の増大を抑制し、摩擦力を低減して滑り性を向上し得る。基準面から高さ+3nm以上の山領域の個数が200個/5μm□以下であることにより、本発明の二軸配向ポリエステルフィルムをレジスト成形時に紫外光照射面とした場合に、紫外光がフィルム内部や表面で散乱するのを抑制し、レジスト形状の均一性を向上し得る。基準面から高さ+3nm以上の山領域の個数は、50個/5μm□以上であることが好ましく、より好ましくは70個/5μm□以上である。 By setting the number of mountain regions with a height of +3 nm or more from the reference surface to 50/5 μm or more, the increase in the area where the films come into close contact with each other is suppressed when the biaxially oriented polyester film is wound into a roll in the manufacturing process. This can reduce frictional force and improve slipperiness. Since the number of mountain regions with a height of +3 nm or more from the reference surface is 200 pieces/5 μm or less, when the biaxially oriented polyester film of the present invention is used as an ultraviolet light irradiation surface during resist molding, ultraviolet light can penetrate inside the film. It is possible to suppress scattering on the surface and improve the uniformity of the resist shape. The number of mountain regions having a height of +3 nm or more from the reference plane is preferably 50 pieces/5 μm□ or more, and more preferably 70 pieces/5 μm□ or more.
 基準面から高さ+3nm以上の山領域の平均断面積が3000nm以上、7000nm以下であることは、微細突起が形成されていることを示す。基準面から高さ+3nm以上の山領域の平均断面積を前記範囲とすることで、本発明の二軸配向ポリエステルフィルムの製造工程における滑り性や、レジスト成形工程の金属ロールに対する滑り性を高めるとともに、本発明の二軸配向ポリエステルフィルムをレジスト成形時に紫外光照射面とした際に得られるレジスト形状の均一性を両立できる。 The fact that the average cross-sectional area of the mountain region with a height of +3 nm or more from the reference plane is 3000 nm 2 or more and 7000 nm 2 or less indicates that fine protrusions are formed. By setting the average cross-sectional area of the mountain region with a height of +3 nm or more from the reference plane within the above range, the slipperiness in the manufacturing process of the biaxially oriented polyester film of the present invention and the slipperiness against the metal roll in the resist forming process are improved. , the uniformity of the resist shape obtained when the biaxially oriented polyester film of the present invention is used as the surface irradiated with ultraviolet light during resist molding can be achieved.
 基準面から高さ+3nm以上の山領域の平均断面積が3000nm以上であることにより、レジスト成形工程の金属ロールに対して密着する面積の増大を抑制し、摩擦力を低減して滑り性を向上し得る。基準面から高さ+3nm以上の山領域の平均断面積を7000nm以下とすることにより、本発明の二軸配向ポリエステルフィルムをレジスト成形時に紫外光照射面とした場合に、紫外光がフィルム内部や表面で散乱するのを抑制し、レジスト形状の均一性を向上し得る。基準面から高さ+3nm以上の山領域の平均断面積は、3000nm以上であることが好ましく、より好ましくは3500nm以上、さらに好ましくは4000nm以上である。また、基準面から高さ+3nm以上の山領域の平均断面積は、7000nm以下であることが好ましく、より好ましくは6800nm以下、さらに好ましくは6500nm以下である。 By having an average cross-sectional area of the peak region at a height of +3 nm or more from the reference surface of 3000 nm2 or more, the increase in the area that comes into close contact with the metal roll in the resist forming process is suppressed, and the frictional force is reduced and slipperiness is improved. It can be improved. By setting the average cross-sectional area of the peak region with a height of +3 nm or more from the reference surface to 7000 nm2 or less, when the biaxially oriented polyester film of the present invention is used as an ultraviolet light irradiation surface during resist molding, ultraviolet light will not penetrate inside the film or Scattering on the surface can be suppressed and the uniformity of the resist shape can be improved. The average cross-sectional area of the mountain region having a height of +3 nm or more from the reference plane is preferably 3000 nm 2 or more, more preferably 3500 nm 2 or more, and still more preferably 4000 nm 2 or more. Further, the average cross-sectional area of the mountain region having a height of +3 nm or more from the reference plane is preferably 7000 nm 2 or less, more preferably 6800 nm 2 or less, and still more preferably 6500 nm 2 or less.
 基準面から高さ+3nm以上の山領域の個数および平均断面積を前記範囲とする方法としては、例えば、水蒸気を含有するプラズマ励起性気体でのプラズマ処理を行う方法、二軸配向ポリエステルフィルムの表面に粒子を含有させる方法等が挙げられる。 Examples of methods for bringing the number and average cross-sectional area of mountain regions with a height of +3 nm or more from the reference surface into the above range include a method of plasma treatment with a plasma-excitable gas containing water vapor, a method of plasma treatment with a plasma-excitable gas containing water vapor, and a method of treating the surface of a biaxially oriented polyester film. Examples include a method of incorporating particles into the liquid.
 本発明の二軸配向ポリエステルフィルムの一実施形態は、(1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下、(2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下である表面Aを、5μm角視野でAFM観察した際のクルトシスが2.0以上、10.0以下であることが好ましい。 An embodiment of the biaxially oriented polyester film of the present invention has (1a) the number of valley regions with a height of -2 nm or less from the reference plane of 100 or more/5 μm□ or less than 500/5 μm□, (2a) standards The kurtosis is 2.0 or more and 10.0 or less when observing surface A with an AFM in a 5 μm square field of view, where the average cross-sectional area of the valley region at a height of -2 nm or less from the surface is 2000 nm 2 or more and 8000 nm 2 or less. It is preferable.
 5μm角視野でAFM観察した際のクルトシスが2.0以上、10.0以下であることは、二軸配向ポリエステルフィルムの表面に粒子が実質的に存在しない、又は極低濃度で存在することを示している。二軸配向ポリエステルフィルムの表面に粒子が実質的に存在しない、もしくは極低濃度で存在することにより、本発明の二軸配向ポリエステルフィルムをレジスト成形時に紫外光照射面とした際に得られるレジスト形状の均一性を高めることができる。本発明の二軸配向ポリエステルフィルムの表面に粒子を含有させる場合には、クルトシスが前記範囲となる様に粒子径、粒子濃度を制御することが好ましい。 A kurtosis of 2.0 or more and 10.0 or less when observed with AFM in a 5 μm square field of view indicates that particles are substantially absent or present at an extremely low concentration on the surface of the biaxially oriented polyester film. It shows. Due to the fact that particles are substantially absent or present at an extremely low concentration on the surface of the biaxially oriented polyester film, the resist shape obtained when the biaxially oriented polyester film of the present invention is used as the surface irradiated with ultraviolet light during resist molding. uniformity can be improved. When particles are contained on the surface of the biaxially oriented polyester film of the present invention, it is preferable to control the particle diameter and particle concentration so that the kurtosis falls within the above range.
 クルトシスが2.0以上であることにより、二軸配向ポリエステルフィルムの表面が極めて平滑となることを防ぎ、本発明の二軸配向ポリエステルフィルムの製造工程における滑り性の低下や、レジスト成形工程の金属ロールに対する滑り性の低下を抑制できる。 By having a kurtosis of 2.0 or more, it is possible to prevent the surface of the biaxially oriented polyester film from becoming extremely smooth, and to prevent a decrease in slipperiness in the manufacturing process of the biaxially oriented polyester film of the present invention, and to prevent the surface of the biaxially oriented polyester film from becoming extremely smooth. It is possible to suppress a decrease in slipperiness against rolls.
 クルトシスが10.0以下であることにより、二軸配向ポリエステルフィルムの表面に急峻な凹凸を低減し、本発明の二軸配向ポリエステルフィルムをレジスト成形時に紫外光照射面とした場合に、紫外光がフィルム内部や表面で散乱するのを抑制してレジスト形状の均一性を向上し得る。本発明の二軸配向ポリエステルフィルムは、表面Aを5μm角視野でAFM観察した際のクルトシスが2.0以上であることが好ましく、より好ましくは2.5以上、さらに好ましくは3.0以上である。また該クルトシスが、10.0以下であることが好ましく、より好ましくは8.0以下、さらに好ましくは5.0以下である。 By having a kurtosis of 10.0 or less, steep irregularities on the surface of the biaxially oriented polyester film are reduced, and when the biaxially oriented polyester film of the present invention is used as a surface irradiated with ultraviolet light during resist molding, ultraviolet light is The uniformity of the resist shape can be improved by suppressing scattering inside and on the surface of the film. The biaxially oriented polyester film of the present invention preferably has a kurtosis of 2.0 or more, more preferably 2.5 or more, still more preferably 3.0 or more when surface A is observed with AFM in a 5 μm square field of view. be. Further, the kurtosis is preferably 10.0 or less, more preferably 8.0 or less, still more preferably 5.0 or less.
 本発明の二軸配向ポリエステルフィルムは、表面AをXPS測定することで得られる各元素濃度C1s-A、O1s-A及びN1s-Aと、該表面Aの表層から厚み500nmをエッチングした表面aをXPS測定することで得られる各元素濃度C1s-a、O1s-a及びN1s-aが、O1s-A/O1s-a>1.000、なお、C1s+O1s+N1s=100、を満たす表面が次式を満たすことが好ましい。XPSは(第2実施形態)の項にて記載した上記条件IIにて測定する。
N1s-A/N1s-a≧2.000、なお、C1s+O1s+N1s=100
The biaxially oriented polyester film of the present invention has the respective element concentrations C1s-A, O1s-A, and N1s-A obtained by XPS measurement of the surface A, and the surface a etched to a thickness of 500 nm from the surface layer of the surface A. The surface where each element concentration C1s-a, O1s-a and N1s-a obtained by XPS measurement satisfies O1s-A/O1s-a>1.000, and C1s+O1s+N1s=100, satisfies the following formula. is preferred. XPS is measured under the above condition II described in the section (Second Embodiment).
N1s-A/N1s-a≧2.000, C1s+O1s+N1s=100
 表面Aの表層から厚み500nmをエッチングした表面aをXPS測定することで得られる各元素濃度C1s-a、O1s-B及びN1s-aが、N1s-A/N1s-a≧2.000であることは、二軸配向ポリエステルフィルムの内部よりも表面の方がN元素の元素濃度が高いことを示しており、前記プラズマ励起性気体を用いた大気圧プラズマ処理により二軸配向ポリエステルフィルム表面にN元素が結合していることを示している。二軸配向ポリエステルフィルム表面に反応性が低いN元素が結合していることにより、二軸配向ポリエステルフィルム表面の谷領域を好ましい範囲に制御しやすく、長期保管時の滑り性の低下を抑制できる。 Each element concentration C1s-a, O1s-B and N1s-a obtained by XPS measurement of surface a etched to a thickness of 500 nm from the surface layer of surface A is N1s-A/N1s-a ≧ 2.000. This shows that the concentration of N element is higher on the surface of the biaxially oriented polyester film than in the inside, and N element is added to the surface of the biaxially oriented polyester film by atmospheric pressure plasma treatment using the plasma-excitable gas. shows that they are connected. Since the N element with low reactivity is bonded to the surface of the biaxially oriented polyester film, the valley area on the surface of the biaxially oriented polyester film can be easily controlled within a preferable range, and a decrease in slipperiness during long-term storage can be suppressed.
 N1s-A/N1s-a≧2.000とするには、前記大気圧プラズマ処理におけるプラズマ励起性気体の主成分に窒素ガスを用いて、前述の放電処理強度(E値)を10~2000W・min/mとしてプラズマ処理を行うことが好ましく、50~500W・min/mとしてプラズマ処理を行うことがより好ましく、100~400W・min/mとしてプラズマ処理を行うことがさらに好ましい。 In order to make N1s-A/N1s-a≧2.000, nitrogen gas is used as the main component of the plasma excitable gas in the atmospheric pressure plasma treatment, and the discharge treatment intensity (E value) is adjusted to 10 to 2000 W. It is preferable to perform the plasma treatment at a power of min/m 2 , more preferably to perform the plasma treatment at a power of 50 to 500 W·min/m 2 , and even more preferably to perform the plasma treatment at a power of 100 to 400 W·min/m 2 .
 ここでいう主成分とは、プラズマ励起性気体において50重量%以上であることを指す。本発明の二軸配向ポリエステルフィルムは、表面をXPS測定した各元素濃度C1s-A、O1s-A及びN1s-Aと、その表面をイオンエッチング速度1.8nm/minで深さ方向にXPS測定した各元素濃度C1s-a、O1s-a及びN1s-aが、N1s-A/N1s-a≧2.000であることが好ましく、N1s-A/N1s-a≧2.500であることがより好ましい。N1s-A/N1s-aの上限は特に限定されないが、通常10.000以下であることが好ましい。 The main component here refers to 50% by weight or more in the plasma excitable gas. The biaxially oriented polyester film of the present invention has each element concentration C1s-A, O1s-A, and N1s-A measured by XPS on the surface, and XPS measured in the depth direction at an ion etching rate of 1.8 nm/min. Each element concentration C1s-a, O1s-a and N1s-a preferably satisfies N1s-A/N1s-a≧2.000, more preferably N1s-A/N1s-a≧2.500. . The upper limit of N1s-A/N1s-a is not particularly limited, but it is usually preferably 10.000 or less.
 本発明の二軸配向ポリエステルフィルムは、表面Aと厚み方向に対向する表面Bが下記条件IIIにおける<走査型白色干渉顕微鏡測定法>にて観察した際に下記(1c)及び(2c)を満たすことが好ましい。
(1c)算術平均高さが0.5nm以上、2.0nm以下
(2c)最大突起高さが20nm以上、150nm以下
The biaxially oriented polyester film of the present invention satisfies the following (1c) and (2c) when surface A and surface B opposite in the thickness direction are observed by <scanning white interference microscopy> under condition III below. It is preferable.
(1c) Arithmetic mean height is 0.5 nm or more and 2.0 nm or less (2c) Maximum protrusion height is 20 nm or more and 150 nm or less
条件III:
<走査型白色干渉顕微鏡測定法>
 二軸配向ポリエステルフィルムより6cm×6cmのサンプリングを行い、それぞれのサンプルについて、走査型白色干渉顕微鏡(装置:日立ハイテクサイエンス社製“VertScan”(登録商標) VS1540)を用い、二軸配向ポリエステルフィルムにおける表面Bを、50倍対物レンズを使用し測定モードをWAVEモードに設定し、測定面積113μm×113μmで90視野測定を行う。サンプルセットは、測定Y軸がサンプルフィルムの長手方向(フィルムが巻き取られている方向)となるようにサンプルをステージにセットして測定する。なお、長手方向が分からないサンプルの場合は、測定Y軸がサンプルフィルムの任意の1方向となるようして測定し、その後120度回転させた方向となるようして測定し、さらにその後120度回転させた方向となるようにして測定し、それぞれの測定結果の平均をそのサンプル有する特性とする。また測定するサンプルフィルムは、ゴムパッキンの入った2枚の金属フレームに挟み込むことで、フレーム内のフィルムが張った状態(サンプルのたるみやカールを除した状態)にしてサンプル表面の測定を行う。
 得られた顕微鏡像について、該顕微鏡に内蔵された表面解析ソフトウェアVS-Viewer Version 10.0.3.0にて、下記条件にて画像処理を施す。
(画像処理条件)
 下記の順にて画像処理を行う。
・補間処理  :完全補間
・フィルタ処理:メジアン(3×3ピクセル)
・面補正   :4次
<算術平均高さおよび最大突起高さの算出>
 表面Aに関して前記走査型白色干渉顕微鏡測定法での測定を行い、前記画像処理条件にて画像処理を行った各測定画像に関して、表面解析ソフトウェア内の「ISOパラメータ」解析において以下の解析条件と共に「Height Parameters」を選択し得られた数値群をパラメータシート欄に出力することで得られるSaを算術平均高さ、Spを最大突起高さとして求め、各視野の値から上下5視野を除外した80視野での平均値をそれぞれ表面Bの算術平均高さ、最大突起高さとする。
(ISOパラメータ解析条件)
 下記の条件にてISOパラメータ解析処理を行う。
・S-Filter:自動
・正規確率紙
 分割数     :300
 計算範囲の上限 :3.000
 計算範囲の下限 :-3.000
・パラメータ   :「Height Parameters」を選択
・出力      :「パラメータリスト」を選択。
(パラメータシート出力)
 上記ISOパラメータ解析によって表示される「ISOパラメータ」ウインドウ中の「Height Parameters」を選択し「パラメータシートに追加」を行うことで「パラメータシート」ウインドウの「ISOパラメータ」タブで表示される「Sa」を表面Bの算術平均高さ、「Sp」を表面Bの最大突起高さとして用いる。
Condition III:
<Scanning white interference microscopy measurement method>
A 6 cm x 6 cm sample was taken from the biaxially oriented polyester film, and each sample was examined using a scanning white interference microscope (equipment: "VertScan" (registered trademark) VS1540 manufactured by Hitachi High-Tech Science Co., Ltd.). Surface B is measured using a 50x objective lens, the measurement mode is set to WAVE mode, and 90 visual fields are measured with a measurement area of 113 μm×113 μm. The sample set is measured by setting the sample on a stage so that the measurement Y-axis is in the longitudinal direction of the sample film (the direction in which the film is wound). In addition, in the case of a sample whose longitudinal direction is unknown, measure so that the measurement Y-axis is in one arbitrary direction of the sample film, then measure so that it is in the direction rotated 120 degrees, and then again 120 degrees. The sample is measured in the rotated direction, and the average of the measurement results is taken as the characteristic of that sample. The sample film to be measured is sandwiched between two metal frames containing rubber gaskets, and the sample surface is measured with the film in the frame stretched (sagging and curling removed).
The obtained microscopic image is subjected to image processing under the following conditions using surface analysis software VS-Viewer Version 10.0.3.0 built into the microscope.
(Image processing conditions)
Image processing is performed in the following order.
・Interpolation processing: Complete interpolation ・Filter processing: Median (3 x 3 pixels)
・Surface correction: 4th order <Calculation of arithmetic mean height and maximum protrusion height>
For each measurement image that was measured using the scanning white interference microscopy method and processed under the image processing conditions for surface A, the following analysis conditions were used in the "ISO parameter" analysis within the surface analysis software. Sa is the arithmetic mean height and Sp is the maximum protrusion height, obtained by selecting "Height Parameters" and outputting the obtained numerical value group to the parameter sheet field. The average values in the visual field are defined as the arithmetic mean height and maximum protrusion height of surface B, respectively.
(ISO parameter analysis conditions)
ISO parameter analysis processing is performed under the following conditions.
・S-Filter: Automatic/Normal probability paper Number of divisions: 300
Upper limit of calculation range: 3.000
Lower limit of calculation range: -3.000
- Parameters: Select "Height Parameters" - Output: Select "Parameter List".
(Parameter sheet output)
Select "Height Parameters" in the "ISO Parameters" window displayed by the above ISO parameter analysis and click "Add to Parameter Sheet" to display "Sa" displayed in the "ISO Parameters" tab of the "Parameter Sheet" window. is used as the arithmetic mean height of surface B, and "Sp" is used as the maximum protrusion height of surface B.
 表面Aと厚み方向に対向する表面Bの算術平均高さが0.5nm以上2.0nm以下であることはレジスト非塗工面である表面Bの表面粗さが制御されていることを示している。二軸配向ポリエステルフィルムの表面Bの算術平均高さを上記範囲内とすることで、本発明の二軸配向ポリエステルフィルムの製造工程における搬送性を高めることができる。また、本発明の二軸配向ポリエステルフィルムを支持体として用いてレジスト成形を行う際に、表面Bをレジスト非塗工面とすることでレジスト成形工程における滑り性を高めるとともに得られるレジスト形状の均一性を高めることができる。本発明の二軸配向ポリエステルフィルムの表面Bの算術平均高さを上記範囲とする方法としては、表面Bを構成する層(P2層)に粒子を含有させる方法があるが、粒子を含有させる場合には、算術平均高さが前記範囲となる様に粒子径、粒子濃度を制御することが好ましい。 The fact that the arithmetic mean height of surface A and surface B facing each other in the thickness direction is 0.5 nm or more and 2.0 nm or less indicates that the surface roughness of surface B, which is a resist-uncoated surface, is controlled. . By setting the arithmetic mean height of the surface B of the biaxially oriented polyester film within the above range, the transportability in the manufacturing process of the biaxially oriented polyester film of the present invention can be improved. In addition, when performing resist molding using the biaxially oriented polyester film of the present invention as a support, by making surface B a non-resist coated surface, the slipperiness in the resist molding process is improved and the uniformity of the resist shape obtained. can be increased. As a method for making the arithmetic mean height of surface B of the biaxially oriented polyester film of the present invention within the above range, there is a method of containing particles in the layer constituting surface B (P2 layer). It is preferable to control the particle diameter and particle concentration so that the arithmetic mean height falls within the above range.
 表面Aと厚み方向に対向する表面Bの算術平均高さが0.5nm以上であることにより二軸配向ポリエステルフィルムの表面が極めて平滑となることを防ぎ、本発明の二軸配向ポリエステルフィルムの製造工程における滑り性の低下や、レジスト成形工程の金属ロールに対する滑り性の低下を抑制できる。 By setting the arithmetic mean height of surface A and surface B facing each other in the thickness direction to be 0.5 nm or more, the surface of the biaxially oriented polyester film is prevented from becoming extremely smooth, and the biaxially oriented polyester film of the present invention can be produced. It is possible to suppress a decrease in slipperiness during the process and a decline in slipperiness against a metal roll in the resist forming process.
 表面Aと厚み方向に対向する表面Bの算術平均高さが2.0nm以下であることにより二軸配向ポリエステルフィルムの表面の粗大な凹凸を低減し本発明の二軸配向ポリエステルフィルムにおける表面Bをレジスト成形時に紫外光照射面とした場合に、紫外光がフィルム内部や表面で散乱するのを抑制してレジスト形状の均一性を向上し得る。 By setting the arithmetic mean height of surface A and surface B facing each other in the thickness direction to be 2.0 nm or less, coarse irregularities on the surface of the biaxially oriented polyester film are reduced, and surface B in the biaxially oriented polyester film of the present invention is When the surface is irradiated with ultraviolet light during resist molding, scattering of ultraviolet light inside or on the surface of the film can be suppressed, thereby improving the uniformity of the resist shape.
 表面Aと厚み方向に対向する表面Bの算術平均高さは、0.5nm以上であることが好ましく、より好ましくは0.7nm以上、さらに好ましくは0.9nm以上である。また該算術平均高さが、2.0nm以下であることが好ましく、より好ましくは1.8nm以下、さらに好ましくは1.6nm以下である。 The arithmetic mean height of the surface A and the surface B facing each other in the thickness direction is preferably 0.5 nm or more, more preferably 0.7 nm or more, and still more preferably 0.9 nm or more. Further, the arithmetic mean height is preferably 2.0 nm or less, more preferably 1.8 nm or less, still more preferably 1.6 nm or less.
 表面Aと厚み方向に対向する表面Bの最大突起高さが20nm以上、150nm以下であることはレジスト非塗工面である表面Bの表面粗さが制御され粗大な粒子を含有していないことを示している。二軸配向ポリエステルフィルムの表面Bの最大突起高さを上記範囲内とすることで、本発明の二軸配向ポリエステルフィルムの製造工程における搬送性を高めることができると共に、二軸配向ポリエステルフィルムをロール状に巻き取った際にフィルム同士の層間から空気が抜けやすくなり巻き取り形状の品位を高めることができる。また、本発明の二軸配向ポリエステルフィルムを支持体として用いてレジスト成形を行う際に、表面Bをレジスト非塗工面とすることでレジスト成形工程における滑り性を高めるとともに得られるレジスト形状の均一性を高めることができる。本発明の二軸配向ポリエステルフィルムの表面Bの最大突起高さを上記範囲とする方法としては、表面Bを構成する層(P2層)に粒子を含有させる方法があるが、粒子を含有させる場合には、最大突起高さが前記範囲となる様に粒子径、粒子濃度、表面Bを構成する層(P2層)の厚みを制御することが好ましい。 The fact that the maximum protrusion height of surface B, which faces surface A in the thickness direction, is 20 nm or more and 150 nm or less indicates that the surface roughness of surface B, which is a non-resist coated surface, is controlled and does not contain coarse particles. It shows. By setting the maximum protrusion height on the surface B of the biaxially oriented polyester film within the above range, it is possible to improve the transportability in the manufacturing process of the biaxially oriented polyester film of the present invention, and also to roll the biaxially oriented polyester film. When the film is rolled up into a shape, air can easily escape from between the layers of the film, and the quality of the rolled shape can be improved. In addition, when performing resist molding using the biaxially oriented polyester film of the present invention as a support, by making surface B a non-resist coated surface, the slipperiness in the resist molding process is improved and the uniformity of the resist shape obtained. can be increased. As a method for making the maximum protrusion height of the surface B of the biaxially oriented polyester film of the present invention within the above range, there is a method of containing particles in the layer (P2 layer) constituting the surface B. In this case, it is preferable to control the particle diameter, particle concentration, and thickness of the layer (P2 layer) constituting surface B so that the maximum protrusion height falls within the above range.
 表面Aと厚み方向に対向する表面Bの最大突起高さが20nm以上であることにより二軸配向ポリエステルフィルムの表面が極めて平滑となることを防ぎ、本発明の二軸配向ポリエステルフィルムの製造工程における滑り性の低下やロール状に巻き取る際の巻き取り品位の低下、レジスト成形工程の金属ロールに対する滑り性の低下を抑制できる。 By setting the maximum protrusion height of surface A and surface B facing each other in the thickness direction to be 20 nm or more, the surface of the biaxially oriented polyester film is prevented from becoming extremely smooth, and in the manufacturing process of the biaxially oriented polyester film of the present invention. It is possible to suppress a decrease in slipperiness, a decrease in winding quality when winding into a roll, and a decrease in slipperiness against a metal roll in the resist forming process.
 表面Aと厚み方向に対向する表面Bの最大突起高さが150nm以下であることにより二軸配向ポリエステルフィルムの表面の粗大な凹凸を低減し本発明の二軸配向ポリエステルフィルムの表面Bをレジスト成形時に紫外光照射面とした場合に、紫外光がフィルム内部や表面で散乱するのを抑制してレジスト形状の均一性を向上し得る。 By setting the maximum protrusion height of surface B opposite to surface A in the thickness direction to be 150 nm or less, coarse irregularities on the surface of the biaxially oriented polyester film are reduced, and surface B of the biaxially oriented polyester film of the present invention can be resist-molded. When the surface is sometimes irradiated with ultraviolet light, scattering of the ultraviolet light inside or on the surface of the film can be suppressed to improve the uniformity of the resist shape.
 表面Aと厚み方向に対向する表面Bの最大突起高さは、20nm以上であることが好ましく、より好ましくは50nm以上である。また該最大突起高さは、150nm以下であることが好ましく、より好ましくは130nm以下である。 The maximum protrusion height of surface B that faces surface A in the thickness direction is preferably 20 nm or more, more preferably 50 nm or more. Further, the maximum protrusion height is preferably 150 nm or less, more preferably 130 nm or less.
 本発明の二軸配向ポリエステルフィルムは、表面A及び表面Aと厚み方向に対向する表面Bを前記条件IIIにおける<走査型白色干渉顕微鏡測定法>にて観察し、下記<スキューネスSsk-AおよびSsk-Bの算出>により算出されるスキューネスSsk-A、スキューネスSsk-Bが下記(1d)、(2d)及び(3d)を満たすことが好ましい。
(1d)Ssk-Aが-0.1以上1.0以下
(2d)Ssk-Bが1.0以上4.0以下
(3d)Ssk-B -Ssk-Aが0.1以上3.0以下
The biaxially oriented polyester film of the present invention was observed by observing the surface A and the surface B opposite to the surface A in the thickness direction using the <scanning white interference microscopy method> under the above condition III. It is preferable that the skewness Ssk-A and the skewness Ssk-B calculated by -Calculation of B satisfy the following (1d), (2d), and (3d).
(1d) Ssk-A is -0.1 or more and 1.0 or less (2d) Ssk-B is 1.0 or more and 4.0 or less (3d) Ssk-B -Ssk-A is 0.1 or more and 3.0 or less
 <スキューネスSskの算出>
 前記表面A及び前記表面Bに関して、前記走査型白色干渉顕微鏡測定法による測定を90視野にて行い、前記条件IIIにおける前記画像処理条件にて画像処理を行った各測定画像に関して、表面解析ソフトウェア内の「ISOパラメータ」解析において以下の解析条件と共に「Height Parameters」を選択し得られた数値群をパラメータシート欄に出力することで得られるSskをスキューネスとして求め、各視野の値から上下5視野を除外した80視野での平均値を測定面のスキューネスSskとした。
(ISOパラメータ解析条件)
 下記の条件にてISOパラメータ解析処理を行う。
・S-Filter:自動
・正規確率紙
 分割数     :300
 計算範囲の上限 :3.000
 計算範囲の下限 :-3.000
・パラメータ   :「Height Parameters」を選択
・出力      :「パラメータリスト」を選択
(パラメータシート出力)
 上記ISOパラメータ解析によって表示される「ISOパラメータ」ウインドウ中の「Height Parameters」を選択し「パラメータシートに追加」を行うことで「パラメータシート」ウインドウの「ISOパラメータ」タブで表示される「Ssk」をフィルム表面のスキューネスSskとして用いる。
<Calculation of skewness Ssk>
Regarding the surface A and the surface B, measurements were performed using the scanning white interference microscopy method in 90 fields of view, and each measurement image was processed under the image processing conditions of the condition III. In the "ISO Parameters" analysis, select "Height Parameters" with the following analysis conditions and output the obtained numerical value group to the parameter sheet column to obtain Ssk as the skewness, and calculate the upper and lower 5 fields of view from the values of each field of view. The average value of the excluded 80 visual fields was defined as the skewness Ssk of the measurement surface.
(ISO parameter analysis conditions)
ISO parameter analysis processing is performed under the following conditions.
・S-Filter: Automatic/Normal probability paper Number of divisions: 300
Upper limit of calculation range: 3.000
Lower limit of calculation range: -3.000
・Parameter: Select "Height Parameters" ・Output: Select "Parameter list" (parameter sheet output)
Select "Height Parameters" in the "ISO Parameters" window displayed by the above ISO parameter analysis and click "Add to Parameter Sheet" to select "Ssk" displayed in the "ISO Parameters" tab of the "Parameter Sheet" window. is used as the skewness Ssk of the film surface.
 スキューネスSskとは一般に表面形状における山部と谷部の分布の対象性を示しておりSsk=0の場合は山部と谷部の分布が上下に対称であり、Ssk>0の場合は山部が多いことを示しており、Ssk<0の場合は谷部が多いことを示している。本発明の二軸配向ポリエステルフィルムにおいて表面AのスキューネスSsk-Aが-0.1以上1.0以下であることは、表面Aに微小に突起(山部)が形成されていることを示している。二軸配向ポリエステルフィルムの表面Aのスキューネスを上記範囲とすることで、本発明の二軸配向ポリエステルフィルムの表面Aをレジスト成形時にレジスト塗工面とした場合に、表面Aの凹凸がレジストへ転写されることを抑制でき、レジスト形状の均一性の向上およびレジスト欠陥の発生を抑制し得る。 Skewness Ssk generally indicates the symmetry of the distribution of peaks and valleys in the surface shape. When Ssk = 0, the distribution of peaks and valleys is vertically symmetrical, and when Ssk > 0, the distribution of peaks and valleys is symmetrical. This indicates that there are many valleys, and when Ssk<0, there are many valleys. In the biaxially oriented polyester film of the present invention, the fact that the skewness Ssk-A of the surface A is -0.1 or more and 1.0 or less indicates that minute protrusions (mountains) are formed on the surface A. There is. By setting the skewness of the surface A of the biaxially oriented polyester film within the above range, when the surface A of the biaxially oriented polyester film of the present invention is used as a resist coated surface during resist molding, the unevenness of the surface A is transferred to the resist. The uniformity of the resist shape can be improved and the occurrence of resist defects can be suppressed.
 表面AのスキューネスSsk-Aを-0.1以上1.0以下とするには、表面Aに前述した水蒸気を含有するプラズマ励起性気体を用いた大気圧グロー放電処理を施し微小突起を形成することで達成できる。表面AのスキューネスSsk-Aが-0.1以上であることにより二軸配向ポリエステルフィルムの表面Aが極めて平滑となることを防ぎ、本発明の二軸配向ポリエステルフィルムの製造工程における金属ロールとの滑り性の低下やロール状に巻き取る際の巻き取り品位の低下を抑制できる。表面AのスキューネスSsk-Aが1.0以下であることにより二軸配向ポリエステルフィルムの表面Aに大きな突起が多数形成すること防ぎレジスト形成時の形状均一性を向上するとともにレジスト欠陥の発生を抑制できる。 In order to set the skewness Ssk-A of surface A to -0.1 or more and 1.0 or less, surface A is subjected to atmospheric pressure glow discharge treatment using the plasma-excitable gas containing water vapor described above to form microprotrusions. This can be achieved by By having the skewness Ssk-A of the surface A of -0.1 or more, the surface A of the biaxially oriented polyester film is prevented from becoming extremely smooth, and the skewness Ssk-A of the biaxially oriented polyester film of the present invention is prevented from becoming extremely smooth. It is possible to suppress a decrease in slipperiness and a decrease in winding quality when winding into a roll. The skewness Ssk-A of surface A is 1.0 or less, which prevents the formation of many large protrusions on surface A of the biaxially oriented polyester film, improves shape uniformity during resist formation, and suppresses the occurrence of resist defects. can.
 表面Aを構成する層(P1層)に粒子を含有させる場合、粒子の平均一次粒子径は100nm以下であることが好ましく、70nm以下であることがより好ましい。平均一次粒子径が100nm以下であることにより、スキューネスSsk-Aが1.0よりも大きくなるのを防ぎ、レジストに凹凸が転写されることやレジスト形状の均一性が低下するのを抑制できる。表面Aを構成する層に含有する粒子の含有量は、表面Aを構成する層(P1層)全体の質量に対して0.7質量%以下であることが好ましく、0.3質量%以下であることが好ましい。 When particles are contained in the layer constituting surface A (P1 layer), the average primary particle diameter of the particles is preferably 100 nm or less, more preferably 70 nm or less. By having an average primary particle diameter of 100 nm or less, it is possible to prevent the skewness Ssk-A from becoming larger than 1.0, and to suppress the transfer of unevenness to the resist and the decrease in the uniformity of the resist shape. The content of particles contained in the layer constituting surface A is preferably 0.7% by mass or less, and 0.3% by mass or less based on the mass of the entire layer constituting surface A (P1 layer). It is preferable that there be.
 本発明の二軸配向ポリエステルフィルムの表面AスキューネスSsk-Aは、-0.1以上であることが好ましく、より好ましくは0.0以上、さらに好ましくは0.1以上である。また該スキューネスSsk-Aが1.0以下であることが好ましく、より好ましくは0.7以下、さらに好ましくは0.5以下である。 The surface A skewness Ssk-A of the biaxially oriented polyester film of the present invention is preferably -0.1 or more, more preferably 0.0 or more, and still more preferably 0.1 or more. Further, the skewness Ssk-A is preferably 1.0 or less, more preferably 0.7 or less, still more preferably 0.5 or less.
 本発明の二軸配向ポリエステルフィルムは表面Aと厚み方向に対向する表面BのスキューネスSsk-Bは1.0以上4.0以下であることが好ましい。スキューネスはフィルム表面を構成する層中に粒子を含有する場合、粒子の含有量、含有する粒子の中で最も粒子径の大きい粒子の粒子径によって増減する。スキューネスSsk-Bが1.0以上4.0以下であることは表面Bにおける突起(山部)の分布(数、高さ、長さ)が制御されていることを示しており、スキューネスSsk-Bを上記範囲とすることで二軸配向ポリエステルフィルムの製造工程やレジスト成形時の滑り性を高めることができる。また、二軸配向ポリエステルフィルムの表面Bをレジスト成形時に紫外光照射面とした場合に、紫外光がフィルム内部や表面で散乱するのを抑制してレジスト形状の均一性を向上し得る。 In the biaxially oriented polyester film of the present invention, it is preferable that the skewness Ssk-B of the surface A and the surface B facing each other in the thickness direction is 1.0 or more and 4.0 or less. When particles are contained in the layer constituting the film surface, the skewness increases or decreases depending on the content of the particles and the particle size of the largest particle among the contained particles. The fact that the skewness Ssk-B is 1.0 or more and 4.0 or less indicates that the distribution (number, height, length) of protrusions (crests) on the surface B is controlled, and the skewness Ssk-B is 1.0 or more and 4.0 or less. By setting B within the above range, it is possible to improve the slipperiness during the manufacturing process of the biaxially oriented polyester film and during resist molding. Furthermore, when the surface B of the biaxially oriented polyester film is used as the surface irradiated with ultraviolet light during resist molding, scattering of the ultraviolet light inside and on the surface of the film can be suppressed, thereby improving the uniformity of the resist shape.
 本発明の二軸配向ポリエステルフィルムは表面Aと厚み方向に対向する表面BのスキューネスSsk-Bが1.0以上4.0以下とするには、P2層に含有する粒子の含有量平均一次粒子径、P2層の厚みを制御することで達成できる。 In order for the biaxially oriented polyester film of the present invention to have a skewness Ssk-B of 1.0 or more and 4.0 or less on the surface A and the surface B opposite to each other in the thickness direction, the average primary particle content of the particles contained in the P2 layer is This can be achieved by controlling the diameter and the thickness of the P2 layer.
 表面Bを構成する層に含有する粒子の中で最も平均一次粒子径の大きい粒子の平均一次粒子径を50nm以上250nm以下とすることが好ましく、100nm以上200nm以下がより好ましい。P2層に含有する粒子の中で最も平均一次粒子径の大きい粒子の平均一次粒子径が50nm以上であるとスキューネスSsk-Bが1.0未満となるのを防ぎ、フィルムや金属ロールとの滑り性の低下を抑制できる。P2層に含有する粒子の中で最も平均一次粒子径の大きい粒子の平均一次粒子径が大き過ぎると、後述するP2層に含有する粒子の中で最も平均一次粒子径の大きい粒子の含有量やP2層の厚みを調整してもスキューネスSsk-Bが4.0よりも大きくなる可能性がありレジスト形状時に紫外光照射面とした場合に、紫外光がフィルム内部や表面で散乱してレジスト形状の均一性が損なわれることがある。 It is preferable that the average primary particle size of the particles having the largest average primary particle size among the particles contained in the layer constituting surface B is 50 nm or more and 250 nm or less, more preferably 100 nm or more and 200 nm or less. If the average primary particle size of the particles with the largest average primary particle size among the particles contained in the P2 layer is 50 nm or more, the skewness Ssk-B can be prevented from becoming less than 1.0, and the slippage with the film or metal roll can be prevented. It can suppress the decline in sexual performance. If the average primary particle size of the particles with the largest average primary particle size among the particles contained in the P2 layer is too large, the content of the particles with the largest average primary particle size among the particles contained in the P2 layer, which will be described later, Even if the thickness of the P2 layer is adjusted, the skewness Ssk-B may become larger than 4.0, and if the surface is irradiated with ultraviolet light during the resist shape, the ultraviolet light will be scattered inside and on the film surface, causing the resist shape to deteriorate. uniformity may be impaired.
 ここでの平均一次粒子径とは以下の条件で求められたものを指す。透過型電子顕微鏡(TEM)を用い1万倍でフィルム断面を観察する。このとき写真上で1cm以下の粒子が確認できた場合はTEM観察倍率を5万倍に変えて観察する。TEMの切片厚さは約100nmとし、場所を変えて100視野測定し、写真に撮影された分散した粒子全てについて等価円相当径をもとめ、横軸に等価円相当径を、縦軸に粒子の個数として粒子の個数分布をプロットし、そのピーク値の等価円相当径を粒子の平均一次粒子径とした。ここで、1万倍で観察した写真上に凝集粒子が確認できた場合は上記プロットに含めない。フィルム中に粒子径の異なる2種類以上の粒子が存在する場合、上記等価円相当径の個数分布は2個以上のピークを有する分布となる。この場合は、それぞれのピーク値の等価円相当径をそれぞれの粒子の平均一次粒子径とする。
 測定装置:透過型電子顕微鏡(TEM) 日立製H-7100FA型
 測定条件:加速電圧 100kV
 測定倍率:1万倍、5万倍
 試料調整:超薄膜切片法
 観察面 :TD-ZD断面(TD:幅方向、ZD:厚み方向)
The average primary particle diameter here refers to that determined under the following conditions. Observe the cross section of the film at a magnification of 10,000 times using a transmission electron microscope (TEM). At this time, if particles of 1 cm or less are confirmed on the photograph, the TEM observation magnification is changed to 50,000 times and observed. The section thickness of the TEM was approximately 100 nm, and 100 fields of view were measured at different locations. The equivalent circular diameter was determined for all the dispersed particles photographed. The horizontal axis represents the equivalent circular diameter, and the vertical axis represents the equivalent circular diameter of the particles. The number distribution of particles was plotted as the number of particles, and the equivalent circular equivalent diameter of the peak value was taken as the average primary particle diameter of the particles. Here, if aggregated particles are confirmed on the photograph observed at 10,000 times magnification, they are not included in the above plot. When two or more types of particles with different particle diameters are present in the film, the number distribution of the equivalent circle diameter is a distribution having two or more peaks. In this case, the equivalent circular equivalent diameter of each peak value is taken as the average primary particle diameter of each particle.
Measuring device: Transmission electron microscope (TEM) Hitachi model H-7100FA Measuring conditions: Accelerating voltage 100kV
Measurement magnification: 10,000 times, 50,000 times Sample preparation: Ultra thin film section method Observation surface: TD-ZD cross section (TD: width direction, ZD: thickness direction)
 P2層に含有する粒子の中で最も平均一次粒子径の大きい粒子として用いる粒子として無機粒子、有機粒子どちらを用いても良い。無機粒子としては例えば、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛、酸化セリウム、酸化マグネシウム、硫酸バリウム、硫化亜鉛、リン酸カルシウム、マイカ、雲母、雲母チタン、ゼオライト、タルク、クレー、カオリン、フッ化リチウム、フッ化カルシウム、モンモリロナイト、ジルコニア、湿式シリカ、乾式シリカ、コロイダルシリカなどが挙げられる。アクリル系樹脂、スチレン系樹脂、シリコーン樹脂、ポリイミド樹脂などを構成成分とする有機粒子、コアシェル型有機粒子などが例示できる。 Either inorganic particles or organic particles may be used as the particles having the largest average primary particle diameter among the particles contained in the P2 layer. Examples of inorganic particles include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, magnesium oxide, barium sulfate, zinc sulfide, calcium phosphate, mica, mica, titanium mica, zeolite, talc, clay, kaolin, Examples include lithium fluoride, calcium fluoride, montmorillonite, zirconia, wet silica, dry silica, and colloidal silica. Examples include organic particles containing acrylic resin, styrene resin, silicone resin, polyimide resin, etc., and core-shell type organic particles.
 P2層に含有する粒子の中で最も平均一次粒子径の大きい粒子の含有量は、レジスト特性と滑り性を両立するためにP2層の重量全体に対して0.005質量%以上0.030質量%以下とすることが好ましく、0.008質量%以上0.020質量%以下より好ましい。表面Bを構成する層に含有する粒子の中で最も平均一次粒子径の大きい粒子の含有量が0.005質量%未満である場合には、表面に山部が十分形成されずスキューネスSsk-Bが1.0未満となりフィルムや金属ロールとの滑り性が損なわれる可能性がある。含有量が0.030質量%よりも多い場合には、スキューネスSsk-Bが4.0よりも大きくなる可能性ありレジスト形状の均一性が低下する懸念がある。 The content of particles with the largest average primary particle diameter among the particles contained in the P2 layer is 0.005% by mass or more and 0.030% by mass based on the entire weight of the P2 layer in order to achieve both resist properties and slipperiness. % or less, more preferably 0.008% by mass or more and 0.020% by mass or less. If the content of particles with the largest average primary particle diameter among the particles contained in the layer constituting surface B is less than 0.005% by mass, sufficient peaks will not be formed on the surface, resulting in skewness Ssk-B. is less than 1.0, and there is a possibility that the slipperiness with the film or metal roll may be impaired. If the content is more than 0.030% by mass, the skewness Ssk-B may become greater than 4.0, and there is a concern that the uniformity of the resist shape may deteriorate.
 本発明の二軸配向ポリエステルフィルムは表面Bの含まれる層(P2層)の厚みが0.05μm以上0.4μm以下であることが好ましい。P2層の厚みが0.05μm以上であると、含有された粒子が脱離するのを抑制し、P2層内部の粒子による突起形成が十分となり、フィルムや金属ロールとの滑り性を担保し得る。P2層の厚みが0.4μm以下であるとP2層に含まれる粒子総数の増加を抑制し、レジスト形状にガタつきが生じるのを防止できる。表面Bの含まれるP2層の厚みとしては0.10μm以上0.35μm以下がより好ましく、0.15μm以上0.30μm以下がさらに好ましい。 In the biaxially oriented polyester film of the present invention, the thickness of the layer (P2 layer) including surface B is preferably 0.05 μm or more and 0.4 μm or less. When the thickness of the P2 layer is 0.05 μm or more, detachment of the contained particles is suppressed, and the formation of protrusions by the particles inside the P2 layer is sufficient, which can ensure slipperiness with the film and metal roll. . When the thickness of the P2 layer is 0.4 μm or less, an increase in the total number of particles contained in the P2 layer can be suppressed, and wobbling in the resist shape can be prevented. The thickness of the P2 layer included in the surface B is more preferably 0.10 μm or more and 0.35 μm or less, and even more preferably 0.15 μm or more and 0.30 μm or less.
 本発明の二軸配向ポリエステルフィルムの表面Aと厚み方向に対向する表面BのスキューネスSsk-Bは、1.0以上であることが好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。また該スキューネスSsk-Bが4.0以下であることが好ましく、より好ましくは3.0以下、さらに好ましくは2.5以下である。 The skewness Ssk-B of the surface A and the surface B facing each other in the thickness direction of the biaxially oriented polyester film of the present invention is preferably 1.0 or more, more preferably 1.2 or more, and even more preferably 1.5. That's all. Further, the skewness Ssk-B is preferably 4.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less.
 本発明の二軸配向ポリエステルフィルムの表面Aおよび表面Bとのスキューネス差(Ssk-B)-(Ssk-A)が0.1以上3.0以下であることが好ましい。表面Aと表面Bのスキューネス差は、Ssk-AおよびSsk-Bを前述の通りそれぞれ制御した上で表面Aと表面Bの形状差が小さいことを示している。(Ssk-B)-(Ssk-A)が0.1以上であると、表面Bの突起形成が十分となり、フィルムや金属ロールとの滑り性を担保し得る。(Ssk-B)-(Ssk-A)が3.0以下であると、表面Aと表面Bの形状差が大きくなるのを防ぎ、フィルム製膜後に巻き取ってロールとして保管している際に表面Bの突起の突き上げによる表面Aへの凹凸の転写、レジスト成形時におけるレジストへの凹凸の転写又はレジスト形状へのガタつきを抑制し得る。 The skewness difference (Ssk-B)-(Ssk-A) between surface A and surface B of the biaxially oriented polyester film of the present invention is preferably 0.1 or more and 3.0 or less. The difference in skewness between surfaces A and B indicates that the difference in shape between surfaces A and B is small after Ssk-A and Ssk-B are controlled as described above. When (Ssk-B)-(Ssk-A) is 0.1 or more, the formation of protrusions on the surface B is sufficient, and the slipperiness with the film or metal roll can be ensured. When (Ssk-B) - (Ssk-A) is 3.0 or less, the difference in shape between surface A and surface B is prevented from becoming large, and when the film is wound up after film formation and stored as a roll. It is possible to suppress the transfer of unevenness to the surface A due to the pushing up of the protrusions on the surface B, the transfer of the unevenness to the resist during resist molding, or the wobbling of the resist shape.
 本発明の二軸配向ポリエステルフィルムの表面Aと表面Bとのスキューネス差(Ssk-B)-(Ssk-A)を上記範囲とするには、前述した方法にて表面Aおよび表面Bの表面形状を制御することで達成できる。本発明の二軸配向ポリエステルフィルムの表面Aと表面BのスキューネスSsk差、(Ssk-A)-(Ssk-B)は0.1以上が好ましく、より好ましくは0.3以上、さらに好ましくは0.5以上である。該スキューネス差(Ssk-B)-(Ssk-A)は3.0以下が好ましく、より好ましくは2.5以下、さらに好ましくは2.0以下である。 In order to set the skewness difference (Ssk-B) - (Ssk-A) between surface A and surface B of the biaxially oriented polyester film of the present invention within the above range, the surface shapes of surface A and surface B can be This can be achieved by controlling the The skewness Ssk difference (Ssk-A)-(Ssk-B) between surface A and surface B of the biaxially oriented polyester film of the present invention is preferably 0.1 or more, more preferably 0.3 or more, and even more preferably 0. .5 or more. The skewness difference (Ssk-B)-(Ssk-A) is preferably 3.0 or less, more preferably 2.5 or less, still more preferably 2.0 or less.
 本発明の二軸配向ポリエステルフィルムは、表面B側から光学顕微鏡により観察される、フィルム厚み方向3μmの領域に存在する長径2.0μm以上の粗大物の数をN(個/8.25mm)とした場合に、Nが20個以下であることが好ましい。ここでの長径とは、表面B側からフィルムを垂直に観察した場合に得られる粗大物の画像において、粗大物の投影図に外接する直方体における最も長い長軸寸法のことを指す。フィルム厚み方向3μmの領域に存在する長径2.0μm以上の粗大物の数N(個/8.25mm)は表面Bを構成する層中、または表面Bを構成する層厚みが3μm未満である場合には中間層までに含有される凝集粒子の個数を反映した値であり、Nを10個/8.25mm以下とすることで次世代微細レジスト配線(L/S 5/5μm)においてもピンホール欠陥の発生を抑制できる。N(個/8.25mm)の範囲としては10以下が好ましく、より好ましくは8以下である。 In the biaxially oriented polyester film of the present invention, the number of coarse particles with a major diameter of 2.0 μm or more existing in a region of 3 μm in the film thickness direction observed from the surface B side with an optical microscope is set as N (pieces/8.25 mm 2 ). In this case, it is preferable that N be 20 or less. The long axis here refers to the longest major axis dimension of a rectangular parallelepiped circumscribing the projected view of the large object in an image of the large object obtained when the film is observed perpendicularly from the surface B side. The number N (pieces/8.25 mm 2 ) of coarse particles with a major axis of 2.0 μm or more existing in a region of 3 μm in the film thickness direction is in the layer constituting surface B or when the layer thickness constituting surface B is less than 3 μm. is a value that reflects the number of aggregated particles contained up to the intermediate layer, and by setting N to 10 pieces/8.25 mm2 or less, pinholes can be avoided even in next-generation fine resist wiring (L/S 5/5 μm). The occurrence of defects can be suppressed. The range of N (pieces/8.25 mm 2 ) is preferably 10 or less, more preferably 8 or less.
 前記P1層側からフィルム厚み方向3μmの領域に存在する長径2.0μm以上の粗大物の数であるN(個/8.25mm)を好ましい範囲とする手法は、押出機で溶融して押出したポリマーを、フィルタにより濾過する手法である。二軸配向ポリエステルフィルムに含有させる粒子やポリエステル樹脂を重合させる際の触媒残渣、および製膜工程外部から混入するごく小さな異物もフィルム中に入ると粗大突起欠陥となるため、フィルタには、例えば2μm以上もしくは5μm以上の異物を95%以上捕集する高精度のものを用いることが有効である。また、本発明の二軸配向ポリエステルフィルムに粒子を含有させる際に粒子マスターペレットを用いる場合には粒子マスターペレットを作成する際にも同様のフィルタを用いることがより好ましい形態である。 The method of setting the preferable range of N (pieces/8.25 mm 2 ), which is the number of coarse particles with a major diameter of 2.0 μm or more existing in a region of 3 μm in the film thickness direction from the P1 layer side, is a method that uses a polymer melted and extruded with an extruder. This is a method of filtering the information using a filter. Particles contained in the biaxially oriented polyester film, catalyst residues from the polymerization of the polyester resin, and very small foreign matter that enter the film from outside the film forming process will cause coarse protrusion defects if they enter the film. It is effective to use a highly accurate one that can capture 95% or more of foreign particles with a diameter of 5 μm or more. Furthermore, when particle master pellets are used to incorporate particles into the biaxially oriented polyester film of the present invention, it is more preferable to use a similar filter when preparing the particle master pellets.
 また、本発明のドライフィルムレジスト用積層ポリエステルフィルムに粒子を含有させる際に粒子マスターペレットの粒子含有量を調製する方法としては、高濃度の粒子マスターペレットを作っておき、それを製膜時に粒子を実質的に含有しないポリエステル樹脂で希釈して粒子の含有量を調節する方法が有効である。この際、粒子を含有しないポリエステル樹脂の固有粘度を粒子マスターペレットの固有粘度よりも高く調整しておくことで、上記したフィルム厚み方向3μmの領域に存在する長径2.0μm以上の粗大物の数を低減し得る。また、粒子マスターペレットの固有粘度が粒子を含有しないポリエステル樹脂の固有粘度よりも高い場合や同じ場合は、粒子の分散性が低下し粒子間距離が近くなることにより、粒子の凝集物が大きくなり上記したフィルム厚み方向3μmの領域に存在する長径2.0μm以上の粗大物が増加する傾向にある。 In addition, as a method for adjusting the particle content of particle master pellets when incorporating particles into the laminated polyester film for dry film resist of the present invention, a highly concentrated particle master pellet is made in advance, and the particles are added during film formation. An effective method is to adjust the particle content by diluting the particles with a polyester resin that does not substantially contain the particles. At this time, by adjusting the intrinsic viscosity of the polyester resin that does not contain particles to be higher than the intrinsic viscosity of the particle master pellet, the number of coarse particles with a major diameter of 2.0 μm or more existing in the above-mentioned 3 μm region in the film thickness direction is reduced. It is possible. In addition, if the intrinsic viscosity of the particle master pellet is higher than or the same as that of the polyester resin that does not contain particles, the dispersibility of particles decreases and the distance between particles becomes shorter, resulting in larger particle aggregates. There is a tendency for coarse particles with a major diameter of 2.0 μm or more to increase in the above-mentioned region of 3 μm in the film thickness direction.
 本発明の二軸配向ポリエステルフィルムの粒子を含有させる際に用いる粒子マスターペレットの粒子含有量は、表面Bを構成する層に添加する粒子の中で最も粒子径の大きい粒子では粒子含有量を粒子マスターペレットの重量に対して0.5質量%以下とすることが好ましく、0.3質量%以下とすることがより好ましい。表面Bを構成する層に添加する粒子の中で最も粒子径の大きい粒子の粒子マスターペレットの粒子含有量が0.5質量%以下であると、製膜時に粒子を実質的に含有しないポリエステル樹脂へ添加し分散させる場合に粒子の凝集により上記したフィルム厚み方向3μmの領域に存在する長径2.0μm以上の粗大物の数が多くなるのを抑制できる。 The particle content of the particle master pellet used to contain the particles of the biaxially oriented polyester film of the present invention is as follows: It is preferably 0.5% by mass or less, more preferably 0.3% by mass or less based on the weight of the master pellet. If the particle content of the particle master pellet, which is the particle with the largest particle size among the particles added to the layer constituting surface B, is 0.5% by mass or less, the polyester resin does not substantially contain particles during film formation. When added to and dispersed in a film, it is possible to suppress an increase in the number of coarse particles having a major axis of 2.0 μm or more existing in the above-mentioned region of 3 μm in the film thickness direction due to particle aggregation.
 本発明の二軸配向ポリエステルフィルムの粒子を含有させる際に用いる粒子マスターペレットの粒子含有量は、表面Bを構成する層に添加する粒子の中で最も粒子径の大きい粒子以外の粒子では粒子含有量を粒子マスターペレットの重量に対して2.0質量%以下とすることが好ましく、1.5質量%以下とすることがより好ましい。表面Bを構成する層に添加する粒子の中で最も粒子径の大きい粒子以外の粒子マスターペレットの粒子含有量を2.0質量%以下とすることにより、製膜時に粒子を実質的に含有しないポリエステル樹脂へ添加し分散させる場合に粒子の凝集によって上記したフィルム厚み方向3μmの領域に存在する長径2.0μm以上の粗大物の数が増大するのを抑制できる。 The particle content of the particle master pellet used when containing the particles of the biaxially oriented polyester film of the present invention is as follows: The amount is preferably 2.0% by mass or less, more preferably 1.5% by mass or less, based on the weight of the particle master pellet. By setting the particle content of the particle master pellet to 2.0% by mass or less other than particles with the largest particle size among the particles added to the layer constituting surface B, substantially no particles are contained during film formation. When added to a polyester resin and dispersed, it is possible to suppress an increase in the number of coarse particles having a major axis of 2.0 μm or more existing in the above-mentioned region of 3 μm in the film thickness direction due to particle aggregation.
 本発明の二軸配向ポリエステルフィルムは、フィルム温度を90℃から130℃まで昇温する際のフィルム寸法変化率をΔL90-130℃(ppm/℃)とした場合に、幅方向(TD方向)、長手方向(MD方向)の少なくとも一方向が-50以上150以下であることが好ましい。 In the biaxially oriented polyester film of the present invention, when the film dimensional change rate is ΔL90-130°C (ppm/°C) when the film temperature is raised from 90°C to 130°C, the width direction (TD direction), It is preferable that at least one direction in the longitudinal direction (MD direction) is -50 or more and 150 or less.
 フィルム温度を90℃から130℃まで昇温する際のフィルム寸法変化率をΔL90-130℃(ppm/℃)は、後述する熱機械分析(ThermoMechanical Analysis:TMA)測定にて得られる値であり、本発明の二軸配向ポリエステルフィルムがラミネート工程での高温ラミネートロールにて加熱された際の寸法変化率を表す値であり、値が正であれば膨張し、値が負であれば収縮することを表す値である。前記ΔL90-130℃(ppm/℃)を-50以上とすることで、熱収縮を適切な範囲に小さくすることが出来る。これにより、高温ラミネート工程にて、従来ではレジスト層に比べ二軸配向ポリエステルフィルムが大きく熱収縮することで、二軸配向ポリエステル側にカールが発生し、密着させた銅箔基板とレジスト層が剥がれ、銅箔基板とレジスト層間に浮きが発生することがあったが、本発明ではこれを抑制できる。ΔL90-130℃(ppm/℃)の下限値としてはより好ましくは0以上である。また前記ΔL90-130℃(ppm/℃)を150以下とすることで、熱膨張を適切な範囲に小さくすることができる。高温ラミネート工程にて、従来はレジスト層に比べ二軸配向ポリエステルフィルムが大きく膨張することで、二軸配向ポリエステルフィルムに張り合わされたレジスト層が過剰に引っ張られ、レジスト層中に微小な欠陥が発生し、そこを起点として銅箔基板とレジスト層との間に浮きが発生することがあったが、本発明ではこれを抑制できる。前記ΔL90-130℃(ppm/℃)の上限値としては、より好ましくは100以下である。 The film dimensional change rate ΔL90-130°C (ppm/°C) when the film temperature is raised from 90°C to 130°C is a value obtained by thermomechanical analysis (TMA) measurement described below. This is a value representing the dimensional change rate when the biaxially oriented polyester film of the present invention is heated with a high-temperature laminating roll in the lamination process, and if the value is positive, it will expand, and if the value is negative, it will shrink. It is a value that represents By setting the ΔL90-130°C (ppm/°C) to -50 or more, the thermal shrinkage can be reduced to an appropriate range. As a result, during the high-temperature lamination process, the biaxially oriented polyester film undergoes greater heat shrinkage than the conventional resist layer, causing curling on the biaxially oriented polyester side and causing the resist layer to peel off from the copper foil substrate that is in close contact with it. However, lifting may occur between the copper foil substrate and the resist layer, but this can be suppressed in the present invention. The lower limit of ΔL90-130°C (ppm/°C) is more preferably 0 or more. Furthermore, by setting the ΔL90-130°C (ppm/°C) to 150 or less, the thermal expansion can be reduced to an appropriate range. During the high-temperature lamination process, the biaxially oriented polyester film expands more than the conventional resist layer, which causes the resist layer attached to the biaxially oriented polyester film to be stretched excessively, causing minute defects in the resist layer. However, lifting may occur between the copper foil substrate and the resist layer starting from this point, but the present invention can suppress this. The upper limit of ΔL90-130°C (ppm/°C) is more preferably 100 or less.
 前記ΔL90-130℃(ppm/℃)を-50以上150以下とする方法に関しては、後述する二軸延伸ポリエステルフィルムを製膜する際の横延伸工程にて行う、熱処理、および幅方向の弛緩処理に関して、二軸延伸を行ったフィルムに一定温度以上の熱処理を施すと共に、一定温度以上の弛緩処理を施すことで達成できる。 Regarding the method for adjusting the ΔL90-130°C (ppm/°C) to -50 or more and 150 or less, heat treatment and relaxation treatment in the width direction are carried out in the transverse stretching step when forming a biaxially stretched polyester film, which will be described later. This can be achieved by subjecting the biaxially stretched film to a heat treatment at a temperature above a certain temperature and at the same time subjecting it to relaxation treatment at a temperature above a certain temperature.
 具体的には221℃以上240℃以下の温度で積層ポリエステルフィルムに熱処理を施すことと共に、熱処理温度と同じ温度で幅方向に1%以上4%以下の割合で弛緩処理(リラックス処理)を施すことで、二軸延伸により二軸配向したフィルム内のポリエステル樹脂分子鎖に残存する過剰な配向応力を緩和させながら僅かに幅方向に収縮させることで、平面性を保ったまま熱寸法安定性を向上させることを達成できる。幅方向の弛緩処理の割合を1%以上とすることで前記配向応力緩和の効果が得られ、幅方向の弛緩処理の割合を4%以下とすることで急激な熱収縮により二軸配向ポリエステルフィルムにトタンジワと呼ばれる周期的なシワが入り品位が低下することを抑制できる。熱処理温度のさらに好ましい範囲としては225℃以上240℃以下であり、最も好ましくは230℃以上240℃以下ある。また、熱処理温度で施す幅方向の弛緩処理(リラックス処理)の割合の好ましい範囲として、下限値は1.5%以上がより好ましく、上限値は2.5%以下であることがより好ましい。 Specifically, the laminated polyester film is heat treated at a temperature of 221°C or more and 240°C or less, and at the same temperature as the heat treatment temperature, a relaxation treatment is performed at a rate of 1% or more and 4% or less in the width direction. By biaxially stretching, the excessive orientation stress remaining in the polyester resin molecular chains within the biaxially oriented film is alleviated and the film is slightly shrunk in the width direction, thereby improving thermal dimensional stability while maintaining flatness. You can achieve what you want. By setting the ratio of relaxation treatment in the width direction to 1% or more, the effect of relieving the orientation stress can be obtained, and by setting the ratio of relaxation treatment in the width direction to 4% or less, the biaxially oriented polyester film due to rapid thermal shrinkage can be obtained. It is possible to prevent periodic wrinkles called porcelain jigs from forming on the surface and degrading the quality of the material. A more preferable range of the heat treatment temperature is 225°C or more and 240°C or less, most preferably 230°C or more and 240°C or less. Further, as a preferable range of the ratio of relaxation treatment in the width direction performed at the heat treatment temperature, the lower limit is more preferably 1.5% or more, and the upper limit is more preferably 2.5% or less.
 前記ΔL90-130℃(ppm/℃)が-50以上150以下を満たす方向において、前記ΔL90-130℃(ppm/℃)をより好ましい範囲とするためには、前記幅方向の弛緩処理を行った後、ラミネート加工温度域に相当する90℃以上150℃以下の温度で0.5%以上3%以下の割合で幅方向の弛緩処理を施すことが好ましい。これは前記温度での幅方向の弛緩処理を行うことで、フィルム内のポリエステル樹脂分子鎖がラミネート加工温度で安定な構造をとるためである。 In order to make the ΔL90-130°C (ppm/°C) in a more preferable range in the direction where the ΔL90-130°C (ppm/°C) satisfies -50 or more and 150 or less, the relaxation treatment in the width direction was performed. After that, it is preferable to perform a relaxation treatment in the width direction at a temperature of 90° C. or more and 150° C. or less, which corresponds to the laminating temperature range, at a rate of 0.5% or more and 3% or less. This is because by performing the relaxation treatment in the width direction at the above temperature, the polyester resin molecular chains within the film take on a stable structure at the lamination processing temperature.
 また、前記90℃以上150℃以下の温度にて行う弛緩処理方法としては、2つの異なる温度域で幅方向の弛緩処理を2回以上行うことが更に好ましく、115℃以上150℃以下の温度で0.5%以上2.0%以下の割合で幅方向に弛緩処理を施し、その後90℃以上115℃未満の温度で0.3%以上2.0%以下の割合で幅方向に弛緩処理を施すことが最も好ましい。好ましい弛緩処理方法を用いることで、後述する90℃から110℃まで昇温する際のフィルム寸法変化率ΔL90-110℃(ppm/℃)、および110℃から130℃まで昇温する際のフィルム寸法変化率ΔL110-130℃(ppm/℃)のいずれも増大させることが可能であり、それに伴い前記ΔL90-130℃(ppm/℃)の値を増大させることが可能であるためである。115℃以上150℃以下の温度で施す、幅方向の弛緩処理(リラックス処理)の割合としては、下限値としては1.0%以上がより好ましく、上限値としては1.8%以下がより好ましい。また、90℃以上115℃未満の温度で施す、幅方向の弛緩処理(リラックス処理)の好ましい割合として、下限値は0.5%以上がより好ましく、上限値は1.5%以下がより好ましく、0.8%以下がさらに好ましい。 Further, as the relaxation treatment method performed at a temperature of 90°C or more and 150°C or less, it is more preferable to perform the relaxation treatment in the width direction two or more times in two different temperature ranges, and at a temperature of 115°C or more and 150°C or less. Relaxation treatment is performed in the width direction at a rate of 0.5% or more and 2.0% or less, and then relaxation treatment is performed in the width direction at a rate of 0.3% or more and 2.0% or less at a temperature of 90°C or more and less than 115°C. It is most preferable to apply By using a preferred relaxation treatment method, the film dimensional change rate ΔL90-110°C (ppm/°C) when heating from 90°C to 110°C, which will be described later, and the film dimension when heating from 110°C to 130°C. This is because it is possible to increase both the rate of change ΔL110-130°C (ppm/°C), and accordingly, it is possible to increase the value of ΔL90-130°C (ppm/°C). The lower limit of the ratio of relaxation treatment in the width direction (relaxation treatment) performed at a temperature of 115° C. or higher and 150° C. or lower is more preferably 1.0% or more, and the upper limit is more preferably 1.8% or less. . Further, as a preferable ratio of relaxation treatment in the width direction performed at a temperature of 90°C or more and less than 115°C, the lower limit is more preferably 0.5% or more, and the upper limit is more preferably 1.5% or less. , more preferably 0.8% or less.
 また、前記熱処理以降に行われる各温度での弛緩処理(リラックス処理)割合の合計は5%以下とすることが好ましい。弛緩処理割合の合計を5%以下とすることで、二軸配向ポリエステルフィルムが過剰に弛緩させた状態で熱収縮させることでトタンジワと呼ばれる周期的なシワが入り品位が低下することを抑制できる。より好ましくは弛緩処理(リラックス処理)割合の合計が4.5%以下である。 Furthermore, it is preferable that the total percentage of relaxation treatments performed at each temperature after the heat treatment is 5% or less. By setting the total relaxation treatment ratio to 5% or less, it is possible to suppress the deterioration of quality due to periodic wrinkles called galvanized iron wrinkles caused by thermal shrinkage of the biaxially oriented polyester film in an excessively relaxed state. More preferably, the total relaxation treatment rate is 4.5% or less.
 前記レジスト層との熱寸法変化率を合わせる観点から、本発明の二軸配向ポリエステルフィルムを高温ラミネート加工に用いる場合には、前記ΔL90-130℃(ppm/℃)が-50以上150以下となる方向をラミネート加工時のロールの幅方向(TD方向)にすることがより好ましい形態である。 From the viewpoint of matching the thermal dimensional change rate with the resist layer, when the biaxially oriented polyester film of the present invention is used for high-temperature lamination processing, the ΔL90-130°C (ppm/°C) is -50 or more and 150 or less. A more preferable form is that the direction is the width direction (TD direction) of the roll during lamination.
 本発明の二軸配向ポリエステルフィルムは、ドライフィルムレジスト支持体用フィルムとして好適に用いることができる。表面を5μm角視野でAFM観察した際に、少なくとも一方の表面が、(1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下、(2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下を満たす表面Aである二軸配向ポリエステルフィルムを、レジスト成形時におけるレジスト塗工面として用いることで、レジスト形状の均一性を損なうことなく製造工程金属ロールに対して優れた滑り性を示し、また、ロール状に巻き取る際の巻き取り性を高めることができる。 The biaxially oriented polyester film of the present invention can be suitably used as a film for a dry film resist support. When the surface is observed with AFM in a 5 μm square field of view, at least one surface has (1a) the number of valley regions with a height of -2 nm or less from the reference surface of 100 pieces/5 μm□ or more, and 500 pieces/5 μm□ or less, (2a) By using a biaxially oriented polyester film, which is surface A, where the average cross-sectional area of the valley region at a height of -2 nm or less from the reference plane satisfies 2000 nm 2 or more and 8000 nm 2 or less as a resist coating surface during resist molding. , it exhibits excellent sliding properties on metal rolls during the manufacturing process without impairing the uniformity of the resist shape, and can also improve the winding performance when winding into a roll.
 本発明の二軸配向ポリエステルフィルムは、積層セラミックコンデンサーを製造する工程においてグリーンシート成形の支持体用フィルムとして好適に用いることができる。表面を5μm角視野でAFM観察した際に、少なくとも一方の表面が、(1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下、(2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下を満たす表面Aである二軸配向ポリエステルフィルムを、セラミックスラリー塗工面として用いることで、セラミック層へ凹凸を転写することなく製造工程金属ロールに対して優れた滑り性を示し、また、ロール状に巻き取る際の巻き取り性を高めることができる。 The biaxially oriented polyester film of the present invention can be suitably used as a support film for green sheet molding in the process of manufacturing a multilayer ceramic capacitor. When the surface is observed with AFM in a 5 μm square field of view, at least one surface has (1a) the number of valley regions with a height of -2 nm or less from the reference surface of 100 pieces/5 μm□ or more and 500 pieces/5 μm□ or less, (2a) By using a biaxially oriented polyester film, which is surface A, where the average cross-sectional area of the valley region at a height of -2 nm or less from the reference plane satisfies 2000 nm 2 or more and 8000 nm 2 or less, as the ceramic slurry coating surface, the ceramic layer It exhibits excellent sliding properties on metal rolls in the manufacturing process without transferring unevenness to the surface, and can improve the winding performance when winding into a roll.
 本発明の二軸配向ポリエステルフィルムは、表面Aが含まれる層(P1層)とP1層と対向する層(P2層)を含み、P1層及びP2層が最表面に配される2層以上の構成(P1層/P2層、またはP1層/P3層/P2層の構成)であることが好ましい。特に各層の粒子添加量を調整することにより光学特性及び滑り性を両立可能である観点から、3層構成とすることが好ましい。 The biaxially oriented polyester film of the present invention includes a layer containing surface A (P1 layer) and a layer facing the P1 layer (P2 layer), and has two or more layers in which the P1 layer and the P2 layer are arranged on the outermost surface. The structure (P1 layer/P2 layer or P1 layer/P3 layer/P2 layer structure) is preferable. In particular, a three-layer structure is preferred from the viewpoint of achieving both optical properties and slipperiness by adjusting the amount of particles added in each layer.
 P1層とP2層、P3層等の他の樹脂層を積層する方法としては特に制限されないが、例えば、後述する共押出法、製膜途中のフィルムに他の樹脂層原料を押出機に投入して溶融押出して口金から押出しながらラミネートする方法(溶融ラミネート法)、製膜後のフィルム同士を接着剤層とを介して積層する方法などが挙げられる。中でも前述の表面処理による突起形成と積層を同時に行える共押出法が好ましい。 The method of laminating other resin layers such as the P1 layer, P2 layer, and P3 layer is not particularly limited, but examples include the coextrusion method described below, and the method of adding other resin layer raw materials to the film in the middle of film formation into an extruder. Examples include a method of melt-extruding the film and laminating it while extruding it from a die (melt lamination method), and a method of laminating the films after film formation with an adhesive layer interposed therebetween. Among these, the coextrusion method is preferred because it allows the formation of protrusions by the above-mentioned surface treatment and lamination at the same time.
 2層以上の積層フィルムである場合、製膜時における傷つきの防止や、延伸時における摩耗性の向上を図る観点から、本発明の特性を損なわない範囲で各層に粒子を含有せしめてもよい。本発明の二軸配向ポリエステルフィルムに粒子を含有せしめる場合、有機粒子若しくは無機粒子、又はその両方を含有してもよい。 In the case of a laminated film with two or more layers, from the viewpoint of preventing damage during film formation and improving abrasion resistance during stretching, each layer may contain particles within a range that does not impair the characteristics of the present invention. When the biaxially oriented polyester film of the present invention contains particles, it may contain organic particles, inorganic particles, or both.
 本発明の二軸配向ポリエステルフィルムは、厚みが10μm以上500μm以下であることが好ましく、10μm以上40μm以下であることがより好ましい。特に好ましくは15μm以上20μm以下である。厚みを500μm以下とすることにより、フィルムの光透過性などの光学特性をより向上し得る。厚みを10μm以上とすることにより、フィルムを各種用途に用いる際の工程で熱がかかる場合において平面性をより向上し得る。 The biaxially oriented polyester film of the present invention preferably has a thickness of 10 μm or more and 500 μm or less, more preferably 10 μm or more and 40 μm or less. Particularly preferably, the thickness is 15 μm or more and 20 μm or less. By setting the thickness to 500 μm or less, optical properties such as light transmittance of the film can be further improved. By setting the thickness to 10 μm or more, flatness can be further improved when heat is applied during the process of using the film for various purposes.
 本発明の二軸配向ポリエステルフィルムの、固有粘度(IV)は、好ましくは0.45以上、より好ましくは0.50以上である。IVは、分子鎖の長さを反映した数字であり、分子鎖が長い方が同一分子鎖の中で結晶部と非晶部を明確に形成しやすいため、大気圧グロー放電処理することでより微細な突起を形成することが容易となるため好ましい。 The intrinsic viscosity (IV) of the biaxially oriented polyester film of the present invention is preferably 0.45 or more, more preferably 0.50 or more. IV is a number that reflects the length of the molecular chain, and the longer the molecular chain, the easier it is to clearly form crystalline and amorphous parts within the same molecular chain. This is preferred because it facilitates the formation of fine protrusions.
 本発明の二軸配向ポリエステルフィルムの表面Aの表面自由エネルギー(mN/m)は、40以上48以下であることが好ましく、より好ましくは43以上45以下である。該表面自由エネルギー(mN/m)が40以上、48以下であることにより、A面に他の層を積層させる場合の密着性を向上させて、欠点の発生を抑制できる。フィルム表面に大気圧グロー放電処理し、その後熱処理する工程を含む後述の製膜方法では、大気圧グロー放電処理によるアッシングで形成された官能基が、熱処理によって活性を失うことで表面自由エネルギーを好ましい範囲とすることができる。 The surface free energy (mN/m) of the surface A of the biaxially oriented polyester film of the present invention is preferably 40 or more and 48 or less, more preferably 43 or more and 45 or less. When the surface free energy (mN/m) is 40 or more and 48 or less, it is possible to improve the adhesion when laminating another layer on the A side and suppress the occurrence of defects. In the film forming method described below, which includes a step of subjecting the film surface to atmospheric pressure glow discharge treatment and then heat treatment, the functional groups formed by ashing by atmospheric pressure glow discharge treatment lose their activity through heat treatment, thereby improving the surface free energy. It can be a range.
 本発明の二軸配向ポリエステルフィルムは、製膜ライン方向である長手方向および幅方向の引裂伝播抵抗が4500mN/mm以上10000mN/mm以下であることが好ましい。 The biaxially oriented polyester film of the present invention preferably has a tear propagation resistance of 4,500 mN/mm or more and 10,000 mN/mm or less in the longitudinal direction and the width direction, which are the film forming line directions.
 前記引裂伝播抵抗が4500mN/mm以上であることにより、本発明の二軸配向ポリエステルフィルムの製造時や、ドライフィルムレジスト支持体フィルとして用いた場合の搬送工程においてフィルムの破断を防止し、歩留まりを向上し得る。 By having the tear propagation resistance of 4,500 mN/mm or more, it is possible to prevent the film from breaking during the production of the biaxially oriented polyester film of the present invention or during the transportation process when used as a dry film resist support film, and to reduce the yield. It can be improved.
 前記引裂伝播抵抗が10000mN/mm以下であることにより、フィルムが高靭性となるのを防ぎ、製膜工程でのトリミング加工性を向上し得る。長手方向および幅方向の引裂伝播抵抗は4500mN/mm以上、8000mN/mm以下がより好ましく、5000mN/mm以上、7000mN/mm以下がさらに好ましい。 By having the tear propagation resistance of 10,000 mN/mm or less, it is possible to prevent the film from becoming too tough and improve trimming processability in the film forming process. The tear propagation resistance in the longitudinal direction and the width direction is more preferably 4500 mN/mm or more and 8000 mN/mm or less, and even more preferably 5000 mN/mm or more and 7000 mN/mm or less.
 長手方向および幅方向の引裂伝播抵抗を好ましい範囲とするには、二軸配向ポリエステルフィルム製造時の面積倍率(長手方向の延伸倍率×幅方向の延伸倍率)を好ましくは10倍以上25倍以下とし、二軸延伸により二軸配向せしめた後、熱処理を実施し、熱処理する温度を、使用する(ポリエステルの融点-40)℃以上、融点以下とすることで制御できる。 In order to keep the tear propagation resistance in the longitudinal direction and the width direction within a preferable range, the area magnification (stretching ratio in the longitudinal direction x stretching ratio in the width direction) during production of the biaxially oriented polyester film is preferably 10 times or more and 25 times or less. After biaxial orientation by biaxial stretching, heat treatment is performed, and the temperature of the heat treatment can be controlled by setting the temperature at which the polyester is used (melting point -40° C.) or higher and lower than the melting point.
 次に、本発明の二軸配向ポリエステルフィルムの製造方法について説明する。 Next, the method for producing the biaxially oriented polyester film of the present invention will be explained.
 本発明に用いられるポリエステルを得る方法としては、常法による重合方法が採用できる。例えば、テレフタル酸等のジカルボン酸成分またはそのエステル形成性誘導体と、エチレングリコール等のジオール成分またはそのエステル形成性誘導体とを公知の方法でエステル交換反応あるいはエステル化反応させた後、溶融重合反応を行うことによって得ることができる。また、必要に応じ、溶融重合反応で得られたポリエステルを、ポリエステルの融点温度以下にて、固相重合反応を行ってもよい。 A conventional polymerization method can be used to obtain the polyester used in the present invention. For example, a dicarboxylic acid component such as terephthalic acid or its ester-forming derivative is transesterified or esterified with a diol component such as ethylene glycol or its ester-forming derivative by a known method, and then a melt polymerization reaction is performed. You can get it by doing. Further, if necessary, the polyester obtained by the melt polymerization reaction may be subjected to a solid phase polymerization reaction at a temperature below the melting point temperature of the polyester.
 本発明におけるポリエステルフィルムは、従来公知の製造方法で得ることが出来るが、延伸、熱処理工程を以下の条件で製造することにより、少なくとも一方の表面を上述の通り好ましい物性を持つ表面Aとすることができる。 The polyester film in the present invention can be obtained by conventionally known manufacturing methods, but by manufacturing the stretching and heat treatment steps under the following conditions, at least one surface can be made into surface A having the preferable physical properties as described above. I can do it.
 本発明におけるポリエステルフィルムの製造方法としては、例えば、必要に応じて乾燥した原料を押出機内で加熱溶融し、口金から冷却したキャストドラム上に押し出してシート状に加工する方法(溶融キャスト法)が挙げられる。その他の方法として、例えば、原料を溶媒に溶解させ、その溶液を口金からキャストドラム、エンドレスベルト等の支持体上に押し出して膜状とし、次いでかかる膜層から溶媒を乾燥除去させてシート状に加工する方法(溶液キャスト法)等も挙げられる。 As a method for manufacturing the polyester film in the present invention, for example, if necessary, a method (melt casting method) in which dried raw materials are heated and melted in an extruder and extruded from a die onto a cooled cast drum to form a sheet. Can be mentioned. Other methods include, for example, dissolving the raw material in a solvent, extruding the solution from a die onto a support such as a cast drum or endless belt to form a film, and then drying and removing the solvent from the film layer to form a sheet. A processing method (solution casting method), etc. may also be mentioned.
 2層以上の積層ポリエステルフィルムを溶融キャスト法により製造する場合、積層ポリエステルフィルムを構成する層毎に押出機を用い、各層の原料を溶融せしめ、これらを押出装置と口金の間に設けられた合流装置にて溶融状態で積層したのち口金に導き、口金からキャストドラム上に押し出してシート状に加工して積層シートを得る方法が好適に挙げられる。 When producing a laminated polyester film with two or more layers by the melt casting method, an extruder is used for each layer constituting the laminated polyester film, the raw materials for each layer are melted, and the raw materials for each layer are melted and transferred to a confluence between the extrusion device and the die. A preferred method is to stack the materials in a molten state in an apparatus, introduce them into a die, extrude them from the die onto a cast drum, and process them into a sheet to obtain a laminated sheet.
 前記シート状に加工した積層シートは、表面温度が好ましくは20℃以上60℃以下に冷却されたキャストドラム上で静電気により密着冷却固化し、未延伸シートを作製する。キャストドラムの温度は、より好ましくは25℃以上60℃以下、さらに好ましくは40℃以上55℃以下である。キャストドラムの表面温度を20℃以下とすることにより、プラズマを照射し、二軸延伸した後のフィルム表面の突起形成が十分となる。キャストドラムの表面温度を60℃以下とすることにより、キャストドラムにフィルムが貼り付くのを防ぎ、未延伸シートを得ることが困難になるのを抑制できる。 The laminated sheet processed into a sheet is cooled and solidified by static electricity on a cast drum whose surface temperature is preferably cooled to 20° C. or higher and 60° C. or lower to produce an unstretched sheet. The temperature of the cast drum is more preferably 25°C or more and 60°C or less, and even more preferably 40°C or more and 55°C or less. By setting the surface temperature of the cast drum to 20° C. or lower, protrusions can be sufficiently formed on the film surface after plasma irradiation and biaxial stretching. By setting the surface temperature of the cast drum to 60° C. or lower, it is possible to prevent the film from sticking to the cast drum and to suppress difficulty in obtaining an unstretched sheet.
 次いで、前記未延伸シートに対し表面処理を施す。該表面処理としては、例えば、ナノインプリントのようにモールドを用いて表面に形状を転写させる方法、紫外光照射やアーク放電によるコロナ処理、グロー放電によるプラズマ処理などが挙げられる。これらの表面処理は未延伸シートを得た直後でも、微延伸を施した後でも、縦および/又は横方向に延伸した後でもよいが、本発明では未延伸シートに表面処理することが好ましい。また、表面処理を施す面はキャストドラムに接していた面(ドラム面)でもキャストドラムに接していない面(非ドラム面)のいずれでもよい。その際、表面処理を施すフィルム面の表面温度が高くなりすぎないよう制御する。 Next, the unstretched sheet is subjected to surface treatment. Examples of the surface treatment include methods such as nanoimprinting in which a shape is transferred to the surface using a mold, corona treatment using ultraviolet light irradiation or arc discharge, plasma treatment using glow discharge, and the like. These surface treatments may be carried out immediately after obtaining the unstretched sheet, after slight stretching, or after stretching in the longitudinal and/or lateral directions, but in the present invention it is preferable to surface-treat the unstretched sheet. Further, the surface to be surface-treated may be either the surface that was in contact with the cast drum (drum surface) or the surface that is not in contact with the cast drum (non-drum surface). At this time, the surface temperature of the film surface to be surface-treated is controlled so as not to become too high.
 その後、二軸配向せしめる。延伸方法としては、例えば、逐次二軸延伸法又は同時二軸延伸法が挙げられる。最初に長手方向、次に幅方向の延伸を行う逐次二軸延伸法が、延伸破れなく本発明の二軸配向ポリエステルフィルムを得る観点から好ましい。 After that, it is biaxially oriented. Examples of the stretching method include a sequential biaxial stretching method and a simultaneous biaxial stretching method. A sequential biaxial stretching method in which stretching is performed first in the longitudinal direction and then in the width direction is preferred from the viewpoint of obtaining the biaxially oriented polyester film of the present invention without stretching tearing.
 二軸延伸においては、面積倍率(長手方向の延伸倍率×幅方向の延伸倍率)を10倍以上25倍以下とすることが好ましく、より好ましくは12倍以上20倍以下である。延伸工程を経て、二軸配向せしめることにより、未延伸フィルムに付与した形状が細分化し、より好ましい表面形状、特に基準面からの高さ-2nm以下の谷領域の個数、平均断面積を好ましい範囲とし得る。面積倍率を10倍以上とすることにより、基準面からの高さ-2nm以下の谷領域が少なくなること、又は平均断面積が小さくなることを抑制できる。面積倍率が25倍以下とすることにより、延伸による破れを抑制できる。 In biaxial stretching, the area magnification (stretching ratio in the longitudinal direction x stretching ratio in the width direction) is preferably 10 times or more and 25 times or less, more preferably 12 times or more and 20 times or less. By biaxially oriented through the stretching process, the shape imparted to the unstretched film is subdivided, and a more desirable surface shape, especially the number of valley regions with a height of -2 nm or less from the reference plane, and the average cross-sectional area are set within a desirable range. It can be done. By setting the area magnification to 10 times or more, it is possible to prevent the valley region having a height of −2 nm or less from the reference plane from decreasing or from decreasing the average cross-sectional area. By setting the area magnification to 25 times or less, tearing due to stretching can be suppressed.
 二軸延伸により二軸配向せしめた後、熱処理することも好ましい実施形態である。熱処理する温度は、使用する熱可塑性樹脂の(融点-40)℃以上、融点以下であることが好ましく、さらに好ましくは(融点-40)℃以上、(融点-15)℃以下である。 It is also a preferred embodiment to carry out heat treatment after biaxial orientation by biaxial stretching. The heat treatment temperature is preferably (melting point -40)°C or higher and lower than the melting point of the thermoplastic resin used, more preferably (melting point -40)°C or higher and (melting point -15)°C or lower.
 使用する熱可塑性樹脂がPETやPENなどの結晶性ポリエステルであり、かつ未延伸フィルムへの形状付与を、大気圧グロー放電処理のアッシング効果にて実施する場合、アッシング処理によって残存する結晶性部分が延伸によって細分化され、さらに熱処理によって該部分を核として結晶成長し、突起形状を好ましい形状とすることができる。熱処理する温度を融点-40℃以上とすることにより、結晶成長が十分となる。熱処理する温度を融点以下とすることにより突起の融解を抑制できる。 When the thermoplastic resin used is a crystalline polyester such as PET or PEN, and the shape is imparted to the unstretched film by the ashing effect of atmospheric pressure glow discharge treatment, the remaining crystalline portions are removed by the ashing treatment. It is divided into small parts by stretching, and then by heat treatment, crystals grow using the parts as nuclei, so that the protrusion shape can be made into a preferable shape. By setting the heat treatment temperature to a melting point of −40° C. or higher, sufficient crystal growth is achieved. Melting of the protrusions can be suppressed by setting the heat treatment temperature to below the melting point.
〔特性の評価方法〕
[A.AFM(Atomic Force Microscope)による評価]
<AFM観察条件>
装置:Dimention Icon with ScanAsyst(Bruker社)
SPMユニット;原子間力顕微鏡(AFM)
カンチレバー:窒化ケイ素製プローブ ScanAsyst Air
走査モード:Scan Asist in Air
走査ライン:512本
走査速度:0.977Hz
Peak Force SetPoint:0.0195V~0.0205V
走査視野:5μm角
測定回数:二軸配向ポリエステルフィルムの場所を変えて20回個所を測定
[Characteristics evaluation method]
[A. Evaluation by AFM (Atomic Force Microscope)]
<AFM observation conditions>
Equipment: Dimention Icon with ScanAsyst (Bruker)
SPM unit; atomic force microscope (AFM)
Cantilever: Silicon nitride probe ScanAsyst Air
Scanning mode: Scan Assist in Air
Scanning line: 512 lines Scanning speed: 0.977Hz
Peak Force Set Point: 0.0195V ~ 0.0205V
Scanning field of view: 5 μm square Number of measurements: Measured 20 times at different locations on the biaxially oriented polyester film
<Flatten処理>
 上記観察条件により得られたフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像を、Flatten処理する。
・Flatten Order:3rd
・Flatten Z Threshholding Direction:No theresholding
・Find Threshold for:the whole image
・Flatten Z Threshold %:0.00%
・Mark Excluded Data:Yes
<Flatten processing>
The film surface image obtained under the above observation conditions is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). The obtained height sensor image of the film surface is subjected to flatten processing.
・Flatten Order: 3rd
・Flatten Z Thresholding Direction: No theresholding
・Find Threshold for: the whole image
・Flatten Z Threshold %: 0.00%
・Mark Excluded Data: Yes
(1)高さ基準面から-2nm以下の谷領域
 フィルム表面の基準面とは前記のFlatten処理条件において決定される高さが0nmの面である。前記解析ソフトのParticle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるTotal CountとAreaのMean値の20個所の平均値を、それぞれ高さの基準面から-2nm以下の谷領域の個数、平均断面積とする。
<Particle Analysisモード設定>
(Detectタブ)
・Threshold Height:-2.00nm
・Feature Direction:Below
・X Axis:Absolute
・Number Histogram Bins:512
・Histogram Filter Cutoff:0.00nm
・Min Peak to Peak:1.00nm
・Left Peak Cutoff:0.00000%
・Right Peak Cutoff:0.00000%
(Modifyタブ)
・Beughbirhood Size:3
・Number Pixels Off:1
・一切のDilate/Erode操作を行わない。
(Selectタブ)
・Image Cursor Mode:Particle Select
・Bound Particles:Yes
・Non-Representative Particles:No
・Height Reference:Relative To Max Peak
・Number Histogram Bins:50
(1) Valley region of −2 nm or less from the height reference plane The reference plane of the film surface is a plane with a height of 0 nm determined under the flatten processing conditions described above. In the Particle Analysis analysis mode of the analysis software, set the items on the Detect tab as shown below to calculate the average value of the Total Count and Area Mean values at 20 locations, each within -2 nm or less from the height reference plane. Let the number of valley regions be the average cross-sectional area.
<Particle Analysis mode setting>
(Detect tab)
・Threshold Height: -2.00nm
・Feature Direction: Below
・X Axis: Absolute
・Number Histogram Bins: 512
・Histogram Filter Cutoff: 0.00nm
・Min Peak to Peak: 1.00nm
・Left Peak Cutoff: 0.00000%
・Right Peak Cutoff: 0.00000%
(Modify tab)
・Boughbirhood Size:3
・Number Pixels Off: 1
・Do not perform any Dilate/Erode operations.
(Select tab)
・Image Cursor Mode: Particle Select
・Bound Particles: Yes
・Non-Representative Particles: No
・Height Reference: Relative To Max Peak
・Number Histogram Bins: 50
(2)高さ基準面から+3nm以上の山領域
 二軸配向ポリエステルフィルムの表面を前記AFM観察条件した後前記、前記同様のFlatten処理を実施し前記解析ソフトのParticle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるTotal CountとAreaのMean値の20個所の平均値を、それぞれ高さの基準面から+3nm以上の谷領域の個数、平均断面積とする。
<Particle Analysisモード設定>
(Detectタブ)
・Threshold Height:3.00nm
・Feature Direction:Above
・X Axis:Absolute
・Number Histogram Bins:512
・Histogram Filter Cutoff:0.00nm
・Min Peak to Peak:1.00nm
・Left Peak Cutoff:0.00000%
・Right Peak Cutoff:0.00000%
(Modifyタブ)
・Beughbirhood Size:3
・Number Pixels Off:1
・一切のDilate/Erode操作を行わない。
(Selectタブ)
・Image Cursor Mode:Particle Select
・Bound Particles:Yes
・Non-Representative Particles:No
・Height Reference:Relative To Max Peak
・Number Histogram Bins:50
(2) Mountain region of +3 nm or more from the height reference plane After subjecting the surface of the biaxially oriented polyester film to the above AFM observation conditions, perform the same flatten process as above, and select the items on the Detect tab in the Particle Analysis mode of the analysis software. The average values of the Total Count and Area Mean values at 20 locations, which are calculated by setting as shown below, are the number and average cross-sectional area of valley regions that are +3 nm or more from the height reference plane, respectively.
<Particle Analysis mode setting>
(Detect tab)
・Threshold Height: 3.00nm
・Feature Direction: Above
・X Axis: Absolute
・Number Histogram Bins: 512
・Histogram Filter Cutoff: 0.00nm
・Min Peak to Peak: 1.00nm
・Left Peak Cutoff: 0.00000%
・Right Peak Cutoff: 0.00000%
(Modify tab)
・Boughbirhood Size:3
・Number Pixels Off: 1
・Do not perform any Dilate/Erode operations.
(Select tab)
・Image Cursor Mode: Particle Select
・Bound Particles: Yes
・Non-Representative Particles: No
・Height Reference: Relative To Max Peak
・Number Histogram Bins: 50
(3)クルトシス
 二軸配向ポリエステルフィルムの表面を前記AFM観察条件した後、前記同様のFlatten処理を実施し前記解析ソフトのRoughness解析モードで得られた表面像の全範囲を指定し、STOP Band InputsタブおよびPeak Inputsタブの各項目を以下に設定することで算出されるKurtosis値の20個所の平均値をクルトシスとして求める。
(STOP Band Inputsタブ)
Use Threshold:Off
Threshold Height:0.00nm
Feature Direction:Above
Number Histogram Bins:512
Boundary Particles:Yes
Non-Representative Particles:No
Particle Filter Sigma:1.00
(Peak Inputsタブ)
Peak:On
Peak threshold reference:Zero
Peak threshold value type:Absolute value
Peak threshold value:0.00nm
Zero Crossing:On
(3) After subjecting the surface of the Kurtosis biaxially oriented polyester film to the above AFM observation conditions, perform the same Flatten process as above, specify the entire range of the surface image obtained in the Roughness analysis mode of the analysis software, and perform STOP Band Inputs. Kurtosis is determined as the average value of 20 Kurtosis values calculated by setting each item of the tab and Peak Inputs tab as follows.
(STOP Band Inputs tab)
Use Threshold:Off
Threshold Height: 0.00nm
Feature Direction: Above
Number Histogram Bins: 512
Boundary Particles: Yes
Non-Representative Particles: No
Particle Filter Sigma:1.00
(Peak Inputs tab)
Peak: On
Peak threshold reference: Zero
Peak threshold value type: Absolute value
Peak threshold value: 0.00nm
Zero Crossing: On
[B.XPS(X-ray Photoelectron Spectroscopy)による評価]
装置:アルバックファイ社製 光電子分光分析装置ESCA5700
使用線源:Mg
積算回数:6回
ナロースキャン対象の元素種:炭素元素(C1s)、酸素元素(O1s)、窒素元素(N1s)
サンプル測定回数:各サンプル同士が少なくとも5μm以上離れるように場所を変え、20回測定を行う。
測定値:測定した20か所の画像に関して解析を行い、各数値を測定しその平均値をサンプルの持つ各数値として扱う。
[B. Evaluation by XPS (X-ray Photoelectron Spectroscopy)]
Equipment: Photoelectron spectrometer ESCA5700 manufactured by ULVAC-PHI
Radiation source used: Mg
Number of integrations: 6 Element types targeted for narrow scan: Carbon element (C1s), oxygen element (O1s), nitrogen element (N1s)
Number of sample measurements: Measure 20 times at different locations so that each sample is separated by at least 5 μm.
Measured values: Analyze the images of the 20 measured locations, measure each numerical value, and treat the average value as each numerical value of the sample.
<表面A’及び表面aのXPS測定条件>
・測定角度:45°
・Neutralization:ON
<XPS measurement conditions for surface A' and surface a>
・Measurement angle: 45°
・Neutralization: ON
<深さ方向のエッチング条件>
 アルゴンイオンを用いて二軸配向ポリエステルフィルム熱可塑性樹脂フィルムの表面A’から厚み500nm±10nmをスパッタエッチングして除去する。アルゴンエッチングにより除去した厚みは、透過型電子顕微鏡(TEM)による断面観察でアルゴンエッチング前後の厚みを測定することで確認する。得られたエッチング済み表面aを上記XPS測定条件と同様にして各元素種の測定を実施する。
・装置 :ESCA 5800(アルバックファイ社製)
・イオンエッチング条件:Arガスクラスターイオン(Ar-GCIB)
・イオンエッチング速度:1.8nm/min
<Etching conditions in the depth direction>
A thickness of 500 nm±10 nm is removed by sputter etching from the surface A' of the biaxially oriented polyester film thermoplastic resin film using argon ions. The thickness removed by argon etching is confirmed by measuring the thickness before and after argon etching through cross-sectional observation using a transmission electron microscope (TEM). The obtained etched surface a is subjected to measurement of each element type under the same conditions as the XPS measurement conditions described above.
・Device: ESCA 5800 (manufactured by ULVAC-PHI)
・Ion etching conditions: Ar gas cluster ion (Ar-GCIB)
・Ion etching speed: 1.8nm/min
<データ処理条件>
 解析ソフト「MultiPak」を用いて、ナロー測定により得られる、C1s、O1s及びN1sのXPSスペクトルの積分値の比より得られた各元素濃度を用いて、C1s、O1s及びN1sの3元素の元素濃度の合計を100atm%と規格化した元素濃度を求める。C1s、O1s及びN1s以外の元素が検出された場合もC1s、O1s及びN1sの3元素の元素濃度合計を100atm%として規格化を行う。
・スムージング補正:Point9
・バックグラウンド補正:OFF SET
・シフト補正:C-C結合を284eVに補正
<Data processing conditions>
Using the analysis software "MultiPak", the elemental concentrations of the three elements C1s, O1s and N1s were determined using the concentration of each element obtained from the ratio of the integral values of the XPS spectra of C1s, O1s and N1s obtained by narrow measurement. The element concentration is determined by normalizing the sum of 100 atm%. Even when elements other than C1s, O1s, and N1s are detected, normalization is performed by setting the total element concentration of the three elements C1s, O1s, and N1s to 100 atm %.
・Smoothing correction: Point 9
・Background correction: OFF SET
・Shift correction: Correct C-C coupling to 284eV
(1)O元素濃度比率O1s-A/O1s-a
 上記XPS測定条件、データ処理条件によって得られた表面AのO1s-Aと、該表面Aの表層から厚み500nmをエッチングした表面aをXPS測定することで得られるO1s-aより、O元素濃度比率O1s-A/O1s-aを算出する。
(1) O element concentration ratio O1s-A/O1s-a
From the O1s-A of the surface A obtained under the above XPS measurement conditions and data processing conditions and the O1s-a obtained by XPS measurement of the surface a etched to a thickness of 500 nm from the surface layer of the surface A, the O element concentration ratio is determined. Calculate O1s-A/O1s-a.
(2)N元素濃度比率N1s-A/N1s-a
 上記XPS測定条件、データ処理条件によって得られた表面AのN1s-Aと、該表面Aの表層から厚み500nmをエッチングした表面aをXPS測定することで得られるN1s-aより、N元素濃度比率N1s-A/N1s-aを算出する。
(2) N element concentration ratio N1s-A/N1s-a
From the N1s-A of the surface A obtained under the above XPS measurement conditions and data processing conditions and the N1s-a obtained by XPS measurement of the surface a etched to a thickness of 500 nm from the surface layer of the surface A, the N element concentration ratio is determined. Calculate N1s-A/N1s-a.
[C.走査型白色干渉顕微鏡測定による評価]
 二軸配向ポリエステルフィルムより6cm×6cmのサンプリングを行い、それぞれのサンプルについて、走査型白色干渉顕微鏡(装置:日立ハイテクサイエンス社製“VertScan”(登録商標) VS1540)を用い、二軸配向ポリエステルフィルムにおける表面Bを、50倍対物レンズを使用し測定モードをWAVEモードに設定し、測定面積113μm×113μmで90視野測定を行う。サンプルセットは、測定Y軸がサンプルフィルムの長手方向(フィルムが巻き取られている方向)となるようにサンプルをステージにセットして測定する。なお、長手方向が分からないサンプルの場合は、測定Y軸がサンプルフィルムの任意の1方向となるようして測定し、その後120度回転させた方向となるようして測定し、さらにその後120度回転させた方向となるようにして測定し、それぞれの測定結果の平均をそのサンプル有する特性とする。また測定するサンプルフィルムは、ゴムパッキンの入った2枚の金属フレームに挟み込むことで、フレーム内のフィルムが張った状態(サンプルのたるみやカールを除した状態)にしてサンプル表面の測定を行う。 得られた顕微鏡像について、該顕微鏡に内蔵された表面解析ソフトウェアVS-Viewer Version 10.0.3.0にて、下記条件にて画像処理を施した。
<画像処理条件>
 下記の順にて画像処理を行う。
・補間処理  :完全補間
・フィルタ処理:メジアン(3×3ピクセル)
・面補正   :4次。
<算術平均高さおよび最大突起高さ、スキューネスの算出>
二軸配向ポリエステルフィルムの表面Aに関して前記走査型白色干渉顕微鏡測定法での測定を行い、前記画像処理条件にて画像処理を行った各測定画像に関して、表面解析ソフトウェア内の「ISOパラメータ」解析において以下の解析条件と共に「Height Parameters」を選択し得られた数値群をパラメータシート欄に出力することで得られるSaを算術平均高さ、Spを最大突起高さ、Sskをスキューネスとして求め、各視野の値から上下5視野を除外した80視野での平均値をそれぞれ算術平均高さ、最大突起高さ、スキューネスとする。
<ISOパラメータ解析条件>
 下記の条件にてISOパラメータ解析処理を行う。
・S-Filter:自動
・正規確率紙
 分割数     :300
 計算範囲の上限 :3.000
 計算範囲の下限 :-3.000
・パラメータ   :「Height Parameters」を選択
・出力      :「パラメータリスト」を選択。
(パラメータシート出力)
 上記ISOパラメータ解析によって表示される「ISOパラメータ」ウインドウ中の「Height Parameters」を選択し「パラメータシートに追加」を行うことで「パラメータシート」ウインドウの「ISOパラメータ」タブで表示される「Sa」をフィルムの算術平均高さ、「Sp」をフィルムの最大突起高さ、「Ssk」をフィルムのスキューネスとして用いる。
[C. Evaluation by scanning white interference microscope measurement]
A 6 cm x 6 cm sample was taken from the biaxially oriented polyester film, and each sample was examined using a scanning white interference microscope (equipment: "VertScan" (registered trademark) VS1540 manufactured by Hitachi High-Tech Science Co., Ltd.). Surface B is measured using a 50x objective lens, the measurement mode is set to WAVE mode, and 90 visual fields are measured with a measurement area of 113 μm×113 μm. The sample set is measured by setting the sample on a stage so that the measurement Y-axis is in the longitudinal direction of the sample film (the direction in which the film is wound). In addition, in the case of a sample whose longitudinal direction is unknown, measure so that the measurement Y-axis is in one arbitrary direction of the sample film, then measure so that it is in the direction rotated 120 degrees, and then again 120 degrees. The sample is measured in the rotated direction, and the average of the measurement results is taken as the characteristic of that sample. The sample film to be measured is sandwiched between two metal frames containing rubber gaskets, and the sample surface is measured with the film in the frame stretched (sagging and curling removed). The obtained microscopic image was subjected to image processing under the following conditions using surface analysis software VS-Viewer Version 10.0.3.0 built into the microscope.
<Image processing conditions>
Image processing is performed in the following order.
・Interpolation processing: Complete interpolation ・Filter processing: Median (3 x 3 pixels)
・Surface correction: 4th order.
<Calculation of arithmetic mean height, maximum protrusion height, and skewness>
The surface A of the biaxially oriented polyester film was measured using the scanning white interference microscopy method, and the "ISO parameter" analysis within the surface analysis software was performed for each measurement image that was image-processed under the above-mentioned image processing conditions. Select "Height Parameters" with the following analysis conditions and output the obtained numerical value group to the parameter sheet field. Sa is the arithmetic mean height, Sp is the maximum protrusion height, Ssk is the skewness, and each field of view is The average value of 80 visual fields excluding the upper and lower 5 visual fields from the value is defined as the arithmetic mean height, maximum protrusion height, and skewness, respectively.
<ISO parameter analysis conditions>
ISO parameter analysis processing is performed under the following conditions.
・S-Filter: Automatic/Normal probability paper Number of divisions: 300
Upper limit of calculation range: 3.000
Lower limit of calculation range: -3.000
- Parameters: Select "Height Parameters" - Output: Select "Parameter List".
(Parameter sheet output)
Select "Height Parameters" in the "ISO Parameters" window displayed by the above ISO parameter analysis and click "Add to Parameter Sheet" to display "Sa" displayed in the "ISO Parameters" tab of the "Parameter Sheet" window. is used as the arithmetic mean height of the film, "Sp" is the maximum protrusion height of the film, and "Ssk" is used as the skewness of the film.
[D.厚み(μm)]
 フィルム厚みは、ダイヤルゲージを用い、JIS K7130(1992年)A-2法に準じて、フィルムを10枚重ねた状態で任意の5ヶ所について厚さを測定する。その平均値を10で除してフィルム厚みとする。
[D. Thickness (μm)]
The film thickness is determined by measuring the thickness at five arbitrary locations using a dial gauge in accordance with JIS K7130 (1992) A-2 method, with 10 films stacked one on top of the other. The average value is divided by 10 to determine the film thickness.
 フィルムが積層フィルムである場合、下記の方法にて、各層の厚みを求めた。フィルム断面を、フィルム幅方向に平行な方向にミクロトームで切り出す。該断面を走査型電子顕微鏡で5000倍の倍率で観察し、積層各層の厚み比率を求める。求めた積層比率と上記したフィルム厚みから、各層の厚みを算出する。 When the film was a laminated film, the thickness of each layer was determined by the following method. A cross section of the film is cut out using a microtome in a direction parallel to the film width direction. The cross section is observed with a scanning electron microscope at a magnification of 5000 times, and the thickness ratio of each laminated layer is determined. The thickness of each layer is calculated from the obtained lamination ratio and the film thickness described above.
[E.ドライフィルムレジスト適性評価]
(i)L/S=5/5μmレジスト配線パターン作製
 以下a.からc.の方法により投影露光法を用いたフォトレジスト評価を行う。
a.本発明の二軸延伸フィルムの前記A面とは反対の面(B面)上に、暗室内にてグラビアコート法にて感光性樹脂層を、塗布厚みが15μmとなるように塗布する。感光性樹脂層として、熱可塑性樹脂としてのメタクリル酸、メチルメタクリレート、エチルアクリレート、ブチルメタクリレートからなる共重合ポリマーと、感光性材料としてのトリメチロールプロパントリアクリレートおよびポリエチレングリコール(数平均分子量600)ジメタクリレートと、光重合開始剤としてのベンゾフェノンおよびジメチルアミノベンゾフェノンと、安定剤としてのハイドロキノンと、着色剤としてのメチルバイオレットとからなる混合物を用いる。
b.得られた本発明のフィルムと感光性樹脂層からなる積層体を、感光性樹脂層が片面鏡面研磨した6インチサイズのSiウエハーに接触するように重ね、ゴム製のローラーを用いてラミネートし、その上に、クロム金属でパターニングされたレチクルを配置し、そのレクチル上から(本発明の二軸配向ポリエステルフィルムのA面側から)投影レンズを具備したi線(波長365nmにピークをもつ紫外線)ステッパーを用いた投影露光を行う。
c.感光性樹脂層からポリエステルフィルムを剥離した後、現像液N-A5が入った容器に感光性樹脂層を入れ約1分間の現像を行う。その後、現像液から取り出し、水で約1分間の洗浄を行う。現像後に作製されたレジスト配線パターンのL/S(μm)(Line and Space)=5/5μmの30本の状態を、走査型電子顕微鏡(SEM)を用いて約800~3000倍率で観察する。
[E. Dry film resist suitability evaluation]
(i) Preparation of L/S=5/5μm resist wiring pattern Following a. From c. Photoresist evaluation using the projection exposure method is performed using the method described in the following.
a. A photosensitive resin layer is coated on the surface opposite to the side A (side B) of the biaxially stretched film of the present invention using a gravure coating method in a dark room so that the coating thickness is 15 μm. As a photosensitive resin layer, a copolymer consisting of methacrylic acid, methyl methacrylate, ethyl acrylate, and butyl methacrylate as a thermoplastic resin, and trimethylolpropane triacrylate and polyethylene glycol (number average molecular weight 600) dimethacrylate as photosensitive materials. A mixture consisting of benzophenone and dimethylaminobenzophenone as photopolymerization initiators, hydroquinone as a stabilizer, and methyl violet as a coloring agent is used.
b. The obtained laminate consisting of the film of the present invention and the photosensitive resin layer is stacked so that the photosensitive resin layer is in contact with a 6-inch Si wafer that has been mirror-polished on one side, and laminated using a rubber roller, A reticle patterned with chromium metal is placed on top of the reticle, and from above the reticle (from the A side of the biaxially oriented polyester film of the present invention) a projection lens is provided. Perform projection exposure using a stepper.
c. After peeling off the polyester film from the photosensitive resin layer, the photosensitive resin layer is placed in a container containing developer N-A5 and developed for about 1 minute. Thereafter, it is removed from the developer and washed with water for about 1 minute. Thirty lines of L/S (μm) (Line and Space) = 5/5 μm of the resist wiring pattern produced after development are observed at a magnification of about 800 to 3000 using a scanning electron microscope (SEM).
(ii)L/S=4/4μmレジスト配線パターン作製
前項(i)a.からc.の方法と同様にしてL/S(μm)(Line and Space)=4/4μmのレジスト配線パターンを作成し、現像後に作成されたレジスト配線パターン30本の状態を、走査型電子顕微鏡(SEM)を用いて約800~3000倍率で観察する。
(ii) Preparation of L/S=4/4 μm resist wiring pattern (i) a. From c. A resist wiring pattern of L/S (μm) (Line and Space) = 4/4 μm was created in the same manner as in the above method, and the state of the 30 resist wiring patterns created after development was observed using a scanning electron microscope (SEM). Observe at a magnification of approximately 800 to 3000.
(iii)微細配線レジスト形状評価
 前項(i)にて観察した30本のレジスト配線パターンに関して、配線パターン上面の長辺部分において直線形状が0.5μm以上の欠ける部分が存在する配線パターンの本数を確認し、フィルムの微細配線レジスト形状を下記の通り評価する。
A:欠けのある本数が3本以下
B:欠けのある本数が4本以上7本以下。
C:欠けのある本数が8本以上10本以下。
D:欠けのある本数が11本以上。
 微細配線レジスト形状評価としてはA~Cが良好であり、その中で最もAが優れている。
(iii) Fine wiring resist shape evaluation Regarding the 30 resist wiring patterns observed in the previous section (i), calculate the number of wiring patterns in which there is a missing part of 0.5 μm or more in the linear shape on the long side of the upper surface of the wiring pattern. Confirm and evaluate the fine wiring resist shape of the film as follows.
A: The number of chips is 3 or less. B: The number of chips is 4 or more and 7 or less.
C: The number of chips is 8 or more and 10 or less.
D: The number of chips is 11 or more.
In terms of fine wiring resist shape evaluation, A to C are good, and A is the best among them.
(iv)微細配線ピンホール欠陥
 前項(i)にて観察した30本のレジスト配線パターンに関して、配線パターン上面の長辺部分において直線形状が0.5μm以上の欠ける部分が存在する配線パターンの本数を確認し、フィルムの微細配線ピンホール欠陥評価を下記の通り評価する。
A:ピンホール欠点のある本数が0本
B:ピンホール欠点のある本数が1本以上5本以下。
C:ピンホール欠点のある本数が6本以上10本以下。
D:ピンホール欠点のある本数が10本を超える。
微細配線ピンホール欠陥評価としてはA~Cが良好であり、その中で最もAが優れている。 
(iv) Fine wiring pinhole defect Regarding the 30 resist wiring patterns observed in the previous section (i), calculate the number of wiring patterns that have a missing part of 0.5 μm or more in the linear shape on the long side of the top surface of the wiring pattern. After checking, the film is evaluated for fine wiring pinhole defects as follows.
A: The number of pinholes is 0. B: The number of pinholes is 1 or more and 5 or less.
C: The number of pinholes with pinhole defects is 6 or more and 10 or less.
D: The number of pinhole defects exceeds 10.
In terms of fine wiring pinhole defect evaluation, A to C are good, and A is the best among them.
[F.セラミックスグリーンシート製造適正評価]
(i)グリーンシート作成
 本発明の二軸配向ポリエステルフィルムのA面に、架橋プライマー層(東レ・ダウコーニング・シリコーン(株)製商品名BY24-846)を固形分1重量%に調整した塗布液を塗布/乾燥し、乾燥後の塗布厚みが0.1μmとなるようにグラビアコーターで塗布し、100℃で20秒乾燥硬化する。その後1時間以内に付加反応型シリコーン樹脂(東レ・ダウコーニング・シリコーン(株)製商品名LTC750A)100重量部、白金触媒(東レ・ダウコーニング・シリコーン(株)製商品名SRX212)2重量部を固形分5重量%に調整した塗布液を、乾燥後の塗布厚みが0.1μmとなるようにグラビアコートで塗布し、120℃で30秒乾燥硬化した後に巻き取り、離型フィルムを得る。セラミックスラリーとして、チタン酸バリウム(富士チタン工業(株)製商品名HPBT-1)100重量部、ポリビニルブチラール(積水化学(株)製商品名BL-1)10重量部、フタル酸ジブチル5重量部とトルエン-エタノール(重量比30:30)60重量部に、数平均粒径2mmのガラスビーズを加え、ジェットミルにて20時間混合・分散させた後、濾過してペースト状に調整する。得られたセラミックスラリーを、離型フィルムの上に乾燥後の厚みが2μmとなるように、ダイコーターにて塗布し乾燥させ、巻き取り、グリーンシートを得る。
(ii)グリーンシート形状検査
 上記で巻き取られたグリーンシートを、繰り出し、離型フィルムから剥がさない状態にて目視で観察し、ピンホールの有無や、シート表面および端部の塗布状態を確認する。なお観察する面積は幅300mm、長さ500mmである。離型フィルムの上に成型されたグリーンシートについて、背面から1000ルクスのバックライトユニットで照らしながら、塗布抜けによるピンホールあるいは、離型フィルム背面の表面転写による凹み状態を観察し、以下のように評価する。A、Bが良好であり、その中でもAが最も優れている。
A:ピンホールも凹みも無い。
B:ピンホールは無く、凹みが3個以内認められる
C:ピンホールが有るか、または凹みが4個以上、もしくはその両方が認められる。
[F. Ceramic green sheet manufacturing suitability evaluation]
(i) Creation of green sheet A coating solution containing a cross-linked primer layer (product name: BY24-846 manufactured by Dow Corning Toray Silicone Co., Ltd.) adjusted to a solid content of 1% by weight is applied to side A of the biaxially oriented polyester film of the present invention. was coated and dried, coated with a gravure coater so that the coating thickness after drying was 0.1 μm, and dried and cured at 100° C. for 20 seconds. Thereafter, within 1 hour, 100 parts by weight of an addition reaction silicone resin (trade name: LTC750A, manufactured by Toray Dow Corning Silicone Co., Ltd.) and 2 parts by weight of a platinum catalyst (trade name: SRX212, manufactured by Toray Dow Corning Silicone Co., Ltd.) were added. A coating liquid adjusted to have a solid content of 5% by weight is applied by gravure coating so that the coating thickness after drying is 0.1 μm, dried and cured at 120° C. for 30 seconds, and then wound up to obtain a release film. As a ceramic slurry, 100 parts by weight of barium titanate (product name: HPBT-1, manufactured by Fuji Titanium Industries, Ltd.), 10 parts by weight of polyvinyl butyral (product name: BL-1, manufactured by Sekisui Chemical Co., Ltd.), and 5 parts by weight of dibutyl phthalate. Glass beads with a number average particle size of 2 mm are added to 60 parts by weight of toluene-ethanol (weight ratio 30:30), mixed and dispersed in a jet mill for 20 hours, and then filtered to prepare a paste. The obtained ceramic slurry is applied onto a release film using a die coater so that the thickness after drying is 2 μm, dried, and wound up to obtain a green sheet.
(ii) Green sheet shape inspection The green sheet rolled up above is unrolled and visually observed without being peeled off from the release film to check for pinholes and the state of coating on the sheet surface and edges. . Note that the area to be observed is 300 mm in width and 500 mm in length. While illuminating the green sheet molded on the release film from the back with a 1000 lux backlight unit, we observed pinholes due to missing coating or dents due to surface transfer on the back of the release film, and observed the following. evaluate. A and B are good, and A is the best among them.
A: There are no pinholes or dents.
B: There are no pinholes and 3 or less dents are observed. C: There are pinholes, 4 or more dents, or both.
[G.金属板との滑り性評価]
 本発明の二軸配向ポリエステルフィルムを23℃、65%RHにて調湿した後、製膜ライン方向が長手となるように、幅65mm、長さ120mmの矩形状に切り出してサンプルとし、摩擦試験機(東洋精機(株)製)を使用し、23℃65%RH雰囲気下にて測定する。
[G. Evaluation of slipperiness with metal plate]
After the biaxially oriented polyester film of the present invention was conditioned at 23°C and 65% RH, it was cut into a rectangular sample with a width of 65 mm and a length of 120 mm so that the longitudinal direction was the film forming line direction, and a friction test was conducted. (manufactured by Toyo Seiki Co., Ltd.) under an atmosphere of 23° C. and 65% RH.
 該装置の測定試料台上に、前記矩形状のサンプルを該装置引っ張り方向が該サンプルの長手方向となり、また前記表面A側が上面になる(試料台とは接しない)ようにセットしテープにてサンプルの周囲を測定試料台と固定する。該装置の加重検出用Uゲージと接続されたスレッドの片面に下記する金属試料板を張り合わせ、該金属試料板の鏡面が前記固定されたサンプルの表面Aと重なるようにセットする。金属試料板とスレッドの合計加重は200gとなる。 Set the rectangular sample on the measurement sample table of the device so that the direction in which the device pulls it is the longitudinal direction of the sample, and the surface A side is the top surface (not in contact with the sample table), and tape it. Fix the sample around the sample to the measurement sample stage. A metal sample plate as described below is pasted on one side of the thread connected to the U-gauge for weight detection of the device, and set so that the mirror surface of the metal sample plate overlaps the surface A of the fixed sample. The total weight of the metal sample plate and thread is 200 g.
 その上に、荷重が1kgの錘を置き20秒静置することでサンプルの表面Aまたは該表面Aと厚み方向に対向する表面Bと金属試料板表面とを密着させた後、金属試料板を貼り付けたスレッドを以下の条件で引っ張った際に検出される加重(N;ニュートン単位)の最大値を測定する。7回の測定を行い、上位1点と下位1点を除いた5回測定値の平均値をもってサンプルの金属試料板との滑り性とし、以下の様に評価を行った。AA~Cが良好であり、その中でもAAが最も良好である。
(金属試料板)
材質:ステンレス(SUS304鏡面)
表面粗さ:算術平均粗さ0.012μm
(測定条件)
測定距離:70mm
測定速度:100mm/min
AA:最大荷重が3N未満
A:最大荷重が3N以上4N未満
B:最大荷重が4N以上6N未満
C:最大荷重が6N以上10N未満
D:最大荷重が10N以上
A weight with a load of 1 kg is placed on top of the metal sample plate, and the metal sample plate is placed in close contact with the surface A of the sample or the surface B opposite to the surface A in the thickness direction by leaving it for 20 seconds. The maximum value of the load (N; in newton units) detected when the attached thread is pulled under the following conditions is measured. Measurements were performed seven times, and the average value of the five measured values, excluding the top one and one bottom score, was taken as the slipperiness of the sample with respect to the metal sample plate, and evaluated as follows. AA to C are good, and AA is the best among them.
(metal sample plate)
Material: Stainless steel (SUS304 mirror surface)
Surface roughness: Arithmetic mean roughness 0.012μm
(Measurement condition)
Measurement distance: 70mm
Measurement speed: 100mm/min
AA: Maximum load is less than 3N A: Maximum load is 3N or more and less than 4N B: Maximum load is 4N or more and less than 6N C: Maximum load is 6N or more and less than 10N D: Maximum load is 10N or more
[H.フィルム同士の滑り性]
 本発明の二軸配向ポリエステルフィルムを23℃65%RHにて調湿した後、製膜ライン方向が長手となるように、幅75mm、長さ100mmの矩形状に2枚切り出してサンプルとし、スベリ係数測定装置(型式ST-200、(株)テクノニーズ製)を使用し、23℃65%RH雰囲気下にて測定する。該装置の測定試料台上に矩形状のサンプルを該装置引っ張り方向が該サンプルの長手方向となり、また前記表面側が上になるようにセットし固定する。その上にもう1枚の矩形状のサンプルを前記表面が上側、引っ張り方向が長手方向になるように置き、前記表面とその反対面とを接触させるとともに、サンプル端部を該装置の加重検出用Uゲージに固定する。
[H. Smoothness between films]
After controlling the humidity of the biaxially oriented polyester film of the present invention at 23°C and 65% RH, two rectangular samples with a width of 75 mm and a length of 100 mm were cut out so that the film forming line direction was the longitudinal direction. Measurement is performed using a coefficient measuring device (Model ST-200, manufactured by Technonies Co., Ltd.) at 23° C. and 65% RH atmosphere. A rectangular sample is set and fixed on the measurement sample stage of the device so that the direction in which the device is pulled is the longitudinal direction of the sample and the front side is facing upward. Place another rectangular sample on top of it with the surface facing upward and the pulling direction in the longitudinal direction, making contact between the surface and the opposite surface, and using the end of the sample to detect the load of the device. Fix it to U gauge.
 その後フィルムを静置し、その上に、サンプル接触面が6.5cm×6.5cmの“テフロン”(登録商標)シートであり荷重が200gの錘を置きサンプル同士を密着させた後、上側のフィルムを以下の条件で引っ張った際の静摩擦係数を測定する。5回の測定の平均値をもって静摩擦係数(μs)として以下の評価を行う。AA~Cが良好であり、AAが最も良好である。
測定距離:12mm
測定速度:210mm/min
検出範囲:測定開始後1000ms以内
AA:静摩擦係数が1.0未満
A:静摩擦係数が1.0以上1.1未満B:静摩擦係数が1.1以上1.2未満
C:静摩擦係数が1.2以上1.3未満
D:静摩擦係数が1.3以上
After that, the film was left still, and a weight with a Teflon (registered trademark) sheet with a sample contact surface of 6.5 cm x 6.5 cm and a weight of 200 g was placed on top of it to bring the samples into close contact. Measure the static friction coefficient when the film is stretched under the following conditions. The following evaluation is performed using the average value of the five measurements as a coefficient of static friction (μs). AA to C are good, with AA being the best.
Measurement distance: 12mm
Measurement speed: 210mm/min
Detection range: Within 1000ms after starting measurement AA: Static friction coefficient is less than 1.0 A: Static friction coefficient is 1.0 or more and less than 1.1 B: Static friction coefficient is 1.1 or more and less than 1.2 C: Static friction coefficient is 1. 2 or more and less than 1.3 D: Static friction coefficient is 1.3 or more
[I.靱性]
 東洋精機製作所(株)製の軽荷重エレメンドルフ引き裂き試験機を用いる。サンプルフィルムを縦63.5mm、横50.8mmの長方形にカットし、横方向に沿う両つかみの中央で直角に縦に12.7mmの切れ目を作り、残りの50.8mmに対する引き裂きの力(mN)を求める。この力をフィルムの厚みで除して引裂伝播抵抗(mN/mm)とした。該測定をフィルム長手方向と幅方向の両方向に対して行い、靱性として以下の評価を行う。A、Bが良好であり、Aが最も良好である。
A:長手方向、幅方向共に5500mN/mm以上
B:長手方向、幅方向共に5000mN/mm以上5500mN/mm未満
C:長手方向、幅方向共に4500mN/mm以上5000mN/mm未満  
D:長手方向、幅方向共に4500mN/mm未満
[I. Toughness]
A light load Elmendorf tear tester manufactured by Toyo Seiki Seisakusho Co., Ltd. is used. Cut the sample film into a rectangle measuring 63.5 mm long and 50.8 mm wide, make a 12.7 mm vertical cut at right angles in the center of both grips along the horizontal direction, and calculate the tearing force (mN) for the remaining 50.8 mm. ). This force was divided by the thickness of the film to obtain tear propagation resistance (mN/mm). The measurement is performed in both the longitudinal direction and the width direction of the film, and the toughness is evaluated as follows. A and B are good, and A is the best.
A: 5500 mN/mm or more in both the longitudinal and width directions B: 5000 mN/mm or more and less than 5500 mN/mm in both the longitudinal and width directions C: 4500 mN/mm or more and less than 5000 mN/mm in both the longitudinal and width directions
D: Less than 4500mN/mm in both longitudinal and width directions
[J.粗大物個数評価]
 本発明のドライフィルムレジスト用積層ポリエステルフィルムを11mm×0.75mm(8.25mm)に切り出し、光学顕微鏡(Nikon製ECLIPSE LV100)を用いてフィルムP2層表面について、フィルム表面に焦点を合わせた後、フィルム厚み方向のフィルム内部側に焦点をずらしながら、フィルム表面からフィルム厚み方向3μmまでの領域の観察を実施し、フィルム表面からフィルム厚み方向3μmの領域に存在する長径2.0μm以上の粗大物の個数を計測する。ここでの長径とは、前記P2層側からフィルムを垂直に観察した場合に得られる粗大物の画像において、粗大物の投影図に外接する直方体における最も長い長軸寸法のことを指す。測定数はn=3とし、それら平均値をサンプルの有する粗大物個数N(個/8.25mm)とする。
[J. Evaluation of number of bulky items]
The laminated polyester film for dry film resist of the present invention was cut out into 11 mm x 0.75 mm (8.25 mm 2 ), and after focusing on the surface of the film P2 layer using an optical microscope (ECLIPSE LV100 manufactured by Nikon). , While shifting the focus to the inside of the film in the film thickness direction, an area from the film surface to 3 μm in the film thickness direction was observed. Measure the number of pieces. The major axis here refers to the longest major axis dimension of a rectangular parallelepiped circumscribing the projected view of the coarse object in an image of the coarse object obtained when the film is vertically observed from the P2 layer side. The number of measurements is n=3, and the average value thereof is taken as the number of coarse particles N (pieces/8.25 mm 2 ) of the sample.
[K.高温ラミネート加工適性評価]
<レジスト層塗工と高温ラミネート加工>
 以下a.b.の方法により投影露光法を用いたフォトレジスト評価を行う。
a.前項a.に記載の組成および方法に二軸配向ポリエステルフィルム上にレジスト層を設けた積層体を作成する。
 b.得られたレジスト層を設けた二軸配向ポリエステルフィルムサンプルのレジスト層表面と、A4サイズにカットされた3μm厚の銅箔を張り合わせた金属基板(銅箔基板)とが接する様に重ね合わせた後、温度制御可能なゴム製の加圧ローラーを備えたラミネーターを用いて以下の条件にてラミネート加工を行う。
 (ラミネート加工条件)
ラミネート搬送速度:2m/分
ラミネートロール温度:100℃
ラミネート圧力:0.5MPa
ラミネートロール温度を100℃とした場合の銅箔基板と二軸配向ポリエステルフィルムサンプルとのA4サイズのラミネートサンプルを目視確認することで、100℃でのラミネート加工適性を評価する。
 (1)100℃ラミネートボイド評価
前項(1)a.およびb.項にて得られたラミネートロール温度100℃でラミネートを行った銅箔基板と二軸配向ポリエステルフィルムサンプルとのA4サイズのラミネートサンプル10枚を目視にてラミネートボイド(ラミネート層の浮き)の有無を確認し、ボイドの長径が1mmを超えるサンプル枚数から、以下の通り評価を行った。
A:10枚のラミネートサンプルの内、ラミネートボイドが1枚以下で発生する。    
B:10枚のラミネートサンプルの内、ラミネートボイドが2枚以上3枚以下で発生する。
C:10枚のラミネートサンプルの内、ラミネートボイドが4枚以上6枚以下で発生する。
D:10枚のラミネートサンプルの内、ラミネートボイドが7枚以上で発生する。
100℃ラミネートボイド評価としてはA~Cが良好であり、その中で最もAが優れている。
 (2)100℃ラミネートシワ評価
前項(1)で用いたラミネートロール温度100℃でラミネートを行った銅箔基板と二軸配向ポリエステルサンプルとのA4サイズのラミネートサンプル10枚を目視にてラミネート時に生じる長さ1cm以上のシワの有無を確認し以下の通り評価を行った。
A:10枚のラミネートサンプルの内、ラミネートシワが1枚以下で発生する。    
B:10枚のラミネートサンプルの内、ラミネートシワが2枚以上3枚以下で発生する。
C:10枚のラミネートサンプルの内、ラミネートシワが4枚以上6枚以下で発生する。
D:10枚のラミネートサンプルの内、ラミネートシワが7枚以上で発生する。
100℃ラミネートシワ評価としてはA~Cが良好であり、その中で最もAが優れている。
[K. High temperature lamination suitability evaluation]
<Resist layer coating and high temperature lamination>
Below a. b. Photoresist evaluation using the projection exposure method is performed using the method described in the following.
a. Previous item a. A laminate having a resist layer provided on a biaxially oriented polyester film is prepared using the composition and method described in .
b. After the resist layer surface of the biaxially oriented polyester film sample provided with the obtained resist layer was placed in contact with a metal substrate (copper foil substrate) on which a 3 μm thick copper foil cut into A4 size was laminated. The lamination process is carried out under the following conditions using a laminator equipped with a temperature-controllable rubber pressure roller.
(Lamination processing conditions)
Lamination conveyance speed: 2m/min Lamination roll temperature: 100℃
Lamination pressure: 0.5MPa
The suitability for lamination at 100°C is evaluated by visually checking an A4 size laminated sample of a copper foil substrate and a biaxially oriented polyester film sample when the laminating roll temperature is 100°C.
(1) 100°C laminate void evaluation (1) a. and b. Visually inspect 10 A4-sized laminate samples of copper foil substrates and biaxially oriented polyester film samples that were laminated at a laminating roll temperature of 100°C obtained in 1. This was confirmed, and the following evaluation was performed based on the number of samples in which the major axis of the void exceeded 1 mm.
A: Laminate voids occur in one or less of the 10 laminated samples.
B: Out of 10 laminated samples, laminate voids occur in 2 or more and 3 or less.
C: Out of 10 laminated samples, laminate voids occur in 4 or more and 6 or less.
D: Lamination voids occur in 7 or more of the 10 laminate samples.
As for the 100°C laminate void evaluation, A to C are good, and A is the best among them.
(2) 100℃ lamination wrinkle evaluation Visually inspect 10 A4 size laminate samples of copper foil substrates and biaxially oriented polyester samples laminated at 100℃ using the laminating roll temperature used in the previous section (1). The presence or absence of wrinkles with a length of 1 cm or more was confirmed and evaluated as follows.
A: Out of 10 laminate samples, laminate wrinkles occur in 1 or less sheets.
B: Out of 10 laminate samples, laminate wrinkles occur in 2 or more and 3 or less.
C: Out of 10 laminated samples, laminate wrinkles occur in 4 or more and 6 or less.
D: Laminate wrinkles occur in 7 or more of the 10 laminated samples.
As for 100°C lamination wrinkle evaluation, A to C are good, and A is the best among them.
 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not necessarily limited to these.
<PET-1の製造>
 テレフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、常法により重合を行い、実質的に粒子を含有しない溶融重合PETを得た。得られた溶融重合PETのガラス転移温度は81℃、融点は255℃、固有粘度は0.62であった。
<Manufacture of PET-1>
Polymerization was carried out from terephthalic acid and ethylene glycol using antimony trioxide as a catalyst in a conventional manner to obtain melt-polymerized PET substantially free of particles. The resulting melt-polymerized PET had a glass transition temperature of 81°C, a melting point of 255°C, and an intrinsic viscosity of 0.62.
<PET-2の製造>
 テレフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、常法により重合を行い、実質的に粒子を含有しない溶融重合PETを得た。得られた溶融重合PETのガラス転移温度は81℃、融点は255℃、固有粘度は0.50であった。
<Manufacture of PET-2>
Polymerization was carried out from terephthalic acid and ethylene glycol using antimony trioxide as a catalyst in a conventional manner to obtain melt-polymerized PET substantially free of particles. The resulting melt-polymerized PET had a glass transition temperature of 81°C, a melting point of 255°C, and an intrinsic viscosity of 0.50.
<PET-3の製造>
 テレフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、常法により重合を行い、実質的に粒子を含有しない溶融重合PETを得た。得られた溶融重合PETのガラス転移温度は81℃、融点は255℃、固有粘度は0.40であった。
<Manufacture of PET-3>
Polymerization was carried out from terephthalic acid and ethylene glycol by a conventional method using antimony trioxide as a catalyst to obtain melt-polymerized PET substantially free of particles. The resulting melt-polymerized PET had a glass transition temperature of 81°C, a melting point of 255°C, and an intrinsic viscosity of 0.40.
<PET-4の製造>
 テレフタル酸およびエチレングリコールから、三酸化アンチモンを触媒として、常法により重合を行い、実質的に粒子を含有しない溶融重合PETを得た。得られた溶融重合PETのガラス転移温度は81℃、融点は255℃、固有粘度は0.80であった。
<Manufacture of PET-4>
Polymerization was carried out from terephthalic acid and ethylene glycol using antimony trioxide as a catalyst in a conventional manner to obtain melt-polymerized PET substantially free of particles. The resulting melt-polymerized PET had a glass transition temperature of 81°C, a melting point of 255°C, and an intrinsic viscosity of 0.80.
<MB-Aの製造>
 PET-1に対する添加量が2質量%となるように、エチレングリコールに分散させた平均1次粒子径が20nmのアルミナ粒子を添加し、粒子マスターペレットMB-Aを得た。
<Manufacture of MB-A>
Alumina particles having an average primary particle diameter of 20 nm dispersed in ethylene glycol were added so that the amount added to PET-1 was 2% by mass to obtain particle master pellets MB-A.
<MB-Bの製造>
 PET-1の重合に際し、PETに対する添加量が1質量%となるように、エチレングリコールに分散させた平均一次粒子径が65nmのシリカ粒子(シリカ-1)を添加し、PETベースの粒子マスターペレットMB-Bを得た。
<Manufacture of MB-B>
During the polymerization of PET-1, silica particles (silica-1) with an average primary particle diameter of 65 nm dispersed in ethylene glycol were added so that the amount added to PET was 1% by mass, and PET-based particle master pellets were created. Obtained MB-B.
<MB-Cの製造>
 PET-1の重合に際し、PETに対する添加量が1質量%となるように、粒子濃度20%で水に分散させた粒径300nmの架橋ポリスチレン粒子スラリー(架橋ポリスチレン-1)を添加し、PETベースの粒子マスターペレットMB-Cを得た。
<Manufacture of MB-C>
During the polymerization of PET-1, a cross-linked polystyrene particle slurry (cross-linked polystyrene-1) with a particle size of 300 nm dispersed in water at a particle concentration of 20% was added so that the amount added to PET was 1% by mass, and the PET base was Particle master pellets MB-C were obtained.
<MB-Dの製造>
 PET-1の重合に際し、PETに対する添加量が1質量%となるように、粒子濃度20%で水に分散させた粒径450nmの架橋ポリスチレン粒子スラリー(架橋ポリスチレン-2)を添加し、PETベースの粒子マスターペレットMB-Dを得た。
<Manufacture of MB-D>
During the polymerization of PET-1, a crosslinked polystyrene particle slurry (crosslinked polystyrene-2) with a particle size of 450 nm dispersed in water at a particle concentration of 20% was added so that the amount added to the PET was 1% by mass, and the PET base was Particle master pellets MB-D were obtained.
<MB-Eの製造>
 PET-1の重合に際し、PETに対する添加量が0.2質量%となるように、エチレングリコールに分散させた平均一次粒子径が200nmのシリカ粒子(シリカ-2)を添加し、PETベースの粒子マスターペレットMB-Dを得た。
<Manufacture of MB-E>
During the polymerization of PET-1, silica particles (silica-2) with an average primary particle diameter of 200 nm dispersed in ethylene glycol were added so that the amount added to PET was 0.2% by mass, and PET-based particles were added. Master pellet MB-D was obtained.
(実施例1)
 PET-1、マスターペレットMB-A(シリカ-1含有)、マスターペレットMB―B(シリカ-2含有)、マスターペレットMB-C(架橋ポリスチレン-1含有)、マスターペレットMB-D(架橋ポリスチレン-2含有)を180℃で2時間半減圧乾燥した後、PET-1および各マスターペレットの添加量が表1に記載のP1層からP3層の量になるように配合し、3台それぞれの押出機に供給し、溶融押出してフィルタで濾過した後、フィードブロックにてP1層/P3層/P2層と積層するように合流させた後、Tダイを介し42℃に保った冷却ロール上に静電印可キャスト法を用いて巻き付け冷却固化して未延伸フィルムを得た。この未延伸フィルムを相対する電極とアースロール間に導き、装置中に温度25℃、湿度99.5%RH(水蒸気量23g/m)の窒素ガスを導入し、E値が220W・min/mとなる条件で大気圧グロー放電処理を行った。また、その際処理面のフィルム表面温度が30℃となるようにアースロールを冷却した。
(Example 1)
PET-1, master pellet MB-A (contains silica-1), master pellet MB-B (contains silica-2), master pellet MB-C (contains crosslinked polystyrene-1), master pellet MB-D (crosslinked polystyrene-1) After drying the PET-1 and each master pellet under reduced pressure at 180°C for 2 and a half hours (containing 2), the amount of PET-1 and each master pellet added was the same as the amount of layers P1 to P3 listed in Table 1, and extrusion was carried out using each of the three extruders. After being melt-extruded and filtered through a filter, they are combined in a feed block so as to be laminated with P1 layer/P3 layer/P2 layer, and then passed through a T-die and placed on a cooling roll kept at 42°C. An unstretched film was obtained by winding, cooling and solidifying using an electric press cast method. This unstretched film was guided between the opposing electrode and the earth roll, and nitrogen gas at a temperature of 25°C and a humidity of 99.5% RH (water vapor amount 23 g/m 3 ) was introduced into the apparatus, and the E value was 220 W min/ Atmospheric pressure glow discharge treatment was performed under conditions of m 2 . Further, at that time, the earth roll was cooled so that the film surface temperature on the treated surface was 30°C.
 処理後の未延伸フィルムを逐次二軸延伸機により長手方向に3.5倍、および幅方向に4.0倍、トータルで14.0倍延伸しその後、定長下230℃で熱処理した。その後、幅方向に弛緩処理を施し、厚み16μmの二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表4に示す。表4に示すように、表面Aの表面特性を良好なものとすることができ、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも良好なフィルムであった。 The treated unstretched film was sequentially stretched 3.5 times in the longitudinal direction and 4.0 times in the width direction using a biaxial stretching machine, for a total of 14.0 times, and then heat-treated at 230° C. under a constant length. Thereafter, relaxation treatment was performed in the width direction to obtain a biaxially oriented polyester film with a thickness of 16 μm. Table 4 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 4, the surface properties of Surface A could be made good, and the film was good in all of slipperiness, uniformity of resist shape, green sheet shape, high temperature lamination property, and toughness.
(実施例2~4)
 プラズマ処理条件を表1の通り変えた以外は、実施例1と同様にして二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表4に示す。
(Examples 2 to 4)
A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that the plasma treatment conditions were changed as shown in Table 1. Table 4 shows the properties of the obtained biaxially oriented polyester film.
 表4に示すように、実施例2で得られた二軸配向ポリエステルフィルムは、実施例1よりもプラズマ処理雰囲気の水蒸気量を少なくしたものの表面Aの表面特性を良好なものとすることができ、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも良好なフィルムであった。 As shown in Table 4, the biaxially oriented polyester film obtained in Example 2 was able to have better surface properties on surface A, although the amount of water vapor in the plasma treatment atmosphere was lower than in Example 1. The film had good properties in terms of slipperiness, uniformity of resist shape, green sheet shape, high-temperature lamination properties, and toughness.
 また、実施例3、4で得られた二軸配向ポリエステルフィルムは、プラズマ処理強度を実施例1よりも小さくしたことにより、谷領域、山領域の個数、平均断面積が小さくなったものの、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 In addition, the biaxially oriented polyester films obtained in Examples 3 and 4 had a lower plasma treatment intensity than in Example 1, so although the number of valley regions and peak regions and the average cross-sectional area were smaller, The film had sufficiently good properties in terms of uniformity, resist shape, uniformity of green sheet shape, high temperature lamination property, and toughness.
(実施例5、6)
 P1層を構成する樹脂を表1に記載の組成とした以外は実施例1と同様にして、二軸配向フィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表4に示す。
(Examples 5 and 6)
A biaxially oriented film was obtained in the same manner as in Example 1, except that the resin constituting the P1 layer had the composition shown in Table 1. Table 4 shows the properties of the obtained biaxially oriented polyester film.
 表4に示すように、実施例5で得られた二軸配向ポリエステルフィルムは表面Aを構成する層にアルミナ粒子を添加したことにより表面Aのクルトシスが実施例1よりも大きくなっており、レジスト形状およびピンホール欠陥のレジスト評価は実施例1よりもやや劣るものの、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 As shown in Table 4, the biaxially oriented polyester film obtained in Example 5 had a larger kurtosis on the surface A than in Example 1 due to the addition of alumina particles to the layer constituting the surface A, and the resist Although the resist evaluation of shape and pinhole defects was slightly inferior to that of Example 1, the film had sufficiently good slip properties, resist shape, uniformity of green sheet shape, high-temperature lamination properties, and toughness.
 また、実施例6で得られた二軸配向ポリエステルフィルムは表面Aを構成する層にシリカ粒子を添加したことにより表面Aのクルトシスが実施例1よりも大きくなっており、レジスト形状およびピンホール欠陥のレジスト評価は実施例1よりもやや劣るものの、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 In addition, in the biaxially oriented polyester film obtained in Example 6, the kurtosis of the surface A was larger than that of Example 1 due to the addition of silica particles to the layer constituting the surface A, and the resist shape and pinhole defects were reduced. Although the resist evaluation was slightly inferior to that of Example 1, the film had sufficiently good slip properties, resist shape, uniformity of green sheet shape, high temperature lamination properties, and toughness.
(実施例7~9)
 P2層を構成する樹脂を表1及び2に記載組成とした以外は実施例1と同様にして、二軸配向フィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表4及び5に示す。
(Examples 7 to 9)
A biaxially oriented film was obtained in the same manner as in Example 1, except that the resin constituting the P2 layer had the composition shown in Tables 1 and 2. The properties of the obtained biaxially oriented polyester film are shown in Tables 4 and 5.
 表4に示すように、実施例7で得られた二軸配向ポリエステルフィルムは、表面Bを構成する層の粒子の平均一次粒子径を小さくしたことにより表面Bの算術平均高さ、最大突起高さ、スキューネスSsk-Bが小さくなり、レジスト形状評価のL/S=4/4μm
配線パターンでの評価において実施例1よりも良好なフィルムであった。また、滑り性、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。
As shown in Table 4, the biaxially oriented polyester film obtained in Example 7 has an arithmetic mean height of surface B, a maximum protrusion height of Now, the skewness Ssk-B becomes smaller, and L/S of resist shape evaluation is 4/4 μm.
The film was better than Example 1 in the evaluation based on the wiring pattern. Furthermore, the film had sufficiently good slip properties, uniformity of green sheet shape, high-temperature lamination properties, and toughness.
 また、表5に示すように、実施例8、実施例9で得られた二軸配向ポリエステルフィルムは、表面Bを構成する層の厚みを実施例7よりも薄くしたことにより表面Bの算術平均高さ、最大突起高さ、スキューネスSsk-Bが小さくなり、実施例7よりは滑り性が劣るものの、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 Furthermore, as shown in Table 5, the biaxially oriented polyester films obtained in Examples 8 and 9 had arithmetic average Although the height, maximum protrusion height, and skewness Ssk-B are smaller, and the slipperiness is inferior to Example 7, the slipperiness, resist shape, uniformity of green sheet shape, high-temperature lamination property, and toughness are all sufficient. It was a good film.
(実施例10)
 P1層を構成する樹脂を表2に記載組成とした以外は実施例8と同様にして、二軸配向フィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表5に示す。
(Example 10)
A biaxially oriented film was obtained in the same manner as in Example 8, except that the resin constituting the P1 layer had the composition shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
 表5に示すように、実施例10で得られた二軸配向ポリエステルフィルムは、表面Aを構成する樹脂の固有粘度を実施例8よりも小さくしたことにより、表面Aの谷領域、山領域の個数、平均断面積が増大し、実施例8よりもフィルム同士の滑り性に優れる結果となった。また、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 As shown in Table 5, in the biaxially oriented polyester film obtained in Example 10, the intrinsic viscosity of the resin constituting surface A was made smaller than in Example 8, so that the trough and peak regions of surface A were The number of films and the average cross-sectional area were increased, and the slipperiness between the films was better than that of Example 8. Furthermore, the film had sufficiently good slip properties, uniformity of resist shape, green sheet shape, high temperature lamination properties, and toughness.
(実施例11、12)
 表面Aに施すプラズマ処理条件を表2に記載の条件とした以外は実施例10と同様にして二軸配向フィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表5に示す。
(Example 11, 12)
A biaxially oriented film was obtained in the same manner as in Example 10, except that the plasma treatment conditions for Surface A were as shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
 表5で示すように、実施例11で得られた二軸配向ポリエステルフィルムはプラズマ処理強度を低下させたことにより、実施例10よりも表面Aの谷領域、山領域の個数、平均断面積が低減しており、実施例10よりもレジスト形状の均一性において優れるフィルムであった。また、滑り性、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 As shown in Table 5, the biaxially oriented polyester film obtained in Example 11 had a lower number of trough areas, peak areas, and average cross-sectional area on surface A than Example 10 due to the reduced plasma treatment intensity. The film had a better uniformity of resist shape than Example 10. Furthermore, the film had sufficiently good slip properties, uniformity of green sheet shape, high temperature lamination properties, and toughness.
また、表5に示すように、実施例12で得られた二軸配向ポリエステルフィルムはプラズマ処理強度を実施例11よりも低下させたことにより、実施例11よりも表面Aの谷領域、山領域の個数、平均断面積が低減しており、実施例10よりも滑り性に劣るものの、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 In addition, as shown in Table 5, the biaxially oriented polyester film obtained in Example 12 had lower plasma treatment strength than Example 11, so that the trough and peak areas of surface A were lower than in Example 11. Although the number of particles and the average cross-sectional area are reduced, and the slipperiness is inferior to that of Example 10, the film has sufficiently good slipperiness, resist shape, uniformity of green sheet shape, high-temperature lamination properties, and toughness. there were.
(実施例13)
 P1層を構成する樹脂を表2に記載組成とした以外は実施例11と同様にして、二軸配向フィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表5に示す。
(Example 13)
A biaxially oriented film was obtained in the same manner as in Example 11, except that the resin constituting the P1 layer had the composition shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
 表5で示すように、実施例13で得られた二軸配向ポリエステルフィルムは実施例11よりも樹脂の固有粘度を低下させたことにより、実施例11よりも表面Aの谷領域の平均断面積が増大しており、実施例11よりもレジスト形状の均一性において劣る物の、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 As shown in Table 5, the biaxially oriented polyester film obtained in Example 13 had a lower average cross-sectional area of the valley region of surface A than Example 11 because the intrinsic viscosity of the resin was lower than that of Example 11. increased, and although the uniformity of resist shape was inferior to that of Example 11, the film had sufficiently good slip properties, uniformity of resist shape, green sheet shape, high-temperature lamination properties, and toughness. .
(実施例14)
 P1層を構成する樹脂の押し出しろ過フィルタを表2に記載の物とした以外は実施例11と同様にして、二軸配向フィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表5に示す。
(Example 14)
A biaxially oriented film was obtained in the same manner as in Example 11, except that the resin extrusion filter constituting the P1 layer was used as shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
 表5で示すように、実施例14で得られた二軸配向ポリエステルフィルムは実施例11よりも、長径2.0μm以上の粗大物の数が増加しており、実施例11よりもレジスト形状
の均一性に劣るものの、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。
As shown in Table 5, the biaxially oriented polyester film obtained in Example 14 has an increased number of coarse particles with a major axis of 2.0 μm or more than in Example 11, and the resist shape is more uniform than in Example 11. However, the film had sufficiently good slip properties, resist shape, uniformity of green sheet shape, high-temperature lamination properties, and toughness.
(実施例15)
 幅方向の延伸リラックス条件を表2に記載の条件とした以外は実施例11と同様にして、二軸配向フィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表5に示す。
(Example 15)
A biaxially oriented film was obtained in the same manner as in Example 11, except that the stretching and relaxing conditions in the width direction were as shown in Table 2. Table 5 shows the properties of the obtained biaxially oriented polyester film.
 表5で示すように、実施例15で得られた二軸配向ポリエステルフィルムは実施例11よりも、幅方向の90℃から130℃にフィルム温度を変化させた際の寸法変化率が伸縮方向に大きくなり、高温ラミネート性が実施例11よりも劣るものの、滑り性、レジスト形状、グリーンシート形状の均一性、高温ラミネート性、靭性のいずれも十分に良好なフィルムであった。 As shown in Table 5, the biaxially oriented polyester film obtained in Example 15 had a higher dimensional change rate in the stretching direction when the film temperature was changed from 90°C in the width direction to 130°C than in Example 11. Although the film was larger and its high-temperature lamination properties were inferior to those of Example 11, the film had sufficiently good slip properties, resist shape, uniformity of green sheet shape, high-temperature lamination properties, and toughness.
(比較例1)
 プラズマ処理を行わない以外は実施例1と同様の条件として二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表6に示す。表6に示すように、比較例1で得られた二軸配向ポリエステルフィルムは表面Aの谷領域、山領域の個数、平均断面積がいずれも小さく、金属板との滑り性およびフィルム同士の滑り性に劣るフィルムであった。
(Comparative example 1)
A biaxially oriented polyester film was obtained under the same conditions as in Example 1 except that no plasma treatment was performed. Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, the biaxially oriented polyester film obtained in Comparative Example 1 has a small number of trough areas and peak areas on surface A, and a small average cross-sectional area, and has a low slipperiness with metal plates and slippage between films. It was a film of inferior quality.
(比較例2)
 水蒸気量を含まない窒素雰囲気下でプラズマ処理を行う以外は実施例1と同様の条件として二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表6に示す。表6に示すように、比較例2で得られた二軸配向ポリエステルフィルムは表面Aの谷領域、山領域の個数、平均断面積がいずれも小さく、金属板との滑り性に劣るフィルムであった。
(Comparative example 2)
A biaxially oriented polyester film was obtained under the same conditions as in Example 1 except that the plasma treatment was performed in a nitrogen atmosphere containing no water vapor. Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, the biaxially oriented polyester film obtained in Comparative Example 2 had small valley areas, small number of peak areas, and average cross-sectional area on surface A, and was a film with poor sliding properties with metal plates. Ta.
(比較例3)
 プラズマ処理雰囲気を温度20℃/湿度23.5%RHとし雰囲気中の水蒸気量を4g/mとした以外は実施例1と同様の条件として二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表6に示す。表6に示すように、比較例3で得られた二軸配向ポリエステルフィルムは表面Aの谷領域、山領域の個数、平均断面積がいずれも小さく、金属との滑り性に劣るフィルムであった。
(Comparative example 3)
A biaxially oriented polyester film was obtained under the same conditions as in Example 1, except that the plasma treatment atmosphere was set to a temperature of 20° C./humidity of 23.5% RH and an amount of water vapor in the atmosphere was set to 4 g/m 3 . Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, the biaxially oriented polyester film obtained in Comparative Example 3 had small valley areas, small number of peak areas, and average cross-sectional area on surface A, and was a film with poor sliding properties with metal. .
(比較例4)
 水蒸気量を含まない窒素雰囲気下でプラズマ処理を実施し、熱固定温度を245℃とした以外は実施例1と同様の条件として二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表6に示す。表6に示すように、比較例4で得られた二軸配向ポリエステルフィルムは表面Aの谷領域、山領域の個数、平均断面積が良好な範囲を超えており、レジスト形状に劣るとともに、靭性も低いフィルムであった。
(Comparative example 4)
A biaxially oriented polyester film was obtained under the same conditions as in Example 1, except that the plasma treatment was performed in a nitrogen atmosphere containing no water vapor and the heat setting temperature was 245°C. Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, in the biaxially oriented polyester film obtained in Comparative Example 4, the number of valley areas and peak areas on surface A, and the average cross-sectional area exceeded the good range, and the resist shape was poor and the toughness was poor. It was also a low film.
(比較例5)
 P1層を構成する樹脂を表に記載の組成とし、プラズマ処理を実施しない以外は実施例1と同様にして、二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表6に示す。表6に示すように、比較例5で得られた二軸配向フィルムは表面Aの山領域の個数、平均断面積、クルトシスが良好な範囲を超えており、レジスト形状およびピンホール欠陥のレジスト評価に劣り、谷領域の個数が少ないため金属板との滑り性に劣るフィルムであった。
(Comparative example 5)
A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the resin constituting the P1 layer had the composition shown in the table and the plasma treatment was not performed. Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, in the biaxially oriented film obtained in Comparative Example 5, the number of peak regions on surface A, the average cross-sectional area, and the kurtosis exceeded the good range, and the resist evaluation of resist shape and pinhole defects The film had poor sliding properties with the metal plate due to the small number of valley regions.
 (比較例6)
 P1層を構成する樹脂を表に記載の組成とした以外は実施例1と同様にして、二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表6に示す。表6に示すように、得られた二軸配向フィルムは表面Aの谷領域の個数が良好な範囲よりも少なく、また、山領域の個数、平均断面積が良好な範囲に満たないために金属板およびフィルム同士の滑り性に劣るフィルムであった。また、谷領域の平均断面積が良好な範囲を超えているためレジスト評価の均一性に劣るフィルムであった。
(Comparative example 6)
A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that the resin constituting the P1 layer had the composition shown in the table. Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, in the obtained biaxially oriented film, the number of valley regions on surface A is smaller than the good range, and the number of peak regions and the average cross-sectional area are less than the good range, so the metal The film had poor sliding properties between the plate and the film. Further, since the average cross-sectional area of the valley region exceeded a good range, the film had poor uniformity in resist evaluation.
 (比較例7)
 P1層を構成する樹脂を表に記載の組成とした以外は実施例1と同様にして、二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの特性等を表6に示す。表6に示すように、得られた二軸配向フィルムは表面Aの谷領域、山領域の個数、平均断面積が良好な範囲に満たないために金属板およびフィルム同士の滑り性に劣るフィルムであった。
(Comparative example 7)
A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that the resin constituting the P1 layer had the composition shown in the table. Table 6 shows the properties of the obtained biaxially oriented polyester film. As shown in Table 6, the obtained biaxially oriented film is a film with poor slipperiness between the metal plate and the film because the number of valley areas, the number of peak areas, and the average cross-sectional area of the surface A are less than a good range. there were.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2022年3月29日付けで出願された日本特許出願(特願2022-053886)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2022-053886) filed on March 29, 2022, and is incorporated by reference in its entirety. Additionally, all references cited herein are incorporated in their entirety.

Claims (14)

  1.  少なくとも一方の表面が、下記条件Iにて5μm角視野でAFM観察した際に、下記(1a)及び(2a)を満たす表面Aである、二軸配向ポリエステルフィルム。
    (1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下
    (2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下
    条件I:
    <AFM測定方法>
    ・装置:Bruker社製 原子間力顕微鏡(AFM)Dimention Icon with ScanAsyst
    ・カンチレバー:窒化ケイ素製プローブ ScanAsyst Air
    ・走査モード:ScanAsyst
    ・走査速度:0.977Hz
    ・走査方向:後述する方法にて作製した測定サンプルの幅方向に走査を行う。
    ・測定視野:5μm四方
    ・サンプルライン:512
    ・Peak Force SetPoint:0.0195V~0.0205V
    ・Feedback Gain:10~20
    ・LP Deflection BW:40kHz
    ・ScanAsyst Noise Threshold:0.5nm
    ・サンプル調整:23℃、65%RH、24時間静置
    ・AFM測定環境:23℃、65%RH
    ・測定サンプルの作製方法:AFM試料ディスク(直径15mm)の片面に両面テープを貼りつけ、AFM試料ディスクと、約15mm×13mm(長手方向×幅方向)に切り出した二軸配向ポリエステルフィルムの前記表面(測定面)とは逆側の面とを張り合わせ、測定サンプルとする。
    ・測定サンプルの測定回数:各測定サンプル同士が少なくとも5μm以上離れるように場所を変え、20回測定を行う。
    ・測定値:測定した20か所の画像に関して解析を行い、各数値を測定しその平均値を測定サンプルの持つ各数値として扱う。
    <谷領域の算出>
     前記<AFM測定方法>に記載の条件により得られるフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像にFlatten処理を実施する。基準面とは下記のFlatten処理条件において決定される高さが0nmの面である。Particle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるTotal CountとAreaのMean値をそれぞれ高さの基準面から-2nm以下の谷領域の個数、平均断面積とする。
    <Flatten処理>
    ・Flatten Order:3rd
    ・Flatten Z Threshholding Direction:No theresholding
    ・Find Threshold for:the whole image
    ・Flatten Z Threshold %:0.00%
    ・Mark Excluded Data:Yes
    <Particle Analysisモード設定>
    (Detectタブ)
    ・Threshold Height:-2.00nm
    ・Feature Direction:Below
    ・X Axis:Absolute
    ・Number Histogram Bins:512
    ・Histogram Filter Cutoff:0.00nm
    ・Min Peak to Peak:1.00nm
    ・Left Peak Cutoff:0.00000%
    ・Right Peak Cutoff:0.00000%
    (Modifyタブ)
    ・Beughbirhood Size:3
    ・Number Pixels Off:1
    ・一切のDilate/Erode操作を行わない。
    (Selectタブ)
    ・Image Cursor Mode:Particle Select
    ・Bound Particles:Yes
    ・Non-Representative Particles:No
    ・Height Reference:Relative To Max Peak
    ・Number Histogram Bins:50
    A biaxially oriented polyester film in which at least one surface is a surface A that satisfies the following (1a) and (2a) when observed with an AFM in a 5 μm square field under the following condition I.
    (1a) The number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 μm or more, and 500 pieces/5 μm or less (2a) The average cross-sectional area of the valley areas with a height of -2 nm or less from the reference plane is 2000nm 2 or more, 8000nm 2 or less Condition I:
    <AFM measurement method>
    ・Device: Bruker Atomic Force Microscope (AFM) Dimention Icon with ScanAsyst
    ・Cantilever: Silicon nitride probe ScanAsyst Air
    ・Scanning mode: ScanAsyst
    ・Scanning speed: 0.977Hz
    - Scanning direction: Scanning is performed in the width direction of the measurement sample prepared by the method described below.
    ・Measurement field of view: 5 μm square ・Sample line: 512
    ・Peak Force SetPoint: 0.0195V to 0.0205V
    ・Feedback Gain: 10-20
    ・LP Deflection BW: 40kHz
    ・ScanAsyst Noise Threshold: 0.5nm
    ・Sample preparation: 23℃, 65%RH, left standing for 24 hours ・AFM measurement environment: 23℃, 65%RH
    ・Measurement sample preparation method: Paste double-sided tape on one side of an AFM sample disk (diameter 15 mm), and then attach the AFM sample disk and the surface of a biaxially oriented polyester film cut out to approximately 15 mm x 13 mm (longitudinal direction x width direction). (Measurement surface) and the opposite side are pasted together to form a measurement sample.
    ・Number of measurements for measurement samples: Change the location so that each measurement sample is separated by at least 5 μm, and perform measurements 20 times.
    ・Measurement value: Analyze the images of the 20 measured locations, measure each numerical value, and treat the average value as each numerical value of the measurement sample.
    <Calculation of valley area>
    The film surface image obtained under the conditions described in <AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface. The reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below. The Mean values of Total Count and Area, which are calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, are the number of valley regions less than -2 nm from the height reference plane and the average cross-sectional area, respectively.
    <Flatten processing>
    ・Flatten Order: 3rd
    ・Flatten Z Thresholding Direction: No theresholding
    ・Find Threshold for: the whole image
    ・Flatten Z Threshold %: 0.00%
    ・Mark Excluded Data: Yes
    <Particle Analysis mode setting>
    (Detect tab)
    ・Threshold Height: -2.00nm
    ・Feature Direction: Below
    ・X Axis: Absolute
    ・Number Histogram Bins: 512
    ・Histogram Filter Cutoff: 0.00nm
    ・Min Peak to Peak: 1.00nm
    ・Left Peak Cutoff: 0.00000%
    ・Right Peak Cutoff: 0.00000%
    (Modify tab)
    ・Boughbirhood Size:3
    ・Number Pixels Off: 1
    ・Do not perform any Dilate/Erode operations.
    (Select tab)
    ・Image Cursor Mode: Particle Select
    ・Bound Particles: Yes
    ・Non-Representative Particles: No
    ・Height Reference: Relative To Max Peak
    ・Number Histogram Bins: 50
  2.  少なくとも一方の表面A’をXPS測定することで得られる各元素濃度C1s-A、O1s-A及びN1s-Aと、前記表面A’の表層から厚み500nmをエッチングした表面aをXPS測定することで得られる各元素濃度C1s-a、O1s-a及びN1s-aとが次式を満たす二軸配向ポリエステルフィルム。XPSは下記条件IIにて測定する。
     O1s-A/O1s-a>1.000、なお、C1s+O1s+N1s=100
    条件II:
    <XPS測定条件>
    ・アルバックファイ社製 光電子分光分析装置ESCA5700
    ・使用線源:Mg
    ・測定角度:45°
    ・積算回数:6回
    ・ナロースキャン対象の元素種:C1s、O1s、N1s
    ・Neutralization:ON
    <深さ方向のエッチング条件>
     アルゴンイオンを用いて二軸配向ポリエステルフィルムの表面から厚み500nm±10nmをスパッタエッチングして除去する。アルゴンエッチングにより除去した厚みは、透過型電子顕微鏡(TEM)による断面観察でアルゴンエッチング前後の厚みを測定することで確認する。得られたエッチング済みの前記表面aを上記XPS測定条件と同様にして各元素種の測定を実施する。
    ・装置:ESCA 5800(アルバックファイ社製)
    ・イオンエッチング条件:Arガスクラスターイオン(Ar-GCIB)
    ・イオンエッチング速度:1.8nm/min
    <データ処理条件>
     解析ソフト「MultiPak」を用いて、ナロー測定により得られる、C1s、O1s及びN1sのXPSスペクトルの積分値の比より各元素濃度を求める。
    ・スムージング補正:Point9
    ・バックグラウンド補正:OFF SET
    ・シフト補正:C-C結合を284eVに補正
    The respective element concentrations C1s-A, O1s-A, and N1s-A obtained by XPS measurement of at least one surface A', and the XPS measurement of surface a etched to a thickness of 500 nm from the surface layer of surface A'. A biaxially oriented polyester film in which the resulting element concentrations C1s-a, O1s-a and N1s-a satisfy the following formula. XPS is measured under the following condition II.
    O1s-A/O1s-a>1.000, C1s+O1s+N1s=100
    Condition II:
    <XPS measurement conditions>
    ・Photoelectron spectrometer ESCA5700 manufactured by ULVAC-PHI
    ・Radiation source used: Mg
    ・Measurement angle: 45°
    ・Number of integration: 6 times ・Narrow scan target element types: C1s, O1s, N1s
    ・Neutralization: ON
    <Etching conditions in the depth direction>
    A thickness of 500 nm±10 nm is removed by sputter etching from the surface of the biaxially oriented polyester film using argon ions. The thickness removed by argon etching is confirmed by measuring the thickness before and after argon etching through cross-sectional observation using a transmission electron microscope (TEM). The etched surface a is subjected to measurement of each element type under the same conditions as the XPS measurement conditions described above.
    ・Device: ESCA 5800 (manufactured by ULVAC-PHI)
    ・Ion etching conditions: Ar gas cluster ion (Ar-GCIB)
    ・Ion etching speed: 1.8nm/min
    <Data processing conditions>
    Using the analysis software "MultiPak", the concentration of each element is determined from the ratio of the integral values of the XPS spectra of C1s, O1s, and N1s obtained by narrow measurement.
    ・Smoothing correction: Point 9
    ・Background correction: OFF SET
    ・Shift correction: Correct C-C coupling to 284eV
  3.  前記表面A’が、下記条件Iにて5μm角視野でAFM観察した際に、下記(1a)及び(2a)を満たす表面Aである、請求項2に記載の二軸配向ポリエステルフィルム。
    (1a)基準面からの高さ-2nm以下の谷領域の個数が100個/5μm□以上、500個/5μm□以下
    (2a)基準面から高さ-2nm以下の谷領域の平均断面積が2000nm以上、8000nm以下
    条件I:請求項1に記載の条件Iと同じ条件とする。
    The biaxially oriented polyester film according to claim 2, wherein the surface A' satisfies the following (1a) and (2a) when observed with an AFM in a 5 μm square field under the following condition I.
    (1a) The number of valley regions with a height of -2 nm or less from the reference plane is 100 pieces/5 μm or more, and 500 pieces/5 μm or less (2a) The average cross-sectional area of the valley areas with a height of -2 nm or less from the reference plane is 2000 nm 2 or more, 8000 nm 2 or less Condition I: The same condition as Condition I described in claim 1.
  4.  前記表面Aを前記条件Iにて5μm角視野でAFM観察した際に、下記(1b)及び(2b)を満たす請求項1または2に記載の二軸配向ポリエステルフィルム。
    (1b)基準面からの高さ-2nm以下の谷領域の個数が150個/5μm□以上、450個/5μm□以下
    (2b)基準面から高さ-2nm以下の谷領域の平均断面積が4000nm以上、6500nm以下
    The biaxially oriented polyester film according to claim 1 or 2, which satisfies the following (1b) and (2b) when the surface A is observed by AFM with a 5 μm square field of view under the condition I.
    (1b) The number of valley regions with a height of -2 nm or less from the reference plane is 150 pieces/5 μm□ or more, and 450 pieces/5 μm□ or less (2b) The average cross-sectional area of the valley regions with a height of -2 nm or less from the reference plane is 4000nm 2 or more, 6500nm 2 or less
  5.  前記表面Aを前記条件Iにおける前記<AFM測定方法>にて5μm角視野でAFM観察した際に、基準面から高さ+3nm以上の山領域の個数が50個/5μm□以上、200個/5μm□以下である請求項1または2に記載の二軸配向ポリエステルフィルム。前記山領域の個数は、下記方法により算出される。
    <山領域の個数の算出>
     前記<AFM測定方法>に記載の条件により得られるフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像にFlatten処理を実施する。基準面とは下記のFlatten処理条件において決定される高さが0nmの面である。Particle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるTotal Countを基準面から高さ+3nm以上の山領域の個数とする。
    <Particle Analysisモード設定>
    (Detectタブ)
    ・Threshold Height:3.00nm
    ・Feature Direction:Above
    ・X Axis:Absolute
    ・Number Histogram Bins:512
    ・Histogram Filter Cutoff:0.00 nm
    ・Min Peak to Peak:1.00 nm
    ・Left Peak Cutoff:0.00000%
    ・Right Peak Cutoff:0.00000%
    (Modifyタブ)
    ・Beughbirhood Size:3
    ・Number Pixels Off:1
    ・一切のDilate/Erode操作を行わない。
    (Selectタブ)
    ・Image Cursor Mode:Particle Select
    ・Bound Particles:Yes
    ・Non-Representative Particles:No
    ・Height Reference:Relative To Max Peak
    ・Number Histogram Bins:50
    When the surface A is observed with AFM in a 5 μm square field of view under the above condition I under the above <AFM measurement method>, the number of mountain regions with a height of +3 nm or more from the reference surface is 50 pieces/5 μm or more, 200 pieces/5 μm The biaxially oriented polyester film according to claim 1 or 2, which is □ or less. The number of mountain areas is calculated by the following method.
    <Calculation of number of mountain areas>
    The film surface image obtained under the conditions described in <AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface. The reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below. The Total Count, which is calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, is the number of mountain regions with a height of +3 nm or more from the reference plane.
    <Particle Analysis mode setting>
    (Detect tab)
    ・Threshold Height: 3.00nm
    ・Feature Direction: Above
    ・X Axis: Absolute
    ・Number Histogram Bins: 512
    ・Histogram Filter Cutoff: 0.00 nm
    ・Min Peak to Peak: 1.00 nm
    ・Left Peak Cutoff: 0.00000%
    ・Right Peak Cutoff: 0.00000%
    (Modify tab)
    ・Boughbirhood Size:3
    ・Number Pixels Off: 1
    ・Do not perform any Dilate/Erode operations.
    (Select tab)
    ・Image Cursor Mode: Particle Select
    ・Bound Particles: Yes
    ・Non-Representative Particles: No
    ・Height Reference: Relative To Max Peak
    ・Number Histogram Bins: 50
  6.  前記表面Aを前記条件Iにおける前記<AFM測定方法>にて5μm角視野でAFM観察した際に、基準面から高さ+3nm以上の山領域の平均断面積が3000nm以上、7000nm以下である請求項1または2に記載の二軸配向ポリエステルフィルム。前記山領域の平均断面積は、下記方法により算出される。
    <山領域の平均断面積の算出>
     前記<AFM測定方法>に記載の条件により得られるフィルム表面像を付属の解析ソフト(NanoScope Analysis Version 1.40)を用い解析する。得られるフィルム表面のHeight Sensor画像にFlatten処理を実施する。基準面とは下記のFlatten処理条件において決定される高さが0nmの面である。Particle Analysis解析モードでDetectタブの項目を下記の通り設定することで算出されるAreaのMean値を基準面から高さ+3nm以上の山領域の平均断面積とする。
    <Particle Analysisモード設定>
    (Detectタブ)
    ・Threshold Height:3.00nm
    ・Feature Direction:Above
    ・X Axis:Absolute
    ・Number Histogram Bins:512
    ・Histogram Filter Cutoff:0.00 nm
    ・Min Peak to Peak:1.00 nm
    ・Left Peak Cutoff:0.00000%
    ・Right Peak Cutoff:0.00000%
    (Modifyタブ)
    ・Beughbirhood Size:3
    ・Number Pixels Off:1
    ・一切のDilate/Erode操作を行わない。
    (Selectタブ)
    ・Image Cursor Mode:Particle Select
    ・Bound Particles:Yes
    ・Non-Representative Particles:No
    ・Height Reference:Relative To Max Peak
    ・Number Histogram Bins:50
    When the surface A is observed with an AFM in a 5 μm square field of view under the <AFM measurement method> under the condition I, the average cross-sectional area of the mountain region with a height of +3 nm or more from the reference plane is 3000 nm 2 or more and 7000 nm 2 or less. The biaxially oriented polyester film according to claim 1 or 2. The average cross-sectional area of the mountain area is calculated by the following method.
    <Calculation of average cross-sectional area of mountain area>
    The film surface image obtained under the conditions described in <AFM measurement method> is analyzed using the attached analysis software (NanoScope Analysis Version 1.40). Flatten processing is performed on the obtained height sensor image of the film surface. The reference plane is a plane with a height of 0 nm determined under the Flatten processing conditions described below. The Mean value of Area, which is calculated by setting the items on the Detect tab in the Particle Analysis analysis mode as shown below, is the average cross-sectional area of the mountain region with a height of +3 nm or more from the reference plane.
    <Particle Analysis mode setting>
    (Detect tab)
    ・Threshold Height: 3.00nm
    ・Feature Direction: Above
    ・X Axis: Absolute
    ・Number Histogram Bins: 512
    ・Histogram Filter Cutoff: 0.00 nm
    ・Min Peak to Peak: 1.00 nm
    ・Left Peak Cutoff: 0.00000%
    ・Right Peak Cutoff: 0.00000%
    (Modify tab)
    ・Boughbirhood Size:3
    ・Number Pixels Off: 1
    ・Do not perform any Dilate/Erode operations.
    (Select tab)
    ・Image Cursor Mode: Particle Select
    ・Bound Particles: Yes
    ・Non-Representative Particles: No
    ・Height Reference: Relative To Max Peak
    ・Number Histogram Bins: 50
  7.  前記表面Aを前記条件Iにおける前記<AFM測定方法>にて5μm角視野でAFM観察した際に、クルトシスが2.0以上、10.0以下である請求項1または2に記載の二軸配向ポリエステルフィルム。前記クルトシスは、下記方法により求める。
    <クルトシスの測定方法>
     二軸配向ポリエステルフィルムの表面を前記条件Iにおける前記<AFM測定方法>にて観察した後、前記条件IにおけるFlatten処理を実施し、解析ソフト(NanoScope Analysis Version 1.40)のRoughness解析モードで得られた表面像の全範囲を指定し、STOP Band InputsタブおよびPeak Inputsタブの各項目を以下に設定することで算出されるKurtosis値の20個所の平均値をクルトシスとする。
    (STOP Band Inputsタブ)
    Use Threshold:Off
    Threshold Height:0.00nm
    Feature Direction:Above
    Number Histogram Bins:512
    Boundary Particles:Yes
    Non-Representative Particles:No
    Particle Filter Sigma:1.00
    (Peak Inputsタブ)
    Peak:On
    Peak threshold reference:Zero
    Peak threshold value type:Absolute value
    Peak threshold value:0.00nm
    Zero Crossing:On
    Biaxially oriented according to claim 1 or 2, wherein the surface A has a kurtosis of 2.0 or more and 10.0 or less when AFM observed with a 5 μm square field of view under the <AFM measurement method> under the condition I. Polyester film. The kurtosis is determined by the following method.
    <How to measure kurtosis>
    After observing the surface of the biaxially oriented polyester film using the above <AFM measurement method> under the above conditions I, the Flatten process under the above conditions I was performed, and the results were obtained using the Roughness analysis mode of the analysis software (NanoScope Analysis Version 1.40). The average value of the 20 Kurtosis values calculated by specifying the entire range of the surface image obtained and setting each item on the STOP Band Inputs tab and the Peak Inputs tab as follows is set as Kurtosis.
    (STOP Band Inputs tab)
    Use Threshold:Off
    Threshold Height: 0.00nm
    Feature Direction: Above
    Number Histogram Bins: 512
    Boundary Particles: Yes
    Non-Representative Particles: No
    Particle Filter Sigma:1.00
    (Peak Inputs tab)
    Peak: On
    Peak threshold reference: Zero
    Peak threshold value type: Absolute value
    Peak threshold value: 0.00nm
    Zero Crossing: On
  8.  前記表面Aを下記条件IIにてXPS測定することで得られる各元素濃度C1s-A、O1s-A及びN1s-Aと、前記表面Aの表層から厚み500nmをエッチングした表面aをXPS測定することで得られる各元素濃度C1s-a、O1s-a及びN1s-aとが次式を満たす請求項1または2に記載の二軸配向ポリエステルフィルム。
     N1s-A/N1s-a≧2.000、なお、C1s+O1s+N1s=100
    条件II:請求項2に記載の条件IIと同じ条件とする。
    Each element concentration C1s-A, O1s-A and N1s-A obtained by XPS measurement of the surface A under the following condition II, and XPS measurement of the surface a etched to a thickness of 500 nm from the surface layer of the surface A. The biaxially oriented polyester film according to claim 1 or 2, wherein each of the element concentrations C1s-a, O1s-a and N1s-a obtained in the above satisfy the following formula.
    N1s-A/N1s-a≧2.000, C1s+O1s+N1s=100
    Condition II: The same condition as condition II described in claim 2.
  9.  前記表面Aと厚み方向に対向する表面Bが下記条件IIIにおける<走査型白色干渉顕微鏡測定法>にて観察した際に下記(1c)及び(2c)を満たす請求項1または2に記載の二軸配向ポリエステルフィルム。
    (1c)算術平均高さが0.5nm以上、2.0nm以下
    (2c)最大突起高さが20nm以上、150nm以下
    条件III:
    <走査型白色干渉顕微鏡測定法>
     二軸配向ポリエステルフィルムより6cm×6cmのサンプリングを行い、それぞれのサンプルについて、走査型白色干渉顕微鏡(装置:日立ハイテクサイエンス社製“VertScan”(登録商標) VS1540)を用い、二軸配向ポリエステルフィルムにおける表面Bを、50倍対物レンズを使用し測定モードをWAVEモードに設定し、測定面積113μm×113μmで90視野測定を行う。サンプルセットは、測定Y軸がサンプルフィルムの長手方向(フィルムが巻き取られている方向)となるようにサンプルをステージにセットして測定する。なお、長手方向が分からないサンプルの場合は、測定Y軸がサンプルフィルムの任意の1方向となるようして測定し、その後120度回転させた方向となるようして測定し、さらにその後120度回転させた方向となるようにして測定し、それぞれの測定結果の平均をそのサンプル有する特性とする。また測定するサンプルフィルムは、ゴムパッキンの入った2枚の金属フレームに挟み込むことで、フレーム内のフィルムが張った状態(サンプルのたるみやカールを除した状態)にしてサンプル表面の測定を行う。
     得られた顕微鏡像について、該顕微鏡に内蔵された表面解析ソフトウェアVS-Viewer Version 10.0.3.0にて、下記条件にて画像処理を施す。
    (画像処理条件)
     下記の順にて画像処理を行う。
    ・補間処理  :完全補間
    ・フィルタ処理:メジアン(3×3ピクセル)
    ・面補正   :4次
    <算術平均高さおよび最大突起高さの算出>
     前記表面Aに関して前記走査型白色干渉顕微鏡測定法での測定を行い、前記画像処理条件にて画像処理を行った各測定画像に関して、表面解析ソフトウェア内のISOパラメータ解析において以下の解析条件と共に「Height Parameters」を選択し得られた数値群をパラメータシート欄に出力することで得られるSaを算術平均高さ、Spを最大突起高さとして求め、各視野の値から上下5視野を除外した80視野での平均値をそれぞれ前記表面Bの算術平均高さ、最大突起高さとする。
    (ISOパラメータ解析条件)
     下記の条件にてISOパラメータ解析処理を行う。
    ・S-Filter:自動
    ・正規確率紙
     分割数     :300
     計算範囲の上限 :3.000
     計算範囲の下限 :-3.000
    ・パラメータ   :「Height Parameters」を選択
    ・出力      :「パラメータリスト」を選択
    (パラメータシート出力)
     前記ISOパラメータ解析によって表示される「ISOパラメータ」ウインドウ中の「Height Parameters」を選択し「パラメータシートに追加」を行うことで「パラメータシート」ウインドウの「ISOパラメータ」タブで表示される「Sa」を前記表面Bの算術平均高さ、「Sp」を前記表面Bの最大突起高さとして用いる。
    3. The second surface according to claim 1 or 2, wherein the surface B facing the surface A in the thickness direction satisfies the following (1c) and (2c) when observed by <scanning white interference microscopy> under the following condition III. Axially oriented polyester film.
    (1c) Arithmetic mean height is 0.5 nm or more and 2.0 nm or less (2c) Maximum protrusion height is 20 nm or more and 150 nm or less Condition III:
    <Scanning white interference microscopy measurement method>
    A 6 cm x 6 cm sample was taken from the biaxially oriented polyester film, and each sample was examined using a scanning white interference microscope (equipment: "VertScan" (registered trademark) VS1540 manufactured by Hitachi High-Tech Science Co., Ltd.). Surface B is measured using a 50x objective lens, the measurement mode is set to WAVE mode, and 90 visual fields are measured with a measurement area of 113 μm×113 μm. The sample set is measured by setting the sample on a stage so that the measurement Y-axis is in the longitudinal direction of the sample film (the direction in which the film is wound). In addition, in the case of a sample whose longitudinal direction is unknown, measure so that the measurement Y-axis is in one arbitrary direction of the sample film, then measure so that it is in the direction rotated 120 degrees, and then again 120 degrees. The sample is measured in the rotated direction, and the average of the measurement results is taken as the characteristic of that sample. The sample film to be measured is sandwiched between two metal frames containing rubber gaskets, and the sample surface is measured with the film in the frame stretched (sagging and curling removed).
    The obtained microscopic image is subjected to image processing under the following conditions using surface analysis software VS-Viewer Version 10.0.3.0 built into the microscope.
    (Image processing conditions)
    Image processing is performed in the following order.
    ・Interpolation processing: Complete interpolation ・Filter processing: Median (3 x 3 pixels)
    ・Surface correction: 4th order <Calculation of arithmetic mean height and maximum protrusion height>
    The surface A was measured using the scanning white interference microscopy method, and for each measurement image that was processed under the image processing conditions, the ISO parameter analysis within the surface analysis software was performed with the following analysis conditions: "Parameters" and output the obtained numerical value group to the parameter sheet field. Sa is the arithmetic mean height, Sp is the maximum protrusion height, and 80 fields of view are obtained by excluding the upper and lower 5 fields from the value of each field of view. The average values at are the arithmetic mean height and maximum protrusion height of the surface B, respectively.
    (ISO parameter analysis conditions)
    ISO parameter analysis processing is performed under the following conditions.
    ・S-Filter: Automatic/Normal probability paper Number of divisions: 300
    Upper limit of calculation range: 3.000
    Lower limit of calculation range: -3.000
    ・Parameter: Select "Height Parameters" ・Output: Select "Parameter list" (parameter sheet output)
    By selecting "Height Parameters" in the "ISO Parameters" window displayed by the ISO parameter analysis and clicking "Add to Parameter Sheet", "Sa" displayed in the "ISO Parameters" tab of the "Parameter Sheet" window is used as the arithmetic mean height of the surface B, and "Sp" is used as the maximum protrusion height of the surface B.
  10.  前記表面Aと前記表面Bとを前記条件IIIにおける前記<走査型白色干渉顕微鏡測定法>にて観察し、下記<スキューネスSsk-AおよびSsk-Bの算出>により算出されるスキューネスSsk-A、スキューネスSsk-Bが下記(1d)、(2d)及び(3d)を満たす請求項1または2に記載の二軸配向ポリエステルフィルム。
    (1d)Ssk-Aが-0.1以上1.0以下
    (2d)Ssk-Bが1.0以上4.0以下
    (3d)Ssk-B-Ssk-Aが0.1以上3.0以下
    <スキューネスSsk-AおよびSsk-Bの算出>
     前記表面Aおよび前記表面Bに関して前記走査型白色干渉顕微鏡測定法で90視野の測定を行い、前記条件IIIにおける前記画像処理条件にて画像処理を行った各測定画像に関して、表面解析ソフトウェア内のISOパラメータ解析において以下の解析条件と共に「Height Parameters」を選択し得られた数値群をパラメータシート欄に出力することで得られるSskをスキューネスとして求め、各視野の値から上下5視野を除外した80視野での平均値を測定面のスキューネスSskとする。
    (ISOパラメータ解析条件)
     下記の条件にてISOパラメータ解析処理を行う。
    ・S-Filter:自動
    ・正規確率紙
     分割数     :300
     計算範囲の上限 :3.000
     計算範囲の下限 :-3.000
    ・パラメータ   :「Height Parameters」を選択
    ・出力      :「パラメータリスト」を選択
    (パラメータシート出力)
     前記ISOパラメータ解析によって表示される「ISOパラメータ」ウインドウ中の「Height Parameters」を選択し「パラメータシートに追加」を行うことで「パラメータシート」ウインドウの「ISOパラメータ」タブで表示される「Ssk」をフィルム表面のスキューネスSskとして用いる。
    The surface A and the surface B are observed by the <scanning white interference microscopy measurement method> under the condition III, and the skewness Ssk-A is calculated by the following <calculation of skewness Ssk-A and Ssk-B>, The biaxially oriented polyester film according to claim 1 or 2, wherein the skewness Ssk-B satisfies the following (1d), (2d) and (3d).
    (1d) Ssk-A is -0.1 or more and 1.0 or less (2d) Ssk-B is 1.0 or more and 4.0 or less (3d) Ssk-B-Ssk-A is 0.1 or more and 3.0 or less <Calculation of skewness Ssk-A and Ssk-B>
    Regarding the surface A and the surface B, 90 fields of view were measured by the scanning white interference microscopy method, and for each measurement image processed under the image processing conditions in the condition III, the ISO in the surface analysis software In the parameter analysis, select "Height Parameters" with the following analysis conditions and output the obtained numerical value group to the parameter sheet field. Ssk obtained as skewness is calculated, and 80 fields of view are obtained by excluding the upper and lower 5 fields from the value of each field of view. Let the average value of the measurement surface be the skewness Ssk of the measurement surface.
    (ISO parameter analysis conditions)
    ISO parameter analysis processing is performed under the following conditions.
    ・S-Filter: Automatic/Normal probability paper Number of divisions: 300
    Upper limit of calculation range: 3.000
    Lower limit of calculation range: -3.000
    ・Parameter: Select "Height Parameters" ・Output: Select "Parameter list" (parameter sheet output)
    Select "Height Parameters" in the "ISO Parameters" window displayed by the ISO parameter analysis and click "Add to Parameter Sheet" to select "Ssk" displayed in the "ISO Parameters" tab of the "Parameter Sheet" window. is used as the skewness Ssk of the film surface.
  11.  前記表面Bから、レーザー顕微鏡により厚み方向1μm×長手方向220μm×幅方向290μmの領域を30視野観察したときの長径2.0μm以上の粗大物の数をNP1(個)とし場合に、NP1が20以下である、請求項1または2に記載の二軸配向ポリエステルフィルム。 From the surface B, when observing 30 fields of view of an area of 1 μm in the thickness direction x 220 μm in the longitudinal direction x 290 μm in the width direction using a laser microscope, the number of coarse particles with a major axis of 2.0 μm or more is NP1 (pieces), and when NP1 is 20 or less The biaxially oriented polyester film according to claim 1 or 2.
  12.  フィルム温度を90℃から130℃まで昇温する際のフィルム寸法変化率をΔL90-130℃(ppm/℃)とした場合に、幅方向(TD方向)、長手方向(MD方向)の少なくとも一方向が-50以上150以下である請求項1または2に記載の二軸配向ポリエステルフィルム。 When the film dimensional change rate when increasing the film temperature from 90°C to 130°C is ΔL 90-130°C (ppm/°C), at least one of the width direction (TD direction) and longitudinal direction (MD direction) The biaxially oriented polyester film according to claim 1 or 2, wherein the direction is -50 or more and 150 or less.
  13.  ドライフィルムレジスト支持体用フィルムとして用いられる請求項1または2に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1 or 2, which is used as a film for a dry film resist support.
  14.  積層セラミックコンデンサーを製造する工程においてグリーンシート成形の支持体用フィルムとして用いられる請求項1または2に記載の二軸配向ポリエステルフィルム。
     
    The biaxially oriented polyester film according to claim 1 or 2, which is used as a support film for green sheet molding in the process of manufacturing a multilayer ceramic capacitor.
PCT/JP2023/012045 2022-03-29 2023-03-24 Biaxially oriented polyester film WO2023190265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-053886 2022-03-29
JP2022053886 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190265A1 true WO2023190265A1 (en) 2023-10-05

Family

ID=88201671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012045 WO2023190265A1 (en) 2022-03-29 2023-03-24 Biaxially oriented polyester film

Country Status (2)

Country Link
TW (1) TW202346443A (en)
WO (1) WO2023190265A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182195A (en) * 1992-12-24 1994-07-05 Ii C Kagaku Kk Method for glow discharge plasma treatment under atmospheric pressure
JPH08167146A (en) * 1994-12-09 1996-06-25 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
US5916674A (en) * 1997-02-05 1999-06-29 Ford Motor Company Article having a removable protective film
JP2002099063A (en) * 2000-09-21 2002-04-05 Konica Corp Method of manufacturing photographic polyester support
JP2002541466A (en) * 1999-04-13 2002-12-03 パテル,ゴードハンハイ Indicators for monitoring plasma sterilization
JP2003155364A (en) * 2001-11-22 2003-05-27 Tamapori Kk Plastic film for laminate
JP2006523157A (en) * 2003-03-31 2006-10-12 エクスアテック、エル.エル.シー. Ink for polycarbonate substrate
JP2013087206A (en) * 2011-10-19 2013-05-13 Toray Ind Inc Polyester film for molding
JP2018053198A (en) * 2016-09-30 2018-04-05 ユニチカ株式会社 Polyester film
JP2020037620A (en) * 2018-09-03 2020-03-12 東レ株式会社 Thermoplastic resin film
JP2021006639A (en) * 2018-01-24 2021-01-21 大日本印刷株式会社 Polyester resin composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182195A (en) * 1992-12-24 1994-07-05 Ii C Kagaku Kk Method for glow discharge plasma treatment under atmospheric pressure
JPH08167146A (en) * 1994-12-09 1996-06-25 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
US5916674A (en) * 1997-02-05 1999-06-29 Ford Motor Company Article having a removable protective film
JP2002541466A (en) * 1999-04-13 2002-12-03 パテル,ゴードハンハイ Indicators for monitoring plasma sterilization
JP2002099063A (en) * 2000-09-21 2002-04-05 Konica Corp Method of manufacturing photographic polyester support
JP2003155364A (en) * 2001-11-22 2003-05-27 Tamapori Kk Plastic film for laminate
JP2006523157A (en) * 2003-03-31 2006-10-12 エクスアテック、エル.エル.シー. Ink for polycarbonate substrate
JP2013087206A (en) * 2011-10-19 2013-05-13 Toray Ind Inc Polyester film for molding
JP2018053198A (en) * 2016-09-30 2018-04-05 ユニチカ株式会社 Polyester film
JP2021006639A (en) * 2018-01-24 2021-01-21 大日本印刷株式会社 Polyester resin composition
JP2020037620A (en) * 2018-09-03 2020-03-12 東レ株式会社 Thermoplastic resin film

Also Published As

Publication number Publication date
TW202346443A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
CN109312088B (en) Biaxially oriented thermoplastic resin film
WO2019123990A1 (en) Biaxially oriented thermoplastic resin film
JP2009233919A (en) Antistatic laminated polyester film for mold release
JP2008239743A (en) Polyester film for dry film resist carrier
JP2020084187A (en) Polyester film
JP2016087854A (en) Biaxially oriented polyester film for dry film resist supporter
JP2007211073A (en) Release polyester film
CN113056360B (en) Biaxially oriented thermoplastic resin film
JP2021054055A (en) Biaxially oriented polyester film for dry film resist
WO2023190265A1 (en) Biaxially oriented polyester film
JP2020147751A (en) Polyester film
WO2024057778A1 (en) Multilayer polyester film for dry film resists
JP2022052031A (en) Biaxially oriented polyester film
JP7283040B2 (en) thermoplastic resin film
JP7206857B2 (en) polyester film
WO2024029384A1 (en) Biaxially aligned polyester film for dry film resist support body
JP2023134991A (en) Biaxially oriented polyester film for support of dry film resist
JP2009280830A (en) Polyester film and its method for manufacturing
JP2007211072A (en) Release polyester film
JP2008239844A (en) Polyester film for mold release
JP2021109441A (en) Polyester film
JP2021001284A (en) Biaxially oriented polyester film and method for producing the same
JP4391858B2 (en) Release film for green sheet molding
JP2024009760A (en) Biaxially-oriented polyester film
JP2021055078A (en) Polyester film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023519721

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780275

Country of ref document: EP

Kind code of ref document: A1