WO2023189918A1 - 半導体リレー及びそれを備えた半導体リレーモジュール - Google Patents

半導体リレー及びそれを備えた半導体リレーモジュール Download PDF

Info

Publication number
WO2023189918A1
WO2023189918A1 PCT/JP2023/011155 JP2023011155W WO2023189918A1 WO 2023189918 A1 WO2023189918 A1 WO 2023189918A1 JP 2023011155 W JP2023011155 W JP 2023011155W WO 2023189918 A1 WO2023189918 A1 WO 2023189918A1
Authority
WO
WIPO (PCT)
Prior art keywords
input terminal
semiconductor relay
axis
base
mosfet
Prior art date
Application number
PCT/JP2023/011155
Other languages
English (en)
French (fr)
Inventor
智成 栗秋
大祐 北原
道朗 恒岡
剛志 梶本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023189918A1 publication Critical patent/WO2023189918A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled

Definitions

  • the present disclosure relates to a semiconductor relay and a semiconductor relay module including the same.
  • semiconductor relays also called MOSFET output photocouplers and optical MOSFETs, have been known as means for transmitting AC signals.
  • a stub that is, a signal branch part, is formed inside due to the arrangement of input terminals, output terminals, and conductive members connected to these, and the stub resonates, causing insertion near the resonance frequency.
  • the loss Insertion Loss
  • the usable frequency band became narrower.
  • Patent Document 1 proposes a configuration in which conductor frames on which MOSFETs are placed are arranged on both sides of a conductor frame on which a light receiving element is placed. By arranging each frame in this manner, the length of the stub can be shortened, and it is possible to prevent the usable frequency band from becoming narrower due to the influence of the stub.
  • the physical length (physical length) of the input terminal connected to the light emitting element for signal input is long, and the electrical length on the input side is correspondingly long.
  • the electrical length is the length based on the propagation speed of electromagnetic waves in the signal transmission medium.In a vacuum, the physical length and the electrical length are the same, but in a general transmission medium, the electrical length is longer than the physical length.
  • the present disclosure has been made in view of the above, and an object thereof is to provide a semiconductor relay that can suppress deterioration of an output signal due to the structure on the input side, and a semiconductor relay module equipped with the same.
  • a semiconductor relay includes a housing having an upper surface and a lower surface located below the upper surface along a first axis, and a first input terminal and a second input terminal. , a first output terminal and a second output terminal, a light emitting element electrically connected to the first input terminal and the second input terminal, a first surface that receives output light of the light emitting element, and a first surface that receives the output light of the light emitting element; a light-receiving drive element having a second surface located below the first surface along the first axis and a first electrode; a first intermediate electrode electrically connected to the first electrode; a first MOSFET having a first output electrode electrically connected to the first output terminal; a first gate electrode; a second intermediate electrode electrically connected to the first electrode; a second MOSFET having a second output electrode electrically connected to an output terminal and a second gate electrode; a first base body having a first main surface on which the light emitting element is disposed;
  • a connecting conductor having a second main surface disposed thereon and connected to the same potential to the first electrode, at least a part of the connecting conductor is connected to the first electrode when viewed along the first axis. It is arranged between the first MOSFET and the second MOSFET, and the normal to the first main surface intersects the normal to the second main surface.
  • the semiconductor relay module includes at least the semiconductor relay and a circuit board on which first to fourth wirings are respectively formed, and the first wiring and the second wiring are respectively connected to the semiconductor relay.
  • the third wiring and the fourth wiring are connected to the first input terminal and the second input terminal, respectively, and the third wiring and the fourth wiring are connected to the first output terminal and the second output terminal of the semiconductor relay, respectively.
  • capacitive coupling and inductive coupling between input and output can be reduced, and the electrical length on the input side can be shortened. This allows the high frequency characteristics on the output side to be improved.
  • FIG. 1 is a perspective view of a semiconductor relay according to a first embodiment.
  • FIG. 2 is a diagram of the semiconductor relay viewed along the second axis.
  • FIG. 3 is a perspective view of a first input terminal and a second input terminal on which a light emitting element is placed.
  • FIG. 4 is a diagram of the light receiving drive element, the first MOSFET, and the second MOSFET as viewed along the first axis.
  • FIG. 5 is an equivalent circuit diagram of a semiconductor relay.
  • FIG. 6 is a perspective view of the semiconductor relay.
  • FIG. 7 is a perspective view of a semiconductor relay according to a comparative example.
  • FIG. 8 is an example of frequency dependence of insertion loss in a transmission signal on the output side of a semiconductor relay.
  • FIG. 9 is a perspective view of a semiconductor relay according to Modification 1.
  • FIG. 10 is a diagram of a semiconductor relay according to modification 2, viewed along the first axis.
  • FIG. 11 is a diagram of a light receiving drive element, a first MOSFET, and a second MOSFET according to Modification Example 3, viewed along the first axis.
  • FIG. 12 is a perspective view of a semiconductor relay according to the second embodiment.
  • FIG. 13 is a schematic diagram illustrating the difference in resonance phenomenon before and after inserting a resistor on the input side.
  • FIG. 14 is a perspective view of a semiconductor relay module according to Embodiment 3.
  • FIG. 15 is a diagram of the semiconductor relay module viewed along the second axis.
  • FIG. 16 is a diagram of the semiconductor relay module viewed along the third axis.
  • FIG. 1 shows a perspective view of the semiconductor relay according to the first embodiment
  • FIG. 2 shows a view of the semiconductor relay as viewed along the second axis
  • FIG. 3 shows a perspective view of a first input terminal and a second input terminal on which a light emitting element is mounted
  • FIG. 4 is a diagram of a light receiving drive element, a first MOSFET, and a second MOSFET viewed along the first axis. shows.
  • the outlines of the housing 11 and the light-shielding resin and light-transmitting resin constituting the housing 11 are indicated by broken lines.
  • the direction in which the first input terminal 6 and the second input terminal 7 are arranged may be referred to as the X direction.
  • the virtual axis extending in the X direction may be referred to as a second axis.
  • the X direction (second axis direction) is also the direction in which the first output terminal 8 and the second output terminal 9 are arranged.
  • the direction in which the first input terminal 6 and the first output terminal 8 are arranged is sometimes called the Y direction.
  • the virtual axis extending in the Y direction may be referred to as a third axis.
  • the Y direction (third axis direction) is also the direction in which the second input terminal 7 and the second output terminal 9 are arranged.
  • the Y direction is also the direction in which the light emitting elements 2 and the light receiving driving elements 5 are arranged.
  • the direction that intersects the X direction and the Y direction is sometimes called the Z direction. Further, the virtual axis extending in the Z direction may be referred to as a first axis.
  • the X direction, Y direction, and Z direction are orthogonal to each other. In the specification of this application, “orthogonal" means that they are orthogonal, including processing tolerances and manufacturing tolerances of each component constituting the semiconductor relay 1, as well as assembly tolerances between components. This does not mean that the objects are orthogonal in a strict sense.
  • the side where the light emitting element 2 is arranged may be called the upper or upper side
  • the side where the light receiving drive element 5 is arranged may be called the lower or lower side.
  • the terms “upper” and “lower” in this specification are strictly relative, and do not mean, for example, “upper” or “lower” along the vertical direction.
  • the semiconductor relay 1 includes a light emitting element 2, a light receiving drive element 5, a first MOSFET 3, and a second MOSFET 4.
  • the semiconductor relay 1 also includes a first input terminal 6 , a second input terminal 7 , a first output terminal 8 , a second output terminal 9 , a second base 10 , and a housing 11 .
  • the light emitting element 2 is a known LED (Light Emitting Diode) element.
  • the cathode electrode (not shown) of the light emitting element 2 is connected and fixed to the first base 7d via a conductive adhesive (not shown) such as silver paste.
  • the first base 7d is connected to the second input terminal 7.
  • anode electrode 2a of the light emitting element 2 is electrically connected to the three substrates via the wire 12.
  • the third base 6d is connected to the first input terminal 6.
  • the first input terminal 6 and the second input terminal 7, as well as the first base body 7d and the third base body 6d will be described in detail later.
  • the light receiving drive element 5 includes a light receiving element 51 and a control circuit 52 (both shown in FIG. 5).
  • the light receiving element 51 receives the output light from the light emitting element 2, and is made up of, for example, known photodiodes arranged in an array.
  • a source electrode 5a and a drain electrode 5b are formed on the upper surface (first surface) of the light receiving drive element 5.
  • the drain electrodes 5b are provided at two positions spaced apart from each other on the upper surface.
  • a light receiving portion which is a portion that receives the output light from the light receiving element 51, is also formed on the upper surface of the light receiving driving element 5, but for convenience of explanation, illustration thereof is omitted.
  • the source electrode 5a corresponds to the cathode electrode 51a (hereinafter sometimes referred to as the first electrode 5a or the first electrode 51a) of the light receiving element 51
  • the drain electrode 5b corresponds to the anode electrode 51b of the light receiving element 51.
  • the lower surface (second surface) of the light receiving drive element 5 is connected and fixed to the second base 10 via an adhesive (not shown).
  • the second base 10 is a rectangular conductor when viewed along the first axis.
  • the mounting surface of the light receiving drive element 5 on the second base body 10 is referred to as a second main surface 10a.
  • the normal to the second main surface 10a is parallel to the first axis, that is, along the Z direction. However, this does not mean that the normal line is parallel to the first axis in a strict sense.
  • the second base body 10 protrudes from the side opposite to the first input terminal 6 and the second input terminal 7 among the two side faces facing each other in the Y direction, and has a portion exposed to the outside from the side of the housing 11 (hereinafter referred to as The first externally exposed portions 10b are provided at two positions spaced apart from each other along the second axis on the above-mentioned side surface of the second base 10. .
  • the position and number of the first externally exposed portions 10b are not particularly limited to this.
  • the source electrode 5a of the light receiving drive element 5 in other words, the cathode electrode 51a (first electrode 51a) of the light receiving element 51 is electrically connected to the second base 10 via the wire 13. has been done. That is, the cathode electrode 51a of the light receiving element 51 is at the same potential as the second base 10. Also, one of the two drain electrodes 5b, 5b of the light receiving drive element 5 is electrically connected to the first gate electrode 3b of the first MOSFET 3, and the other is electrically connected to the second gate electrode 4b of the second MOSFET 4 via the wire 12. It is connected to the.
  • the first MOSFET 3 is a well-known vertical MOSFET, and has a first gate electrode 3b and a first source electrode 3a (hereinafter sometimes referred to as a first intermediate electrode 3a) on its upper surface. ), and a first drain electrode (not shown) is formed on the lower surface of each of them.
  • the first drain electrode (hereinafter sometimes referred to as the first output electrode) of the first MOSFET 3 is connected to the first output terminal 8 via a conductive adhesive (not shown) such as silver paste. , are electrically connected to the fourth base 8a.
  • the first source electrode 3a of the first MOSFET 3 is electrically connected to the second base 10 via the wire 12. That is, the first source electrode 3a of the first MOSFET 3 is electrically connected to the source electrode 5a of the light receiving drive element 5 via the second base 10 and the wire 12.
  • the first source electrode 3a of the first MOSFET 3 and the second base 10 are connected by two wires 12, 12 to strengthen the connection.
  • the second MOSFET 4 is a well-known vertical MOSFET, and has a second gate electrode 4b and a second source electrode 4a (hereinafter sometimes referred to as a second intermediate electrode 4a) on the upper surface, and a second drain electrode (hereinafter referred to as a second intermediate electrode 4a) on the lower surface. (not shown) are formed respectively.
  • the second drain electrode (hereinafter sometimes referred to as the second output electrode) of the second MOSFET 4 is connected to the second output terminal 9 via a conductive adhesive (not shown) such as silver paste. , are electrically connected to the fifth base 9a.
  • the first output terminal 8 and the second output terminal 9 will be explained in detail later.
  • the second source electrode 4a of the second MOSFET 4 is electrically connected to the second base 10 via the wire 12. That is, the second source electrode 4a of the second MOSFET 4 is electrically connected to the source electrode 5a of the light receiving drive element 5 via the second base 10 and the wire 12.
  • the second source electrode 4a of the second MOSFET 4 and the second base 10 are connected by two wires 12, 12 to strengthen the connection.
  • the first input terminal 6 is a conductive member having a first upright portion 6b and a first external connection portion 6a. Further, the first input terminal 6 is formed integrally with the third base 6d.
  • the third base body 6d, the first upright portion 6b, and the first external connection portion 6a are obtained, for example, by punching or bending a single copper plate.
  • the method of manufacturing the first input terminal 6 is not particularly limited to this. Note that the surface of the copper plate is plated with another metal film, for example, a metal film containing nickel (not shown). Note that the material of the metal film is not particularly limited to this.
  • the third base 6d is located inside the housing 11, and is a rectangular plate-shaped conductor when viewed along the third axis.
  • a wire 12 connected to the anode electrode 2a of the light emitting element 2 is connected to the third base 6d.
  • the first upright portion 6b is connected to the side surface located on the opposite side to the second input terminal 7.
  • the normal line of the connection surface with the wire 12 in the third base 6d is parallel to the third axis, that is, along the Y direction. However, this does not mean that the normal line is parallel to the third axis in a strict sense.
  • the first upright portion 6b has one end connected to the first external connection portion 6a, extends from the first external connection portion 6a along the first axis, and has the other end connected to the third base 6d. Further, the first upright portion 6b is provided so as to extend along the first axis so as to be orthogonal to the lower surface of the housing 11. In the first upright portion 6b, the surfaces whose normals are parallel to the third axis may be referred to as principal surfaces 6b1 and 6b2.
  • the first upright portion 6b is a plate-shaped portion whose thickness direction is along the third axis. Therefore, there are two main surfaces 6b1 and 6b2 of the first upright portion 6b, one main surface 6b1 is located close to the second base 10, and the other main surface 6b2 is located close to the side surface of the housing 11. It is in.
  • the normal line of the main surfaces 6b1 and 6b2 of the first upright portion 6b is along the third axis.
  • first upright portion 6b is formed with an annular portion 6b3 when viewed along the third axis. Further, a portion (hereinafter referred to as a fourth externally exposed portion 6c) that protrudes along the second axis and is exposed to the outside from the side surface of the housing 11 is provided in the middle of the first upright portion 6b.
  • the first external connection portion 6a extends downward from one end of the first upright portion 6b, is bent near the bottom surface of the housing 11, and is formed to be exposed in the Y direction and from the side and bottom surfaces of the housing 11. .
  • the second input terminal 7 is a conductive member having a second standing portion 7b and a second external connection portion 7a. Further, the second input terminal 7 is formed integrally with the first base 7d.
  • the materials and manufacturing methods of the first base body 7d and the second input terminal 7 are the same as those of the third base body 6d and the first input terminal 6, so the description thereof will be omitted.
  • the respective shapes and mutual connection relationships of the first base 7d, the second upright portion 7b, and the second external connection portion 7a are the same as those of the third base 6d, the first upright portion 6b, and the first external connection portion 6a. Therefore, detailed explanation will be omitted.
  • the second upright portion 7b has a pair of main surfaces 7b1 and 7b2, similar to the first upright portion 6b.
  • a part (hereinafter referred to as a fifth externally exposed part 7c) that protrudes along the first axis and is exposed to the outside from the side surface of the housing 11 is provided in the middle of the second upright part 7b.
  • the exposed portion 7c is arranged at a position facing the fourth externally exposed portion 6c in the X direction.
  • the first standing portion 6b and the second standing portion 7b may be collectively referred to as an standing portion.
  • the first external connection site 6a and the second external connection site 7a may be collectively referred to as an external connection site.
  • the first base 7d is located inside the housing 11, and is a rectangular plate-shaped conductor when viewed along the third axis. Further, the surface on which the light emitting element 2 is placed on the first base 7d is referred to as a first main surface 7d1.
  • the normal to the first main surface 7d1 is parallel to the third axis, that is, along the Y direction. However, this does not mean that the normal line is parallel to the third axis in a strict sense.
  • the light emitting element 2 is connected and fixed to the first main surface 7d1 of the first base 7d. Further, of the two side surfaces of the first base body 7d facing each other in the X direction, the second upright portion 7b is connected to the side surface located on the opposite side to the first input terminal 6. Further, the normal to the first main surface 7d1 of the first base 7d is parallel to the third axis, that is, along the Y direction. However, this does not mean that the normal line is parallel to the third axis in a strict sense.
  • the first output terminal 8 includes a fourth base 8a that is a rectangular plate-shaped conductor when viewed along the first axis. Further, the lower surface of the fourth base 8a is exposed from the lower surface of the housing 11, and serves as a connection terminal for a circuit board 40 (see FIGS. 14 to 16), which will be described later.
  • the fourth base body 8a protrudes from the side opposite to the second MOSFET 4 and the light receiving drive element 5, and has a portion exposed to the outside from the side of the housing 11 (hereinafter referred to as the Note that the number of second externally exposed portions 8b is not particularly limited to those shown in FIGS. 1 and 3.
  • the second output terminal 9 includes a fifth base 9a that is a rectangular plate-shaped conductor when viewed along the first axis. Further, the lower surface of the fifth base body 9a is exposed to the lower surface of the housing 11, and serves as a connection terminal for a circuit board 40 (see FIGS. 14 to 16), which will be described later.
  • the fifth base body 9a protrudes from the side opposite to the first MOSFET 3 and the light receiving drive element 5, and has a portion exposed to the outside from the side of the housing 11 (hereinafter referred to as the Note that the number of third externally exposed portions 9b is not particularly limited to those shown in FIGS. 1 and 3.
  • the housing 11 has an upper surface, a lower surface, and four side surfaces.
  • the lower surface is located below the upper surface along the first axis.
  • Each of the four side surfaces is continuous with the top surface and the bottom surface, and is parallel to the first axis.
  • the normals of the two side surfaces facing each other in the X direction intersect with the second axis, and the normals of the two side surfaces facing each other in the Y direction intersect with the third axis.
  • the housing 11 has a light shielding part 11a and a light transmitting part 11b.
  • the light shielding part 11a is made of, for example, an insulating epoxy resin containing a black pigment. However, the material is not particularly limited to this, and any insulating material that blocks light may be used.
  • the light-transmitting part 11b is provided between the light-receiving driving element 5 and the light-emitting element 2, and is sealed by the light-blocking part 11a.
  • the light-transmitting part 11b includes the light-emitting element 2, covers the first main surface 7d1 of the first base 7d, extends along the third axis, and is further bent downward to cover the light-receiving drive element 5. It is provided to cover the top surface.
  • the light-transmitting portion 11b is made of, for example, insulating transparent silicone resin. However, the material is not particularly limited to this, and any insulating material that is transparent to at least the light emitted by the light emitting element 2 may be used.
  • the light-transmitting portion 11b constitutes an optical coupling portion that optically couples the light-receiving element 51 (see FIG. 5) of the light-receiving drive element 5 and the light-emitting element 2.
  • the housing 11 seals the first input terminal 6, the second input terminal 7, the first to third bases 7d, 10, 6d, the first output terminal 8, and the second output terminal 9, and fixes their respective positions. do. Further, the light emitting element 2 placed on the first base 7d, the first MOSFET 3 placed on the fourth base 8a, the second MOSFET 4 placed on the fifth base 9a, and the second MOSFET 4 placed on the second base 10 are also included. The respective positions of the light receiving driving elements 5 are fixed by the housing 11.
  • the first input terminal 6 and the second input terminal 7 and the first output terminal 8 and the second output terminal 9 are electrically insulated from each other by the housing 11.
  • the light emitting element 2, the light receiving drive element 5, the first MOSFET 3, and the second MOSFET 4 are electrically insulated from each other by the housing 11. That is, the semiconductor relay 1 shown in this specification is an input/output isolation type semiconductor relay 1 that turns on and off the output signal while electrically insulating the input signal and the output signal.
  • the normal to the first main surface 7d1 of the first base 7d is along the third axis.
  • the normal to the second main surface 10a of the second base 10 is along the first axis. That is, the normal to the first main surface 7d1 of the first base 7d is perpendicular to the normal to the second main surface 10a of the second base 10. Note that these two normal lines do not necessarily have to be orthogonal. The intersection angle may deviate from 90 degrees within a predetermined range.
  • the first base body 7d is disposed at a distance from the second base body 10 in the Y direction when viewed along the first axis. Further, the first base body 7d is located above the second base body 10 along the first axis.
  • the third base body 6d when viewed along the first axis, is arranged in parallel with the first base body 7d. That is, the third base body 6d and the first base body 7d are spaced apart from each other in the X direction, and are arranged at a position apart from the second base body 10 when viewed along the first axis. Specifically, the third base 6d and the first base 7d are symmetrically arranged with the same distance from the second base 10.
  • the second base 10 is electrically connected to the source electrode 5a of the light receiving drive element 5 via a wire 13.
  • the second base 10 is connected to the source electrode 5a of the light receiving drive element 5 so as to have the same potential.
  • the second base 10 and the wire 13 connecting the source electrode 5a of the light-receiving drive element 5 (the cathode electrode 51a of the light-receiving element 51) and the second base 10 will be collectively referred to as the connection conductor 14. There is.
  • the second base 10 is electrically connected to the first source electrode 3a (first intermediate electrode 3a) of the first MOSFET 3 via the wire 12. Further, the second base 10 is electrically connected to the second source electrode 4a (second intermediate electrode 4a) of the second MOSFET 4 via the wire 12. In other words, the source electrode 5a of the light receiving drive element 5 is connected to the source electrodes 3a and 4a of the first MOSFET 3 and the second MOSFET 4 so as to have the same potential.
  • the second base 10 when viewed along the first axis, is disposed between the fourth base 8a and the fifth base 9a, with a space between the fourth base 8a and the fifth base 9a. .
  • the second base 10 is arranged between the first MOSFET 3 and the second MOSFET 4 when viewed along the first axis. More specifically, when viewed along the first axis, the second base 10 is arranged between the first source electrode 3a of the first MOSFET 3 and the second source electrode 4a of the second MOSFET 4.
  • the second base 10 is located above the fourth base 8a and the fifth base 9a, with the lower surface of the housing 11 as a reference and along the first axis. . That is, the lower surface of the second base 10 is covered by the light shielding part 11a of the housing 11.
  • FIG. 5 shows an equivalent circuit diagram of a semiconductor relay.
  • the light emitting element 2 When an input signal is input between the first input terminal 6 and the second input terminal 7, the light emitting element 2 outputs light of a predetermined wavelength. Light generated by the light emitting element 2 propagates inside the transparent portion 11b and is received by the light receiving element 51.
  • a current is generated by photoelectric conversion, and the control circuit 52 operates based on this current.
  • a drive signal which is a voltage signal corresponding to the amount of light from the light emitting element 2, is applied to the first gate electrode 3b of the first MOSFET 3 and the second gate electrode 4b of the second MOSFET 4, respectively.
  • the light emitting element 2 When no input signal is input between the first input terminal 6 and the second input terminal 7, the light emitting element 2 also stops emitting light. In response, no current is generated in the light receiving element 51, and the control circuit 52 is stopped.
  • the voltages of the drive signals applied to the first gate electrode 3b of the first MOSFET 3 and the second gate electrode 4b of the second MOSFET 4 respectively decrease.
  • the source (S) and drain (D) of the first MOSFET 3 and the source (S) and drain (D) of the second MOSFET 4 are respectively turned off.
  • the first output terminal 8 and the second output terminal 9 are brought into a non-conducting state. As a result, signal transmission is interrupted between the first output terminal 8 and the second output terminal 9.
  • the semiconductor relay 1 includes at least the housing 11, the first input terminal 6, the second input terminal 7, the first output terminal 8, and the second output terminal 9. Further, the semiconductor relay 1 includes a light emitting element 2, a light receiving drive element 5, a first MOSFET 3, and a second MOSFET 4.
  • the housing 11 has an upper surface and a lower surface located below the upper surface along the first axis.
  • the light emitting element 2 is electrically connected to the first input terminal 6 and the second input terminal 7.
  • the light-receiving driving element 5 includes a light-receiving part, which is a part that receives the output light of the light-emitting element 2, formed on the upper surface (first surface) of the light-receiving driving element 5, and a source electrode 5a (a second part) provided near the light-receiving part. 1 electrode 5a). Further, the light receiving drive element 5 has a drain electrode 5b.
  • the first MOSFET 3 has a first source electrode 3a (first intermediate electrode 3a) electrically connected to the source electrode 5a of the light receiving drive element 5, and a first drain electrode (first intermediate electrode 3a) electrically connected to the first output terminal 8. (first output electrode) and a first gate electrode 3b.
  • the second MOSFET 4 has a second source electrode 4a (second intermediate electrode 4a) electrically connected to the source electrode 5a of the light receiving drive element 5, and a second drain electrode (second intermediate electrode 4a) electrically connected to the second output terminal 9. a second output electrode) and a second gate electrode 4b.
  • the semiconductor relay 1 includes a first base 7d and a connecting conductor 14.
  • the first base 7d has a first main surface 7d1 on which the light emitting element 2 is arranged. Further, the first base 7d is connected to the second input terminal 7.
  • the connecting conductor 14 includes the second base 10 .
  • the second base 10 has a second main surface 10a on which the light receiving element 51 is arranged, and is electrically connected to the source electrode 5a so as to have the same potential as the source electrode 5a of the light receiving drive element 5. There is.
  • connection conductor 14 that is, the second base body 10
  • the second base 10 is arranged between the first MOSFET 3 and the second MOSFET 4 when viewed along the first axis. More specifically, when viewed along the first axis, the second base 10 is arranged between the first source electrode 3a of the first MOSFET 3 and the second source electrode 4a of the second MOSFET 4. From another perspective, when viewed along the first axis, the second base 10 is disposed between the fourth base 8a on which the first MOSFET 3 is placed and the fifth base 9a on which the second MOSFET 4 is placed. There is.
  • FIG. 6 shows a perspective view of a semiconductor relay according to the present embodiment
  • FIG. 7 shows a perspective view of a semiconductor relay according to a comparative example.
  • FIGS. 6 and 7 illustrate a conductive path to the light emitting element 2, parasitic capacitance, and parasitic mutual inductance.
  • the parasitic capacitances C1 and C2 and the parasitic mutual inductances M1 and M2 shown in FIGS. 6 and 7 are shown as lumped constants for convenience.
  • the equivalent circuit diagram of the semiconductor relay according to the present embodiment may be illustrated as a distributed constant existing between the first input terminal 6 and the first output terminal 8, between the first input terminal 6 and the second base 10, etc. can.
  • a semiconductor relay 20 shown in FIG. 7 is a comparative example showing a configuration similar to that disclosed in Patent Document 1, and differs from the semiconductor relay 1 of the present embodiment shown in FIG. 1 in the following points.
  • the first base 7d is formed to extend from the upper end of the first input terminal 6 along the second axis. Further, the third base 6d is formed to extend from the upper end of the second input terminal 7 along the second axis. Furthermore, when viewed along the first axis, the first base body 7d and the third base body 6d are provided to extend above the light receiving drive element 5. Further, the light emitting element 2 is connected and fixed to the lower surface of the third base 6d. Note that the anode electrode (not shown) of the light emitting element 2 and the first base 7d are connected by a wire 12.
  • the light receiving element 51 is arranged directly below the light emitting element 2 along the first axis.
  • the output light from the light emitting element 2 travels downward and enters the light receiving element 51 as it is.
  • the length of the stub can be shortened, and it is possible to prevent the usable frequency band from becoming narrower due to the influence of the stub.
  • the first base body 7d and the third base body 6d are provided to extend above the light-receiving driving element 5, a conductive path on the input side, that is, from the first input terminal 6 to the light-emitting element 2 and the wire 12, is provided.
  • the transmission path of the input signal to the second input terminal 7 becomes long. In other words, the electrical length on the input side becomes long.
  • the parasitic mutual inductance M2 due to the inductive coupling between the first input terminal 6, the second base body 10, and the light receiving drive element 5 increases.
  • the parasitic mutual inductance due to inductive coupling between the second input terminal 7, the second base 10, and the light receiving drive element 5 also increases.
  • the area where the third base 6d on which the light emitting element 2 is mounted and the second base 10 on which the light receiving drive element 5 is mounted face each other and overlap becomes large.
  • the parasitic capacitance C2 due to capacitive coupling between the first base body 7d, the second base body 10, and the light receiving drive element 5 increases.
  • the resonance frequency decreases and a resonance phenomenon may occur.
  • the signal transmission characteristics on the output side in other words, the high frequency characteristics on the output side may deteriorate.
  • the first base body 7d is provided continuously to the second upright portion 7b provided to extend along the first axis. . Further, the first main surface 7d1 of the first base 7d is continuous with one main surface 7b1 of the second upright portion 7b. In other words, the normal to the first main surface 7d1 of the first base 7d is along the third axis. On the other hand, the normal to the second main surface 10a of the second base 10 is along the first axis, and the two normals intersect with each other. That is, the first main surface 7d1 of the first base 7d and the second main surface 10a of the second base 10 do not face each other along the first axis. As a result, the parasitic capacitance C1 due to the capacitive coupling between the first base 7d, the second base 10, and the light receiving drive element 5 can be significantly lowered than the above-mentioned parasitic capacitance C2.
  • the electrical length on the input side can be made shorter than that of the semiconductor relay 20 shown in FIG.
  • the parasitic mutual inductance M1 due to inductive coupling between the first input terminal 6, the second substrate 10, and the light receiving drive element 5 can be lowered than the above-mentioned parasitic mutual inductance M2.
  • the parasitic mutual inductance due to inductive coupling between the second input terminal 7, the second base 10, and the light receiving drive element 5 can also be reduced compared to the semiconductor relay 20 shown in FIG. This can suppress leakage of high frequency signals on the output side to the input side and suppress deterioration of high frequency characteristics on the output side.
  • the resonance frequency decreases and a resonance phenomenon may occur.
  • the signal transmission characteristics on the output side in other words, the high frequency characteristics on the output side may deteriorate.
  • the electrical length on the input side can also be reduced compared to the semiconductor relay 20 shown in FIG. This makes it possible to increase the resonance frequency on the input side.
  • FIG. 8 shows an example of the frequency dependence of insertion loss in a transmission signal on the output side of a semiconductor relay.
  • connection conductor 14 is arranged between the first MOSFET 3 and the second MOSFET 4 when viewed along the first axis.
  • the light emitting element 2 and the light receiving element 51 are arranged apart from each other when viewed along the first axis, and by doing so, the output light from the light emitting element 2 can be reliably received through the light transmitting part 11b. It can be made incident on the element 51.
  • the normal to the first main surface 7d1 of the first base 7d be orthogonal to the normal to the second main surface 10a of the second base 10.
  • the first input terminal 6 and the second input terminal 7 each have an external connection part and an upright part.
  • the external connection portion is provided so as to extend along the lower surface of the housing 11, and its tip is exposed to the outside of the housing 11.
  • the upright portion extends into the housing 11 so as to be continuous with the proximal end of the external connection portion, intersect with the lower surface of the housing 11, and with the normal to the main surface of the upright portion along the third axis. is formed. Further, by arranging the normal line of the main surface of the upright portion along the third axis, it is possible to shorten the physical conductive path between the external connection portion and the first base 7d. That is, the electrical length on the input side can be shortened.
  • the semiconductor relay 1 By providing an external connection part that electrically connects to the outside so as to extend along the bottom surface of the housing 11, the semiconductor relay 1 can be connected to, for example, wiring provided on the top surface of the circuit board 40 (see FIGS. 14 to 16). It can be surface mounted. Furthermore, by providing an upright portion that is continuous with the external connection portion and intersects with the lower surface of the housing 11, the light emitting element 2 can be placed closer to the upper surface of the housing 11. This makes it possible to ensure a distance between the light receiving element 51 and the light emitting element 2, which are located closer to the lower surface of the housing 11. Further, the output light from the light emitting element 2 can be guided to the light receiving element 51 through the light transmitting part 11b.
  • the longitudinal direction of the external connection part and the longitudinal direction of the upright part intersect, and the connection part between the external connection part and the upright part is located inside the housing 11.
  • the first input terminal 6 and the second input terminal 7 are reliably held in the light shielding portion 11a of the housing 11.
  • the upright portion has a portion exposed to the outside of the housing 11.
  • the first standing portion 6b has a fourth externally exposed portion 6c in the middle thereof
  • the second standing portion 7b has a fifth externally exposed portion 7c in the middle thereof. preferable.
  • the first input terminal 6, the third base 6d, the second input terminal 7, and the first base 7d are obtained by processing a single metal plate material.
  • a metal plate material is processed to create an input terminal prototype in which multiple sets are connected, with each member of the first input terminal 6, third base 6d, second input terminal 7, and first base 7d being connected as one set.
  • the light emitting elements 2 are connected and fixed to each of the first bases 7d, and further, the anode electrodes 2a of the light emitting elements 2 and the third base 6d are connected with the wires 12.
  • a transparent portion 11b made of a light-transmitting resin is formed between the light emitting element 2 and the light receiving element driving element 5.
  • a similar process is also performed on the output side. That is, a metal plate material is processed to form an output terminal prototype in which a plurality of sets are connected, each of which includes the first output terminal 8, the second base 10, and the second input terminal 7 as one set.
  • the light receiving driving element 5, the first MOSFET 3, and the second MOSFET 4 are connected and fixed to the second base 10, the fourth base 8a, and the fifth base 9a, respectively. Furthermore, each part is connected with wires 12 and 13.
  • the input terminal model and the output terminal model are aligned and arranged, and each element is further sealed by resin injection to form the housing 11.
  • the connection portion with the metal frame is cut, and the plurality of semiconductor relays 1 are each separated into individual pieces.
  • the fourth externally exposed portion 6c and the fifth externally exposed portion 7c correspond to connecting portions between the first input terminal 6 and the second input terminal 7 and the metal frame.
  • the semiconductor relay 1 can be easily assembled. Moreover, a large amount of semiconductor relays 1 can be easily manufactured.
  • the connecting conductor 14, specifically, the second base 10 have a first externally exposed portion 10b as a portion exposed to the outside of the housing 11.
  • the fourth base 8a has a second externally exposed part 8b as a part exposed to the outside of the housing 11
  • the fifth base 9a has a third externally exposed part 9b as a part exposed to the outside of the housing 11. is preferable.
  • the connection conductor 14 includes a second base 10 on which a light receiving element 51 is placed, and the second base 10 includes a fourth base 8a on which the first MOSFET 3 is placed and a fifth base 9a on which the second MOSFET 4 is placed. Preferably, it is placed between. Moreover, it is more preferable that the second base body 10 is arranged between the first source electrode 3a of the first MOSFET 3 and the second source electrode 4a of the second MOSFET 4.
  • a path from the first output terminal 8 to the second output terminal 9 via the first MOSFET 3, the second base 10, and the second MOSFET 4 can be provided in a straight line along the second axis.
  • the formation of stubs can be reliably suppressed. This can reliably prevent the frequency band of the output signal transmitted by the semiconductor relay 1 from becoming narrower.
  • first standing portion 6b and the second standing portion 7b have annular portions 6b3 and 7b3 formed in the middle, respectively, when viewed along the second axis.
  • the annular portions 6b3 and 7b3 have through holes that penetrate the first upright portion 6b and the second upright portion 7b.
  • FIG. 9 shows a perspective view of a semiconductor relay according to Modification 1.
  • parts similar to those in Embodiment 1 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the semiconductor relay 30 of this modification shown in FIG. 9 differs from the semiconductor relay 1 of the first embodiment shown in FIG. 1 in the following points.
  • the first external connection part 6a and the second external connection part 7a which are the external connection parts of the first input terminal 6 and the second input terminal 7, are the first output terminal 8 and the second output terminal 9.
  • the first upright portion 6b and the second upright portion 7b are each L-shaped when viewed along the second axis, and are not annular.
  • the arrangement and shape of the first input terminal 6 and the second input terminal 7 may be changed.
  • the conductive path from the first input terminal 6 to the light emitting element 2 and the conductive path from the light emitting element 2 to the second input terminal 7 can be made smaller than the conductive path in the semiconductor relay 1 shown in the first embodiment.
  • Each can be shortened.
  • the electrical length on the input side can be made shorter than that of the semiconductor relay 1 shown in the first embodiment.
  • the resonance frequency on the input side can be increased, and the occurrence of resonance phenomena can be suppressed. In turn, deterioration of high frequency characteristics on the output side can be suppressed.
  • FIG. 10 is a diagram of a semiconductor relay according to a second modification as viewed along the first axis, and the semiconductor relay 31 of this modification shown in FIG. 10 has the following features compared to the first embodiment shown in FIG. This is different from the semiconductor relay 1 shown in FIG.
  • the tip of the second upright portion 7b is bent along the third axis.
  • the first input terminal 6 and the second input terminal 7 are located at positions shifted to the side opposite to the output side along the third axis compared to the case shown in the first embodiment.
  • the first base 7d is closer to the second base 10, which is a part of the connection conductor 14, than parts of the first input terminal 6 and second input terminal 7. positioned.
  • FIG. 11 is a diagram of a light receiving drive element, a first MOSFET, and a second MOSFET according to Modification Example 3, viewed along the first axis.
  • the second base body 10 shown in FIG. This is different from the second base body 10 of Embodiment 1 shown in FIG.
  • the width W2 of the second base body 10 By defining the width W2 of the second base body 10 in this way, it is possible to suppress an increase in the characteristic impedance of the transmission line due to the portion of the second base body 10 located at a higher position than the bottom surface of the housing 11. Loss can be reduced.
  • FIG. 12 shows a perspective view of a semiconductor relay according to the second embodiment.
  • a chip resistor 15 which is an electronic component, is inserted as a resistance element in each of the intermediate portion of the first input terminal 6 and the intermediate portion of the second input terminal 7. This differs from the semiconductor relay 1 of the first embodiment shown in FIG. 1 in this point.
  • the first raised portion 6b of the first input terminal 6 is divided in the middle, and the chip resistor 15 is connected in series to the first raised portion 6b so as to connect the divided portions.
  • the second raised portion 7b of the second input terminal 7 is divided in the middle, and the chip resistor 15 is connected in series to the second raised portion 7b so as to connect the divided portions.
  • the anode electrode 2a of the light emitting element 2 is electrically connected to the first standing portion 6b via the wire 12.
  • a sixth externally exposed portion 6e is provided that extends linearly along the second axis from the first upright portion 6b connected to the light emitting element 2 by the wire 12 and reaches the side surface of the housing 11.
  • a seventh externally exposed portion 7e is provided that extends linearly from the first base 7d along the second axis to the side opposite to the sixth externally exposed portion 6e and reaches the side surface of the housing 11.
  • the first to seventh externally exposed portions 10b, 8b, 9b, 6c, 7c, 6e, and 7e are also collectively referred to as externally exposed portions.
  • the chip resistor 15 is connected in series to each of the first standing portion 6b and the second standing portion 7b, the first standing portion 6b and the second standing portion 7b do not have annular shapes, respectively. Furthermore, the third base 6d connected to the first input terminal 6 is omitted. This is to prevent the size of the semiconductor relay 32 along the second axis from increasing due to the insertion of the chip resistor 15.
  • the third base body 6d may be provided within a range that allows the size to increase.
  • the electrical length on the input side can be reliably shortened compared to the configuration shown in Embodiment 1. This increases the resonance frequency on the input side and suppresses the occurrence of resonance phenomena. In turn, deterioration of high frequency characteristics on the output side can be suppressed. This will be further explained using FIG. 13.
  • FIG. 13 shows a schematic diagram illustrating the difference in resonance phenomena before and after inserting a resistor on the input side.
  • a resistance element having a resistance value higher than the resistance value of the conductive path is inserted in the middle of the conductive path on the input side so as to be electrically connected in series.
  • the vibration of the standing wave is significantly attenuated at the position where the resistance element is inserted.
  • the insertion position of the resistance element becomes a node of the standing wave.
  • the resistive elements are inserted in series.
  • the chip resistor 15 may be connected in series to at least one of the conductive path connecting the first input terminal 6 and the light emitting element 2 and the conductive path connecting the second input terminal 7 and the light emitting element 2.
  • the resistance value of the chip resistor 15 is preferably higher than the resistance value of the conductive path described above, but the specific value may be changed as appropriate depending on the frequency of the input signal, the resistance value of the conductive path, etc. .
  • the electrical length on the input side can also be shortened by replacing the resistor 15 with a chip inductor as an inductor element that can obtain a higher impedance than the impedance of the conductive path described above in a high frequency region. In this case as well, it is possible to suppress the occurrence of a resonance phenomenon and to suppress deterioration of the high frequency characteristics on the output side.
  • FIG. 3 14 shows a perspective view of the semiconductor relay module according to Embodiment 3
  • FIG. 15 shows a view of the semiconductor relay module viewed along the second axis
  • FIG. 16 shows the semiconductor relay module viewed along the third axis. A view along the line is shown.
  • the semiconductor relay module 100 includes at least a semiconductor relay 1 and a circuit board 40. Since the semiconductor relay 1 has the same configuration as shown in Embodiment 1, detailed explanation will be omitted.
  • the circuit board 40 is a so-called printed wiring board in which first to fourth wirings 41 to 44 are formed on a dielectric substrate 40a made of a dielectric material having a predetermined dielectric constant.
  • the first to fourth wirings 41 to 44 are formed by applying copper plating or the like to the upper surface of the dielectric substrate 40a. Further, a conductive via 45 is connected to one end of each of the first to fourth wirings 41 to 44.
  • the conductive via 45 is a via hole that penetrates the dielectric substrate 40a in the thickness direction, and a conductor is embedded in the inner surface of the via hole using copper plating or the like. Note that in order to simplify the manufacturing process of the semiconductor relay module 100, this conductor is preferably formed at the same time as the first to fourth wirings 41 to 44 are formed.
  • the first output terminal 8 of the semiconductor relay 1 and the second Output terminals 9 are connected respectively.
  • a conductive adhesive such as silver paste or cream solder is used.
  • first input terminal 6 and the second input terminal 7 of the semiconductor relay 1 are connected to the other ends of the first wiring 41 and the second wiring 42, respectively.
  • a conductive adhesive such as silver paste or cream solder is used.
  • each of the first wiring 41 and the second wiring 42 is divided near the other end.
  • chip resistors 16 are connected in series as resistance elements so as to connect the divided portions.
  • Input signals are transmitted to the first wiring 41 and the second wiring 42 from the conductive via 45 connected to the first wiring 41 and the conductive via 45 connected to the second wiring 42 . Furthermore, input signals are transmitted to the first input terminal 6 and the second input terminal 7 of the semiconductor relay 1 . Also, during a period when an input signal with an amplitude greater than a predetermined value is being input, a semiconductor relay is connected between the third wiring 43 to which the first output terminal 8 is connected and the fourth wiring 44 to which the second output terminal 9 is connected. 1 through which a high frequency signal is transmitted. Further, a high frequency signal is transmitted between the conductive via 45 connected to the third wiring 43 and the conductive via 45 connected to the fourth wiring 44.
  • a conductive via 45 connected to the third wiring 43 and a conductive via 45 connected to the fourth wiring 44 is connected between the third wiring 43 and the fourth wiring 44. Transmission of high frequency signals is blocked between the two.
  • capacitive coupling and inductive coupling between input and output can be reduced, and the electrical length on the input side can be shortened. Thereby, deterioration of the high frequency characteristics of the output signal transmitted between the third wiring 43 and the fourth wiring 44 can be suppressed.
  • a Chip resistors 16 are connected in series. More specifically, a chip resistor 16 is inserted as a resistance element having a predetermined resistance value in the vicinity of the connection point with the first input terminal 6 in the first wiring 41 so as to be electrically connected in series. . Furthermore, a chip resistor 16 is inserted as a resistive element having a predetermined resistance value in the vicinity of the connection point with the second input terminal 7 in the second wiring 42 so as to be electrically connected in series.
  • the wavelength of the standing wave can be shortened and the resonance frequency on the input side can be increased.
  • occurrence of resonance phenomena and deterioration of high frequency characteristics on the output side can be suppressed.
  • either one of the resistance elements connected to the first wiring 41 and the resistance element connected to the second wiring 42 may not be connected.
  • the semiconductor relay 1 and the semiconductor relay module 100 are designed so that the resonance frequency on the input side is higher than a predetermined value, it is not essential to connect the chip resistor 16 as a resistance element, and it is not necessary to connect the chip resistor 16 as a resistance element. good.
  • the first wiring 41 and the second wiring 42 are not divided and are provided continuously from the conductive via 45 to the first input terminal 6 and the second input terminal 7.
  • a chip inductor can be used instead of the resistor 15.
  • FIGS. 14 to 16 show the semiconductor relay module 100 in which only the semiconductor relay 1 is mounted on the circuit board 40, other elements may be mounted on the circuit board 40. Moreover, the conductive via 45 penetrating the circuit board 40 does not necessarily have to be provided. A plurality of pad electrodes (not shown) for external connection may be provided on the upper surface of the circuit board 40, and each pad electrode may be connected to the first to fourth wirings 41 to 44.
  • the structure of semiconductor relay 1 may be the structure shown in Embodiment 2 or Modifications 1 to 3.
  • the first output terminal 8 and the second output terminal 9 are connected to the rear surfaces of the fourth base body 8a and the fifth base body 9a exposed from the respective housings 11 to the outside, for example, as shown in FIGS. 14 to 16.
  • the third wiring 43 and the fourth wiring 44 are connected to each other, the present invention is not particularly limited thereto.
  • the semiconductor relay 1 may be a surface-mounted relay, and for example, the semiconductor relay 1 may be a surface-mounted relay that protrudes along the lower surface of the housing 11 and is exposed to the outside from the side surface of the housing 11, like the first input terminal 6 and the second input terminal 7. External connection parts may be provided at the first output terminal 8 and the second output terminal 9, respectively.
  • first external connection portion 6a of the first input terminal 6 and the second external connection portion 7a of the second input terminal 7 do not need to protrude to the outside from the side surface of the housing 11. That is, the external connection portion only needs to be exposed from at least the bottom surface of the housing 11. By doing so, a surface-mounted semiconductor relay 1 can be realized.
  • control circuit 52 may be formed on a separate semiconductor chip from the light receiving element 51. In that case, the control circuit 52 is preferably sealed with the light shielding part 11a of the housing 11.
  • the semiconductor relay of the present disclosure can suppress deterioration of high frequency characteristics on the output side, and is useful as a relay for transmitting high frequency signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Electronic Switches (AREA)

Abstract

半導体リレー1は、ハウジング11と第1入力端子6と第2入力端子7と第1出力端子8と第2出力端子9と発光素子2と受光素子51と第1MOSFET3と第2MOSFET4とを少なくとも備えている。第1基体7dの第1主面7d1に発光素子2が配置され、第2基体10の第2主面10aに受光駆動素子5が配置される。受光駆動素子5のソース電極5aと第2基体10とが同電位に接続される。第2基体10が、第1軸に沿って見て、第1MOSFET3と第2MOSFET4との間に配置されている。第1基体7dの第1主面7d1の法線が、第2基体10の第2主面10aの法線と交差する。

Description

半導体リレー及びそれを備えた半導体リレーモジュール
 本開示は、半導体リレー及びそれを備えた半導体リレーモジュールに関する。
 従来から、交流信号の伝送手段として、MOSFET出力フォトカプラや光MOSFETとも呼ばれる半導体リレーが知られている。
 従来の半導体リレーでは、入力端子や出力端子及びこれらに接続される導電部材の配置によって、内部にスタブ、つまり、信号の枝分かれ部分が形成され、当該スタブで共振することにより共振周波数付近での挿入損失(Insertion Loss)が増加して、使用可能な周波数帯域が狭くなるという問題があった。
 これを解決するため、例えば、特許文献1では、受光素子が載置される導体フレームの両側にそれぞれMOSFETが載置される導体フレームを配置した構成が提案されている。各フレームの配置をこのようにすることで、スタブの長さを短くでき、スタブの影響により使用可能な周波数帯域が狭くなるのを防止することができる。
特開2011-082916号公報
 しかし、特許文献1に開示された従来の構成では、信号の入出力間の構造に起因して、容量結合と誘導結合が発生しており、出力側に高周波信号を伝送した場合、これらの結合を通じて入力側に信号が漏洩するおそれがあった。
 また、従来の構成では、信号入力用の発光素子に接続される入力端子の物理的な長さ(物理長)が長くなっており、このことに応じて、入力側の電気長が長くなる。なお、電気長とは、信号の伝送媒体における電磁波の伝搬速度を基準とした長さであり、真空中では物理長と電気長とは同じであるが、一般的な伝送媒体中では、電気長は物理長よりも長くなる。
 入力側の電気長が長くなると、これに応じた共振現象が半導体リレーで発生し、出力側の高周波特性が劣化するおそれがあった。
 本開示はかかる点に鑑みてなされたもので、その目的は、入力側の構造に起因した出力信号の劣化を抑制できる半導体リレー及びこれを備えた半導体リレーモジュールを提供することにある。
 上記目的を達成するため、本開示に係る半導体リレーは、上面と、前記上面に対して第1軸に沿って下方に位置する下面とを有するハウジングと、第1入力端子と第2入力端子と、第1出力端子と第2出力端子と、前記第1入力端子と前記第2入力端子に電気的に接続される発光素子と、前記発光素子の出力光を受光する第1面と、前記第1面に対して前記第1軸に沿って下方に位置する第2面と、第1電極と、を有する受光駆動素子と、前記第1電極に電気的に接続される第1中間電極と、前記第1出力端子に電気的に接続される第1出力電極と、第1ゲート電極と、を有する第1MOSFETと、前記第1電極に電気的に接続される第2中間電極と、前記第2出力端子に電気的に接続される第2出力電極と、第2ゲート電極と、を有する第2MOSFETと、前記発光素子が配置される第1主面を有する第1基体と、前記受光駆動素子が配置される第2主面を有するとともに、前記第1電極に同電位に接続される接続導体と、を少なくとも備え、前記接続導体の少なくとも一部が、前記第1軸に沿って見て、前記第1MOSFETと前記第2MOSFETとの間に配置されており、前記第1主面の法線が、前記第2主面の法線と交差することを特徴とする。
 本開示に係る半導体リレーモジュールは、前記半導体リレーと、第1~第4配線がそれぞれ形成された回路基板と、を少なくとも備え、前記第1配線と前記第2配線は、それぞれ、前記半導体リレーの前記第1入力端子と前記第2入力端子に接続され、前記第3配線と前記第4配線は、それぞれ、前記半導体リレーの前記第1出力端子と前記第2出力端子に接続されていることを特徴とする。
 本開示によれば、入出力間の容量結合や誘導結合を低減でき、入力側の電気長を短くできる。このことにより、出力側の高周波特性を向上できる。
図1は、実施形態1に係る半導体リレーの斜視図である。 図2は、半導体リレーを第2軸に沿って見た図である。 図3は、発光素子が載置された第1入力端子と第2入力端子の斜視図である。 図4は、受光駆動素子と第1MOSFETと第2MOSFETとを第1軸に沿って見た図である。 図5は、半導体リレーの等価回路図である。 図6は、半導体リレーの斜視図である。 図7は、比較例に係る半導体リレーの斜視図である。 図8は、半導体リレーの出力側の伝送信号における挿入損失の周波数依存性の一例である。 図9は、変形例1に係る半導体リレーの斜視図である。 図10は、変形例2に係る半導体リレーを第1軸に沿って見た図である。 図11は、変形例3に係る受光駆動素子と第1MOSFETと第2MOSFETとを第1軸に沿って見た図である。 図12は、実施形態2に係る半導体リレーの斜視図である。 図13は、入力側への抵抗挿入前後の共振現象の違いを説明する模式図である。 図14は、実施形態3に係る半導体リレーモジュールの斜視図である。 図15は、半導体リレーモジュールを第2軸に沿って見た図である。 図16は、半導体リレーモジュールを第3軸に沿って見た図である。
 以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。
 (実施形態1)
 [1:半導体リレーの構成]
 図1は、実施形態1に係る半導体リレーの斜視図を示し、図2は、半導体リレーを第2軸に沿って見た図を示す。図3は、発光素子が載置された第1入力端子と第2入力端子の斜視図を示し、図4は、受光駆動素子と第1MOSFETと第2MOSFETとを第1軸に沿って見た図を示す。なお、説明の便宜上、図1,2及び以降に示す各図面において、ハウジング11及びこれを構成する遮光性樹脂と透光性樹脂のそれぞれの輪郭を破線で示している。
 なお、以降の説明において、第1入力端子6と第2入力端子7の配列方向をX方向と呼ぶことがある。また、X方向に延びる仮想軸を第2軸と呼ぶことがある。X方向(第2軸方向)は、第1出力端子8と第2出力端子9との配列方向でもある。第1入力端子6と第1出力端子8の配列方向をY方向と呼ぶことがある。また、Y方向に延びる仮想軸を第3軸と呼ぶことがある。Y方向(第3軸方向)は、第2入力端子7と第2出力端子9の配列方向でもある。また、Y方向は、発光素子2と受光駆動素子5の配列方向でもある。
 X方向及びY方向とそれぞれ交差する方向をZ方向と呼ぶことがある。また、Z方向に延びる仮想軸を第1軸と呼ぶことがある。X方向とY方向とZ方向とはとは互いに直交している。なお、本願明細書において、「直交」しているとは、半導体リレー1を構成する各部品の加工公差や製造公差、また部品間の組み立て公差を含んで直交しているという意味であり、比較対象同士が、厳密な意味で直交しているということを意味するものではない。
 また、Z方向(第1軸方向)において、発光素子2が配置された側を上または上方と呼び、受光駆動素子5が配置された側を下または下方と呼ぶことがある。なお、本願明細書における「上」、「下」の呼称はあくまでも相対的なものであり、例えば、鉛直方向に沿って「上」、「下」を意味するものではない。
 図1に示すように、半導体リレー1は、発光素子2と受光駆動素子5と第1MOSFET3と第2MOSFET4とを備えている。また、半導体リレー1は、第1入力端子6と第2入力端子7と第1出力端子8と第2出力端子9と第2基体10とハウジング11とを備えている。
 [1-2:発光素子、受光駆動素子及び第2基体の構成]
 発光素子2は、公知のLED(Light Emitting Diode)素子である。銀ペースト等の導電接着材(図示せず)を介して、図1~3に示すように、発光素子2のカソード電極(図示せず)が第1基体7dに接続固定されている。第1基体7dは、第2入力端子7に接続されている。
 また、発光素子2のアノード電極2aがワイヤ12を介して3基体に電気的に接続されている。第3基体6dは、第1入力端子6に接続されている。第1入力端子6及び第2入力端子7、また、第1基体7d及び第3基体6dについては後で詳述する。
 受光駆動素子5は、受光素子51と制御回路52(いずれも図5参照)とを有している。受光素子51は、発光素子2からの出力光を受光し、例えば、公知のフォトダイオードがアレイ状に配置されてなる。図1~3に示すように、受光駆動素子5の上面(第1面)に、ソース電極5aとドレイン電極5bとが形成されている。ドレイン電極5bは、上面における互いに離間した位置に2箇所設けられている。なお、受光駆動素子5の上面には、受光素子51における出力光を受光する部位である受光部も形成されているが、説明の便宜上、その図示を省略している。
 なお、ソース電極5aは受光素子51のカソード電極51a(以下、第1電極5aまたは第1電極51aと呼ぶことがある。)に相当し、ドレイン電極5bは受光素子51のアノード電極51bに相当する。
 受光駆動素子5の下面(第2面)は、図示しない接着材を介して第2基体10に接続固定されている。第2基体10は、第1軸に沿って見て四角形の導体である。また、第2基体10における受光駆動素子5の載置面を第2主面10aと呼ぶ。第2主面10aの法線は、第1軸と平行である、つまり、Z方向に沿っている。ただし、当該法線が、第1軸と厳密な意味で平行であることまでは意味しない。
 第2基体10は、Y方向に対向する2つの側面のうち、第1入力端子6や第2入力端子7と反対側に位置する側面から突出し、ハウジング11の側面から外部に露出する部位(以下、第1外部露出部位10bという)を有している、第1外部露出部位10bは、第2基体10の前述した側面において、第2軸に沿って互いに離間した位置に2箇所設けられている。ただし、第1外部露出部位10bの位置や個数は特にこれに限定されない。
 図1~3に示すように、受光駆動素子5のソース電極5a、言い換えると、受光素子51のカソード電極51a(第1電極51a)は、ワイヤ13を介して第2基体10と電気的に接続されている。つまり、受光素子51のカソード電極51aは、第2基体10と同電位である。また、ワイヤ12を介して、受光駆動素子5の2つのドレイン電極5b,5bのうち一方は、第1MOSFET3の第1ゲート電極3bに、他方は、第2MOSFET4の第2ゲート電極4bにそれぞれ電気的に接続されている。
 [1-3:第1MOSFET及び第2MOSFETの構成]
 図1,2,4に示すように、第1MOSFET3は、公知の縦型MOSFETであり、上面に第1ゲート電極3bと第1ソース電極3a(以下、第1中間電極3aと呼ぶことがある。)が、下面に第1ドレイン電極(図示せず)がそれぞれ形成されている。第1MOSFET3の第1ドレイン電極(以下、第1出力電極と呼ぶことがある。)は、銀ペースト等の導電性接着材(図示せず)を介して、第1出力端子8、具体的には、第4基体8aに電気的に接続されている。
 また、第1MOSFET3の第1ソース電極3aは、ワイヤ12を介して第2基体10に電気的に接続されている。つまり、第1MOSFET3の第1ソース電極3aは、第2基体10とワイヤ12とを介して、受光駆動素子5のソース電極5aと電気的に接続されている。なお、図1,3に示す例では、接続強化のために、第1MOSFET3の第1ソース電極3aと第2基体10との間は、2本のワイヤ12,12で接続されている。
 第2MOSFET4は、公知の縦型MOSFETであり、上面に第2ゲート電極4bと第2ソース電極4a(以下、第2中間電極4aと呼ぶことがある。)が、下面に第2ドレイン電極(図示せず)がそれぞれ形成されている。第2MOSFET4の第2ドレイン電極(以下、第2出力電極と呼ぶことがある。)は、銀ペースト等の導電性接着材(図示せず)を介して、第2出力端子9、具体的には、第5基体9aに電気的に接続されている。第1出力端子8及び第2出力端子9については後で詳述する。
 また、第2MOSFET4の第2ソース電極4aは、ワイヤ12を介して第2基体10に電気的に接続されている。つまり、第2MOSFET4の第2ソース電極4aは、第2基体10とワイヤ12とを介して、受光駆動素子5のソース電極5aと電気的に接続されている。なお、図1,3に示す例では、接続強化のために、第2MOSFET4の第2ソース電極4aと第2基体10との間は、2本のワイヤ12,12で接続されている。
 [1-4:第1入力端子及び第2入力端子の構成]
 図1,3に示すように、第1入力端子6は、第1起立部位6bと第1外部接続部位6aとを有する導電部材である。また、第1入力端子6は、第3基体6dと一体に形成されている。第3基体6dと第1起立部位6bと第1外部接続部位6aとは、例えば、1枚の銅板を打ち抜き加工や折り曲げ加工して得られる。ただし、第1入力端子6の製造方法は特にこれに限定されない。なお、銅板の表面に別の金属膜、例えば、ニッケルを含む金属膜(図示せず)がめっきされている。なお、金属膜の材質はこれに特に限定されない。
 第3基体6dは、ハウジング11の内部に位置しており、第3軸に沿って見て四角形の板状の導体である。第3基体6dには、発光素子2のアノード電極2aに接続されたワイヤ12が接続されている。さらに、第3基体6dにおけるX方向に対向する2つの側面のうち、第2入力端子7と反対側に位置する側面に、第1起立部位6bが接続されている。また、第3基体6dにおけるワイヤ12との接続面の法線は、第3軸と平行である、つまり、Y方向に沿っている。ただし、当該法線が、第3軸と厳密な意味で平行であることまでは意味しない。
 第1起立部位6bは、一端が第1外部接続部位6aに接続され、第1外部接続部位6aから第1軸に沿って延びて、他端が第3基体6dに接続されている。また、第1起立部位6bは、ハウジング11の下面に対して直交するように、第1軸に沿って延びるように設けられている。第1起立部位6bにおいて、法線が第3軸と平行な面を主面6b1,6b2と呼ぶことがある。第1起立部位6bは、厚さ方向が第3軸に沿った板状の部位である。よって、第1起立部位6bの主面6b1,6b2は、2つあり、一方の主面6b1は、第2基体10に近い位置にあり、他方の主面6b2は、ハウジング11の側面に近い位置にある。
 また、第1起立部位6bの主面6b1、6b2の法線が、第3軸に沿っている。
 また、第1起立部位6bは、第3軸に沿って見て、環状部6b3が形成されている。また、第1起立部位6bの途中には、第2軸に沿って突出してハウジング11の側面から外部に露出する部位(以下、第4外部露出部位6cという)が設けられている。
 第1外部接続部位6aは、第1起立部位6bの一端から下方に延びて、ハウジング11の下面近傍で折り曲げられてY方向に、かつハウジング11の側面及び下面から露出するように形成されている。
 第2入力端子7は、第2起立部位7bと第2外部接続部位7aとを有する導電部材である。また、第2入力端子7は、第1基体7dと一体に形成されている。第1基体7d及び第2入力端子7の材質や製造方法は、第3基体6d及び第1入力端子6と同様であるので説明を省略する。また、第1基体7d、第2起立部位7b及び第2外部接続部位7aのそれぞれの形状や互いの接続関係は、第3基体6d、第1起立部位6b及び第1外部接続部位6aと同様であるので詳細な説明を省略する。また、第2起立部位7bに一対の主面7b1,7b2があることも第1起立部位6bと同様である。
 なお、第2起立部位7bの途中には、第1軸に沿って突出してハウジング11の側面から外部に露出する部位(以下、第5外部露出部位7cという)が設けられており、第5外部露出部位7cは、第4外部露出部位6cとX方向に対向した位置に配置されている。なお、以降の説明において、第1起立部位6bと第2起立部位7bとを総称して、起立部位と呼ぶことがある。また、第1外部接続部位6aと第2外部接続部位7aとを総称して、外部接続部位と呼ぶことがある。
 第1基体7dは、ハウジング11の内部に位置しており、第3軸に沿って見て四角形の板状の導体である。また、第1基体7dにおける発光素子2の載置面を第1主面7d1と呼ぶ。第1主面7d1の法線は、第3軸と平行である、つまり、Y方向に沿っている。ただし、当該法線が、第3軸と厳密な意味で平行であることまでは意味しない。
 第1基体7dは、第1主面7d1に発光素子2が接続固定されている。さらに、第1基体7dにおけるX方向に対向する2つの側面のうち、第1入力端子6と反対側に位置する側面に、第2起立部位7bが接続されている。また、第1基体7dの第1主面7d1の法線は、第3軸と平行である、つまり、Y方向に沿っている。ただし、当該法線が、第3軸と厳密な意味で平行であることまでは意味しない。
 [1-5:第1出力端子及び第2出力端子の構成]
 図1,3,4に示すように、第1出力端子8は、第1軸に沿って見て四角形の板状の導体である第4基体8aを含んでいる。また、第4基体8aの下面は、ハウジング11の下面から露出しており、後で述べる回路基板40(図14~16参照)との接続端子となる。
 また、第4基体8aは、X方向に対向する2つの側面のうち、第2MOSFET4や受光駆動素子5と反対側に位置する側面から突出し、ハウジング11の側面から外部に露出する部位(以下、第2外部露出部位8bという)を有している、なお、第2外部露出部位8bの個数は図1,3に示したものに特に限定されない。
 第2出力端子9は、第1軸に沿って見て四角形の板状の導体である第5基体9aを含んでいる。また、第5基体9aの下面は、ハウジング11の下面か露出しており、後で述べる回路基板40(図14~16参照)との接続端子となる。
 また、第5基体9aは、X方向に対向する2つの側面のうち、第1MOSFET3や受光駆動素子5と反対側に位置する側面から突出し、ハウジング11の側面から外部に露出する部位(以下、第3外部露出部位9bという)を有している、なお、第3外部露出部位9bの個数は図1,3に示したものに特に限定されない。
 [1-6:ハウジングの構成]
 図1,2に示すように、ハウジング11は、上面と下面と4つの側面とを有している。下面は、上面に対して第1軸に沿って下方に位置している。4つの側面のそれぞれは、上面と下面に連続するとともに、第1軸に平行である。X方向に対向する2つの側面の法線は、第2軸と交差し、Y方向に対向する2つの側面の法線は、第3軸と交差している。
 ハウジング11は、遮光部11aと透光部11bとを有している。遮光部11aは、例えば、黒色色素が含有された絶縁性のエポキシ樹脂からなる。ただし、これに特に限定されず、光を遮蔽する絶縁材料であればよい。透光部11bは、受光駆動素子5と発光素子2との間に設けられ、遮光部11aによって封止されている。具体的には、透光部11bは、発光素子2を含んで第1基体7dの第1主面7d1を覆い、第3軸に沿って延び、さらに下方に屈曲して、受光駆動素子5の上面を覆うように設けられている。
 透光部11bは、例えば、絶縁性の透明シリコーン樹脂からなる。ただし、これに特に限定されず、少なくとも発光素子2が発する光に対して透明な絶縁材料であればよい。透光部11bは、受光駆動素子5の受光素子51(図5参照)と発光素子2とを光学的に結合する光結合部を構成している。
 ハウジング11は、第1入力端子6と第2入力端子7と第1~第3基体7d,10,6dと第1出力端子8と第2出力端子9とを封止し、それぞれの位置を固定する。また、第1基体7dに載置された発光素子2や、第4基体8aに載置された第1MOSFET3や第5基体9aに載置された第2MOSFET4、さらに、第2基体10に載置された受光駆動素子5が、ハウジング11によってそれぞれの位置が固定される。
 また、第1入力端子6及び第2入力端子7と、第1出力端子8及び第2出力端子9とは、ハウジング11により互いに電気的に絶縁されている。さらに、発光素子2と受光駆動素子5と第1MOSFET3と第2MOSFET4とは、ハウジング11により互いに電気的に絶縁されている。つまり、本願明細書に示す半導体リレー1は、入力信号と出力信号とを電気的に絶縁した状態で出力信号のオンオフを行う入出力絶縁型の半導体リレー1である。
 [1-7:第1~第5基体間の関係]
 前述したように、第1基体7dの第1主面7d1の法線は、第3軸に沿っている。一方、第2基体10の第2主面10aの法線は、第1軸に沿っている。つまり、第1基体7dの第1主面7d1の法線は、第2基体10の第2主面10aの法線と直交している。なお、これら2つの法線は、必ずしも直交していなくてもよい。交差角度が90度から所定の範囲でずれていてもよい。また、第1基体7dは、第1軸に沿って見て、第2基体10とY方向に間隔をあけて配置されている。また、第1基体7dは、第1軸に沿って、第2基体10の上方に位置している。
 また、第1軸に沿って見て、第3基体6dは、第1基体7dと並列して配置されている。つまり、X方向に互いに間隔をあけて、かつ、第3基体6dと第1基体7dとが第1軸に沿って見て第2基体10から離れた位置に配置されている。具体的には、第3基体6dと第1基体7dとは、第2基体10に対して同じ距離だけ離れて対称に配置されている。
 第2基体10は、ワイヤ13を介して受光駆動素子5のソース電極5aと電気的に接続されている。つまり、第2基体10は、受光駆動素子5のソース電極5aと同電位となるように接続されている。以降の説明において、第2基体10と、受光駆動素子5のソース電極5a(受光素子51のカソード電極51a)と第2基体10とを接続するワイヤ13と、を含めて接続導体14と呼ぶことがある。
 また、第2基体10は、ワイヤ12を介して、第1MOSFET3の第1ソース電極3a(第1中間電極3a)と電気的に接続されている。さらに、第2基体10は、ワイヤ12を介して、第2MOSFET4の第2ソース電極4a(第2中間電極4a)と電気的に接続されている。つまり、受光駆動素子5のソース電極5aは、第1MOSFET3及び第2MOSFET4のそれぞれのソース電極3a,4aと同電位となるように接続されている。
 また、第1軸に沿って見て、第2基体10は、第4基体8aと第5基体9aとの間に、第4基体8aと第5基体9aとそれぞれ間隔をあけて配置されている。言い換えると、第1軸に沿って見て、第2基体10は、第1MOSFET3と第2MOSFET4との間に配置されている。さらに言うと、第1軸に沿って見て、第2基体10は、第1MOSFET3の第1ソース電極3aと第2MOSFET4の第2ソース電極4aとの間に配置されている。なお、図1,2に示す例では、ハウジング11の下面を基準として、かつ第1軸に沿って、第2基体10が、第4基体8a及び第5基体9aよりも上方に位置している。つまり、第2基体10の下面は、ハウジング11の遮光部11aに覆われている。
 [2:半導体リレーの動作]
 図5は、半導体リレーの等価回路図を示す。
 第1入力端子6と第2入力端子7との間に入力信号が入力されると、発光素子2は、所定の波長の光を出力する。発光素子2で発生した光が透光部11bの内部を伝搬して、受光素子51で受光される。
 受光素子51では、光電変換により電流が発生し、この電流に基づいて制御回路52が動作する。ワイヤ12を介して、発光素子2の光量に応じた電圧信号である駆動信号が、第1MOSFET3の第1ゲート電極3b及び第2MOSFET4の第2ゲート電極4bにそれぞれ印加される。
 駆動信号の電圧が第1MOSFET3及び第2MOSFET4のそれぞれのしきい値電圧を超えると、第1MOSFET3のソース(S)-ドレイン(D)間及び第2MOSFET4のソース(S)-ドレイン(D)間がそれぞれオン状態となる。さらに、第1MOSFET3と第2MOSFET4とを介して、第1出力端子8と第2出力端子9との間が導通状態となる。このことにより、第1出力端子8と第2出力端子9との間に高周波信号を双方向に伝送することが可能となる。
 第1入力端子6と第2入力端子7との間で、入力信号が入力されなくなると、発光素子2からの発光も停止する。これに応じて、受光素子51では電流が発生しなくなり、制御回路52は停止する。
 その結果、第1MOSFET3の第1ゲート電極3b及び第2MOSFET4の第2ゲート電極4bにそれぞれ印加された駆動信号の電圧が低下する。駆動信号の電圧が前述したしきい値電圧を下回ると、第1MOSFET3のソース(S)-ドレイン(D)間及び第2MOSFET4のソース(S)-ドレイン(D)間がそれぞれオフ状態となる。さらに、第1出力端子8と第2出力端子9との間が非導通状態となる。このことにより、第1出力端子8と第2出力端子9との間で、信号の伝送が遮断される。
 [3:効果等]
 以上説明したように、本実施形態に係る半導体リレー1は、ハウジング11と第1入力端子6と第2入力端子7と第1出力端子8と第2出力端子9とを少なくとも備えている。また、半導体リレー1は、発光素子2と受光駆動素子5と第1MOSFET3と第2MOSFET4とを備えている。
 ハウジング11は、上面と、上面に対して第1軸に沿って下方に位置する下面とを有している。
 発光素子2は、第1入力端子6と第2入力端子7に電気的に接続されている。
 受光駆動素子5は、受光駆動素子5の上面(第1面)に形成された発光素子2の出力光を受光する部位である受光部と、受光部の近傍に設けられたソース電極5a(第1電極5a)と、を有している。また、受光駆動素子5は、ドレイン電極5bを有している。
 第1MOSFET3は、受光駆動素子5のソース電極5aに電気的に接続される第1ソース電極3a(第1中間電極3a)と、第1出力端子8に電気的に接続される第1ドレイン電極(第1出力電極)と、第1ゲート電極3bと、を有している。
 第2MOSFET4は、受光駆動素子5のソース電極5aに電気的に接続される第2ソース電極4a(第2中間電極4a)と、第2出力端子9に電気的に接続される第2ドレイン電極(第2出力電極)と、第2ゲート電極4bと、を有している。
 また、半導体リレー1は、第1基体7dと接続導体14とを有している。第1基体7dは、発光素子2が配置される第1主面7d1を有している。また、第1基体7dは、第2入力端子7に接続されている。接続導体14は、第2基体10を含んでいる。第2基体10は、受光素子51が配置される第2主面10aを有しており、受光駆動素子5のソース電極5aと同電位になるように、ソース電極5aに電気的に接続されている。
 接続導体14の一部、つまり、第2基体10が、第1軸に沿って見て、第1MOSFET3と第2MOSFET4との間に配置されている。さらに言うと、第1軸に沿って見て、第2基体10が、第1MOSFET3の第1ソース電極3aと第2MOSFET4の第2ソース電極4aとの間に配置されている。別の見方をすれば、第1軸に沿って見て、第2基体10が、第1MOSFET3を載置する第4基体8aと第2MOSFET4を載置する第5基体9aとの間に配置されている。なお、受光駆動素子5のソース電極5aと第2基体10とを接続するワイヤ13が、第1軸に沿って見て、第4基体8aと第5基体9aとの間に配置されていてもよいことは言うまでもない。
 また、第1基体7dの第1主面7d1の法線が、第2基体10の第2主面10aの法線と交差している。
 半導体リレー1をこのように構成することで、入出力間の容量結合や誘導結合を低減でき、また、入力側の電気長を短くできる。このことにより、出力側の高周波特性の劣化を抑制できる。これらについてさらに説明する。
 図6は、本実施形態に係る半導体リレーの斜視図を示し、図7は、比較例に係る半導体リレーの斜視図を示す。なお、図6及び図7には、発光素子2への導電経路及び寄生容量、寄生相互インダクタンスを図示している。図6及び図7に示す寄生容量C1、C2、寄生相互インダクタンスM1、M2は、便宜的に集中定数として示している。また、本実施形態に係る半導体リレーの等価回路図は、第1入力端子6と第1出力端子8間、第1入力端子6と第2基体10間等に存在する分布定数として図示することもできる。
 図7に示す半導体リレー20は、特許文献1に開示されるものと同様の構成を示す比較例であり、以下の点で図1に示す本実施形態の半導体リレー1と異なる。
 まず、入力側において、第1基体7dは、第1入力端子6の上端から第2軸に沿って延びるように形成されている。また、第3基体6dは、第2入力端子7の上端から第2軸に沿って延びるように形成されている。さらに、第1軸に沿って見て、第1基体7dと第3基体6dは、受光駆動素子5の上方まで延びて設けられている。また、第3基体6dの下面に発光素子2が接続固定されている。なお、発光素子2のアノード電極(図示せず)と第1基体7dとがワイヤ12により接続されている。
 これらの構成を有することで、図7に示す半導体リレー20では、第1軸に沿って、発光素子2の直下に受光素子51が配置される。発光素子2からの出力光は下方に進行して、そのまま受光素子51に入射される。
 この構成によれば、前述したように、スタブの長さを短くでき、スタブの影響により使用可能な周波数帯域が狭くなるのを防止することができる。一方、第1基体7dや第3基体6dが受光駆動素子5の上方まで延びるように設けられるため、入力側の導電経路、つまり、第1入力端子6から発光素子2とワイヤ12とを介して第2入力端子7に至る入力信号の伝送経路が長くなってしまう。言い換えると、入力側の電気長が長くなってしまう。また、このことに応じて、第1入力端子6と第2基体10及び受光駆動素子5との間の誘導結合による寄生相互インダクタンスM2が大きくなってしまう。なお、図7には図示しないが、同様の理由から、第2入力端子7と第2基体10及び受光駆動素子5との間の誘導結合による寄生相互インダクタンスも大きくなってしまう。
 また、第1軸に沿って見て、発光素子2が載置された第3基体6dと受光駆動素子5が載置された第2基体10とが対向して重なる面積が大きくなってしまう。このことに応じて、第1基体7dと第2基体10及び受光駆動素子5との間の容量結合による寄生容量C2が大きくなってしまう。
 このように入出力間で、寄生相互インダクタンスM2や寄生容量C2が大きくなると、第1出力端子8と第2出力端子9との間に高周波信号を伝送する場合、寄生相互インダクタンスM2や寄生容量C2を通じて出力側の高周波信号が入力側に漏洩してしまうおそれがある。
 また、入力側において、電気長が長くなると、共振周波数が低下し、共振現象が発生することがある。この場合、出力側の信号伝送特性、言い換えると、出力側の高周波特性が劣化してしまうおそれがある。
 一方、本実施形態によれば、図1,2,6に示すように、第1軸に沿って延びるように設けられた第2起立部位7bに連続して第1基体7dが設けられている。また、第1基体7dの第1主面7d1は、第2起立部位7bの一方の主面7b1に連続している。つまり、第1基体7dの第1主面7d1の法線は第3軸に沿っている。一方、第2基体10の第2主面10aの法線は、第1軸に沿っており、2つの法線は互いに交差している。つまり、第1基体7dの第1主面7d1と第2基体10の第2主面10aとは、第1軸に沿って対向していない。このことにより、第1基体7dと第2基体10及び受光駆動素子5との間の容量結合による寄生容量C1を前述の寄生容量C2よりも大幅に低下できる。
 また、第1基体7dや第3基体6dのサイズを小さくできるため、入力側の電気長を図7に示す半導体リレー20に比べて短くすることができる。このことにより、第1入力端子6と第2基体10及び受光駆動素子5との間の誘導結合による寄生相互インダクタンスM1を前述の寄生相互インダクタンスM2よりも低下できる。同様の理由から、第2入力端子7と第2基体10及び受光駆動素子5との間の誘導結合による寄生相互インダクタンスも図7に示す半導体リレー20に比べて低下できる。このことにより、出力側の高周波信号が入力側に漏洩するのを抑制し、出力側の高周波特性が劣化するのを抑制できる。
 また、入力側において、電気長が長くなると、共振周波数が低下し、共振現象が発生することがある。この場合、出力側の信号伝送特性、言い換えると、出力側の高周波特性が劣化してしまうおそれがある。
 一方、本実施形態によれば、入力側の電気長も図7に示す半導体リレー20に比べて低下できる。このことにより、入力側の共振周波数を高めることができる。
 図8は、半導体リレーの出力側の伝送信号における挿入損失の周波数依存性の一例を示す。
 図8に示すように、本実施形態の半導体リレー1を動作させた場合、図7に示す比較例の半導体リレー20に比べて、挿入損失が増加し始める周波数が高周波側にシフトしている。つまり、半導体リレー1の出力側における高周波特性の劣化が抑制されていることがわかる。
 また、本実施形態によれば、接続導体14の少なくとも一部が、第1軸に沿って見て、第1MOSFET3と第2MOSFET4との間に配置されている。このようにすることで、第1出力端子8から第1MOSFET3と第2基体10と第2MOSFET4とを経由して第2出力端子9に至る経路中にスタブが形成されるのを抑制できる。このことにより、半導体リレー1で伝送される出力信号の周波数帯域が狭くなるのを防止することができる。
 発光素子2と受光素子51は、第1軸に沿って見て、互いに離れて配置されており、このようにすることで、透光部11bを通じて、発光素子2からの出力光を確実に受光素子51に入射させることができる。
 なお、第1基体7dの第1主面7d1の法線が、第2基体10の第2主面10aの法線と直交しているのが好ましい。このようにすることで、特に第1基体7dと第2基体10及び受光駆動素子5との間の容量結合を比較例と比べて小さくできる。
 第1入力端子6と第2入力端子7は、それぞれ、外部接続部位と起立部位とを有している。外部接続部位は、ハウジング11の下面に沿って延びるように設けられ、かつ先端がハウジング11の外部に露出している。起立部位は、外部接続部位の基端に連続して、ハウジング11の下面と交差するように、かつ、起立部位の主面の法線が第3軸に沿う状態でハウジング11の内部に延びるように形成されている。また、起立部位の主面の法線が第3軸に沿うように設けることで、外部接続部位と第1基体7dとの間の物理的な導電経路を短くすることができる。すなわち、入力側の電気長を短くできる。
 外部と電気的に接続する外部接続部位をハウジング11の下面に沿って延びるように設けることで、半導体リレー1を、例えば、回路基板40(図14~16参照)の上面に設けられた配線に対して面実装することができる。また、外部接続部位に連続して、ハウジング11の下面と交差するように起立部位を設けることで、発光素子2をハウジング11の上面に近い側に配置することができる。このことにより、ハウジング11の下面に近い側に位置する受光素子51と発光素子2との距離を確保することができる。また、透光部11bを通じて、発光素子2からの出力光を受光素子51に導光することができる。
 さらに、外部接続部位の長手方向と起立部位の長手方向が交差しており、かつ、外部接続部位と起立部位との連結部位がハウジング11の内部に位置している。このことにより、第1入力端子6と第2入力端子7とが、ハウジング11の遮光部11aに確実に保持される。
 起立部位は、ハウジング11の外部に露出する部位を有しているのが好ましい。具体的には、第1起立部位6bは、その途中に第4外部露出部位6cを有しており、第2起立部位7bは、その途中に第5外部露出部位7cを有しているのが好ましい。
 通常、第1入力端子6、第3基体6d、第2入力端子7及び第1基体7dは、1枚の金属板材を加工して得られる。一方、複数の半導体リレー1を製造するにあたって、第1入力端子6や第2入力端子7を個片化した後に発光素子2を組み付けるのでは効率が悪い。
 よって、まず、金属板材を加工して、第1入力端子6、第3基体6d、第2入力端子7及び第1基体7dの各部材を1組として、複数組が連結された入力端子原型を形成する。この状態で、それぞれの第1基体7dに発光素子2が接続固定され、さらに発光素子2のアノード電極2aと第3基体6dとがワイヤ12で接続される。また、発光素子2と受光素子駆動素子5との間に光透過性樹脂の透過部11bが形成される。
 また、同様の工程が出力側でも行われる。つまり、金属板材を加工して、第1出力端子8、第2基体10及び第2入力端子7の各部材を1組として、複数組が連結された出力端子原型を形成する。この状態で、第2基体10、第4基体8a及び第5基体9aに、それぞれ、受光駆動素子5、第1MOSFET3、第2MOSFET4が接続固定される。さらに、各部がワイヤ12,13で接続される。
 これらが形成された後、入力端子原型と出力端子原型とが位置合わせされて配置され、さらに樹脂注入により各素子が封止され、ハウジング11が形成される。ハウジング11の形成後に、金属フレームとの連結部分が切断され、複数の半導体リレー1がそれぞれ個片化される。
 第4外部露出部位6cや第5外部露出部位7cは、第1入力端子6や第2入力端子7と金属フレームとの連結部分にあたる。第4外部露出部位6cや第5外部露出部位7cが残るように第1入力端子6や第2入力端子7が形成されることで、半導体リレー1の組み立てを簡便に行える。また、簡便に大量の半導体リレー1を製造することができる。
 同様の理由から、接続導体14、具体的には、第2基体10は、ハウジング11の外部に露出する部位として第1外部露出部位10bを有するのが好ましい。また、第4基体8aは、ハウジング11の外部に露出する部位として第2外部露出部位8bを有し、第5基体9aは、ハウジング11の外部に露出する部位として第3外部露出部位9bを有するのが好ましい。
 接続導体14は、受光素子51が載置される第2基体10を含み、第2基体10が、第1MOSFET3が載置される第4基体8aと第2MOSFET4が載置される第5基体9aとの間に配置されるのが好ましい。また、第2基体10が、第1MOSFET3の第1ソース電極3aと第2MOSFET4の第2ソース電極4aとの間に配置されるのがさらに好ましい。
 このようにすることで、第1出力端子8から第1MOSFET3と第2基体10と第2MOSFET4とを経由して第2出力端子9に至る経路を第2軸に沿って直線状に設けることができ、スタブが形成されるのを確実に抑制できる。このことにより、半導体リレー1で伝送される出力信号の周波数帯域が狭くなるのを確実に防止することができる。
 なお、第1起立部位6b及び第2起立部位7bは、それぞれ、第2軸に沿って見て、途中で環状部6b3、7b3が形成されている。図3に示すように、環状部6b3、7b3は、第1起立部位6b及び第2起立部位7bを貫通した貫通孔を有している。このようにすることで、自己インダクタンスや誘導結合による寄生相互インダクタンスを低減できる。また、第2基体10や受光駆動素子5との間の容量結合を低減できる。また、第1起立部位6b及び第2起立部位7bの幅をそれぞれ細くした場合に比べて、第1入力端子6や第2入力端子7の機械的強度を確保できる。
 <変形例1>
 図9は、変形例1に係る半導体リレーの斜視図を示す。なお、説明の便宜上、図9及び以降に示す各図面において、実施形態1と同様の箇所については同一の符号を付して詳細な説明を省略する。
 図9に示す本変形例の半導体リレー30は、以下に示す点で、図1に示す実施形態1の半導体リレー1と異なる。
 まず、第1軸に沿って見て、第1入力端子6及び第2入力端子7のそれぞれの外部接続部位である第1外部接続部位6aと第2外部接続部位7aとは、第1出力端子8と第2出力端子9との間に位置している。また、第1起立部位6b及び第2起立部位7bは、それぞれ、第2軸に沿って見て、L字形状であり、環状形状ではない。
 本変形例に示すように、第1入力端子6や第2入力端子7の配置や形状を変更してもよい。このようにすることで、第1入力端子6から発光素子2への導電経路及び発光素子2から第2入力端子7への導電経路を、実施形態1に示す半導体リレー1における当該導電経路よりもそれぞれ短くすることができる。つまり、入力側の電気長を実施形態1に示す半導体リレー1よりも短くすることができる。
 このことにより、入力側の共振周波数を高められ、共振現象の発生を抑制できる。ひいては、出力側の高周波特性の劣化を抑制できる。
 なお、第1起立部位6bや第2起立部位7bの長さを実施形態1に示す場合に比べて短くできるため、誘導結合や容量結合を低減する目的で、これらの形状を実施形態1に示す環状形状としなくてもよい。
 <変形例2>
 図10は、変形例2に係る半導体リレーを第1軸に沿って見た図であり、図10に示す本変形例の半導体リレー31は、以下に示す点で、図1に示す実施形態1の半導体リレー1と異なる。
 つまり、第2入力端子7において、第2起立部位7bの先端が第3軸に沿って屈曲している。第1入力端子6及び第2入力端子7は、実施形態1に示す場合に比べて、第3軸に沿って出力側と反対側にシフトした位置にある。言い換えると、第1軸に沿って見て、第1基体7dは、第1入力端子6及び第2入力端子7の一部よりも接続導体14の一部である第2基体10に近い側に位置している。
 このことにより、発光素子2と受光素子51との間の光結合効率を実施形態1の光結合効率と同様に確保しつつ、実施形態1に比べて寄生容量成分を小さくすることができ、高周波特性を向上させることができる。よって、発光素子2からの出力光に応じて、第1出力端子8と第2出力端子9との間で、高周波信号の通過及び遮断を確実に行うことができる。
 <変形例3>
 図11は、変形例3に係る受光駆動素子と第1MOSFETと第2MOSFETとを第1軸に沿って見た図である。
 図11に示す第2基体10は、第3軸に沿った幅W2が、第1出力端子8や第2出力端子9の第3軸に沿った幅W1よりも広くなっている点で、図3に示す実施形態1の第2基体10と異なる。
 第2基体10の幅W2をこのように規定することで、ハウジング11の底面より高い位置にある第2基体10の部位に起因する伝送線路の特性インピーダンスの増加を抑制することができ、インサーションロスを低減することができる。
 (実施形態2)
 図12は、実施形態2に係る半導体リレーの斜視図を示す。
 図12に示す本実施形態の半導体リレー32は、第1入力端子6の中間部分及び第2入力端子7の中間部分のそれぞれに、抵抗素子として電子部品であるチップ抵抗器15が挿入されている点で、図1に示す実施形態1の半導体リレー1と異なる。
 具体的には、第1入力端子6の第1起立部位6bが途中で分割されており、分割された部分同士をつなぐようにチップ抵抗器15が第1起立部位6bに直列に接続されている。同様に、第2入力端子7の第2起立部位7bが途中で分割されており、分割された部分同士をつなぐようにチップ抵抗器15が第2起立部位7bに直列に接続されている。また、発光素子2のアノード電極2aは、ワイヤ12を介して第1起立部位6bに電気的に接続されている。さらに、発光素子2とワイヤ12で接続された第1起立部位6bから第2軸に沿って直線状に延び、ハウジング11の側面に達する第6外部露出部位6eが設けられている。また、第1基体7dから第2軸に沿って第6外部露出部位6eと反対側に直線状に延び、ハウジング11の側面に達する第7外部露出部位7eが設けられている。第1~第7外部露出部位10b,8b,9b,6c,7c,6e,7eを総称した場合も、外部露出部位という。
 なお、チップ抵抗器15を第1起立部位6b及び第2起立部位7bのそれぞれに直列接続するため、第1起立部位6b及び第2起立部位7bは、それぞれ環状形状にはなっていない。また、第1入力端子6に接続する第3基体6dが省略されている。これは、チップ抵抗器15の挿入により、半導体リレー32の第2軸に沿ったサイズが大きくなるのを防止するためである。当該サイズが大きくなるのを許容できる範囲で、第3基体6dが設けられてもよい。
 本実施形態によれば、実施形態1に示す構成に比べて、入力側の電気長を確実に短くすることができる。このことにより、入力側の共振周波数を高められ、共振現象の発生を抑制できる。ひいては、出力側の高周波特性の劣化を抑制できる。図13を用いてさらに説明する。
 図13は、入力側への抵抗挿入前後の共振現象の違いを説明する模式図を示す。
 第1入力端子6と第2入力端子7との間に高周波信号が入力された場合、図13の左側に示すように、入力側の電気長が所定の値になると定在波が発生して、共振現象が起こることがある。よって、入力側の共振周波数を高めるためには、定在波の波長を短くする必要がある。
 そこで、本実施形態に示すように、入力側の導電経路の途中に、当該導電経路の抵抗値よりも高い抵抗値の抵抗素子を電気的に直列に接続するように挿入する。このようにすることで、定在波の振動が、抵抗素子が挿入された位置で大幅に減衰する。つまり、抵抗素子の挿入位置が定在波の節となる。その結果、図13の右側に示すように、定在波の波長を短くすることができ、入力側の共振周波数を高められる。その結果、共振現象の発生及び出力側の高周波特性の劣化を抑制できる。
 なお、図13の右側に示すように、定在波の波長を短くするためには、定在波のもとの節と節との間の中間点に抵抗素子を挿入することが有効である。つまり、抵抗素子を挿入する前の半導体リレー1で共振現象が起こっているのであれば、第1入力端子6や第2入力端子7のそれぞれ端部近傍ではなく、それぞれの物理的な中間部分に抵抗素子を直列に挿入するのが好ましい。
 また、図12に示すように、第1入力端子6と第2入力端子7の両方に抵抗素子としてチップ抵抗器15を挿入する必要は無い。第1入力端子6と発光素子2とを接続する導電経路及び第2入力端子7と発光素子2とを接続する導電経路の少なくとも一方に、チップ抵抗器15が直列に接続されていればよい。
 なお、チップ抵抗器15の抵抗値は、前述した導電経路の抵抗値よりも高いことが好ましいが、具体的な値は、入力信号の周波数や導電経路の抵抗値等に応じて適宜変更されうる。
 また、入力側の電気長を短くするには、抵抗素子の挿入以外の手法も取りうる。例えば、抵抗器15の代わりに、高周波領域において前述した導電経路のインピーダンスよりも高インピーダンスが得られるインダクタ素子としてチップインダクタに変更することによっても、入力側の電気長を短くできる。この場合も、共振現象の発生を抑制し、出力側の高周波特性の劣化を抑制することができる。
 (実施形態3)
 図14は、実施形態3に係る半導体リレーモジュールの斜視図を示し、図15は、半導体リレーモジュールを第2軸に沿って見た図を示し、図16は、半導体リレーモジュールを第3軸に沿って見た図を示す。
 図14~16に示すように、半導体リレーモジュール100は、半導体リレー1と回路基板40とを少なくとも備えている。半導体リレー1については、実施形態1に示すと同様の構成であるので、詳細な説明を省略する。
 回路基板40は、所定の比誘電率を有する誘電体材料からなる誘電体基板40aに第1~第4配線41~44がそれぞれ形成されてなる、いわゆるプリント配線板(Printed Wiring Board)である。
 第1~第4配線41~44は、誘電体基板40aの上面に銅めっき等を施して形成される。また、第1~第4配線41~44のそれぞれの一端には、導電ビア45が接続されている。導電ビア45は、誘電体基板40aを厚さ方向に貫通するビアホールの内面に銅めっき等で導体が埋め込まれたものである。なお、半導体リレーモジュール100の製造工程を簡素化する上で、この導体は、第1~第4配線41~44の形成時に同時に形成されるのが好ましい。
 第3配線43と第4配線44のそれぞれにおいて、導電ビア45が接続された一端とは反対側の端部(以下、他端という)には、半導体リレー1の第1出力端子8と第2出力端子9がそれぞれ接続される。接続にあたっては、銀ペーストやクリームはんだ等の導電性接着材が用いられる。
 また、第1配線41と第2配線42のそれぞれの他端において、半導体リレー1の第1入力端子6と第2入力端子7がそれぞれ接続される。接続にあたっては、銀ペーストやクリームはんだ等の導電性接着材が用いられる。
 一方、第1配線41と第2配線42のそれぞれは、他端の近傍で分割されている。第1配線41と第2配線42のそれぞれにおいて、分割された部分同士をつなぐように抵抗素子としてチップ抵抗器16が直列に接続されている。
 第1配線41に接続された導電ビア45及び第2配線42に接続された導電ビア45から第1配線41及び第2配線42に入力信号が伝送される。さらに、半導体リレー1の第1入力端子6及び第2入力端子7に入力信号が伝送される。また、所定以上の振幅の入力信号が入力されている期間は、第1出力端子8が接続された第3配線43と第2出力端子9が接続された第4配線44との間に半導体リレー1を介して高周波信号が伝送される。さらに、第3配線43に接続された導電ビア45と第4配線44に接続された導電ビア45との間に高周波信号が伝送される。入力信号の振幅が所定以下になると、第3配線43と第4配線44との間で、さらに、第3配線43に接続された導電ビア45と第4配線44に接続された導電ビア45との間で高周波信号の伝送が遮断される。
 本実施形態によれば、半導体リレー1において、入出力間の容量結合や誘導結合を低減でき、また、入力側の電気長を短くできる。このことにより、第3配線43と第4配線44との間に伝送される出力信号の高周波特性の劣化を抑制できる。
 また、本実施形態の半導体リレーモジュール100では、第1配線41と第2入力端子7に接続された第2配線42のそれぞれにおいて、第1入力端子6と第2入力端子7の近傍に、それぞれチップ抵抗器16を直列に接続している。さらに言うと、第1配線41における第1入力端子6との接続箇所の近傍に、所定の抵抗値を有する抵抗素子として、チップ抵抗器16が電気的に直列に接続するように挿入されている。また、第2配線42における第2入力端子7との接続箇所の近傍に、所定の抵抗値を有する抵抗素子として、チップ抵抗器16が電気的に直列に接続するように挿入されている。
 このようにすることで、実施形態2において、図13を用いて説明したように、定在波の波長を短くでき、入力側の共振周波数を高められる。その結果、共振現象の発生及び出力側の高周波特性の劣化を抑制できる。
 なお、第1配線41に接続する抵抗素子と第2配線42に接続する抵抗素子のうちいずれか一方の抵抗素子を接続しなくてもよい。また、入力側の共振周波数が所定以上に高くなるように半導体リレー1及び半導体リレーモジュール100が設計されている場合、抵抗素子としてチップ抵抗器16を接続することは必須ではなく、接続しなくともよい。その場合、第1配線41や第2配線42が分割されずに、導電ビア45から第1入力端子6や第2入力端子7まで連続して設けられている。また、抵抗器15の代わりにチップインダクタを用いることができる。
 なお、図14~16には、回路基板40に半導体リレー1のみが実装された半導体リレーモジュール100を示したが、他の素子が回路基板40に実装されていてもよい。また、回路基板40を貫通する導電ビア45は、必ずしも設けられていなくてもよい。回路基板40の上面に外部との接続用パッド電極(図示せず)が複数設けられ、それぞれが第1~第4配線41~44に接続される構造としてもよい。
 (その他の実施形態)
 実施形態1~3及び変形例1~3に示す各構成要素を適宜組み合わせて、新たな実施形態とすることもできる。例えば、実施形態3に示す半導体リレーモジュール100において、半導体リレー1の構成を、実施形態2や変形例1~3に示す構成としてもよい。
 また、本願明細書において、第1出力端子8及び第2出力端子9は、第4基体8a及び第5基体9aのそれぞれのハウジング11から露出した裏面を外部、例えば、図14~16に示す第3配線43や第4配線44との接続部位としているが、特にこれに限定されない。半導体リレー1が面実装型リレーであればよく、例えば、第1入力端子6や第2入力端子7のようにハウジング11の下面に沿って、かつハウジング11の側面から外部に露出して突出する外部接続部位を第1出力端子8及び第2出力端子9にそれぞれ設けてもよい。
 また、第1入力端子6の第1外部接続部位6aや第2入力端子7の第2外部接続部位7aは、ハウジング11の側面から外部に突出していなくてもよい。つまり、外部接続部位は、少なくともハウジング11の下面から露出していればよい。このようにすることで、面実装型の半導体リレー1を実現できる。
 また、制御回路52を受光素子51と別の半導体チップに形成してもよい。その場合は、制御回路52は、ハウジング11の遮光部11aで封止されるのが好ましい。
 本開示の半導体リレーは、出力側の高周波特性の劣化を抑制でき、高周波信号の伝送用リレーとして有用である。
1   半導体リレー
2   発光素子
2a  アノード電極
3   第1MOSFET
3a  第1ソース電極(第1中間電極)
3b  第1ゲート電極
4   第2MOSFET
4a  第2ソース電極(第2中間電極)
4b  第2ゲート電極
5   受光駆動素子
5a  ソース電極(第1電極)
5b  ドレイン電極
6   第1入力端子
6a  第1外部接続部位
6b  第1起立部位
6c  第4外部露出部位
6d  第3基体
6e  第6外部露出部位
7   第2入力端子
7a  第2外部接続部位
7b  第2起立部位
7c  第5外部露出部位
7d  第1基体
7d1 第1主面
7e  第7外部露出部位
8   第1出力端子
8a  第4基体
8b  第2外部露出部位
9   第2出力端子
9a  第5基体
9b  第3外部露出部位
10  第2基体
10a 第2主面
10b 第1外部露出部位
11  ハウジング
11a 遮光部
11b 透光部
12  ワイヤ
13  ワイヤ
14  接続導体
15  チップ抵抗器(抵抗素子)
16  チップ抵抗器(抵抗素子)
20  半導体リレー
30~32 半導体リレー
40 回路基板
40a 誘電体基板
41~44 第1~第4配線
45  導電ビア
51  受光素子
51a カソード電極(第1電極)
51b アノード電極
52  制御回路
100 半導体リレーモジュール

Claims (14)

  1.  上面と、前記上面に対して第1軸に沿って下方に位置する下面とを有するハウジングと、
     第1入力端子と第2入力端子と、
     第1出力端子と第2出力端子と、
     前記第1入力端子と前記第2入力端子に電気的に接続される発光素子と、
     前記発光素子の出力光を受光する第1面と、前記第1面に対して前記第1軸に沿って下方に位置する第2面と、第1電極と、を有する受光駆動素子と、
     前記第1電極に電気的に接続される第1中間電極と、前記第1出力端子に電気的に接続される第1出力電極と、第1ゲート電極と、を有する第1MOSFETと、
     前記第1電極に電気的に接続される第2中間電極と、前記第2出力端子に電気的に接続される第2出力電極と、第2ゲート電極と、を有する第2MOSFETと、
     前記発光素子が配置される第1主面を有する第1基体と、
     前記受光駆動素子が配置される第2主面を有するとともに、前記第1電極に同電位に接続される接続導体と、
     を少なくとも備え、
     前記接続導体の少なくとも一部が、前記第1軸に沿って見て、前記第1MOSFETと前記第2MOSFETとの間に配置されており、
     前記第1主面の法線が、前記第2主面の法線と交差する、
    半導体リレー。
  2.  前記発光素子と前記受光駆動素子は、前記第1軸に沿って見て、互いに離れている、
    請求項1に記載の半導体リレー。
  3.  前記第1主面の法線が、前記第2主面の法線と直交する、
    請求項1に記載の半導体リレー。
  4.  前記第1入力端子と前記第2入力端子は、それぞれ、外部接続部位と起立部位とを有しており、
     前記外部接続部位は、前記ハウジングの下面に沿って延びるように設けられ、かつ先端が前記ハウジングの外部に露出しており、
     前記起立部位は、前記外部接続部位の基端に連続して、前記ハウジングの下面と交差するように、かつ前記ハウジングの内部に延びるように形成されており、
     前記発光素子と前記受光駆動素子の配列方向に沿った軸を第3軸とするとき、前記起立部位の主面の法線が、前記第3軸に沿っている、
    請求項1に記載の半導体リレー。
  5.  前記起立部位には、前記起立部位を貫通する貫通孔を有する環状部が形成されている、
    請求項4に記載の半導体リレー。
  6.  前記起立部位は、前記ハウジングの外部に露出する部位を有する、
    請求項4に記載の半導体リレー。
  7.  前記接続導体は、前記ハウジングの外部に露出する部位を有する、
    請求項1に記載の半導体リレー。
  8.  前記接続導体は、前記受光駆動素子が載置される第2基体を含み、
     前記第2基体は、前記第2主面を有するとともに、前記第1MOSFETが載置される基体と前記第2MOSFETが載置される基体との間に配置される、
    請求項1に記載の半導体リレー。
  9.  前記第1入力端子と前記発光素子とを接続する導電経路及び前記第2入力端子と前記発光素子とを接続する導電経路の少なくとも一方に、所定の抵抗を有する抵抗素子または所定のインピーダンスを有するインダクタ素子が電気的に直列に接続されている、
    請求項1に記載の半導体リレー。
  10.  前記発光素子と前記受光駆動素子の配列方向に沿った軸を第3軸とするとき、
     前記第3軸に沿った前記第2基体の幅は、前記第3軸に沿った前記第1出力端子の幅または前記第3軸に沿った前記第2出力端子の幅よりも広い、
    請求項8に記載の半導体リレー。
  11.  前記第1軸に沿って見て、前記第1基体は、前記第1入力端子及び前記第2出力端子よりも前記接続導体に近い側に位置している、
    請求項1に記載の半導体リレー。
  12.  前記第1軸に沿って見て、前記第1入力端子及び前記第2入力端子のそれぞれの前記外部接続部位は、前記第1出力端子と前記第2出力端子との間に位置している、
    請求項4に記載の半導体リレー。
  13.  請求項1に記載の半導体リレーと、
     第1~第4配線がそれぞれ形成された回路基板と、を少なくとも備え、
     前記第1配線と前記第2配線は、それぞれ、前記半導体リレーの前記第1入力端子と前記第2入力端子に接続され、
     前記第3配線と前記第4配線は、それぞれ、前記半導体リレーの前記第1出力端子と前記第2出力端子に接続されている、
    半導体リレーモジュール。
  14.  前記第1配線における前記第1入力端子との接続箇所の近傍に、所定の抵抗を有する抵抗素子または所定のインピーダンスを有するインダクタ素子が電気的に直列に接続されている、
    及び/または、
     前記第2配線における前記第2入力端子との接続箇所の近傍に、所定の抵抗を有する抵抗素子または所定のインピーダンスを有するインダクタ素子が電気的に直列に接続されている、
    請求項13に記載の半導体リレーモジュール。
PCT/JP2023/011155 2022-04-01 2023-03-22 半導体リレー及びそれを備えた半導体リレーモジュール WO2023189918A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061746 2022-04-01
JP2022-061746 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023189918A1 true WO2023189918A1 (ja) 2023-10-05

Family

ID=88201878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011155 WO2023189918A1 (ja) 2022-04-01 2023-03-22 半導体リレー及びそれを備えた半導体リレーモジュール

Country Status (2)

Country Link
TW (1) TW202341516A (ja)
WO (1) WO2023189918A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55169875U (ja) * 1979-05-23 1980-12-05
US20090140266A1 (en) * 2007-11-30 2009-06-04 Yong Liu Package including oriented devices
JP2009152301A (ja) * 2007-12-19 2009-07-09 Sharp Corp フォトカプラおよびこのフォトカプラを搭載した電子機器装置
JP2011082916A (ja) 2009-10-09 2011-04-21 Panasonic Electric Works Co Ltd 半導体リレー
JP2015056504A (ja) * 2013-09-11 2015-03-23 株式会社東芝 光結合装置および発光素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55169875U (ja) * 1979-05-23 1980-12-05
US20090140266A1 (en) * 2007-11-30 2009-06-04 Yong Liu Package including oriented devices
JP2009152301A (ja) * 2007-12-19 2009-07-09 Sharp Corp フォトカプラおよびこのフォトカプラを搭載した電子機器装置
JP2011082916A (ja) 2009-10-09 2011-04-21 Panasonic Electric Works Co Ltd 半導体リレー
JP2015056504A (ja) * 2013-09-11 2015-03-23 株式会社東芝 光結合装置および発光素子

Also Published As

Publication number Publication date
TW202341516A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
US7649499B2 (en) High-frequency module
US6807065B2 (en) Multilayer printed circuit board
JP4653005B2 (ja) 電子部品パッケージ
JP5654288B2 (ja) 光モジュール及び高周波モジュール
JPH10242716A (ja) 高周波用入出力端子ならびにそれを用いた高周波用半導体素子収納用パッケージ
US5495125A (en) Molded semiconductor device
JP3617633B2 (ja) 導波管接続部
US10777493B2 (en) Semiconductor device mounting board and semiconductor package
JP7063695B2 (ja) 光モジュール
US5532658A (en) Mounting structure for electronic component
JPH07294777A (ja) 光モジュール
CN113013262B (zh) 光模块
CN1501546A (zh) 波导管结构化组件及其制造方法
WO2023189918A1 (ja) 半導体リレー及びそれを備えた半導体リレーモジュール
JP2023180383A (ja) 半導体リレー及びそれを備えた半導体リレーモジュール
JP2019186379A (ja) 光モジュール
WO2024190452A1 (ja) 半導体リレー及びこれを備えた電気部品ユニット
JP2006049766A (ja) 半導体リレー装置
CN113056092A (zh) 布线基板
JP2005123894A (ja) 高周波用マルチチップモジュール基板
WO2023095423A1 (ja) 半導体リレー及びこれを備えた電気回路
JP2002359392A (ja) 半導体リレー
US20240306302A1 (en) Wiring board, package for containing electronic component, electronic device, and electronic module
JP4127652B2 (ja) 光モジュール
JP6791280B2 (ja) 光変調器モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511943

Country of ref document: JP

Kind code of ref document: A