WO2023190055A1 - Connection structure - Google Patents

Connection structure Download PDF

Info

Publication number
WO2023190055A1
WO2023190055A1 PCT/JP2023/011574 JP2023011574W WO2023190055A1 WO 2023190055 A1 WO2023190055 A1 WO 2023190055A1 JP 2023011574 W JP2023011574 W JP 2023011574W WO 2023190055 A1 WO2023190055 A1 WO 2023190055A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
insulating resin
resin layer
electrode
thickness
Prior art date
Application number
PCT/JP2023/011574
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 野田
怜司 塚尾
直樹 林
一夢 渡部
俊紀 白岩
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority claimed from JP2023046920A external-priority patent/JP2023152865A/en
Publication of WO2023190055A1 publication Critical patent/WO2023190055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to a connected structure obtained by connecting a first electronic component such as a minute light emitting element to a second electronic component such as a substrate using a filler array film.
  • ⁇ LED displays which are made by arranging ⁇ LEDs (micro Light-Emitting Diodes), which are tiny light-emitting elements, on a substrate can omit the backlight required for liquid crystal displays, allowing displays to be made thinner and wider. It is expected to be used as a display or light source that can realize a wider color gamut, higher definition, and lower power consumption.
  • ⁇ LEDs micro Light-Emitting Diodes
  • Patent Document 1 discloses that a red, blue, and green ⁇ LED array formed on a carrier substrate is picked up by a transfer head, placed on a transfer destination substrate such as a display substrate, and a solder layer is formed. It is described that the ⁇ LED array and the transfer destination substrate are bonded by welding, and then contact lines are formed thereon using ITO or the like.
  • Patent Document 2 discloses that ⁇ LEDs formed on a wafer are placed on a substrate, and an anisotropic conductive film in which conductive particles are dispersed in an adhesive component using a hydrogenated epoxy compound or the like is used to create a substrate. It describes how to connect the wafer to the wafer and lift off the wafer. According to the method using an anisotropic conductive film described in Patent Document 2, a plurality of ⁇ LEDs can be mounted at once, so a display using ⁇ LEDs can be easily obtained.
  • Patent Document 3 describes how to increase the trapping efficiency of conductive particles when connecting an IC chip and an FPC using an anisotropic conductive film having a conductive particle arrangement layer in which the area occupation rate of conductive particles is 35% or less in plan view.
  • a pulse heater type bonder is used, and in the first step, the IC chip and FPC are pressed into the insulating resin layer of the anisotropic conductive film, temporarily fixing the electrodes close to the conductive particle arrangement layer, and then in the second step.
  • a two-step connection method is described in which main crimping is performed on the eyes.
  • the anisotropic conductive film To solve the problem of thrust, it is possible to reduce the thickness of the resin layer of the anisotropic conductive film and expose the conductive particles from the resin layer in order to enable low-pressure mounting. If the conductive particles are exposed from the resin layer of the anisotropic conductive film when aligned and mounted on the anisotropic conductive film, the anisotropic conductive film will not have sufficient adhesive strength, making it impossible to mount the ⁇ LED. There are concerns.
  • the size of the ⁇ LED itself becomes smaller, and the electrode area and electrode height also become smaller. Therefore, if ⁇ LEDs are mounted all at once using an anisotropic conductive film, the resin of the anisotropic conductive film may swell up on the sides of the ⁇ LED after mounting, or the light emitting part of the ⁇ LED may be buried in the resin of the anisotropic conductive film. This causes a problem that the luminous efficiency decreases. Furthermore, if the ⁇ LED is buried in the resin, pressure for mounting cannot be efficiently applied to the ⁇ LED, and a large thrust force is required from the mounting tool, which limits the mounting tools that can be used.
  • the present invention makes it possible to mount microscopic light emitting elements such as ⁇ LEDs on a substrate at low pressure using an anisotropic conductive film, and furthermore, the light emitting element is made of resin of an anisotropic conductive film. It is an object of the present invention to prevent the luminous efficiency from decreasing excessively when the luminescent surface is buried in the luminescent surface, and to enable a reflector structure to be provided adjacent to the luminous surface as necessary.
  • the present inventors used a filler array film in which fillers such as conductive particles were arranged in an insulating resin layer to connect a microscopic first electronic component such as a ⁇ LED electrode to a second microelectronic component such as a large-screen TV board.
  • a connected structure that is connected to a connecting part such as an electrode of an electronic component via a filler
  • the electrode of the ⁇ LED and the base surface on which the electrode is formed are buried in the insulating resin, but the top surface of the ⁇ LED is exposed from the insulating resin layer.
  • the thickness of the insulating resin layer is adjusted so that the side surface adjacent to the top surface of the ⁇ LED is also partially exposed, and the insulating resin layer is inclined around the first electronic component.
  • the present invention was completed based on the idea that it can be manufactured and that the light emitted from the ⁇ LED is prevented from being blocked by the insulating resin layer.
  • the electrodes of the first electronic component and the electrodes of the second electronic component are connected via a filler, and the electrodes of the first electronic component and the electrodes are formed on the insulating resin layer on the second electronic component.
  • the top surface of the first electronic component is exposed from the insulating resin layer, and preferably the side surface adjacent to the top surface is also exposed from the insulating resin layer, so that the light emitted by the first electronic component is can be prevented from being excessively blocked by the insulating resin layer.
  • the electrode of the first electronic component and the base surface on which the electrode is formed are embedded in the insulating resin layer, the first electronic component and the second electronic component are reliably connected, and the area around the first electronic component is Since a sloped region is formed in which the thickness of the insulating resin layer changes depending on the distance from the first electronic component, this connection structure has a thickness of the resin layer necessary for mounting the first electronic component. is ensured, and excessive resin layer thickness is reduced.
  • the first electronic component is a light emitting element such as a ⁇ LED, it is easy to provide a reflector structure as necessary.
  • FIG. 1 is a cross-sectional view of a connection structure 1A of an example.
  • FIG. 2 is a cross-sectional view of the connection structure 1B of the example.
  • FIG. 3 is a cross-sectional view of the connection structure 1C of the example.
  • FIG. 4 is a sectional view of the connection structure 1D of the example.
  • FIG. 5 is a cross-sectional view of the filler array film.
  • FIG. 1 is a sectional view of a connected structure 1A according to an embodiment of the present invention, in which a first electronic component 10 is connected to a second electronic component 20 using a filler array film such as an anisotropic conductive film or a conductive film. It is obtained by mounting, and when mounting, it is possible to realize low pressure mounting and also to obtain high luminous efficiency.
  • a filler array film such as an anisotropic conductive film or a conductive film.
  • the electrode 11 of the first electronic component 10 and the electrode 21 of the second electronic component 20 are connected via the filler 2.
  • Filler 2 is a conductive particle derived from the filler alignment film.
  • the electrode 11 of the first electronic component 10 and the base surface 12 of the electrode 11 are embedded in the insulating resin layer 3 on the second electronic component 20, and the top surface 13 of the first electronic component 10 is embedded in the insulating resin layer 3. exposed from.
  • the insulating resin layer 3 is derived from a filler array film.
  • the first electronic component 10 may be an optical semiconductor element such as a mini LED or a ⁇ LED.
  • the long side thereof can be 200 ⁇ m or less, or less than 150 ⁇ m, or less than 50 ⁇ m, or less than 20 ⁇ m. More specifically, rectangles of 10 ⁇ m ⁇ 20 ⁇ m, 7 ⁇ m ⁇ 14 ⁇ m, and 5 ⁇ m ⁇ 5 ⁇ m can be cited, for example. Note that the outer shape of the first electronic component 10 is not limited to a rectangle, and may be, for example, a rhombus.
  • the preferred thickness of the first electronic component 10 varies depending on the material and strength of the first electronic component 10, the height of the electrode, connection conditions, etc., but for example, if the area of the electrode 11 of the first electronic component 10 is 1000 ⁇ m 2 If the longest side length of the first electronic component is 300 ⁇ m or more, the thickness can be 200 ⁇ m or less, or even 50 ⁇ m or less, and if the longest side length is 300 ⁇ m or less, the thickness can be 50 ⁇ m or less. If the longest side length is 150 ⁇ m or less, the thickness can be 30 ⁇ m or less, and if the longest side length is 50 ⁇ m or less, the thickness can be 20 ⁇ m or less, and even 15 ⁇ m or less. , especially 10 ⁇ m or less.
  • the thickness in this case does not include the height of the electrode 11.
  • the first electronic component 10 can be a minute electronic component in which the area of the electrode 11 is 1000 ⁇ m 2 or less, or the length of the longest side of the electronic component is 600 ⁇ m or less, 300 ⁇ m or less, 150 ⁇ m or less, or even 50 ⁇ m or less, For example, a rectangle with a long side of 5 ⁇ m to 50 ⁇ m and a short side of 3 ⁇ m to 40 ⁇ m can be used.
  • the lower limit of the short side of the electrode 11 is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more from the viewpoint of convenience in the mounting process.
  • the height of the electrode 11 of the first electronic component 10 may be substantially zero, but when performing a pressure curing process, or in a pressure process performed as necessary before the pressure curing process after the stacking process, the height of the electrode 11 may be substantially zero.
  • the height of the electrode 11 is preferably higher than one time the average particle diameter of the conductive particles in order to prevent other parts from being pressurized and to ensure that the conductive particles are efficiently pushed into the electrode by pressurization.
  • the height of the electrode 11 is preferably 3 times or less than the average particle diameter of the conductive particles, and more preferably 2 times or less. preferable.
  • the second electronic component 20 to which the first electronic component 10 is connected may be a transparent substrate such as a glass substrate or a plastic substrate, or an opaque substrate.
  • the second electronic component 20 may be a ceramic substrate, a rigid resin substrate, an FPC, or the like.
  • the bonded structure of the present invention is characterized by a change in the thickness of the insulating resin layer 3 around the first electronic component 10, and the insulating resin layer 3 has an inclined region 4 around the first electronic component 10. has.
  • the inclined region 4 is a region in which the thickness of the insulating resin layer 3 changes depending on the distance from the first electronic component 10, and in this embodiment, the sloped region 4 is a region where the thickness of the insulating resin layer 3 changes depending on the distance from the first electronic component 10. 14 is partially exposed from the insulating resin layer 3, and an inclined region 4 is formed adjacent to the side surface 14. In this inclined region 4, the thickness of the insulating resin layer 3 decreases as the distance from the first electronic component 10 increases.
  • a flat region 5 in which the thickness of the insulating resin layer 3 is constant is present adjacent to the sloped region 4, and in the connected structure 1A of the present embodiment, the flat region 5 is located outside the sloped region 4.
  • a flat region 5 is formed adjacent to it.
  • the height of the top surface 13 of the first electronic component 10 from the electrode surface 11a of the first electronic component 10 is A, and the height of the top surface 13 of the first electronic component 10 is exposed from the insulating resin layer 3 of the first electronic component 10.
  • the height of the portion that is, the exposed distance of the first electronic component 10 in the direction perpendicular to the electrode surface 11a
  • the distance between the outer edge of the inclined region 4 and the first electronic component 10 is E, " 0 ⁇ B/A ⁇ 1 and E ⁇ 500 ⁇ m” are satisfied.
  • “B/A ⁇ 0” means that the top surface 13 of the first electronic component 10 is recessed from the top surface of the insulating resin layer 3 adjacent to the first electronic component 10. It means there is.
  • “B/A ⁇ 1” means that the first electronic component 10 is embedded in the insulating resin layer 3. This is to fix the first electronic component 10 to the second electronic component.
  • the electrode 11 of the first electronic component 10 and the base surface 12 for forming the electrode 11 are embedded in the insulating resin layer 3 on the second electronic component 20.
  • the degree of embedding increases, when the first electronic component 10 is a ⁇ LED, the light extraction efficiency decreases, and the degree of embedding becomes smaller (in other words, if the first electronic component 10 such as a ⁇ LED (the degree of exposure becomes small), when a large number of first electronic components 10 are mounted on a second electronic component, the thickness accuracy of the resulting connected structure tends to decrease. Therefore, "B/A” is preferably 0.1 or more from the viewpoint of reducing the thickness tolerance of the connected structure, and preferably 0.5 or less so as not to reduce the light extraction efficiency.
  • E is preferably 500 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the amount of resin constituting the connected structure 1A is reduced by specifying E ⁇ 500 ⁇ m. This allows the connection structure 1A to be obtained by low-voltage mounting. Even when mounting by reflow, the thickness can be adjusted to such a value.
  • connection structure of the present invention can take various modifications.
  • the thickness of the insulating resin layer 3 in the inclined region 4 may increase as the distance from the first electronic component 10 increases.
  • a flat region 5a in which the insulating resin layer 3 has a constant thickness is provided between the first electronic component 10 and the inclined region 4, and the insulating resin layer in the flat region 5a is 3 may be set as the minimum thickness of the insulating resin layer 3 in the inclined region 4.
  • connection structure 1D shown in FIG. 4 a flat area 5a in which the insulating resin layer 3 has a constant thickness is provided between the first electronic component 10 and the inclined area 4, and the insulating resin layer in the flat area 5a is 3 may be set as the maximum thickness of the insulating resin layer 3 in the inclined region 4.
  • the connected structure 1D is different from the above-mentioned connected structures 1A, 1B, and 1C, but B/A may be 0 depending on the use of the connected structure.
  • a flat region 5b is provided adjacent to the outside of the sloped region 4, and the thickness of the insulating resin layer 3 in the flat region 5b is the minimum thickness of the insulating resin layer 3 in the sloped region 4.
  • the small area from the first electronic component 10 to the outer edge of the inclined region 4, that is, the area from the first electronic component to the distance E, has the largest amount of resin.
  • the connection structure 1D shown in FIG. 4 has the smallest amount, and the connection structure 1C shown in FIG. 3 has the smallest amount, but the connection structure 1D shown in FIG. ing. Therefore, in an electronic article equipped with the connected structure of the present invention, which embodiment of the connected structure shown in FIGS. 1 to 4 is used can be determined as appropriate depending on the use of the electronic article.
  • micro-LED displays are expected to have favorable characteristics such as high brightness, low power consumption, high contrast, and long life, because micro-LEDs themselves emit light with high luminous efficiency and long life.
  • a red LED, a green LED, and a blue LED are provided on a display substrate at predetermined intervals, and in order to emit light spontaneously, a color filter is used to separate each color by a black matrix. In some cases, it is not used. In such a case, it is necessary to form a black matrix between the micro LEDs for the purpose of preventing color mixture (Japanese Patent Publication No. 2021-506108, WO2021/060832A1, etc.).
  • a composition for forming a black transfer layer is applied to one entire surface of the display substrate before the micro LED is mounted, and a composition for forming a black transfer layer is applied to the non-black matrix area of the display substrate.
  • a method of removing the composition for forming a black transfer layer by etching or photolithography comprising: (b) aligning a black transfer film in which a black matrix is formed on a carrier film by screen printing to a display substrate before mounting micro LEDs; (c) A method of covering a display substrate on which micro LEDs are mounted with a cover glass on which a black matrix is formed; (d) A method of attaching and peeling off a carrier film; (d) A method of covering a display substrate on which micro LEDs are mounted with a cover glass on which a black matrix is formed; A method is known in which a black matrix ink composition is applied between LEDs by an inkjet method.
  • the insulating resin layer 3 is formed from an insulating resin composition containing a black pigment in order to function as a black matrix.
  • the insulating resin layer constituting the anisotropic conductive film or the filler array film or the insulating resin layer holding the conductive particles or filler is formed from an insulating resin composition containing a black pigment.
  • the surface of the first electronic component 10 ( ⁇ LED) is not covered with the insulating resin layer 3 that functions as a black matrix, so that the luminous efficiency does not decrease excessively, and the first electronic component Since at least a portion of the side surfaces of the LEDs 10 are covered, the amount of light emitted toward the side surfaces can be suppressed, and color mixing of the ⁇ LEDs can be suppressed.
  • black coloring agent for blackening the insulating resin composition known black pigments such as carbon black and titanium black can be used.
  • titanium black which has an extremely low content of impurity ions and is itself insulating, can be preferably used.
  • the titanium black content in the black resin composition for black matrix is preferably 5% by mass or more, more preferably 10% by mass or more, preferably 40% by mass or less, and more preferably It is 30% by mass or less.
  • the average particle diameter of these black pigments is 10 to 100 nm. It is desirable that the black pigment has a smaller average particle diameter than the conductive particles.
  • constituent components other than the black pigment of the insulating resin composition that functions as a black matrix can be the same as those of the insulating resin layer described later.
  • the insulating resin layer 3 functioning as a black matrix can have a structure shown in FIGS. 1 to 4. Specifically, as shown in FIG. 1, the side length of the first electronic component in the height direction is L0 , the height of the portion of the first electronic component exposed from the insulating resin layer is B, When the height of the fillet formed by the insulating resin layer is "L 0 - B", the fillet formation rate F defined by the following formula is preferably 60% or more, more preferably 70% or more, preferably It is 100% or less, more preferably 90% or less. Among these, as shown in FIG. 1 or 4, it is preferable that the insulating resin layer has a fillet shape in which the thickness of the insulating resin layer decreases as the distance from the first electronic component increases in the inclined region.
  • the method for manufacturing the bonded structure 1A in FIG. 1 is generally performed by pasting a filler array film on the electrode 21 of the second electronic component 20 and aligning the filler array film with the first electronic component 10.
  • the electrodes 11 of the first electronic component 10 and the electrodes 21 of the second electronic component 20 are bonded together and heated and pressurized to connect them.
  • the first electronic components 10 may be arranged on a wafer.
  • heating and pressurizing may be performed in a two-step method as described in Patent Document 3. Further, when the filler 2 is a solder particle or the like, connection may be performed by reflow.
  • Temporary pasting of the filler array film, film transfer, and mounting of the ⁇ LED on the substrate can be performed using known methods such as a stamp material (for example, see Japanese Patent Application Laid-Open No. 2021-141160) or a method using a laser (laser lift-off processing method). It is possible to use a method that applies this (for example, the method described in JP-A-9-124020, JP-A-2011-76808, JP-A-6636017, JP-A-6187665, etc.), and the effects of the present invention can be improved. There are no particular limitations as long as the method can be used effectively.
  • ⁇ Variations of the manufacturing method of the connected structure When manufacturing a connection structure by mounting a very fine first electronic component on a second electronic component such as a wiring board, the first electronic component is landed on the second electronic component using the laser lift-off processing method as described above. It can also be implemented by For example, when the first electronic component is a huge number of micro LEDs formed on the surface of a light-transmitting substrate, a filler array film is placed at a predetermined location (for example, each electrode of a wiring board) of the second electronic component.
  • the first electronic components are pushed into the filler array film and connected.
  • a structure can be manufactured.
  • the laser lift-off processing conditions can be determined as appropriate depending on the type, constituent material, etc. of the first electronic component.
  • the filler array film may be arranged on the entire surface of the connection part of the second electronic component, such as a wiring board, or may be arranged in a predetermined unit on a part of the display part, for example, in units of 1 pixel (in units of 1 pixel) of 1 set of RGB. It may be arranged in individual pieces. In this case, since the insulating resin layer in the connected structure is derived from the filler array film, the insulating resin layer in the connected structure is also arranged in individual pieces. You can expect the same effect as if you used it.
  • connection When arranging the filler array film in individual pieces, a plurality of minute first electronic components, such as micro LEDs, may be electrically connected (hereinafter referred to as connection) with one individual piece. It is preferable to connect one micro LED, and it is also preferable to connect one micro LED using a plurality of individual pieces. If you connect it with one individual piece, it will be easier to adjust the formation of the ferret, and if you connect one micro LED with multiple pieces, for example, the P electrode and N electrode will be connected with different pieces. Allows for more detailed adjustments.
  • a plurality of micro LEDs may be connected using a plurality of individual pieces. For example, when a plurality of P electrodes and N electrodes are provided in parallel, individual pieces may be provided to correspond to each row of electrodes.
  • a filler array film using a black insulating resin composition is connected in individual pieces to form an insulating resin layer, a black matrix can be formed in the ferret at the outer edge of the micro LED, and the connection and ⁇ LED display It becomes possible to adjust the overall color tone.
  • Such individual pieces of filler array film can be formed using a screen printing method, an etching method, an inkjet method, etc. in addition to the laser lift-off method described below.
  • the size of each piece can be appropriately determined depending on the shape and size of the first electronic component to be connected.
  • the method of arranging the filler array film on the display section of the second electronic component is not particularly limited.
  • a laminating method can be used.
  • a laser lift-off (LLO) device is used to directly transfer and place the pieces from the base film onto the second electronic component.
  • LLO laser lift-off
  • Examples include a method of transferring and arranging the electronic component from the transfer material to the second electronic component using a transfer material (stamp material) in which individual pieces are brought into close contact with each other in advance.
  • a first electronic component such as a micro LED is placed on a filler array film placed at a predetermined position of a second electronic component by thermocompression bonding, or on an individual piece of a filler array film transferred using a laser lift-off processing method.
  • the insulating resin layer of the filler array film is provided with a cushioning property that softens the impact of the first electronic component.
  • the insulating resin layer containing such a rubber component and inorganic filler has a durometer A hardness (based on JIS K6253) of preferably 20 to 40, more preferably 20 to 40, before laser irradiation. 35, particularly preferably 20 to 30, and preferably has a storage modulus obtained by a dynamic viscoelasticity tester (temperature 30 ° C., frequency 200 Hz; Vibron, A&D Co., Ltd.) in accordance with JIS K7244. is 60 MPa or less, more preferably 30 MPa or less, particularly preferably 10 MPa or less.
  • the storage modulus of the insulating resin layer after curing at a temperature of 30° C. measured in a tensile mode according to JIS K7244 is preferably 100 MPa or more, and more preferably 2000 MPa or more. If the storage modulus at a temperature of 30° C. is too low, good conductivity cannot be obtained and connection reliability tends to decrease.
  • the storage modulus at a temperature of 30°C can be measured in accordance with JIS K7244 in tensile mode using a viscoelasticity testing machine (Vibron), for example, at a frequency of 11Hz and a heating rate of 3°C/min. .
  • the first electronic component such as a micro LED is placed at a predetermined position on a substrate made of silicone rubber such as polydimethylsiloxane (PDMS) (i.e., corresponding to the predetermined position of the second electronic component to which the first electronic component is to be retransferred). It is also possible to transfer the first electronic component arrangement sheet transferred (landed) by the laser lift-off processing method to the second electronic component position, with the first electronic component side facing the second electronic component, and after alignment.
  • PDMS polydimethylsiloxane
  • ⁇ Filler array film> As the filler array film used in manufacturing the connected structure 1A, a film in which conductive particles are held as a filler in a laminate of a single or plural insulating resin layers can be used. When using a laminate in which conductive particles are held in a plurality of insulating resin layers, as shown in FIG.
  • the adhesive layer 33 can have a lower viscosity than the binder resin layer 32 and the high viscosity binder resin layer 32.
  • La/D is preferably 0.6 or more and 8 Hereinafter, it is more preferably 1 or more and 2 or less, and even more preferably 1.0 or more and 1.3 or less.
  • the ratio La/A between the thickness La of the insulating resin layer 31 and the height A from the electrode surface 11a to the top surface 13 of the first electronic component 10 is preferably 0.1 or more and 1 or less, more preferably 0.5 or more and 0.8 or less.
  • the film thickness is preferably 1.5 times or more and preferably 7.5 times or less relative to the electrode height. , more preferably 4.5 times or less. Furthermore, it is preferable to set the minimum melt viscosity within the range of 8,000 to 12,000 Pa ⁇ s because the embedded state of the ⁇ LED can be controlled when pressing a relatively thin film.
  • the resins constituting the high viscosity binder resin layer 32 and adhesive layer 33 of the insulating resin layer 31 of the filler array film 30 are, for example, similar to the binder and adhesive layer constituting the insulating resin layer described in Patent Document 3. It can be done. Different fillers may be placed in different layers and laminated.
  • a rubber component, an inorganic filler, a silane coupling agent, a diluent monomer, a filler, a softener, a coloring agent, a flame retardant, a thixotropic agent, etc. can be added to the insulating resin layer 31 as necessary. .
  • a rubber component may be added to prevent warpage and distortion of the connected structure.
  • the rubber component is not particularly limited as long as it is an elastomer with high cushioning properties (shock absorption), and specific examples include acrylic rubber, silicone rubber, butadiene rubber, polyurethane resin (polyurethane elastomer), etc. be able to.
  • the arrangement of the conductive particles 2 in the filler array film 30 may be either random or regular, but from the viewpoint of improving the ability to capture the conductive particles in each electrode 11, 21, the conductive particles are arranged at a predetermined pitch in a predetermined direction.
  • a planar lattice pattern having one or more arrangement axes is preferred, and examples thereof include an orthorhombic lattice, a hexagonal lattice, a square lattice, a rectangular lattice, a parallel body lattice, and the like. Furthermore, there may be regions with different planar lattice patterns.
  • the average particle diameter D of the conductive particles 2 is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the average particle diameter can be a value measured using an image-type particle size distribution analyzer (for example, FPIA-3000: manufactured by Malvern Panalytical). During measurement, the number of particles is preferably 1,000 or more, preferably 2,000 or more.
  • image-type particle size distribution analyzer for example, FPIA-3000: manufactured by Malvern Panalytical.
  • the hardness of the conductive particles 2 is such that the compressive hardness at 20% deformation (20% K value) is preferably 2000 N/mm 2 or more and 25000 N/mm 2 or less, more preferably 5000 N/mm 2 or more and 10000 N/mm 2 or less. .
  • the number density of conductive particles 2 in the filler array film 30 can be 30 to 500,000 particles/mm 2 , preferably 120,000 to 350,000 particles/mm 2 , more preferably 150,000 to 350,000 particles/mm 2 . It is preferable to set the number of particles/mm 2 to 300,000 pieces/mm 2 or less.
  • the number density of the conductive particles 2 can be determined by observation using a metallurgical microscope, or by using image analysis software (for example, WinROOF (Mitani Shoji Co., Ltd.), Azo-kun (registered trademark) (Asahi Kasei Engineering Co., Ltd.), etc. ) may be obtained by measuring the observed image.
  • the number of conductive particles is determined by counting the number of conductive particles observed on the filler array film.
  • the type of conductive particles 2 can be appropriately selected from among conductive particles used in known anisotropic conductive films.
  • conductive particles include metal particles such as nickel, cobalt, silver, copper, gold, and palladium, alloy particles such as solder, metal-coated resin particles, and metal-coated resin particles with insulating fine particles attached to the surface.
  • metal-coated resin particles are preferable because the resin particles repel after being connected, making it easier to maintain contact with the terminal and stabilizing conduction performance.
  • the surface of the conductive particles may be subjected to an insulation treatment using a known technique so as not to impede conduction characteristics.
  • the filler in the filler array film may include inorganic fillers (metal particles, metal oxide particles, metal nitride particles, etc.), organic fillers (resin particles, rubber particles, etc.) depending on the use of the filler array film. , fillers containing a mixture of organic and inorganic materials (for example, particles whose core is made of a resin material and whose surface is plated with metal (metal-coated resin particles), conductive particles with insulating fine particles attached to their surfaces) (conductive particles whose surfaces are insulated, etc.) depending on the performance required for the application, such as hardness and optical performance.
  • inorganic fillers metal particles, metal oxide particles, metal nitride particles, etc.
  • organic fillers resin particles, rubber particles, etc.
  • fillers containing a mixture of organic and inorganic materials for example, particles whose core is made of a resin material and whose surface is plated with metal (metal-coated resin particles), conductive particles with insulating fine particles attached to their surfaces)
  • the filler array film when used to adjust the color development of micro-optical elements such as ⁇ LEDs, or as a black matrix in color displays, it may contain known fillers such as dyes, pigments, light-scattering particles, etc. .
  • the filler array film 30 was made of a known anisotropic conductive material, except that the minimum melt viscosity and thickness were adjusted so that the insulating resin layer 31 in the connected structure 1A had the inclined region 4 and the flat region 5 shown in FIG. It can be manufactured in the same way as a film.
  • a mold in which recesses are formed according to the arrangement pattern of conductive particles is prepared, the mold is filled with conductive particles 2, A high viscosity binder resin layer 32 formed on a release film is laminated thereon, the conductive particles 2 are pushed into the high viscosity binder resin layer 32 and transferred, and an adhesive layer 33 is laminated on the transferred surface.
  • the minimum melt viscosity and thickness may be adjusted and further insulating resin layers may be laminated.
  • the filler array film may be an individual piece of a predetermined unit, such as one pixel unit (one pixel unit) of one set of RGB, for example.
  • the individual pieces may be spaced apart from each other depending on the electrodes on the substrate corresponding to the respective electrodes of the micro LED. That is, the filler array film can take the form of individual pieces.
  • the shape of each piece is not particularly limited, and can be appropriately set depending on the dimensions of the electronic component to be connected. Individual pieces of filler array film are formed on a base film by a laser lift-off processing method (see Japanese Patent Application Laid-open No.
  • the shape of the individual piece is at least one selected from a polygon with obtuse angles, a polygon with rounded corners, an ellipse, an ellipse, and a circle.
  • the above-mentioned connection structure of the present invention may be composed of a combination of a filler array film for connection consisting of individual pieces having such a shape and a micro LED, and the thickness, viscosity, etc. of the film that becomes the individual pieces may be adjusted.
  • the shape of the individual pieces is at least one selected from a polygon with obtuse angles, a polygon with rounded corners, an ellipse, an ellipse, and a circle, and the pieces are individually placed only on the electrode on the substrate side,
  • the electrodes of the micro LED may be separated from each other and connected to each other.
  • the dimensions (length x width) of the individual pieces of the filler array film are appropriately set according to the dimensions of the electronic components to be connected, and the ratio of the area of the individual pieces to the area of the electronic components is preferably 2 or more, more preferably is 4 or more, more preferably 5 or more. Further, the thickness of the individual pieces is the same as the thickness of the filler array film, preferably 1 to 4 ⁇ m, particularly preferably 1 to 2 ⁇ m, added to the average particle diameter of the conductive particles, preferably 1 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the present invention also includes a method of manufacturing such a connected structure.
  • the distance between the individual pieces on the base film is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more.
  • the upper limit of the distance between the individual pieces is preferably 3000 ⁇ m or less, more preferably 1000 ⁇ m or less, and still more preferably 500 ⁇ m or less. If the distance between the individual pieces is too small, it will be difficult to transfer the individual pieces by LLO, and if the distance between the pieces is large, a method of pasting the individual pieces is preferred. The distance between pieces can be measured using microscopic observation (optical microscope, metallurgical microscope, electron microscope, etc.).
  • the individual pieces of the filler array film may be formed by slits or half cuts, or may be formed using an LLO device.
  • the base film may be any material as long as it is transparent to laser light, especially quartz glass that has high light transmittance over all wavelengths. preferable.
  • the filler array film provided on the base film is irradiated with laser light from the base film side, and the irradiated portions of the filler array film are removed. By doing so, individual pieces of the filler array film having a predetermined shape can be formed on the base film.
  • the remaining portions of the filler array film can be used to form individual pieces of a predetermined shape.
  • the remaining parts of the filler array film can be used to form a predetermined shape. It is possible to construct individual pieces of the shape.
  • the reaction rate of the individual pieces is 25% or less, preferably 20% or less, and more preferably 15% or less.
  • the reaction rate of the curable resin film before laser irradiation or the individual pieces obtained after laser irradiation can be determined by the reduction rate of reactive groups using, for example, FT-IR.
  • the sample is irradiated with infrared rays and the IR spectrum is measured.
  • the peak height can be measured and calculated as the ratio of the peak height of the epoxy group to the peak height of the methyl group before and after the reaction (for example, before and after laser irradiation), as shown in the following formula.
  • A is the peak height of the epoxy group before the reaction
  • B is the peak height of the methyl group before the reaction
  • a is the peak height of the epoxy group after the reaction
  • b is the peak height of the methyl group after the reaction. It is.
  • the peak height of the completely cured sample (reaction rate 100%) may be set to 0%.
  • conductive particles (Micropearl AU, Sekisui Chemical Co., Ltd.) were arranged to have a particle density of 58,000 particles/mm 2 by the conductive particle regular arrangement process described in paragraphs 0111 to 0112 of Patent No. 6187665 and FIG. 1A.
  • Evaluation rank Standard AA Less than 5 ⁇ m A: 5 ⁇ m or more and less than 15 ⁇ m B: 15 ⁇ m or more and less than 25 ⁇ m C: 25 ⁇ m or more
  • ⁇ Fillet formation rate F> By observing the fillet shape of the mounted body with a laser microscope, the side length L0 in the height direction of the LED and the height B of the portion of the LED exposed from the insulating resin layer are determined, and the fillet formation rate F is calculated according to the following formula. I asked for Practically, it is preferable that the fillet formation rate F is 60% or more and 100% or less.
  • the top surface of the first electronic component is exposed from the insulating resin layer, and preferably the side surface adjacent to the top surface is also exposed from the insulating resin layer, so that the light emitted by the first electronic component is can be prevented from being excessively blocked by the insulating resin layer. Furthermore, since the electrode of the first electronic component and the base surface on which the electrode is formed are embedded in the insulating resin layer, the first electronic component and the second electronic component are reliably connected, and the area around the first electronic component is Since a sloped region is formed in which the thickness of the insulating resin layer changes depending on the distance from the first electronic component, this connection structure has a thickness of the resin layer necessary for mounting the first electronic component. is ensured, and excessive resin layer thickness is reduced. Further, when a black insulating resin composition is used to form the insulating resin layer, it is possible to shorten the process and reduce the cost of connecting the LED and forming the black matrix.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)

Abstract

In this connection structure 1A, an electrode 11 of a first electronic component 10 and an electrode 21 of a second electronic component 20 are connected via filler 2, the electrode 11 is embedded in an insulating resin layer 3 on the second electronic component 20, and a top surface 13 of the first electronic component 10 is exposed from the insulating resin layer 3. The connection structure has an inclined region 4 of the insulating resin layer 3 around the first electronic component 10, and a flat region 5 of the insulating resin layer 3 adjacent to the inclined region 4. When the height of the top surface 13 of the first electronic component 10 from an electrode surface 11a is defined as A, the height of the first electronic component 10 of the portion exposed from the insulating resin layer 3 as B, and the distance between the outer edge of the inclined region 4 and the first electronic component 10 as E, 0≤B/A<1, and E≤500 μm.

Description

接続構造体connection structure
 本発明は、フィラー配列フィルムを用いて微小な発光素子等の第1電子部品を基板等の第2電子部品に接続して得られる接続構造体に関する。 The present invention relates to a connected structure obtained by connecting a first electronic component such as a minute light emitting element to a second electronic component such as a substrate using a filler array film.
 微小な発光素子であるμLED(micro Light-Emitting Diode)を基板上に配列してなるμLEDディスプレイは、液晶ディスプレイに必要とされるバックライトを省略できることによりディスプレイを薄膜化することができ、さらに広色域化、高精細化、省電力化も実現することのできるディスプレイまたは光源として期待されている。 μLED displays, which are made by arranging μLEDs (micro Light-Emitting Diodes), which are tiny light-emitting elements, on a substrate can omit the backlight required for liquid crystal displays, allowing displays to be made thinner and wider. It is expected to be used as a display or light source that can realize a wider color gamut, higher definition, and lower power consumption.
 μLEDを配列したディスプレイの作製方法として、特許文献1にはキャリア基板上に形成した赤、青、緑のμLEDアレイを移送ヘッドでピックアップし、ディスプレイ基板等の転写先基板に配置し、ハンダ層の溶着によりμLEDアレイと転写先基板とを接合し、次いでその上にITO等で接触線を形成することが記載されている。 As a method for manufacturing a display in which μLEDs are arranged, Patent Document 1 discloses that a red, blue, and green μLED array formed on a carrier substrate is picked up by a transfer head, placed on a transfer destination substrate such as a display substrate, and a solder layer is formed. It is described that the μLED array and the transfer destination substrate are bonded by welding, and then contact lines are formed thereon using ITO or the like.
 また、特許文献2には、ウエハ上に形成されたμLEDを基板に配置し、水素添加エポキシ化合物等を用いた接着剤成分中に導電粒子を分散させた異方性導電フィルムを使用して基板と接続し、ウエハをリフトオフする方法が記載されている。特許文献2に記載の異方性導電フィルムを使用する方法によれば複数のμLEDを一括実装できるので、μLEDを用いたディスプレイを簡便に得ることができる。 Furthermore, Patent Document 2 discloses that μLEDs formed on a wafer are placed on a substrate, and an anisotropic conductive film in which conductive particles are dispersed in an adhesive component using a hydrogenated epoxy compound or the like is used to create a substrate. It describes how to connect the wafer to the wafer and lift off the wafer. According to the method using an anisotropic conductive film described in Patent Document 2, a plurality of μLEDs can be mounted at once, so a display using μLEDs can be easily obtained.
 特許文献3には、平面視における導電粒子の面積占有率が35%以下の導電粒子配列層を有する異方性導電フィルムを用いてICチップとFPCを接続するにあたり、導電粒子の捕捉効率を上げるためにパルスヒータ式ボンダーを使用し、1段階目にICチップとFPCとを異方性導電フィルムの絶縁性樹脂層に押し込むことで、電極を導電粒子配列層に近づける仮固定を行い、2段階目に本圧着を行うという2段階方式の接続方法が記載されている。 Patent Document 3 describes how to increase the trapping efficiency of conductive particles when connecting an IC chip and an FPC using an anisotropic conductive film having a conductive particle arrangement layer in which the area occupation rate of conductive particles is 35% or less in plan view. For this purpose, a pulse heater type bonder is used, and in the first step, the IC chip and FPC are pressed into the insulating resin layer of the anisotropic conductive film, temporarily fixing the electrodes close to the conductive particle arrangement layer, and then in the second step. A two-step connection method is described in which main crimping is performed on the eyes.
特表2015-500562号公報Special table 2015-500562 publication 特開2017-157724号公報Japanese Patent Application Publication No. 2017-157724 特開2019-216097号公報JP 2019-216097 Publication
 特許文献2に記載のように異方性導電フィルムを用いると、μLEDを一括実装することによりディスプレイを簡便に製造することが可能となるが、ディスプレイの大面積化及び高精細化に伴って実装するμLEDの数が多くなると、μLEDの実装ツールに大きな推力が必要となる。 If an anisotropic conductive film is used as described in Patent Document 2, it becomes possible to easily manufacture a display by mounting μLEDs all at once, but as displays become larger in area and higher in definition, mounting As the number of μLEDs increases, the μLED mounting tool requires greater thrust.
 推力の問題に対し、低圧実装を可能とするために異方性導電フィルムの樹脂層の厚さを薄くし、導電粒子を樹脂層から露出させることが考えられるが、μLEDを異方性導電フィルムにアラインメントして搭載するときに異方性導電フィルムの樹脂層から導電粒子が露出していると、異方性導電フィルムに十分な粘着力を得られず、μLEDの搭載が不可能となることが懸念される。 To solve the problem of thrust, it is possible to reduce the thickness of the resin layer of the anisotropic conductive film and expose the conductive particles from the resin layer in order to enable low-pressure mounting. If the conductive particles are exposed from the resin layer of the anisotropic conductive film when aligned and mounted on the anisotropic conductive film, the anisotropic conductive film will not have sufficient adhesive strength, making it impossible to mount the μLED. There are concerns.
 また、ディスプレイの大面積化及び高精細化に伴いμLED自体のサイズが小さくなり、それに伴って電極面積や電極高さも小さくなる。そのため、異方性導電フィルムを用いてμLEDを一括実装すると、実装後に異方性導電フィルムの樹脂がμLEDの側面で盛り上がったり、μLEDの発光部が異方性導電フィルムの樹脂に埋没したりすることにより、発光効率が低下するという問題が生じる。さらに、μLEDが樹脂に埋没すると実装のための圧力を効率よくμLEDにかけることができず、実装ツールにより大きな推力が必要とされ、使用することのできる実装ツールが制限されてしまう。 Furthermore, as displays become larger and more precise, the size of the μLED itself becomes smaller, and the electrode area and electrode height also become smaller. Therefore, if μLEDs are mounted all at once using an anisotropic conductive film, the resin of the anisotropic conductive film may swell up on the sides of the μLED after mounting, or the light emitting part of the μLED may be buried in the resin of the anisotropic conductive film. This causes a problem that the luminous efficiency decreases. Furthermore, if the μLED is buried in the resin, pressure for mounting cannot be efficiently applied to the μLED, and a large thrust force is required from the mounting tool, which limits the mounting tools that can be used.
 一方、発光面が電極と反対側の天面(z面)ではなく、電極の形成基面に交叉するxy面にあるμLEDでは、発光面に隣接してリフレクター構造を設けることが、高輝度のディスプレイを得るために必要となるが、μLEDの発光部が樹脂に埋没するとμLEDの発光面に隣接してリフレクター構造を設けることが困難となる。 On the other hand, in μLEDs whose light-emitting surface is not on the top surface (z-plane) opposite to the electrode, but on the xy plane that intersects the base surface of the electrode, providing a reflector structure adjacent to the light-emitting surface is effective for achieving high brightness. Although it is necessary to obtain a display, if the light emitting part of the μLED is buried in the resin, it becomes difficult to provide a reflector structure adjacent to the light emitting surface of the μLED.
 このような従来技術に対し、本発明は、異方性導電フィルムを用いてμLED等の微細な発光素子を基板に低圧実装することを可能とし、しかもその発光素子が異方性導電フィルムの樹脂に埋もれた場合には、発光効率が過度に低下することを抑え、必要に応じて発光面に隣接してリフレクター構造を設けられるようにすることを課題とする。 In contrast to such conventional techniques, the present invention makes it possible to mount microscopic light emitting elements such as μLEDs on a substrate at low pressure using an anisotropic conductive film, and furthermore, the light emitting element is made of resin of an anisotropic conductive film. It is an object of the present invention to prevent the luminous efficiency from decreasing excessively when the luminescent surface is buried in the luminescent surface, and to enable a reflector structure to be provided adjacent to the luminous surface as necessary.
 本発明者らは、導電粒子等のフィラーが絶縁性樹脂層に配列したフィラー配列フィルムを用いてμLEDの電極等の微小な第1電子部品の接続部を、大画面テレビ用基板等の第2電子部品の電極等の接続部にフィラーを介して接続した接続構造体において、μLEDの電極及び電極の形成基面は絶縁性樹脂内に埋没させるが、μLEDの天面は絶縁性樹脂層から露出させ、好ましくはμLEDの天面に隣接する側面も部分的に露出させ、さらに第1電子部品の周りで絶縁性樹脂層が傾斜するように絶縁性樹脂層の厚みを調整したものは低圧実装により製造でき、かつμLEDから出射される光が絶縁性樹脂層で遮られることが抑制されることを想到し、本発明を完成した。 The present inventors used a filler array film in which fillers such as conductive particles were arranged in an insulating resin layer to connect a microscopic first electronic component such as a μLED electrode to a second microelectronic component such as a large-screen TV board. In a connected structure that is connected to a connecting part such as an electrode of an electronic component via a filler, the electrode of the μLED and the base surface on which the electrode is formed are buried in the insulating resin, but the top surface of the μLED is exposed from the insulating resin layer. In this case, the thickness of the insulating resin layer is adjusted so that the side surface adjacent to the top surface of the μLED is also partially exposed, and the insulating resin layer is inclined around the first electronic component. The present invention was completed based on the idea that it can be manufactured and that the light emitted from the μLED is prevented from being blocked by the insulating resin layer.
 即ち、本発明は、第1電子部品の電極と第2電子部品の電極がフィラーを介して接続されると共に、第2電子部品上の絶縁性樹脂層に第1電子部品の電極及び電極の形成基面が埋め込まれ、第1電子部品の天面が絶縁性樹脂層から露出している接続構造体であって、第1電子部品の周りに絶縁性樹脂層の厚みが第1電子部品との距離に応じて変化している傾斜領域を有すると共に、該傾斜領域に隣接して絶縁性樹脂層の厚みが一定の平坦領域を有し、
第1電子部品の電極面からの第1電子部品の天面の高さをA、
絶縁性樹脂層から露出している部分の第1電子部品の高さをB、
傾斜領域の外縁部と第1電子部品との距離をEとした場合に、
0≦B/A<1、かつE≦500μm
である接続構造体を提供する。
That is, in the present invention, the electrodes of the first electronic component and the electrodes of the second electronic component are connected via a filler, and the electrodes of the first electronic component and the electrodes are formed on the insulating resin layer on the second electronic component. A connection structure in which a base surface is embedded and a top surface of a first electronic component is exposed from an insulating resin layer, wherein the thickness of the insulating resin layer around the first electronic component is the same as that of the first electronic component. It has a sloped area that changes depending on the distance, and has a flat area where the thickness of the insulating resin layer is constant adjacent to the sloped area,
The height of the top surface of the first electronic component from the electrode surface of the first electronic component is A,
The height of the part of the first electronic component exposed from the insulating resin layer is B,
When the distance between the outer edge of the inclined region and the first electronic component is E,
0≦B/A<1 and E≦500μm
Provides a connection structure that is .
 本発明の接続構造体は第1電子部品の天面が絶縁性樹脂層から露出し、好ましくは天面に隣接する側面も絶縁性樹脂層から露出しているので、第1電子部品が発する光が絶縁性樹脂層で過度に遮られることを抑制できる。 In the connected structure of the present invention, the top surface of the first electronic component is exposed from the insulating resin layer, and preferably the side surface adjacent to the top surface is also exposed from the insulating resin layer, so that the light emitted by the first electronic component is can be prevented from being excessively blocked by the insulating resin layer.
 また、第1電子部品の電極及びその電極の形成基面は絶縁性樹脂層に埋め込まれているので、第1電子部品と第2電子部品とは確実に接続され、かつ第1電子部品の周囲には該第1電子部品との距離に応じて絶縁性樹脂層の厚みが変化している傾斜領域が形成されているので、この接続構造体は第1電子部品の実装に必要な樹脂層厚が確保されると共に、過剰な樹脂層厚が削減されたものとなる。 Furthermore, since the electrode of the first electronic component and the base surface on which the electrode is formed are embedded in the insulating resin layer, the first electronic component and the second electronic component are reliably connected, and the area around the first electronic component is Since a sloped region is formed in which the thickness of the insulating resin layer changes depending on the distance from the first electronic component, this connection structure has a thickness of the resin layer necessary for mounting the first electronic component. is ensured, and excessive resin layer thickness is reduced.
 また、第1電子部品がμLEDのような発光素子である場合に、必要に応じてリフレクター構造を設けることも容易となる。 Furthermore, when the first electronic component is a light emitting element such as a μLED, it is easy to provide a reflector structure as necessary.
図1は、実施例の接続構造体1Aの断面図である。FIG. 1 is a cross-sectional view of a connection structure 1A of an example. 図2は、実施例の接続構造体1Bの断面図である。FIG. 2 is a cross-sectional view of the connection structure 1B of the example. 図3は、実施例の接続構造体1Cの断面図である。FIG. 3 is a cross-sectional view of the connection structure 1C of the example. 図4は、実施例の接続構造体1Dの断面図である。FIG. 4 is a sectional view of the connection structure 1D of the example. 図5は、フィラー配列フィルムの断面図である。FIG. 5 is a cross-sectional view of the filler array film.
 以下、本発明を、図面を参照しつつ詳細に説明する。なお、各図中同一符号は、同一又は同等の構成要素を表している。 Hereinafter, the present invention will be explained in detail with reference to the drawings. Note that the same reference numerals in each figure represent the same or equivalent components.
<接続構造体>
 図1は本発明の一実施例の接続構造体1Aの断面図であって、異方性導電フィルムや導電フィルム等のフィラー配列フィルムを用いて、第1電子部品10を第2電子部品20に実装して得られるものであり、実装時には低圧実装を実現でき、また高い発光効率を得ることを可能とするものである。
<Connection structure>
FIG. 1 is a sectional view of a connected structure 1A according to an embodiment of the present invention, in which a first electronic component 10 is connected to a second electronic component 20 using a filler array film such as an anisotropic conductive film or a conductive film. It is obtained by mounting, and when mounting, it is possible to realize low pressure mounting and also to obtain high luminous efficiency.
 接続構造体1Aでは、第1電子部品10の電極11と第2電子部品20の電極21とがフィラー2を介して接続されている。フィラー2は、フィラー配列フィルムに由来する導電粒子である。また、第2電子部品20上の絶縁性樹脂層3に第1電子部品10の電極11及び電極11の形成基面12が埋め込まれ、第1電子部品10の天面13が絶縁性樹脂層3から露出している。絶縁性樹脂層3は、フィラー配列フィルムに由来する。 In the connected structure 1A, the electrode 11 of the first electronic component 10 and the electrode 21 of the second electronic component 20 are connected via the filler 2. Filler 2 is a conductive particle derived from the filler alignment film. Further, the electrode 11 of the first electronic component 10 and the base surface 12 of the electrode 11 are embedded in the insulating resin layer 3 on the second electronic component 20, and the top surface 13 of the first electronic component 10 is embedded in the insulating resin layer 3. exposed from. The insulating resin layer 3 is derived from a filler array film.
 ここで、第1電子部品10としては、ミニLED、μLED等の光半導体素子をあげることができる。 Here, the first electronic component 10 may be an optical semiconductor element such as a mini LED or a μLED.
 第1電子部品10の外形とサイズについては、例えば、外形が矩形の場合、その長辺は200μm以下、又は150μm未満、又は50μm未満、又は20μm未満とすることができる。より具体的には、例えば10μm×20μm、7μm×14μm、5μm×5μmの矩形をあげることができる。なお、第1電子部品10の外形は矩形に限られず、例えば菱形でもよい。 Regarding the outer shape and size of the first electronic component 10, for example, when the outer shape is rectangular, the long side thereof can be 200 μm or less, or less than 150 μm, or less than 50 μm, or less than 20 μm. More specifically, rectangles of 10 μm×20 μm, 7 μm×14 μm, and 5 μm×5 μm can be cited, for example. Note that the outer shape of the first electronic component 10 is not limited to a rectangle, and may be, for example, a rhombus.
 第1電子部品10の好ましい厚さは、該第1電子部品10の材質や強度、電極の高さ、接続の条件等によって変わるが、例えば、第1電子部品10の電極11の面積が1000μm2以下又は第1電子部品の最長辺の長さが300μm以上の場合、その厚さを200μm以下、さらには50μm以下とすることができ、最長辺の長さが300μm以下の場合、厚さを50μm以下とすることができ、最長辺の長さが150μm以下の場合、厚さを30μm以下とすることができ、最長辺の長さが50μm以下の場合、厚さを20μm以下、さらには15μm以下、特に10μm以下とすることができる。第1電子部品の最長辺の長さと厚みの比率が1に近くなれば、接続時の押し込みにより第1電子部品に横ズレが生じることが懸念されるためである。なお、この場合の厚さには、電極11の高さは含まれない。 The preferred thickness of the first electronic component 10 varies depending on the material and strength of the first electronic component 10, the height of the electrode, connection conditions, etc., but for example, if the area of the electrode 11 of the first electronic component 10 is 1000 μm 2 If the longest side length of the first electronic component is 300 μm or more, the thickness can be 200 μm or less, or even 50 μm or less, and if the longest side length is 300 μm or less, the thickness can be 50 μm or less. If the longest side length is 150 μm or less, the thickness can be 30 μm or less, and if the longest side length is 50 μm or less, the thickness can be 20 μm or less, and even 15 μm or less. , especially 10 μm or less. This is because if the ratio of the length of the longest side of the first electronic component to the thickness is close to 1, there is a concern that the first electronic component may be lateral shifted due to pushing during connection. Note that the thickness in this case does not include the height of the electrode 11.
 第1電子部品10は、電極11の面積が1000μm2以下、又は電子部品の最長辺の長さが600μm以下、300μm以下、150μm以下、更には50μm以下の微小な電子部品とすることができ、例えば長辺5μm~50μm、短辺3μm~40μmの矩形をあげることができる。電極11のサイズの短辺の下限は、載置工程の利便性から好ましくは3μm以上、より好ましくは5μm以上である。 The first electronic component 10 can be a minute electronic component in which the area of the electrode 11 is 1000 μm 2 or less, or the length of the longest side of the electronic component is 600 μm or less, 300 μm or less, 150 μm or less, or even 50 μm or less, For example, a rectangle with a long side of 5 μm to 50 μm and a short side of 3 μm to 40 μm can be used. The lower limit of the short side of the electrode 11 is preferably 3 μm or more, more preferably 5 μm or more from the viewpoint of convenience in the mounting process.
 第1電子部品10の電極11の高さは実質的にゼロでもよいが、加圧硬化工程を行う場合や、重ね合わせ工程後加圧硬化工程前に必要に応じて行う加圧工程において、電極以外が加圧されないようにし、加圧により導電粒子が効率よく電極に押し込まれるようにする点から、電極11の高さは導電粒子の平均粒子径の1倍より高いことが好ましい。一方、電極11の高さが過度に高いと電極間に充填される樹脂量が不用に多くなるので電極11の高さは導電粒子の平均粒子径の3倍以下が好ましく、2倍以下がより好ましい。 The height of the electrode 11 of the first electronic component 10 may be substantially zero, but when performing a pressure curing process, or in a pressure process performed as necessary before the pressure curing process after the stacking process, the height of the electrode 11 may be substantially zero. The height of the electrode 11 is preferably higher than one time the average particle diameter of the conductive particles in order to prevent other parts from being pressurized and to ensure that the conductive particles are efficiently pushed into the electrode by pressurization. On the other hand, if the height of the electrode 11 is too high, the amount of resin filled between the electrodes will increase unnecessarily, so the height of the electrode 11 is preferably 3 times or less than the average particle diameter of the conductive particles, and more preferably 2 times or less. preferable.
 一方、第1電子部品10を接続する第2電子部品20としては種々の基板を挙げることができ、ガラス基板、プラスチック基板などの透明基板でもよく、不透明な基板でもよい。また、第2電子部品20は、セラミック基板、リジットな樹脂基板、FPC等の基板であってもよい。 On the other hand, various substrates can be used as the second electronic component 20 to which the first electronic component 10 is connected, and it may be a transparent substrate such as a glass substrate or a plastic substrate, or an opaque substrate. Further, the second electronic component 20 may be a ceramic substrate, a rigid resin substrate, an FPC, or the like.
(接続構造体における絶縁性樹脂層の厚みの変化)
 本発明の接続構造体では、第1電子部品10の周りの絶縁性樹脂層3の厚みの変化が特徴的となっており、絶縁性樹脂層3が第1電子部品10の周囲に傾斜領域4を有する。傾斜領域4は絶縁性樹脂層3の厚みが、第1電子部品10との距離に応じて変化している領域であり、本実施例では、第1電子部品10の天面13に隣接する側面14が絶縁性樹脂層3から部分的に露出しており、側面14に隣接して傾斜領域4が形成されている。この傾斜領域4では絶縁性樹脂層3の厚みが第1電子部品10との距離が大きくなるにつれて小さくなっている。
(Change in thickness of insulating resin layer in connected structure)
The bonded structure of the present invention is characterized by a change in the thickness of the insulating resin layer 3 around the first electronic component 10, and the insulating resin layer 3 has an inclined region 4 around the first electronic component 10. has. The inclined region 4 is a region in which the thickness of the insulating resin layer 3 changes depending on the distance from the first electronic component 10, and in this embodiment, the sloped region 4 is a region where the thickness of the insulating resin layer 3 changes depending on the distance from the first electronic component 10. 14 is partially exposed from the insulating resin layer 3, and an inclined region 4 is formed adjacent to the side surface 14. In this inclined region 4, the thickness of the insulating resin layer 3 decreases as the distance from the first electronic component 10 increases.
 また、本発明の接続構造体では、絶縁性樹脂層3の厚みが一定の平坦領域5が傾斜領域4に隣接して存在し、本実施例の接続構造体1Aでは、傾斜領域4の外側に隣接して平坦領域5が形成されている。 Furthermore, in the connected structure of the present invention, a flat region 5 in which the thickness of the insulating resin layer 3 is constant is present adjacent to the sloped region 4, and in the connected structure 1A of the present embodiment, the flat region 5 is located outside the sloped region 4. A flat region 5 is formed adjacent to it.
 本発明の接続構造体では、第1電子部品10の電極面11aからの第1電子部品10の天面13の高さをA、第1電子部品10の絶縁性樹脂層3から露出している部分の高さ(即ち、電極面11aに垂直な方向の第1電子部品10の露出距離)をB、傾斜領域4の外縁部と第1電子部品10との距離をEとした場合に、“0≦B/A<1、かつE≦500μm”が満たされる。 In the connected structure of the present invention, the height of the top surface 13 of the first electronic component 10 from the electrode surface 11a of the first electronic component 10 is A, and the height of the top surface 13 of the first electronic component 10 is exposed from the insulating resin layer 3 of the first electronic component 10. When the height of the portion (that is, the exposed distance of the first electronic component 10 in the direction perpendicular to the electrode surface 11a) is B, and the distance between the outer edge of the inclined region 4 and the first electronic component 10 is E, " 0≦B/A<1 and E≦500 μm” are satisfied.
 上記式中の「B/A=0」は、第1電子部品10の天面13と、第1電子部品10の周囲で該第1電子部品10に隣接している絶縁性樹脂層3の上面が面一であることを意味し、「B/A<0」は、第1電子部品10の天面13が、該第1電子部品10に隣接した絶縁性樹脂層3の上面よりも凹んでいることを意味する。本発明においては、第1電子部品10の天面13は該第1電子部品10に隣接した絶縁性樹脂層3の上面よりも上方に突出していることが好ましい。第1電子部品10(例えば、μLED)から光が発せられた場合には、光が絶縁性樹脂層3で遮られることを抑制することができるからである。また、「B/A<1」は、第1電子部品10が絶縁性樹脂層3に埋め込まれていることを意味する。第1電子部品10を第2電子部品に固定するためである。ところで、「B/A<1」とすることにより、第2電子部品20上の絶縁性樹脂層3に第1電子部品10の電極11及び電極11の形成基面12が埋め込まれていることになるが、この埋め込みの程度が大きくなると、第1電子部品10がμLEDである場合には光取り出し効率が小さくなり、埋め込みの程度が小さくなる(換言すれば、μLEDなどの第1電子部品10の露出の程度が小さくなる)と、多数個の第1電子部品10を第2電子部品に実装した際に、結果物である接続構造体の厚さ精度が低下する傾向がある。従って、「B/A」は、接続構造体の厚み公差を小さくする観点から、好ましくは0.1以上であり、光取り出し効率を低下させないために好ましくは0.5以下である。 "B/A=0" in the above formula refers to the top surface 13 of the first electronic component 10 and the top surface of the insulating resin layer 3 adjacent to the first electronic component 10 around the first electronic component 10. "B/A<0" means that the top surface 13 of the first electronic component 10 is recessed from the top surface of the insulating resin layer 3 adjacent to the first electronic component 10. It means there is. In the present invention, it is preferable that the top surface 13 of the first electronic component 10 protrudes above the top surface of the insulating resin layer 3 adjacent to the first electronic component 10. This is because when light is emitted from the first electronic component 10 (for example, μLED), the light can be prevented from being blocked by the insulating resin layer 3. Further, “B/A<1” means that the first electronic component 10 is embedded in the insulating resin layer 3. This is to fix the first electronic component 10 to the second electronic component. By the way, by setting "B/A<1", the electrode 11 of the first electronic component 10 and the base surface 12 for forming the electrode 11 are embedded in the insulating resin layer 3 on the second electronic component 20. However, as the degree of embedding increases, when the first electronic component 10 is a μLED, the light extraction efficiency decreases, and the degree of embedding becomes smaller (in other words, if the first electronic component 10 such as a μLED (the degree of exposure becomes small), when a large number of first electronic components 10 are mounted on a second electronic component, the thickness accuracy of the resulting connected structure tends to decrease. Therefore, "B/A" is preferably 0.1 or more from the viewpoint of reducing the thickness tolerance of the connected structure, and preferably 0.5 or less so as not to reduce the light extraction efficiency.
 また、Eは、好ましくは500μm以下、より好ましくは100μm以下である。接続構造体1Aにおける絶縁性樹脂層3の厚みが第1電子部品10の天面の高さで一定の場合に比して、E≦500μmを規定することにより接続構造体1Aを構成する樹脂量を抑制し、接続構造体1Aを低圧実装により得ることを可能とする。リフローで実装する場合も、このような厚みになるよう調整すればよい。 Furthermore, E is preferably 500 μm or less, more preferably 100 μm or less. Compared to the case where the thickness of the insulating resin layer 3 in the connected structure 1A is constant at the height of the top surface of the first electronic component 10, the amount of resin constituting the connected structure 1A is reduced by specifying E≦500 μm. This allows the connection structure 1A to be obtained by low-voltage mounting. Even when mounting by reflow, the thickness can be adjusted to such a value.
<接続構造体の変形態様その1>
 本発明の接続構造体は種々の変形態様をとることができる。例えば、図2に示した接続構造体1Bのように、傾斜領域4における絶縁性樹脂層3の厚みを、第1電子部品10との距離が大きくなるにつれて大きくしてもよい。
<Deformation of connected structure part 1>
The connection structure of the present invention can take various modifications. For example, as in the connection structure 1B shown in FIG. 2, the thickness of the insulating resin layer 3 in the inclined region 4 may increase as the distance from the first electronic component 10 increases.
 図3に示した接続構造体1Cのように、第1電子部品10と傾斜領域4との間に絶縁性樹脂層3の厚みが一定の平坦領域5aを設け、平坦領域5aにおける絶縁性樹脂層3の厚みを傾斜領域4における絶縁性樹脂層3の最小厚としてもよい。 Like the connection structure 1C shown in FIG. 3, a flat region 5a in which the insulating resin layer 3 has a constant thickness is provided between the first electronic component 10 and the inclined region 4, and the insulating resin layer in the flat region 5a is 3 may be set as the minimum thickness of the insulating resin layer 3 in the inclined region 4.
 図4に示した接続構造体1Dのように、第1電子部品10と傾斜領域4との間に絶縁性樹脂層3の厚みが一定の平坦領域5aを設け、平坦領域5aにおける絶縁性樹脂層3の厚みを傾斜領域4における絶縁性樹脂層3の最大厚としてもよい。接続構造体1Dにおいて、第1電子部品10の絶縁性樹脂層3から露出している部分の高さBはゼロであるから、B/A=0である。この点で接続構造体1Dは上述の接続構造体1A、1B、1Cと異なるが、接続構造体の用途によりB/A=0でもよい。 Like the connection structure 1D shown in FIG. 4, a flat area 5a in which the insulating resin layer 3 has a constant thickness is provided between the first electronic component 10 and the inclined area 4, and the insulating resin layer in the flat area 5a is 3 may be set as the maximum thickness of the insulating resin layer 3 in the inclined region 4. In the connected structure 1D, the height B of the portion of the first electronic component 10 exposed from the insulating resin layer 3 is zero, so B/A=0. In this respect, the connected structure 1D is different from the above-mentioned connected structures 1A, 1B, and 1C, but B/A may be 0 depending on the use of the connected structure.
 また、接続構造体1Dでは傾斜領域4の外側に隣接して平坦領域5bを設け、平坦領域5bにおける絶縁性樹脂層3の厚みを、傾斜領域4における絶縁性樹脂層3の最小厚としている。 Furthermore, in the connected structure 1D, a flat region 5b is provided adjacent to the outside of the sloped region 4, and the thickness of the insulating resin layer 3 in the flat region 5b is the minimum thickness of the insulating resin layer 3 in the sloped region 4.
 図1~図4に示した態様の中では、第1電子部品10から傾斜領域4の外縁部までの小領域、即ち第1電子部品から距離Eまでの領域で樹脂量が最も多いのは図4に示した接続構造体1Dであり、最も少ないのは図3に示した接続構造体1Cであるが、図4に示した接続構造体1Dは、斜面領域4の外側の樹脂量が低減している。したがって、本発明の接続構造体を搭載する電子物品において、図1~図4のいずれの態様の接続構造体を使用するかは、当該電子物品の用途等に応じて適宜定めることができる。 In the embodiments shown in FIGS. 1 to 4, the small area from the first electronic component 10 to the outer edge of the inclined region 4, that is, the area from the first electronic component to the distance E, has the largest amount of resin. The connection structure 1D shown in FIG. 4 has the smallest amount, and the connection structure 1C shown in FIG. 3 has the smallest amount, but the connection structure 1D shown in FIG. ing. Therefore, in an electronic article equipped with the connected structure of the present invention, which embodiment of the connected structure shown in FIGS. 1 to 4 is used can be determined as appropriate depending on the use of the electronic article.
<接続構造体の変形態様その2>
 前述の<接続構造体の変形態様その1>は、接続構造体の形状的構成の観点からの変形態様を説明したが、<接続構造体の変形態様その2>では、接続構造体の形状的構成を前提として、μLEDの発光効率を過度に抑制することなく、絶縁性樹脂層をブラックマトリックスとして使用することに着目した変形態様を説明する。
<Deformation of connected structure part 2>
The above-mentioned <Modification of the connected structure Part 1> explained the modification from the viewpoint of the shape configuration of the connected structure, but in <Modification of the connected structure Part 2>, the shape of the connected structure was explained. On the premise of the configuration, a modification will be described that focuses on using an insulating resin layer as a black matrix without excessively suppressing the luminous efficiency of μLED.
(絶縁性樹脂層をブラックマトリックスとして利用することに着目した理由)
 近年、マイクロLEDディスプレイは、高発光効率且つ長寿命のマイクロLED自体を発光させているため、高輝度、低消費電力、高コントラスト、長寿命という好ましい特性を有するディスプレイとなることが期待されている。このようなマイクロLEDディスプレイでは、ディスプレイ基板上に、赤色LED、緑色LED及び青色LEDが所定の間隔を空けて設けられており、しかも自発発光するため、ブラックマトリックスで色毎に区切られたカラーフィルタを用いない場合もある。このような場合には、混色防止を目的にマイクロLED間にブラックマトリックスを形成する必要がある(特表2021-506108号公報、WO2021/060832A1公報等)。
(Reason for focusing on using the insulating resin layer as a black matrix)
In recent years, micro-LED displays are expected to have favorable characteristics such as high brightness, low power consumption, high contrast, and long life, because micro-LEDs themselves emit light with high luminous efficiency and long life. . In such a micro LED display, a red LED, a green LED, and a blue LED are provided on a display substrate at predetermined intervals, and in order to emit light spontaneously, a color filter is used to separate each color by a black matrix. In some cases, it is not used. In such a case, it is necessary to form a black matrix between the micro LEDs for the purpose of preventing color mixture (Japanese Patent Publication No. 2021-506108, WO2021/060832A1, etc.).
 マイクロLEDディスプレイにブラックマトリックスを形成する手法としては、(a)マイクロLEDの実装前のディスプレイ基板の片全面に黒色転写層形成用組成物を塗布し、ディスプレイ基板の非ブラックマトリックス領域に塗布された黒色転写層形成用組成物をエッチング処理やフォトリソ処理により除去する方法、(b)スクリーン印刷によりブラックマトリックスをキャリアフィルム上に形成した黒色転写フィルムを、マイクロLEDの実装前のディスプレイ基板にアライメントして貼り付け、キャリアフィルムを引き剥がす方法、(c)マイクロLEDが実装されているディスプレイ基板に、ブラックマトリックスが形成されたカバーガラスを被せる方法、(d)マイクロLEDが実装されているディスプレイ基板のマイクロLED間に、インクジェット法によりブラックマトリックス用インク組成物を塗布する方法、等が知られている。 As a method for forming a black matrix on a micro LED display, (a) a composition for forming a black transfer layer is applied to one entire surface of the display substrate before the micro LED is mounted, and a composition for forming a black transfer layer is applied to the non-black matrix area of the display substrate. A method of removing the composition for forming a black transfer layer by etching or photolithography; (b) aligning a black transfer film in which a black matrix is formed on a carrier film by screen printing to a display substrate before mounting micro LEDs; (c) A method of covering a display substrate on which micro LEDs are mounted with a cover glass on which a black matrix is formed; (d) A method of attaching and peeling off a carrier film; (d) A method of covering a display substrate on which micro LEDs are mounted with a cover glass on which a black matrix is formed; A method is known in which a black matrix ink composition is applied between LEDs by an inkjet method.
 しかしながら、前記(a)の方法では、ブラックマトリックスの形成に時間を要し、前記(b)、(c)の方法では、ブラックマトリックスの位置精度が十分とはいえず、前記(d)の方法では、マイクロLEDの混色を抑制するのに十分な高さでブラックマトリックスを形成することが困難であった。 However, in the method (a), it takes time to form the black matrix, in the methods (b) and (c), the positional accuracy of the black matrix is not sufficient, and in the method (d), However, it has been difficult to form a black matrix with a height sufficient to suppress color mixing in micro-LEDs.
 このため、マイクロLEDを用いた画像表示装置や照明装置等の発光装置を製造する際に、ブラックマトリックスの形成に時間を要さず、ブラックマトリックスの位置精度を十分なものとし、発光効率を過度に抑制することなく、マイクロLEDの混色を抑制するのに十分な高さでブラックマトリックスを形成する必要がある。この必要性があることが、絶縁性樹脂層をブラックマトリックスとして利用することに着目した理由である。 Therefore, when manufacturing light-emitting devices such as image display devices and lighting devices using micro-LEDs, it is possible to eliminate the time required to form the black matrix, ensure sufficient positional accuracy of the black matrix, and increase luminous efficiency. It is necessary to form the black matrix at a height sufficient to suppress color mixing of the micro LEDs without suppressing the color mixing. This necessity is the reason why we focused on using the insulating resin layer as a black matrix.
(ブラックマトリックスとして機能する絶縁性樹脂層)
 図1~4において、絶縁性樹脂層3をブラックマトリックスとして機能させるために、絶縁性樹脂層3をブラック顔料を含有した絶縁性樹脂組成物から形成する。換言すれば、異方性導電フィルムあるいはフィラー配列フィルムを構成する絶縁性樹脂層もしくは導電粒子あるいはフィラーを保持する絶縁性樹脂層をブラック顔料を含有した絶縁性樹脂組成物から形成する。図1~図4では、第1電子部品10(μLED)の表面はブラックマトリックスとして機能する絶縁性樹脂層3で覆われていないので、発光効率の過度の低下を引き起こさず、しかも第1電子部品10の側面の少なくとも一部を被覆しているので、側面方向へ出射する光量を抑制することができ、μLEDの混色を抑制することができる。
(Insulating resin layer that functions as a black matrix)
In FIGS. 1 to 4, the insulating resin layer 3 is formed from an insulating resin composition containing a black pigment in order to function as a black matrix. In other words, the insulating resin layer constituting the anisotropic conductive film or the filler array film or the insulating resin layer holding the conductive particles or filler is formed from an insulating resin composition containing a black pigment. In FIGS. 1 to 4, the surface of the first electronic component 10 (μLED) is not covered with the insulating resin layer 3 that functions as a black matrix, so that the luminous efficiency does not decrease excessively, and the first electronic component Since at least a portion of the side surfaces of the LEDs 10 are covered, the amount of light emitted toward the side surfaces can be suppressed, and color mixing of the μLEDs can be suppressed.
 絶縁性樹脂組成物を黒色化するための黒色着色剤としては、カーボンブラックやチタンブラック等の公知のブラック顔料を使用することができる。中でも、不純物イオンの含有量が極めて低く、しかもそれ自体が絶縁性であるチタンブラックを好ましく使用することができる。ブラック顔料としてチタンブラックを使用した場合、ブラックマトリックス用黒色樹脂組成物中のチタンブラック含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、好ましくは40質量%以下、より好ましくは30質量%以下である。これらのブラック顔料の平均粒子径は、10~100nmである。このブラック顔料は導電粒子の平均粒子径より小さいことが望ましい。 As a black coloring agent for blackening the insulating resin composition, known black pigments such as carbon black and titanium black can be used. Among these, titanium black, which has an extremely low content of impurity ions and is itself insulating, can be preferably used. When titanium black is used as a black pigment, the titanium black content in the black resin composition for black matrix is preferably 5% by mass or more, more preferably 10% by mass or more, preferably 40% by mass or less, and more preferably It is 30% by mass or less. The average particle diameter of these black pigments is 10 to 100 nm. It is desirable that the black pigment has a smaller average particle diameter than the conductive particles.
 なお、ブラックマトリックスとして機能させる絶縁性樹脂組成物のブラック顔料以外の構成成分としては、後述する絶縁性樹脂層の成分と同様とすることができる。 Note that the constituent components other than the black pigment of the insulating resin composition that functions as a black matrix can be the same as those of the insulating resin layer described later.
(ブラックマトリックスとして機能する絶縁性樹脂層3のフィレット形状)
 ブラックマトリックスとして機能する絶縁性樹脂層3は、図1~図4に示す構造の形状とすることができる。具体的には、図1に示すように、第1電子部品の高さ方向の側面長をLとし、絶縁性樹脂層から露出している部分の第1電子部品の高さをBとし、絶縁性樹脂層が形成するフィレットの高さを“L-B”とした時に、以下の式で定義されるフィレット形成率Fが、好ましくは60%以上、より好ましくは70%以上、好ましくは100%以下、より好ましくは90%以下である。中でも、図1又は図4に示すように、傾斜領域において、第1電子部品との距離が大きくなるにつれて絶縁性樹脂層の厚みが小さくなっているフィレット形状とすることが好ましい。
(Fillet shape of insulating resin layer 3 functioning as black matrix)
The insulating resin layer 3 functioning as a black matrix can have a structure shown in FIGS. 1 to 4. Specifically, as shown in FIG. 1, the side length of the first electronic component in the height direction is L0 , the height of the portion of the first electronic component exposed from the insulating resin layer is B, When the height of the fillet formed by the insulating resin layer is "L 0 - B", the fillet formation rate F defined by the following formula is preferably 60% or more, more preferably 70% or more, preferably It is 100% or less, more preferably 90% or less. Among these, as shown in FIG. 1 or 4, it is preferable that the insulating resin layer has a fillet shape in which the thickness of the insulating resin layer decreases as the distance from the first electronic component increases in the inclined region.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
<接続構造体の製造方法>
 図1の接続構造体1Aの製造方法としては、概略、第2電子部品20の電極21上にフィラー配列フィルムを貼着し、そのフィラー配列フィルムと、第1電子部品10とを位置合わせして貼り合わせ、加熱加圧して第1電子部品10の電極11と第2電子部品20の電極21とを接続する。この場合、第1電子部品10は、ウエハ上に配列したものであってもよい。加圧加熱方法としては、特許文献3に記載のように2段階方式で加熱加圧してもよい。また、フィラー2が半田粒子等である場合に、リフローにより接続してもよい。
<Method for manufacturing connected structure>
The method for manufacturing the bonded structure 1A in FIG. 1 is generally performed by pasting a filler array film on the electrode 21 of the second electronic component 20 and aligning the filler array film with the first electronic component 10. The electrodes 11 of the first electronic component 10 and the electrodes 21 of the second electronic component 20 are bonded together and heated and pressurized to connect them. In this case, the first electronic components 10 may be arranged on a wafer. As the pressurizing and heating method, heating and pressurizing may be performed in a two-step method as described in Patent Document 3. Further, when the filler 2 is a solder particle or the like, connection may be performed by reflow.
 フィラー配列フィルムの仮貼りやフィルム転写及びμLEDの基板上への搭載は、スタンプ材(例えば、特開2021-141160号公報参照)やレーザーを用いた手法(レーザーリフトオフ加工法)といった公知の手法やそれを応用した手法を用いることができ(例えば、特開平9-124020号公報、特開2011-76808号公報、特許6636017号公報、特許6187665号公報等に記載の方法)、本発明の効果が発揮できる手法であれば特に限定はされない。 Temporary pasting of the filler array film, film transfer, and mounting of the μLED on the substrate can be performed using known methods such as a stamp material (for example, see Japanese Patent Application Laid-Open No. 2021-141160) or a method using a laser (laser lift-off processing method). It is possible to use a method that applies this (for example, the method described in JP-A-9-124020, JP-A-2011-76808, JP-A-6636017, JP-A-6187665, etc.), and the effects of the present invention can be improved. There are no particular limitations as long as the method can be used effectively.
<接続構造体の製造方法の変形態様>
 非常に微細な第1電子部品を、配線基板等の第2電子部品に実装して接続構造体を製造する場合、前述したようなレーザーリフトオフ加工法により第1電子部品を第2電子部品に着弾させることにより実装することもできる。例えば、第1電子部品が、光透過性基板の表面に形成された膨大な数のマイクロLEDである場合、第2電子部品の所定箇所(例えば配線基板の各電極)に配置されたフィラー配列フィルムに対して、光透過性基板側から個々の第1電子部品にレーザー光を照射し、第1電子部品を着弾させ、加熱加圧することで、第1電子部品をフィラー配列フィルムに押し込むことにより接続構造体を製造することができる。レーザーリフトオフ加工条件は、第1電子部品の種類や構成材料等に応じて適宜決定することができる。
<Variations of the manufacturing method of the connected structure>
When manufacturing a connection structure by mounting a very fine first electronic component on a second electronic component such as a wiring board, the first electronic component is landed on the second electronic component using the laser lift-off processing method as described above. It can also be implemented by For example, when the first electronic component is a huge number of micro LEDs formed on the surface of a light-transmitting substrate, a filler array film is placed at a predetermined location (for example, each electrode of a wiring board) of the second electronic component. On the other hand, by irradiating the individual first electronic components with a laser beam from the light-transmissive substrate side, causing the first electronic components to land, and applying heat and pressure, the first electronic components are pushed into the filler array film and connected. A structure can be manufactured. The laser lift-off processing conditions can be determined as appropriate depending on the type, constituent material, etc. of the first electronic component.
 フィラー配列フィルムは、例えば配線基板等の第2電子部品の接続部の全面に配置してもよく、また、例えばRGB1組の1ピクセル単位(1画素単位)など表示部の一部に所定単位の個片で配置してもよい。この場合、接続構造体における絶縁性樹脂層がフィラー配列フィルムに由来するものであるから、接続構造体における絶縁性樹脂層も個片で配置されていることになり、フィラー配列フィルムを個片で使用した場合と同様の効果が期待できる。 The filler array film may be arranged on the entire surface of the connection part of the second electronic component, such as a wiring board, or may be arranged in a predetermined unit on a part of the display part, for example, in units of 1 pixel (in units of 1 pixel) of 1 set of RGB. It may be arranged in individual pieces. In this case, since the insulating resin layer in the connected structure is derived from the filler array film, the insulating resin layer in the connected structure is also arranged in individual pieces. You can expect the same effect as if you used it.
 フィラー配列フィルムを個片で配置する場合、一つの個片で複数の微細な第1電子部品、例えば、マイクロLEDを電気的に接続(以下、接続)してもよいが、一つの個片で一つのマイクロLEDを接続することが好ましく、複数の個片で一つのマイクロLEDを接続することも好ましい。一つの個片で接続すればフェレットの形成を調整し易くなり、複数の個片で一つのマイクロLEDを接続すれば、例えばP電極とN電極を別の個片で接続することになるので、より細かい調整が可能になる。複数の個片で複数のマイクロLEDを接続してもよい。例えば、複数のP電極とN電極が平行して設けられている場合、それぞれの電極の列に対応するように個片を設ければよい。また、絶縁性樹脂層の形成に黒色絶縁性樹脂組成物を利用したフィラー配列フィルムを個片で接続を行うと、マイクロLED外縁部のフェレットにおいてブラックマトリックスを形成することができ、接続とμLEDディスプレイの全体の色味の調整を行うことが可能となる。このようなフィラー配列フィルムの個片は、後述するレーザーリフトオフ法の他、スクリーン印刷法、エッチング法、インクジェット法等を利用して形成することができる。個片のサイズは、接続すべき第1電子部品の形状やサイズに応じて適宜決定することができる。 When arranging the filler array film in individual pieces, a plurality of minute first electronic components, such as micro LEDs, may be electrically connected (hereinafter referred to as connection) with one individual piece. It is preferable to connect one micro LED, and it is also preferable to connect one micro LED using a plurality of individual pieces. If you connect it with one individual piece, it will be easier to adjust the formation of the ferret, and if you connect one micro LED with multiple pieces, for example, the P electrode and N electrode will be connected with different pieces. Allows for more detailed adjustments. A plurality of micro LEDs may be connected using a plurality of individual pieces. For example, when a plurality of P electrodes and N electrodes are provided in parallel, individual pieces may be provided to correspond to each row of electrodes. In addition, if a filler array film using a black insulating resin composition is connected in individual pieces to form an insulating resin layer, a black matrix can be formed in the ferret at the outer edge of the micro LED, and the connection and μLED display It becomes possible to adjust the overall color tone. Such individual pieces of filler array film can be formed using a screen printing method, an etching method, an inkjet method, etc. in addition to the laser lift-off method described below. The size of each piece can be appropriately determined depending on the shape and size of the first electronic component to be connected.
 フィラー配列フィルムの第2電子部品の表示部への配置方法としては、特に限定されるものではない。例えばフィラー配列フィルムの表示部の全面に配置する場合、ラミネートする方法などが挙げられる。また、例えばフィラー配列フィルムの個片を表示部の一部に配置する場合、レーザーリフトオフ(LLO:Laser Lift Off)装置を用いて個片を基材フィルムから第2電子部品に直接転写、配置する方法、個片を予め密着させた転写材(スタンプ材)を用いて転写材から第2電子部品に転写、配置する方法などが挙げられる。 The method of arranging the filler array film on the display section of the second electronic component is not particularly limited. For example, when disposing the filler array film over the entire display area, a laminating method can be used. For example, when placing individual pieces of filler array film in a part of the display section, a laser lift-off (LLO) device is used to directly transfer and place the pieces from the base film onto the second electronic component. Examples include a method of transferring and arranging the electronic component from the transfer material to the second electronic component using a transfer material (stamp material) in which individual pieces are brought into close contact with each other in advance.
 なお、マイクロLED等の第1電子部品を、第2電子部品の所定位置に熱圧着により配置されたフィラー配列フィルム又はレーザーリフトオフ加工法で転写されたフィラー配列フィルムの個片に、レーザーリフトオフ加工法で着弾させる場合、第1電子部品の着弾ずれ、変形、破壊、抜けなどが発生することを防止するために、フィラー配列フィルムの絶縁性樹脂層には、着弾の衝撃を和らげるクッション性を付与するゴム成分(例えばアクリルゴム、シリコーンゴム、ブタジエンゴム、ポリウレタン系エラストマー等)や、機械的強度を付与する無機フィラー(例えばシリカ、タルク、酸化チタン、炭酸カルシウム等)を含有させることが好ましい。 Note that a first electronic component such as a micro LED is placed on a filler array film placed at a predetermined position of a second electronic component by thermocompression bonding, or on an individual piece of a filler array film transferred using a laser lift-off processing method. When the first electronic component is landed, the insulating resin layer of the filler array film is provided with a cushioning property that softens the impact of the first electronic component. It is preferable to contain a rubber component (for example, acrylic rubber, silicone rubber, butadiene rubber, polyurethane elastomer, etc.) and an inorganic filler that imparts mechanical strength (for example, silica, talc, titanium oxide, calcium carbonate, etc.).
 このようなゴム成分や無機フィラーが配合された絶縁性樹脂層は、レーザー照射前においては、JIS K6253に準拠したデュロメータA硬度(JIS K6253に準拠)が好ましくは20~40、より好ましくは20~35、特に好ましくは20~30のものであり、JIS K7244に準拠した動的粘弾性試験機(温度30℃、周波数200Hz;バイブロン、株式会社エー・アンド・デイ)により得られる貯蔵弾性率が好ましくは60MPa以下、より好ましくは30MPa以下、特に好ましくは10MPa以下のものである。 The insulating resin layer containing such a rubber component and inorganic filler has a durometer A hardness (based on JIS K6253) of preferably 20 to 40, more preferably 20 to 40, before laser irradiation. 35, particularly preferably 20 to 30, and preferably has a storage modulus obtained by a dynamic viscoelasticity tester (temperature 30 ° C., frequency 200 Hz; Vibron, A&D Co., Ltd.) in accordance with JIS K7244. is 60 MPa or less, more preferably 30 MPa or less, particularly preferably 10 MPa or less.
 また、絶縁性樹脂層は、硬化後のJIS K7244に準拠した引張モードで測定された温度30℃における貯蔵弾性率が、100MPa以上であることが好ましく、2000MPa以上であることが更に好ましい。温度30℃における貯蔵弾性率が低すぎる場合、良好な導通性が得られず、接続信頼性も低下する傾向にある。温度30℃における貯蔵弾性率は、JIS K7244に準拠し、粘弾性試験機(バイブロン)を用いた引張モードで、例えば、周波数11Hz、昇温速度3℃/minの測定条件で測定することができる。 Further, the storage modulus of the insulating resin layer after curing at a temperature of 30° C. measured in a tensile mode according to JIS K7244 is preferably 100 MPa or more, and more preferably 2000 MPa or more. If the storage modulus at a temperature of 30° C. is too low, good conductivity cannot be obtained and connection reliability tends to decrease. The storage modulus at a temperature of 30°C can be measured in accordance with JIS K7244 in tensile mode using a viscoelasticity testing machine (Vibron), for example, at a frequency of 11Hz and a heating rate of 3°C/min. .
 なお、マイクロLED等の第1電子部品を、ポリジメチルシロキサン(PDMS)等のシリコーンゴム製の基板の所定位置(即ち、第1電子部品を再転写させるべき第2電子部品の所定位置に対応した位置)にレーザーリフトオフ加工法により転写(着弾)させた第1電子部品配置シートを、その第1電子部品側を第2電子部品に対向させ、位置合わせを行った後、転写させることもできる。 Note that the first electronic component such as a micro LED is placed at a predetermined position on a substrate made of silicone rubber such as polydimethylsiloxane (PDMS) (i.e., corresponding to the predetermined position of the second electronic component to which the first electronic component is to be retransferred). It is also possible to transfer the first electronic component arrangement sheet transferred (landed) by the laser lift-off processing method to the second electronic component position, with the first electronic component side facing the second electronic component, and after alignment.
<フィラー配列フィルム>
 接続構造体1Aの製造において使用するフィラー配列フィルムとしては、フィラーとして導電粒子が単一又は複数の絶縁性樹脂層の積層体に保持されているものを使用することができる。導電粒子が複数の絶縁性樹脂層の積層体に保持されているものを使用する場合、図5に示すように、フィラー配列フィルム30の絶縁性樹脂層31を、導電粒子2を保持する高粘度バインダー樹脂層32と、高粘度バインダー樹脂層32よりも低粘度の接着剤層33とすることができる。
<Filler array film>
As the filler array film used in manufacturing the connected structure 1A, a film in which conductive particles are held as a filler in a laminate of a single or plural insulating resin layers can be used. When using a laminate in which conductive particles are held in a plurality of insulating resin layers, as shown in FIG. The adhesive layer 33 can have a lower viscosity than the binder resin layer 32 and the high viscosity binder resin layer 32.
 接続構造体1Aの製造方法において、図1に示したように絶縁性樹脂層3に傾斜領域4や平坦領域5が形成され、前述した数式“0≦B/A<1、かつE≦500μm”が満たされるように形成するため、フィラー配列フィルムとしては、絶縁性樹脂層31の厚みをLa、導電粒子2の平均粒子径をDとした場合に、La/Dを好ましくは0.6以上8以下、より好ましくは1以上2以下、さらに好ましくは1.0以上1.3以下とする。 In the method of manufacturing the connected structure 1A, as shown in FIG. 1, the inclined region 4 and the flat region 5 are formed in the insulating resin layer 3, and the above-mentioned mathematical formula "0≦B/A<1 and E≦500 μm" is formed. In order to form the filler array film so that the following is satisfied, La/D is preferably 0.6 or more and 8 Hereinafter, it is more preferably 1 or more and 2 or less, and even more preferably 1.0 or more and 1.3 or less.
 また、絶縁性樹脂層31の厚みLaと、第1電子部品10の電極面11aから天面13までの高さAとの比La/Aを、好ましくは0.1以上1以下、より好ましくは0.5以上0.8以下とする。 Further, the ratio La/A between the thickness La of the insulating resin layer 31 and the height A from the electrode surface 11a to the top surface 13 of the first electronic component 10 is preferably 0.1 or more and 1 or less, more preferably 0.5 or more and 0.8 or less.
 さらに、接続構造体1Aの絶縁性樹脂層3に上述の傾斜領域4や平坦領域5をもたらすため、フィルム厚みは電極高さに対して1.5倍以上が好ましく、7.5倍以下が好ましく、4.5倍以下にすることがより好ましい。また、最低溶融粘度を8000~12000Pa・sの範囲内にすることで、比較的薄いフィルムを押し込む際にμLEDの埋込状態を制御できるため好ましい。 Furthermore, in order to provide the above-mentioned inclined region 4 and flat region 5 in the insulating resin layer 3 of the connected structure 1A, the film thickness is preferably 1.5 times or more and preferably 7.5 times or less relative to the electrode height. , more preferably 4.5 times or less. Furthermore, it is preferable to set the minimum melt viscosity within the range of 8,000 to 12,000 Pa·s because the embedded state of the μLED can be controlled when pressing a relatively thin film.
 フィラー配列フィルム30の絶縁性樹脂層31の高粘度バインダー樹脂層32と接着剤層33を構成する樹脂は、例えば、特許文献3に記載の絶縁性樹脂層を構成するバインダーや接着剤層と同様とすることができる。異なる層に異なるフィラーを配置させて積層してもよい。 The resins constituting the high viscosity binder resin layer 32 and adhesive layer 33 of the insulating resin layer 31 of the filler array film 30 are, for example, similar to the binder and adhesive layer constituting the insulating resin layer described in Patent Document 3. It can be done. Different fillers may be placed in different layers and laminated.
 絶縁性樹脂層31には必要に応じてゴム成分、無機フィラー、シランカップリング剤、希釈用モノマー、充填剤、軟化剤、着色剤、難燃化剤、チキソトロピック剤などを添加することができる。 A rubber component, an inorganic filler, a silane coupling agent, a diluent monomer, a filler, a softener, a coloring agent, a flame retardant, a thixotropic agent, etc. can be added to the insulating resin layer 31 as necessary. .
 ゴム成分を接続構造体の反りや歪みの防止のために配合してもよい。ゴム成分は、クッション性(衝撃吸収性)の高いエラストマーであれば特に限定されるものではなく、具体例として、例えば、アクリルゴム、シリコーンゴム、ブタジエンゴム、ポリウレタン樹脂(ポリウレタン系エラストマー)などを挙げることができる。 A rubber component may be added to prevent warpage and distortion of the connected structure. The rubber component is not particularly limited as long as it is an elastomer with high cushioning properties (shock absorption), and specific examples include acrylic rubber, silicone rubber, butadiene rubber, polyurethane resin (polyurethane elastomer), etc. be able to.
 フィラー配列フィルム30における導電粒子2の配置は、ランダムとしても規則的配置としてもよいが、各電極11、21における導電粒子の捕捉性を向上させる点から、導電粒子が所定ピッチで所定方向に配置されている配列軸を1以上有する平面格子パターンが好ましく、例えば、斜方格子、六方格子、正方格子、矩形格子、平行体格子などが挙げられる。また、平面格子パターンの異なる領域があってもよい。 The arrangement of the conductive particles 2 in the filler array film 30 may be either random or regular, but from the viewpoint of improving the ability to capture the conductive particles in each electrode 11, 21, the conductive particles are arranged at a predetermined pitch in a predetermined direction. A planar lattice pattern having one or more arrangement axes is preferred, and examples thereof include an orthorhombic lattice, a hexagonal lattice, a square lattice, a rectangular lattice, a parallel body lattice, and the like. Furthermore, there may be regions with different planar lattice patterns.
 フィラー配列フィルム30において、導電粒子2の平均粒子径Dは,好ましくは1μm以上50μm以下、より好ましくは1μm以上2μm以下である。 In the filler array film 30, the average particle diameter D of the conductive particles 2 is preferably 1 μm or more and 50 μm or less, more preferably 1 μm or more and 2 μm or less.
 平均粒子径は、画像型粒度分布計(一例として、FPIA-3000:マルバーン・パナリティカル社製)により測定した値とすることができる。測定の際、粒子個数は1000個以上、好ましくは2000個以上であることが好ましい。 The average particle diameter can be a value measured using an image-type particle size distribution analyzer (for example, FPIA-3000: manufactured by Malvern Panalytical). During measurement, the number of particles is preferably 1,000 or more, preferably 2,000 or more.
 導電粒子2の硬度は、20%変形時の圧縮硬さ(20%K値)が好ましくは2000N/mm2以上25000N/mm2以下、より好ましくは5000N/mm2以上10000N/mm2以下である。 The hardness of the conductive particles 2 is such that the compressive hardness at 20% deformation (20% K value) is preferably 2000 N/mm 2 or more and 25000 N/mm 2 or less, more preferably 5000 N/mm 2 or more and 10000 N/mm 2 or less. .
 フィラー配列フィルム30における導電粒子2の個数密度は、30個/mm2以上500000個/mm2以下とすることができ、好ましくは120000個/mm2以上350000個/mm2以下、より好ましくは150000個/mm2以上300000個/mm2以下とすることが好ましい。 The number density of conductive particles 2 in the filler array film 30 can be 30 to 500,000 particles/mm 2 , preferably 120,000 to 350,000 particles/mm 2 , more preferably 150,000 to 350,000 particles/mm 2 . It is preferable to set the number of particles/mm 2 to 300,000 pieces/mm 2 or less.
 なお、導電粒子2の個数密度は、金属顕微鏡を用いて観察して求める他、画像解析ソフト(例えば、WinROOF(三谷商事株式会社)や、A像くん(登録商標)(旭化成エンジニアリング株式会社)等)により観察画像を計測して求めてもよい。導電粒子の個数は、フィラー配列フィルム上で観察された個数を計測する。 The number density of the conductive particles 2 can be determined by observation using a metallurgical microscope, or by using image analysis software (for example, WinROOF (Mitani Shoji Co., Ltd.), Azo-kun (registered trademark) (Asahi Kasei Engineering Co., Ltd.), etc. ) may be obtained by measuring the observed image. The number of conductive particles is determined by counting the number of conductive particles observed on the filler array film.
 また、導電粒子2の種類としては、公知の異方性導電フィルムに用いられている導電粒子の中から適宜選択することができる。例えば、導電粒子としては、ニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、ハンダなどの合金粒子、金属被覆樹脂粒子、表面に絶縁性微粒子が付着している金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。中でも、金属被覆樹脂粒子が、接続された後に樹脂粒子が反発することで端子との接触が維持され易くなり、導通性能が安定する点から好ましい。また、導電粒子の表面には公知の技術によって、導通特性に支障を来さない絶縁処理が施されていてもよい。 Furthermore, the type of conductive particles 2 can be appropriately selected from among conductive particles used in known anisotropic conductive films. For example, conductive particles include metal particles such as nickel, cobalt, silver, copper, gold, and palladium, alloy particles such as solder, metal-coated resin particles, and metal-coated resin particles with insulating fine particles attached to the surface. Can be mentioned. Two or more types can also be used in combination. Among these, metal-coated resin particles are preferable because the resin particles repel after being connected, making it easier to maintain contact with the terminal and stabilizing conduction performance. Further, the surface of the conductive particles may be subjected to an insulation treatment using a known technique so as not to impede conduction characteristics.
 なお、フィラー配列フィルムにおいてフィラーとしては、当該フィラー配列フィルムの用途に応じて、無機系フィラー(金属粒子、金属酸化物粒子、金属窒化物粒子など)、有機系フィラー(樹脂粒子、ゴム粒子など)、有機系材料と無機系材料が混在したフィラー(例えば、コアが樹脂材料で形成され、表面が金属メッキされている粒子(金属被覆樹脂粒子)、導電粒子の表面に絶縁性微粒子を付着させたもの、導電粒子の表面を絶縁処理したもの等)から、硬さ、光学的性能などの用途に求められる性能に応じて適宜選択される。 The filler in the filler array film may include inorganic fillers (metal particles, metal oxide particles, metal nitride particles, etc.), organic fillers (resin particles, rubber particles, etc.) depending on the use of the filler array film. , fillers containing a mixture of organic and inorganic materials (for example, particles whose core is made of a resin material and whose surface is plated with metal (metal-coated resin particles), conductive particles with insulating fine particles attached to their surfaces) (conductive particles whose surfaces are insulated, etc.) depending on the performance required for the application, such as hardness and optical performance.
 例えば、フィラー配列フィルムをμLED等の微小光学素子の発色の調整や、カラーディスプレイにおけるブラックマトリックス等の用途に使用する場合、フィラーとして公知の色素、顔料、光散乱性粒子等を含有させてもよい。 For example, when the filler array film is used to adjust the color development of micro-optical elements such as μLEDs, or as a black matrix in color displays, it may contain known fillers such as dyes, pigments, light-scattering particles, etc. .
<フィラー配列フィルムの製造方法>
 フィラー配列フィルム30は、接続構造体1Aにおける絶縁性樹脂層31が図1に示した傾斜領域4と平坦領域5を有するように、最低溶融粘度と厚みを調整する以外は公知の異方性導電フィルムと同様に製造することができる。
<Method for manufacturing filler array film>
The filler array film 30 was made of a known anisotropic conductive material, except that the minimum melt viscosity and thickness were adjusted so that the insulating resin layer 31 in the connected structure 1A had the inclined region 4 and the flat region 5 shown in FIG. It can be manufactured in the same way as a film.
 例えば、特許文献3に記載の異方性導電フィルムの製造方法と同様に、まず、導電粒子の配列パターンに応じた凹部が形成された型を用意し、その型に導電粒子2を充填し、その上に剥離フィルム上に形成した高粘度バインダー樹脂層32を貼り合わせて、導電粒子2を高粘度バインダー樹脂層32に押し込んで転着し、その転着面に接着剤層33を積層する。ここで、絶縁性樹脂層31の厚みを図1に示したように変化させるため、最低溶融粘度と厚みを調整し、絶縁性樹脂層を更に積層してもよい。 For example, similar to the method for manufacturing an anisotropic conductive film described in Patent Document 3, first, a mold in which recesses are formed according to the arrangement pattern of conductive particles is prepared, the mold is filled with conductive particles 2, A high viscosity binder resin layer 32 formed on a release film is laminated thereon, the conductive particles 2 are pushed into the high viscosity binder resin layer 32 and transferred, and an adhesive layer 33 is laminated on the transferred surface. Here, in order to change the thickness of the insulating resin layer 31 as shown in FIG. 1, the minimum melt viscosity and thickness may be adjusted and further insulating resin layers may be laminated.
<フィラー配列フィルムの使用例>
 フィラー配列フィルムは、例えばRGB1組の1ピクセル単位(1画素単位)など、所定単位の個片であってもよい。マイクロLEDのそれぞれの電極に対応する基板側の電極に応じて個片を離間させて設けてもよい。即ち、フィラー配列フィルムは個片状の形態をとることができる。個片の形状は、特に限定されるものではなく、接続対象である電子部品の寸法に応じて適宜設定することができる。フィラー配列フィルムの個片をLLO装置(例えば、商品名:Invisi LUM-XTR、信越化学工業株式会社)を用いるレーザーリフトオフ加工法(特開2017-157724号公報参照)により基材フィルム上に形成する場合は、捲れや欠けの発生を抑制するため、個片の形状は、鈍角からなる多角形、角が丸い多角形、楕円、長円、及び円から選択される少なくとも1種であることが好ましい。前出の本発明の接続構造体は、このような形状の個片からなる接続用のフィラー配列フィルムとマイクロLEDの組み合わせからなってもよく、個片になるフィルムの厚みや粘度等を調整することで、マイクロLEDが個片内に埋め込まれている態様も包含する。個片の形状が、鈍角からなる多角形、角が丸い多角形、楕円、長円、及び円から選択される少なくとも1種であり、基板側の電極のみに個々に離間して載置され、マイクロLEDの電極が離間した個片でそれぞれが接続された状態であってもよい。
<Example of use of filler array film>
The filler array film may be an individual piece of a predetermined unit, such as one pixel unit (one pixel unit) of one set of RGB, for example. The individual pieces may be spaced apart from each other depending on the electrodes on the substrate corresponding to the respective electrodes of the micro LED. That is, the filler array film can take the form of individual pieces. The shape of each piece is not particularly limited, and can be appropriately set depending on the dimensions of the electronic component to be connected. Individual pieces of filler array film are formed on a base film by a laser lift-off processing method (see Japanese Patent Application Laid-open No. 2017-157724) using an LLO device (for example, product name: Invisi LUM-XTR, Shin-Etsu Chemical Co., Ltd.). In this case, in order to suppress the occurrence of curling or chipping, it is preferable that the shape of the individual piece is at least one selected from a polygon with obtuse angles, a polygon with rounded corners, an ellipse, an ellipse, and a circle. . The above-mentioned connection structure of the present invention may be composed of a combination of a filler array film for connection consisting of individual pieces having such a shape and a micro LED, and the thickness, viscosity, etc. of the film that becomes the individual pieces may be adjusted. This also includes a mode in which the micro LED is embedded within the individual piece. The shape of the individual pieces is at least one selected from a polygon with obtuse angles, a polygon with rounded corners, an ellipse, an ellipse, and a circle, and the pieces are individually placed only on the electrode on the substrate side, The electrodes of the micro LED may be separated from each other and connected to each other.
 フィラー配列フィルムの個片の寸法(縦×横)は、接続対象である電子部品の寸法に応じて適宜設定され、電子部品の面積に対する個片の面積の比は、好ましくは2以上、より好ましくは4以上、さらに好ましくは5以上である。また、個片の厚みは、フィラー配列フィルムの厚みと同様、導電粒子の平均粒子径に好ましくは1~4μm、特に好ましくは1~2μmを加算したものであり、好ましくは1μm以上10μm以下、より好ましくは1μm以上6μm以下、さらに好ましくは2μm以上4μm以下である。なお、このようなフィラー配列フィルムの個片は、電子部品にのみ設けられてもよく、電子部品の電極のみに設けられてもよい。適切な樹脂の埋込状態を得るために、個片を複数個転写させ所定の樹脂厚みになるようにしてもよい。本発明は、このような接続構造体の製造方法も包含する。 The dimensions (length x width) of the individual pieces of the filler array film are appropriately set according to the dimensions of the electronic components to be connected, and the ratio of the area of the individual pieces to the area of the electronic components is preferably 2 or more, more preferably is 4 or more, more preferably 5 or more. Further, the thickness of the individual pieces is the same as the thickness of the filler array film, preferably 1 to 4 μm, particularly preferably 1 to 2 μm, added to the average particle diameter of the conductive particles, preferably 1 μm or more and 10 μm or less, and more preferably 1 μm or more and 10 μm or less. Preferably it is 1 μm or more and 6 μm or less, more preferably 2 μm or more and 4 μm or less. Note that such individual pieces of filler array film may be provided only on electronic components, or may be provided only on electrodes of electronic components. In order to obtain an appropriate resin embedding state, a plurality of individual pieces may be transferred to obtain a predetermined resin thickness. The present invention also includes a method of manufacturing such a connected structure.
 また、基材フィルム上の個片間の距離は、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。また、個片間の距離の上限は、好ましくは3000μm以下、より好ましくは1000μm以下、さらに好ましくは500μm以下である。個片間の距離が小さ過ぎる場合、個片のLLOによる転写が困難となり、個片間の距離が大きい場合、個片を貼り付ける方法が好ましくなる。個片間の距離は、顕微鏡観察(光学顕微鏡、金属顕微鏡、電子顕微鏡など)を用いて計測することができる。 Further, the distance between the individual pieces on the base film is preferably 3 μm or more, more preferably 5 μm or more, and still more preferably 10 μm or more. Further, the upper limit of the distance between the individual pieces is preferably 3000 μm or less, more preferably 1000 μm or less, and still more preferably 500 μm or less. If the distance between the individual pieces is too small, it will be difficult to transfer the individual pieces by LLO, and if the distance between the pieces is large, a method of pasting the individual pieces is preferred. The distance between pieces can be measured using microscopic observation (optical microscope, metallurgical microscope, electron microscope, etc.).
<個片状のフィラー配列フィルムの製造方法)
 フィラー配列フィルムの個片は、スリットやハーフカットにより形成してもよく、LLO装置を用いて形成してもよい。LLO装置を用いて個片を形成する場合、基材フィルムは、レーザー光に対して透過性を有するものであればよく、中でも全波長に亘って高い光透過率を有する石英ガラスであることが好ましい。
<Method for manufacturing individual piece-shaped filler array film)
The individual pieces of the filler array film may be formed by slits or half cuts, or may be formed using an LLO device. When forming individual pieces using an LLO device, the base film may be any material as long as it is transparent to laser light, especially quartz glass that has high light transmittance over all wavelengths. preferable.
 LLO装置を用いてフィラー配列フィルムの個片を形成する場合、基材フィルム上に設けられたフィラー配列フィルムに対して基材フィルム側からレーザー光を照射し、照射部分のフィラー配列フィルムを除去することにより、基材フィルム上にフィラー配列フィルムの所定形状の個片を形成することができる。 When forming individual pieces of filler array film using an LLO device, the filler array film provided on the base film is irradiated with laser light from the base film side, and the irradiated portions of the filler array film are removed. By doing so, individual pieces of the filler array film having a predetermined shape can be formed on the base film.
 例えば、開口の窓部が四角形状であるマスクを用い、基材フィルムからフィラー配列フィルムの不要部分を除去することにより、フィラー配列フィルムの残存部分で所定形状の個片を構成することができる。また、例えば、開口の窓部内に所定形状の遮光部が形成されたマスクを用い、基材フィルムから個片周囲のフィラー配列フィルムの不要部分を除去することにより、フィラー配列フィルムの残存部分で所定形状の個片を構成することができる。 For example, by removing unnecessary portions of the filler array film from the base film using a mask with a rectangular opening window, the remaining portions of the filler array film can be used to form individual pieces of a predetermined shape. In addition, for example, by using a mask in which a light shielding part of a predetermined shape is formed in the window of the opening and removing unnecessary parts of the filler array film around the individual pieces from the base film, the remaining parts of the filler array film can be used to form a predetermined shape. It is possible to construct individual pieces of the shape.
 また、LLO装置を用いて個片を作製した場合、個片の反応率は、25%以下、好ましくは20%以下、さらに好ましくは15%以下である。これにより、優れた転写性を得ることができる。なお、レーザー照射前の硬化性樹脂膜やレーザー照射後に得られた個片の反応率の測定は、例えばFT-IRを用いて反応基の減少率により求めることができる。例えば、エポキシ化合物の反応を利用した硬化性樹脂膜の場合、試料に赤外線を照射させてIRスペクトルを測定し、IRスペクトルのメチル基(2930cm-1付近)及びエポキシ基(914cm-1付近)のピーク高さを測定し、下記式のように、メチル基のピーク高さに対するエポキシ基のピーク高さの反応前後(例えばレーザー照射前後)の比率で算出することができる。 Further, when individual pieces are produced using an LLO apparatus, the reaction rate of the individual pieces is 25% or less, preferably 20% or less, and more preferably 15% or less. Thereby, excellent transferability can be obtained. Note that the reaction rate of the curable resin film before laser irradiation or the individual pieces obtained after laser irradiation can be determined by the reduction rate of reactive groups using, for example, FT-IR. For example, in the case of a curable resin film that utilizes the reaction of an epoxy compound, the sample is irradiated with infrared rays and the IR spectrum is measured. The peak height can be measured and calculated as the ratio of the peak height of the epoxy group to the peak height of the methyl group before and after the reaction (for example, before and after laser irradiation), as shown in the following formula.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 上記式において、Aは反応前のエポキシ基のピーク高さ、Bは反応前のメチル基のピーク高さ、aは反応後のエポキシ基のピーク高さ、bは反応後のメチル基のピーク高さである。なお、エポキシ基のピークに他のピークが重なる場合は、完全硬化(反応率100%)させたサンプルのピーク高さを0%とすればよい。 In the above formula, A is the peak height of the epoxy group before the reaction, B is the peak height of the methyl group before the reaction, a is the peak height of the epoxy group after the reaction, and b is the peak height of the methyl group after the reaction. It is. In addition, if the peak of the epoxy group overlaps with another peak, the peak height of the completely cured sample (reaction rate 100%) may be set to 0%.
<粒子整列黒色異方性導電フィルムの作成>
 表1の黒色絶縁性樹脂組成物(i)、(ii)及び(iii)をそれぞれ混合し、得られた混合物を剥離基材に塗布し、60℃、3minの乾燥処理を施すことにより、4μm又は6μm厚の黒色絶縁性樹脂フィルムをそれぞれ得た。
<Creation of particle-aligned black anisotropic conductive film>
The black insulating resin compositions (i), (ii), and (iii) in Table 1 were mixed, the resulting mixture was applied to a release base material, and a drying process was performed at 60°C for 3 minutes to form a 4 μm film. Alternatively, a black insulating resin film with a thickness of 6 μm was obtained.
 その後、特許第6187665の段落0111~0112及び図1Aに記載の導電粒子規則配列処理にて導電粒子(ミクロパールAU、積水化学工業(株))を粒子密度58000個/mmになるように規則配列させた後、黒色絶縁性樹脂フィルムに転写することにより、黒色絶縁性樹脂組成物(i)からは、粒子整列黒色異方性導電フィルムA、粒子整列黒色絶縁性樹脂組成物(ii)からは黒色異方性導電フィルムB、粒子整列黒色絶縁性樹脂組成物(iii)からは、黒色異方性導電フィルムCを得た。 Thereafter, conductive particles (Micropearl AU, Sekisui Chemical Co., Ltd.) were arranged to have a particle density of 58,000 particles/mm 2 by the conductive particle regular arrangement process described in paragraphs 0111 to 0112 of Patent No. 6187665 and FIG. 1A. After arranging, by transferring to a black insulating resin film, from the black insulating resin composition (i), the particle-aligned black anisotropic conductive film A, and the particle-aligned black insulating resin composition (ii) A black anisotropic conductive film B was obtained, and a black anisotropic conductive film C was obtained from the particle-aligned black insulating resin composition (iii).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実装サンプルの作成>
 得られた実施例1~4の黒色異方性導電フィルムを評価用基板に仮固定した被着体に評価用LEDチップを乗せて200℃-10Mpa-30secにて圧着し実装体を得た。得られた実装体について、「混色の程度」、「フィレット形成率F」、「導通抵抗」を以下に示すように試験・評価した。得られた結果を表2に示す。
<Creating an implementation sample>
The obtained black anisotropic conductive films of Examples 1 to 4 were temporarily fixed to an evaluation substrate, an LED chip for evaluation was placed on the adherend, and the LED chip was crimped at 200° C., 10 MPa, and 30 seconds to obtain a mounted body. The obtained mounting body was tested and evaluated for "degree of color mixing,""fillet formation rate F," and "continuity resistance" as shown below. The results obtained are shown in Table 2.
<混色の程度>
 実施例1~4では、実装体を暗室にて、評価用LEDチップを発光させ、散乱した光の輪郭を金属顕微鏡にて測長し、その最大値で混色性を評価した。
<Degree of color mixing>
In Examples 1 to 4, the LED chip for evaluation was made to emit light while the mounted body was placed in a dark room, the outline of the scattered light was measured using a metallurgical microscope, and the color mixing property was evaluated based on the maximum value.
(混色の評価)
評価ランク 基準
AA:5μm未満
A: 5μm以上15μm未満
B: 15μm以上25μm未満
C: 25μm以上
(Evaluation of color mixture)
Evaluation rank Standard AA: Less than 5 μm A: 5 μm or more and less than 15 μm B: 15 μm or more and less than 25 μm C: 25 μm or more
<フィレット形成率F>
 実装体のフィレット形状をレーザー顕微鏡観察により、LEDの高さ方向の側面長Lと、絶縁性樹脂層から露出している部分のLEDの高さBとを求め、下式に従ってフィレット形成率Fを求めた。実用的には、フィレット形成率Fが60%以上100%以下であることが好ましい。
<Fillet formation rate F>
By observing the fillet shape of the mounted body with a laser microscope, the side length L0 in the height direction of the LED and the height B of the portion of the LED exposed from the insulating resin layer are determined, and the fillet formation rate F is calculated according to the following formula. I asked for Practically, it is preferable that the fillet formation rate F is 60% or more and 100% or less.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
<導通抵抗>
 この実装体の評価用LEDチップに2対の10×10μm電極を設け、基板側の導通配線を通して導通抵抗測定を実施した。計30箇所測定を行い、得られた平均導通抵抗を以下の基準に従って評価した。
<Continuity resistance>
Two pairs of 10×10 μm electrodes were provided on the evaluation LED chip of this mounted body, and conduction resistance was measured through the conduction wiring on the substrate side. Measurements were made at 30 locations in total, and the resulting average conduction resistance was evaluated according to the following criteria.
(導通抵抗評価)
評価ランク 基準
 A: 50Ω以下
 B: 50Ω超100Ω以下
 C: 100Ω超200Ω以下
 D(NG): 200Ω超
(Continuity resistance evaluation)
Evaluation rank criteria A: 50Ω or less B: More than 50Ω and less than 100Ω C: More than 100Ω and less than 200Ω D (NG): More than 200Ω
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<結果の考察>
 混色の程度は、フィレット形成率Fが60%である実施例1~3の場合、混色評価がA評価であった。フィレット形成率Fが100%である実施例4の場合、フィレット形成率60%である実施例1~3の場合より更に混色の程度が良好であり、AA評価であった。実施例4の方が、LED側面から出射する光をよりカットできたためと考えられる。なお、実施例1~4の場合、いずれも導通抵抗評価がAであり、実用上全く問題ないものであった。
<Discussion of results>
Regarding the degree of color mixing, in Examples 1 to 3 where the fillet formation rate F was 60%, the color mixing evaluation was A rating. In the case of Example 4, in which the fillet formation rate F was 100%, the degree of color mixing was even better than in Examples 1 to 3, in which the fillet formation rate was 60%, and was rated AA. This is probably because Example 4 was able to more effectively cut out the light emitted from the side surface of the LED. In addition, in the case of Examples 1 to 4, the conduction resistance evaluation was A in all cases, and there was no problem at all in practical use.
 本発明の接続構造体は第1電子部品の天面が絶縁性樹脂層から露出し、好ましくは天面に隣接する側面も絶縁性樹脂層から露出しているので、第1電子部品が発する光が絶縁性樹脂層で過度に遮られることを抑制できる。また、第1電子部品の電極及びその電極の形成基面は絶縁性樹脂層に埋め込まれているので、第1電子部品と第2電子部品とは確実に接続され、かつ第1電子部品の周囲には該第1電子部品との距離に応じて絶縁性樹脂層の厚みが変化している傾斜領域が形成されているので、この接続構造体は第1電子部品の実装に必要な樹脂層厚が確保されると共に、過剰な樹脂層厚が削減されたものとなる。また、絶縁性樹脂層の形成に黒色絶縁性樹脂組成物を利用すると、LEDの接続とブラックマトリックスの形成のプロセス短縮・コストダウンを図ることができる。 In the connected structure of the present invention, the top surface of the first electronic component is exposed from the insulating resin layer, and preferably the side surface adjacent to the top surface is also exposed from the insulating resin layer, so that the light emitted by the first electronic component is can be prevented from being excessively blocked by the insulating resin layer. Furthermore, since the electrode of the first electronic component and the base surface on which the electrode is formed are embedded in the insulating resin layer, the first electronic component and the second electronic component are reliably connected, and the area around the first electronic component is Since a sloped region is formed in which the thickness of the insulating resin layer changes depending on the distance from the first electronic component, this connection structure has a thickness of the resin layer necessary for mounting the first electronic component. is ensured, and excessive resin layer thickness is reduced. Further, when a black insulating resin composition is used to form the insulating resin layer, it is possible to shorten the process and reduce the cost of connecting the LED and forming the black matrix.
1A、1B、1C、1D 接続構造体
2 フィラー、導電粒子
3 絶縁性樹脂層
4 傾斜領域
4a 傾斜領域の外縁部
5、5a、5b 平坦領域
10 第1電子部品、μLED
11 電極
11a 電極面
12 電極の形成基面
13 天面
14 側面
20 第2電子部品、基板
21 電極
30 フィラー配列フィルム
31 絶縁性樹脂層
32 高粘度バインダー樹脂層
33 接着剤層
A 第1電子部品の電極面からの第1電子部品の天面までの高さ
B 第1電子部品の絶縁性樹脂層から露出している部分の高さ
E 傾斜領域の外縁部と第1電子部品との距離
D 導電粒子の平均粒子径
La 絶縁性樹脂層の厚み
 第1電子部品の側面長さ
1A, 1B, 1C, 1D Connected structure 2 Filler, conductive particles 3 Insulating resin layer 4 Slanted region 4a Outer edge of the sloped region 5, 5a, 5b Flat region 10 First electronic component, μLED
11 Electrode 11a Electrode surface 12 Electrode formation base surface 13 Top surface 14 Side surface 20 Second electronic component, substrate 21 Electrode 30 Filler array film 31 Insulating resin layer 32 High viscosity binder resin layer 33 Adhesive layer A First electronic component Height B from the electrode surface to the top surface of the first electronic component Height of the portion of the first electronic component exposed from the insulating resin layer E Distance D between the outer edge of the inclined region and the first electronic component Conductivity Average particle diameter of particles La Thickness of insulating resin layer L 0 Side length of first electronic component

Claims (14)

  1.  第1電子部品の電極と第2電子部品の電極がフィラーを介して接続されると共に、第2電子部品上の絶縁性樹脂層に第1電子部品の電極及び電極の形成基面が埋め込まれ、第1電子部品の天面が絶縁性樹脂層から露出している接続構造体であって、
     第1電子部品の周りに絶縁性樹脂層の厚みが第1電子部品との距離に応じて変化している傾斜領域を有すると共に、該傾斜領域に隣接して絶縁性樹脂層の厚みが一定の平坦領域を有し、
     第1電子部品の電極面からの第1電子部品の天面の高さをA、絶縁性樹脂層から露出している部分の第1電子部品の高さをB、傾斜領域の外縁部と第1電子部品との距離をEとした場合に、
     0≦B/A<1、かつE≦500μm
    である接続構造体。
    The electrode of the first electronic component and the electrode of the second electronic component are connected via a filler, and the electrode of the first electronic component and the base surface for forming the electrode are embedded in the insulating resin layer on the second electronic component, A connection structure in which a top surface of a first electronic component is exposed from an insulating resin layer,
    There is a sloped area around the first electronic component in which the thickness of the insulating resin layer changes depending on the distance from the first electronic component, and adjacent to the sloped area, the thickness of the insulating resin layer is constant. has a flat area,
    A is the height of the top surface of the first electronic component from the electrode surface of the first electronic component, B is the height of the portion of the first electronic component exposed from the insulating resin layer, and B is the height of the top surface of the first electronic component from the electrode surface of the first electronic component. 1 When the distance to electronic components is E,
    0≦B/A<1 and E≦500μm
    A connection structure that is
  2.  第1電子部品の天面に隣接する側面が絶縁性樹脂層から部分的に露出している請求項1記載の接続構造体。 The connected structure according to claim 1, wherein a side surface of the first electronic component adjacent to the top surface is partially exposed from the insulating resin layer.
  3.  傾斜領域において、第1電子部品との距離が大きくなるにつれて絶縁性樹脂層の厚みが小さくなっている請求項1又は2記載の接続構造体。 The connected structure according to claim 1 or 2, wherein in the inclined region, the thickness of the insulating resin layer decreases as the distance from the first electronic component increases.
  4.  傾斜領域において、第1電子部品との距離が大きくなるにつれて絶縁性樹脂層の厚みが大きくなっている請求項1又は2記載の接続構造体。 The connected structure according to claim 1 or 2, wherein in the inclined region, the thickness of the insulating resin layer increases as the distance from the first electronic component increases.
  5.  傾斜領域の外側に平坦領域が形成されている請求項1又は2記載の接続構造体。 The connection structure according to claim 1 or 2, wherein a flat region is formed outside the sloped region.
  6.  第1電子部品の電極と第2電子部品の電極とを接続しているフィラーが、単一の絶縁性樹脂層又は複数の絶縁性樹脂層の積層体にフィラーが保持されているフィラー配列フィルムに由来するものである請求項1記載の接続構造体。 The filler connecting the electrode of the first electronic component and the electrode of the second electronic component is a filler array film in which the filler is held in a single insulating resin layer or a laminate of multiple insulating resin layers. The connected structure according to claim 1, wherein the connected structure is derived from
  7.  第1電子部品と傾斜領域との間に絶縁性樹脂層の厚みが一定の平坦領域を有し、平坦領域における絶縁性樹脂層の厚みが傾斜領域における絶縁性樹脂層の最小厚である請求項4記載の接続構造体。 Claim: A flat region having a constant thickness of the insulating resin layer is provided between the first electronic component and the inclined region, and the thickness of the insulating resin layer in the flat region is the minimum thickness of the insulating resin layer in the inclined region. 4. The connected structure according to 4.
  8.  第1電子部品と傾斜領域との間に絶縁性樹脂層の厚みが一定の平坦領域を有し、平坦領域における絶縁性樹脂層の厚みが傾斜領域における絶縁性樹脂層の最大厚である請求項3記載の接続構造体。 Claim: A flat region having a constant thickness of the insulating resin layer is provided between the first electronic component and the inclined region, and the thickness of the insulating resin layer in the flat region is the maximum thickness of the insulating resin layer in the inclined region. 3. The connected structure according to 3.
  9.  該絶縁性樹脂層が個片である請求項1記載の接続構造体。 The connected structure according to claim 1, wherein the insulating resin layer is a single piece.
  10.  絶縁性樹脂層が、ブラックマトリックス用黒色樹脂組成物から形成されている請求項3記載の接続構造体。 The connected structure according to claim 3, wherein the insulating resin layer is formed from a black resin composition for a black matrix.
  11.  ブラックマトリックス用黒色樹脂組成物が、チタンブラックを5質量%以上40質量%以下含有している請求項10記載の接続構造体。 The connected structure according to claim 10, wherein the black resin composition for a black matrix contains titanium black in an amount of 5% by mass or more and 40% by mass or less.
  12.  第1電子部品の高さ方向の側面長をLとし、絶縁性樹脂層から露出している部分の第1電子部品の高さをBとし、絶縁性樹脂層が形成するフィレットの高さを“L-B”とした時に、以下の式
    Figure JPOXMLDOC01-appb-I000001
     で定義されるフィレット形成率Fが60%以上100%以下である請求項10又は11記載の接続構造体。
    Let L0 be the side length of the first electronic component in the height direction, let B be the height of the part of the first electronic component exposed from the insulating resin layer, and let the height of the fillet formed by the insulating resin layer be When "L 0 - B", the following formula
    Figure JPOXMLDOC01-appb-I000001
    The connected structure according to claim 10 or 11, wherein the fillet formation rate F defined by is 60% or more and 100% or less.
  13.  第2電子部品の電極上にフィラー配列フィルムを貼着し、そのフィラー配列フィルムと、第1電子部品とを位置合わせして貼り合わせ、加熱加圧して第1電子部品の電極と第2電子部品の電極とを接続する、接続構造体の製造方法。 A filler array film is pasted on the electrode of the second electronic component, and the filler array film and the first electronic component are aligned and pasted together, and heated and pressurized to bond the electrode of the first electronic component and the second electronic component. A method for manufacturing a connection structure that connects an electrode.
  14.  光透過性基板の表面に形成された第1電子部品に対し、光透過性基板側からレーザー光を照射し、第2電子部品の所定箇所に配置されたフィラー配列フィルムに第1電子部品を着弾させる、接続構造体の製造方法。 A first electronic component formed on the surface of a light-transparent substrate is irradiated with a laser beam from the light-transparent substrate side, and the first electronic component is landed on a filler array film arranged at a predetermined location of the second electronic component. A method for manufacturing a connected structure.
PCT/JP2023/011574 2022-03-31 2023-03-23 Connection structure WO2023190055A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022059293 2022-03-31
JP2022-059293 2022-03-31
JP2022154761 2022-09-28
JP2022-154761 2022-09-28
JP2023-046920 2023-03-23
JP2023046920A JP2023152865A (en) 2022-03-31 2023-03-23 connection structure

Publications (1)

Publication Number Publication Date
WO2023190055A1 true WO2023190055A1 (en) 2023-10-05

Family

ID=88202083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011574 WO2023190055A1 (en) 2022-03-31 2023-03-23 Connection structure

Country Status (2)

Country Link
TW (1) TW202401460A (en)
WO (1) WO2023190055A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109383A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Liquid crystal display element and its production
JP2000138243A (en) * 1998-10-30 2000-05-16 Optrex Corp Semiconductor mounting structure
JP2011054867A (en) * 2009-09-04 2011-03-17 Lintec Corp Structure for connecting ic chip, and ic inlet and ic tag
JP2017045607A (en) * 2015-08-26 2017-03-02 積水化学工業株式会社 Conducive material, connection structure, and manufacturing method of connection structure
JP2017175093A (en) * 2016-03-25 2017-09-28 デクセリアルズ株式会社 Electronic component, connection body, and method of designing electronic component
JP2018090768A (en) * 2016-12-01 2018-06-14 デクセリアルズ株式会社 Filler-containing film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109383A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Liquid crystal display element and its production
JP2000138243A (en) * 1998-10-30 2000-05-16 Optrex Corp Semiconductor mounting structure
JP2011054867A (en) * 2009-09-04 2011-03-17 Lintec Corp Structure for connecting ic chip, and ic inlet and ic tag
JP2017045607A (en) * 2015-08-26 2017-03-02 積水化学工業株式会社 Conducive material, connection structure, and manufacturing method of connection structure
JP2017175093A (en) * 2016-03-25 2017-09-28 デクセリアルズ株式会社 Electronic component, connection body, and method of designing electronic component
JP2018090768A (en) * 2016-12-01 2018-06-14 デクセリアルズ株式会社 Filler-containing film

Also Published As

Publication number Publication date
TW202401460A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
CN112713142B (en) Luminous display unit and display device
JP6599295B2 (en) LIGHT EMITTING ELEMENT HAVING BELT ANGLE REFLECTOR AND MANUFACTURING METHOD
TWI786126B (en) Light-emitting device, manufacturing method thereof and display module using the same
US10535794B2 (en) Method for manufacturing light emitting device using a releasable base material
US12002907B2 (en) Light emitting module and method for manufacturing same
WO2023190055A1 (en) Connection structure
JP2023152865A (en) connection structure
WO2022202988A1 (en) Film with arranged filler
WO2022202987A1 (en) Filler disposition film
WO2024070317A1 (en) Connection structure
WO2023054259A1 (en) Filler-containing film
WO2024070369A1 (en) Connected structure
WO2023157709A1 (en) Method for manufacturing connection structure, and transfer method for singulated adhesive film
WO2024024192A1 (en) Manufacturing method for light emitting device, and black transfer film
WO2022202945A1 (en) Method for manufacturing display device
CN117063351A (en) Filler alignment film
CN117044043A (en) Filler alignment film
JP2022151822A (en) filler array film
JP2022151821A (en) filler array film
TW202416524A (en) Mask and method for manufacturing mask, and method for manufacturing display device and display device
JP2024049259A (en) Connection Structure
CN115528011A (en) Light-emitting device and manufacturing method thereof
JP2023121118A (en) Method for manufacturing connection structure, and method for transferring divided adhesive film
KR20230164139A (en) Manufacturing method and connection film of connection structure
JP2022151818A (en) Method for manufacturing display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780065

Country of ref document: EP

Kind code of ref document: A1