WO2023190065A1 - Chloroprene-based latex composition, chloroprene-based latex composition production method, and aqueous adhesive agent - Google Patents

Chloroprene-based latex composition, chloroprene-based latex composition production method, and aqueous adhesive agent Download PDF

Info

Publication number
WO2023190065A1
WO2023190065A1 PCT/JP2023/011594 JP2023011594W WO2023190065A1 WO 2023190065 A1 WO2023190065 A1 WO 2023190065A1 JP 2023011594 W JP2023011594 W JP 2023011594W WO 2023190065 A1 WO2023190065 A1 WO 2023190065A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloroprene
polymerization
latex composition
based latex
mass
Prior art date
Application number
PCT/JP2023/011594
Other languages
French (fr)
Japanese (ja)
Inventor
洪太 永岡
夢実 上野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2024512290A priority Critical patent/JPWO2023190065A1/ja
Publication of WO2023190065A1 publication Critical patent/WO2023190065A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • C08F236/16Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
    • C08F236/18Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen containing chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • C08L11/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J111/00Adhesives based on homopolymers or copolymers of chloroprene
    • C09J111/02Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/04Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a chloroprene-based latex composition, a method for producing a chloroprene-based latex composition, and an aqueous adhesive.
  • Chloroprene latex is used in water-based adhesives used in the production of civil engineering, plywood, furniture, shoes, wet suits, etc., and dip-molded products such as labor gloves, laboratory gloves, medical gloves, rubber thread, and balloons. It is used in a variety of fields, including as a material for water-resistant coatings in the civil engineering and architectural fields.
  • Patent Document 1 discloses a chloroprene-based latex composition obtained by emulsion polymerization of chloroprene and ethylenically unsaturated carboxylic acid in the presence of a water-soluble polymer that acts as a protective colloid.
  • Patent Document 2 discloses a chloroprene-based latex composition obtained by emulsion polymerization of chloroprene and ethylenically unsaturated carboxylic acid in the presence of polyvinyl alcohol and a nonionic surfactant.
  • Chloroprene-based latex compositions produced using polyvinyl alcohol as an emulsifier have excellent formulation stability and adhesive properties, and are therefore used, for example, as water-based adhesives.
  • chloroprene-based latex compositions produced using polyvinyl alcohol as an emulsifier tend to have lower mechanical stability than chloroprene-based latex compositions using emulsifiers other than polyvinyl alcohol, and are susceptible to vibration during transportation. , when mechanical shearing force from a stirrer or pump is applied, coagulation may occur.
  • Patent Document 1 when polyvinyl alcohol with a high degree of polymerization is used as an emulsifier, the polymerization solution increases in viscosity during production, the stirring efficiency decreases, and heat cannot be removed uniformly, causing local polymerization to proceed. In some cases, aggregates were generated. Moreover, the storage stability of the obtained chloroprene-based latex composition was also poor. Furthermore, as in Patent Document 2, when a nonionic surfactant with a large HLB value is used, the emulsification of the monomer at the initial stage of polymerization may become insufficient, leading to the generation of aggregates during polymerization and increased adhesion to cans. .
  • chloroprene-based latex compositions have room for improvement in storage stability and mechanical stability. Further, adhesives containing the chloroprene latex composition may not have sufficient adhesive properties such as initial peel strength, normal peel strength, water resistance strength, and heat-resistant adhesive strength.
  • the present invention has been made in view of these circumstances, and provides an adhesive that has excellent storage stability and mechanical stability, and has excellent adhesive properties such as initial peel strength, normal peel strength, water resistance strength, and heat-resistant adhesive strength.
  • the object of the present invention is to provide a chloroprene-based latex composition from which a chloroprene-based latex composition can be obtained.
  • a chloroprene-based latex composition containing a chloroprene-based copolymer, polyvinyl alcohol, and a surfactant, wherein the chloroprene-based copolymer contains a monomer unit derived from chloroprene and a carboxyl group.
  • the polyvinyl alcohol has a degree of polymerization of 250 to 450, a degree of saponification of 85 to 95 mol%
  • the surfactant has an HLB value of 3. 0 to 10.0
  • the chloroprene latex composition contains 0.04 to 0.36 parts by mass of the surfactant based on 100 parts by mass of the chloroprene latex composition. things are provided.
  • a chloroprene-based latex composition containing a chloroprene-based copolymer, polyvinyl alcohol, and a surfactant
  • the chloroprene-based copolymer is derived from a vinyl monomer containing a carboxyl group.
  • a chloroprene-based latex composition can provide an adhesive with excellent adhesive properties such as peel strength, water resistance strength, and heat-resistant adhesive strength, and have completed the present invention.
  • the chloroprene-based copolymer is a graft copolymer containing a monomer unit derived from the chloroprene, a monomer unit derived from the vinyl monomer containing a carboxyl group, and a structure derived from polyvinyl alcohol.
  • the chloroprene copolymer contains 0.01 to 5.0 parts by mass of monomer units derived from the vinyl monomer containing a carboxyl group, based on 100 parts by mass of the chloroprene copolymer.
  • the chloroprene-based latex composition described above contains 0.3 to 5.0 parts by mass of a structure derived from polyvinyl alcohol.
  • the chloroprene latex composition described above is one in which the surfactant includes a nonionic surfactant.
  • the chloroprene-based latex composition described above is one in which the vinyl monomer containing a carboxyl group contains an ⁇ , ⁇ -unsaturated carboxylic acid.
  • a method for producing a chloroprene-based latex composition comprises polymerizing raw material monomers containing a chloroprene monomer and a vinyl monomer containing a carboxyl group.
  • polyvinyl alcohol and a surfactant are added, in the polymerization step, at least a part of the raw material monomer is added after the start of polymerization, and in the polymerization step, when the polymerization is stopped,
  • the difference between the average particle diameter obtained by cumulant analysis of the polymerization solution and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of the raw material monomer is 150 nm or less, A method of making a latex composition is provided.
  • the viscosity of the polymerization solution measured with a B-type viscometer at the end of the partial addition of the raw material monomer is 280 mPa ⁇ s or less, and the viscosity of the polymerization solution measured with a B-type viscometer at the time of termination of polymerization is preferably 150 mPa ⁇ s. s or more.
  • an aqueous adhesive containing the chloroprene-based latex composition described above.
  • chloroprene-based latex composition of the present invention it is possible to obtain an adhesive having excellent storage stability and mechanical stability, and excellent adhesive properties such as initial peel strength, normal peel strength, water resistance strength, and heat-resistant adhesive strength.
  • a chloroprene-based latex composition can be obtained. Further, the obtained chloroprene-based latex composition can be utilized as an adhesive, particularly an aqueous adhesive, by taking advantage of its properties.
  • Chloroprene-based latex composition contains a chloroprene-based copolymer, polyvinyl alcohol, and a surfactant.
  • chloroprene copolymer contains a monomer unit derived from 2-chloro-1,3-butadiene (hereinafter referred to as chloroprene), and contains a vinyl monomer containing a carboxyl group. Contains monomer units derived from mer. Further, as described below, the chloroprene copolymer according to the present invention may include a structure derived from polyvinyl alcohol.
  • the vinyl monomer containing a carboxyl group may contain an ⁇ , ⁇ -unsaturated carboxylic acid.
  • ⁇ , ⁇ -unsaturated carboxylic acids include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and 3-butenoic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid; monomethyl maleate; , monoesters of unsaturated dicarboxylic acids such as monomethyl fumarate and monomethyl itaconate; unsaturated polycarboxylic acids; and esters of unsaturated polycarboxylic acids, including (meth)acrylic acid and its esters. It is preferable that it contains methacrylic acid, and it is more preferable that it contains methacrylic acid.
  • the chloroprene-based copolymer according to the present invention is a graft copolymer containing a monomer unit derived from chloroprene, a monomer unit derived from a vinyl monomer containing a carboxyl group, and a structure derived from polyvinyl alcohol. can include.
  • the chloroprene-based copolymer according to the present invention is obtained by graft copolymerizing a polymer containing a monomer unit derived from chloroprene and a monomer unit derived from a vinyl monomer containing a carboxyl group, and polyvinyl alcohol.
  • the graft copolymer according to the present invention includes a monomer unit derived from chloroprene, a branch chain containing a monomer unit derived from a vinyl monomer containing a carboxyl group, and a structure derived from polyvinyl alcohol. It is assumed that it contains a backbone chain.
  • the chloroprene-based copolymer according to the present invention means a polymer containing a monomer unit derived from chloroprene and a monomer unit derived from a vinyl monomer containing a carboxyl group.
  • the chloroprene-based copolymer according to the present invention includes a graft copolymer that is graft copolymerized with polyvinyl alcohol and a copolymer that is not graft copolymerized with polyvinyl alcohol (a copolymer that does not have a polyvinyl alcohol structure). Including both.
  • the chloroprene-based copolymer according to the present invention can also include a structure derived from chloroprene, a vinyl monomer containing a carboxyl group, and a compound (for example, a monomer) other than polyvinyl alcohol.
  • a compound for example, a monomer
  • Other monomers include, for example, 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, butadiene, isoprene, styrene, ethylene, unsaturated nitriles (acrylonitrile, methacrylonitrile, etc.). ), sulfur, etc. These can be used alone or in combination of two or more.
  • chloroprene may contain a small amount of 1-chloro-1,3-butadiene as an impurity.
  • 2-chloro-1,3-butadiene containing such a small amount of 1-chloro-1,3-butadiene can also be used as the chloroprene according to the present invention.
  • the chloroprene-based copolymer according to an embodiment of the present invention has the above other monomer units based on a total of 100% by mass of monomer units derived from vinyl monomers containing chloroprene and carboxyl groups in the chloroprene-based copolymer. It can contain 30% by mass or less of monomer units derived from the compound.
  • the content of structures derived from other compounds is, for example, 0, 5, 10, 15, 20, 25, 30% by mass, even if it is within the range between any two of the numerical values exemplified here. good.
  • the obtained chloroprene-based copolymer can exhibit the effects obtained by copolymerizing other monomers without impairing the properties derived from chloroprene and the like.
  • the chloroprene-based copolymer according to one embodiment of the present invention includes a non-graft copolymer consisting of a chloroprene monomer unit and a vinyl monomer unit containing a carboxyl group, and a chloroprene monomer It can also be made of a graft copolymer consisting of a vinyl monomer unit containing a carboxyl group, and a structure derived from polyvinyl alcohol.
  • the chloroprene copolymer according to one embodiment of the present invention preferably contains 95 to 99.97 parts by mass of monomer units derived from chloroprene, based on 100 parts by mass of the chloroprene copolymer.
  • the content of the monomer unit derived from chloroprene is, for example, 95, 96, 97, 98, 99, 99.9, 99.97 parts by mass, and the range between any two of the numerical values exemplified here. It may be within.
  • the chloroprene copolymer according to one embodiment of the present invention contains 0.01 to 5.0 parts of monomer units derived from a vinyl monomer containing a carboxyl group, based on 100 parts by mass of the chloroprene copolymer. It is preferable to contain 0 part by mass.
  • the content of monomer units derived from vinyl monomers containing carboxyl groups is, for example, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, The content may be 2.0, 3.0, 4.0, or 5.0% by mass, and may be within a range between any two of the numerical values exemplified here.
  • chloroprene-based latex composition does not contain a part of the added vinyl monomer containing a carboxyl group in a state that is not included in the chloroprene-based copolymer, that is, in a free state. It's okay to stay.
  • the chloroprene copolymer according to an embodiment of the present invention preferably contains 0.3 to 5.0 parts by mass of a structure derived from polyvinyl alcohol, based on 100 parts by mass of the chloroprene copolymer.
  • the content of the structure derived from polyvinyl alcohol is, for example, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4 .5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-based latex composition according to one embodiment of the present invention contains a part of the added polyvinyl alcohol in a state where it is not graft copolymerized with the chloroprene-based copolymer, that is, in a free state.
  • the chloroprene-based copolymer according to an embodiment of the present invention further contains carboxyl
  • carboxyl By containing a portion of the vinyl monomer containing groups and a portion of polyvinyl alcohol in a free state, it has excellent storage stability and mechanical stability, and has excellent initial peel strength, normal peel strength, water resistance strength, and heat resistance. This results in a chloroprene-based latex composition that makes it possible to obtain an adhesive with an excellent balance of adhesive properties such as adhesive strength.
  • the chloroprene latex composition according to one embodiment of the present invention may contain a vinyl monomer containing carboxyl group.
  • the chloroprene-based latex composition according to an embodiment of the present invention has a part of the added vinyl monomer containing a carboxyl group in a state not included in the chloroprene-based copolymer, that is, in a free state (monomer ) may be included.
  • the chloroprene-based latex composition according to an embodiment of the present invention contains 0.01 to 5.0 parts by weight of free vinyl monomer containing a carboxyl group when the chloroprene copolymer is 100 parts by weight. can include parts.
  • the content of the vinyl monomer containing a carboxyl group is, for example, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0. , 4.0, and 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-based latex composition according to one embodiment of the present invention can contain 35 to 75% by mass in a free state when the added vinyl monomer containing a carboxyl group is 100% by mass.
  • the vinyl monomer containing a free carboxyl group is, for example, 35, 40, 45, 50, 55, 60, 65, 70, 75% by mass, and is between any two of the values exemplified here. It may be within the range.
  • the chloroprene latex composition according to the present invention contains polyvinyl alcohol having a degree of polymerization of 250 to 450 and a degree of saponification of 85 to 95 mol%.
  • the polyvinyl alcohol according to one embodiment of the present invention preferably has a degree of polymerization of 250 to 450.
  • the degree of polymerization of polyvinyl alcohol is, for example, 250, 300, 350, 400, 450, and may be within a range between any two of the numerical values exemplified here.
  • the polyvinyl alcohol according to one embodiment of the present invention preferably has a degree of saponification of 85 to 95 mol%.
  • the degree of saponification is, for example, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 mol%, and may be within the range between any two of the numerical values exemplified here. .
  • the chloroprene-based latex composition according to an embodiment of the present invention contains 0.3 to 5.0 parts by mass of free polyvinyl alcohol that has not been graft copolymerized, based on 100 parts by mass of the chloroprene copolymer. It is preferable to include part.
  • the content of free polyvinyl alcohol is, for example, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-based latex composition according to an embodiment of the present invention can contain 40 to 90% by mass of free polyvinyl alcohol when the added polyvinyl alcohol is 100% by mass.
  • the free polyvinyl alcohol is, for example, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90% by mass, and the values exemplified here It may be within the range between any two.
  • the chloroprene-based latex composition according to an embodiment of the present invention is composed of a chloroprene monomer unit and a vinyl monomer unit containing a carboxyl group (including free monomers) when the chloroprene-based latex composition is 100 parts by mass. (not included) in a total of 20 to 65 parts by mass.
  • the total content of chloroprene monomer units and vinyl monomer units containing carboxyl groups is, for example, 20, 25, 30, 35, 40, 45, 50. , 55, 60, and 65 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-based latex composition according to an embodiment of the present invention contains 0.1 to 5.0 parts by mass of polyvinyl alcohol structure (including free polyvinyl alcohol) when the chloroprene-based latex composition is 100 parts by mass. I can do it.
  • the polyvinyl alcohol structure and the total content of polyvinyl alcohol are, for example, 0.1, 0.2, 0.5, 1.0, 1.5, 2. 0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene latex composition according to the present invention contains a surfactant having an HLB value of 3.0 to 10.0.
  • HLB Hydrophilic Balance
  • the chloroprene-based latex composition according to the present invention contains 0.04 to 0.36 parts by mass of a surfactant based on 100 parts by mass of the chloroprene-based latex composition.
  • the content of the surfactant is, for example, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.25, 0.30, 0.32, 0.34, It is 0.36 part by mass, and may be within a range between any two of the numerical values exemplified here.
  • the presence of a specific amount of a surfactant with an HLB value in a specific range improves the emulsification state of the monomers, leading to a state in which more finer monomer micelles exist, which accelerates polymerization. It is thought that the increase in the particle size of the latex as it progresses is suppressed, and the storage stability and mechanical stability of the resulting chloroprene-based latex composition are further increased.
  • the surfactant having an HLB value of 3.0 to 10.0 is not particularly limited, and known anionic, nonionic, or cationic surfactants can be used, but nonionic surfactants It is preferable to include an agent.
  • the nonionic surfactant preferably contains at least one of fatty acid alkanolamide and fatty acid ester. Specifically, sorbitan fatty acid esters such as sorbitan monostearate, sorbitan monolaurate, and sorbitan monopalmitate, glycerol fatty acid esters such as glycerol monostearate, lauric acid diethanolamide, myristic acid diethanolamide, and palmitic acid. Examples include fatty acid alkanolamides such as diethanolamide. These may be used alone or in combination of two or more.
  • the chloroprene latex composition according to one embodiment of the present invention may not contain surfactants other than surfactants having an HLB value of 3.0 to 10.0, as long as the effects of the present invention are not impaired. It's okay to stay.
  • the chloroprene-based latex composition according to an embodiment of the present invention has an interface having an HLB value of 3.0 to 10.0 when the surfactant contained in the chloroprene-based latex composition is 100% by mass.
  • the active agent is preferably contained in an amount of 70% by mass or more, preferably 80% by mass or more, and preferably 90% by mass or more.
  • the chloroprene-based latex composition according to one embodiment of the present invention may not contain a surfactant having an HLB value of less than 3.0 and 10.0 or more.
  • the chloroprene-based latex composition according to one embodiment of the present invention is obtained by placing 235 g of the chloroprene-based latex composition in a glass container with a body diameter of 19.5 cm and a volume of 225 ml and storing it at 40°C.
  • the period of time for the coagulated material that precipitates or remains on the wire mesh and is dried at 125° C. for 1 hour to become 0.005% or more based on the solid content of the chloroprene-based latex composition is 6 weeks or more. It is preferable that it is, and it is more preferable that it is 8 weeks or more.
  • Storage stability can be specifically evaluated by the method described in Examples.
  • the chloroprene-based latex composition according to one embodiment of the present invention preferably has mechanical stability of 0.10% or less.
  • Mechanical stability is, for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10%. , it may be within the range between any two of the numerical values exemplified here. Mechanical stability can be evaluated by the method described in Examples.
  • the storage stability and mechanical stability of the chloroprene-based latex composition according to the present invention are determined by determining the degree of polymerization and saponification of polyvinyl alcohol, as well as the HLB and content of the surfactant, and by appropriately controlling the polymerization process. This can be controlled, for example, by appropriately controlling the particle size and viscosity of the polymerization solution.
  • the method for producing a chloroprene-based latex composition according to the present invention includes a polymerization step of polymerizing raw material monomers containing a chloroprene monomer and a vinyl monomer containing a carboxyl group.
  • polyvinyl alcohol and a surfactant are added, and at least a part of the raw material monomer is added in portions after the start of polymerization.
  • the difference between the diameter and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of the raw material monomer is 150 nm or less.
  • raw material monomers including a chloroprene monomer and a vinyl monomer containing a carboxyl group are polymerized.
  • the raw material monomers according to the present invention include vinyl monomers containing chloroprene and carboxyl groups.
  • the raw material monomer according to the present invention can further contain a monomer other than chloroprene and a vinyl monomer containing a carboxyl group.
  • Other monomers include the monomers listed above.
  • ⁇ Raw material monomer> In the polymerization process according to one embodiment of the present invention, at least a portion of the raw material monomers used in the polymerization process are charged into a polymerization container before the start of polymerization. In the polymerization step according to one embodiment of the present invention, all of the vinyl monomers containing carboxyl groups used in the polymerization step can be charged into the polymerization container before the start of polymerization.
  • a part of the raw material monomers used in the polymerization process is charged into a polymerization container before the start of polymerization, and at least a part of the raw material monomers is added after the start of polymerization. .
  • at least a portion of the chloroprene used in the polymerization process can be added after the start of polymerization.
  • the remaining chloroprene can be added in one or more portions, or can be added continuously at a constant flow rate. can.
  • the partial addition of chloroprene can be started when the polymerization rate reaches 1 to 30%, preferably starting when the polymerization rate reaches 5 to 25%.
  • 70 parts by mass or less of the 100 parts by mass of the raw material monomer used in the polymerization step can be added after the start of polymerization.
  • the amount of raw material monomer added after the start of polymerization is, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 parts by mass. However, it may be within the range between any two of the numerical values exemplified here.
  • the fractional addition of the raw material monomer, particularly chloroprene can be carried out continuously over a period of 3 to 8 hours, and preferably carried out continuously over a period of 4 to 7 hours.
  • the blending amount of the raw material monomers is preferably adjusted so that the resulting chloroprene copolymer has the above-mentioned composition.
  • Polyvinyl alcohol and a surfactant are added.
  • Polyvinyl alcohol and surfactants function as emulsifiers.
  • Polyvinyl alcohol preferably has a degree of polymerization of 250 to 450 and a degree of saponification of 85 to 95 mol%.
  • the amount of polyvinyl alcohol added is preferably adjusted so that the resulting chloroprene-based copolymer has the above-described composition and the amount of free polyvinyl alcohol in the resulting chloroprene-based latex composition falls within the above-described range. Specifically, it is preferable to add 1.0 to 5.0 parts by weight per 100 parts by weight of the raw material monomer used in the polymerization process.
  • the amount of polyvinyl alcohol added is, for example, 1.0, 2.0, 3.0, 4.0, 5.0 parts by mass, and is within the range between any two of the numerical values exemplified here. Good too.
  • the surfactant preferably has an HLB value of 3.0 to 10.0.
  • examples of the surfactant include the surfactants listed above.
  • the amount of surfactant added is preferably adjusted so that the amount of surfactant in the resulting chloroprene-based latex composition falls within the above numerical range. Specifically, it is preferable to add 0.15 to 0.60 parts by mass per 100 parts by mass of raw material monomers used in the polymerization step. The amount of surfactant added is, for example, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60 mass , and may be within a range between any two of the numerical values exemplified here.
  • all of the emulsifier used in the polymerization process can be charged into the polymerization container before starting the polymerization. Further, in the polymerization step according to an embodiment of the present invention, at least a part of the emulsifier used in the polymerization step can be added in portions after the start of the polymerization.
  • a pH adjuster can be added.
  • the pH adjuster include potassium hydroxide, sodium hydroxide, diethanolamine, diisopropanolamine, triisopropanolamine, and the like. Two or more types of pH adjusters may be used in combination.
  • a reducing agent can be added.
  • the reducing agent include potassium pyrosulfite, potassium sulfite, potassium hydrogen sulfite, potassium phosphate, potassium hydrogen phosphate, sodium hydrogen sulfite, and sodium sulfite.
  • the amount of the reducing agent added can be 0.01 to 3.0 parts by mass based on 100 parts by mass of the raw material monomer used in the polymerization process.
  • a polymerization initiator can be used in the polymerization step according to one embodiment of the present invention.
  • the polymerization initiator inorganic peroxides such as potassium persulfate, ammonium persulfate, sodium persulfate, and hydrogen peroxide; organic peroxides such as benzoyl peroxide, etc. can be used. These polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the raw material monomer used in the polymerization step.
  • a chain transfer agent can be used in the polymerization step according to one embodiment of the present invention.
  • the chain transfer agent is not particularly limited and includes, for example, long-chain alkyl mercaptans such as n-dodecyl mercaptan, tert-dodecyl mercaptan, and n-octyl mercaptan, dialkyl xanthogen disulfides such as diisopropyl xanthogen disulfide and diethyl xanthogen disulfide, and iodoform.
  • Known chain transfer agents such as can be used. These may be used alone or in combination of two or more.
  • the amount of the chain transfer agent added can be 0.001 to 10 parts by mass based on 100 parts by mass of the raw material monomer used in the polymerization process.
  • all of the chain transfer agent used in the polymerization step can be charged into the polymerization container before the polymerization starts.
  • a part of the chain transfer agent used in the polymerization process may be charged into a polymerization container before the start of polymerization, and at least a part of the chain transfer agent may be added after the start of polymerization.
  • the partial addition of the chain transfer agent can be started simultaneously with the partial addition of the monomer, and can be started when the polymerization rate reaches 1 to 30%, and can be started when the polymerization rate reaches 5 to 25%. It is preferable to start when % is reached.
  • the remaining chain transfer agent can be added in one or more parts and added at a constant flow rate. It can also be added continuously. As an example, like the monomer addition, the chain transfer agent addition can be carried out continuously over a period of 3 to 8 hours, and preferably carried out continuously over a period of 4 to 7 hours. When at least a portion of the chain transfer agent is added after the start of polymerization, 70 parts by mass or less of the 100 parts by mass of the chain transfer agent used in the polymerization step can be added after the start of polymerization.
  • the amount of the chain transfer agent added after the initiation of polymerization can be, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 parts by mass. , it may be within the range between any two of the numerical values exemplified here.
  • the polymerization temperature is preferably in the range of 0 to 55°C from the viewpoint of easy control of the reaction. From the viewpoint of performing the polymerization reaction more smoothly and safely, it is desirable that the lower limit of the polymerization temperature is 10°C or more and the upper limit is 45°C or less.
  • the polymerization conversion rate can be in the range of 50 to 99.9%. After reaching the desired polymerization conversion, the polymerization reaction can be stopped by adding a polymerization terminator.
  • Polymerization terminator examples include diethylhydroxyamine, thiodiphenylamine, 4-tert-butylcatechol, and 2,2'-methylenebis(4-ethyl-6-tert-butylphenol).
  • the amount added can be 0.02 to 0.1 part by mass based on 100 parts by mass of all monomers used in the polymerization process.
  • the average particle diameter obtained by cumulant analysis of the polymerization solution at the time of termination of polymerization and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of raw material monomers are determined.
  • the difference from the particle diameter is 150 nm or less.
  • the difference between the average particle diameter obtained by cumulant analysis of the polymerization solution at the time of termination of polymerization and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of raw material monomers is, for example, 50, 60. , 70, 80, 90, 100, 110, 120, 130, 140, and 150 nm, and may be within a range between any two of the numerical values exemplified here.
  • the difference between the average particle diameter obtained by cumulant analysis of the polymerization solution at the time of termination of polymerization and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of raw material monomers is within the above numerical range.
  • a chloroprene-based latex composition with excellent storage stability and mechanical stability can be obtained.
  • the particle size in the polymerization solution during polymerization can be controlled by adjusting the ratio, amount, and timing of addition of raw material monomers, as well as the type and amount of polyvinyl alcohol and surfactant used as emulsifiers. can do.
  • the average particle diameter obtained by cumulant analysis of the polymerization solution can be specifically determined by the method described in Examples.
  • the viscosity of the polymerization solution measured with a B-type viscometer at the end of the fractional addition of the raw material monomer is 280 mPa ⁇ s or less, and the B-type of the polymerization solution at the time of termination of polymerization. It is preferable that the viscosity measured with a viscometer is 150 mPa ⁇ s or more.
  • the viscosity measured with a B-type viscometer of the polymerization solution at the end of the fractional addition of the raw material monomer is, for example, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270. , 280 mPa ⁇ s, and may be within a range between any two of the numerical values exemplified here.
  • the viscosity during the polymerization process tends to increase as the polymerization progresses, and in one embodiment of the present invention, it is preferable that the viscosity at the end of fractional addition is below the above upper limit, and the maximum viscosity during the polymerization process is It is preferable that it is below the above upper limit.
  • the viscosity measured by a B-type viscometer of the polymerization solution at the time of termination of polymerization is, for example, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250 mPa ⁇ s, and the values exemplified here It may be within the range between any two. Since the viscosity at the time of termination of polymerization is above a certain level, the viscosity can be easily adjusted, for example, when an adhesive is prepared using the obtained chloroprene-based latex composition.
  • the viscosity of the polymerization solution at the end of fractional addition of raw material monomers and at the time of termination of polymerization depends on the blending ratio, amount, and timing of addition of raw material monomers, as well as the type and addition of polyvinyl alcohol as an emulsifier and surfactant. It can be controlled by adjusting the amount and the like. Further, the viscosity of the polymerization solution can be specifically determined by the method described in Examples.
  • the production method according to one embodiment of the present invention can include a step of removing unreacted monomers.
  • a conventional method such as steam stripping method or reduced pressure heating evaporation method, and chloroprene-based A latex composition can be obtained.
  • the solid content concentration of the chloroprene-based latex composition in the polymerization solution at the end of polymerization can be, for example, 20, 25, 30, 35, 40, 45, 50, 55, 60% by mass, and the values exemplified here It may be within the range between any two.
  • Adhesive water-based adhesive
  • An adhesive according to one embodiment of the present invention includes the above-mentioned chloroprene-based latex composition. Moreover, the adhesive can be a water-based adhesive.
  • the adhesive according to one embodiment of the present invention may include the above-described chloroprene-based latex composition, tackifier resin, and metal oxide.
  • tackifying resin examples include rosin resin, polymerized rosin resin, ⁇ -pinene resin, ⁇ -pinene resin, terpene phenol resin, C5 distillate petroleum resin, C9 distillate petroleum resin, C5/C9 distillate petroleum resin, Examples include DCPD petroleum resin, alkylphenol resin, xylene resin, coumaron resin, coumaron indene resin, and the like. These can be used alone or in combination of two or more.
  • the method of adding the tackifier resin is not particularly limited, but in order to uniformly disperse the resin in the adhesive, it is preferable to add the tackifying resin after forming an aqueous emulsion.
  • an aqueous emulsion from the tackifying resin there are two methods: Dissolve it in an organic solvent such as toluene, emulsify/disperse it in water using an emulsifier, and then remove the organic solvent by heating under reduced pressure. There are methods such as crushing and emulsifying/dispersing.
  • the amount of the tackifying resin added may be 10 to 50 parts by mass relative to 100 parts by mass of the adhesive.
  • the amount of the tackifying resin added (in terms of solid content) is, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50 parts by mass, and is in the range between any two of the numerical values exemplified here. It may be within.
  • Metal oxides include zinc oxide, titanium oxide, and iron oxide. These can be used alone or in combination of two or more.
  • the amount of the metal oxide added can be 0.1 to 5.0 parts by mass relative to 100 parts by mass of the adhesive.
  • the amount of metal oxide added (in terms of solid content) is, for example, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 parts by mass. , it may be within the range between any two of the numerical values exemplified here.
  • the adhesive according to an embodiment of the present invention includes a pH adjuster, a plasticizer, a filler, an antioxidant, a pigment, a coloring agent, a wetting agent, an antifoaming agent, a thickener, and others.
  • a resin emulsion (latex) or the like may be appropriately contained.
  • Adhesives prepared using the chloroprene-based latex composition of the present invention can be applied to similar or different types of adherends such as paper, wood, cloth, leather, leather, rubber, plastic, plastic foam, pottery, glass, ceramic, and metal. Can be used for adhesion of adherends.
  • the chloroprene-based latex composition according to one embodiment of the present invention can be prepared, for example, by the following method.
  • ⁇ Manufacture of adhesive 100 parts by mass of chloroprene-based latex composition (in terms of solid content), 50 parts by mass of tackifier resin (Tamanol E-100 manufactured by Arakawa Chemical Industries, Ltd.), and 1 mass of metal oxide (zinc oxide: AZ-SW manufactured by Osaki Kogyo Co., Ltd.) 1 part and stir using a three-one motor.
  • a thickener (RM-8W manufactured by Rohm and Haas) is added so that the viscosity of this solution is 3000 to 4000 mPa ⁇ s at 25° C. and 30 rpm to obtain an adhesive.
  • the adhesive according to the present invention preferably has the following properties for adhesive samples prepared as follows. ⁇ Preparation of adhesive sample> The obtained adhesive was applied with a brush to two pieces of canvas (25 x 150 mm) each at a concentration of 300 g (solid content)/m 2 , dried in an atmosphere of 80°C for 9 minutes, and left at room temperature for 1 minute. The coated surfaces are pasted together and pressed together using a hand roller to obtain an adhesive sample. The obtained adhesive sample is evaluated as follows.
  • the water-based adhesive according to an embodiment of the present invention exhibits T-shaped peeling measured at a tensile speed of 200 mm/min using a tensile tester when the adhesive sample is left for 10 minutes at room temperature after roller pressure bonding. In the test (initial peel strength), it is preferably 3.0 N/mm or more.
  • the initial peel strength is, for example, 3.0, 3.5, 4.0, 4.5, 5.0 N/mm, and may be within a range between any two of the numerical values exemplified here. .
  • the water-based adhesive according to an embodiment of the present invention is tested for T-peel test (normal state peel strength), which is measured at a tensile speed of 200 mm/min using a tensile tester after leaving the adhesive sample at room temperature for 5 days. ) is preferably 5.0 N/mm or more. Normal peel strength is, for example, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0N. /mm, and may be within a range between any two of the numerical values exemplified here.
  • the water-based adhesive according to an embodiment of the present invention was measured by leaving the adhesive sample at room temperature for 5 days, then immersing it in water at 23°C for 2 days, and then using a tensile tester at a tensile speed of 200 mm/min. In the T-type peel test (water resistance strength) conducted, it is preferably 2.9 N/mm or more. Water resistance strength is, for example, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0 N/mm, and may be within a range between any two of the numerical values exemplified here.
  • the water-based adhesive according to an embodiment of the present invention was measured by leaving the adhesive sample at room temperature for 5 days, then leaving it in an atmosphere of 80°C for 15 minutes, and measuring it at a speed of 200 mm/min in an atmosphere of 80°C.
  • a T-type peel test heat-resistant adhesive strength
  • the heat-resistant adhesive strength is, for example, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 N/mm, and is exemplified here. It may be within the range between any two of the above values.
  • the chloroprene latex composition according to one embodiment of the present invention preferably has the above characteristics when used as an adhesive having the above formulation, specifically, the formulation described in the Examples.
  • Example 1 ⁇ Manufacture of chloroprene-based latex composition> (Example 1) In a reactor with a capacity of 10 liters, 106.3 parts by mass of water, 3.5 parts by mass of polyvinyl alcohol, and lauric acid diethanolamide (manufactured by Kao Corporation, Aminone L-02), which is a nonionic surfactant, were added under a nitrogen stream. 0.39 parts by mass was added and dissolved. While stirring the resulting mixed solution, 39.2 parts by mass of chloroprene, 2 parts by mass of methacrylic acid, and 0.1 parts by mass of octyl mercaptan were further added, and the mixture was stirred at 30° C. for 10 minutes.
  • lauric acid diethanolamide manufactured by Kao Corporation, Aminone L-02
  • 0.1 parts by mass of sodium sulfite was added as a reducing agent, and potassium persulfate was used as an initiator to initiate polymerization at 35° C. under a nitrogen atmosphere. From the time when the polymerization rate reached 15%, 58.8 parts by mass of chloroprene and 0.15 parts by mass of octyl mercaptan were continuously added at a rate of 7.86 g/min over 5 hours. Thereafter, when the polymerization rate reached 98%, a phenothiazine emulsion was added to stop the polymerization.
  • Examples 2 to 8, Comparative Examples 1 to 8 The polymerization recipe and polymerization conditions were as shown in Tables 1 and 2, except that polyvinyl alcohol and nonionic surfactant having the physical properties shown in Tables 1 and 2 were used as polyvinyl alcohol and nonionic surfactant.
  • a chloroprene-based latex composition was produced in the same manner as in Example 1.
  • ⁇ Physical properties of polymerization solution> (Average particle diameter determined by the cumulant method obtained by dynamic light scattering of the polymerization solution immediately after the start of fractional addition of raw material monomers and at the end of polymerization) Regarding Examples 1 to 3 and Comparative Example 1, the polymerization solution immediately after the start of fractional addition of raw material monomers and after the termination of polymerization was diluted with distilled water so that the solid content concentration was 0.01% by mass, and ELSZ The average particle diameter was determined using Series (manufactured by Otsuka Electronics Co., Ltd.).
  • the average particle diameter of the latex in the dynamic light scattering method, a value determined by the cumulant method from an autocorrelation function determined by the photon correlation method was used. The results are shown in Tables 1 and 2. Note that the polymerization solution immediately after the start of fractional addition of the raw material monomer was collected within 3 minutes from the start of fractional addition of the raw material monomer. Moreover, the polymerization solution after polymerization termination was collected within 3 minutes after adding the polymerization terminator to the polymerization container.
  • Viscosity of polymerization solution at the end of fractional addition and at the end of polymerization For Examples 1 to 3 and Comparative Example 1, the viscosity of the polymerization solution was measured every hour from the start of polymerization to the end of polymerization using a B-type viscometer. In addition, the viscosity of the polymerization solution was measured using a B-type viscometer at the end of the fractional addition and at the time of termination of the polymerization. The viscosity was measured under the following conditions. Measuring equipment: “VISCOMETER TVB-20L” manufactured by Toki Sangyo Co., Ltd. Spindle rotor: 2M (disk shape with radius 19mm x thickness 7m) Rotation speed: 30rpm Note that the viscosity during polymerization reached its maximum at the end of the partial addition of the monomer.
  • ⁇ Evaluation of chloroprene latex composition (Amount of each component relative to 100 parts by mass of chloroprene-based latex composition) The composition of each component with respect to 100 parts by mass of the chloroprene-based latex composition was calculated from the amount charged and the analytical value. The results are shown in Tables 1 and 2.
  • the total of chloroprene monomer units and vinyl monomer units containing carboxyl groups means the total of chloroprene monomer units and vinyl monomer units containing carboxyl groups contained in the chloroprene-based copolymer.
  • free monomers such as methacrylic acid contained in chloroprene-based latex compositions are not included.
  • the polyvinyl alcohol structure means the sum of the polyvinyl alcohol structure in the graft copolymer and free polyvinyl alcohol contained in the chloroprene-based latex composition.
  • the amount of polyvinyl alcohol structure in the graft copolymer was calculated by the following method. First, the amount of free polyvinyl alcohol that had not been graft copolymerized was determined by the following method, and the amount of free polyvinyl alcohol was subtracted from the amount of polyvinyl alcohol charged to determine the amount of polyvinyl alcohol structure in the graft copolymer. .
  • reagent 4 g of boric acid was dissolved in 96 mL of pure water to prepare a 4% boric acid aqueous solution.
  • a potassium iodide aqueous solution was prepared by dissolving 2.5 g of potassium iodide in about 70 mL of pure water. 1.27 g of iodine was weighed out, dissolved in a potassium iodide aqueous solution prepared in advance, and pure water was added until the total amount reached 100 mL to prepare an iodine solution.
  • PVA standard solution 0.1 g of PVA was accurately weighed into a 100 mL volumetric flask, 50 to 60 mL of pure water was added, and it was dissolved in a water bath (approximately 95° C.). After cooling to room temperature, pure water was added up to the marked line and mixed well. A 10 mL sample was taken from it and placed in a 100 mL volumetric flask, and pure water was added up to the marked line and mixed well to prepare a standard solution with a PVA concentration of 0.1 mg/mL.
  • L c S c ⁇ C/B
  • L c Free polyvinyl alcohol concentration in the chloroprene latex composition [g/kg]
  • B Diluted liquid amount [g]
  • C Supernatant liquid amount [g]
  • the amount of free polyvinyl alcohol in the chloroprene-based latex composition and the amount of polyvinyl alcohol structure in the graft copolymer were calculated using the following formula.
  • PVA F L c ⁇ L Q
  • PVA F Amount of free polyvinyl alcohol [g]
  • L Q Amount of chloroprene latex composition [kg]
  • PVA G PVA Q - PVA F
  • PVA G Amount of polyvinyl alcohol structure in the graft copolymer [g]
  • PVA Q Amount of polyvinyl alcohol charged [g]
  • the obtained PVA G was divided by the amount of the chloroprene copolymer in the chloroprene latex composition to calculate the amount of polyvinyl alcohol structure in the graft copolymer based on 100 parts by mass of the chloroprene copolymer.
  • the “amount of chloroprene copolymer” refers to the amount of chloroprene monomer units in the chloroprene latex composition, the amount of vinyl monomer units containing carboxyl groups (the amount of vinyl monomer units containing free carboxyl groups), and the amount of vinyl monomer units containing free carboxyl groups. (excluding polyvinyl alcohol) and the amount of polyvinyl alcohol structure (excluding free polyvinyl alcohol).
  • the chloroprene copolymer of the present invention has a large gel content and cannot be dissolved in a measurement solvent in 1 H-NMR measurement used to measure the amount of methacrylic acid copolymerized. Therefore, the methacrylic acid/chloroprene peak area ratio was calculated by PyGC/MS (SIM method), and a calibration curve ( 1 The methacrylic acid copolymerization amount was calculated using the methacrylic acid/chloroprene peak area ratio (MAA copolymerization amount) by H-NMR vs. the methacrylic acid/chloroprene peak area ratio (methacrylic acid/chloroprene peak area ratio by PyGC/MS (SIM method)).
  • the obtained amount of methacrylic acid copolymerized was divided by the amount of chloroprene-based copolymer in the chloroprene-based latex composition to calculate the amount of methacrylic acid copolymerized with respect to 100 parts by mass of the chloroprene-based copolymer.
  • the "amount of chloroprene copolymer” refers to the amount of chloroprene monomer units in the chloroprene latex composition, the amount of vinyl monomer units containing carboxyl groups (the amount of vinyl monomer units containing free carboxyl groups), and the amount of vinyl monomer units containing free carboxyl groups. (excluding polyvinyl alcohol) and the amount of polyvinyl alcohol structure (excluding free polyvinyl alcohol).
  • the obtained adhesive was applied with a brush to two pieces of canvas (25 x 150 mm) each at a concentration of 300 g (solid content)/m 2 , dried in an atmosphere of 80°C for 9 minutes, and left at room temperature for 1 minute before application.
  • the surfaces were pasted together and pressed together using a hand roller to obtain an adhesive sample.
  • the obtained adhesive sample was evaluated as follows. The results are shown in Tables 1 and 2.
  • the obtained adhesive sample was pressed with a roller and then left at room temperature for 10 minutes.
  • a T-peel test was conducted using a tensile testing machine at a tensile speed of 200 mm/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a chloroprene-based latex composition which has excellent storage stability and mechanical stability and from which it is possible to obtain an adhesive agent having excellent adhesion characteristics such as initial detachment strength, normal-state detachment strength, water resistance strength, and heat resistance adhesive power. The present invention provides a chloroprene-based latex composition containing a chloroprene-based copolymer, a polyvinyl alcohol, and a surfactant. The chloroprene-based copolymer includes a monomer unit derived from chloroprene and a monomer unit derived from a vinyl monomer including a carboxyl group. The polyvinyl alcohol has a degree of polymerization of 250-450 and a degree of saponification of 85-95 mol%. The surfactant has an HLB value of 3.0-10.0. The chloroprene-based latex composition contains 0.04-0.36 parts by mass of the surfactant with respect to 100 parts by mass of the chloroprene-based latex composition.

Description

クロロプレン系ラテックス組成物、クロロプレン系ラテックス組成物の製造方法、及び水性接着剤Chloroprene-based latex composition, method for producing chloroprene-based latex composition, and water-based adhesive
本発明は、クロロプレン系ラテックス組成物、クロロプレン系ラテックス組成物の製造方法、及び水性接着剤に関する。 The present invention relates to a chloroprene-based latex composition, a method for producing a chloroprene-based latex composition, and an aqueous adhesive.
クロロプレン系ラテックスは、土木建築、合板、家具、靴、ウェットスーツなどを製造する際に用いられる水性接着剤、労働作業用手袋、実験用手袋、医療用手袋、ゴム糸、風船などの浸漬成形品の材料、土木分野や建築分野における防水用塗膜の材料など、様々な分野で利用されている。 Chloroprene latex is used in water-based adhesives used in the production of civil engineering, plywood, furniture, shoes, wet suits, etc., and dip-molded products such as labor gloves, laboratory gloves, medical gloves, rubber thread, and balloons. It is used in a variety of fields, including as a material for water-resistant coatings in the civil engineering and architectural fields.
特許文献1には、クロロプレンとエチレン系不飽和カルボン酸を、保護コロイド作用のある水溶性高分子の存在下で乳化重合して得られたクロロプレン系ラテックス組成物が開示されている。
また、特許文献2には、クロロプレンとエチレン系不飽和カルボン酸を、ポリビニルアルコールおよびノニオン系界面活性剤の存在下で乳化重合したクロロプレン系ラテックス組成物が開示されている。
Patent Document 1 discloses a chloroprene-based latex composition obtained by emulsion polymerization of chloroprene and ethylenically unsaturated carboxylic acid in the presence of a water-soluble polymer that acts as a protective colloid.
Further, Patent Document 2 discloses a chloroprene-based latex composition obtained by emulsion polymerization of chloroprene and ethylenically unsaturated carboxylic acid in the presence of polyvinyl alcohol and a nonionic surfactant.
特許第3294910号Patent No. 3294910 特開2014-152183JP2014-152183
ポリビニルアルコールを乳化剤として使用して製造されたクロロプレン系ラテックス組成物は、配合安定性や粘着性に優れているため、例えば、水性接着剤として利用される。しかしながら、乳化剤としてポリビニルアルコールを使用して製造されたクロロプレン系ラテックス組成物は、ポリビニルアルコール以外の乳化剤を使用したクロロプレン系ラテックスに比べて、機械的安定性が低い傾向があり、輸送中の振動や、攪拌機やポンプによる機械的剪断力が加わったりすると、凝固物が生成する場合があった。 Chloroprene-based latex compositions produced using polyvinyl alcohol as an emulsifier have excellent formulation stability and adhesive properties, and are therefore used, for example, as water-based adhesives. However, chloroprene-based latex compositions produced using polyvinyl alcohol as an emulsifier tend to have lower mechanical stability than chloroprene-based latex compositions using emulsifiers other than polyvinyl alcohol, and are susceptible to vibration during transportation. , when mechanical shearing force from a stirrer or pump is applied, coagulation may occur.
例えば、特許文献1のように、重合度が高いポリビニルアルコールを乳化剤として使用した場合、製造時に重合溶液が増粘し、攪拌効率が低下して均一に除熱できなくなり、局所的に重合が進行して凝集物が発生する場合があった。また、得られるクロロプレン系ラテックス組成物の貯蔵安定性も悪かった。
また、特許文献2のように、HLB値が大きいノニオン系界面活性剤を使用した場合、重合初期のモノマーの乳化が不十分となり、重合中の凝集物発生、缶付着増加につながる場合があった。
For example, as in Patent Document 1, when polyvinyl alcohol with a high degree of polymerization is used as an emulsifier, the polymerization solution increases in viscosity during production, the stirring efficiency decreases, and heat cannot be removed uniformly, causing local polymerization to proceed. In some cases, aggregates were generated. Moreover, the storage stability of the obtained chloroprene-based latex composition was also poor.
Furthermore, as in Patent Document 2, when a nonionic surfactant with a large HLB value is used, the emulsification of the monomer at the initial stage of polymerization may become insufficient, leading to the generation of aggregates during polymerization and increased adhesion to cans. .
よって、従来のクロロプレン系ラテックス組成物は、貯蔵安定性及び機械的安定性に改善の余地があった。また、該クロロプレン系ラテックス組成物を含有する接着剤は、初期剥離強度、常態剥離強度、耐水強度、及び耐熱接着力等の接着特性が十分ではない場合があった。 Therefore, conventional chloroprene-based latex compositions have room for improvement in storage stability and mechanical stability. Further, adhesives containing the chloroprene latex composition may not have sufficient adhesive properties such as initial peel strength, normal peel strength, water resistance strength, and heat-resistant adhesive strength.
本発明は、このような事情に鑑みてなされたものであり、貯蔵安定性及び機械的安定性に優れ、初期剥離強度、常態剥離強度、耐水強度、及び耐熱接着力等の接着特性に優れる接着剤を得ることができるクロロプレン系ラテックス組成物を提供するものである。 The present invention has been made in view of these circumstances, and provides an adhesive that has excellent storage stability and mechanical stability, and has excellent adhesive properties such as initial peel strength, normal peel strength, water resistance strength, and heat-resistant adhesive strength. The object of the present invention is to provide a chloroprene-based latex composition from which a chloroprene-based latex composition can be obtained.
本発明によれば、クロロプレン系共重合体、ポリビニルアルコール、及び界面活性剤を含むクロロプレン系ラテックス組成物であって、前記クロロプレン系共重合体は、クロロプレンに由来する単量体単位とカルボキシル基を含むビニル単量体に由来する単量体単位を含み、前記ポリビニルアルコールは、重合度が250~450であり、けん化度が85~95mol%であり、前記界面活性剤は、HLB値が3.0~10.0であり、前記クロロプレン系ラテックス組成物は、前記クロロプレン系ラテックス組成物100質量部に対して、前記界面活性剤を0.04~0.36質量部含有する、クロロプレン系ラテックス組成物が提供される。 According to the present invention, there is provided a chloroprene-based latex composition containing a chloroprene-based copolymer, polyvinyl alcohol, and a surfactant, wherein the chloroprene-based copolymer contains a monomer unit derived from chloroprene and a carboxyl group. The polyvinyl alcohol has a degree of polymerization of 250 to 450, a degree of saponification of 85 to 95 mol%, and the surfactant has an HLB value of 3. 0 to 10.0, and the chloroprene latex composition contains 0.04 to 0.36 parts by mass of the surfactant based on 100 parts by mass of the chloroprene latex composition. things are provided.
本発明者は、鋭意検討を行ったところ、クロロプレン系共重合体、ポリビニルアルコール、及び界面活性剤を含むクロロプレン系ラテックス組成物において、クロロプレン系共重合体がカルボキシル基を含むビニル単量体に由来する単量体単位を含むこと、ポリビニルアルコールの重合度及びけん化度、並びに、界面活性剤のHLB及び含有量を規定することで、貯蔵安定性及び機械的安定性に優れ、初期剥離強度、常態剥離強度、耐水強度、及び耐熱接着力等の接着特性に優れる接着剤を得ることができるクロロプレン系ラテックス組成物となることを見出し、本発明の完成に至った。 After conducting extensive studies, the present inventor found that in a chloroprene-based latex composition containing a chloroprene-based copolymer, polyvinyl alcohol, and a surfactant, the chloroprene-based copolymer is derived from a vinyl monomer containing a carboxyl group. By specifying the polymerization degree and saponification degree of polyvinyl alcohol, and the HLB and content of the surfactant, it has excellent storage stability and mechanical stability, and has excellent initial peel strength and The inventors have discovered that a chloroprene-based latex composition can provide an adhesive with excellent adhesive properties such as peel strength, water resistance strength, and heat-resistant adhesive strength, and have completed the present invention.
以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
好ましくは、前記クロロプレン系共重合体は、前記クロロプレンに由来する単量体単位、前記カルボキシル基を含むビニル単量体に由来する単量体単位、及びポリビニルアルコールに由来する構造を含むグラフト共重合体を含む、前記記載のクロロプレン系ラテックス組成物である。
好ましくは、前記クロロプレン系共重合体は、前記クロロプレン系共重合体を100質量部としたとき、前記カルボキシル基を含むビニル単量体に由来する単量体単位を0.01~5.0質量部含み、ポリビニルアルコールに由来する構造を、0.3~5.0質量部含む、前記記載のクロロプレン系ラテックス組成物である。
好ましくは、前記界面活性剤がノニオン系界面活性剤を含む、前記記載のクロロプレン系ラテックス組成物である。
好ましくは、前記カルボキシル基を含むビニル単量体がα,β-不飽和カルボン酸を含む、前記記載のクロロプレン系ラテックス組成物である。
Various embodiments of the present invention will be illustrated below. The embodiments shown below can be combined with each other.
Preferably, the chloroprene-based copolymer is a graft copolymer containing a monomer unit derived from the chloroprene, a monomer unit derived from the vinyl monomer containing a carboxyl group, and a structure derived from polyvinyl alcohol. The chloroprene-based latex composition described above, comprising coalescence.
Preferably, the chloroprene copolymer contains 0.01 to 5.0 parts by mass of monomer units derived from the vinyl monomer containing a carboxyl group, based on 100 parts by mass of the chloroprene copolymer. The chloroprene-based latex composition described above contains 0.3 to 5.0 parts by mass of a structure derived from polyvinyl alcohol.
Preferably, the chloroprene latex composition described above is one in which the surfactant includes a nonionic surfactant.
Preferably, the chloroprene-based latex composition described above is one in which the vinyl monomer containing a carboxyl group contains an α,β-unsaturated carboxylic acid.
本発明の別の観点によれば、クロロプレン系ラテックス組成物の製造方法であって、前記製造方法は、クロロプレン単量体及びカルボキシル基を含むビニル単量体を含む原料単量体を重合する重合工程を含み、前記重合工程では、ポリビニルアルコール、及び界面活性剤を添加し、前記重合工程では、前記原料単量体の少なくとも一部を重合開始後に分添し、前記重合工程において、重合停止時の重合溶液のキュムラント解析により得られた平均粒子径と、前記原料単量体の分添開始直後の重合溶液のキュムラント解析により得られた平均粒子径との差が、150nm以下である、クロロプレン系ラテックス組成物の製造方法が提供される。
好ましくは、原料単量体の分添終了時の重合溶液のB型粘度計で測定した粘度が280mPa・s以下であり、重合停止時の重合溶液のB型粘度計で測定した粘度が150mPa・s以上である。
According to another aspect of the present invention, there is provided a method for producing a chloroprene-based latex composition, which method comprises polymerizing raw material monomers containing a chloroprene monomer and a vinyl monomer containing a carboxyl group. In the polymerization step, polyvinyl alcohol and a surfactant are added, in the polymerization step, at least a part of the raw material monomer is added after the start of polymerization, and in the polymerization step, when the polymerization is stopped, The difference between the average particle diameter obtained by cumulant analysis of the polymerization solution and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of the raw material monomer is 150 nm or less, A method of making a latex composition is provided.
Preferably, the viscosity of the polymerization solution measured with a B-type viscometer at the end of the partial addition of the raw material monomer is 280 mPa·s or less, and the viscosity of the polymerization solution measured with a B-type viscometer at the time of termination of polymerization is preferably 150 mPa·s. s or more.
本発明の別の観点によれば、前記記載のクロロプレン系ラテックス組成物を含有する水性接着剤が提供される。 According to another aspect of the present invention, there is provided an aqueous adhesive containing the chloroprene-based latex composition described above.
本発明に係るクロロプレン系ラテックス組成物によれば、貯蔵安定性及び機械的安定性に優れ、初期剥離強度、常態剥離強度、耐水強度、及び耐熱接着力等の接着特性に優れる接着剤を得ることができるクロロプレン系ラテックス組成物を得ることができる。さらに、得られたクロロプレン系ラテックス組成物は、その特性を活かし、接着剤、特には水性接着剤として利用することができる。 According to the chloroprene-based latex composition of the present invention, it is possible to obtain an adhesive having excellent storage stability and mechanical stability, and excellent adhesive properties such as initial peel strength, normal peel strength, water resistance strength, and heat-resistant adhesive strength. A chloroprene-based latex composition can be obtained. Further, the obtained chloroprene-based latex composition can be utilized as an adhesive, particularly an aqueous adhesive, by taking advantage of its properties.
以下、本発明の実施形態を例示して本発明について詳細な説明をする。本発明は、これらの記載によりなんら限定されるものではない。以下に示す本発明の実施形態の各特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, the present invention will be described in detail by illustrating embodiments of the present invention. The present invention is not limited in any way by these descriptions. Features of the embodiments of the present invention described below can be combined with each other. Further, the invention is established independently for each characteristic matter.
1.クロロプレン系ラテックス組成物
本発明に係るクロロプレン系ラテックス組成物は、クロロプレン系共重合体、ポリビニルアルコール、及び界面活性剤を含む。
1. Chloroprene-based latex composition The chloroprene-based latex composition according to the present invention contains a chloroprene-based copolymer, polyvinyl alcohol, and a surfactant.
1.1 クロロプレン系共重合体
本発明に係るクロロプレン系共重合体は、2-クロロ-1,3-ブタジエン(以下クロロプレンと称する)に由来する単量体単位を含み、カルボキシル基を含むビニル単量体に由来する単量体単位を含む。また、後述のように、本発明に係るクロロプレン系共重合体は、ポリビニルアルコールに由来する構造を含んでいても良い。
1.1 Chloroprene copolymer The chloroprene copolymer according to the present invention contains a monomer unit derived from 2-chloro-1,3-butadiene (hereinafter referred to as chloroprene), and contains a vinyl monomer containing a carboxyl group. Contains monomer units derived from mer. Further, as described below, the chloroprene copolymer according to the present invention may include a structure derived from polyvinyl alcohol.
<カルボキシル基を含むビニル単量体>
本発明の一実施形態に係るカルボキシル基を含むビニル単量体は、α,β-不飽和カルボン酸を含むものとできる。α,β-不飽和カルボン酸としては、アクリル酸、メタクリル酸、クロトン酸、3-ブテン酸などの不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸などの不飽和ジカルボン酸;マレイン酸モノメチル、フマル酸モノメチル、イタコン酸モノメチルなどの不飽和ジカルボン酸のモノエステル;不飽和多価カルボン酸;及び不飽和多価カルボン酸のエステルを挙げることができ、(メタ)アクリル酸及びそのエステルを含むことが好ましく、メタクリル酸を含むことがより好ましい。
<Vinyl monomer containing carboxyl group>
The vinyl monomer containing a carboxyl group according to one embodiment of the present invention may contain an α,β-unsaturated carboxylic acid. Examples of α,β-unsaturated carboxylic acids include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and 3-butenoic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid; monomethyl maleate; , monoesters of unsaturated dicarboxylic acids such as monomethyl fumarate and monomethyl itaconate; unsaturated polycarboxylic acids; and esters of unsaturated polycarboxylic acids, including (meth)acrylic acid and its esters. It is preferable that it contains methacrylic acid, and it is more preferable that it contains methacrylic acid.
<グラフト共重合体>
本発明に係るクロロプレン系共重合体は、クロロプレンに由来する単量体単位、カルボキシル基を含むビニル単量体に由来する単量体単位、及び、ポリビニルアルコールに由来する構造を含むグラフト共重合体を含むことができる。
本発明に係るクロロプレン系共重合体は、クロロプレンに由来する単量体単位とカルボキシル基を含むビニル単量体に由来する単量体単位を含む重合体と、ポリビニルアルコールがグラフト共重合し、クロロプレン単量体単位の周囲にポリビニルアルコール構造が存在することにより、より安定して水中に分散し、貯蔵安定性及び機械的安定性が高められると考えられる。
なお、本発明に係るグラフト共重合体は、クロロプレンに由来する単量体単位とカルボキシル基を含むビニル単量体に由来する単量体単位を含む枝鎖、並びにポリビニルアルコールに由来する構造を含む幹鎖を含むものと推測される。
<Graft copolymer>
The chloroprene-based copolymer according to the present invention is a graft copolymer containing a monomer unit derived from chloroprene, a monomer unit derived from a vinyl monomer containing a carboxyl group, and a structure derived from polyvinyl alcohol. can include.
The chloroprene-based copolymer according to the present invention is obtained by graft copolymerizing a polymer containing a monomer unit derived from chloroprene and a monomer unit derived from a vinyl monomer containing a carboxyl group, and polyvinyl alcohol. It is thought that the presence of a polyvinyl alcohol structure around the monomer unit allows for more stable dispersion in water, resulting in enhanced storage stability and mechanical stability.
The graft copolymer according to the present invention includes a monomer unit derived from chloroprene, a branch chain containing a monomer unit derived from a vinyl monomer containing a carboxyl group, and a structure derived from polyvinyl alcohol. It is assumed that it contains a backbone chain.
上記したように、本発明に係るクロロプレン系共重合体は、クロロプレンに由来する単量体単位、及び、カルボキシル基を含むビニル単量体に由来する単量体単位を含む重合体を意味する。また、本発明に係るクロロプレン系共重合体は、ポリビニルアルコールとグラフト共重合したグラフト共重合体と、ポリビニルアルコールとグラフト共重合していない共重合体(ポリビニルアルコール構造を有しない共重合体)の両方を含む。 As described above, the chloroprene-based copolymer according to the present invention means a polymer containing a monomer unit derived from chloroprene and a monomer unit derived from a vinyl monomer containing a carboxyl group. In addition, the chloroprene-based copolymer according to the present invention includes a graft copolymer that is graft copolymerized with polyvinyl alcohol and a copolymer that is not graft copolymerized with polyvinyl alcohol (a copolymer that does not have a polyvinyl alcohol structure). Including both.
本発明に係るクロロプレン系共重合体は、クロロプレン、カルボキシル基を含むビニル単量体、及びポリビニルアルコール以外の他の化合物(例えば、単量体)に由来する構造を含むこともできる。他の単量体としては、例えば、2,3-ジクロロ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、ブタジエン、イソプレン、スチレン、エチレン、不飽和ニトリル(アクリロニトリル、メタクリロニトリル等)、硫黄等を挙げることができる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
例えば、市販品のクロロプレンには不純物として少量の1-クロロ-1,3-ブタジエンが含まれる場合がある。このような少量の1-クロロ-1,3-ブタジエンを含む2-クロロ-1,3-ブタジエンを、本発明に係るクロロプレンとして用いることもできる。
The chloroprene-based copolymer according to the present invention can also include a structure derived from chloroprene, a vinyl monomer containing a carboxyl group, and a compound (for example, a monomer) other than polyvinyl alcohol. Other monomers include, for example, 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, butadiene, isoprene, styrene, ethylene, unsaturated nitriles (acrylonitrile, methacrylonitrile, etc.). ), sulfur, etc. These can be used alone or in combination of two or more.
For example, commercially available chloroprene may contain a small amount of 1-chloro-1,3-butadiene as an impurity. 2-chloro-1,3-butadiene containing such a small amount of 1-chloro-1,3-butadiene can also be used as the chloroprene according to the present invention.
本発明の一実施形態に係るクロロプレン系共重合体は、クロロプレン系共重合体中のクロロプレン及びカルボキシル基を含むビニル単量体に由来する単量体単位の合計100質量%に対し、上記他の化合物に由来する単量体単位を30質量%以下含むことができる。他の化合物に由来する構造の含有量は、例えば、0、5、10、15、20、25、30質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。上記数値範囲内とすることにより、得られるクロロプレン系共重合体は、クロロプレン等に由来する特性を損なわずに、他の単量体を共重合させたことによる効果を発現することができる。 The chloroprene-based copolymer according to an embodiment of the present invention has the above other monomer units based on a total of 100% by mass of monomer units derived from vinyl monomers containing chloroprene and carboxyl groups in the chloroprene-based copolymer. It can contain 30% by mass or less of monomer units derived from the compound. The content of structures derived from other compounds is, for example, 0, 5, 10, 15, 20, 25, 30% by mass, even if it is within the range between any two of the numerical values exemplified here. good. By setting the value within the above numerical range, the obtained chloroprene-based copolymer can exhibit the effects obtained by copolymerizing other monomers without impairing the properties derived from chloroprene and the like.
本発明の一実施形態に係るクロロプレン系共重合体は、クロロプレン単量体単位、及び、カルボキシル基を含むビニル単量体単位からなるグラフト共重合していない共重合体、並びに、クロロプレン単量体単位、カルボキシル基を含むビニル単量体単位、及びポリビニルアルコールに由来する構造からなるグラフト共重合体からなるものとすることもできる。 The chloroprene-based copolymer according to one embodiment of the present invention includes a non-graft copolymer consisting of a chloroprene monomer unit and a vinyl monomer unit containing a carboxyl group, and a chloroprene monomer It can also be made of a graft copolymer consisting of a vinyl monomer unit containing a carboxyl group, and a structure derived from polyvinyl alcohol.
本発明の一実施形態に係るクロロプレン系共重合体は、クロロプレン系共重合体を100質量部としたとき、クロロプレンに由来する単量体単位を95~99.97質量部含むことが好ましい。クロロプレンに由来する単量体単位の含有量は、例えば、95、96、97、98、99、99.9、99.97質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene copolymer according to one embodiment of the present invention preferably contains 95 to 99.97 parts by mass of monomer units derived from chloroprene, based on 100 parts by mass of the chloroprene copolymer. The content of the monomer unit derived from chloroprene is, for example, 95, 96, 97, 98, 99, 99.9, 99.97 parts by mass, and the range between any two of the numerical values exemplified here. It may be within.
本発明の一実施形態に係るクロロプレン系共重合体は、クロロプレン系共重合体を100質量部としたとき、カルボキシル基を含むビニル単量体に由来する単量体単位を0.01~5.0質量部含むことが好ましい。カルボキシル基を含むビニル単量体に由来する単量体単位の含有量は、例えば、0.01、0.02、0.05、0.1、0.2、0.5、1.0、2.0、3.0、4.0、5.0質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene copolymer according to one embodiment of the present invention contains 0.01 to 5.0 parts of monomer units derived from a vinyl monomer containing a carboxyl group, based on 100 parts by mass of the chloroprene copolymer. It is preferable to contain 0 part by mass. The content of monomer units derived from vinyl monomers containing carboxyl groups is, for example, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, The content may be 2.0, 3.0, 4.0, or 5.0% by mass, and may be within a range between any two of the numerical values exemplified here.
なお、本発明の一実施形態に係るクロロプレン系ラテックス組成物は、添加したカルボキシル基を含むビニル単量体の一部を、クロロプレン系共重合体に含まれない状態、すなわち、遊離した状態で含んでいても良い。 In addition, the chloroprene-based latex composition according to one embodiment of the present invention does not contain a part of the added vinyl monomer containing a carboxyl group in a state that is not included in the chloroprene-based copolymer, that is, in a free state. It's okay to stay.
本発明の一実施形態に係るクロロプレン系共重合体は、クロロプレン系共重合体を100質量部としたとき、ポリビニルアルコールに由来する構造を、0.3~5.0質量部含むことが好ましい。ポリビニルアルコールに由来する構造の含有量は、例えば、0.3、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene copolymer according to an embodiment of the present invention preferably contains 0.3 to 5.0 parts by mass of a structure derived from polyvinyl alcohol, based on 100 parts by mass of the chloroprene copolymer. The content of the structure derived from polyvinyl alcohol is, for example, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4 .5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
なお、本発明の一実施形態に係るクロロプレン系ラテックス組成物は、添加したポリビニルアルコールの一部を、クロロプレン系共重合体にグラフト共重合していない状態、すなわち、遊離した状態で含む。 Note that the chloroprene-based latex composition according to one embodiment of the present invention contains a part of the added polyvinyl alcohol in a state where it is not graft copolymerized with the chloroprene-based copolymer, that is, in a free state.
本発明の一実施形態に係るクロロプレン系共重合体は、クロロプレン及びカルボキシル基を含むビニル単量体に由来する単量体単位、ポリビニルアルコールに由来する構造を上記量含有することによって、さらに、カルボキシル基を含むビニル単量体の一部及びポリビニルアルコールの一部を遊離した状態で含むことにより、より貯蔵安定性及び機械的安定性に優れ、初期剥離強度、常態剥離強度、耐水強度、及び耐熱接着力等の接着特性のバランスに優れる接着剤を得ることができるクロロプレン系ラテックス組成物となる。 The chloroprene-based copolymer according to an embodiment of the present invention further contains carboxyl By containing a portion of the vinyl monomer containing groups and a portion of polyvinyl alcohol in a free state, it has excellent storage stability and mechanical stability, and has excellent initial peel strength, normal peel strength, water resistance strength, and heat resistance. This results in a chloroprene-based latex composition that makes it possible to obtain an adhesive with an excellent balance of adhesive properties such as adhesive strength.
1.2 カルボキシル基を含むビニル単量体
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、カルボキシル基を含むビニル単量体を含んでいても良い。本発明の一実施形態に係るクロロプレン系ラテックス組成物は、添加したカルボキシル基を含むビニル単量体の一部を、クロロプレン系共重合体に含まれない状態、すなわち、遊離した状態(単量体の状態)で含んでいても良い。
1.2 Vinyl monomer containing carboxyl group The chloroprene latex composition according to one embodiment of the present invention may contain a vinyl monomer containing carboxyl group. The chloroprene-based latex composition according to an embodiment of the present invention has a part of the added vinyl monomer containing a carboxyl group in a state not included in the chloroprene-based copolymer, that is, in a free state (monomer ) may be included.
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、クロロプレン系共重合体を100質量部としたとき、遊離した状態の、カルボキシル基を含むビニル単量体を0.01~5.0質量部含むことができる。カルボキシル基を含むビニル単量体の含有量は、例えば、0.01、0.02、0.05、0.1、0.2、0.5、1.0、2.0、3.0、4.0、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene-based latex composition according to an embodiment of the present invention contains 0.01 to 5.0 parts by weight of free vinyl monomer containing a carboxyl group when the chloroprene copolymer is 100 parts by weight. can include parts. The content of the vinyl monomer containing a carboxyl group is, for example, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0. , 4.0, and 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、添加したカルボキシル基を含むビニル単量体を100質量%とした時、35~75質量%を遊離した状態で含むことができる。遊離した状態のカルボキシル基を含むビニル単量体は、例えば、35、40、45、50、55、60、65、70、75質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene-based latex composition according to one embodiment of the present invention can contain 35 to 75% by mass in a free state when the added vinyl monomer containing a carboxyl group is 100% by mass. The vinyl monomer containing a free carboxyl group is, for example, 35, 40, 45, 50, 55, 60, 65, 70, 75% by mass, and is between any two of the values exemplified here. It may be within the range.
1.3 ポリビニルアルコール
本発明に係るクロロプレン系ラテックス組成物は、重合度が250~450であり、けん化度が85~95mol%であるポリビニルアルコールを含む。
1.3 Polyvinyl Alcohol The chloroprene latex composition according to the present invention contains polyvinyl alcohol having a degree of polymerization of 250 to 450 and a degree of saponification of 85 to 95 mol%.
<ポリビニルアルコールの重合度>
本発明の一実施形態に係るポリビニルアルコールは、重合度が250~450であることが好ましい。ポリビニルアルコールの重合度は、例えば、250、300、350、400、450であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Polymerization degree of polyvinyl alcohol>
The polyvinyl alcohol according to one embodiment of the present invention preferably has a degree of polymerization of 250 to 450. The degree of polymerization of polyvinyl alcohol is, for example, 250, 300, 350, 400, 450, and may be within a range between any two of the numerical values exemplified here.
<ポリビニルアルコールのけん化度>
本発明の一実施形態に係るポリビニルアルコールは、けん化度が85~95mol%であることが好ましい。けん化度は、例えば、85、86、87、88、89、90、91、92、93、94、95mol%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
ポリビニルアルコールの重合度、けん化度を上記数値範囲内とすることにより、クロロプレン系共重合体の重合工程時における、重合溶液の粘度及び分散性を適切な範囲に調整しやすくなり、安定した重合を行うことができる。
<Saponification degree of polyvinyl alcohol>
The polyvinyl alcohol according to one embodiment of the present invention preferably has a degree of saponification of 85 to 95 mol%. The degree of saponification is, for example, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 mol%, and may be within the range between any two of the numerical values exemplified here. .
By setting the degree of polymerization and saponification of polyvinyl alcohol within the above numerical range, it becomes easier to adjust the viscosity and dispersibility of the polymerization solution to an appropriate range during the polymerization process of the chloroprene copolymer, and stable polymerization can be achieved. It can be carried out.
<クロロプレン系ラテックス組成物中のポリビニルアルコール含有量>
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、クロロプレン系共重合体を100質量部としたとき、グラフト共重合していない、遊離した状態のポリビニルアルコールを0.3~5.0質量部含むことが好ましい。遊離ポリビニルアルコールの含有量は、例えば、0.3、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Polyvinyl alcohol content in chloroprene-based latex composition>
The chloroprene-based latex composition according to an embodiment of the present invention contains 0.3 to 5.0 parts by mass of free polyvinyl alcohol that has not been graft copolymerized, based on 100 parts by mass of the chloroprene copolymer. It is preferable to include part. The content of free polyvinyl alcohol is, for example, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、添加したポリビニルアルコールを100質量%とした時、40~90質量%を遊離した状態で含むことができる。添加したポリビニルアルコールを100質量%とした時、遊離ポリビニルアルコールは、例えば、40、45、50、55、60、65、70、75、80、85、90質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene-based latex composition according to an embodiment of the present invention can contain 40 to 90% by mass of free polyvinyl alcohol when the added polyvinyl alcohol is 100% by mass. When the added polyvinyl alcohol is 100% by mass, the free polyvinyl alcohol is, for example, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90% by mass, and the values exemplified here It may be within the range between any two.
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、クロロプレン系ラテックス組成物を100質量部としたとき、クロロプレン単量体単位とカルボキシル基を含むビニル単量体単位(遊離単量体を含まない)を合計で20~65質量部含むことができる。クロロプレン系ラテックス組成物を100質量部としたときの、クロロプレン単量体単位とカルボキシル基を含むビニル単量体単位の合計含有量は、例えば、20、25、30、35、40、45、50、55、60、65質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene-based latex composition according to an embodiment of the present invention is composed of a chloroprene monomer unit and a vinyl monomer unit containing a carboxyl group (including free monomers) when the chloroprene-based latex composition is 100 parts by mass. (not included) in a total of 20 to 65 parts by mass. When the chloroprene-based latex composition is 100 parts by mass, the total content of chloroprene monomer units and vinyl monomer units containing carboxyl groups is, for example, 20, 25, 30, 35, 40, 45, 50. , 55, 60, and 65 parts by mass, and may be within a range between any two of the numerical values exemplified here.
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、クロロプレン系ラテックス組成物を100質量部としたとき、ポリビニルアルコール構造(遊離ポリビニルアルコールを含む)を0.1~5.0質量部含むことができる。クロロプレン系ラテックス組成物を100質量部としたときの、ポリビニルアルコール構造及びポリビニルアルコールの合計含有量は、例えば、0.1、0.2、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The chloroprene-based latex composition according to an embodiment of the present invention contains 0.1 to 5.0 parts by mass of polyvinyl alcohol structure (including free polyvinyl alcohol) when the chloroprene-based latex composition is 100 parts by mass. I can do it. When the chloroprene latex composition is 100 parts by mass, the polyvinyl alcohol structure and the total content of polyvinyl alcohol are, for example, 0.1, 0.2, 0.5, 1.0, 1.5, 2. 0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
1.4 界面活性剤
本発明に係るクロロプレン系ラテックス組成物は、HLB値が3.0~10.0である界面活性剤を含む。
1.4 Surfactant The chloroprene latex composition according to the present invention contains a surfactant having an HLB value of 3.0 to 10.0.
界面活性剤のHLB値は、例えば、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、本発明において、HLB(Hydrophile-Lipophile Balance)値とは、Daviesの理論によるHLB値を意味し、HLB値=Σ(親水基の基数)-Σ(親油基の基数)+7で表される。 The HLB values of surfactants are, for example, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0, and the values exemplified here are It may be within the range between any two. In the present invention, the HLB (Hydrophile-Lipophile Balance) value means the HLB value according to Davies' theory, and is expressed as HLB value = Σ (number of bases of hydrophilic groups) - Σ (number of bases of lipophilic groups) + 7. Ru.
本発明に係るクロロプレン系ラテックス組成物は、クロロプレン系ラテックス組成物100質量部に対して、界面活性剤を0.04~0.36質量部含有する。界面活性剤の含有量は、例えば、0.04、0.06、0.08、0.10、0.15、0.20、0.25、0.30、0.32、0.34、0.36質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
重合初期に、HLB値が特定の範囲である界面活性剤が特定量存在することで、単量体の乳化状態が良好となり、より微細な単量体のミセルがより多く存在する状態となり、重合進行に伴うラテックスの粒子径の増大が抑えられ、得られるクロロプレン系ラテックス組成物の貯蔵安定性及び機械的安定性がより増大すると考えられる。
The chloroprene-based latex composition according to the present invention contains 0.04 to 0.36 parts by mass of a surfactant based on 100 parts by mass of the chloroprene-based latex composition. The content of the surfactant is, for example, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.25, 0.30, 0.32, 0.34, It is 0.36 part by mass, and may be within a range between any two of the numerical values exemplified here.
At the beginning of polymerization, the presence of a specific amount of a surfactant with an HLB value in a specific range improves the emulsification state of the monomers, leading to a state in which more finer monomer micelles exist, which accelerates polymerization. It is thought that the increase in the particle size of the latex as it progresses is suppressed, and the storage stability and mechanical stability of the resulting chloroprene-based latex composition are further increased.
HLB値が3.0~10.0である界面活性剤は、特に限定するものではなく、公知のアニオン系、ノニオン系、カチオン系の界面活性剤を使用することができるが、ノニオン系界面活性剤を含むことが好ましい。ノニオン系界面活性剤としては、脂肪酸アルカノールアミド及び脂肪酸エステルのうち少なくとも一つを含むことが好ましい。具体的には、ソルビタンモノステアレート、ソルビタンモノラウレート、ソルビタンモノパルミテート等のソルビタン脂肪酸エステル類、グリセロールモノステアレート等のグリセロールの脂肪酸エステル類、ラウリン酸ジエタノールアミド、ミリスチン酸ジエタノールアミド、パルミチン酸ジエタノールアミド等の脂肪酸アルカノールアミド等を挙げることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。 The surfactant having an HLB value of 3.0 to 10.0 is not particularly limited, and known anionic, nonionic, or cationic surfactants can be used, but nonionic surfactants It is preferable to include an agent. The nonionic surfactant preferably contains at least one of fatty acid alkanolamide and fatty acid ester. Specifically, sorbitan fatty acid esters such as sorbitan monostearate, sorbitan monolaurate, and sorbitan monopalmitate, glycerol fatty acid esters such as glycerol monostearate, lauric acid diethanolamide, myristic acid diethanolamide, and palmitic acid. Examples include fatty acid alkanolamides such as diethanolamide. These may be used alone or in combination of two or more.
なお、本発明の一実施形態に係るクロロプレン系ラテックス組成物は、本発明の効果を阻害しない範囲で、HLB値が3.0~10.0である界面活性剤以外の界面活性剤を含んでいても良い。この場合、本発明の一実施形態に係るクロロプレン系ラテックス組成物は、クロロプレン系ラテックス組成物に含まれる界面活性剤を100質量%とした時、HLB値が3.0~10.0である界面活性剤を70質量%以上含むことが好ましく、80質量%以上含むことが好ましく、90質量%以上含むことが好ましい。本発明の一実施形態に係るクロロプレン系ラテックス組成物は、HLB値が3.0未満、10.0以上である界面活性剤を含まないこともできる。 The chloroprene latex composition according to one embodiment of the present invention may not contain surfactants other than surfactants having an HLB value of 3.0 to 10.0, as long as the effects of the present invention are not impaired. It's okay to stay. In this case, the chloroprene-based latex composition according to an embodiment of the present invention has an interface having an HLB value of 3.0 to 10.0 when the surfactant contained in the chloroprene-based latex composition is 100% by mass. The active agent is preferably contained in an amount of 70% by mass or more, preferably 80% by mass or more, and preferably 90% by mass or more. The chloroprene-based latex composition according to one embodiment of the present invention may not contain a surfactant having an HLB value of less than 3.0 and 10.0 or more.
1.5 クロロプレン系ラテックス組成物の物性
<貯蔵安定性>
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、該クロロプレン系ラテックス組成物235gを胴径19.5cm、容積225mlのガラス容器に入れ40℃で保管した際に、容器の底に2mm以上沈殿するか、又は、金網に残った凝固物を125℃で1時間乾燥した凝固物が、クロロプレン系ラテックス組成物の固形分に対して0.005%以上となるまでの期間が、6週間以上であることが好ましく、8週間以上であることがより好ましい。貯蔵安定性は、具体的には実施例に記載の方法で評価することができる。
1.5 Physical properties of chloroprene-based latex composition <Storage stability>
The chloroprene-based latex composition according to one embodiment of the present invention is obtained by placing 235 g of the chloroprene-based latex composition in a glass container with a body diameter of 19.5 cm and a volume of 225 ml and storing it at 40°C. The period of time for the coagulated material that precipitates or remains on the wire mesh and is dried at 125° C. for 1 hour to become 0.005% or more based on the solid content of the chloroprene-based latex composition is 6 weeks or more. It is preferable that it is, and it is more preferable that it is 8 weeks or more. Storage stability can be specifically evaluated by the method described in Examples.
<機械的安定性>
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、機械的安定性が、0.10%以下であることが好ましい。機械的安定性は、例えば、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.10%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。機械的安定性は、実施例に記載の方法で評価することができる。
<Mechanical stability>
The chloroprene-based latex composition according to one embodiment of the present invention preferably has mechanical stability of 0.10% or less. Mechanical stability is, for example, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10%. , it may be within the range between any two of the numerical values exemplified here. Mechanical stability can be evaluated by the method described in Examples.
本発明に係るクロロプレン系ラテックス組成物の貯蔵安定性及び機械的安定性は、ポリビニルアルコールの重合度及びけん化度、並びに、界面活性剤のHLB及び含有量を規定し、重合工程を適切に制御し、例えば、重合溶液における粒子径や粘度を適切に制御することによって制御することができる。 The storage stability and mechanical stability of the chloroprene-based latex composition according to the present invention are determined by determining the degree of polymerization and saponification of polyvinyl alcohol, as well as the HLB and content of the surfactant, and by appropriately controlling the polymerization process. This can be controlled, for example, by appropriately controlling the particle size and viscosity of the polymerization solution.
2 クロロプレン系ラテックス組成物の製造方法
本発明に係るクロロプレン系ラテックス組成物の製造方法は、クロロプレン単量体及びカルボキシル基を含むビニル単量体を含む原料単量体を重合する重合工程を含む。重合工程では、ポリビニルアルコール、及び界面活性剤を添加し、原料単量体の少なくとも一部を重合開始後に分添し、重合工程において、重合停止時の重合溶液のキュムラント解析により得られた平均粒子径と、原料単量体の分添開始直後の重合溶液のキュムラント解析により得られた平均粒子径との差が、150nm以下である。
2. Method for producing a chloroprene-based latex composition The method for producing a chloroprene-based latex composition according to the present invention includes a polymerization step of polymerizing raw material monomers containing a chloroprene monomer and a vinyl monomer containing a carboxyl group. In the polymerization process, polyvinyl alcohol and a surfactant are added, and at least a part of the raw material monomer is added in portions after the start of polymerization. The difference between the diameter and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of the raw material monomer is 150 nm or less.
2.1 重合工程
本発明に係る重合工程では、クロロプレン単量体、カルボキシル基を含むビニル単量体を含む原料単量体を重合する。本発明に係る原料単量体は、クロロプレン及びカルボキシル基を含むビニル単量体を含む。また、本発明に係る原料単量体は、さらに、クロロプレン及びカルボキシル基を含むビニル単量体以外の他の単量体を含むことができる。他の単量体としては、上記に列挙した単量体を挙げることができる。
2.1 Polymerization Step In the polymerization step according to the present invention, raw material monomers including a chloroprene monomer and a vinyl monomer containing a carboxyl group are polymerized. The raw material monomers according to the present invention include vinyl monomers containing chloroprene and carboxyl groups. Moreover, the raw material monomer according to the present invention can further contain a monomer other than chloroprene and a vinyl monomer containing a carboxyl group. Other monomers include the monomers listed above.
<原料単量体>
本発明の一実施形態に係る重合工程では、重合開始までに、重合工程に使用する原料単量体の少なくとも一部を重合容器に仕込む。
本発明の一実施形態に係る重合工程では、重合開始までに、重合工程に使用するカルボキシル基を含むビニル単量体のすべてを重合容器に仕込むことができる。
<Raw material monomer>
In the polymerization process according to one embodiment of the present invention, at least a portion of the raw material monomers used in the polymerization process are charged into a polymerization container before the start of polymerization.
In the polymerization step according to one embodiment of the present invention, all of the vinyl monomers containing carboxyl groups used in the polymerization step can be charged into the polymerization container before the start of polymerization.
また、本発明の一実施形態に係る重合工程では、重合開始までに重合工程に使用する原料単量体の一部を重合容器に仕込み、重合開始後に原料単量体の少なくとも一部を添加する。本発明の一実施形態に係る重合工程では、重合開始後に重合工程に使用するクロロプレンの少なくとも一部を添加することができる。
クロロプレンの少なくとも一部を重合開始までに、残りのクロロプレンを重合開始後に添加する場合、残りのクロロプレンは1回又は複数回に分けて分割添加することもでき、一定の流量で連続添加することもできる。一例として、クロロプレンの分添は、重合率が、1~30%に達したときに開始することができ、重合率が5~25%に達した時開始することが好ましい。
重合開始後に原料単量体の少なくとも一部を添加する場合、重合工程で使用する原料単量体100質量部のうち、70質量部以下を、重合開始後に添加することができる。この場合、重合開始後に添加する原料単量体の量は、例えば、0、5、10、15、20、25、30、35、40、45、50、55、60、65、70質量部とでき、ここで例示した数値の何れか2つの間の範囲内であってもよい。一例として、原料単量体、特にはクロロプレンの分添は、3~8時間かけて連続的に行うことができ、4~7時間かけて連続的に行うことが好ましい。
原料単量体の配合量は、得られるクロロプレン系共重合体が上記した組成となるよう調整することが好ましい。
Further, in the polymerization process according to an embodiment of the present invention, a part of the raw material monomers used in the polymerization process is charged into a polymerization container before the start of polymerization, and at least a part of the raw material monomers is added after the start of polymerization. . In the polymerization process according to one embodiment of the present invention, at least a portion of the chloroprene used in the polymerization process can be added after the start of polymerization.
When adding at least part of the chloroprene before the start of polymerization and the remaining chloroprene after the start of polymerization, the remaining chloroprene can be added in one or more portions, or can be added continuously at a constant flow rate. can. As an example, the partial addition of chloroprene can be started when the polymerization rate reaches 1 to 30%, preferably starting when the polymerization rate reaches 5 to 25%.
When adding at least a portion of the raw material monomer after the start of polymerization, 70 parts by mass or less of the 100 parts by mass of the raw material monomer used in the polymerization step can be added after the start of polymerization. In this case, the amount of raw material monomer added after the start of polymerization is, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 parts by mass. However, it may be within the range between any two of the numerical values exemplified here. As an example, the fractional addition of the raw material monomer, particularly chloroprene, can be carried out continuously over a period of 3 to 8 hours, and preferably carried out continuously over a period of 4 to 7 hours.
The blending amount of the raw material monomers is preferably adjusted so that the resulting chloroprene copolymer has the above-mentioned composition.
<乳化剤>
本発明に係る重合工程では、ポリビニルアルコール及び界面活性剤を添加する。ポリビニルアルコール及び界面活性剤は乳化剤として機能する。
ポリビニルアルコールは、重合度が250~450であり、けん化度が85~95mol%であることが好ましい。
<Emulsifier>
In the polymerization step according to the present invention, polyvinyl alcohol and a surfactant are added. Polyvinyl alcohol and surfactants function as emulsifiers.
Polyvinyl alcohol preferably has a degree of polymerization of 250 to 450 and a degree of saponification of 85 to 95 mol%.
ポリビニルアルコールの添加量は、得られるクロロプレン系共重合体が上記した組成となり、得られるクロロプレン系ラテックス組成物中の遊離ポリビニルアルコールの量が上記した範囲となるよう調整することが好ましい。具体的には、重合工程で使用する原料単量体100質量部に対して、1.0~5.0質量部添加することが好ましい。ポリビニルアルコールの添加量は、例えば、1.0、2.0、3.0、4.0、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The amount of polyvinyl alcohol added is preferably adjusted so that the resulting chloroprene-based copolymer has the above-described composition and the amount of free polyvinyl alcohol in the resulting chloroprene-based latex composition falls within the above-described range. Specifically, it is preferable to add 1.0 to 5.0 parts by weight per 100 parts by weight of the raw material monomer used in the polymerization process. The amount of polyvinyl alcohol added is, for example, 1.0, 2.0, 3.0, 4.0, 5.0 parts by mass, and is within the range between any two of the numerical values exemplified here. Good too.
界面活性剤は、HLB値が3.0~10.0であることが好ましい。界面活性剤の種類としては、上記に列挙した界面活性剤を挙げることができる。
界面活性剤の添加量は、得られるクロロプレン系ラテックス組成物中の界面活性剤の量が上記した数値範囲となるよう調整することが好ましい。具体的には、重合工程で使用する原料単量体100質量部に対して、0.15~0.60質量部添加することが好ましい。界面活性剤の添加量は、例えば、0.15、0.20、0.25、0.30、0.35、0.40、0.45、0.50、0.55、0.60質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
The surfactant preferably has an HLB value of 3.0 to 10.0. Examples of the surfactant include the surfactants listed above.
The amount of surfactant added is preferably adjusted so that the amount of surfactant in the resulting chloroprene-based latex composition falls within the above numerical range. Specifically, it is preferable to add 0.15 to 0.60 parts by mass per 100 parts by mass of raw material monomers used in the polymerization step. The amount of surfactant added is, for example, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60 mass , and may be within a range between any two of the numerical values exemplified here.
本発明の一実施形態に係る重合工程では、重合開始前に、重合工程に使用する乳化剤のすべてを重合容器に仕込むことができる。
また、本発明の一実施形態に係る重合工程では、重合開始後に重合工程に使用する乳化剤の少なくとも一部を分添することもできる。
In the polymerization process according to one embodiment of the present invention, all of the emulsifier used in the polymerization process can be charged into the polymerization container before starting the polymerization.
Further, in the polymerization step according to an embodiment of the present invention, at least a part of the emulsifier used in the polymerization step can be added in portions after the start of the polymerization.
<pH調整剤>
本発明の一実施形態に係る重合工程では、pH調整剤を添加することができる。pH調整剤としては、水酸化カリウム、水酸化ナトリウム、ジエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミンなどが挙げられる。pH調整剤は、2種以上のものを併用してもよい。
<pH adjuster>
In the polymerization step according to one embodiment of the present invention, a pH adjuster can be added. Examples of the pH adjuster include potassium hydroxide, sodium hydroxide, diethanolamine, diisopropanolamine, triisopropanolamine, and the like. Two or more types of pH adjusters may be used in combination.
<還元剤>
本発明の一実施形態に係る重合工程では、還元剤を添加することができる。還元剤としては、ピロ亜硫酸カリウム、亜硫酸カリウム、亜硫酸水素カリウム、リン酸カリウム、リン酸水素カリウム、亜硫酸水素ナトリウム、亜硫酸ナトリウム等を挙げることができる。還元剤の添加量は、重合工程で使用する原料単量体100質量部に対して、0.01~3.0質量部とすることができる。
<Reducing agent>
In the polymerization step according to one embodiment of the present invention, a reducing agent can be added. Examples of the reducing agent include potassium pyrosulfite, potassium sulfite, potassium hydrogen sulfite, potassium phosphate, potassium hydrogen phosphate, sodium hydrogen sulfite, and sodium sulfite. The amount of the reducing agent added can be 0.01 to 3.0 parts by mass based on 100 parts by mass of the raw material monomer used in the polymerization process.
本発明の一実施形態に係る重合工程では、重合開始剤を用いることができる。重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素等の無機過酸化物;過酸化ベンゾイル等の有機過酸化物類などを用いることができる。これらの重合開始剤は、1種単独又は2種以上を組み合わせて用いることができる。重合開始剤の使用量は、重合工程で使用する原料単量体100質量部に対して、好ましくは0.01~10質量部である。 A polymerization initiator can be used in the polymerization step according to one embodiment of the present invention. As the polymerization initiator, inorganic peroxides such as potassium persulfate, ammonium persulfate, sodium persulfate, and hydrogen peroxide; organic peroxides such as benzoyl peroxide, etc. can be used. These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the raw material monomer used in the polymerization step.
<連鎖移動剤>
本発明の一実施形態に係る重合工程では、連鎖移動剤を用いることができる。連鎖移動剤としては、特に制限はなく、例えば、n-ドデシルメルカプタンやtert-ドデシルメルカプタン、n-オクチルメルカプタン等の長鎖アルキルメルカプタン類、ジイソプロピルキサントゲンジスルフィドやジエチルキサントゲンジスルフィド等のジアルキルキサントゲンジスルフィド類、ヨードホルム等の公知の連鎖移動剤を使用することができる。これらは、単独で使用してもよく、2種以上を併用してもよい。
連鎖移動剤の添加量は、重合工程で使用する原料単量体100質量部に対して、0.001~10質量部とすることができる。
<Chain transfer agent>
A chain transfer agent can be used in the polymerization step according to one embodiment of the present invention. The chain transfer agent is not particularly limited and includes, for example, long-chain alkyl mercaptans such as n-dodecyl mercaptan, tert-dodecyl mercaptan, and n-octyl mercaptan, dialkyl xanthogen disulfides such as diisopropyl xanthogen disulfide and diethyl xanthogen disulfide, and iodoform. Known chain transfer agents such as can be used. These may be used alone or in combination of two or more.
The amount of the chain transfer agent added can be 0.001 to 10 parts by mass based on 100 parts by mass of the raw material monomer used in the polymerization process.
本発明の一実施形態に係る重合工程では、重合開始までに重合工程に使用する連鎖移動剤のすべてを重合容器に仕込むことができる。
また、本発明の一実施形態に係る重合工程では、重合開始までに重合工程に使用する連鎖移動剤の一部を重合容器に仕込み、重合開始後に連鎖移動剤の少なくとも一部を添加することもできる。一例として、連鎖移動剤の分添は、単量体の分添と同時に開始することができ、重合率が、1~30%に達したときに開始することができ、重合率が5~25%に達した時開始することが好ましい。
連鎖移動剤の少なくとも一部を重合開始までに、残りの連鎖移動剤を重合開始後に添加する場合、残りの連鎖移動剤は1回又は複数回に分けて分割添加することもでき、一定の流量で連続添加することもできる。一例として、単量体の分添と同様に連鎖移動剤の分添は、3~8時間かけて連続的に行うことができ、4~7時間かけて連続的に行うことが好ましい。
重合開始後に連鎖移動剤の少なくとも一部を添加する場合、重合工程で使用する連鎖移動剤100質量部のうち、70質量部以下を、重合開始後に添加することができる。この場合、重合開始後に添加する連鎖移動剤の量は、例えば、0、5、10、15、20、25、30、35、40、45、50、55、60、65、70質量部とでき、ここで例示した数値の何れか2つの間の範囲内であってもよい。
In the polymerization step according to one embodiment of the present invention, all of the chain transfer agent used in the polymerization step can be charged into the polymerization container before the polymerization starts.
Further, in the polymerization process according to an embodiment of the present invention, a part of the chain transfer agent used in the polymerization process may be charged into a polymerization container before the start of polymerization, and at least a part of the chain transfer agent may be added after the start of polymerization. can. As an example, the partial addition of the chain transfer agent can be started simultaneously with the partial addition of the monomer, and can be started when the polymerization rate reaches 1 to 30%, and can be started when the polymerization rate reaches 5 to 25%. It is preferable to start when % is reached.
If at least a part of the chain transfer agent is added before the start of polymerization and the remaining chain transfer agent is added after the start of polymerization, the remaining chain transfer agent can be added in one or more parts and added at a constant flow rate. It can also be added continuously. As an example, like the monomer addition, the chain transfer agent addition can be carried out continuously over a period of 3 to 8 hours, and preferably carried out continuously over a period of 4 to 7 hours.
When at least a portion of the chain transfer agent is added after the start of polymerization, 70 parts by mass or less of the 100 parts by mass of the chain transfer agent used in the polymerization step can be added after the start of polymerization. In this case, the amount of the chain transfer agent added after the initiation of polymerization can be, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 parts by mass. , it may be within the range between any two of the numerical values exemplified here.
<重合温度>
重合温度は、反応を制御しやすい等の観点から0~55℃の範囲であることが望ましい。重合反応をより円滑かつ安全に行なう観点からは、重合温度の下限値を10℃以上、上限値を45℃以下とすることが望ましい。
<Polymerization temperature>
The polymerization temperature is preferably in the range of 0 to 55°C from the viewpoint of easy control of the reaction. From the viewpoint of performing the polymerization reaction more smoothly and safely, it is desirable that the lower limit of the polymerization temperature is 10°C or more and the upper limit is 45°C or less.
<重合転化率>
重合転化率は50~99.9%の範囲とすることができる。所望の重合転化率に達した後、重合反応を、重合停止剤を加えることにより停止させることができる。
<Polymerization conversion rate>
The polymerization conversion rate can be in the range of 50 to 99.9%. After reaching the desired polymerization conversion, the polymerization reaction can be stopped by adding a polymerization terminator.
<重合停止剤>
重合停止剤としては、例えばジエチルヒドロキシアミン、チオジフェニルアミン、4-tert-ブチルカテコール、2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)等がある。添加量は、重合工程で使用する全単量体100質量部に対して0.02~0.1質量部とすることができる。
<Polymerization terminator>
Examples of the polymerization terminator include diethylhydroxyamine, thiodiphenylamine, 4-tert-butylcatechol, and 2,2'-methylenebis(4-ethyl-6-tert-butylphenol). The amount added can be 0.02 to 0.1 part by mass based on 100 parts by mass of all monomers used in the polymerization process.
2.2 重合溶液の物性
<粒子径>
本発明に係る製造方法では、重合工程において、重合停止時の重合溶液のキュムラント解析により得られた平均粒子径と、原料単量体の分添開始直後の重合溶液のキュムラント解析により得られた平均粒子径との差が、150nm以下である。重合停止時の重合溶液のキュムラント解析により得られた平均粒子径と、原料単量体の分添開始直後の重合溶液のキュムラント解析により得られた平均粒子径との差は、例えば、50、60、70、80、90、100、110、120、130、140、150nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
2.2 Physical properties of polymerization solution <particle size>
In the production method according to the present invention, in the polymerization step, the average particle diameter obtained by cumulant analysis of the polymerization solution at the time of termination of polymerization and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of raw material monomers are determined. The difference from the particle diameter is 150 nm or less. The difference between the average particle diameter obtained by cumulant analysis of the polymerization solution at the time of termination of polymerization and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of raw material monomers is, for example, 50, 60. , 70, 80, 90, 100, 110, 120, 130, 140, and 150 nm, and may be within a range between any two of the numerical values exemplified here.
重合停止時の重合溶液のキュムラント解析により得られた平均粒子径と、原料単量体の分添開始直後の重合溶液のキュムラント解析により得られた平均粒子径との差が上記数値範囲内となるよう、重合中の重合溶液中の粒子径を制御することによって、貯蔵安定性及び機械的安定性に優れるクロロプレン系ラテックス組成物を得ることができる。重合中の重合溶液中の粒子径は、原料単量体の配合の割合、量、及び添加のタイミング、並びに乳化剤であるポリビニルアルコール及び界面活性剤の種類及び添加量等を調整することによって、制御することができる。重合溶液のキュムラント解析により得られる平均粒子径は、具体的には実施例に記載の方法で求めることができる。 The difference between the average particle diameter obtained by cumulant analysis of the polymerization solution at the time of termination of polymerization and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after the start of fractional addition of raw material monomers is within the above numerical range. Thus, by controlling the particle size in the polymerization solution during polymerization, a chloroprene-based latex composition with excellent storage stability and mechanical stability can be obtained. The particle size in the polymerization solution during polymerization can be controlled by adjusting the ratio, amount, and timing of addition of raw material monomers, as well as the type and amount of polyvinyl alcohol and surfactant used as emulsifiers. can do. The average particle diameter obtained by cumulant analysis of the polymerization solution can be specifically determined by the method described in Examples.
<粘度>
本発明の一実施形態に係る製造方法では、原料単量体の分添終了時の重合溶液のB型粘度計で測定した粘度が280mPa・s以下であり、重合停止時の重合溶液のB型粘度計で測定した粘度が150mPa・s以上であることが好ましい。
<Viscosity>
In the production method according to an embodiment of the present invention, the viscosity of the polymerization solution measured with a B-type viscometer at the end of the fractional addition of the raw material monomer is 280 mPa·s or less, and the B-type of the polymerization solution at the time of termination of polymerization. It is preferable that the viscosity measured with a viscometer is 150 mPa·s or more.
原料単量体の分添終了時の重合溶液のB型粘度計で測定した粘度は、例えば、150、160、170、180、190、200、210、220、230、240、250、260、270、280mPa・sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重合工程中の粘度は、重合が進むに連れ高くなる傾向があり、本発明の一実施形態においては、分添終了時の粘度が上記上限以下であることが好ましく、重合工程中の最大粘度が上記上限以下であることが好ましい。分添終了時の粘度、より好ましくは、重合工程中の重合溶液の粘度が一定以下であることにより、攪拌効率が低下することなく、均一に除熱を行うことができ、局所的に重合が進行して凝集物が発生することを防ぐことができる。 The viscosity measured with a B-type viscometer of the polymerization solution at the end of the fractional addition of the raw material monomer is, for example, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270. , 280 mPa·s, and may be within a range between any two of the numerical values exemplified here. The viscosity during the polymerization process tends to increase as the polymerization progresses, and in one embodiment of the present invention, it is preferable that the viscosity at the end of fractional addition is below the above upper limit, and the maximum viscosity during the polymerization process is It is preferable that it is below the above upper limit. By keeping the viscosity at the end of fractional addition, and more preferably the viscosity of the polymerization solution during the polymerization process, below a certain level, it is possible to uniformly remove heat without reducing stirring efficiency, and to prevent local polymerization. It is possible to prevent the progress of the formation of aggregates.
重合停止時の重合溶液のB型粘度計で測定した粘度は、例えば、150、160、170、180、190、200、210、220、230、240、250mPa・sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重合停止時の粘度が一定以上であることにより、例えば、得られたクロロプレン系ラテックス組成物を用いて接着剤を調整する場合、粘度の調整が容易となる。 The viscosity measured by a B-type viscometer of the polymerization solution at the time of termination of polymerization is, for example, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250 mPa・s, and the values exemplified here It may be within the range between any two. Since the viscosity at the time of termination of polymerization is above a certain level, the viscosity can be easily adjusted, for example, when an adhesive is prepared using the obtained chloroprene-based latex composition.
原料単量体の分添終了時及び重合停止時の重合溶液の粘度は、原料単量体の配合の割合、量、及び添加のタイミング、並びに乳化剤であるポリビニルアルコール及び界面活性剤の種類及び添加量等を調整することによって、制御することができる。また、重合溶液の粘度は、具体的には実施例に記載の方法で求めることができる。 The viscosity of the polymerization solution at the end of fractional addition of raw material monomers and at the time of termination of polymerization depends on the blending ratio, amount, and timing of addition of raw material monomers, as well as the type and addition of polyvinyl alcohol as an emulsifier and surfactant. It can be controlled by adjusting the amount and the like. Further, the viscosity of the polymerization solution can be specifically determined by the method described in Examples.
2.3 未反応単量体の除去工程
本発明の一実施形態に係る製造方法は、未反応単量体の除去工程を含むことができる。未反応単量体の除去工程では、重合終了後の重合溶液から、重合終了後の未反応単量体を、常法のスチームストリッピング法や減圧加熱蒸発法等の方法で除去し、クロロプレン系ラテックス組成物を得ることができる。
2.3 Step of removing unreacted monomers The production method according to one embodiment of the present invention can include a step of removing unreacted monomers. In the step of removing unreacted monomers, unreacted monomers after completion of polymerization are removed from the polymerization solution by a conventional method such as steam stripping method or reduced pressure heating evaporation method, and chloroprene-based A latex composition can be obtained.
重合終了時の重合溶液中のクロロプレン系ラテックス組成物の固形分濃度は、例えば20、25、30、35、40、45、50、55、60質量%とすることができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The solid content concentration of the chloroprene-based latex composition in the polymerization solution at the end of polymerization can be, for example, 20, 25, 30, 35, 40, 45, 50, 55, 60% by mass, and the values exemplified here It may be within the range between any two.
3 接着剤(水性接着剤)
本発明の一実施形態に係る接着剤は、上記のクロロプレン系ラテックス組成物を含む。また、接着剤は水性接着剤とできる。
本発明の一実施形態に係る接着剤は、上記のクロロプレン系ラテックス組成物、粘着付与樹脂及び金属酸化物を含むことができる。
3 Adhesive (water-based adhesive)
An adhesive according to one embodiment of the present invention includes the above-mentioned chloroprene-based latex composition. Moreover, the adhesive can be a water-based adhesive.
The adhesive according to one embodiment of the present invention may include the above-described chloroprene-based latex composition, tackifier resin, and metal oxide.
<粘着付与樹脂>
粘着付与樹脂としては、ロジン樹脂、重合ロジン樹脂、α-ピネン樹脂、β-ピネン樹脂、テルペンフェノール樹脂、C5留分系石油樹脂、C9留分系石油樹脂、C5/C9留分系石油樹脂、DCPD系石油樹脂、アルキルフェノール樹脂、キシレン樹脂、クマロン樹脂、クマロンインデン樹脂などを挙げることができる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
<Tackifying resin>
Examples of the tackifying resin include rosin resin, polymerized rosin resin, α-pinene resin, β-pinene resin, terpene phenol resin, C5 distillate petroleum resin, C9 distillate petroleum resin, C5/C9 distillate petroleum resin, Examples include DCPD petroleum resin, alkylphenol resin, xylene resin, coumaron resin, coumaron indene resin, and the like. These can be used alone or in combination of two or more.
粘着付与樹脂の添加方法は特に限定されるものではないが、接着剤中に樹脂を均一に分散させるために、水性エマルジョンとしてから添加することが好ましい。粘着付与樹脂を水性エマルジョンとするには、トルエン等の有機溶剤に溶解させたものを、乳化剤を用いて水中に乳化/分散させた後、有機溶剤を減圧しながら加熱して取り除く方法と、微粒子に粉砕して乳化/分散させる方法などがある。 The method of adding the tackifier resin is not particularly limited, but in order to uniformly disperse the resin in the adhesive, it is preferable to add the tackifying resin after forming an aqueous emulsion. To make an aqueous emulsion from the tackifying resin, there are two methods: Dissolve it in an organic solvent such as toluene, emulsify/disperse it in water using an emulsifier, and then remove the organic solvent by heating under reduced pressure. There are methods such as crushing and emulsifying/dispersing.
粘着付与樹脂の添加量(固形分換算)は、接着剤100質量部に対して、10~50質量部とできる。粘着付与樹脂の添加量(固形分換算)は、例えば、10、15、20、25、30、35、40、45、50質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The amount of the tackifying resin added (in terms of solid content) may be 10 to 50 parts by mass relative to 100 parts by mass of the adhesive. The amount of the tackifying resin added (in terms of solid content) is, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50 parts by mass, and is in the range between any two of the numerical values exemplified here. It may be within.
<金属酸化物>
金属酸化物としては、酸化亜鉛、酸化チタン及び酸化鉄等を挙げることができる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
<Metal oxide>
Examples of metal oxides include zinc oxide, titanium oxide, and iron oxide. These can be used alone or in combination of two or more.
金属酸化物の添加量(固形分換算)は、接着剤100質量部に対して、0.1~5.0質量部とできる。金属酸化物の添加量(固形分換算)は、例えば、0.1、0.2、0.5、1.0、2.0、3.0、4.0、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The amount of the metal oxide added (in terms of solid content) can be 0.1 to 5.0 parts by mass relative to 100 parts by mass of the adhesive. The amount of metal oxide added (in terms of solid content) is, for example, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 parts by mass. , it may be within the range between any two of the numerical values exemplified here.
本発明の一実施形態に係る接着剤は、上記の成分の他に、pH調整剤、可塑剤、充填材、酸化防止剤、顔料、着色剤、湿潤剤、消泡剤、増粘剤、その他の樹脂エマルション(ラテックス)などを適宜含有することができる。 In addition to the above-mentioned components, the adhesive according to an embodiment of the present invention includes a pH adjuster, a plasticizer, a filler, an antioxidant, a pigment, a coloring agent, a wetting agent, an antifoaming agent, a thickener, and others. A resin emulsion (latex) or the like may be appropriately contained.
本発明のクロロプレン系ラテックス組成物を用いて作製した接着剤は紙、木材、布、皮革、レザー、ゴム、プラスチック、プラスチックフォーム、陶器、ガラス、セラミック、金属などの同種の被着体あるいは異種同士の被着体の接着に使用することができる。 Adhesives prepared using the chloroprene-based latex composition of the present invention can be applied to similar or different types of adherends such as paper, wood, cloth, leather, leather, rubber, plastic, plastic foam, pottery, glass, ceramic, and metal. Can be used for adhesion of adherends.
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、一例として、以下の方法で調製することができる。 The chloroprene-based latex composition according to one embodiment of the present invention can be prepared, for example, by the following method.
<接着剤の製造>
クロロプレン系ラテックス組成物100質量部(固形分換算)に、粘着付与樹脂(荒川化学工業社製タマノルE-100)50質量部、金属酸化物(酸化亜鉛:大崎工業社製AZ-SW)1質量部を添加し、スリーワンモータを用いて攪拌する。この溶液の粘度が25℃×30rpmの3000~4000mPa・sとなるように増粘剤(ロームアンドハース社製RM-8W)を添加して接着剤を得る。
<Manufacture of adhesive>
100 parts by mass of chloroprene-based latex composition (in terms of solid content), 50 parts by mass of tackifier resin (Tamanol E-100 manufactured by Arakawa Chemical Industries, Ltd.), and 1 mass of metal oxide (zinc oxide: AZ-SW manufactured by Osaki Kogyo Co., Ltd.) 1 part and stir using a three-one motor. A thickener (RM-8W manufactured by Rohm and Haas) is added so that the viscosity of this solution is 3000 to 4000 mPa·s at 25° C. and 30 rpm to obtain an adhesive.
本発明に係る接着剤は、以下のように調製した接着サンプルについて、以下の特性を有することが好ましい。
<接着サンプルの作製>
得られた接着剤を、帆布(25×150mm)2枚にそれぞれ300g(固形分)/mとなるように刷毛で塗布し、80℃雰囲気下で9分間乾燥し、室温で1分間放置後に塗布面を張り合わせハンドローラーで圧着して接着サンプルを得る。得られた接着サンプルについて、以下の評価を行う。
The adhesive according to the present invention preferably has the following properties for adhesive samples prepared as follows.
<Preparation of adhesive sample>
The obtained adhesive was applied with a brush to two pieces of canvas (25 x 150 mm) each at a concentration of 300 g (solid content)/m 2 , dried in an atmosphere of 80°C for 9 minutes, and left at room temperature for 1 minute. The coated surfaces are pasted together and pressed together using a hand roller to obtain an adhesive sample. The obtained adhesive sample is evaluated as follows.
<初期剥離強度>
本発明の一実施形態に係る水性接着剤は、上記接着サンプルをローラー圧着後、室温にて10分間放置したときの、引張り試験機を用いて、引張り速度200mm/minで測定されるT型剥離試験(初期剥離強度)において、3.0N/mm以上であることが好ましい。初期剥離強度は、例えば、3.0、3.5、4.0、4.5、5.0N/mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Initial peel strength>
The water-based adhesive according to an embodiment of the present invention exhibits T-shaped peeling measured at a tensile speed of 200 mm/min using a tensile tester when the adhesive sample is left for 10 minutes at room temperature after roller pressure bonding. In the test (initial peel strength), it is preferably 3.0 N/mm or more. The initial peel strength is, for example, 3.0, 3.5, 4.0, 4.5, 5.0 N/mm, and may be within a range between any two of the numerical values exemplified here. .
<常態剥離強度>
本発明の一実施形態に係る水性接着剤は、上記接着サンプルを室温にて5日間放置した後、引張り試験機を用いて、引張り速度200mm/minで測定されるT型剥離試験(常態剥離強度)において、5.0N/mm以上であることが好ましい。常態剥離強度は、例えば、5.0、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6.0N/mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Normal peel strength>
The water-based adhesive according to an embodiment of the present invention is tested for T-peel test (normal state peel strength), which is measured at a tensile speed of 200 mm/min using a tensile tester after leaving the adhesive sample at room temperature for 5 days. ) is preferably 5.0 N/mm or more. Normal peel strength is, for example, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0N. /mm, and may be within a range between any two of the numerical values exemplified here.
<耐水強度>
本発明の一実施形態に係る水性接着剤は、上記接着サンプルを室温で5日間放置し、さらに、23℃の水中に2日間浸漬した後、引張り試験機を用いて引張り速度200mm/minで測定されるT型剥離試験(耐水強度)において、2.9N/mm以上であることが好ましい。耐水強度は、例えば、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0N/mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Water resistance>
The water-based adhesive according to an embodiment of the present invention was measured by leaving the adhesive sample at room temperature for 5 days, then immersing it in water at 23°C for 2 days, and then using a tensile tester at a tensile speed of 200 mm/min. In the T-type peel test (water resistance strength) conducted, it is preferably 2.9 N/mm or more. Water resistance strength is, for example, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0 N/mm, and may be within a range between any two of the numerical values exemplified here.
<耐熱接着力>
本発明の一実施形態に係る水性接着剤は、上記接着サンプルを室温で5日間放置した後、さらに、80℃雰囲気下に15分間放置し、80℃雰囲気下で200mm/分の速度で測定されるT型剥離試験(耐熱接着力)において、1.2N/mm以上であることが好ましい。耐熱接着力は、例えば、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0N/mmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Heat-resistant adhesive strength>
The water-based adhesive according to an embodiment of the present invention was measured by leaving the adhesive sample at room temperature for 5 days, then leaving it in an atmosphere of 80°C for 15 minutes, and measuring it at a speed of 200 mm/min in an atmosphere of 80°C. In a T-type peel test (heat-resistant adhesive strength), it is preferably 1.2 N/mm or more. The heat-resistant adhesive strength is, for example, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 N/mm, and is exemplified here. It may be within the range between any two of the above values.
本発明の一実施形態に係るクロロプレン系ラテックス組成物は、上記の配合、具体的には、実施例に記載の配合の接着剤としたときに上記の特性を有することが好ましい。 The chloroprene latex composition according to one embodiment of the present invention preferably has the above characteristics when used as an adhesive having the above formulation, specifically, the formulation described in the Examples.
以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not interpreted as being limited to these.
<クロロプレン系ラテックス組成物の製造>
(実施例1)
内容量10リットルの反応器に、窒素気流下で水106.3質量部、ポリビニルアルコール3.5質量部、ノニオン系界面活性剤であるラウリン酸ジエタノールアミド(花王株式会社製、アミノーンL-02)0.39質量部を投入し、溶解した。得られた混合液を攪拌しながら、さらに、クロロプレン39.2質量部、メタクリル酸2質量部、及びオクチルメルカプタン0.1質量部を加え、30℃で10分間攪拌した。還元剤として亜硫酸ナトリウム0.1質量部を添加し、開始剤として過硫酸カリウムを用いて、窒素雰囲気下35℃で重合を開始した。重合率が15%に達した時点から、クロロプレン58.8質量部及びオクチルメルカプタン0.15質量部を5時間かけて7.86g/minで連続的に添加した。その後、重合率が98%に達したところでフェノチアジンの乳濁液を加えて重合を停止した。45%ジエタノールアミン水溶液を用いて重合溶液のpHを7.2に調整した後、減圧下で未反応単量体を除去し、クロロプレン系ラテックス組成物を得た。更に水を加えてクロロプレン系ラテックス組成物の固形分が50%になるように調整した。
<Manufacture of chloroprene-based latex composition>
(Example 1)
In a reactor with a capacity of 10 liters, 106.3 parts by mass of water, 3.5 parts by mass of polyvinyl alcohol, and lauric acid diethanolamide (manufactured by Kao Corporation, Aminone L-02), which is a nonionic surfactant, were added under a nitrogen stream. 0.39 parts by mass was added and dissolved. While stirring the resulting mixed solution, 39.2 parts by mass of chloroprene, 2 parts by mass of methacrylic acid, and 0.1 parts by mass of octyl mercaptan were further added, and the mixture was stirred at 30° C. for 10 minutes. 0.1 parts by mass of sodium sulfite was added as a reducing agent, and potassium persulfate was used as an initiator to initiate polymerization at 35° C. under a nitrogen atmosphere. From the time when the polymerization rate reached 15%, 58.8 parts by mass of chloroprene and 0.15 parts by mass of octyl mercaptan were continuously added at a rate of 7.86 g/min over 5 hours. Thereafter, when the polymerization rate reached 98%, a phenothiazine emulsion was added to stop the polymerization. After adjusting the pH of the polymerization solution to 7.2 using a 45% diethanolamine aqueous solution, unreacted monomers were removed under reduced pressure to obtain a chloroprene-based latex composition. Further, water was added to adjust the solid content of the chloroprene-based latex composition to 50%.
(実施例2~8、比較例1~8)
重合処方、重合条件を表1及び2に記載のとおりとし、ポリビニルアルコール及びノニオン系界面活性剤として、表1及び2に記載の物性を有するポリビニルアルコール及びノニオン系界面活性剤を用いた以外は実施例1と同様に、クロロプレン系ラテックス組成物を製造した。
(Examples 2 to 8, Comparative Examples 1 to 8)
The polymerization recipe and polymerization conditions were as shown in Tables 1 and 2, except that polyvinyl alcohol and nonionic surfactant having the physical properties shown in Tables 1 and 2 were used as polyvinyl alcohol and nonionic surfactant. A chloroprene-based latex composition was produced in the same manner as in Example 1.
<重合溶液の物性>
(原料単量体の分添開始直後及び重合停止時の重合溶液の動的光散乱法により得られるキュムラント法で求めた平均粒子径)
実施例1~3及び比較例1について、原料単量体の分添開始直後及び重合停止後の重合溶液を、固形分濃度が0.01質量%となるように蒸留水で希釈調整し、ELSZ Series(大塚電子株式会社製)によって平均粒子径を求めた。ここで、ラテックスの平均粒子径は、動的光散乱法において、光子相関法で求めた自己相関関数よりキュムラント法で求めた値を用いた。結果を表1及び表2に示す。
なお、原料単量体の分添開始直後の重合溶液は、原料単量体の分添開始から3分以内に採取した。また、重合停止後の重合溶液は、重合容器に重合停止剤を添加してから3分以内に採取した。
<Physical properties of polymerization solution>
(Average particle diameter determined by the cumulant method obtained by dynamic light scattering of the polymerization solution immediately after the start of fractional addition of raw material monomers and at the end of polymerization)
Regarding Examples 1 to 3 and Comparative Example 1, the polymerization solution immediately after the start of fractional addition of raw material monomers and after the termination of polymerization was diluted with distilled water so that the solid content concentration was 0.01% by mass, and ELSZ The average particle diameter was determined using Series (manufactured by Otsuka Electronics Co., Ltd.). Here, as the average particle diameter of the latex, in the dynamic light scattering method, a value determined by the cumulant method from an autocorrelation function determined by the photon correlation method was used. The results are shown in Tables 1 and 2.
Note that the polymerization solution immediately after the start of fractional addition of the raw material monomer was collected within 3 minutes from the start of fractional addition of the raw material monomer. Moreover, the polymerization solution after polymerization termination was collected within 3 minutes after adding the polymerization terminator to the polymerization container.
(分添終了時及び重合停止時の重合溶液の粘度)
実施例1~3及び比較例1について、重合開始から重合停止まで、1時間毎にB型粘度計により重合溶液の粘度を測定した。また、B型粘度計により分添終了時及び重合停止時の重合溶液の粘度を測定した。粘度は以下の条件で測定を行った。
  測定機器:東機産業株式会社製「VISCOMETER TVB-20L」
  スピンドル・ローター:2M(半径19mm×厚み7mの円盤状)
  回転数:30rpm
なお、重合中の粘度は、単量体の分添終了時に最大となった。
(Viscosity of polymerization solution at the end of fractional addition and at the end of polymerization)
For Examples 1 to 3 and Comparative Example 1, the viscosity of the polymerization solution was measured every hour from the start of polymerization to the end of polymerization using a B-type viscometer. In addition, the viscosity of the polymerization solution was measured using a B-type viscometer at the end of the fractional addition and at the time of termination of the polymerization. The viscosity was measured under the following conditions.
Measuring equipment: “VISCOMETER TVB-20L” manufactured by Toki Sangyo Co., Ltd.
Spindle rotor: 2M (disk shape with radius 19mm x thickness 7m)
Rotation speed: 30rpm
Note that the viscosity during polymerization reached its maximum at the end of the partial addition of the monomer.
<クロロプレン系ラテックス組成物の評価>
(クロロプレン系ラテックス組成物100質量部に対する各成分の量)
クロロプレン系ラテックス組成物100質量部に対する各成分の組成を、仕込み量及び分析値から算出した。結果を表1及び2に示す。
なお、クロロプレン単量体単位とカルボキシル基を含むビニル単量体単位の合計とは、クロロプレン系共重合体に含まれるクロロプレン単量体単位とカルボキシル基を含むビニル単量体単位の合計を意味し、クロロプレン系ラテックス組成物に含まれるメタクリル酸等の遊離単量体は含まない。ポリビニルアルコール構造とは、クロロプレン系ラテックス組成物に含まれる、グラフト共重合体中のポリビニルアルコール構造と、遊離ポリビニルアルコールの合計を意味する。
<Evaluation of chloroprene latex composition>
(Amount of each component relative to 100 parts by mass of chloroprene-based latex composition)
The composition of each component with respect to 100 parts by mass of the chloroprene-based latex composition was calculated from the amount charged and the analytical value. The results are shown in Tables 1 and 2.
In addition, the total of chloroprene monomer units and vinyl monomer units containing carboxyl groups means the total of chloroprene monomer units and vinyl monomer units containing carboxyl groups contained in the chloroprene-based copolymer. , free monomers such as methacrylic acid contained in chloroprene-based latex compositions are not included. The polyvinyl alcohol structure means the sum of the polyvinyl alcohol structure in the graft copolymer and free polyvinyl alcohol contained in the chloroprene-based latex composition.
(グラフト共重合体中のポリビニルアルコール構造の量)
グラフト共重合体中のポリビニルアルコール構造の量を以下の方法で算出した。
まず、グラフト共重合していない、遊離ポリビニルアルコールの量を以下の方法で定量し、ポリビニルアルコール仕込み量から、遊離ポリビニルアルコールの量を減じてグラフト共重合体中のポリビニルアルコール構造の量を求めた。
(Amount of polyvinyl alcohol structure in the graft copolymer)
The amount of polyvinyl alcohol structure in the graft copolymer was calculated by the following method.
First, the amount of free polyvinyl alcohol that had not been graft copolymerized was determined by the following method, and the amount of free polyvinyl alcohol was subtracted from the amount of polyvinyl alcohol charged to determine the amount of polyvinyl alcohol structure in the graft copolymer. .
・試薬の調製
ホウ酸4gを純水96mLに溶解し、4%ホウ酸水溶液を調製した。
純水約70mLにヨウ化カリウム2.5gを溶解させヨウ化カリウム水溶液を調製した。ヨウ素1.27gを秤量し、予め作製したヨウ化カリウム水溶液に溶解させて、総量が100mLになるまで純水を加え、ヨウ素溶液を調製した。
- Preparation of reagent 4 g of boric acid was dissolved in 96 mL of pure water to prepare a 4% boric acid aqueous solution.
A potassium iodide aqueous solution was prepared by dissolving 2.5 g of potassium iodide in about 70 mL of pure water. 1.27 g of iodine was weighed out, dissolved in a potassium iodide aqueous solution prepared in advance, and pure water was added until the total amount reached 100 mL to prepare an iodine solution.
・PVA標準溶液の調製
PVA0.1gを100mLメスフラスコに精秤し、純水を50~60mL加え,ウォーターバス(約95℃)で溶解した。室温に冷却後、純水を標線まで加え、良く混合した。その中より10mL分取して100mLメスフラスコに入れ、純水を標線まで加えてよく混合し、PVA濃度0.1mg/mLの標準溶液を調製した。
- Preparation of PVA standard solution 0.1 g of PVA was accurately weighed into a 100 mL volumetric flask, 50 to 60 mL of pure water was added, and it was dissolved in a water bath (approximately 95° C.). After cooling to room temperature, pure water was added up to the marked line and mixed well. A 10 mL sample was taken from it and placed in a 100 mL volumetric flask, and pure water was added up to the marked line and mixed well to prepare a standard solution with a PVA concentration of 0.1 mg/mL.
・検量線の作成
上記の標準溶液を50mLメスフラスコに1、5、10、15、20mL分取し、それぞれに4%ホウ酸水溶液15mLを加え、総量が45mLになるまで純水を加えた。さらにそれぞれに、ヨウ素溶液3mLを加え、純水を標線まで加え、良く混合し、PVA濃度2、10、20、30、40mg/Lの溶液を調製した。ヨウ素を加えないで調整したブランク液を対照にして、分光光度計で波長650nm、セルガラス10mmで吸光度を測定し、濃度-吸光度の検量線を作成した。
- Creation of a calibration curve 1, 5, 10, 15, and 20 mL of the above standard solution were taken into a 50 mL volumetric flask, 15 mL of a 4% boric acid aqueous solution was added to each, and pure water was added until the total volume became 45 mL. Furthermore, 3 mL of iodine solution was added to each, and pure water was added up to the marked line and mixed well to prepare solutions with PVA concentrations of 2, 10, 20, 30, and 40 mg/L. Using a blank solution prepared without adding iodine as a control, the absorbance was measured using a spectrophotometer at a wavelength of 650 nm and a cell glass of 10 mm, and a concentration-absorbance calibration curve was created.
・測定サンプルの調製
各実施例及び比較例のクロロプレン系ラテックス組成物9gを200mLビーカーに計量し、攪拌しながら純水を171g加え、質量比で20倍に希釈した。上記希釈液100g(50g×2個)をセルに取り、6000rpm×30分の条件で遠心分離操作を行った。50mLメスフラスコに、上記上澄みを1mL分取し、4%ホウ酸水溶液を15mL加え、総量が45mLになるまで純水を加えた。さらに、ヨウ素溶液3mLを加え、純水を標線まで加え、良く混合し、測定サンプルとした。
- Preparation of measurement samples 9 g of the chloroprene-based latex compositions of each example and comparative example were weighed into a 200 mL beaker, and while stirring, 171 g of pure water was added to dilute the composition 20 times by mass. 100 g (50 g x 2 pieces) of the above diluted solution was placed in a cell and centrifuged at 6000 rpm x 30 minutes. 1 mL of the above supernatant was taken into a 50 mL volumetric flask, 15 mL of a 4% aqueous boric acid solution was added, and pure water was added until the total volume reached 45 mL. Furthermore, 3 mL of iodine solution was added, and pure water was added up to the marked line, mixed well, and a measurement sample was obtained.
・吸光度の測定
ブランク液を対照にして、分光光度計で波長650nm、セルガラス10mmで吸光度を測定した。測定は、元のクロロプレン系ラテックス組成物を1000倍に希釈(20倍希釈×50倍希釈)して実施したことになる。
- Measurement of absorbance Using a blank solution as a control, absorbance was measured using a spectrophotometer at a wavelength of 650 nm and a cell glass of 10 mm. The measurement was performed by diluting the original chloroprene latex composition 1000 times (20 times dilution x 50 times dilution).
・PVA濃度、遊離ポリビニルアルコールの量、グラフト共重合体中のポリビニルアルコール構造の量の算出
以下の式で測定サンプルのPVA濃度 Sを算出した。
  S=ABS×A
  S:メスフラスコ中のPVA濃度[mg/L]、ABS:吸光度、A:係数(検量線からLotus1-2-3より算出)
続いて、以下の式でクロロプレン系ラテックス組成物中の遊離ポリビニルアルコール濃度を算出した。
  L=S×C/B
  L:クロロプレン系ラテックス組成物中の遊離ポリビニルアルコール濃度[g/kg]、B:希釈液量[g]、C:上澄み液量[g]
最後に、以下の式でクロロプレン系ラテックス組成物中の遊離ポリビニルアルコール量、グラフト共重合体中のポリビニルアルコール構造の量を算出した。
  PVA=L×L
  PVA:遊離ポリビニルアルコール量[g]、L:クロロプレン系ラテックス組成物の量[kg]
  PVA=PVA-PVA
  PVA:グラフト共重合体中のポリビニルアルコール構造の量[g]、PVA:ポリビニルアルコール仕込み量[g]
得られたPVAを、クロロプレン系ラテックス組成物中のクロロプレン系共重合体の量で除し、クロロプレン系共重合体100質量部に対する、グラフト共重合体中のポリビニルアルコール構造の量を算出した。なお、「クロロプレン系共重合体の量」は、クロロプレン系ラテックス組成物中のクロロプレン単量体単位の量、カルボキシル基を含むビニル単量体単位の量(遊離したカルボキシル基を含むビニル単量体を除く)、ポリビニルアルコール構造の量(遊離したポリビニルアルコールを除く)の合計とした。
- Calculation of PVA concentration, amount of free polyvinyl alcohol, and amount of polyvinyl alcohol structure in the graft copolymer The PVA concentration S c of the measurement sample was calculated using the following formula.
S c =ABS×A
S c : PVA concentration in volumetric flask [mg/L], ABS: absorbance, A: coefficient (calculated from the calibration curve using Lotus 1-2-3)
Subsequently, the free polyvinyl alcohol concentration in the chloroprene-based latex composition was calculated using the following formula.
L c =S c ×C/B
L c : Free polyvinyl alcohol concentration in the chloroprene latex composition [g/kg], B: Diluted liquid amount [g], C: Supernatant liquid amount [g]
Finally, the amount of free polyvinyl alcohol in the chloroprene-based latex composition and the amount of polyvinyl alcohol structure in the graft copolymer were calculated using the following formula.
PVA F = L c × L Q
PVA F : Amount of free polyvinyl alcohol [g], L Q : Amount of chloroprene latex composition [kg]
PVA G = PVA Q - PVA F
PVA G : Amount of polyvinyl alcohol structure in the graft copolymer [g], PVA Q : Amount of polyvinyl alcohol charged [g]
The obtained PVA G was divided by the amount of the chloroprene copolymer in the chloroprene latex composition to calculate the amount of polyvinyl alcohol structure in the graft copolymer based on 100 parts by mass of the chloroprene copolymer. The "amount of chloroprene copolymer" refers to the amount of chloroprene monomer units in the chloroprene latex composition, the amount of vinyl monomer units containing carboxyl groups (the amount of vinyl monomer units containing free carboxyl groups), and the amount of vinyl monomer units containing free carboxyl groups. (excluding polyvinyl alcohol) and the amount of polyvinyl alcohol structure (excluding free polyvinyl alcohol).
(カルボキシル基含有ビニル単量体の共重合量)
本発明のクロロプレン系共重合体はゲル分が多く、メタクリル酸共重合量の測定に用いられるH-NMR測定において、測定溶媒に溶解させることができない。従って、PyGC/MS(SIM法)により、メタクリル酸/クロロプレンピーク面積比を算出し、メタクリル酸結合量が異なる標準サンプル(ゲル分が無くH-NMR測定が可能)について作成した検量線(H-NMRによるメタクリル酸/クロロプレンピーク面積比(MAA共重合量)vsPyGC/MS(SIM法)によるメタクリル酸/クロロプレンピーク面積比)を用いて、メタクリル酸共重合量を算出した。
(Copolymerization amount of carboxyl group-containing vinyl monomer)
The chloroprene copolymer of the present invention has a large gel content and cannot be dissolved in a measurement solvent in 1 H-NMR measurement used to measure the amount of methacrylic acid copolymerized. Therefore, the methacrylic acid/chloroprene peak area ratio was calculated by PyGC/MS (SIM method), and a calibration curve ( 1 The methacrylic acid copolymerization amount was calculated using the methacrylic acid/chloroprene peak area ratio (MAA copolymerization amount) by H-NMR vs. the methacrylic acid/chloroprene peak area ratio (methacrylic acid/chloroprene peak area ratio by PyGC/MS (SIM method)).
・PyGC/MS(SIM法)に用いる試料の調製
サンプルを凍結乾燥し、エタノール-トルエン共沸混合物(ETA)抽出した。乾燥後の抽出残分をPyGC/MS(SIM法)にて測定した。
- Preparation of sample used for PyGC/MS (SIM method) The sample was freeze-dried and extracted with ethanol-toluene azeotrope (ETA). The extracted residue after drying was measured by PyGC/MS (SIM method).
・PyGC/MS(SIM法)
メタクリル酸:m/z=86、クロロプレン:m/z=91を用い、以下の測定条件で、メタクリル酸/クロロプレンピーク面積比を算出した。
  装置:JEOL Jms-Q1050GC
  GC カラム:DB-WAX 60m*0.25mm(0.5μm)
     カラム温度:100℃(0min)→10℃/min→240℃(11min)
     注入口温度:240℃
     キャリア―:He 1.0mL/min(Split 1:30)
  MS インターフェイス温度:240℃
     イオン源温度:250℃
     イオン化電流:50μA
     イオン化電圧:70eV
     検出器電圧:-1200V
     イオン化法:EI SIM(m/z:86.91)
  Py フロンティア・ラボ製 PY-3030D
     熱分解温度:590℃
     サンプル量:0.1mg
     インターフェイス温度:300℃
・PyGC/MS (SIM method)
The methacrylic acid/chloroprene peak area ratio was calculated using methacrylic acid: m/z = 86 and chloroprene: m/z = 91 under the following measurement conditions.
Equipment: JEOL Jms-Q1050GC
GC column: DB-WAX 60m*0.25mm (0.5μm)
Column temperature: 100°C (0 min) → 10°C/min → 240°C (11 min)
Inlet temperature: 240℃
Carrier: He 1.0mL/min (Split 1:30)
MS interface temperature: 240℃
Ion source temperature: 250℃
Ionization current: 50μA
Ionization voltage: 70eV
Detector voltage: -1200V
Ionization method: EI SIM (m/z: 86.91)
Py made by Frontier Lab PY-3030D
Thermal decomposition temperature: 590℃
Sample amount: 0.1mg
Interface temperature: 300℃
H-NMR測定に用いる試料の調整
 クロロプレン系ラテックス組成物をメタノールとキシレンを用いて精製し、試料を得た。試料約30mgを重クロロホルム約1mLに溶解し、測定を実施した。
- Preparation of sample used for 1H -NMR measurement A chloroprene-based latex composition was purified using methanol and xylene to obtain a sample. Approximately 30 mg of the sample was dissolved in approximately 1 mL of deuterated chloroform, and measurement was performed.
H-NMR
 装置構成:溶液NMR(5mmプローブ使用)
 測定条件 分析装置 : 超伝導核磁気共鳴装置 日本電子製ECX-400
      観測核 : 1H
      測定条件 : Single Pulse
      試料管回転数 : 12Hz
      測定温度 : 30℃
      パルス幅 : 3.5μsec(45°パルス)
      繰り返し時間 : 7秒
      積算回数 : 128回
1H -NMR
Equipment configuration: Solution NMR (using 5mm probe)
Measurement conditions Analyzer: Superconducting nuclear magnetic resonance apparatus JEOL ECX-400
Observation core: 1H
Measurement conditions: Single pulse
Sample tube rotation speed: 12Hz
Measurement temperature: 30℃
Pulse width: 3.5μsec (45° pulse)
Repeat time: 7 seconds Total number of times: 128 times
得られたメタクリル酸共重合量を、クロロプレン系ラテックス組成物中のクロロプレン系共重合体の量で除し、クロロプレン系共重合体100質量部に対する、メタクリル酸共重合量を算出した。なお、「クロロプレン系共重合体の量」は、クロロプレン系ラテックス組成物中のクロロプレン単量体単位の量、カルボキシル基を含むビニル単量体単位の量(遊離したカルボキシル基を含むビニル単量体を除く)、ポリビニルアルコール構造の量(遊離したポリビニルアルコールを除く)の合計とした。 The obtained amount of methacrylic acid copolymerized was divided by the amount of chloroprene-based copolymer in the chloroprene-based latex composition to calculate the amount of methacrylic acid copolymerized with respect to 100 parts by mass of the chloroprene-based copolymer. The "amount of chloroprene copolymer" refers to the amount of chloroprene monomer units in the chloroprene latex composition, the amount of vinyl monomer units containing carboxyl groups (the amount of vinyl monomer units containing free carboxyl groups), and the amount of vinyl monomer units containing free carboxyl groups. (excluding polyvinyl alcohol) and the amount of polyvinyl alcohol structure (excluding free polyvinyl alcohol).
(貯蔵安定性)
クロロプレン系ラテックス組成物235gを胴径19.5cm、容積225mlのガラス容器に入れ密閉したものを8本用意した。その全てを40℃で保存し、1週間毎にそのうちの一本を取り出し、中のクロロプレン系ラテックスを100メッシュの金網でろ過した。ガラス容器の底に残ったクロロプレン系ラテックス組成物の厚みが2mm以上となるか、金網に残った凝固物を125℃で1時間乾燥した凝固物が、クロロプレン系ラテックス組成物の固形分に対して0.005%以上となるまでの期間を記録した。評価結果を表1及び2に示す。
(Storage stability)
Eight glass containers each having a body diameter of 19.5 cm and a volume of 225 ml were filled with 235 g of a chloroprene latex composition and sealed tightly. All of them were stored at 40°C, one of them was taken out every week, and the chloroprene latex inside was filtered through a 100-mesh wire mesh. The thickness of the chloroprene-based latex composition remaining at the bottom of the glass container is 2 mm or more, or the coagulated material remaining on the wire mesh is dried at 125°C for 1 hour. The period until it became 0.005% or more was recorded. The evaluation results are shown in Tables 1 and 2.
(機械的安定性)
JIS K 6828に準拠してマーロン式試験装置を用い、クロロプレン系ラテックス組成物50gに、荷重10kg、回転数1000rpmのせん断力を10分間加えた際に発生した凝固物の量を評価した。マーロン式試験装置のローター部分に付着した凝固物をSUS80メッシュ金網上に採取し、純水洗浄、減圧乾燥を行って質量を計測した。評価結果を表1及び2に示す。表中の値は、生成した凝固物を乾燥計量して下記の式により算出したものであり、値が小さいほどせん断力に対して安定であることを示す。
  機械的安定性(%)=凝固物乾燥質量[g]/50[g]×100
(mechanical stability)
Using a Marlon test device in accordance with JIS K 6828, the amount of coagulated material generated when a shear force of 10 kg of load and 1000 rpm of rotation speed was applied to 50 g of a chloroprene latex composition for 10 minutes was evaluated. The coagulated material adhering to the rotor of the Marlon test device was collected on a SUS 80 mesh wire gauze, washed with pure water, dried under reduced pressure, and its mass was measured. The evaluation results are shown in Tables 1 and 2. The values in the table are calculated by dry weighing the produced coagulated material using the following formula, and the smaller the value, the more stable it is against shear force.
Mechanical stability (%) = Dry mass of coagulum [g] / 50 [g] x 100
<接着剤の調製>
各実施例及び比較例のクロロプレン系ラテックス組成物と、粘着付与樹脂(テルペンフェノール、荒川化学工業株式会社製、タマノルE-100(固形分濃度53%))と、金属酸化物(水性亜鉛華、大崎工業株式会社製、AZ-SW(固形分濃度50%))を表1及び表2に記載の配合で混合し、接着剤を調製した。
<Preparation of adhesive>
The chloroprene-based latex composition of each example and comparative example, the tackifying resin (terpene phenol, manufactured by Arakawa Chemical Industries, Ltd., Tamanol E-100 (solid content concentration 53%)), the metal oxide (aqueous zinc white, AZ-SW (solid content concentration 50%) manufactured by Osaki Kogyo Co., Ltd. was mixed in the formulations shown in Tables 1 and 2 to prepare an adhesive.
<接着剤の評価>
得られた接着剤を、帆布(25×150mm)2枚にそれぞれ300g(固形分)/mとなるように刷毛で塗布し、80℃雰囲気下9分間乾燥し、室温で1分間放置後に塗布面を張り合わせハンドローラーで圧着して接着サンプルを得た。得られた接着サンプルについて、以下の評価を行った。結果を表1及び表2に示す。
<Evaluation of adhesive>
The obtained adhesive was applied with a brush to two pieces of canvas (25 x 150 mm) each at a concentration of 300 g (solid content)/m 2 , dried in an atmosphere of 80°C for 9 minutes, and left at room temperature for 1 minute before application. The surfaces were pasted together and pressed together using a hand roller to obtain an adhesive sample. The obtained adhesive sample was evaluated as follows. The results are shown in Tables 1 and 2.
(初期剥離強度)
得られた接着サンプルをローラー圧着後、室温にて10分間放置した。引張り試験機を用いて、引張り速度200mm/minでT型剥離試験を行った。
(Initial peel strength)
The obtained adhesive sample was pressed with a roller and then left at room temperature for 10 minutes. A T-peel test was conducted using a tensile testing machine at a tensile speed of 200 mm/min.
(常態剥離強度)
得られた接着サンプルを室温にて5日間放置した後、引張り試験機を用いて引張り速度200mm/minでT型剥離試験を行った。
(Normal peel strength)
After the obtained adhesive sample was left at room temperature for 5 days, a T-peel test was conducted using a tensile tester at a tensile speed of 200 mm/min.
(耐水強度)
得られた接着サンプルを室温で5日間放置した後、さらに、23℃の水中に2日間浸漬し、引張り試験機を用いて引張り速度200mm/minでT型剥離試験を行った。
(Water resistance strength)
After the obtained adhesive sample was left at room temperature for 5 days, it was further immersed in water at 23° C. for 2 days, and a T-peel test was conducted using a tensile tester at a tensile speed of 200 mm/min.
(耐熱接着力)
得られた接着サンプルを室温で5日間放置した後、さらに、80℃雰囲気下に15分間放置し、80℃雰囲気下で200mm/分の速度でT型剥離試験を行った。
(Heat-resistant adhesive strength)
After the obtained adhesive sample was left at room temperature for 5 days, it was further left in an atmosphere of 80°C for 15 minutes, and a T-peel test was conducted at a speed of 200 mm/min in an atmosphere of 80°C.

Claims (8)

  1. クロロプレン系共重合体、ポリビニルアルコール、及び界面活性剤を含むクロロプレン系ラテックス組成物であって、
     前記クロロプレン系共重合体は、クロロプレンに由来する単量体単位とカルボキシル基を含むビニル単量体に由来する単量体単位を含み、
     前記ポリビニルアルコールは、重合度が250~450であり、けん化度が85~95mol%であり、
     前記界面活性剤は、HLB値が3.0~10.0であり、
     前記クロロプレン系ラテックス組成物は、前記クロロプレン系ラテックス組成物100質量部に対して、前記界面活性剤を0.04~0.36質量部含有する、
    クロロプレン系ラテックス組成物。
    A chloroprene-based latex composition comprising a chloroprene-based copolymer, polyvinyl alcohol, and a surfactant,
    The chloroprene-based copolymer contains a monomer unit derived from chloroprene and a monomer unit derived from a vinyl monomer containing a carboxyl group,
    The polyvinyl alcohol has a degree of polymerization of 250 to 450 and a degree of saponification of 85 to 95 mol%,
    The surfactant has an HLB value of 3.0 to 10.0,
    The chloroprene-based latex composition contains 0.04 to 0.36 parts by mass of the surfactant based on 100 parts by mass of the chloroprene-based latex composition.
    Chloroprene-based latex composition.
  2. 前記クロロプレン系共重合体は、
     前記クロロプレンに由来する単量体単位、前記カルボキシル基を含むビニル単量体に由来する単量体単位及びポリビニルアルコールに由来する構造を含むグラフト共重合体を含む、請求項1に記載のクロロプレン系ラテックス組成物。
    The chloroprene copolymer is
    The chloroprene system according to claim 1, comprising a monomer unit derived from the chloroprene, a monomer unit derived from the vinyl monomer containing a carboxyl group, and a graft copolymer containing a structure derived from polyvinyl alcohol. Latex composition.
  3. 前記クロロプレン系共重合体は、前記クロロプレン系共重合体を100質量部としたとき、
     前記カルボキシル基を含むビニル単量体に由来する単量体単位を0.01~5.0質量部含み、
     ポリビニルアルコールに由来する構造を、0.3~5.0質量部含む、請求項1又は請求項2に記載のクロロプレン系ラテックス組成物。
    The chloroprene copolymer has 100 parts by mass of the chloroprene copolymer,
    Containing 0.01 to 5.0 parts by mass of monomer units derived from the vinyl monomer containing the carboxyl group,
    The chloroprene-based latex composition according to claim 1 or 2, which contains 0.3 to 5.0 parts by mass of a structure derived from polyvinyl alcohol.
  4. 前記界面活性剤がノニオン系界面活性剤を含む、
    請求項1から請求項3のいずれか一項に記載のクロロプレン系ラテックス組成物。
    the surfactant includes a nonionic surfactant,
    The chloroprene-based latex composition according to any one of claims 1 to 3.
  5. 前記カルボキシル基を含むビニル単量体がα,β-不飽和カルボン酸を含む、請求項1から請求項4のいずれか一項に記載のクロロプレン系ラテックス組成物。 The chloroprene-based latex composition according to any one of claims 1 to 4, wherein the vinyl monomer containing a carboxyl group contains an α,β-unsaturated carboxylic acid.
  6. クロロプレン系ラテックス組成物の製造方法であって、
     前記製造方法は、クロロプレン単量体及びカルボキシル基を含むビニル単量体を含む原料単量体を重合する重合工程を含み、
      前記重合工程では、ポリビニルアルコール、及び界面活性剤を添加し、
      前記重合工程では、前記原料単量体の少なくとも一部を重合開始後に分添し、
      前記重合工程において、重合停止時の重合溶液のキュムラント解析を用いて得られた平均粒子径と、前記原料単量体の分添開始直後の重合溶液のキュムラント解析により得られた平均粒子径との差が、150nm以下である、クロロプレン系ラテックス組成物の製造方法。
    A method for producing a chloroprene-based latex composition, comprising:
    The manufacturing method includes a polymerization step of polymerizing raw material monomers containing a chloroprene monomer and a vinyl monomer containing a carboxyl group,
    In the polymerization step, polyvinyl alcohol and a surfactant are added,
    In the polymerization step, at least a portion of the raw material monomer is added in portions after the start of polymerization,
    In the polymerization step, the average particle diameter obtained by using cumulant analysis of the polymerization solution at the time of termination of polymerization and the average particle diameter obtained by cumulant analysis of the polymerization solution immediately after starting the fractional addition of the raw material monomer. A method for producing a chloroprene-based latex composition, wherein the difference is 150 nm or less.
  7. 原料単量体の分添終了時の重合溶液のB型粘度計で測定した粘度が280mPa・s以下であり、
    重合停止時の重合溶液のB型粘度計で測定した粘度が150mPa・s以上である、
    請求項6に記載のクロロプレン系ラテックス組成物の製造方法。
    The viscosity of the polymerization solution measured with a B-type viscometer at the end of the partial addition of the raw material monomer is 280 mPa・s or less,
    The viscosity of the polymerization solution measured with a B-type viscometer at the time of termination of polymerization is 150 mPa・s or more,
    A method for producing a chloroprene-based latex composition according to claim 6.
  8. 請求項1から請求項5のいずれか一項に記載のクロロプレン系ラテックス組成物を含有する水性接着剤。 An aqueous adhesive comprising the chloroprene latex composition according to any one of claims 1 to 5.
PCT/JP2023/011594 2022-03-30 2023-03-23 Chloroprene-based latex composition, chloroprene-based latex composition production method, and aqueous adhesive agent WO2023190065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024512290A JPWO2023190065A1 (en) 2022-03-30 2023-03-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-055901 2022-03-30
JP2022055901 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190065A1 true WO2023190065A1 (en) 2023-10-05

Family

ID=88202080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011594 WO2023190065A1 (en) 2022-03-30 2023-03-23 Chloroprene-based latex composition, chloroprene-based latex composition production method, and aqueous adhesive agent

Country Status (2)

Country Link
JP (1) JPWO2023190065A1 (en)
WO (1) WO2023190065A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553425A (en) * 1978-06-23 1980-01-11 Denki Kagaku Kogyo Kk Fireproof coating composition
WO2004101670A1 (en) * 2003-05-14 2004-11-25 Denki Kagaku Kogyo Kabushiki Kaisha Polychloroprene latex composition and process for producing the same
JP2014152183A (en) * 2013-02-05 2014-08-25 Denki Kagaku Kogyo Kk Polychloroprene latex composition and adhesive
WO2020111144A1 (en) * 2018-11-29 2020-06-04 デンカ株式会社 Method for producing latex, and latex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553425A (en) * 1978-06-23 1980-01-11 Denki Kagaku Kogyo Kk Fireproof coating composition
WO2004101670A1 (en) * 2003-05-14 2004-11-25 Denki Kagaku Kogyo Kabushiki Kaisha Polychloroprene latex composition and process for producing the same
JP2014152183A (en) * 2013-02-05 2014-08-25 Denki Kagaku Kogyo Kk Polychloroprene latex composition and adhesive
WO2020111144A1 (en) * 2018-11-29 2020-06-04 デンカ株式会社 Method for producing latex, and latex

Also Published As

Publication number Publication date
JPWO2023190065A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US4130528A (en) Carboxylated neoprene latex containing alkali-pretreated zinc oxide or hydroxide
JP2895237B2 (en) Pressure-sensitive adhesive based on emulsion polymer
JPS63241084A (en) Emulsified pressure-sensitive adhesive
WO1999061484A1 (en) Aqueous emulsion and process for producing the same
JP4819500B2 (en) Process for producing polychloroprene latex composition
EP0754725B1 (en) Chloroprene rubber latex for adhesives, process of production thereof, and adhesive composition using the same
JP2014152183A (en) Polychloroprene latex composition and adhesive
JP3718867B2 (en) Latex for adhesive and chloroprene adhesive composition using the same
DE19912253C2 (en) Use of an aqueous polymer dispersion based on acrylate for the production of removable adhesive film
JP4342706B2 (en) Polychloroprene latex composition and method for producing the same, and adhesive composition using the same
WO2023190065A1 (en) Chloroprene-based latex composition, chloroprene-based latex composition production method, and aqueous adhesive agent
JP6897348B2 (en) Adhesive-imparting resin, adhesive-imparting resin emulsion, water-based adhesive composition, polychloroprene latex-based adhesive composition
JP2000313864A (en) Aqueous pressure-sensitive adhesive composition
JP2024107828A (en) Chloroprene-based latex composition, method for producing chloroprene-based latex composition, and water-based adhesive
JP5055784B2 (en) Method for producing tackifying resin emulsion
WO2024204249A1 (en) Chloroprene-based latex composition, method for producing chloroprene-based latex composition, and aqueous adhesive
JPH10183091A (en) Two-component chloroprene rubber latex adhesive composition
JPH08188761A (en) Latex for heat resistance-improved adhesive and chloroprene-based adhesive composition using the same
JP5309725B2 (en) Chloroprene latex and method for producing the same
JPH093423A (en) Polychloroprene latex for adhesive, its production and adhesive composition used therefor
CN114891466B (en) Preparation method of single-component high-performance modified chlorine Ding Shuiji type emulsion spray adhesive
JPH0225390B2 (en)
JP2016166293A (en) Aqueous adhesive
JPH06100751A (en) Vinyl acetate-ethylene copolymer emulsion containing solid matter in high ratio and its production
JPH08218044A (en) Chloroprene rubber latex for adhesive and latex adhesive composition using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024512290

Country of ref document: JP

Kind code of ref document: A