WO2023189866A1 - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
WO2023189866A1
WO2023189866A1 PCT/JP2023/011036 JP2023011036W WO2023189866A1 WO 2023189866 A1 WO2023189866 A1 WO 2023189866A1 JP 2023011036 W JP2023011036 W JP 2023011036W WO 2023189866 A1 WO2023189866 A1 WO 2023189866A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
particles
resin
laminate
functional layer
Prior art date
Application number
PCT/JP2023/011036
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 東
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Publication of WO2023189866A1 publication Critical patent/WO2023189866A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating

Definitions

  • the present invention relates to a novel laminate. More specifically, the present invention relates to a laminate having water repellency and oil repellency.
  • Water-repellent technology or oil-repellent technology is widely researched for anti-adhesion applications, mold release applications, etc.
  • super water repellent treatment with a contact angle of 150° or more with water or oil Products with super oil-repellent treatment that have a contact angle of 150° or more have also been developed.
  • the porous functional layer has a porosity of 1% by volume or more and 50% by volume or less in the region from the bottom of the porous functional layer to 50% thickness in the thickness direction
  • a laminate is known that has a porosity of 50% by volume or more and 99% by volume or less in a region between the thickness exceeding 50% and the surface of the porous functional layer (Patent Document 1).
  • the three-dimensional network structure since the three-dimensional network structure has a predetermined porosity, fine particles are difficult to fall off, and high water and oil repellency can be exhibited. However, if the three-dimensional network structure is used in contact with oil or moisture for a long period of time, the three-dimensional network structure may be immersed in the oil, resulting in a decrease in water repellency or oil repellency.
  • the main object of the present invention is to provide a laminate that can maintain good water repellency or oil repellency.
  • the present invention relates to the following laminate.
  • a laminate including a base material and a functional layer, (1) The functional layer includes a three-dimensional network structure, (2) The three-dimensional network structure has a function of at least one of (a) (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle, and (a2) a hydrophobic particle. (b) a hydrophobic resin containing fluorine; A laminate characterized by: 2. 2. The laminate according to item 1, wherein the functional particles are fixed to the three-dimensional network structure by a hydrophobic resin containing fluorine. 3. 2.
  • the functional layer has a specific surface area of 2 to 195 m 2 /g. 5.
  • the porosity in the area from the bottom of the functional layer to 50% thickness is 0 to 45%, and the porosity in the area from the bottom of the functional layer to more than 50% thickness to the surface of the functional layer (the outermost surface) Item 1.
  • the ratio of the functional particles to the fluorine-containing hydrophobic resin is 1:50 to 20:1 in solid weight ratio.
  • the laminate according to item 1 wherein the inorganic oxide fine particles have an average primary particle diameter of 5 to 50 nm. 10. 2. The laminate according to item 1, wherein the three-dimensional network structure further includes filler particles having an average particle diameter D50 of 5 to 60 ⁇ m. 11.
  • a method of manufacturing a laminate including a base material and a functional layer comprising: (1) forming a fluorine-containing coating film by applying a fluorine-containing coating liquid containing a fluorine-containing hydrophobic resin to a substrate; and (2) forming a fluorine-containing coating film on the fluorine-containing coating film; ) By applying a coating liquid containing at least one functional particle of (a1) composite particles comprising a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles and (a2) hydrophobic particles.
  • a method for producing a laminate comprising the step of forming a coating film containing composite particles.
  • the present invention it is possible to provide a laminate that can maintain good water repellency and/or oil repellency. That is, it is possible to provide a laminate that is even more excellent in durability of water repellency and/or oil repellency (oil repellency, etc.).
  • the laminate of the present invention comprises (a1) composite particles having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles, and (a2) at least one functional particle of hydrophobic particles; (b) Since it contains a three-dimensional network structure containing a hydrophobic resin containing fluorine, it has high water and oil repellency due to the two components of the functional particles and the hydrophobic resin, and the functional particles are three-dimensional. Because it is relatively firmly fixed to the network structure and base material, it is possible to suppress or prevent the functional particles from falling off over time, resulting in high durability in terms of water repellency and/or oil repellency. can do.
  • FIG. 1 is a schematic diagram showing an example of the layer structure of the laminate of the present invention.
  • 3 is a cross-sectional image of the laminate of Example 1.
  • 2 is a cross-sectional image of a laminate of Comparative Example 1. It is a binarized image of Example 1.
  • FIG. 4A shows a cross-sectional image of the stack of secondary electron images from an electron microscope
  • FIG. 4B shows a binarized image of FIG. 4A
  • FIG. This is the result of performing a discriminant analysis method after selecting a region.
  • Laminate of the present invention is a laminate including a base material and a functional layer, (1)
  • the functional layer includes a three-dimensional network structure, (2)
  • the three-dimensional network structure has a function of at least one of (a) (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle, and (a2) a hydrophobic particle. (b) a hydrophobic resin containing fluorine; It is characterized by
  • FIG. 1 An example of an embodiment of the laminate of the present invention is shown in FIG.
  • a functional layer 12 is formed directly on a base material 11.
  • the functional layer 12 includes a three-dimensional network structure 12a, as shown in FIG. Like the functional layer 12 shown in FIG. 1, it may include voids 12b.
  • the three-dimensional network structure 12a in FIG. 1 includes at least one functional particle of (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle and (a2) a hydrophobic particle.
  • fluorine-containing resin a hydrophobic resin containing fluorine
  • a three-dimensional network structure is formed by fixing a plurality of functional particles to each other in a manner such that they are bridged by the fluorine-containing resin. In this way, the functional particles are fixed to the three-dimensional network structure by the fluorine-containing resin.
  • the functional particles A are fixed to the functional layer 12, and the functional layer 12 is fixed to the base material 11.
  • the functional layer 12 is supported on the base material by adhering the fluorine-containing resin to the base material 11 and the functional particles A.
  • hydrophobic particles are used as the functional particles, a three-dimensional network structure is formed by similarly fixing a plurality of hydrophobic particles together with the fluorine-containing resin acting as a bridge, resulting in high repellency. Water-based and durable.
  • the plurality of functional particles A are configured in a state where they are aggregated with each other mainly through a fluorine-containing resin.
  • the fluorine-containing resin is interposed between the plurality of functional particles A, but voids 12b may be included between the functional particles within a range that does not impede the effects of the present invention. good.
  • the functional particles A are usually in indirect contact with each other via the fluorine-containing resin B, the functional particles may be in direct contact with each other as long as the effects of the present invention are not impaired. good.
  • Comparative Example 1 the structure of Comparative Example 1 is shown in FIG. 3, and a three-dimensional network structure itself made of functional particles is formed.
  • functional particles composite particles
  • FIG. the three-dimensional network structure according to the present invention is distinguished from a three-dimensional network structure consisting essentially only of functional particles.
  • each structure of the laminate of the present invention will be explained in detail.
  • the base material mainly functions as a support layer that supports the functional layer. Therefore, the material is not particularly limited as long as it has such a function, and may include metal foil (e.g. aluminum foil, etc.), metal plate (steel plate, etc.), resin film (e.g. synthetic resin such as polyester, polyethylene, polypropylene, etc.), resin. Examples include boards (for example, synthetic resins such as polyester, polyethylene, and polypropylene), paper, wood boards, nonwoven fabrics, and primer-coated products thereof.
  • metal foil e.g. aluminum foil, etc.
  • metal plate steel plate, etc.
  • resin film e.g. synthetic resin such as polyester, polyethylene, polypropylene, etc.
  • boards for example, synthetic resins such as polyester, polyethylene, and polypropylene
  • paper wood boards, nonwoven fabrics, and primer-coated products thereof.
  • At least one resin film of polypropylene film, polyethylene film, and polyester film or metal foil (especially aluminum foil) can be suitably used as the base material.
  • the resin film may be either a stretched film or an unstretched film. Furthermore, either a uniaxially stretched film or a biaxially stretched film can be used as the stretched film. Further, as the resin film, various types of resin films subjected to surface treatment such as corona treatment can also be used as the base material.
  • the thickness of the base material is not limited, it can be appropriately set depending on, for example, the material of the base material, the use of the laminate of the present invention, etc.
  • the thickness can generally be set appropriately within a range of about 20 to 80 ⁇ m, but is not limited thereto.
  • the surface of the base material may be subjected to surface treatment.
  • the adhesion (adhesiveness) between the base material and the functional layer can be further improved.
  • the surface treatment include unevenness treatment using an additive (preferably filled particles), unevenness treatment using embossing, and the like.
  • the height of the unevenness is not limited, it is particularly preferably about 5 to 60 ⁇ m, and more preferably 20 to 50 ⁇ m.
  • filled particles filled particles as shown below can also be used.
  • the functional layer is a layer having water repellency and/or oil repellency.
  • a functional layer is formed on at least one surface of the base material.
  • the functional layer comprises (a) at least one functional particle selected from (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle and (a2) a hydrophobic particle; ) has a three-dimensional network structure containing a hydrophobic resin containing fluorine.
  • the functional layer has a three-dimensional network structure and can take a porous form, so it has a predetermined specific surface area.
  • the specific surface area in this case is not limited, it is usually preferable that the specific surface area is about 2 to 195 m 2 /g. Therefore, it can be set to about 2 to 55 m 2 /g, for example. This can also be an indicator of the degree of bridging between the fluorine-containing resin and the functional particles in the three-dimensional network structure of the functional layer.
  • the specific surface area in the present invention refers to the specific surface area in the BET method (Brunauer-Emmett-Teller method).
  • the specific surface area of the functional layer is maximized when only functional particles are applied to the base material.
  • the specific surface area is measured by applying only the functional particles to the base material, it is approximately 200 m 2 /g. This is because the functional particles form a three-dimensional network structure using only intermolecular forces, and when the porosity is measured using the method described in Test Example 3 below, it is approximately 55%, which is the theoretical state in which the functional layer has the most voids. becomes. Since the functional layer consisting only of functional particles forms a three-dimensional network structure only by intermolecular forces, there is a risk that the functional particles may easily fall off.
  • the critical point is a specific surface area of about 195 m 2 /g, and if the specific surface area exceeds this point, about 197 m 2 /g, the amount of fluorine-containing resin is insufficient and the possibility that the functional particles will fall off increases.
  • the functional layer when the functional layer is composed of only a fluorine-containing resin and no functional particles are present, the surface becomes smooth and has the lowest specific surface area.
  • the porosity is 0% and the specific surface area is the lowest, about 0.2 m 2 /g. In this case, the three-dimensional network structure is almost lost, resulting in a functional layer with a reduced amount of air in the surface layer, and there is a risk that sufficient oil repellency cannot be obtained.
  • the critical point of the specific surface area is about 2 m 2 /g, and if it is lower than this, about 1 m 2 /g, there will be almost no voids, and there is a risk that the oil repellency or water repellency durability will be poor.
  • the porosity and specific surface area of the functional layer have a certain correlation. It is said that voids (that is, air spaces) are theoretically the most repellent of substances, and the contact angle with respect to water or oil is thought to be 180°. According to the Cassie-Baxter theory, this mosaic structure of the air layer and solid material is said to depend on the proportion of the air layer and the liquid repellency of the solid material itself.
  • a fluorine-containing hydrophobic resin is used to support the functional particles. If a substance other than the above-mentioned fluorine-containing resin is used as the resin that bridges the functional particles, sufficient oil-repellent durability or water-repellent durability cannot be obtained.
  • the surface free energy (surface tension of a solid) of fluorine-containing substances is generally as low as 20 mJ/ m2 or less; for example, the surface tension of edible oil used in Test Example 5 described later is 32 mJ/ m2 , which is sufficient.
  • the surface free energy of fluorine-free resins such as olefins and styrene-butadiene rubber is about 30 to 34 mJ/m 2 , which is a small difference compared to the surface tension of edible oil, which is 32 mJ/m 2 . Therefore, it is thought that it easily gets wet with oil, resulting in poor oil-repellent durability or water-repellent durability.
  • the surface free energy of the fluorine-containing resin used in the present invention is generally about 5 to 25 mJ/m 2 , and more preferably 5 to 20 mJ/m 2 .
  • the porosity at the bottom is 0% and the porosity at the top is 2%, there are too few voids and there is a risk that sufficient oil or water repellency may not be obtained. If the porosity at the bottom is 0% but the porosity at the top is 10%, the desired oil repellency or water repellency can be maintained, although the effect is not high.
  • the above-mentioned “bottom” refers to a region of the functional layer up to 50% thickness from the bottom surface of the functional layer on the base material side, as shown in FIG.
  • the above-mentioned “upper” refers to the area from the bottom of the functional layer to the surface (outermost surface) of the functional layer over 50% of the thickness.
  • the porosity becomes maximum at 55% at the bottom and 55% at the top.
  • the functional particles are bound together substantially only by intermolecular forces, there is a risk that they will easily fall off.
  • the porosity is 45% at the bottom and 55% at the top, the oil repellency or water repellency is not sufficient at a critical point, but can be maintained. If the porosity exceeds this, it is presumed that the bridging effect by the fluorine-containing resin is not sufficient, and the porosity is 53% at the bottom and 55% at the top, and there is a possibility that oil repellency or water repellency cannot be maintained.
  • the porosity can be set in the range of about 0 to 45% at the bottom and about 10 to 55% at the top, but it is particularly preferable to set the porosity to 31 to 45% at the bottom and 40 to 55% at the top. More preferably, the ratio is 35 to 41% and the upper part is 44 to 48%.
  • the functional layer has a gradient structure in which the porosity increases from the bottom to the top. Therefore, it is desirable that the porosity at the top is larger than the porosity at the bottom.
  • the difference between the two [(top porosity) - (bottom porosity)] is usually preferably 3% or more, particularly preferably 4 to 15%.
  • the ratio of the functional particles and the fluorine-containing resin (excluding the fluorine-containing hydrophobic resin contained in the functional particles) in the three-dimensional network structure is usually 1:50 in solid weight ratio. ⁇ 20:1, preferably in the range of 1:30 to 20:1, more preferably in the range of 1:10 to 4:1, and among them 1:3 to 4:1. Most preferably. By setting it within such a range, a three-dimensional network structure in which the functional particles are firmly bridged by the fluorine-containing hydrophobic resin is formed. In this case, as the ratio of fluorine-containing resin increases, and if it exceeds 1:30 and there is too much fluorine-containing resin, the fluorine-containing resin that bridges the functional particles will completely fill the voids between the functional particles.
  • the three-dimensional network structure cannot be maintained. As a result, the physical properties become equal to those obtained when only the fluorine-containing resin is applied to the base material, and sufficient oil repellency or water repellency cannot be obtained. This means that the specific surface area becomes close to the value obtained when a fluorine-containing resin coating is applied to a substrate. On the other hand, if the ratio of functional particles exceeds 20:1 and there are too many functional particles, the coating film approaches only the functional particles, and the fluorine-containing resin cannot bridge the functional particles, making it impossible to obtain sufficient adhesion. First, it is considered that oil repellency or water repellency cannot be exhibited.
  • hydrophobic particles at least one kind of inorganic oxide particles (powder) such as silicon oxide, titanium oxide, aluminum oxide, zinc oxide, etc. can be used. Among these, silicon oxide particles are more preferred.
  • hydrophobic particles include hydrophobic fine particles made by hydrophilic fine particles made hydrophilic by etching, ultraviolet irradiation, blasting, plasma treatment, etc., and made hydrophobic with a silane coupling agent, etc., with hydroxyl groups remaining partially. can also be used. By forming a functional layer with a three-dimensional network structure, these can strongly adhere to the thermosetting resin on the primer layer side and exhibit super water repellency and/or super oil repellency on the other side. can.
  • the average primary particle diameter of the inorganic oxide particles is preferably 5 to 50 nm, particularly preferably 7 to 30 nm.
  • the primary particle average diameter of the inorganic oxide particles can be measured using a transmission electron microscope or a scanning electron microscope. More specifically, the average primary particle diameter is determined by photographing with a transmission electron microscope or scanning electron microscope, measuring the diameters of 200 or more particles on the photograph, and calculating the arithmetic mean value. be able to.
  • the nano-level inorganic oxide particles as described above are not limited, and known or commercially available ones can also be used.
  • silica product names "AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974", “AEROSIL RX200”, “AEROSIL RY200” (manufactured by Nippon Aerosil Co., Ltd.), “AEROSIL L R202 ”, “AEROSIL R805”, “AEROSIL R812”, “AEROSIL R812S” (all manufactured by Evonik Degussa), “Cylohovic 100”, “Cylohovic 200”, “Cylohovic 603” (all manufactured by Fuji Silysia Chemical) Co., Ltd.), etc.
  • titania examples include the product name "AEROXIDE TiO 2 T805" (manufactured by Evonik Degussa).
  • alumina examples include fine particles such as product name “AEROXIDE Alu C” (manufactured by Evonik Degussa), which are treated with a silane coupling agent to make the particle surface hydrophobic.
  • hydrophobic silica fine particles can be preferably used.
  • hydrophobic silica fine particles having trimethylsilyl groups on the surface are preferred in that they provide better non-adhesion properties.
  • Commercial products corresponding to this include, for example, the aforementioned "AEROSIL R812” and “AEROSIL R812S” (both manufactured by Evonik Degussa).
  • the amount of adhering hydrophobic particles is not limited, but can usually be set within a range of about 0.01 to 100 g/m 2 , and particularly preferably 0.01 to 50 g/m 2 . It is preferably 0.1 to 50 g/m 2 , more preferably 2 to 10 g/m 2 .
  • Composite Particles are characterized by having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles. That is, they are particles in which a core particle is an inorganic oxide fine particle, and a coating layer containing a polyfluoroalkyl methacrylate resin is formed on the surface of the core particle.
  • the inorganic oxide fine particles serving as the core particles are not particularly limited, but at least one particle (powder) of silicon oxide, titanium oxide, aluminum oxide, zinc oxide, etc. can be suitably used. Among these, silicon oxide particles are preferred.
  • the size of the inorganic oxide fine particles is not limited, it is usually preferable that the average primary particle size is about 5 to 50 nm, particularly preferably 7 to 30 nm.
  • the above-described average primary particle diameter can be measured using a transmission electron microscope or a scanning electron microscope. More specifically, the average primary particle diameter is determined by photographing with a transmission electron microscope or scanning electron microscope, measuring the diameters of 200 or more particles on the photograph, and calculating the arithmetic mean value. be able to.
  • nano-level inorganic oxide fine particles known or commercially available ones can be used.
  • silicon oxide examples include the product names “AEROSIL 200"("AEROSIL” is a registered trademark. The same applies hereinafter), “AEROSIL 130", “AEROSIL 300", “AEROSIL 50”, “AEROSIL 200FAD”, “AEROSIL 380” (and above). , manufactured by Nippon Aerosil Co., Ltd.).
  • titanium oxide examples include product name “AEROXIDE TiO 2 T805" (manufactured by Evonik Degussa).
  • aluminum oxide examples include the product name “AEROXIDE Alu C 805" (manufactured by Evonik Degussa).
  • the method for preparing the above-mentioned composite particles is not particularly limited.
  • a polyfluoroalkyl methacrylate resin is used as a coating material for fine particles (powder) of an inorganic oxide, and a coating layer is formed according to a known coating method, granulation method, etc. Just do it.
  • composite particles are preferably prepared by a manufacturing method that includes a step of coating inorganic oxide fine particles with a coating liquid in which a liquid polyfluoroalkyl methacrylate resin is dissolved or dispersed in a solvent (coating step). be able to.
  • a polyfluoroalkyl methacrylate resin that is liquid at room temperature (25° C.) and normal pressure can be suitably used.
  • polyfluoroalkyl methacrylate resin commercially available products such as those mentioned above can also be used.
  • a) polyfluorooctyl methacrylate, b) 2-N,N-diethylaminoethyl methacrylate, c) 2-hydroxyethyl methacrylate, and d) 2 , 2'-ethylenedioxydiethyl dimethacrylate can be preferably used as the resin.
  • Commercially available products can also be used.
  • the solvent used in the coating solution is not particularly limited, and in addition to water, organic solvents such as alcohol and toluene can be used; however, in the present invention, it is preferable to use water. That is, it is preferable to use a coating liquid in which a polyfluoroalkyl methacrylate resin is dissolved and/or dispersed in water.
  • the content of the polyfluoroalkyl methacrylate resin in the above coating liquid is not particularly limited, but it is generally about 10 to 80% by weight, preferably 15 to 70% by weight, and especially 20% by weight. It is more preferable to set it within the range of 60% by weight.
  • the method of coating the surface of the inorganic oxide fine particles with the coating liquid may be according to a known method, and for example, any of the spray method, dipping method, stirring granulation method, etc. can be applied.
  • coating by spraying is particularly preferred since it has excellent uniformity.
  • composite particles can be obtained by removing the solvent by heat treatment.
  • the heat treatment temperature is usually about 150 to 250°C, preferably 180 to 200°C.
  • the atmosphere for the heat treatment is not limited, an inert gas (non-oxidizing) atmosphere such as nitrogen gas or argon gas is desirable. Further, for example, a series of steps including a coating step and a heat treatment step can be further performed one or more times as necessary. This makes it possible to suitably control the amount of coating.
  • the surfaces of the composite particles thus obtained have a coating layer containing a polyfluoroalkyl methacrylate resin.
  • a polyfluoroalkyl methacrylate resin By containing such a resin, it is possible to form a strong coating layer with relatively high adhesion on the surface of the particles due to its excellent affinity with the inorganic oxide fine particles, and also to exhibit higher water repellency or oil repellency. be able to.
  • the amount of composite particles deposited may be set to an amount sufficient to form a three-dimensional network structure, but it is usually within a range of about 0.01 to 100 g/ m2 . In particular, it is preferably about 0.1 to 20 g/m 2 , more preferably 0.5 to 10 g/m 2 , and most preferably 0.6 to 5 g/m 2 .
  • Fluorine-containing resin forms a three-dimensional network structure together with the functional particles in the functional layer. Since the fluorine-containing resin itself is hydrophobic or oleophobic, it easily repels moisture or materials containing a large amount of moisture. Furthermore, fluorine-containing resins also tend to repel oil or those containing a large amount of oil. Furthermore, in the present invention, the fluorine-containing resin joins the functional particles to each other, so that the fluorine-containing resin and the functional particles form a three-dimensional network structure, and by adopting such a structure, water repellency is achieved. And the oil repellency becomes even higher. Furthermore, it is preferable that the functional particles are supported (fixed) on the base material by the fluorine-containing resin adhering the base material and the functional particles. This allows the functional layer to be more firmly fixed to the base material, resulting in high durability.
  • the fluorine-containing resin is not limited as long as it contains fluorine and is hydrophobic, and can be appropriately selected from synthetic resins obtained by polymerizing fluorine-containing monomers. These may be homopolymers or copolymers.
  • polyfluoroalkyl methacrylate resin polytetrafluoroethylene resin (PTFE), ethylenetetrafluoroethylene resin (ETFE), polyvinylidene difluoride resin, ethylene/tetrafluoroethylene copolymer, perfluoroalkoxyalkane resin, tetrafluoroethylene
  • PTFE polytetrafluoroethylene resin
  • ETFE ethylenetetrafluoroethylene resin
  • polyvinylidene difluoride resin polyvinylidene difluoride resin
  • ethylene/tetrafluoroethylene copolymer perfluoroalkoxyalkane resin
  • tetrafluoroethylene At least one of ethylene/hexafluoropropylene copo
  • the present invention uses polyfluoroalkyl methacrylate resins, polytetrafluoroethylene resins (PTFE), ethylenetetrafluoroethylene resins (ETFE), perfluoroalkoxyalkane resins, and tetrafluoroethylene-hexafluoropropylene copolymers. At least one selected type can be suitably used. Known or commercially available ones can also be used.
  • the fluorine-containing resin it is preferable to include a polyfluoroalkyl methacrylate resin as the fluorine-containing resin.
  • the functional particles and fluorine-containing resin can be combined by containing a fluorine-containing resin in the functional layer that is substantially the same as the coating layer formed on the surface of the inorganic oxide fine particles. It has a higher affinity with the water repellent and oil repellent, and can exhibit higher water repellency and oil repellency.
  • the same resins as those mentioned above can be used, and commercially available products can also be used.
  • the amount of the fluorine-containing resin deposited may be set to an amount sufficient to form a three-dimensional network structure, but it is usually preferably 0.5 to 30 g/ m2 , especially It is more preferably 0.5 to 5 g/m 2 , and most preferably 2.5 to 5 g/m 2 .
  • additives such as filled particles, colorants, dispersants, antisettling agents, and antifoaming agents.
  • the total content of additives in the functional layer is, for example, about 50% by weight or less, and can be, for example, about 0 to 40% by weight, but is not limited thereto.
  • packed particles can be suitably used in the present invention.
  • the filler particles By including the filler particles, it is possible to form a nano-microstructure with the inorganic oxide fine particles and exhibit higher water repellency or oil repellency.
  • filled particles filled particles having an average particle diameter D50 of 5 to 60 ⁇ m (preferably 10 to 30 ⁇ m) can be suitably used.
  • the material may be either an inorganic material or an organic material, for example, selected from the group consisting of polymethyl methacrylate (PMMA), styrene, low density polyethylene (LDPE), high density polyethylene (HDPE), acrylic resin, silica, and alumina. At least one type of particles (powder) can be mentioned.
  • the content is not limited, but it should be such that the ratio of [fluorine-containing resin/(filled particles + fluorine-containing resin)] is 25 to 75% by weight after drying.
  • filled particles are included. If the ratio is less than 25% by weight, the fluorine-containing resin may not be able to sufficiently adhere the filled particles to the base material, and the filled particles may easily fall off. Even when the proportion exceeds 75% by weight, for example 100% by weight of the fluorine-containing resin without filler particles, it is possible to obtain the desired oil-repellent durability or water-repellent durability.
  • the laminate of the present invention can be suitably manufactured, for example, by the first to third methods shown below.
  • the first method involves applying at least one of (1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of (a1) an inorganic oxide fine particle to a base material, and (a2) a hydrophobic particle.
  • This is a manufacturing method including a step (heat treatment step).
  • the second method includes (1) forming a fluorine-containing coating film by applying a fluorine-containing coating liquid containing a fluorine-containing resin to a substrate (fluorine-containing coating formation step); For the fluorine-containing coating film, at least one of (a1) composite particles having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of the inorganic oxide fine particles and (a2) hydrophobic particles is added to the surface of the inorganic oxide fine particles.
  • Step of forming a functional particle-containing coating film by applying a coating solution containing functional particles composite particle-containing coating film formation step
  • optionally (3) heat-treating the coating film obtained above This is a manufacturing method including a step (heat treatment step).
  • the third method includes applying to a base material at least one of (a1) composite particles having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles and (a2) hydrophobic particles.
  • a step of forming a coating film containing functional particles by applying a coating solution containing functional particles composite particle-containing coating film formation step
  • a step of heat-treating the coating film obtained above heat treatment step.
  • the second method can be more preferably adopted.
  • the three-dimensional network structure can be constructed and reinforced while maintaining the voids more reliably (that is, keeping the oil repellency high).
  • the reason for this is not certain, it is presumed that the functional particles placed on the fluorine-containing coating absorb the fluorine-containing resin by capillary action and become in a bridging state. As a result, it is possible to more effectively suppress or prevent the functional particles from falling off, and as a result, excellent water-repellent durability or oil-repellent durability can be obtained.
  • Coating film forming process (a) (a1) composite particles having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles and (a2) hydrophobic particles are applied to the base material.
  • a coating film is formed by applying a coating liquid containing at least one kind of functional particles and (b) a fluorine-containing resin.
  • the coating liquid usually contains functional particles, a fluorine-containing resin, and a solvent.
  • the types of functional particles and fluorine-containing resin, their ratio, etc. may be within the ranges described above.
  • the solvent is not limited and can be appropriately selected depending on the type of fluorine-containing resin used.
  • alcohol solvents ethanol, methanol, isopropyl alcohol (IPA), hexyl alcohol, etc.
  • ketone solvents acetone, ketone, methyl ethyl ketone (MEK), etc.
  • hydrocarbon solvents cyclohexane, n-pentane, n-hexane, methyl cyclohexane, etc.
  • aromatic solvents toluene, etc.
  • glycol solvents propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, etc.
  • the coating liquid may be a solution in which a fluorine-containing resin or the like is dissolved in a solvent, but it is particularly preferably in the form of a dispersion in which functional particles and fluorine-containing resin particles are dispersed in a solvent.
  • the method of applying the coating liquid is not particularly limited, and known methods such as roll coating, various gravure coatings, bar coater, doctor blade coating, comma coater, spray coating, and brush coating can be appropriately employed.
  • the drying method is not particularly limited, and may be either natural drying or heat drying.
  • the heating temperature is not limited, but is usually about 80 to 140°C, particularly 100 to 120°C.
  • the heating time may be appropriately set depending on the heating temperature and the like, and is usually about 3 to 60 seconds, but is not limited thereto.
  • the coating film obtained in the coating film forming step can be heat treated in the heat treatment step, if necessary.
  • the functional particles and the fluorine-containing resin are bonded more firmly in the functional layer, and the fluorine-containing resin and the base material are bonded, thereby improving the adhesion between the base material and the functional layer.
  • An excellent laminate can be obtained.
  • a part of the functional particles and/or fluorine-containing resin can be embedded in the base material, so higher adhesion can be obtained and the base material and the functional layer can be more effectively integrated. It can have a similar structure.
  • the heat treatment temperature is preferably lower than the heat-resistant temperature of the base material, and is preferably set in a temperature range from the lowest glass transition temperature to about the melting point of the fluorine-containing resin contained in the functional layer. Therefore, for example, if the base material has a heat-resistant temperature of 660°C and the fluorine-containing resin has a glass transition temperature of 100°C and a melting point of 270°C, the heat treatment temperature should be about 100 to 270°C (or, for example, about 150 to 200°C). can do.
  • the heat treatment time may be set to a time sufficient to obtain the desired adhesion, and can be set to, for example, about 10 seconds to 60 minutes, but is not limited thereto.
  • Fluorine-containing coating film forming step a fluorine-containing coating film is formed by applying a fluorine-containing coating solution containing a fluorine-containing resin to a substrate.
  • the coating liquid usually contains a fluorine-containing resin and a solvent.
  • the type of fluorine-containing resin, the ratio of the two, etc. can be set as described above.
  • the same solvents as those mentioned in the first method can be used.
  • the coating liquid may be in the form of a solution in which the fluorine-containing resin is dissolved in a solvent, but it is particularly desirable to be in the form of a dispersion in which fluorine-containing resin particles are dispersed in a solvent. Thereby, when the coating liquid is applied to the base film, the fluorine-containing resin particles are uniformly applied, so that the adhesion between the finally formed functional layer and the base material can be further improved.
  • the coating method is not particularly limited, and known methods such as roll coating, various gravure coatings, bar coater, doctor blade coating, comma coater, spray coating, and brush coating can be appropriately employed.
  • the coating amount can be set to about 0.1 to 60 g/m 2 after drying, and can also be set to 0.2 to 50 g/m 2 , but is not limited thereto.
  • the drying method is not particularly limited, and may be either natural drying or heat drying.
  • the heating temperature is not particularly limited, but is usually about 80 to 140°C, particularly 100 to 120°C.
  • the heating time may be appropriately set depending on the heating temperature and the like, and is usually about 3 to 60 seconds, but is not limited thereto.
  • Functional particle-containing coating film forming step In the functional particle-containing coating film forming step, a coating layer containing a polyfluoroalkyl methacrylate resin is applied to the surface of (a) (a1) inorganic oxide fine particles to the fluorine-containing coating film.
  • a coating film containing functional particles is formed by applying a coating liquid containing at least one functional particle of the composite particles and (a2) hydrophobic particles.
  • the coating liquid usually contains functional particles and a solvent.
  • the type of functional particles, manufacturing method, etc. are as explained above. Furthermore, the same solvents as those mentioned in the first method can be used.
  • the solid content concentration of the coating liquid can be, for example, within a range of about 20 to 60% by weight, but is not limited thereto.
  • the coating liquid is preferably in the form of a dispersion in which functional particles are dispersed in a solvent.
  • the method for applying the coating liquid is not particularly limited, and may be carried out in the same manner as the method for forming a fluorine-containing coating film.
  • known methods such as roll coating, various gravure coatings, bar coater, doctor blade coating, comma coater, spray coating, and brush coating can be appropriately employed.
  • the drying method is not particularly limited, and may be either natural drying or heat drying.
  • the heating temperature is not limited, but is usually about 80 to 140°C, particularly 100 to 120°C.
  • the heating time may be appropriately set depending on the heating temperature and the like, and is usually about 3 to 60 seconds, but is not limited thereto.
  • the coating film obtained in the coating film forming step (i.e., the coating film containing the fluorine-containing resin and functional particles) can be further heat-treated, if necessary.
  • the functional particles and the fluorine-containing resin are bonded more firmly in the porous functional layer, and the fluorine-containing resin and the base material are bonded, so that the base material and the porous functional layer are bonded together.
  • a laminate with excellent adhesion can be obtained.
  • a part of the functional particles and/or fluorine-containing resin can be embedded in the base material, so higher adhesion can be obtained and the base material and the functional layer can be more effectively integrated. It is also possible to have a similar structure.
  • the heat treatment temperature is preferably lower than the heat-resistant temperature of the base material, and is preferably set in a temperature range from the lowest glass transition temperature to about the melting point of the fluorine-containing resin contained in the functional layer. Therefore, for example, if the base material has a heat resistance temperature of 660°C, and the fluorine-containing resin has a glass transition temperature of 100°C and a melting point of 270°C, the heat treatment temperature should be set to about 100 to 270°C (particularly about 150 to 220°C). It can be done.
  • the heat treatment time may be set to a time sufficient to obtain the desired adhesion, and can be set to, for example, about 10 seconds to 60 minutes, but is not limited thereto.
  • the third method can be carried out in accordance with the second method, except that the order of the fluorine-containing coating film forming step and the functional particle-containing coating forming step of the second method is changed.
  • Laminate of the present invention can be used in various applications requiring at least one of adhesion prevention performance, antifouling property, water repellency, oil repellency, and the like.
  • a packaging material or container for packaging or sealing foods, medicines, cosmetics, etc.
  • a packaging bag formed using the laminate of the present invention with the functional layer placed on the inside can be filled with various contents to provide a sealed packaged product.
  • Example 1 Coating of fluorine-containing resin
  • a commercially available aluminum foil manufactured by Toyo Aluminum Co., Ltd., 1N30, soft aluminum foil, thickness 30 ⁇ m
  • PFMA polyfluoroalkyl methacrylate resin
  • a coating solution was prepared by adding 100 parts by weight of ethanol and stirring thoroughly.
  • the above-mentioned surface treatment agent includes polyfluorooctyl methacrylate, 2-N,N-diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, and 2,2'-ethylenedioxydiethyl as polyfluoroalkyl methacrylate resin (PFMA).
  • PFMA polyfluoroalkyl methacrylate resin
  • An aqueous dispersion (solid content concentration: 20% by mass) of a copolymer of dimethacrylate was used.
  • (2-2) Preparation of dispersion containing composite particles A dispersion containing composite particles was prepared by adding and mixing 50 parts by weight of the obtained composite particles to 50 parts by weight of ethanol.
  • Example 2 When forming a fluorine-containing coating film, PTFE was added to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). Put 20 parts by weight of powder (“TLP10F-1” manufactured by Mitsui Chemours Fluoro Products Co., Ltd.) and 100 parts by weight of ethanol into a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation) and mix for 1 minute and 30 seconds. A laminate in which a functional layer was formed on the surface of the base material was produced in the same manner as in Example 1, except that a coating solution was prepared by mixing at 2,000 rpm, and coating was performed using a #10 bar coater.
  • a coating solution was prepared by mixing at 2,000 rpm, and coating was performed using a #10 bar coater.
  • Example 3 When forming a fluorine-containing coating film, it is filled into 100 parts by weight of polyfluoroalkyl methacrylate resin ("AGE-060" manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of particles ("Miperon (registered trademark) A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds, and coated with bar coater #10. A laminate in which was formed was produced.
  • polyfluoroalkyl methacrylate resin ("AGE-060” manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of particles (“Miperon (registered trademark)
  • a functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and
  • Example 4 When forming a fluorine-containing coating film, add 100 parts by weight of ethanol to 100 parts by weight of polytetrafluoroethylene ("TLP10F-1" manufactured by Mitsui Chemours Fluoro Products Co., Ltd., surface free energy 5 mJ/m 2 ), and add enough A coating solution was prepared by stirring the mixture. After coating with a bar coater #14 using this coating solution, coating was performed on the substrate surface in the same manner as in Example 1, except that the dispersion containing composite particles was dried at 200°C for 60 minutes. A laminate in which a functional layer was formed was produced.
  • TLP10F-1 polytetrafluoroethylene
  • Example 5 When forming a fluorine-containing coating film, ethanol was added to 100 parts by weight of a polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass). 200 parts by weight was added and sufficiently stirred to prepare a coating solution. A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that this coating solution was coated using bar coater #3 to give a weight of 0.5 g/m 2 after drying. A laminate in which was formed was produced.
  • a polyfluoroalkyl methacrylate resin AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass
  • Example 6 When forming a fluorine-containing coating film, polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass) was coated with a bar coater #36. After coating to a weight of 15 g/m 2 after drying, heat-dry it in an oven at 120°C for 60 seconds to evaporate the solvent, and repeat this twice to give a total weight of 30 g/m 2 after drying. A fluorine-containing coating film was formed in the following manner.
  • a fluorine-containing coating film was formed in the following manner.
  • the composite particle-containing dispersion was coated using a bar coater #5 so that the coating amount of composite particles was 1.0 g/m 2 , and a functional layer was formed by drying at 120° C. for 40 seconds.
  • a laminate in which a functional layer was formed on the surface of the base material was produced in the same manner as in Example 1 except for the following.
  • Example 7 A substrate was coated in the same manner as in Example 1, except that the composite particle-containing dispersion was coated with a bar coater #3, and the coating amount of composite particles after drying was 0.5 g/m 2 by weight after drying. A laminate having a functional layer formed on the surface was produced.
  • Example 8 A substrate was coated in the same manner as in Example 1, except that the composite particle-containing dispersion was applied using a bar coater #14, and the coating amount of the composite particles after drying was 5.0 g/m 2 by weight after drying. A laminate having a functional layer formed on the surface was produced.
  • Example 9 When forming a fluorine-containing coating film, polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass) was coated with a bar coater #8. A fluorine-containing coating film was formed by applying the coating to a weight of 2.5 g/m 2 after drying and then heating and drying it in an oven at 120° C. for 40 seconds. Next, the composite particle-containing dispersion was coated on the fluorine-containing coating film using a bar coater #36, dried at 120°C for 60 seconds, and coated again using a bar coater #36 at 120°C.
  • a fluorine-containing coating film was formed by applying the coating to a weight of 2.5 g/m 2 after drying and then heating and drying it in an oven at 120° C. for 40 seconds.
  • the composite particle-containing dispersion was coated on the fluorine-containing coating film using a bar coat
  • Example 2 After drying under the conditions of ⁇ 60 seconds, coating was further performed using a bar coater #20, and the coating amount of the composite particles after drying at 120°C ⁇ 60 seconds was 50 g/m 2 by weight after drying. produced a laminate in which a functional layer was formed on the surface of the base material in the same manner as in Example 1.
  • Example 10 When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 180 parts by weight of particles ("Technopolymer SBX-17” manufactured by Sekisui Plastics Co., Ltd., polystyrene beads, average particle diameter 17 ⁇ m) and 250 parts by weight of ethanol were mixed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation).
  • AGC polyfluoroalkyl methacrylate resin
  • 180 parts by weight of particles (“Technopolymer SBX-17” manufactured by Sekisui Plastics Co., Ltd., polystyrene beads, average particle diameter 17 ⁇ m) and 250 parts by weight of ethanol were mixed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation).
  • Example 2 A laminate in which a functional layer was formed on the surface of the base material was prepared in the same manner as in Example 1.
  • Example 11 When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 60 parts by weight of particles ("Technopolymer SBX-17” manufactured by Sekisui Plastics Co., Ltd., polystyrene beads, average particle diameter 17 ⁇ m) and 120 parts by weight of ethanol were mixed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation). ) and mixed at 2000 rpm for 1 minute 30 seconds to prepare a coating solution, and a functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that it was coated with bar coater #5. A laminate was produced.
  • a mixer Awatori Rentaro ARV-310 manufactured by Thinky Corporation
  • Example 12 When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 60 parts by weight of particles ("Technopolymer MBX-20” manufactured by Sekisui Plastics Co., Ltd., polymethyl methacrylate resin (PMMA) beads, average particle size 20 ⁇ m) and 120 parts by weight of ethanol were mixed in a mixer ("Foaming" manufactured by Thinky Corporation). A coating liquid was prepared on the substrate surface in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds, and was coated with bar coater #5. A laminate in which a functional layer was formed was produced.
  • a coating liquid was prepared on the substrate surface in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds, and
  • Example 13 When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 60 parts by weight of particles ("HS-103" manufactured by Nippon Steel Chemical & Materials Co., Ltd., silica spherical particles, average particle diameter 28 ⁇ m) and 120 parts by weight of ethanol were mixed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation). ) and mixed at 2000 rpm for 1 minute 30 seconds to prepare a coating solution, and a functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that it was coated with bar coater #5. A laminate was produced.
  • a mixer Awatori Rentaro ARV-310 manufactured by Thinky Corporation
  • Example 14 When forming a fluorine-containing coating film, add 100 parts by weight of ethanol to 100 parts by weight of ethylenetetrafluoroethylene (ETFE) ("Z8820X” manufactured by AGC, powder form), which is a fluorine-containing resin, and stir thoroughly. A coating solution was prepared. After coating with a bar coater #14 using this coating solution, coating was performed on the substrate surface in the same manner as in Example 1, except that the dispersion containing composite particles was dried at 200°C for 60 minutes. A laminate in which a functional layer was formed was produced.
  • EFE ethylenetetrafluoroethylene
  • Example 15 When forming a fluorine-containing coating film, filler particles ("Technopolymer SBX-17” manufactured by Sekisui Plastics Co., Ltd., polystyrene beads) are added to 100 parts by weight of ethylenetetrafluoroethylene (“Z8820X” manufactured by AGC Co., Ltd. in powder form). , average particle diameter 17 ⁇ m) and 120 parts by weight of ethanol were placed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation) and mixed at 2000 rpm for 1 minute and 30 seconds to prepare a coating liquid. A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that it was coated with bar coater #5 and then dried at 200°C for 60 minutes after coating the composite particle-containing dispersion. A laminate was produced.
  • filler particles ("Technopolymer SBX-17” manufactured by Sekisui Plastics Co., Ltd., polystyrene beads) are added to 100 parts by weight of
  • Example 16 As a base material, a CPP film (TAS-0125, manufactured by Taisei Kako Co., Ltd.) with a thickness of 250 ⁇ m was used. In addition, when forming a fluorine-containing coating film, per 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of packed particles ("Miperon (registered trademark) A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds and coated with bar coater #10. A formed laminate was produced.
  • polyfluoroalkyl methacrylate resin AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass. 20 parts by weight of packed particles (“Miperon (registered trademark
  • Example 17 As a base material, a 100 ⁇ m thick PET film (“Emblet SD” manufactured by Unitika) was used. In addition, when forming a fluorine-containing coating film, per 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of packed particles ("Miperon (registered trademark) A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds and coated with bar coater #10. A formed laminate was produced.
  • polyfluoroalkyl methacrylate resin AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass. 20 parts by weight of packed particles (“Miperon (registered trademark)
  • a functional layer was formed on the surface of the substrate in
  • Example 18 Using a 20 ⁇ m thick soft aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30), apply a dispersed CPP coating agent ("Heat Seal Varnish PPX-16", manufactured by T&K TOKA Co., Ltd., solid content 15% by mass) using a bar coater #14. A primer layer was formed on the soft aluminum foil by coating and drying at 150° C. for 60 seconds to form a primer layer in an amount of 3 g/m 2 after drying.
  • a dispersed CPP coating agent (“Heat Seal Varnish PPX-16", manufactured by T&K TOKA Co., Ltd., solid content 15% by mass
  • a fluorine-containing coating film When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of particles ("Miperon (registered trademark) ) and mixed at 2000 rpm for 1 minute and 30 seconds to prepare a coating solution, and coated on the substrate surface in the same manner as in Example 1, except that this was coated on the primer layer with bar coater #10. A laminate having a functional layer formed thereon was produced.
  • a laminate having a functional layer formed thereon was produced.
  • Example 19 Coating of fluorine-containing resin
  • a base material commercially available aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30, soft aluminum foil, thickness 20 ⁇ m) was used.
  • 100 parts by weight of polyfluoroalkyl methacrylate resin AG-E060 manufactured by AGC, surface free energy 14 mJ/m 2 , solid content 20% by mass, aqueous dispersion type
  • a coating liquid was prepared by adding parts by weight and stirring thoroughly.
  • Example 20 Hydrophobic particles were coated onto the fluorine-containing coating film prepared in the same manner as in Example 19 using bar coater #24 so that the weight after drying was 10.0 g/m 2 , and then coated at 120°C for 90 seconds. A functional layer was formed by drying under the following conditions.
  • Example 21 Hydrophobic particles were coated on a fluorine-containing coating film prepared in the same manner as in Example 19 using a #24 bar coater so that the weight after drying was 50.0 g/m 2 and conditions were applied at 120°C for 90 seconds. A functional layer was formed by repeating the drying step 5 times.
  • Example 22 As a base material, a commercially available aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30, soft aluminum foil, thickness 20 ⁇ m) was used. Further, the coating solution prepared in Example 19 was coated on the surface of the aluminum foil using a bar coater #24 so that the weight after drying was 15.0 g/m 2 , and then heated at 120°C. The film was heated in an oven for 40 seconds, and the above operation was repeated once again to form a fluorine-containing coating film having a dry weight of 30.0 g/m 2 .
  • Example 19 (2) the hydrophobic particles were coated onto the fluorine-containing coating film using a bar coater 16 so that the weight after drying was 5.0 g/m 2 .
  • a functional layer was formed by drying at 120° C. for 90 seconds.
  • Example 1 A laminate was produced in the same manner as in Example 1, except that only the composite particle-containing dispersion liquid was applied to the base material without applying the fluorine-containing resin coating liquid.
  • Example 2 A laminate was produced in the same manner as in Example 1, except that the fluorine-containing resin coating liquid was applied to the base material, and the composite particle-containing dispersion liquid was not applied to the base material.
  • a polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass) was coated with a bar coater #36. After coating to a weight of 15 g/m 2 after drying, heat drying in an oven at 120°C for 60 seconds to evaporate the solvent, repeating this twice to give a total weight of 30 g/m 2 after drying.
  • the composite particle dispersion was coated using bar coater #36, dried at 120°C for 60 seconds, coated again using bar coater #36, dried at 120°C for 60 seconds, and further A laminate was produced in the same manner as in Example 1, except that the coating was performed using a bar coater #20 and the coating amount of composite particles was 50 g/m 2 after drying at 120° C. for 60 seconds. .
  • Example 1 Except that maleic anhydride-modified polyolefin resin (MAPO) (290628-2 manufactured by Tanaka Chemical Co., Ltd., surface energy 30 mJ/m 2 , solid content 20% by mass) was used as the coating liquid instead of the fluorine-containing resin. A laminate was produced in the same manner as in Example 1.
  • MAPO maleic anhydride-modified polyolefin resin
  • SBR styrene-butadiene rubber resin
  • JSR Corporation styrene-butadiene rubber resin
  • a laminate was produced in the same manner as in Example 1, except that acrylic modified polyolefin resin (APO) (300214-1, manufactured by Tanaka Chemical Co., Ltd., solid content 20% by mass) was used as the coating liquid instead of the fluorine-containing resin. did.
  • APO acrylic modified polyolefin resin
  • Example 9 A 50 ⁇ m thick CPP film (P1011 manufactured by Toyobo Co., Ltd.) was used as the base material, and acrylic modified polyolefin resin (APO) (300214-1 manufactured by Tanaka Chemical Co., Ltd., solid content 20% by mass) was coated instead of the fluorine-containing resin. A laminate was produced in the same manner as in Example 1 except that it was used as a working solution.
  • APO acrylic modified polyolefin resin
  • Example 10 A laminate was produced in the same manner as in Example 19, except that the fluorine-containing resin coating liquid was not applied to the base material, and only the hydrophobic particle-containing dispersion liquid was applied.
  • Example 11 The same method as in Example 19 was used, except that acrylic modified polyolefin resin (APO) (300214-1, manufactured by Tanaka Chemical Co., Ltd., solid content 20% by mass) was used as the coating solution instead of the fluorine-containing resin coating solution. A laminate was produced.
  • APO acrylic modified polyolefin resin
  • a base material As a base material, a commercially available aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30, soft aluminum foil, thickness 20 ⁇ m) was used. In addition, using a coating liquid in which acrylic modified polyolefin resin (APO) (300214-1 manufactured by Tanaka Chemical Co., Ltd., solid content 20% by mass) was diluted with IPA to give a solid content of 5% by mass, the aluminum was coated with bar coater #3. It was coated onto the foil so that the weight after drying was 0.1 g/m 2 .
  • APO acrylic modified polyolefin resin
  • Example 19 (2) the hydrophobic particles were coated on the APO coating film with a bar coater #26 so that the weight after drying was 12.5 g/m 2 .
  • a functional layer was formed such that the weight of the hydrophobic particles was 25.0 g/m 2 after drying.
  • the Correction Coefficient r which represents the accuracy of the obtained adsorption isotherm, must be a value of 0.9999 or more and the number of measurement plots is 4 or more, and if r is less than 0.9999 even with 4 measurement plots.
  • the test was repeated by increasing the number of samples one by one until r reached a value of 0.9999 or higher.
  • (W1/Wt) is the weight ratio of the functional layer formed on the surface layer of the laminate
  • Wt is the weight of the laminate
  • W1 is "the weight of the laminate - the weight of the base material".
  • the focus was set to the optimum level to avoid astigmatism as much as possible, and the brightness and contrast were adjusted to the optimum appearance to avoid clipping phenomena such as blown out highlights.
  • the sample was appropriately vapor-deposited using a vapor deposition apparatus (JFC-1600 manufactured by JEOL Ltd.) to prevent the image from becoming blurred due to charging by an electron beam, and then observed.
  • the sample position was adjusted so that the functional layer was visible in the entire visual field, assuming that it would be processed appropriately by image processing software.
  • the area from the bottom of the functional layer to 50% thickness was defined as the "bottom”
  • the area from the bottom of the functional layer to the surface of the functional layer beyond 50% thickness was defined as the "top”.
  • the obtained secondary electron image was binarized using image processing software "WinROOF2018 ver 4.25", and the total number of pixels in the three-dimensional network structure portion in the secondary electron image was measured.
  • the porosity was calculated as "100% - (binarized ratio (%) of the three-dimensional network structure portion)".
  • the binarization was performed using the automatic binarization system of the software, and after selecting a bright region as an extraction region, a discriminant analysis method was used. Note that the threshold value was not changed in accordance with the automatic binarization system.
  • the porosity was calculated from the ratio of the total number of pixels in the three-dimensional network structure to the total number of pixels per 12 ⁇ m 2 of visual field.
  • Table 2 This operation was repeated 20 times for each of the bottom and top portions, and the average value was taken as the porosity.
  • a binarized image of Example 1 is shown in FIG.
  • Test Example 4 Measurement of surface free energy
  • the surface free energy of the fluorine-containing resin was measured using a contact angle meter (“DMo-702” manufactured by Kyowa Interface Science Co., Ltd.). The results are shown in Table 2.
  • the test samples used were coated samples of fluorine-containing resin before coating with functional particle dispersions and the like in Examples and Comparative Examples. The test sample was placed on the stage of a contact angle meter with the fluorine-containing resin coated side facing upward without wrinkles.
  • Oil repellency durability 80 mL of a commercially available edible oil with a known surface tension (manufactured by Nisshin Oilli Group Co., Ltd., Nissin salad oil cholesterol 0, surface tension 32 mJ/m 2 ) was placed in a 100 mL glass bottle. Next, this glass bottle was placed in a hot stirrer, a stirrer was inserted, and the bottle was stirred at a speed of 50 rpm until the temperature stabilized at 90°C. Thereafter, the 20 mm x 20 mm sample was fixed with a clip and then immersed in the above-mentioned 90°C edible oil.
  • the position of the sample was adjusted so that it did not come into contact with the stirrer.
  • the sample was taken out, and commercially available olive oil with a known surface tension (surface tension: 32 mJ/m 2 ) was dropped onto the surface of the functional layer, and the state of the droplets was confirmed.
  • the test surface is tilted at an angle of 20 degrees or 45 degrees, and 1 mL of olive oil is dropped, and if all the dropped olive oil rolls even at a 20 degree tilt, it is marked " ⁇ ". It is written as " ⁇ " if all of the olive oil that dripped on a 45-degree slope did not roll on a 20-degree slope, and some of the olive oil that dripped on a 45-degree slope rolled.
  • test surface is tilted at an angle of 20 degrees or 45 degrees, and 1 mL of water droplets are dropped, and if all the dropped water drops roll even at a 20 degree tilt, it is marked as " ⁇ ". However, if all of the water droplets that fell on a 45-degree slope did not roll on a 20-degree slope, it is marked as " ⁇ ", and those that fell on a 45-degree slope and some of them rolled are marked as " ⁇ ". ”, and those in which the dropped water droplets did not roll at all when tilted at 45 degrees were evaluated as “ ⁇ ”. The results are shown in Table 2.
  • the laminates of Examples 19 to 22 using hydrophobic particles can maintain good water repellency even when immersed in hot water.

Abstract

[Problem] To provide a laminate that is capable of maintaining good water repellency or oil repellency even after a long period of contact with oil or water. [Solution] A laminate comprising a base material and a functional layer, said laminate being characterized in that (1) the functional layer includes a three-dimensional network structure, and (2) the three-dimensional network structure includes (a) at least one type of functional particles from among (a1) composite particles that have a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles and (a2) hydrophobic particles, and (b) a hydrophobic resin containing fluorine.

Description

積層体laminate
 本発明は、新規な積層体に関する。より具体的には、撥水性及び撥油性を有する積層体に関する。 The present invention relates to a novel laminate. More specifically, the present invention relates to a laminate having water repellency and oil repellency.
 撥水技術又は撥油技術は、付着防止用途、離型用途等で広く研究されている。特に、食品、飲料品、医薬品、化粧品等では、包装材料に内容物が付着することを防止ないしは抑制することを目的として、水との接触角が150°以上を示す超撥水処理、あるいは油との接触角が150°以上を示す超撥油処理を施した商品も開発されている。 Water-repellent technology or oil-repellent technology is widely researched for anti-adhesion applications, mold release applications, etc. In particular, for foods, beverages, pharmaceuticals, cosmetics, etc., in order to prevent or suppress the contents from adhering to packaging materials, super water repellent treatment with a contact angle of 150° or more with water or oil Products with super oil-repellent treatment that have a contact angle of 150° or more have also been developed.
 例えば、基材フィルム上に、撥水性及び/又は撥油性を有する微粒子が互いに固着してなる三次元網目構造体と熱可塑性樹脂とを含む多孔質機能層が形成されている積層体であって、前記多孔質機能層は、その厚み方向において、多孔質機能層底面から50%厚みまでの間の領域では空隙率が1体積%以上50体積%以下であり、かつ、多孔質機能層底面から50%厚みを超え多孔質機能層表面までの間の領域では空隙率が50体積%以上99体積%以下であることを特徴とする積層体が知られている(特許文献1)。 For example, a laminate in which a porous functional layer containing a thermoplastic resin and a three-dimensional network structure formed by fine particles having water repellency and/or oil repellency fixed to each other is formed on a base film. , the porous functional layer has a porosity of 1% by volume or more and 50% by volume or less in the region from the bottom of the porous functional layer to 50% thickness in the thickness direction, and A laminate is known that has a porosity of 50% by volume or more and 99% by volume or less in a region between the thickness exceeding 50% and the surface of the porous functional layer (Patent Document 1).
特開2021-146651号公報Japanese Patent Application Publication No. 2021-146651
 上記のような従来技術では、三次元網目構造体が所定の空隙率を有することから、微粒子が脱落しにくく、かつ、高い撥水性及び撥油性を発現することはできる。ところが、長時間にわたって油分又は水分と接触した状態で使用されるような場合、三次元網目構造体が油分に浸漬してしまい、撥水性又は撥油性が低下してしまうことがある。 In the conventional technology as described above, since the three-dimensional network structure has a predetermined porosity, fine particles are difficult to fall off, and high water and oil repellency can be exhibited. However, if the three-dimensional network structure is used in contact with oil or moisture for a long period of time, the three-dimensional network structure may be immersed in the oil, resulting in a decrease in water repellency or oil repellency.
 従って、本発明の主な目的は、良好な撥水性又は撥油性を持続できる積層体を提供することにある。 Therefore, the main object of the present invention is to provide a laminate that can maintain good water repellency or oil repellency.
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の組成・構造を有する積層体が上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of extensive research in view of the problems of the prior art, the present inventor discovered that a laminate having a specific composition and structure can achieve the above object, and has completed the present invention.
すなわち、本発明は、下記の積層体に係る。
1. 基材及び機能層を含む積層体であって、
(1)機能層は、三次元網目構造体を含み、
(2)三次元網目構造体は、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子と、(b)フッ素を含有する疎水性樹脂とを含む、
ことを特徴とする積層体。
2. フッ素を含有する疎水性樹脂によって機能性粒子が三次元網目構造体に固定されている、前記項1に記載の積層体。
3. フッ素を含有する疎水性樹脂が基材及び機能性粒子に接着することにより機能層が基材に担持されている、前記項1に記載の積層体。 
4. 機能層の比表面積が2~195m/gである、前記項1に記載の積層体。
5. 機能層において、機能層底面から50%厚みまでの領域の空隙率が0~45%であり、かつ、機能層底面から50%厚みを超えて機能層表面(最表面)までの領域の空隙率が10~55%である、前記項1に記載の積層体。
6. 機能性粒子とフッ素を含有する疎水性樹脂(但し、前記機能性粒子に含まれる、フッ素を含有する疎水性樹脂を除く。)との割合が、固形分重量比で1:50~20:1である、前記項1に記載の積層体。
7. フッ素を含有する疎水性樹脂は、ポリフルオロアルキルメタアクリレート樹脂、ポリテトラフルオロエチレン及びエチレンテトラフルオロエチレンからなる群から選択される少なくとも1種である、前記項1に記載の積層体。
8. 基材は、金属箔、金属板、樹脂フィルム、樹脂板、紙、木板、不織布又はこれらのプライマーコート物からなる群から選択される少なくとも1種である、前記項1に記載の積層体。
9. 無機酸化物微粒子は平均一次粒子径が5~50nmである、前記項1に記載の積層体。
10. 三次元網目構造体が、平均粒子径D50が5~60μmである充填粒子をさらに含む、前記項1に記載の積層体。
11. 基材及び機能層を含む積層体を製造する方法であって、
(1)基材に対し、フッ素を含有する疎水性樹脂を含むフッ素含有塗工液を塗布することによりフッ素含有塗膜を形成する工程、及び
(2)前記フッ素含有塗膜に対し、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子を含む塗工液を塗布することにより複合粒子含有塗膜を形成する工程
を含むことを特徴とする積層体の製造方法。
That is, the present invention relates to the following laminate.
1. A laminate including a base material and a functional layer,
(1) The functional layer includes a three-dimensional network structure,
(2) The three-dimensional network structure has a function of at least one of (a) (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle, and (a2) a hydrophobic particle. (b) a hydrophobic resin containing fluorine;
A laminate characterized by:
2. 2. The laminate according to item 1, wherein the functional particles are fixed to the three-dimensional network structure by a hydrophobic resin containing fluorine.
3. 2. The laminate according to item 1, wherein the functional layer is supported on the base material by adhering the fluorine-containing hydrophobic resin to the base material and the functional particles.
4. 2. The laminate according to item 1, wherein the functional layer has a specific surface area of 2 to 195 m 2 /g.
5. In the functional layer, the porosity in the area from the bottom of the functional layer to 50% thickness is 0 to 45%, and the porosity in the area from the bottom of the functional layer to more than 50% thickness to the surface of the functional layer (the outermost surface) Item 1. The laminate according to Item 1, wherein the amount is 10 to 55%.
6. The ratio of the functional particles to the fluorine-containing hydrophobic resin (excluding the fluorine-containing hydrophobic resin contained in the functional particles) is 1:50 to 20:1 in solid weight ratio. The laminate according to item 1 above.
7. 2. The laminate according to item 1, wherein the fluorine-containing hydrophobic resin is at least one selected from the group consisting of polyfluoroalkyl methacrylate resin, polytetrafluoroethylene, and ethylenetetrafluoroethylene.
8. 2. The laminate according to item 1, wherein the base material is at least one selected from the group consisting of metal foil, metal plate, resin film, resin board, paper, wood board, nonwoven fabric, or a primer coated product thereof.
9. 2. The laminate according to item 1, wherein the inorganic oxide fine particles have an average primary particle diameter of 5 to 50 nm.
10. 2. The laminate according to item 1, wherein the three-dimensional network structure further includes filler particles having an average particle diameter D50 of 5 to 60 μm.
11. A method of manufacturing a laminate including a base material and a functional layer, the method comprising:
(1) forming a fluorine-containing coating film by applying a fluorine-containing coating liquid containing a fluorine-containing hydrophobic resin to a substrate; and (2) forming a fluorine-containing coating film on the fluorine-containing coating film; ) By applying a coating liquid containing at least one functional particle of (a1) composite particles comprising a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles and (a2) hydrophobic particles. A method for producing a laminate, the method comprising the step of forming a coating film containing composite particles.
 本発明によれば、良好な撥水性及び/又は撥油性を持続できる積層体を提供することができる。すなわち、撥水性能及び/又は撥油性能の耐久性(撥油耐久性等)によりいっそう優れた積層体を提供することが可能となる。 According to the present invention, it is possible to provide a laminate that can maintain good water repellency and/or oil repellency. That is, it is possible to provide a laminate that is even more excellent in durability of water repellency and/or oil repellency (oil repellency, etc.).
 特に、本発明の積層体は、(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子と、(b)フッ素を含有する疎水性樹脂とを含む三次元網目構造体を含むことから、前記の機能性粒子と疎水性樹脂の2成分による高い撥水性・撥油性とともに、機能性粒子が三次元網目構造体及び基材に比較的強固に固定されているため、機能性粒子の経時的な脱落等も抑制ないしは防止できる結果、撥水性能及び/又は撥油性能に対して高い耐久性を付与することができる。従って、油分又は水分と長時間接触しても、高い撥水性能及び/又は撥油性能を発揮することができる。特に、例えば機能層が油分(例えば50℃以上の高温の油分)に浸漬された場合でも、良好な撥水性又は撥油性を得ることができ、しかも比較的長期にわたってその効果を持続させることも可能となる。 In particular, the laminate of the present invention comprises (a1) composite particles having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles, and (a2) at least one functional particle of hydrophobic particles; (b) Since it contains a three-dimensional network structure containing a hydrophobic resin containing fluorine, it has high water and oil repellency due to the two components of the functional particles and the hydrophobic resin, and the functional particles are three-dimensional. Because it is relatively firmly fixed to the network structure and base material, it is possible to suppress or prevent the functional particles from falling off over time, resulting in high durability in terms of water repellency and/or oil repellency. can do. Therefore, even if it comes into contact with oil or moisture for a long time, it can exhibit high water repellency and/or oil repellency. In particular, even when the functional layer is immersed in oil (for example, oil at a high temperature of 50°C or higher), good water or oil repellency can be obtained, and the effect can be maintained for a relatively long period of time. becomes.
本発明の積層体の層構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the layer structure of the laminate of the present invention. 実施例1の積層体の断面像である。3 is a cross-sectional image of the laminate of Example 1. 比較例1の積層体の断面像である。2 is a cross-sectional image of a laminate of Comparative Example 1. 実施例1の二値化画像である。図4Aは電子顕微鏡の二次電子像の積層体断面像を示し、図4Bは図4Aの2値化画像を示し、図4Cは図4Aに関し、自動2値化システムを用い、抽出領域に明るい領域を選択した後、判別分析法を実施した結果である。It is a binarized image of Example 1. FIG. 4A shows a cross-sectional image of the stack of secondary electron images from an electron microscope, FIG. 4B shows a binarized image of FIG. 4A, and FIG. This is the result of performing a discriminant analysis method after selecting a region.
1.本発明の積層体
 本発明の積層体は、基材及び機能層を含む積層体であって、
(1)機能層は、三次元網目構造体を含み、
(2)三次元網目構造体は、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子と、(b)フッ素を含有する疎水性樹脂とを含む、
ことを特徴とする。
1. Laminate of the present invention The laminate of the present invention is a laminate including a base material and a functional layer,
(1) The functional layer includes a three-dimensional network structure,
(2) The three-dimensional network structure has a function of at least one of (a) (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle, and (a2) a hydrophobic particle. (b) a hydrophobic resin containing fluorine;
It is characterized by
 本発明の積層体の実施形態の一例を図1に示す。図1の積層体10は、基材11上に直に接して機能層12が形成されている。機能層12は、図1に示すように、三次元網目構造体12aを含む。図1に示す機能層12のように、空隙12bを含んでいても良い。 An example of an embodiment of the laminate of the present invention is shown in FIG. In the laminate 10 of FIG. 1, a functional layer 12 is formed directly on a base material 11. The functional layer 12 includes a three-dimensional network structure 12a, as shown in FIG. Like the functional layer 12 shown in FIG. 1, it may include voids 12b.
 図1の三次元網目構造体12aは、(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子Aと、フッ素を含有する疎水性樹脂(以下「フッ素含有樹脂」と略記する。)Bとを含んでいる。換言すれば、フッ素含有樹脂によって複数の機能性粒子どうしが橋渡しされるような形態で互いに固着することにより三次元網目構造体が形成されている。このようにして、フッ素含有樹脂によって機能性粒子が三次元網目構造体に固定されている。これにより、機能性粒子Aは機能層12に固定され、また機能層12は基材11に固定された状態となっている。換言すれば、フッ素含有樹脂が基材11及び機能性粒子Aに接着することにより機能層12が基材に担持されている。この場合、機能性粒子として疎水性粒子に代えた場合も、同様に複数の疎水性粒子どうしをフッ素含有樹脂が橋渡しするようなかたちで固着させることにより三次元網目構造体が形成され、高い撥水性と耐久性を得ることができる。 The three-dimensional network structure 12a in FIG. 1 includes at least one functional particle of (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle and (a2) a hydrophobic particle. A and a hydrophobic resin containing fluorine (hereinafter abbreviated as "fluorine-containing resin") B. In other words, a three-dimensional network structure is formed by fixing a plurality of functional particles to each other in a manner such that they are bridged by the fluorine-containing resin. In this way, the functional particles are fixed to the three-dimensional network structure by the fluorine-containing resin. Thereby, the functional particles A are fixed to the functional layer 12, and the functional layer 12 is fixed to the base material 11. In other words, the functional layer 12 is supported on the base material by adhering the fluorine-containing resin to the base material 11 and the functional particles A. In this case, even when hydrophobic particles are used as the functional particles, a three-dimensional network structure is formed by similarly fixing a plurality of hydrophobic particles together with the fluorine-containing resin acting as a bridge, resulting in high repellency. Water-based and durable.
 図1に示すように、複数の機能性粒子A(粒子群)は、主としてフッ素含有樹脂を介して互いに凝集した状態で構成されている。この場合、複数の機能性粒子Aどうしの間にはフッ素含有樹脂が介在した状態となるが、本発明の効果を妨げない範囲内で機能性粒子どうしの間に空隙12bが含まれていても良い。また、各機能性粒子Aどうしは、通常はフッ素含有樹脂Bを介して間接的に接しているが、本発明の効果を妨げない範囲内において、機能性粒子どうしが互いに直に接していても良い。 As shown in FIG. 1, the plurality of functional particles A (particle group) are configured in a state where they are aggregated with each other mainly through a fluorine-containing resin. In this case, the fluorine-containing resin is interposed between the plurality of functional particles A, but voids 12b may be included between the functional particles within a range that does not impede the effects of the present invention. good. Furthermore, although the functional particles A are usually in indirect contact with each other via the fluorine-containing resin B, the functional particles may be in direct contact with each other as long as the effects of the present invention are not impaired. good.
 例えば、比較例1の構造を図3に示すが、機能性粒子からなる三次元網目構造自体は形成されている。つまり、機能性粒子(複合粒子)どうしが主として分子間力によってくっついて三次元網目構造体を形成している(隣接する機能性粒子の各表面のフッ素系樹脂どうしは当接こそしていても橋渡しされたように結合(固着)はされていない。これに対し、実施例1を示した図2のように、フッ素系樹脂によって機能性粒子(複合粒子)どうしが架橋したように接合(固着)することで三次元網目構造が形成されている。この点において、本発明に係る三次元網目構造体は、実質的に機能性粒子のみからなる三次元網目構造とは区別される。以下においては、本発明の積層体の各構成について詳細に説明する。 For example, the structure of Comparative Example 1 is shown in FIG. 3, and a three-dimensional network structure itself made of functional particles is formed. In other words, functional particles (composite particles) stick together mainly due to intermolecular forces to form a three-dimensional network structure (even though the fluororesins on each surface of adjacent functional particles are in contact with each other) They are not bonded (fixed) as if they were bridged.On the other hand, as shown in FIG. ) to form a three-dimensional network structure.In this respect, the three-dimensional network structure according to the present invention is distinguished from a three-dimensional network structure consisting essentially only of functional particles. Hereinafter, each structure of the laminate of the present invention will be explained in detail.
(1)基材
 基材は、主として、機能層を支持する支持層として機能する。従って、そのような機能を有する限り、その材質は特に限定されず、金属箔(例えばアルミニウム箔等)、金属板(鋼板等)、樹脂フィルム(例えばポリエステル、ポリエチレン、ポリプロピレン等の合成樹脂)、樹脂板(例えばポリエステル、ポリエチレン、ポリプロピレン等の合成樹脂)、紙、木板、不織布又はこれらのプライマーコート物を例示することができる。
(1) Base material The base material mainly functions as a support layer that supports the functional layer. Therefore, the material is not particularly limited as long as it has such a function, and may include metal foil (e.g. aluminum foil, etc.), metal plate (steel plate, etc.), resin film (e.g. synthetic resin such as polyester, polyethylene, polypropylene, etc.), resin. Examples include boards (for example, synthetic resins such as polyester, polyethylene, and polypropylene), paper, wood boards, nonwoven fabrics, and primer-coated products thereof.
 特に、本発明では、例えばポリプロピレン系フィルム、ポリエチレン系フィルム及びポリエステル系フィルムの少なくとも1種の樹脂フィルム又は金属箔(特にアルミニウム箔)を基材として好適に用いることができる。 In particular, in the present invention, for example, at least one resin film of polypropylene film, polyethylene film, and polyester film or metal foil (especially aluminum foil) can be suitably used as the base material.
 基材が樹脂フィルムである場合、樹脂フィルムは延伸フィルム又は未延伸フィルムのいずれであっても良い。さらに、延伸フィルムは、一軸延伸フィルム又は二軸延伸フィルムのいずれも使用することができる。また、樹脂フィルムとしては、例えばコロナ処理等の表面処理が施された各種のタイプの樹脂フィルムも基材として使用することができる。 When the base material is a resin film, the resin film may be either a stretched film or an unstretched film. Furthermore, either a uniaxially stretched film or a biaxially stretched film can be used as the stretched film. Further, as the resin film, various types of resin films subjected to surface treatment such as corona treatment can also be used as the base material.
 基材の厚みは、限定的ではないが、例えば基材の材質、本発明積層体の用途等に応じて適宜設定することができる。基材がフィルム等の形態の場合は、一般的には20~80μm程度の範囲内で適宜設定することができるが、これに限定されない。 Although the thickness of the base material is not limited, it can be appropriately set depending on, for example, the material of the base material, the use of the laminate of the present invention, etc. When the base material is in the form of a film or the like, the thickness can generally be set appropriately within a range of about 20 to 80 μm, but is not limited thereto.
 基材は、その表面(特に機能層が積層される面)に表面処理が施されていても良い。これにより、基材と機能層との密着性(接着性)をより高めることができる。前記の表面処理としては、例えば添加剤(好ましくは充填粒子)による凹凸処理、エンボス加工による凹凸処理等が挙げられる。凹凸の高さは、限定的ではないが、特に5~60μm程度とすることが好ましく、その中でも20~50μmとすることがより好ましい。ここで、充填粒子は、後記に示すような充填粒子を用いることもできる。 The surface of the base material (particularly the surface on which the functional layer is laminated) may be subjected to surface treatment. Thereby, the adhesion (adhesiveness) between the base material and the functional layer can be further improved. Examples of the surface treatment include unevenness treatment using an additive (preferably filled particles), unevenness treatment using embossing, and the like. Although the height of the unevenness is not limited, it is particularly preferably about 5 to 60 μm, and more preferably 20 to 50 μm. Here, as the filled particles, filled particles as shown below can also be used.
(2)機能層
 機能層は、撥水性及び/又は撥油性を有する層である。基材の少なくとも一方の面上に機能層が形成される。
(2) Functional layer The functional layer is a layer having water repellency and/or oil repellency. A functional layer is formed on at least one surface of the base material.
 機能層は、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子と、(b)フッ素を含有する疎水性樹脂とを含む三次元網目構造体を有する。こうした構造を有することで、撥水性又は撥油性を発現し、物体の機能層への付着が防止ないしは抑制される。 The functional layer comprises (a) at least one functional particle selected from (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle and (a2) a hydrophobic particle; ) has a three-dimensional network structure containing a hydrophobic resin containing fluorine. By having such a structure, water repellency or oil repellency is exhibited, and adhesion of objects to the functional layer is prevented or suppressed.
 前記機能層は、三次元網目構造体を有し、多孔質の形態をとることができるため、所定の比表面積を有する。この場合の比表面積は、限定的ではないが、通常は比表面積が2~195m/g程度であることが好ましい。従って、例えば2~55m/g程度に設定することもできる。これは、機能層の三次元網目構造におけるフッ素含有樹脂と機能性粒子との橋渡し具合の指標ともなり得る。なお、本発明における比表面積は、BET法(Brunauer-Emmett-Teller法)における比表面積を示す。 The functional layer has a three-dimensional network structure and can take a porous form, so it has a predetermined specific surface area. Although the specific surface area in this case is not limited, it is usually preferable that the specific surface area is about 2 to 195 m 2 /g. Therefore, it can be set to about 2 to 55 m 2 /g, for example. This can also be an indicator of the degree of bridging between the fluorine-containing resin and the functional particles in the three-dimensional network structure of the functional layer. Note that the specific surface area in the present invention refers to the specific surface area in the BET method (Brunauer-Emmett-Teller method).
 機能層の構造と比表面積との関係について、以下においては、理解の容易のために一例として具体的な数値をもって説明する。機能層の比表面積は、機能性粒子のみを基材に塗布した際に最大になる。例えば、機能性粒子のみを基材に塗布して比表面積を測定した場合は約200m/gになる。これは、機能性粒子が分子間力のみで三次元網目構造を形成しており、後述する試験例3の方法で空隙率を測定すると約55%となり、理論上最も機能層に空隙がある状態となる。機能性粒子のみからなる機能層は分子間力のみで三次元網目構造を形成しているため、機能性粒子が容易に脱落してしまうおそれがある。臨界点は、比表面積が195m/g程度であり、これを超える197m/g程度ではフッ素含有樹脂の量が不十分であるために機能性粒子が脱落する可能性が高くなる。 The relationship between the structure of the functional layer and the specific surface area will be explained below using specific numerical values as an example for ease of understanding. The specific surface area of the functional layer is maximized when only functional particles are applied to the base material. For example, when the specific surface area is measured by applying only the functional particles to the base material, it is approximately 200 m 2 /g. This is because the functional particles form a three-dimensional network structure using only intermolecular forces, and when the porosity is measured using the method described in Test Example 3 below, it is approximately 55%, which is the theoretical state in which the functional layer has the most voids. becomes. Since the functional layer consisting only of functional particles forms a three-dimensional network structure only by intermolecular forces, there is a risk that the functional particles may easily fall off. The critical point is a specific surface area of about 195 m 2 /g, and if the specific surface area exceeds this point, about 197 m 2 /g, the amount of fluorine-containing resin is insufficient and the possibility that the functional particles will fall off increases.
 また、フッ素含有樹脂のみで機能層を構成し、機能性粒子が存在しない場合は、平滑な面となり、最低の比表面積となる。例えば、基材にポリフルオロアルキルメタアクリレート樹脂のみを塗布しても、空隙率は0%であり、比表面積は最低の0.2m/g程度となる。この場合は、三次元網目構造をほぼ損ない、表層の空気部分が少なくなった機能層となり、十分な撥油耐久性が得られないおそれがある。また、比表面積の臨界点は2m/g程度であり、これより低い1m/g程度では空隙がほとんどなく、撥油耐久性又は撥水耐久性が劣ってしまうおそれがある。 Further, when the functional layer is composed of only a fluorine-containing resin and no functional particles are present, the surface becomes smooth and has the lowest specific surface area. For example, even if only polyfluoroalkyl methacrylate resin is applied to the base material, the porosity is 0% and the specific surface area is the lowest, about 0.2 m 2 /g. In this case, the three-dimensional network structure is almost lost, resulting in a functional layer with a reduced amount of air in the surface layer, and there is a risk that sufficient oil repellency cannot be obtained. Further, the critical point of the specific surface area is about 2 m 2 /g, and if it is lower than this, about 1 m 2 /g, there will be almost no voids, and there is a risk that the oil repellency or water repellency durability will be poor.
 以上のことから、機能層の空隙率と比表面積は一定の相関関係にあるということができる。空隙(すなわち、空気層)は、理論上最も物質をはじくといわれており、水又は油に対する接触角は180°と考えられている。Cassie-Baxter理論によれば、この空気層と個体物質のモザイク構造は、空気層の割合と個体物質そのものの撥液能力に依存するといわれている。 From the above, it can be said that the porosity and specific surface area of the functional layer have a certain correlation. It is said that voids (that is, air spaces) are theoretically the most repellent of substances, and the contact angle with respect to water or oil is thought to be 180°. According to the Cassie-Baxter theory, this mosaic structure of the air layer and solid material is said to depend on the proportion of the air layer and the liquid repellency of the solid material itself.
 前述のとおり、たとえ空隙率を最大にしても、機能性粒子どうしが分子間力のみで形成されている場合は、機能性粒子が容易に脱落してしまうため、三次元編目構造体を保持する物質が重要になる。そこで、本発明では、機能性粒子を支持するためにフッ素を含有する疎水性樹脂を用いる。機能性粒子どうしを橋渡しする樹脂として上記フッ素含有樹脂以外の物質を用いた場合は、十分な撥油耐久性又は撥水耐久性を得ることができない。これは、一般的にフッ素を含有する物質の表面自由エネルギー(個体の表面張力)が20mJ/m以下程度と低く、例えば後記の試験例5で用いる食用油の表面張力32mJ/mと十分に差があるためと考えられる。その一方で、オレフィン、スチレンブタジエンゴム等のようなフッ素を含まない樹脂の表面自由エネルギーは30~34mJ/m程度であり、食用油の表面張力32mJ/mと比べて差が小さい。そのため、容易に油分に濡れてしまい、撥油耐久性又は撥水耐久性が低くなると考えられる。この点において、本発明で用いるフッ素含有樹脂の表面自由エネルギーは、通常5~25mJ/m程度とすれば良く、特に5~20mJ/mとすることがより好ましい。 As mentioned above, even if the porosity is maximized, if the functional particles are formed only by intermolecular forces, the functional particles will easily fall off, so it is necessary to maintain the three-dimensional mesh structure. Matter becomes important. Therefore, in the present invention, a fluorine-containing hydrophobic resin is used to support the functional particles. If a substance other than the above-mentioned fluorine-containing resin is used as the resin that bridges the functional particles, sufficient oil-repellent durability or water-repellent durability cannot be obtained. This is because the surface free energy (surface tension of a solid) of fluorine-containing substances is generally as low as 20 mJ/ m2 or less; for example, the surface tension of edible oil used in Test Example 5 described later is 32 mJ/ m2 , which is sufficient. This is thought to be because there is a difference in On the other hand, the surface free energy of fluorine-free resins such as olefins and styrene-butadiene rubber is about 30 to 34 mJ/m 2 , which is a small difference compared to the surface tension of edible oil, which is 32 mJ/m 2 . Therefore, it is thought that it easily gets wet with oil, resulting in poor oil-repellent durability or water-repellent durability. In this respect, the surface free energy of the fluorine-containing resin used in the present invention is generally about 5 to 25 mJ/m 2 , and more preferably 5 to 20 mJ/m 2 .
 撥油耐久性又は撥水耐久性を考えると、フッ素含有樹脂で機能性粒子を橋渡しして補強し、かつ、所定の空隙を維持することが望ましい。また、このような樹脂としてフッ素を含有する疎水性樹脂を使用しない場合、撥油性又は撥水性を十分に発現させることが困難となる。空隙率は、撥油性又は撥水性の観点から大きければ大きいほど良いが、空隙率が大きすぎると物理構造上脆くなっていく傾向がある。この際、底部ではフッ素含有樹脂で埋められ、空隙率が0%でも上部の空隙率が10%以上であれば撥油性又は撥水性は維持される。 Considering oil-repellent durability or water-repellent durability, it is desirable to bridge and reinforce functional particles with a fluorine-containing resin and maintain a predetermined void space. Furthermore, if a hydrophobic resin containing fluorine is not used as such resin, it will be difficult to sufficiently exhibit oil repellency or water repellency. The larger the porosity, the better from the viewpoint of oil repellency or water repellency, but if the porosity is too large, the physical structure tends to become brittle. In this case, the bottom part is filled with a fluorine-containing resin, and even if the porosity is 0%, the oil repellency or water repellency is maintained as long as the porosity of the upper part is 10% or more.
 その一方で、底部の空隙率が0%であり、かつ、上部の空隙率が2%である場合は、空隙が少なすぎるため、十分な撥油性又は撥水性を得られないおそれがある。底部の空隙率が0%でも上部の空隙率が10%の場合は、効果は高くないものの、所望の撥油性又は撥水性を維持することができる。 On the other hand, if the porosity at the bottom is 0% and the porosity at the top is 2%, there are too few voids and there is a risk that sufficient oil or water repellency may not be obtained. If the porosity at the bottom is 0% but the porosity at the top is 10%, the desired oil repellency or water repellency can be maintained, although the effect is not high.
 ここに、上記「底部」とは、図1に示すように、機能層において、基材側の機能層底面から50%厚みまでの領域をいう。上記「上部」とは、図1に示すように、機能層において、機能層底面から50%厚みを超えて機能層表面(最外面)までの領域をいう。 Here, the above-mentioned "bottom" refers to a region of the functional layer up to 50% thickness from the bottom surface of the functional layer on the base material side, as shown in FIG. As shown in FIG. 1, the above-mentioned "upper" refers to the area from the bottom of the functional layer to the surface (outermost surface) of the functional layer over 50% of the thickness.
 他方、空隙率が最大になるのは、機能性粒子のみを塗布した場合で底部55%及び上部55%となる。前記の通り、機能性粒子が実質的に分子間力のみで結合しているため、容易に脱落してしまうおそれがある。空隙率が底部45%及び上部55%の場合が臨界点で撥油耐久性又は撥水耐久性が十分ではないが維持され得る。これを超える空隙率の場合は、フッ素含有樹脂による橋渡し具合が十分でないと推察され、空隙率は底部53%上部55%で撥油耐久性又は撥水耐久性が維持できないおそれがある。かかる見地より、空隙率は、底部0~45%程度及び上部10~55%程度の範囲とすることできるが、特に底部31~45%及び上部40~55%とすることが好ましく、その中でも底部35~41%及び上部44~48%とすることがより好ましい。特に、機能層は、底部から上部に向かって空隙率が大きくなるような傾斜構造を有していることが好ましい。従って、上部の空隙率は、底部の空隙率よりも大きいことが望ましい。例えば、両者の差[(上部の空隙率)-(底部の空隙率)]は通常3%以上であることが好ましく、特に4~15%であることがより好ましい。 On the other hand, when only functional particles are applied, the porosity becomes maximum at 55% at the bottom and 55% at the top. As mentioned above, since the functional particles are bound together substantially only by intermolecular forces, there is a risk that they will easily fall off. When the porosity is 45% at the bottom and 55% at the top, the oil repellency or water repellency is not sufficient at a critical point, but can be maintained. If the porosity exceeds this, it is presumed that the bridging effect by the fluorine-containing resin is not sufficient, and the porosity is 53% at the bottom and 55% at the top, and there is a possibility that oil repellency or water repellency cannot be maintained. From this point of view, the porosity can be set in the range of about 0 to 45% at the bottom and about 10 to 55% at the top, but it is particularly preferable to set the porosity to 31 to 45% at the bottom and 40 to 55% at the top. More preferably, the ratio is 35 to 41% and the upper part is 44 to 48%. In particular, it is preferable that the functional layer has a gradient structure in which the porosity increases from the bottom to the top. Therefore, it is desirable that the porosity at the top is larger than the porosity at the bottom. For example, the difference between the two [(top porosity) - (bottom porosity)] is usually preferably 3% or more, particularly preferably 4 to 15%.
 三次元網目構造体における機能性粒子とフッ素含有樹脂(但し、前記機能性粒子に含まれる、フッ素を含有する疎水性樹脂を除く。)との割合は、通常は固形分重量比で1:50~20:1程度とし、特に1:30~20:1の範囲とすることが好ましく、さらに1:10~4:1の範囲とすることがより好ましく、その中でも1:3~4:1とすることが最も好ましい。このような範囲に設定することにより、フッ素を含んだ疎水性樹脂で強固に機能性粒子が橋渡しされた三次元網目構造が形成される。この場合、フッ素含有樹脂の割合が増えていき、1:30を超えてフッ素含有樹脂が多すぎると、機能性粒子どうしを橋渡ししているフッ素含有樹脂が機能性粒子間の空隙を埋めきってしまい、三次元網目構造を維持できなくなる。これにより、フッ素含有樹脂のみを基材に塗布した物性に等しくなり、十分な撥油性又は撥水性を得ることができない。これは、比表面積がフッ素含有樹脂塗膜を基材に塗布した値に近くなってくることを意味する。一方、20:1の割合を超えて機能性粒子が多すぎると、機能性粒子のみの塗膜に近づき、機能性粒子どうしをフッ素含有樹脂が橋渡しできないため、十分な固着性を得ることができず、撥油耐久性又は撥水耐久性が発揮できないと考えられる。 The ratio of the functional particles and the fluorine-containing resin (excluding the fluorine-containing hydrophobic resin contained in the functional particles) in the three-dimensional network structure is usually 1:50 in solid weight ratio. ~20:1, preferably in the range of 1:30 to 20:1, more preferably in the range of 1:10 to 4:1, and among them 1:3 to 4:1. Most preferably. By setting it within such a range, a three-dimensional network structure in which the functional particles are firmly bridged by the fluorine-containing hydrophobic resin is formed. In this case, as the ratio of fluorine-containing resin increases, and if it exceeds 1:30 and there is too much fluorine-containing resin, the fluorine-containing resin that bridges the functional particles will completely fill the voids between the functional particles. The three-dimensional network structure cannot be maintained. As a result, the physical properties become equal to those obtained when only the fluorine-containing resin is applied to the base material, and sufficient oil repellency or water repellency cannot be obtained. This means that the specific surface area becomes close to the value obtained when a fluorine-containing resin coating is applied to a substrate. On the other hand, if the ratio of functional particles exceeds 20:1 and there are too many functional particles, the coating film approaches only the functional particles, and the fluorine-containing resin cannot bridge the functional particles, making it impossible to obtain sufficient adhesion. First, it is considered that oil repellency or water repellency cannot be exhibited.
(2-1)疎水性粒子
 疎水性粒子としては、例えば酸化ケイ素、酸化チタン、酸化アルミニウム、酸化亜鉛等の無機酸化物粒子(粉末)の少なくとも1種を用いることができる。この中でも、酸化ケイ素粒子がより好ましい。
(2-1) Hydrophobic Particles As the hydrophobic particles, at least one kind of inorganic oxide particles (powder) such as silicon oxide, titanium oxide, aluminum oxide, zinc oxide, etc. can be used. Among these, silicon oxide particles are more preferred.
 また、疎水性粒子としては、例えばエッチング、紫外線照射、ブラスト処理、プラズマ処理等で親水化した親水性微粒子をシランカップリング剤等で疎水化し、部分的に水酸基を残存させた疎水性粒子微粒子等も用いることができる。これらが三次元網目構造を有する機能層を形成することで、プライマー層側の面では熱硬化性樹脂と強く接着し、もう一方の面では超撥水性及び/又は超撥油性を発現することもできる。 In addition, examples of hydrophobic particles include hydrophobic fine particles made by hydrophilic fine particles made hydrophilic by etching, ultraviolet irradiation, blasting, plasma treatment, etc., and made hydrophobic with a silane coupling agent, etc., with hydroxyl groups remaining partially. can also be used. By forming a functional layer with a three-dimensional network structure, these can strongly adhere to the thermosetting resin on the primer layer side and exhibit super water repellency and/or super oil repellency on the other side. can.
 無機酸化物粒子は、平均一次粒子径が5~50nmであることが好ましく、特に7~30nmであることが望ましい。なお、無機酸化物粒子の一次粒子平均径の測定は、透過型電子顕微鏡又は走査型電子顕微鏡を用いて実施することができる。より具体的には、平均一次粒子径は、透過型電子顕微鏡又は走査型電子顕微鏡で撮影し、その写真上で200個以上の粒子の直径を測定し、その算術平均値を算出することによって求めることができる。 The average primary particle diameter of the inorganic oxide particles is preferably 5 to 50 nm, particularly preferably 7 to 30 nm. Note that the primary particle average diameter of the inorganic oxide particles can be measured using a transmission electron microscope or a scanning electron microscope. More specifically, the average primary particle diameter is determined by photographing with a transmission electron microscope or scanning electron microscope, measuring the diameters of 200 or more particles on the photograph, and calculating the arithmetic mean value. be able to.
 前記のようなナノレベルの無機酸化物粒子は、限定的でなく、公知又は市販のものを使用することもできる。例えば、シリカとしては、製品名「AEROSIL R972」、「AEROSIL R972V」、「AEROSIL R972CF」、「AEROSIL R974」、「AEROSIL RX200」、「AEROSIL RY200」(以上、日本アエロジル株式会社製)、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL R812」、「AEROSIL R812S」、(以上、エボニック デグサ社製)、「サイロホービック100」「サイロホービック200」「サイロホービック603」(以上、富士シリシア化学株式会社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO T805」(エボニック デグサ社製)等が例示できる。アルミナとしては、製品名「AEROXIDE Alu C」(エボニック デグサ社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。 The nano-level inorganic oxide particles as described above are not limited, and known or commercially available ones can also be used. For example, as for silica, product names "AEROSIL R972", "AEROSIL R972V", "AEROSIL R972CF", "AEROSIL R974", "AEROSIL RX200", "AEROSIL RY200" (manufactured by Nippon Aerosil Co., Ltd.), "AEROSIL L R202 ”, “AEROSIL R805”, “AEROSIL R812”, “AEROSIL R812S” (all manufactured by Evonik Degussa), “Cylohovic 100”, “Cylohovic 200”, “Cylohovic 603” (all manufactured by Fuji Silysia Chemical) Co., Ltd.), etc. Examples of titania include the product name "AEROXIDE TiO 2 T805" (manufactured by Evonik Degussa). Examples of alumina include fine particles such as product name "AEROXIDE Alu C" (manufactured by Evonik Degussa), which are treated with a silane coupling agent to make the particle surface hydrophobic.
 この中でも、疎水性シリカ微粒子を好適に用いることができる。とりわけ、より優れた非付着性が得られるという点において、表面にトリメチルシリル基を有する疎水性シリカ微粒子が好ましい。これに対応する市販品としては、例えば前記「AEROSIL R812」、「AEROSIL R812S」(いずれもエボニック デグサ社製)等が挙げられる。 Among these, hydrophobic silica fine particles can be preferably used. In particular, hydrophobic silica fine particles having trimethylsilyl groups on the surface are preferred in that they provide better non-adhesion properties. Commercial products corresponding to this include, for example, the aforementioned "AEROSIL R812" and "AEROSIL R812S" (both manufactured by Evonik Degussa).
 疎水性粒子の付着量(乾燥後重量)は、限定的ではないが、通常0.01~100g/m程度の範囲内で設定でき、特に0.01~50g/mとすることがより好ましく、0.1~50g/mとすることがさらに好ましく、その中でも2~10g/mとすることが最も好ましい。 The amount of adhering hydrophobic particles (weight after drying) is not limited, but can usually be set within a range of about 0.01 to 100 g/m 2 , and particularly preferably 0.01 to 50 g/m 2 . It is preferably 0.1 to 50 g/m 2 , more preferably 2 to 10 g/m 2 .
(2-1)複合粒子
 複合粒子は、無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備えることを特徴とする。すなわち、無機酸化物微粒子をコア粒子とし、そのコア粒子表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層が形成されている粒子である。
(2-1) Composite Particles Composite particles are characterized by having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles. That is, they are particles in which a core particle is an inorganic oxide fine particle, and a coating layer containing a polyfluoroalkyl methacrylate resin is formed on the surface of the core particle.
 コア粒子となる無機酸化物微粒子としては、特に限定されないが、例えば酸化ケイ素、酸化チタン、酸化アルミニウム、酸化亜鉛等の粒子(粉末)の少なくとも1種を好適に用いることができる。この中でも、酸化ケイ素の粒子であることが好ましい。 The inorganic oxide fine particles serving as the core particles are not particularly limited, but at least one particle (powder) of silicon oxide, titanium oxide, aluminum oxide, zinc oxide, etc. can be suitably used. Among these, silicon oxide particles are preferred.
 無機酸化物微粒子のサイズは、限定的ではないが、通常は平均一次粒子径が5~50nm程度であることが好ましく、特に7~30nmであることがより好ましい。なお、前記の一次粒子平均径の測定は、透過型電子顕微鏡又は走査型電子顕微鏡を用いて実施することができる。より具体的には、平均一次粒子径は、透過型電子顕微鏡又は走査型電子顕微鏡で撮影し、その写真上で200個以上の粒子の直径を測定し、その算術平均値を算出することによって求めることができる。 Although the size of the inorganic oxide fine particles is not limited, it is usually preferable that the average primary particle size is about 5 to 50 nm, particularly preferably 7 to 30 nm. Note that the above-described average primary particle diameter can be measured using a transmission electron microscope or a scanning electron microscope. More specifically, the average primary particle diameter is determined by photographing with a transmission electron microscope or scanning electron microscope, measuring the diameters of 200 or more particles on the photograph, and calculating the arithmetic mean value. be able to.
 前記のようなナノレベルの無機酸化物微粒子は、公知又は市販のものを使用することができる。酸化ケイ素としては、例えば製品名「AEROSIL 200」(「AEROSIL」は登録商標。以下同じ)、「AEROSIL 130」、「AEROSIL 300」、「AEROSIL 50」、「AEROSIL 200FAD」、「AEROSIL 380」(以上、日本アエロジル(株)製)等が挙げられる。酸化チタンとしては、製品名「AEROXIDE TiO T805」(エボニック デグサ社製)等が挙げられる。酸化アルミニウムとしては、例えば製品名「AEROXIDE Alu C 805」(エボニック デグサ社製)等が挙げられる。 As the above-mentioned nano-level inorganic oxide fine particles, known or commercially available ones can be used. Examples of silicon oxide include the product names "AEROSIL 200"("AEROSIL" is a registered trademark. The same applies hereinafter), "AEROSIL 130", "AEROSIL 300", "AEROSIL 50", "AEROSIL 200FAD", "AEROSIL 380" (and above). , manufactured by Nippon Aerosil Co., Ltd.). Examples of titanium oxide include product name "AEROXIDE TiO 2 T805" (manufactured by Evonik Degussa). Examples of aluminum oxide include the product name "AEROXIDE Alu C 805" (manufactured by Evonik Degussa).
  上記複合粒子の調製方法は特に限定されず、例えば無機酸化物の微粒子(粉末)に対して被覆材としてポリフルオロアルキルメタアクリレート樹脂を用い、公知のコーティング方法、造粒方法等に従って被覆層を形成すれば良い。より具体的には、液状のポリフルオロアルキルメタアクリレート樹脂を溶媒に溶解又は分散させた塗工液を無機酸化物微粒子にコーティングする工程(被覆工程)を含む製造方法によって複合粒子を好適に調製することができる。 The method for preparing the above-mentioned composite particles is not particularly limited. For example, a polyfluoroalkyl methacrylate resin is used as a coating material for fine particles (powder) of an inorganic oxide, and a coating layer is formed according to a known coating method, granulation method, etc. Just do it. More specifically, composite particles are preferably prepared by a manufacturing method that includes a step of coating inorganic oxide fine particles with a coating liquid in which a liquid polyfluoroalkyl methacrylate resin is dissolved or dispersed in a solvent (coating step). be able to.
 このような樹脂としては、公知又は市販のものを使用することができる。市販品としては、例えば製品名「CHEMINOX FAMAC-6」(ユニマテック(Japan)社製)、製品名「Zonyl TH Fluoromonomer コード421480」(SIGMA-ALDRICH(USA)社製)、製品名「SCFC-65530-66-7」(Maya High Purity Chem(CHINA)社製)、製品名「FC07-04~10」(Fluory,Inc(USA))、製品名「CBINDEX:58」(Wilshire Chemical Co.,Inc(USA)社製)、製品名「アサヒガードAG-E530」、「アサヒガードAG-E060」(いずれも旭硝子株式会社製)、製品名「TEMAc-N」(Top Fluorochem Co.,LTD(CHINA)社製)、製品名「Zonyl 7950」(SIGMA-RBI(SWITZ)社製)、製品名「6100840~6100842」(Weibo Chemcal Co.,Ltd(CHINA)社製)、製品名「CB INDEX:75」(ABCR GmbH&CO.KG(GERMANY)社製)等を挙げることができる。  As such resin, known or commercially available resins can be used. Commercially available products include, for example, the product name "CHEMINOX FAMAC-6" (manufactured by Unimatec (Japan)), the product name "Zonyl TH Fluoromonomer code 421480" (manufactured by SIGMA-ALDRICH (USA)), and the product name "SCFC-65530". - 66-7'' (manufactured by Maya High Purity Chem (CHINA)), product name ``FC07-04~10'' (Fluory, Inc (USA)), product name ``CBINDEX:58'' (manufactured by Wilshire Chemical Co., Inc. USA ), product name "Asahi Guard AG-E530", "Asahi Guard AG-E060" (both manufactured by Asahi Glass Co., Ltd.), product name "TEMAc-N" (manufactured by Top Fluorochem Co., LTD (CHINA)) ), Product name "ZONYL 7950" (manufactured by SIGMA -RBI (SWITZ)), product name "6100840-6100842" (Weibo Chemcal Co, LTD (CINA)), product name "CB Index: 75" GmbH&CO.KG (GERMANY)), etc.​
  上記製造方法では、ポリフルオロアルキルメタアクリレート樹脂として常温(25℃)及び常圧下で液状のものを好適に用いることができる。このようなポリフルオロアルキルメタアクリレート樹脂としては、上記のような市販品を使用することもできる。これらの中でも、より優れた撥水性及び撥油性を達成できるという点より、例えばa)ポリフルオロオクチルメタクリレート、b)2-N,N-ジエチルアミノエチルメタクリレート、c)2-ヒドロキシエチルメタクリレート及びd)2,2’-エチレンジオキシジエチルジメタクリレートが共重合したコポリマーを上記樹脂として好適に採用することができる。これらも市販品を用いることができる。 In the above manufacturing method, a polyfluoroalkyl methacrylate resin that is liquid at room temperature (25° C.) and normal pressure can be suitably used. As such polyfluoroalkyl methacrylate resin, commercially available products such as those mentioned above can also be used. Among these, from the point of view that superior water repellency and oil repellency can be achieved, for example, a) polyfluorooctyl methacrylate, b) 2-N,N-diethylaminoethyl methacrylate, c) 2-hydroxyethyl methacrylate, and d) 2 , 2'-ethylenedioxydiethyl dimethacrylate can be preferably used as the resin. Commercially available products can also be used.
  塗工液に使用する溶媒は、特に制限されず、水のほか、アルコール、トルエン等の有機溶剤を使用することができるが、本発明では水を用いることが好ましい。すなわち、ポリフルオロアルキルメタアクリレート樹脂が水に溶解及び/又は分散した塗工液を使用することが好ましい。 The solvent used in the coating solution is not particularly limited, and in addition to water, organic solvents such as alcohol and toluene can be used; however, in the present invention, it is preferable to use water. That is, it is preferable to use a coating liquid in which a polyfluoroalkyl methacrylate resin is dissolved and/or dispersed in water.
  上記の塗工液中におけるポリフルオロアルキルメタアクリレート樹脂の含有量は、特に制限されないが、一般的には10~80重量%程度とし、特に15~70重量%とすることが好ましく、その中でも20~60重量%の範囲内に設定することがより好ましい。 The content of the polyfluoroalkyl methacrylate resin in the above coating liquid is not particularly limited, but it is generally about 10 to 80% by weight, preferably 15 to 70% by weight, and especially 20% by weight. It is more preferable to set it within the range of 60% by weight.
 無機酸化物微粒子表面に塗工液をコーティングする方法は、公知の方法に従えば良く、例えばスプレー法、浸漬法、攪拌造粒法等のいずれも適用することができる。特に、本発明では、均一性等に優れるという点でスプレー法によるコーティングが特に好ましい。 The method of coating the surface of the inorganic oxide fine particles with the coating liquid may be according to a known method, and for example, any of the spray method, dipping method, stirring granulation method, etc. can be applied. In particular, in the present invention, coating by spraying is particularly preferred since it has excellent uniformity.
  塗工液をコーティングした後、熱処理により溶媒を除去することによって複合粒子を得ることができる。熱処理温度は、通常150~250℃程度とし、特に180~200℃とすることが好ましい。熱処理の雰囲気は限定的ではないが、窒素ガス、アルゴンガス等の不活性ガス(非酸化性)雰囲気が望ましい。また、例えば、必要に応じて、さらに被覆工程及び熱処理工程からなる一連の工程を1回以上実施することができる。これにより被覆量の制御等を好適に行うことが可能となる。 After coating with the coating liquid, composite particles can be obtained by removing the solvent by heat treatment. The heat treatment temperature is usually about 150 to 250°C, preferably 180 to 200°C. Although the atmosphere for the heat treatment is not limited, an inert gas (non-oxidizing) atmosphere such as nitrogen gas or argon gas is desirable. Further, for example, a series of steps including a coating step and a heat treatment step can be further performed one or more times as necessary. This makes it possible to suitably control the amount of coating.
 このようにして得られる複合粒子の表面は、ポリフルオロアルキルメタアクリレート樹脂を含む被覆層を有する。かかる樹脂を含むことによって、無機酸化物微粒子との親和性に優れるがゆえに比較的密着性の高い強固な被覆層を当該粒子表面上に形成できるととともに、より高い撥水性又は撥油性を発現させることができる。 The surfaces of the composite particles thus obtained have a coating layer containing a polyfluoroalkyl methacrylate resin. By containing such a resin, it is possible to form a strong coating layer with relatively high adhesion on the surface of the particles due to its excellent affinity with the inorganic oxide fine particles, and also to exhibit higher water repellency or oil repellency. be able to.
 複合粒子の付着量(乾燥後重量)は、特に三次元網目構造体を形成するのに十分な量とすれば良いが、通常は0.01~100g/m程度の範囲内とすれば良く、特に0.1~20g/m程度とすることが好ましく、さらに0.5~10g/mとすることがより好ましく、その中でも0.6~5g/mとするのが最も好ましい。 The amount of composite particles deposited (weight after drying) may be set to an amount sufficient to form a three-dimensional network structure, but it is usually within a range of about 0.01 to 100 g/ m2 . In particular, it is preferably about 0.1 to 20 g/m 2 , more preferably 0.5 to 10 g/m 2 , and most preferably 0.6 to 5 g/m 2 .
(2-2)フッ素含有樹脂
 フッ素含有樹脂は、機能層において機能性粒子とともに三次元網目構造体を構成するものである。フッ素含有樹脂は、それ自体が疎水性又は疎油性であるために水分又は水分を多く含むものを弾きやすい。また、フッ素含樹脂は、油分又は油分を多く含むものも弾きやすい。さらに、本発明においては、フッ素含有樹脂が機能性粒子どうしを接合することで、フッ素含有樹脂と機能性粒子とが三次元網目構造体を形成しており、こうした構造を採ることにより、撥水性及び撥油性がよりいっそう高くなる。さらに、フッ素含有樹脂が基材と機能性粒子とを接着することによって基材に機能性粒子が担持(固定)されていることが好ましい。これにより、機能層が基材により強固に固定され、高い耐久性が得られる。
(2-2) Fluorine-containing resin The fluorine-containing resin forms a three-dimensional network structure together with the functional particles in the functional layer. Since the fluorine-containing resin itself is hydrophobic or oleophobic, it easily repels moisture or materials containing a large amount of moisture. Furthermore, fluorine-containing resins also tend to repel oil or those containing a large amount of oil. Furthermore, in the present invention, the fluorine-containing resin joins the functional particles to each other, so that the fluorine-containing resin and the functional particles form a three-dimensional network structure, and by adopting such a structure, water repellency is achieved. And the oil repellency becomes even higher. Furthermore, it is preferable that the functional particles are supported (fixed) on the base material by the fluorine-containing resin adhering the base material and the functional particles. This allows the functional layer to be more firmly fixed to the base material, resulting in high durability.
 フッ素含有樹脂は、フッ素を含み、疎水性を有するものであれば限定されず、含フッ素モノマーを重合してなる合成樹脂から適宜選択することができる。これらは、ホモポリマーであっても良いし、コポリマーであっても良い。例えば、ポリフルオロアルキルメタアクリレート樹脂、ポリテトラフルオロエチレン樹脂(PTFE)、エチレンテトラフルオロエチレン樹脂(ETFE)、ポリビニリデンジフロライド樹脂、エチレン・テトラフルオロエチレン共重合体、ペルフルオロアルコキシアルカン樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等の少なくとも1種を挙げることができる。これらの性状は、限定的ではなく、例えば水性ディスパージョンタイプのものを好適に使用することができる。 The fluorine-containing resin is not limited as long as it contains fluorine and is hydrophobic, and can be appropriately selected from synthetic resins obtained by polymerizing fluorine-containing monomers. These may be homopolymers or copolymers. For example, polyfluoroalkyl methacrylate resin, polytetrafluoroethylene resin (PTFE), ethylenetetrafluoroethylene resin (ETFE), polyvinylidene difluoride resin, ethylene/tetrafluoroethylene copolymer, perfluoroalkoxyalkane resin, tetrafluoroethylene At least one of ethylene/hexafluoropropylene copolymers, tetrafluoroethylene/perfluoroalkyl vinyl ether copolymers, etc. can be mentioned. These properties are not limited, and for example, an aqueous dispersion type can be suitably used.
 特に、本発明では、ポリフルオロアルキルメタアクリレート樹脂、ポリテトラフルオロエチレン樹脂(PTFE)、エチレンテトラフルオロエチレン樹脂(ETFE)、ペルフルオロアルコキシアルカン樹脂及びテトラフルオロエチレン・ヘキサフルオロプロピレン共重合体からなる群から選択される少なくとも1種を好適に用いることができる。これらは、公知又は市販のものも使用することができる。 In particular, the present invention uses polyfluoroalkyl methacrylate resins, polytetrafluoroethylene resins (PTFE), ethylenetetrafluoroethylene resins (ETFE), perfluoroalkoxyalkane resins, and tetrafluoroethylene-hexafluoropropylene copolymers. At least one selected type can be suitably used. Known or commercially available ones can also be used.
 これらの中でも、本発明では、フッ素含有樹脂として、ポリフルオロアルキルメタアクリレート樹脂を含むことが好ましい。特に、機能性粒子として複合粒子を用いる場合、無機酸化物微粒子の表面に形成された被覆層と実質的に同じようなフッ素含有樹脂を機能層に含有させることによって、機能性粒子とフッ素含有樹脂との親和性がより高くなり、より高い撥水耐久性及び撥油耐久性を発現することができる。このような樹脂も、前記と同様のものを使用でき、市販品も用いることができる。 Among these, in the present invention, it is preferable to include a polyfluoroalkyl methacrylate resin as the fluorine-containing resin. In particular, when composite particles are used as functional particles, the functional particles and fluorine-containing resin can be combined by containing a fluorine-containing resin in the functional layer that is substantially the same as the coating layer formed on the surface of the inorganic oxide fine particles. It has a higher affinity with the water repellent and oil repellent, and can exhibit higher water repellency and oil repellency. As such resin, the same resins as those mentioned above can be used, and commercially available products can also be used.
 フッ素含有樹脂の付着量(乾燥後重量)は、特に三次元網目構造体を形成するのに十分な量とすれば良いが、通常は0.5~30g/mとするのが好ましく、特に0.5~5g/mとするのがより好ましく、その中でも2.5~5g/mとするのが最も好ましい。 The amount of the fluorine-containing resin deposited (weight after drying) may be set to an amount sufficient to form a three-dimensional network structure, but it is usually preferably 0.5 to 30 g/ m2 , especially It is more preferably 0.5 to 5 g/m 2 , and most preferably 2.5 to 5 g/m 2 .
 また、三次元網目構造体における機能性粒子(A)とフッ素含有樹脂(但し、前記機能性粒子に含まれる、フッ素を含有する疎水性樹脂を除く。)(B)との割合(重量比)は、前記の通り、例えばA:B=20:1~1:50程度に設定することができ、またA:B=20:1~1:30程度に設定することができるが、これに限定されない。従って、例えば機能性粒子(A):フッ素含有樹脂(B)との重量比としてA:B=1:0.5~3程度と設定することもできる。 Also, the ratio (weight ratio) of the functional particles (A) and the fluorine-containing resin (excluding the fluorine-containing hydrophobic resin contained in the functional particles) (B) in the three-dimensional network structure. As mentioned above, for example, A:B can be set to about 20:1 to 1:50, and A:B can be set to about 20:1 to 1:30, but is limited to this. Not done. Therefore, for example, the weight ratio of functional particles (A) to fluorine-containing resin (B) can be set to about A:B=1:0.5 to 3.
(2-4)その他の成分
 本発明では、本発明の効果を妨げない範囲内において、機能層(又は三次元網目構造体)中に他の成分が含まれていても良い。例えば、充填粒子、着色材、分散剤、沈降防止剤、消泡剤等の添加剤が挙げられる。機能層中における添加剤の合計含有量は、例えば約50重量%以下とし、また例えば0~40重量%程度とすることができるが、これに限定されない。
(2-4) Other components In the present invention, other components may be included in the functional layer (or three-dimensional network structure) within a range that does not impede the effects of the present invention. Examples include additives such as filled particles, colorants, dispersants, antisettling agents, and antifoaming agents. The total content of additives in the functional layer is, for example, about 50% by weight or less, and can be, for example, about 0 to 40% by weight, but is not limited thereto.
 特に、本発明では、充填粒子を好適に用いることができる。充填粒子を含むことにより、無機酸化物微粒子とナノーマイクロ構造を形成し、より高い撥水性又は撥油性を発現することができる。充填粒子としては、平均粒子径D50が5~60μm(好ましくは10~30μm)である充填粒子を好適に用いることができる。その材質は、無機材料又は有機材料のいずれでも良く、例えばポリメチルメタクリレート(PMMA)、スチレン、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、アクリル樹脂、シリカ及びアルミナからなる群から選択される少なくとも1種の粒子(粉末)を挙げることができる。充填粒子を配合する場合の含有量は、限定的ではないが、乾燥後の重量で[フッ素含有樹脂/(充填粒子+フッ素含有樹脂)]の割合が25~75重量%となるような割合で充填粒子が含まれることが好ましい。前記割合が25重量%を下回る場合、フッ素含有樹脂が充填粒子と基材を十分に密着させることができず、充填粒子が脱落しやすくなることがある。前記割合が75重量%を上回り、例えば充填粒子の存在しないフッ素含有樹脂100重量%となる場合でも、所望の撥油耐久性又は撥水耐久性を得ることは可能である。 In particular, packed particles can be suitably used in the present invention. By including the filler particles, it is possible to form a nano-microstructure with the inorganic oxide fine particles and exhibit higher water repellency or oil repellency. As the filled particles, filled particles having an average particle diameter D50 of 5 to 60 μm (preferably 10 to 30 μm) can be suitably used. The material may be either an inorganic material or an organic material, for example, selected from the group consisting of polymethyl methacrylate (PMMA), styrene, low density polyethylene (LDPE), high density polyethylene (HDPE), acrylic resin, silica, and alumina. At least one type of particles (powder) can be mentioned. When blending filled particles, the content is not limited, but it should be such that the ratio of [fluorine-containing resin/(filled particles + fluorine-containing resin)] is 25 to 75% by weight after drying. Preferably, filled particles are included. If the ratio is less than 25% by weight, the fluorine-containing resin may not be able to sufficiently adhere the filled particles to the base material, and the filled particles may easily fall off. Even when the proportion exceeds 75% by weight, for example 100% by weight of the fluorine-containing resin without filler particles, it is possible to obtain the desired oil-repellent durability or water-repellent durability.
2.積層体の製造方法
 本発明積層体は、例えば以下に示すような第1の方法~第3の方法によって好適に製造することができる。
2. Method for manufacturing a laminate The laminate of the present invention can be suitably manufactured, for example, by the first to third methods shown below.
 第1の方法は、(1)基材に対し、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子及び(b)フッ素含有樹脂とを含む塗工液を塗布することにより塗膜を形成する工程(塗膜形成工程)及び必要に応じて(2)前記塗膜を熱処理する工程(熱処理工程)を含む製造方法である。 The first method involves applying at least one of (1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of (a1) an inorganic oxide fine particle to a base material, and (a2) a hydrophobic particle. A step of forming a coating film by applying a coating solution containing one type of functional particles and (b) a fluorine-containing resin (coating film forming step), and optionally (2) heat-treating the coating film. This is a manufacturing method including a step (heat treatment step).
 第2の方法は、(1)基材に対し、フッ素含有樹脂を含むフッ素含有塗工液を塗布することによりフッ素含有塗膜を形成する工程(フッ素含有塗膜形成工程)、(2)前記フッ素含有塗膜に対し、無機酸化物微粒子の表面に(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子を含む塗工液を塗布することにより機能性粒子含有塗膜を形成する工程(複合粒子含有塗膜形成工程)及び必要に応じて(3)前記で得られた塗膜を熱処理する工程(熱処理工程)を含む製造方法である。 The second method includes (1) forming a fluorine-containing coating film by applying a fluorine-containing coating liquid containing a fluorine-containing resin to a substrate (fluorine-containing coating formation step); For the fluorine-containing coating film, at least one of (a1) composite particles having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of the inorganic oxide fine particles and (a2) hydrophobic particles is added to the surface of the inorganic oxide fine particles. Step of forming a functional particle-containing coating film by applying a coating solution containing functional particles (composite particle-containing coating film formation step) and optionally (3) heat-treating the coating film obtained above. This is a manufacturing method including a step (heat treatment step).
 第3の方法は、(1)基材に対し、(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子を含む塗工液を塗布することにより機能性粒子含有塗膜を形成する工程(複合粒子含有塗膜形成工程)、(2)前記機能性粒子含有塗膜に対し、フッ素含有樹脂を含むフッ素含有塗工液を塗布することによりフッ素含有塗膜を形成する工程(フッ素含有塗膜形成工程)及び必要に応じて(3)前記で得られた塗膜を熱処理する工程(熱処理工程)を含む製造方法である。 The third method includes applying to a base material at least one of (a1) composite particles having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles and (a2) hydrophobic particles. a step of forming a coating film containing functional particles by applying a coating solution containing functional particles (composite particle-containing coating film formation step); (2) applying a fluorine-containing resin to the coating film containing functional particles; A step of forming a fluorine-containing coating film by applying a fluorine-containing coating solution containing the fluorine-containing coating solution (fluorine-containing coating forming step), and optionally (3) a step of heat-treating the coating film obtained above (heat treatment step). This is a manufacturing method including.
 これらの中でも、第2の方法をより好適に採用することができる。これにより、空隙をより確実に保ったまま(すなわち、撥油性が高いまま)、三次元網目構造体を構築・補強することができる。その理由は、定かではないが、フッ素含有塗膜上に配置された機能性粒子が毛管現象でフッ素含有樹脂を吸い取って橋渡し状態になると推察される。これによって、機能性粒子の脱落をより効果的に抑制ないしは防止することができる結果、優れた撥水耐久性又は撥油耐久性を得ることができる。 Among these, the second method can be more preferably adopted. Thereby, the three-dimensional network structure can be constructed and reinforced while maintaining the voids more reliably (that is, keeping the oil repellency high). Although the reason for this is not certain, it is presumed that the functional particles placed on the fluorine-containing coating absorb the fluorine-containing resin by capillary action and become in a bridging state. As a result, it is possible to more effectively suppress or prevent the functional particles from falling off, and as a result, excellent water-repellent durability or oil-repellent durability can be obtained.
<第1の方法について>
 塗膜形成工程
 塗膜形成工程では、基材に対し、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子及び(b)フッ素含有樹脂とを含む塗工液を塗布することにより塗膜を形成する。
<About the first method>
Coating film forming process In the coating film forming process, (a) (a1) composite particles having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles and (a2) hydrophobic particles are applied to the base material. A coating film is formed by applying a coating liquid containing at least one kind of functional particles and (b) a fluorine-containing resin.
 塗工液は、通常は機能性粒子、フッ素含有樹脂及び溶媒を含む。機能性粒子及びフッ素含有樹脂の種類、両者の割合等は、前記で説明した通りの範囲内となるようにすれば良い。 The coating liquid usually contains functional particles, a fluorine-containing resin, and a solvent. The types of functional particles and fluorine-containing resin, their ratio, etc. may be within the ranges described above.
 また、溶媒は、限定的でなく、用いるフッ素含有樹脂の種類等に応じて適宜選択することができる。例えば、アルコール系溶剤(エタノール、メタノール、イソプロピルアルコール(IPA)、ヘキシルアルコール等)、ケトン系溶剤(アセトン、ケトン、メチルエチルケトン(MEK)等)、炭化水素系溶剤(シクロヘキサン、ノルマルペンタン、ノルマルヘキサンメチルシクロヘキサン(MCH)等)、芳香族系溶剤(トルエン等)、グリコール系溶剤(プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール等)の有機溶剤の中から適宜選択することができる。 Furthermore, the solvent is not limited and can be appropriately selected depending on the type of fluorine-containing resin used. For example, alcohol solvents (ethanol, methanol, isopropyl alcohol (IPA), hexyl alcohol, etc.), ketone solvents (acetone, ketone, methyl ethyl ketone (MEK), etc.), hydrocarbon solvents (cyclohexane, n-pentane, n-hexane, methyl cyclohexane, etc.) (MCH), etc.), aromatic solvents (toluene, etc.), and glycol solvents (propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, etc.).
 塗工液では、フッ素含有樹脂等が溶媒に溶解してなる溶液であっても良いが、特に機能性粒子及びフッ素含有樹脂粒子が溶媒に分散してなる分散液の形態であることが望ましい。これにより、塗工液を基材に塗布した際に、機能性粒子及びフッ素含有樹脂粒子が均質に塗布されるので、機能性粒子の特性を維持したまま、機能性粒子どうしの密着性のほか、機能層と基材との密着性を高めることができる。そして、このような分散液を基材に塗布すると、機能性粒子及びフッ素含有樹脂粒子の多くは下方(重力方向)に移動するため、機能層の基材に近い領域では空隙率が低くなり、機能層の最表面側の領域では空隙率が高くなる。このようにして傾斜的な構造をもつ機能層を効果的に形成することができる。 The coating liquid may be a solution in which a fluorine-containing resin or the like is dissolved in a solvent, but it is particularly preferably in the form of a dispersion in which functional particles and fluorine-containing resin particles are dispersed in a solvent. As a result, when the coating liquid is applied to the substrate, the functional particles and fluorine-containing resin particles are uniformly applied, so the properties of the functional particles are maintained, and the adhesion between the functional particles is improved. , it is possible to improve the adhesion between the functional layer and the base material. When such a dispersion is applied to a base material, most of the functional particles and fluorine-containing resin particles move downward (in the direction of gravity), so the porosity decreases in the area of the functional layer close to the base material. The porosity is high in the region on the outermost surface side of the functional layer. In this way, a functional layer having a gradient structure can be effectively formed.
 塗工液を塗布する方法は、特に限定されず、例えばロールコーティング、各種グラビアコーティング、バーコーター、ドクターブレードコーティング、コンマコーター、スプレーコート、刷毛塗り等の公知の方法を適宜採用することができる。 The method of applying the coating liquid is not particularly limited, and known methods such as roll coating, various gravure coatings, bar coater, doctor blade coating, comma coater, spray coating, and brush coating can be appropriately employed.
 塗布した後は、必要に応じて乾燥工程を実施しても良い。乾燥方法は、特に制限されず、自然乾燥又は加熱乾燥のいずれであっても良い。加熱乾燥する場合、加熱温度は、限定的ではないが、通常は80~140℃程度とし、特に100~120℃とすれば良い。加熱時間は、加熱温度等に応じて適宜設定すれば良く、通常は3~60秒程度とすることができるが、これに限定されない。 After coating, a drying step may be performed if necessary. The drying method is not particularly limited, and may be either natural drying or heat drying. When drying by heating, the heating temperature is not limited, but is usually about 80 to 140°C, particularly 100 to 120°C. The heating time may be appropriately set depending on the heating temperature and the like, and is usually about 3 to 60 seconds, but is not limited thereto.
 熱処理工程
 本発明では、必要に応じて、熱処理工程では、前記の塗膜形成工程で得られた塗膜を熱処理することができる。熱処理することによって、機能層中において、機能性粒子とフッ素含有樹脂とがより強固に結合するとともに、フッ素含有樹脂と基材とが結合することによって、基材と機能層との密着性がより優れた積層体を得ることができる。さらには、熱処理工程において、機能性粒子及び/又はフッ素含有樹脂の一部を基材中に埋め込むこともできるので、より高い密着性が得られ、より効果的に基材と機能層とを一体的な構造とすることができる。
Heat Treatment Step In the present invention, the coating film obtained in the coating film forming step can be heat treated in the heat treatment step, if necessary. By heat treatment, the functional particles and the fluorine-containing resin are bonded more firmly in the functional layer, and the fluorine-containing resin and the base material are bonded, thereby improving the adhesion between the base material and the functional layer. An excellent laminate can be obtained. Furthermore, in the heat treatment process, a part of the functional particles and/or fluorine-containing resin can be embedded in the base material, so higher adhesion can be obtained and the base material and the functional layer can be more effectively integrated. It can have a similar structure.
 熱処理温度は、基材の耐熱温度よりも低い温度であり、かつ、機能層に含まれるフッ素含有樹脂の最低ガラス転移温度以上で融点程度までの温度範囲を設定することが望ましい。従って、例えば、基材の耐熱温度が660℃であり、フッ素含有樹脂がガラス転移温度100℃及び融点270℃であれば、熱処理温度を100~270℃程度(また例えば150~200℃程度)とすることができる。 The heat treatment temperature is preferably lower than the heat-resistant temperature of the base material, and is preferably set in a temperature range from the lowest glass transition temperature to about the melting point of the fluorine-containing resin contained in the functional layer. Therefore, for example, if the base material has a heat-resistant temperature of 660°C and the fluorine-containing resin has a glass transition temperature of 100°C and a melting point of 270°C, the heat treatment temperature should be about 100 to 270°C (or, for example, about 150 to 200°C). can do.
 また、熱処理時間は、所望の密着性が得られるのに十分な時間とすれば良く、例えば10秒~60分程度に設定することができるが、これに限定されない。 Further, the heat treatment time may be set to a time sufficient to obtain the desired adhesion, and can be set to, for example, about 10 seconds to 60 minutes, but is not limited thereto.
<第2の方法について>
 フッ素含有塗膜形成工程
 フッ素含有塗膜形成工程では、基材に対し、フッ素含有樹脂を含むフッ素含有塗工液を塗布することによりフッ素含有塗膜を形成する。
<About the second method>
Fluorine-containing coating film forming step In the fluorine-containing coating film forming step, a fluorine-containing coating film is formed by applying a fluorine-containing coating solution containing a fluorine-containing resin to a substrate.
 塗工液は、通常はフッ素含有樹脂及び溶媒を含む。フッ素含有樹脂の種類、両者の割合等は、前記で説明した通りとなるように設定することができる。また、溶媒は、第1の方法で挙げたものと同様のものを用いることができる。 The coating liquid usually contains a fluorine-containing resin and a solvent. The type of fluorine-containing resin, the ratio of the two, etc. can be set as described above. Moreover, the same solvents as those mentioned in the first method can be used.
 塗工液では、フッ素含有樹脂が溶媒に溶解して溶液であっても良いが、特にフッ素含有樹脂粒子が溶媒に分散してなる分散液の形態であることが望ましい。これにより、塗工液を基剤フィルムに塗布した際に、フッ素含有樹脂粒子が均質に塗布されるので、最終的に形成される機能層と基材の密着性をより高めることができる。 The coating liquid may be in the form of a solution in which the fluorine-containing resin is dissolved in a solvent, but it is particularly desirable to be in the form of a dispersion in which fluorine-containing resin particles are dispersed in a solvent. Thereby, when the coating liquid is applied to the base film, the fluorine-containing resin particles are uniformly applied, so that the adhesion between the finally formed functional layer and the base material can be further improved.
 塗布する方法は、特に限定されず、例えばロールコーティング、各種グラビアコーティング、バーコーター、ドクターブレードコーティング、コンマコーター、スプレーコート、刷毛塗り等の公知の方法を適宜採用することができる。塗工量は、乾燥後重量で0.1~60g/m程度とすることができ、また0.2~50g/mと設定することもできるが、これらに限定されない。 The coating method is not particularly limited, and known methods such as roll coating, various gravure coatings, bar coater, doctor blade coating, comma coater, spray coating, and brush coating can be appropriately employed. The coating amount can be set to about 0.1 to 60 g/m 2 after drying, and can also be set to 0.2 to 50 g/m 2 , but is not limited thereto.
 塗布した後は、必要に応じて乾燥工程を実施しても良い。乾燥方法は、特に制限されず、自然乾燥又は加熱乾燥のいずれであっても良い。加熱乾燥する場合、加熱温度は、特に限定されないが、通常は80~140℃程度とし、特に100~120℃とすれば良い。加熱時間は、加熱温度等に応じて適宜設定すれば良く、通常は3~60秒程度とすることができるが、これに限定されない。 After coating, a drying step may be performed if necessary. The drying method is not particularly limited, and may be either natural drying or heat drying. In the case of heating and drying, the heating temperature is not particularly limited, but is usually about 80 to 140°C, particularly 100 to 120°C. The heating time may be appropriately set depending on the heating temperature and the like, and is usually about 3 to 60 seconds, but is not limited thereto.
 機能性粒子含有塗膜形成工程
 機能性粒子含有塗膜形成工程では、前記フッ素含有塗膜に対し、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子を含む塗工液を塗布することにより機能性粒子含有塗膜を形成する。
Functional particle-containing coating film forming step In the functional particle-containing coating film forming step, a coating layer containing a polyfluoroalkyl methacrylate resin is applied to the surface of (a) (a1) inorganic oxide fine particles to the fluorine-containing coating film. A coating film containing functional particles is formed by applying a coating liquid containing at least one functional particle of the composite particles and (a2) hydrophobic particles.
 塗工液は、通常は機能性粒子及び溶媒を含む。機能性粒子の種類、製法等は、前記で説明した通りである。また、溶媒等も、第1の方法で挙げたものと同様のものを用いることができる。塗工液の固形分濃度は、例えば20~60重量%程度の範囲内とすることができるが、これに限定されない。 The coating liquid usually contains functional particles and a solvent. The type of functional particles, manufacturing method, etc. are as explained above. Furthermore, the same solvents as those mentioned in the first method can be used. The solid content concentration of the coating liquid can be, for example, within a range of about 20 to 60% by weight, but is not limited thereto.
 塗工液では、機能性粒子が溶媒に分散してなる分散液の形態であることが望ましい。これにより、塗工液をフッ素含有塗膜に塗布した際に、機能性粒子が均質に塗布されるので、最終的に形成される機能層と基材の密着性をより高めることができる。従って、この点において、前記溶媒は、機能性粒子として複合粒子を用いる場合には当該複合粒子の被覆層を溶解させない溶媒を用いることが望ましい。 The coating liquid is preferably in the form of a dispersion in which functional particles are dispersed in a solvent. Thereby, when the coating liquid is applied to the fluorine-containing coating film, the functional particles are uniformly applied, so that the adhesion between the finally formed functional layer and the base material can be further improved. Therefore, in this respect, when composite particles are used as the functional particles, it is desirable to use a solvent that does not dissolve the coating layer of the composite particles.
 塗工液を塗布する方法は、特に限定されず、フッ素含有塗膜を形成する方法と同様にして実施すれば良い。例えば、ロールコーティング、各種グラビアコーティング、バーコーター、ドクターブレードコーティング、コンマコーター、スプレーコート、刷毛塗り等の公知の方法を適宜採用することができる。 The method for applying the coating liquid is not particularly limited, and may be carried out in the same manner as the method for forming a fluorine-containing coating film. For example, known methods such as roll coating, various gravure coatings, bar coater, doctor blade coating, comma coater, spray coating, and brush coating can be appropriately employed.
 塗布した後は、必要に応じて乾燥工程を実施しても良い。乾燥方法は、特に制限されず、自然乾燥又は加熱乾燥のいずれであっても良い。加熱乾燥する場合、加熱温度は、限定的ではないが、通常は80~140℃程度とし、特に100~120℃とすれば良い。加熱時間は、加熱温度等に応じて適宜設定すれば良く、通常は3~60秒程度とすることができるが、これに限定されない。 After coating, a drying step may be performed if necessary. The drying method is not particularly limited, and may be either natural drying or heat drying. When drying by heating, the heating temperature is not limited, but is usually about 80 to 140°C, particularly 100 to 120°C. The heating time may be appropriately set depending on the heating temperature and the like, and is usually about 3 to 60 seconds, but is not limited thereto.
 熱処理工程
 本発明では、必要に応じて、前記の塗膜形成工程で得られた塗膜(すなわち、フッ素含有樹脂及び機能性粒子を含む塗膜)をさらに熱処理することもできる。熱処理を行うことによって、多孔質機能層中において、機能性粒子とフッ素含有樹脂とがより強固に結合するとともに、フッ素含有樹脂と基材とが結合することによって、基材と多孔質機能層との密着性により優れた積層体を得ることができる。さらには、熱処理工程において、機能性粒子及び/又はフッ素含有樹脂の一部を基材中に埋め込むこともできるので、より高い密着性が得られ、より効果的に基材と機能層とを一体的な構造とすることもできる。
Heat Treatment Step In the present invention, the coating film obtained in the coating film forming step (i.e., the coating film containing the fluorine-containing resin and functional particles) can be further heat-treated, if necessary. By performing the heat treatment, the functional particles and the fluorine-containing resin are bonded more firmly in the porous functional layer, and the fluorine-containing resin and the base material are bonded, so that the base material and the porous functional layer are bonded together. A laminate with excellent adhesion can be obtained. Furthermore, in the heat treatment process, a part of the functional particles and/or fluorine-containing resin can be embedded in the base material, so higher adhesion can be obtained and the base material and the functional layer can be more effectively integrated. It is also possible to have a similar structure.
 熱処理温度は、基材の耐熱温度よりも低い温度であり、かつ、機能層に含まれるフッ素含有樹脂の最低ガラス転移温度以上で融点程度までの温度範囲を設定することが望ましい。従って、例えば、基材の耐熱温度が660℃であり、フッ素含有樹脂のガラス転移温度が100℃で融点が270℃であれば、熱処理温度を100~270℃程度(特に150~220℃程度)とすることができる。 The heat treatment temperature is preferably lower than the heat-resistant temperature of the base material, and is preferably set in a temperature range from the lowest glass transition temperature to about the melting point of the fluorine-containing resin contained in the functional layer. Therefore, for example, if the base material has a heat resistance temperature of 660°C, and the fluorine-containing resin has a glass transition temperature of 100°C and a melting point of 270°C, the heat treatment temperature should be set to about 100 to 270°C (particularly about 150 to 220°C). It can be done.
 また、熱処理時間は、所望の密着性が得られるのに十分な時間とすれば良く、例えば10秒~60分程度と設定することができるが、これに限定されない。 Further, the heat treatment time may be set to a time sufficient to obtain the desired adhesion, and can be set to, for example, about 10 seconds to 60 minutes, but is not limited thereto.
<第3の方法について>
 第3の方法は、第2の方法のフッ素含有塗膜形成工程と機能性粒子含有塗膜形成工程との順序を入れ替えるほかは、第2の方法に準じて実施することができる。
<About the third method>
The third method can be carried out in accordance with the second method, except that the order of the fluorine-containing coating film forming step and the functional particle-containing coating forming step of the second method is changed.
3.積層体の使用
 本発明の積層体は、例えば付着防止性能、防汚性、撥水性、撥油性等の少なくともいずれかが要求される各種の用途に用いることができる。
3. Use of Laminate The laminate of the present invention can be used in various applications requiring at least one of adhesion prevention performance, antifouling property, water repellency, oil repellency, and the like.
 例えば、食品、医薬品、化粧品等を包装ないしは密閉するための包装材料又は容器として好適に用いることができる。例えば、本発明積層体を用いて機能層が内側となるように配置されて成形された包装袋に各種の内容物を装填し、密閉された包装製品を提供することができる。 For example, it can be suitably used as a packaging material or container for packaging or sealing foods, medicines, cosmetics, etc. For example, a packaging bag formed using the laminate of the present invention with the functional layer placed on the inside can be filled with various contents to provide a sealed packaged product.
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。 Examples and comparative examples are shown below to explain the features of the present invention more specifically. However, the scope of the present invention is not limited to the examples.
[実施例1]
(1)フッ素含有樹脂の塗工
 基材として、市販のアルミニウム箔(東洋アルミニウム株式会社製、1N30、軟質アルミニウム箔、厚み30μm)を用いた。また、フッ素含有樹脂であるポリフルオロアルキルメタアクリレート樹脂(PFMA)(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対し、エタノール100重量部を加え、十分に攪拌することによって塗工液(分散液)を調製した。
 上記塗工液を用い、バーコーター#14を用いて乾燥後重量で5.0g/mとなるように上記アルミニウム箔の表面に塗工した後、120℃のオーブン中で40秒間加熱して溶媒を蒸発させることによって、フッ素含有塗膜を形成した。
(2)機能層の形成
(2-1)複合粒子の調製
 親水性シリカ粒子(製品名「AEROSIL 200」、日本アエロジル株式会社製、BET比表面積200m/g、平均一次粒子径12nm)100gを反応槽に入れ、窒素ガス雰囲気下で攪拌しながら市販の表面処理剤500gをスプレーし、次いで200℃で30分間攪拌した後、冷却した。これにより複合粒子からなる粉末を得た。なお、上記の表面処理剤は、ポリフルオロアルキルメタアクリレート樹脂(PFMA)として、ポリフルオロオクチルメタクリレート、2-N,N-ジエチルアミノエチルメタクリレート、2-ヒドロキシエチルメタクリレート及び2,2’-エチレンジオキシジエチルジメタクリレートのコポリマーの水分散液(固形分濃度:20質量%)を用いた。
(2-2)複合粒子を含む分散液の調製
 得られた複合粒子50重量部をエタノール50重量部に添加・混合することにより複合粒子含有分散液を調製した。
(2-3)複合粒子含有分散液の塗工
 得られた複合粒子含有分散液を用いて前記フッ素含有塗膜上にバーコーター♯8番によって塗工した後、120℃×40秒の条件で乾燥することにより、機能層を形成した。機能層における複合粒子の塗布量は、予め別基材に同様の条件でバーコーターで塗布し、乾燥後重量で2.0g/mとなるように事前に確認した。このようにして基材表面上に機能層が形成された積層体を作製した。
 ここに、実施例1における製造条件等は表1にも示す。また、以下の実施例及び比較例の製造条件等も表1に示す。
[Example 1]
(1) Coating of fluorine-containing resin A commercially available aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30, soft aluminum foil, thickness 30 μm) was used as the base material. In addition, per 100 parts by weight of polyfluoroalkyl methacrylate resin (PFMA) (“AG-E060” manufactured by AGC, surface free energy 14 mJ/m 2 , solid content 20% by mass, aqueous dispersion type), which is a fluorine-containing resin. A coating solution (dispersion) was prepared by adding 100 parts by weight of ethanol and stirring thoroughly.
Using the above coating solution, the surface of the aluminum foil was coated with a bar coater #14 to a weight of 5.0 g/m 2 after drying, and then heated in an oven at 120°C for 40 seconds. A fluorine-containing coating was formed by evaporating the solvent.
(2) Formation of functional layer (2-1) Preparation of composite particles 100 g of hydrophilic silica particles (product name "AEROSIL 200", manufactured by Nippon Aerosil Co., Ltd., BET specific surface area 200 m 2 /g, average primary particle diameter 12 nm) The product was placed in a reaction tank and sprayed with 500 g of a commercially available surface treatment agent while stirring under a nitrogen gas atmosphere, then stirred at 200° C. for 30 minutes, and then cooled. As a result, a powder consisting of composite particles was obtained. In addition, the above-mentioned surface treatment agent includes polyfluorooctyl methacrylate, 2-N,N-diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, and 2,2'-ethylenedioxydiethyl as polyfluoroalkyl methacrylate resin (PFMA). An aqueous dispersion (solid content concentration: 20% by mass) of a copolymer of dimethacrylate was used.
(2-2) Preparation of dispersion containing composite particles A dispersion containing composite particles was prepared by adding and mixing 50 parts by weight of the obtained composite particles to 50 parts by weight of ethanol.
(2-3) Coating of composite particle-containing dispersion The obtained composite particle-containing dispersion was coated on the fluorine-containing coating using bar coater #8, and then coated at 120°C for 40 seconds. A functional layer was formed by drying. The amount of composite particles to be applied in the functional layer was confirmed in advance so that the weight after drying was 2.0 g/m 2 by applying the composite particles to another base material using a bar coater under the same conditions. In this way, a laminate in which a functional layer was formed on the surface of the base material was produced.
Here, the manufacturing conditions etc. in Example 1 are also shown in Table 1. Table 1 also shows the manufacturing conditions of the following examples and comparative examples.
[実施例2]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対してPTFEパウダー(三井・ケマーズフロロプロダクツ株式会社製「TLP10F-1」)20重量部、エタノール100重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#10番で塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 2]
When forming a fluorine-containing coating film, PTFE was added to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). Put 20 parts by weight of powder ("TLP10F-1" manufactured by Mitsui Chemours Fluoro Products Co., Ltd.) and 100 parts by weight of ethanol into a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation) and mix for 1 minute and 30 seconds. A laminate in which a functional layer was formed on the surface of the base material was produced in the same manner as in Example 1, except that a coating solution was prepared by mixing at 2,000 rpm, and coating was performed using a #10 bar coater.
[実施例3]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AGE-060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対して充填粒子(三井化学株式会社社製「ミペロン(登録商標)XM221U」、ポリエチレンビーズ(HDPE)、平均粒子径25μm)20重量部、エタノール120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#10番で塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 3]
When forming a fluorine-containing coating film, it is filled into 100 parts by weight of polyfluoroalkyl methacrylate resin ("AGE-060" manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of particles ("Miperon (registered trademark) A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds, and coated with bar coater #10. A laminate in which was formed was produced.
[実施例4]
 フッ素含有塗膜の形成に際し、ポリテトラフルオロエチレン(三井・ケマーズフロロプロダクツ株式会社製「TLP10F-1」、表面自由エネルギー5mJ/m)100重量部に対し、エタノール100重量部を加え、十分に攪拌することにより塗工液を調製した。この塗工液を用いてバーコーター#14番で塗工した後、複合粒子含有分散液の塗工後に200℃×60分で乾燥した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 4]
When forming a fluorine-containing coating film, add 100 parts by weight of ethanol to 100 parts by weight of polytetrafluoroethylene ("TLP10F-1" manufactured by Mitsui Chemours Fluoro Products Co., Ltd., surface free energy 5 mJ/m 2 ), and add enough A coating solution was prepared by stirring the mixture. After coating with a bar coater #14 using this coating solution, coating was performed on the substrate surface in the same manner as in Example 1, except that the dispersion containing composite particles was dried at 200°C for 60 minutes. A laminate in which a functional layer was formed was produced.
[実施例5]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対し、エタノール200重量部を加え、十分に攪拌して塗工液を調製した。この塗工液を用いて、バーコーター#3番を用いて乾燥後重量で0.5g/mとなるように塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 5]
When forming a fluorine-containing coating film, ethanol was added to 100 parts by weight of a polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass). 200 parts by weight was added and sufficiently stirred to prepare a coating solution. A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that this coating solution was coated using bar coater #3 to give a weight of 0.5 g/m 2 after drying. A laminate in which was formed was produced.
[実施例6]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)を、バーコーター#36番で乾燥後重量15g/mとなるように塗工した後、120℃のオーブン中で60秒間加熱乾燥させて溶媒を蒸発させて、これを2度繰り返して乾燥後重量で合計30g/mとなるようにしてフッ素含有塗膜を形成した。
 次いで、複合粒子含有分散液をバーコーター#5番で複合粒子の塗工量が1.0g/mになるよう塗工し、120℃×40秒の条件で乾燥することにより機能層を形成した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 6]
When forming a fluorine-containing coating film, polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass) was coated with a bar coater #36. After coating to a weight of 15 g/m 2 after drying, heat-dry it in an oven at 120°C for 60 seconds to evaporate the solvent, and repeat this twice to give a total weight of 30 g/m 2 after drying. A fluorine-containing coating film was formed in the following manner.
Next, the composite particle-containing dispersion was coated using a bar coater #5 so that the coating amount of composite particles was 1.0 g/m 2 , and a functional layer was formed by drying at 120° C. for 40 seconds. A laminate in which a functional layer was formed on the surface of the base material was produced in the same manner as in Example 1 except for the following.
[実施例7]
 複合粒子含有分散液をバーコーター#3番によって塗工し、乾燥後の複合粒子の塗工量を乾燥後重量で0.5g/mとした以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 7]
A substrate was coated in the same manner as in Example 1, except that the composite particle-containing dispersion was coated with a bar coater #3, and the coating amount of composite particles after drying was 0.5 g/m 2 by weight after drying. A laminate having a functional layer formed on the surface was produced.
[実施例8]
 複合粒子含有分散液をバーコーター#14番によって塗工し、乾燥後の複合粒子の塗工量を乾燥後重量で5.0g/mとした以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 8]
A substrate was coated in the same manner as in Example 1, except that the composite particle-containing dispersion was applied using a bar coater #14, and the coating amount of the composite particles after drying was 5.0 g/m 2 by weight after drying. A laminate having a functional layer formed on the surface was produced.
[実施例9]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)をバーコーター#8番で乾燥後重量で2.5g/mとなるように塗工し、続いて120℃のオーブン中で40秒間加熱乾燥することにより、フッ素含有塗膜を形成した。
 次いで、前記フッ素含有塗膜上に複合粒子含有分散液をバーコーター#36番によって塗工し、120℃×60秒の条件で乾燥した後、再びバーコーター#36番によって塗工し、120℃×60秒の条件で乾燥した後、さらにバーコーター#20番によって塗工し、120℃×60秒の条件で乾燥後の複合粒子の塗工量を乾燥後重量で50g/mとした以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 9]
When forming a fluorine-containing coating film, polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass) was coated with a bar coater #8. A fluorine-containing coating film was formed by applying the coating to a weight of 2.5 g/m 2 after drying and then heating and drying it in an oven at 120° C. for 40 seconds.
Next, the composite particle-containing dispersion was coated on the fluorine-containing coating film using a bar coater #36, dried at 120°C for 60 seconds, and coated again using a bar coater #36 at 120°C. After drying under the conditions of ×60 seconds, coating was further performed using a bar coater #20, and the coating amount of the composite particles after drying at 120°C × 60 seconds was 50 g/m 2 by weight after drying. produced a laminate in which a functional layer was formed on the surface of the base material in the same manner as in Example 1.
[実施例10]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対して充填粒子(積水化成品工業株式会社製「テクノポリマーSBX-17」、ポリスチレンビーズ、平均粒子径17μm)180重量部、エタノール250重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#3番で塗工して乾燥後重量で2.5g/mとなるように塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 10]
When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 180 parts by weight of particles ("Technopolymer SBX-17" manufactured by Sekisui Plastics Co., Ltd., polystyrene beads, average particle diameter 17 μm) and 250 parts by weight of ethanol were mixed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation). ) and mixed at 2000 rpm for 1 minute 30 seconds to prepare a coating solution, and coated with bar coater #3 to give a weight of 2.5 g/m 2 after drying. A laminate in which a functional layer was formed on the surface of the base material was prepared in the same manner as in Example 1.
[実施例11]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対して充填粒子(積水化成品工業株式会社製「テクノポリマーSBX-17」、ポリスチレンビーズ、平均粒子径17μm)60重量部、エタノール120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#5番で塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 11]
When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 60 parts by weight of particles ("Technopolymer SBX-17" manufactured by Sekisui Plastics Co., Ltd., polystyrene beads, average particle diameter 17 μm) and 120 parts by weight of ethanol were mixed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation). ) and mixed at 2000 rpm for 1 minute 30 seconds to prepare a coating solution, and a functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that it was coated with bar coater #5. A laminate was produced.
[実施例12]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対して充填粒子(積水化成品工業株式会社製「テクノポリマーMBX-20」、ポリメチルメタクリレート樹脂(PMMA)ビーズ、平均粒子径20μm)60重量部、エタノール120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#5番で塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 12]
When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 60 parts by weight of particles ("Technopolymer MBX-20" manufactured by Sekisui Plastics Co., Ltd., polymethyl methacrylate resin (PMMA) beads, average particle size 20 μm) and 120 parts by weight of ethanol were mixed in a mixer ("Foaming" manufactured by Thinky Corporation). A coating liquid was prepared on the substrate surface in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds, and was coated with bar coater #5. A laminate in which a functional layer was formed was produced.
[実施例13]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対して充填粒子(日鉄ケミカル&マテリアル株式会社製「HS-103」、シリカ球状粒子、平均粒子径28μm)60重量部、エタノール120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#5番で塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 13]
When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 60 parts by weight of particles ("HS-103" manufactured by Nippon Steel Chemical & Materials Co., Ltd., silica spherical particles, average particle diameter 28 μm) and 120 parts by weight of ethanol were mixed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation). ) and mixed at 2000 rpm for 1 minute 30 seconds to prepare a coating solution, and a functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that it was coated with bar coater #5. A laminate was produced.
[実施例14]
 フッ素含有塗膜の形成に際し、フッ素含有樹脂であるエチレンテトラフロオロエチレン(ETFE)(AGC社製「Z8820X」、粉末状)100重量部に対し、エタノール100重量部を加え、十分に攪拌することにより塗工液を調製した。この塗工液を用いてバーコーター#14番で塗工した後、複合粒子含有分散液の塗工後に200℃×60分で乾燥した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 14]
When forming a fluorine-containing coating film, add 100 parts by weight of ethanol to 100 parts by weight of ethylenetetrafluoroethylene (ETFE) ("Z8820X" manufactured by AGC, powder form), which is a fluorine-containing resin, and stir thoroughly. A coating solution was prepared. After coating with a bar coater #14 using this coating solution, coating was performed on the substrate surface in the same manner as in Example 1, except that the dispersion containing composite particles was dried at 200°C for 60 minutes. A laminate in which a functional layer was formed was produced.
[実施例15]
 フッ素含有塗膜の形成に際し、エチレンテトラフロオロエチレン(AGC社製「Z8820X」、粉末状)100重量部に対して充填粒子(積水化成品工業株式会社製「テクノポリマーSBX-17」、ポリスチレンビーズ、平均粒子径17μm)60重量部、エタノール120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#5番で塗工した後、複合粒子含有分散液の塗工後に200℃×60分で乾燥した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 15]
When forming a fluorine-containing coating film, filler particles ("Technopolymer SBX-17" manufactured by Sekisui Plastics Co., Ltd., polystyrene beads) are added to 100 parts by weight of ethylenetetrafluoroethylene ("Z8820X" manufactured by AGC Co., Ltd. in powder form). , average particle diameter 17 μm) and 120 parts by weight of ethanol were placed in a mixer ("Awatori Rentaro ARV-310" manufactured by Thinky Corporation) and mixed at 2000 rpm for 1 minute and 30 seconds to prepare a coating liquid. A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that it was coated with bar coater #5 and then dried at 200°C for 60 minutes after coating the composite particle-containing dispersion. A laminate was produced.
[実施例16]
 基材として、厚み250μmのCPPフィルム(大成化工株式会社製「TAS-0125」)を用いた。また、フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対して充填粒子(三井化学株式会社社製「ミペロン(登録商標)XM221U」、ポリエチレンビーズ、平均粒子径25μm)20重量部、エタノール120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#10番で塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 16]
As a base material, a CPP film (TAS-0125, manufactured by Taisei Kako Co., Ltd.) with a thickness of 250 μm was used. In addition, when forming a fluorine-containing coating film, per 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of packed particles ("Miperon (registered trademark) A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds and coated with bar coater #10. A formed laminate was produced.
[実施例17]
 基材として、厚み100μmのPETフィルム(ユニチカ社製「エンブレットSD」)を用いた。また、フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対して充填粒子(三井化学株式会社社製「ミペロン(登録商標)XM221U」、ポリエチレンビーズ、平均粒子径25μm)20重量部、エタノール120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#10番で塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 17]
As a base material, a 100 μm thick PET film (“Emblet SD” manufactured by Unitika) was used. In addition, when forming a fluorine-containing coating film, per 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of packed particles ("Miperon (registered trademark) A functional layer was formed on the surface of the substrate in the same manner as in Example 1, except that the coating liquid was prepared by mixing at 2000 rpm for 1 minute and 30 seconds and coated with bar coater #10. A formed laminate was produced.
[実施例18]
 厚み20μmの軟質アルミニウム箔(東洋アルミニウム株式会社製、1N30)を用い、分散系CPPコート剤(株式会社T&K TOKA製「ヒートシールワニスPPX-16」、固形分量15質量%)をバーコーター#14番で塗工して150℃×60秒間乾燥させ、乾燥後の乾燥後の形成量を3g/mとして、前記軟質アルミニウム箔上にプライマー層を形成した。
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対して充填粒子(三井化学株式会社社製「ミペロン(登録商標)XM221U」、ポリエチレンビーズ、平均粒子径25μm)20重量部、エタノール120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、これを前記プライマー層上にバーコーター#10番で塗工した以外は、実施例1と同様にして基材表面上に機能層が形成された積層体を作製した。
[Example 18]
Using a 20 μm thick soft aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30), apply a dispersed CPP coating agent ("Heat Seal Varnish PPX-16", manufactured by T&K TOKA Co., Ltd., solid content 15% by mass) using a bar coater #14. A primer layer was formed on the soft aluminum foil by coating and drying at 150° C. for 60 seconds to form a primer layer in an amount of 3 g/m 2 after drying.
When forming a fluorine-containing coating film, it is filled to 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with surface free energy 14 mJ/m 2 and solid content 20% by mass). 20 parts by weight of particles ("Miperon (registered trademark) ) and mixed at 2000 rpm for 1 minute and 30 seconds to prepare a coating solution, and coated on the substrate surface in the same manner as in Example 1, except that this was coated on the primer layer with bar coater #10. A laminate having a functional layer formed thereon was produced.
[実施例19]
(1)フッ素含有樹脂の塗工
 基材として、市販のアルミニウム箔(東洋アルミニウム株式会社製、1N30、軟質アルミニウム箔、厚み20μm)を用いた。また、フッ素含有樹脂であるポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)100重量部に対し、エタノール100重量部を加え、十分に攪拌することにより塗工液(分散液)を調製した。
 上記塗工液を用い、バーコーター#5番を用いて乾燥後重量で1.0g/mとなるように、上記アルミニウム箔の表面に塗工した後、120℃のオーブン中で40秒間加熱することで溶媒を蒸発させることによって、フッ素含有塗膜を形成した。
(2)疎水性粒子を含む分散液の調製
 疎水性粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)5gをエタノール100mLに分散させて疎水性粒子含有分散液を調製した。
(3)疎水性粒子含有分散液の塗工
 得られた疎水性粒子含有分散液を用いて前記フッ素含有塗膜上にバーコーター#8番によって塗工した後、120℃×40秒の条件で乾燥することにより、機能層を形成した。機能層における疎水性粒子の塗布量は、予め別基材に同様の条件でバーコーターで塗布し、乾燥後重量で2.0g/mとなるように事前に確認した。このようにして基材表面上に機能層が形成された積層体を作製した。
[Example 19]
(1) Coating of fluorine-containing resin As a base material, commercially available aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30, soft aluminum foil, thickness 20 μm) was used. In addition, 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, surface free energy 14 mJ/m 2 , solid content 20% by mass, aqueous dispersion type), which is a fluorine-containing resin, was mixed with 100 parts by weight of ethanol. A coating liquid (dispersion liquid) was prepared by adding parts by weight and stirring thoroughly.
Using the above coating solution, coat the surface of the aluminum foil with a bar coater #5 to a weight of 1.0 g/m 2 after drying, and then heat in an oven at 120°C for 40 seconds. A fluorine-containing coating film was formed by evaporating the solvent.
(2) Preparation of dispersion containing hydrophobic particles 5 g of hydrophobic particles (product name "AEROSIL R812S" manufactured by Evonik Degussa, BET specific surface area: 220 m 2 /g, average primary particle diameter: 7 nm) were dispersed in 100 mL of ethanol. A dispersion containing hydrophobic particles was prepared.
(3) Coating of hydrophobic particle-containing dispersion The obtained hydrophobic particle-containing dispersion was coated on the fluorine-containing coating using a bar coater #8, and then coated at 120°C for 40 seconds. A functional layer was formed by drying. The coating amount of the hydrophobic particles in the functional layer was confirmed in advance so that the weight after drying would be 2.0 g/m 2 by coating on another base material with a bar coater under the same conditions. In this way, a laminate in which a functional layer was formed on the surface of the base material was produced.
[実施例20]
 実施例19と同様の方法で作製したフッ素含有塗膜上にバーコーター#24番によって疎水性粒子が乾燥後重量で10.0g/mとなるように塗工した後、120℃×90秒の条件で乾燥することにより、機能層を形成した。
[Example 20]
Hydrophobic particles were coated onto the fluorine-containing coating film prepared in the same manner as in Example 19 using bar coater #24 so that the weight after drying was 10.0 g/m 2 , and then coated at 120°C for 90 seconds. A functional layer was formed by drying under the following conditions.
[実施例21]
 実施例19と同様の方法で作製したフッ素含有塗膜上にバーコーター#24番によって疎水性粒子が乾燥後重量で50.0g/mとなるように塗工と120℃×90秒の条件での乾燥を5回繰り返すことにより、機能層を形成した。
[Example 21]
Hydrophobic particles were coated on a fluorine-containing coating film prepared in the same manner as in Example 19 using a #24 bar coater so that the weight after drying was 50.0 g/m 2 and conditions were applied at 120°C for 90 seconds. A functional layer was formed by repeating the drying step 5 times.
[実施例22]
 基材として、市販のアルミニウム箔(東洋アルミニウム株式会社製、1N30、軟質アルミニウム箔、厚み20μm)を用いた。また、実施例19で調整した塗工液を用い、バーコーター#24番を用いて乾燥後重量で15.0g/mとなるように、上記アルミニウム箔の表面に塗工した後、120℃のオーブン中で40秒間加熱し、前記作業をもう一度繰り返すことで、乾燥後の重量30.0g/mのフッ素含有塗膜を形成した。
 次に、実施例19(2)の塗工液を用い、前記フッ素含有塗膜上にバーコーター16によって疎水性粒子が乾燥後重量で5.0g/mとなるように塗工した後、120℃×90秒の条件で乾燥することにより、機能層を形成した。
[Example 22]
As a base material, a commercially available aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30, soft aluminum foil, thickness 20 μm) was used. Further, the coating solution prepared in Example 19 was coated on the surface of the aluminum foil using a bar coater #24 so that the weight after drying was 15.0 g/m 2 , and then heated at 120°C. The film was heated in an oven for 40 seconds, and the above operation was repeated once again to form a fluorine-containing coating film having a dry weight of 30.0 g/m 2 .
Next, using the coating solution of Example 19 (2), the hydrophobic particles were coated onto the fluorine-containing coating film using a bar coater 16 so that the weight after drying was 5.0 g/m 2 . A functional layer was formed by drying at 120° C. for 90 seconds.
[比較例1]
 基材に対して、フッ素含有樹脂の塗工液を塗工せず、複合粒子含有分散液のみを塗工した以外は、実施例1と同様の方法により積層体を作製した。
[Comparative example 1]
A laminate was produced in the same manner as in Example 1, except that only the composite particle-containing dispersion liquid was applied to the base material without applying the fluorine-containing resin coating liquid.
[比較例2]
 基材に対して、フッ素含有樹脂の塗工液を塗工し、複合粒子含有分散液を塗工しなかった以外は、実施例1と同様の方法により積層体を作製した。
[Comparative example 2]
A laminate was produced in the same manner as in Example 1, except that the fluorine-containing resin coating liquid was applied to the base material, and the composite particle-containing dispersion liquid was not applied to the base material.
[比較例3]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ)をバーコーター#36番で乾燥後重量で15g/mとなるように塗工した後、120℃のオーブン中で60秒間加熱乾燥させて溶媒を蒸発させて、これを2度繰り返して乾燥後重量で合計30g/mとなるようにした。
 次いで、複合粒子分散液をエタノールで希釈し、バーコーター#3で複合粒子が乾燥後重量で0.2g/mになるよう塗工し、120℃×40秒の条件で乾燥することにより機能層を形成した以外は、実施例1と同様の方法により積層体を作製した。
[Comparative example 3]
When forming a fluorine-containing coating film, a polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC, aqueous dispersion type with a surface free energy of 14 mJ/m 2 and a solid content of 20% by mass) was coated with a bar coater #36. After coating to a weight of 15 g/m 2 after drying, heat drying in an oven at 120°C for 60 seconds to evaporate the solvent, repeating this twice to give a total weight of 30 g/m 2 after drying. I made it so that
Next, the composite particle dispersion was diluted with ethanol, coated with bar coater #3 so that the weight of the composite particles after drying was 0.2 g/m 2 , and dried at 120°C for 40 seconds. A laminate was produced in the same manner as in Example 1 except that the layers were formed.
[比較例4]
 フッ素含有塗膜の形成に際し、ポリフルオロアルキルメタアクリレート樹脂(AGC社製「AG-E060」、表面自由エネルギー14mJ/m、固形分量20質量%の水性ディスパージョンタイプ100重量部に対してエタノール100重量部を混合することにより塗工液を調製した。この塗工液を用い、バーコーター#3番にて乾燥後重量で0.2g/mとなるように塗工した後、120℃のオーブン中で40秒間加熱乾燥した。
 次いで、複合粒子分散液をバーコーター#36によって塗工し、120℃×60秒の条件で乾燥し、再びバーコーター#36番によって塗工し、120℃×60秒の条件で乾燥し、さらにバーコーター#20番によって塗工し、120℃×60秒の条件で乾燥後の複合粒子の塗工量を50g/mとした以外は、実施例1と同様の方法により積層体を作製した。
[Comparative example 4]
When forming a fluorine-containing coating film, 100 parts by weight of polyfluoroalkyl methacrylate resin (AG-E060 manufactured by AGC Co., Ltd., a surface free energy of 14 mJ/m 2 and 100 parts by weight of an aqueous dispersion type with a solid content of 20% by weight) was used. A coating solution was prepared by mixing parts by weight.Using this coating solution, it was coated with a bar coater #3 to a weight of 0.2 g/ m2 after drying, and then coated at 120°C. It was dried by heating in an oven for 40 seconds.
Next, the composite particle dispersion was coated using bar coater #36, dried at 120°C for 60 seconds, coated again using bar coater #36, dried at 120°C for 60 seconds, and further A laminate was produced in the same manner as in Example 1, except that the coating was performed using a bar coater #20 and the coating amount of composite particles was 50 g/m 2 after drying at 120° C. for 60 seconds. .
[比較例5]
 フッ素含有樹脂に代えて、無水マレイン酸変性ポリオレフィン樹脂(MAPO)(タナカケミカル社製290628-2、表面エネルギー30mJ/m,固形分量20質量%)を塗工液として用いたほかは、実施例1と同様の方法により積層体を作製した。
[Comparative example 5]
Example 1 Except that maleic anhydride-modified polyolefin resin (MAPO) (290628-2 manufactured by Tanaka Chemical Co., Ltd., surface energy 30 mJ/m 2 , solid content 20% by mass) was used as the coating liquid instead of the fluorine-containing resin. A laminate was produced in the same manner as in Example 1.
[比較例6]
 フッ素含有樹脂の塗工に代えて、無水マレイン酸変性ポリオレフィン樹脂(MAPO)(タナカケミカル社製290628-2、表面エネルギー30mJ/m,固形分量20質量%)100重量部に対して充填粒子(三井化学株式会社社製「ミペロン(登録商標)XM221U」、ポリエチレンビーズ、平均粒子径25μm)20重量部、IPA120重量部を混合器(Thinky Corporation社製「あわとり練太郎ARV-310」)に入れ、1分30秒、2000rpmで混合して塗工液を調製し、バーコーター#10番で塗工した以外は、実施例1と同様にして積層体を作製した。
[Comparative example 6]
Instead of coating with a fluorine-containing resin, filler particles ( Put 20 parts by weight of "Miperon (registered trademark) A laminate was produced in the same manner as in Example 1, except that a coating solution was prepared by mixing at 2000 rpm for 1 minute and 30 seconds, and coating was performed using a bar coater #10.
[比較例7]
 フッ素含有樹脂に代えてスチレンブタジエンゴム系樹脂(SBR)(JSR社製「DYNARON1320P」)をトルエンに溶解させ、固形分量10質量%とした塗工液として用い、バーコーター#20番で塗工した以外は、実施例1と同様の方法により積層体を作製した。
[Comparative Example 7]
Instead of the fluorine-containing resin, styrene-butadiene rubber resin (SBR) ("DYNARON 1320P" manufactured by JSR Corporation) was dissolved in toluene and used as a coating liquid with a solid content of 10% by mass, and coated with a bar coater #20. A laminate was produced in the same manner as in Example 1 except for this.
[比較例8]
 フッ素含有樹脂に代えてアクリル変性ポリオレフィン樹脂(APO)(タナカケミカル社製300214-1、固形分量20質量%)を塗工液として用いた以外は、実施例1と同様の方法により積層体を作製した。
[Comparative example 8]
A laminate was produced in the same manner as in Example 1, except that acrylic modified polyolefin resin (APO) (300214-1, manufactured by Tanaka Chemical Co., Ltd., solid content 20% by mass) was used as the coating liquid instead of the fluorine-containing resin. did.
[比較例9]
 基材として、厚み50μmのCPPフィルム(東洋紡社製「P1011」)を用い、フッ素含有樹脂に代えてアクリル変性ポリオレフィン樹脂(APO)(タナカケミカル社製300214-1、固形分量20質量%)を塗工液として用いた以外は、実施例1と同様の方法により積層体を作製した。
[Comparative Example 9]
A 50 μm thick CPP film (P1011 manufactured by Toyobo Co., Ltd.) was used as the base material, and acrylic modified polyolefin resin (APO) (300214-1 manufactured by Tanaka Chemical Co., Ltd., solid content 20% by mass) was coated instead of the fluorine-containing resin. A laminate was produced in the same manner as in Example 1 except that it was used as a working solution.
[比較例10]
 基材にフッ素含有樹脂の塗工液を塗工せず、疎水性粒子含有分散液のみを塗工した以外は、実施例19と同様の方法により積層体を作製した。
[Comparative Example 10]
A laminate was produced in the same manner as in Example 19, except that the fluorine-containing resin coating liquid was not applied to the base material, and only the hydrophobic particle-containing dispersion liquid was applied.
[比較例11]
 フッ素含有樹脂塗工液に代えて、アクリル変性ポリオレフィン樹脂(APO)(タナカケミカル社製300214-1、固形分量20質量%)を塗工液として用いた以外は、実施例19と同様の方法により積層体を作製した。
[Comparative Example 11]
The same method as in Example 19 was used, except that acrylic modified polyolefin resin (APO) (300214-1, manufactured by Tanaka Chemical Co., Ltd., solid content 20% by mass) was used as the coating solution instead of the fluorine-containing resin coating solution. A laminate was produced.
[比較例12]
 基材として、市販のアルミニウム箔(東洋アルミニウム株式会社製、1N30、軟質アルミニウム箔、厚み20μm)を用いた。また、アクリル変性ポリオレフィン樹脂(APO)(タナカケミカル社製300214-1、固形分量20質量%)をIPAで稀釈して固形分量5質量%にした塗工液用い、バーコーター#3番で前記アルミニウム箔上に乾燥後重量で0.1g/mとなるように塗工した。
 次いで、実施例19(2)の塗工液を用い、前記APO塗膜上にバーコーター#26番によって疎水性粒子が乾燥後重量で12.5g/mとなるように塗工し、120℃×90秒の条件で乾燥し、前記作業を2回繰り返すことにより、疎水性粒子が乾燥後重量で25.0g/mとなるように機能層を形成した。
[Comparative example 12]
As a base material, a commercially available aluminum foil (manufactured by Toyo Aluminum Co., Ltd., 1N30, soft aluminum foil, thickness 20 μm) was used. In addition, using a coating liquid in which acrylic modified polyolefin resin (APO) (300214-1 manufactured by Tanaka Chemical Co., Ltd., solid content 20% by mass) was diluted with IPA to give a solid content of 5% by mass, the aluminum was coated with bar coater #3. It was coated onto the foil so that the weight after drying was 0.1 g/m 2 .
Next, using the coating solution of Example 19 (2), the hydrophobic particles were coated on the APO coating film with a bar coater #26 so that the weight after drying was 12.5 g/m 2 . By drying at 90 seconds at ℃ and repeating the above process twice, a functional layer was formed such that the weight of the hydrophobic particles was 25.0 g/m 2 after drying.
[試験例1](断面観察)
 得られた積層体をエポキシ樹脂に埋設して断面で切断し、切断した基材の断面に、イオンミリング装置(日本電子株式会社製IB-19520CCP)を用いてArイオンビームを照射することにより平滑断面を作成した。次に、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ社製「SU8020」)を使用し、平面視で任意の箇所において、フッ素含有樹脂が複合粒子を橋渡しした三次元網目構造体の形成を確認した。その観察例として、実施例1の積層体の断面像を図2に示し、比較例1の積層体の断面像を図3に示す。
 観察の結果、フッ素含有樹脂が機能性粒子を橋渡しした三次元網目構造体が形成されている場合を「○」とし、そのような三次元網目構造体が形成されていない場合を「×」とた。従って、例えば、フッ素含有樹脂が橋渡しをしておらず、機能性粒子のみから三次元網目構造体が形成されている場合は「×」とした。
[Test Example 1] (Cross-sectional observation)
The obtained laminate was embedded in epoxy resin and cut into cross-sections, and the cross-section of the cut base material was smoothed by irradiating it with an Ar ion beam using an ion milling device (IB-19520CCP manufactured by JEOL Ltd.). A cross section was created. Next, using a scanning electron microscope (“SU8020” manufactured by Hitachi High-Technologies Corporation), we confirmed the formation of a three-dimensional network structure in which the fluorine-containing resin bridged the composite particles at arbitrary locations in plan view. . As an observation example, a cross-sectional image of the laminate of Example 1 is shown in FIG. 2, and a cross-sectional image of the laminate of Comparative Example 1 is shown in FIG.
As a result of observation, if a three-dimensional network structure in which the fluorine-containing resin bridges the functional particles is formed, it is marked as "○", and if such a three-dimensional network structure is not formed, it is marked as "x". Ta. Therefore, for example, when the fluorine-containing resin does not act as a bridge and a three-dimensional network structure is formed only from functional particles, it is marked as "×".
[試験例2](比表面積の測定)
 各積層体サンプルを日本産業規格JIS Z8830:2013に定められた静的容量法によりQuantachrome Instruments Incorporation社製NOVA 1000eの比表面積測定装置を用いて次のようにして比表面積を測定した。その結果を表2に示す。
(1)積層体の充填方法
 サンプリングは、縦100mm×横100mmの積層体を幅方向10mmに裁断し、所定のガラス管に充填して行った。この際、機能層が脱落しないように細心の注意を払いながら裁断し、充填した。
(2)積層体の前処理
 前記サンプルを前記比表面積測定装置にて真空下100℃×1時間で前処理を行い、予め水蒸気等のガスを脱気した。
(3)積層体の比表面積測定
 以下の条件で積層体の吸着等温線を作成した。
・吸着ガス:高純度圧縮窒素ガス(エア・ウォーター西日本株式会社,尼崎工場社製、純度99.999%以上)
・吸着温度:77.35K
・圧力公差:0.100mmHg/0.100mmHg (adsorption/desorption)
・平衡時間:60秒/60秒 (adsorption/desorption)
・平衡タイムアウト:240秒/240秒 (adsorption/desorption)
・測定範囲:0.05<相対圧力P/P0<0.3
・Thermal Delay:180秒
・Evacuation Cross-over Pressure:20mmHg
 
 得られた積層体の吸着等温線からBET多点法を用いて積層体の比表面積を算出した。この際、得られた吸着等温線の正確性を表すCorrection Coefficient rは、0.9999以上の値で測定プロット数4点以上であることを条件とし、4点の測定プロット数でもrが0.9999未満の場合は、rが0.9999以上の値となるまで、サンプルを1点ずつ増やして繰り返し実施した。
(4)機能層の比表面積算出
 得られた積層体の比表面積St(m/g)から基材表面に形成された機能層の比表面積S(m/g)は、「S=St/(W1/Wt)」の式から計算することができる。
 ここで(W1/Wt)は、積層体の表層に形成された機能層の重量比率であり、Wtは積層体の重量、W1は「積層体の重量-基材の重量」である。このようにして機能層の比表面積を算出した。その結果を表2に示す。
[Test Example 2] (Measurement of specific surface area)
The specific surface area of each laminate sample was measured in the following manner using a NOVA 1000e specific surface area measuring device manufactured by Quantachrome Instruments Corporation according to the static capacitance method defined in Japanese Industrial Standards JIS Z8830:2013. The results are shown in Table 2.
(1) Method for filling laminate The sampling was carried out by cutting a 100 mm long x 100 mm wide laminate into 10 mm widthwise pieces and filling them into a predetermined glass tube. At this time, the material was cut and filled with great care so that the functional layer did not fall off.
(2) Pretreatment of laminate The sample was pretreated at 100° C. for 1 hour under vacuum using the specific surface area measuring device to previously deaerate gases such as water vapor.
(3) Measurement of specific surface area of laminate An adsorption isotherm of the laminate was created under the following conditions.
・Adsorbed gas: High purity compressed nitrogen gas (manufactured by Air Water Nishinippon Co., Ltd., Amagasaki Factory, purity 99.999% or more)
・Adsorption temperature: 77.35K
・Pressure tolerance: 0.100mmHg/0.100mmHg (adsorption/desorption)
・Equilibrium time: 60 seconds/60 seconds (adsorption/desorption)
・Equilibrium timeout: 240 seconds/240 seconds (adsorption/desorption)
・Measurement range: 0.05<relative pressure P/P0<0.3
・Thermal Delay: 180 seconds ・Evacuation Cross-over Pressure: 20mmHg

The specific surface area of the laminate was calculated from the adsorption isotherm of the laminate obtained using the BET multipoint method. At this time, the Correction Coefficient r, which represents the accuracy of the obtained adsorption isotherm, must be a value of 0.9999 or more and the number of measurement plots is 4 or more, and if r is less than 0.9999 even with 4 measurement plots. The test was repeated by increasing the number of samples one by one until r reached a value of 0.9999 or higher.
(4) Calculation of specific surface area of functional layer From the specific surface area St (m 2 /g) of the obtained laminate, the specific surface area S (m 2 /g) of the functional layer formed on the surface of the base material is calculated as follows: "S=St /(W1/Wt)".
Here, (W1/Wt) is the weight ratio of the functional layer formed on the surface layer of the laminate, Wt is the weight of the laminate, and W1 is "the weight of the laminate - the weight of the base material". In this way, the specific surface area of the functional layer was calculated. The results are shown in Table 2.
[試験例3](空隙率の測定)
 基材をエポキシ樹脂に埋設し、その基材を断面で切断し、切断した基材の断面を、イオンミリング装置(日本電子株式会社製「IB-19520CCP」)を用いてArイオンビーム照射により平滑断面を作成した。次に、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ社製「SU8020」)を使用して、サンプル断面において、電子放出電流4300nA、作動距離3.0mm、倍率30000倍の条件で観察し、視野範囲12μmの二次電子像を得た。
 なお、二次電子像の撮影時、非点がなるべく生じないように最適なフォーカスに合わせ、白飛び等のクリッピング現象が発生しないように明度とコントラストが最適な見栄えになるまで調整した。また、サンプルは電子線による帯電により、画像がぼやけないように蒸着装置(日本電子株式会社製JFC-1600)で適宜蒸着を行ってから観察を行った。画像撮影時、画像処理ソフトで適切に処理されることを想定し、視野範囲全てに機能層が映るようにサンプル位置を調整した。なお、機能層底面から50%厚みまでの領域を「底部」、機能層底面から50%厚みを超えて機能層表面までを「上部」と定義した。
 次に、得られた二次電子像を、画像処理ソフト「WinROOF2018ver4.25」を用いて2値化し、二次電子像における三次元網目構造部分の総画素数を計測した。空隙率は、「100%-(三次元網目構造部分の2値化された割合(%))」にて算出した。
 なお、2値化は、前記ソフトの自動2値化システムを用い、抽出領域に明るい領域を選択後、判別分析法にて実施した。なお、しきい値は自動2値化システムに従い、変更しないこととした。
 このようにして、視野範囲12μm当たりの総画素数に対する三次元網目構造部分の総画素数の割合から空隙率を算出した。その結果を表2に示す。
 なお、この操作を底部と上部でそれぞれ20回繰り返し、その平均値を空隙率とした。一例として実施例1の二値化画像を図4に示す。
[Test Example 3] (Measurement of porosity)
The base material was embedded in epoxy resin, the base material was cut in cross section, and the cross section of the cut base material was smoothed by Ar ion beam irradiation using an ion milling device ("IB-19520CCP" manufactured by JEOL Ltd.). A cross section was created. Next, using a scanning electron microscope (“SU8020” manufactured by Hitachi High-Technologies Corporation), the cross section of the sample was observed under the conditions of an electron emission current of 4300 nA, a working distance of 3.0 mm, and a magnification of 30,000 times. A secondary electron image of 12 μm 2 was obtained.
When taking the secondary electron image, the focus was set to the optimum level to avoid astigmatism as much as possible, and the brightness and contrast were adjusted to the optimum appearance to avoid clipping phenomena such as blown out highlights. In addition, the sample was appropriately vapor-deposited using a vapor deposition apparatus (JFC-1600 manufactured by JEOL Ltd.) to prevent the image from becoming blurred due to charging by an electron beam, and then observed. When taking images, the sample position was adjusted so that the functional layer was visible in the entire visual field, assuming that it would be processed appropriately by image processing software. The area from the bottom of the functional layer to 50% thickness was defined as the "bottom", and the area from the bottom of the functional layer to the surface of the functional layer beyond 50% thickness was defined as the "top".
Next, the obtained secondary electron image was binarized using image processing software "WinROOF2018 ver 4.25", and the total number of pixels in the three-dimensional network structure portion in the secondary electron image was measured. The porosity was calculated as "100% - (binarized ratio (%) of the three-dimensional network structure portion)".
Incidentally, the binarization was performed using the automatic binarization system of the software, and after selecting a bright region as an extraction region, a discriminant analysis method was used. Note that the threshold value was not changed in accordance with the automatic binarization system.
In this way, the porosity was calculated from the ratio of the total number of pixels in the three-dimensional network structure to the total number of pixels per 12 μm 2 of visual field. The results are shown in Table 2.
This operation was repeated 20 times for each of the bottom and top portions, and the average value was taken as the porosity. As an example, a binarized image of Example 1 is shown in FIG.
[試験例4](表面自由エネルギーの測定)
 フッ素含有樹脂の表面自由エネルギーの測定は、接触角計(協和界面科学株式会社製「DMo-702」)を用いて行った。その結果を表2に示す。
 試験サンプルは、実施例及び比較例において機能性粒子分散液等の塗布前のフッ素含有樹脂の塗工サンプルを用いた。試験サンプルのフッ素含有樹脂塗工側を上に向くように接触角計のステージにシワのないように設置した。
 Owens-Wendt理論を適用し、プローブ液体として純水とジヨードメタンを用い、フッ素含有樹脂側の面に1マイクロリットル滴下して10秒後の接触角からKYOWA interFAce Measurement and Analysis System FAMASのソフトウェアを使用し、自動計算して算出した。これらの方法を3回繰り返し、平均値を採用した。各実施例及び比較例のフッ素含有樹脂の表面自由エネルギーも同様の方法で測定した。その結果を表2に示す。
[Test Example 4] (Measurement of surface free energy)
The surface free energy of the fluorine-containing resin was measured using a contact angle meter (“DMo-702” manufactured by Kyowa Interface Science Co., Ltd.). The results are shown in Table 2.
The test samples used were coated samples of fluorine-containing resin before coating with functional particle dispersions and the like in Examples and Comparative Examples. The test sample was placed on the stage of a contact angle meter with the fluorine-containing resin coated side facing upward without wrinkles.
Applying the Owens-Wendt theory, we used pure water and diiodomethane as probe liquids, dropped 1 microliter onto the surface of the fluorine-containing resin, and measured the contact angle after 10 seconds using the KYOWA interFAce Measurement and Analysis System FAMAS software. , calculated automatically. These methods were repeated three times and the average value was taken. The surface free energy of the fluorine-containing resins of each Example and Comparative Example was also measured in the same manner. The results are shown in Table 2.
[試験例5](撥油耐久性・撥水耐久性)
(1)撥油耐久性
 表面張力が既知の市販食用油(日清オイリオグループ株式会社製、日清サラダ油コレステロール0、表面張力32mJ/m)を100mLのガラス瓶に80mL入れた。次に、このガラス瓶をホットスターラーに設置して攪拌子を入れ、50rpmの速度で攪拌しながら90℃で安定するまで待った。その後、20mm×20mmのサンプルをクリップで止めた後、上記の90℃の食用油に浸漬させた。この際、攪拌子と接触しないようにサンプルの位置を調整した。浸漬後2時間後にサンプルを取り出し、表面張力が既知の市販のオリーブオイル(表面張力32mJ/m)を機能層表面に滴下し、液滴の状態を確認した。
 具体的には、試験面が上になるようにして20度又は45度の角度で傾斜させ、オリーブオイル1mLを滴下し、20度の傾斜でも滴下したオリーブオイルが全て転がったものを「◎」と表記し、20度の傾斜では全て転がらずに45度の傾斜で滴下したオリーブオイルが全て転がったものを「〇」と表記し、45度の傾斜で滴下したオリーブオイルの一部が転がったものを「△」と表記し、45度の傾斜では滴下したオリーブオイルは全く転がらなかったものを「×」として評価を行った。その結果を表2に示す。
 別途に、上記のガラス瓶に入った食用油を100℃に加温し、この食用油にサンプルを浸漬させた。浸漬後1時間後にサンプルを取り出し、再び表面張力が既知の市販のオリーブオイル(表面張力32mJ/m)を機能層表面に滴下し、液滴の状態を確認した。このときの評価方法は、上記の90℃×2時間の場合と同様にして「◎」、「〇」、「△」、「×」として評価を行った。その結果を表2に示す。
(2)撥水耐久性
 蒸留水を100mLのガラス瓶に80mL入れた。次に、このガラス瓶をホットスターラーに設置して攪拌子を入れ、50rpmの速度で攪拌しながら80℃で安定するまで待った。その後、20mm×20mmのサンプルをクリップで止めた後、上記の80℃の熱水に浸漬させた。この際、攪拌子と接触しないようにサンプルの位置を調整した。浸漬後30分後にサンプルを取り出し、イオン交換水(表面張力72mJ/m)を機能層表面に滴下し、液滴の状態を確認した。
 具体的には、試験面が上になるようにして20度又は45度の角度で傾斜させ、水滴1mLを滴下し、20度の傾斜でも滴下した水滴が全て転がったものを「◎」と表記し、20度の傾斜では全て転がらずに45度の傾斜で滴下した水滴が全て転がったものを「〇」と表記し、45度の傾斜で滴下した水滴の一部が転がったものを「△」と表記し、45度の傾斜では滴下した水滴が全く転がらなかったものを「×」として評価を行った。その結果を表2に示す。
[Test Example 5] (Oil repellency/water repellency)
(1) Oil repellency durability 80 mL of a commercially available edible oil with a known surface tension (manufactured by Nisshin Oilli Group Co., Ltd., Nissin salad oil cholesterol 0, surface tension 32 mJ/m 2 ) was placed in a 100 mL glass bottle. Next, this glass bottle was placed in a hot stirrer, a stirrer was inserted, and the bottle was stirred at a speed of 50 rpm until the temperature stabilized at 90°C. Thereafter, the 20 mm x 20 mm sample was fixed with a clip and then immersed in the above-mentioned 90°C edible oil. At this time, the position of the sample was adjusted so that it did not come into contact with the stirrer. Two hours after immersion, the sample was taken out, and commercially available olive oil with a known surface tension (surface tension: 32 mJ/m 2 ) was dropped onto the surface of the functional layer, and the state of the droplets was confirmed.
Specifically, the test surface is tilted at an angle of 20 degrees or 45 degrees, and 1 mL of olive oil is dropped, and if all the dropped olive oil rolls even at a 20 degree tilt, it is marked "◎". It is written as "〇" if all of the olive oil that dripped on a 45-degree slope did not roll on a 20-degree slope, and some of the olive oil that dripped on a 45-degree slope rolled. Those in which the dropped olive oil did not roll at all on an inclination of 45 degrees were evaluated as "x". The results are shown in Table 2.
Separately, the above-mentioned edible oil in the glass bottle was heated to 100° C., and the sample was immersed in this edible oil. One hour after immersion, the sample was taken out, and commercially available olive oil with a known surface tension (surface tension: 32 mJ/m 2 ) was again dropped on the surface of the functional layer, and the state of the droplets was confirmed. The evaluation method at this time was the same as the above-mentioned case of 90° C. x 2 hours, and evaluation was performed as "◎", "○", "△", and "x". The results are shown in Table 2.
(2) Water repellency durability 80 mL of distilled water was placed in a 100 mL glass bottle. Next, this glass bottle was placed in a hot stirrer, a stirrer was inserted, and the bottle was stirred at a speed of 50 rpm until the temperature stabilized at 80°C. Thereafter, the 20 mm x 20 mm sample was fixed with a clip and then immersed in the above-mentioned 80° C. hot water. At this time, the position of the sample was adjusted so that it did not come into contact with the stirrer. The sample was taken out 30 minutes after immersion, and ion-exchanged water (surface tension: 72 mJ/m 2 ) was dropped onto the surface of the functional layer, and the state of the droplets was confirmed.
Specifically, the test surface is tilted at an angle of 20 degrees or 45 degrees, and 1 mL of water droplets are dropped, and if all the dropped water drops roll even at a 20 degree tilt, it is marked as "◎". However, if all of the water droplets that fell on a 45-degree slope did not roll on a 20-degree slope, it is marked as "〇", and those that fell on a 45-degree slope and some of them rolled are marked as "△". ”, and those in which the dropped water droplets did not roll at all when tilted at 45 degrees were evaluated as “×”. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果からも明らかなように、複合粒子を用いた実施例1~18の積層体は、高温の油分に浸漬された場合でも、良好な撥油性を維持できることがわかる。このことから、積層体の長期間の使用により油分が機能層に付着し、ひいては機能層が油分に浸漬したような場合でも、高い撥油性を発揮できることが期待される。 As is clear from the results in Table 2, it can be seen that the laminates of Examples 1 to 18 using composite particles can maintain good oil repellency even when immersed in high-temperature oil. From this, it is expected that oil will adhere to the functional layer due to long-term use of the laminate, and even if the functional layer is immersed in oil, it will be able to exhibit high oil repellency.
 特に、実施例の中でも、フッ素含有樹脂の表面自由エネルギーが食用油の32mJ/mと比較して差が大きいもので、比表面積が無機酸化物微粒子のみの値に近いもののうち、機能性粒子とフッ素含有樹脂の割合が重量比で1:3~4:1の場合は、特に効果が顕著であることがわかる。 In particular, among the examples, among those whose surface free energy of fluorine-containing resin has a large difference compared to 32 mJ/ m2 of edible oil, and whose specific surface area is close to the value of only inorganic oxide fine particles, functional particles It can be seen that the effect is particularly remarkable when the weight ratio of the fluorine-containing resin and the fluorine-containing resin is 1:3 to 4:1.
 また、疎水性粒子を用いた実施例19~22の積層体は、熱水に浸漬された場合でも、良好な撥水性を維持できることがわかる。 Furthermore, it can be seen that the laminates of Examples 19 to 22 using hydrophobic particles can maintain good water repellency even when immersed in hot water.

Claims (11)

  1. 基材及び機能層を含む積層体であって、
    (1)機能層は、三次元網目構造体を含み、
    (2)三次元網目構造体は、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子と、(b)フッ素を含有する疎水性樹脂とを含む、
    ことを特徴とする積層体。
    A laminate including a base material and a functional layer,
    (1) The functional layer includes a three-dimensional network structure,
    (2) The three-dimensional network structure has a function of at least one of (a) (a1) a composite particle having a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of an inorganic oxide fine particle, and (a2) a hydrophobic particle. (b) a hydrophobic resin containing fluorine;
    A laminate characterized by:
  2. フッ素を含有する疎水性樹脂によって機能性粒子が三次元網目構造体に固定されている、請求項1に記載の積層体。 The laminate according to claim 1, wherein the functional particles are fixed to the three-dimensional network structure by a hydrophobic resin containing fluorine.
  3. フッ素を含有する疎水性樹脂が基材及び機能性粒子に接着することにより機能層が基材に担持されている、請求項1に記載の積層体。    The laminate according to claim 1, wherein the functional layer is supported on the base material by adhering the fluorine-containing hydrophobic resin to the base material and the functional particles.​
  4. 機能層の比表面積が2~195m/gである、請求項1に記載の積層体。 The laminate according to claim 1, wherein the functional layer has a specific surface area of 2 to 195 m 2 /g.
  5. 機能層において、機能層底面から50%厚みまでの領域の空隙率が0~45%であり、かつ、機能層底面から50%厚みを超えて機能層表面(最表面)までの領域の空隙率が10~55%である、請求項1に記載の積層体。 In the functional layer, the porosity in the area from the bottom of the functional layer to 50% thickness is 0 to 45%, and the porosity in the area from the bottom of the functional layer to more than 50% thickness to the surface of the functional layer (the outermost surface) The laminate according to claim 1, wherein the laminate is 10 to 55%.
  6. 機能性粒子とフッ素を含有する疎水性樹脂(但し、前記機能性粒子に含まれる、フッ素を含有する疎水性樹脂を除く。)との割合が、固形分重量比で1:50~20:1である、請求項1に記載の積層体。 The ratio of the functional particles to the fluorine-containing hydrophobic resin (excluding the fluorine-containing hydrophobic resin contained in the functional particles) is 1:50 to 20:1 in solid weight ratio. The laminate according to claim 1.
  7. フッ素を含有する疎水性樹脂は、ポリフルオロアルキルメタアクリレート樹脂、ポリテトラフルオロエチレン及びエチレンテトラフルオロエチレンからなる群から選択される少なくとも1種である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the fluorine-containing hydrophobic resin is at least one selected from the group consisting of polyfluoroalkyl methacrylate resin, polytetrafluoroethylene, and ethylenetetrafluoroethylene.
  8. 基材は、金属箔、金属板、樹脂フィルム、樹脂板、紙、木板、不織布又はこれらのプライマーコート物からなる群から選択される少なくとも1種である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the base material is at least one selected from the group consisting of metal foil, metal plate, resin film, resin board, paper, wood board, nonwoven fabric, or a primer coated product thereof.
  9. 無機酸化物微粒子は平均一次粒子径が5~50nmである、請求項1に記載の積層体。   The laminate according to claim 1, wherein the inorganic oxide fine particles have an average primary particle diameter of 5 to 50 nm.​
  10. 三次元網目構造体が、平均粒子径D50が5~60μmである充填粒子をさらに含む、請求項1に記載の積層体。 The laminate according to claim 1, wherein the three-dimensional network structure further includes filler particles having an average particle diameter D50 of 5 to 60 μm.
  11. 基材及び機能層を含む積層体を製造する方法であって、
    (1)基材に対し、フッ素を含有する疎水性樹脂を含むフッ素含有塗工液を塗布することによりフッ素含有塗膜を形成する工程、及び
    (2)前記フッ素含有塗膜に対し、(a)(a1)無機酸化物微粒子の表面にポリフルオロアルキルメタアクリレート樹脂を含む被覆層を備える複合粒子及び(a2)疎水性粒子の少なくとも1種の機能性粒子を含む塗工液を塗布することにより複合粒子含有塗膜を形成する工程
    を含むことを特徴とする積層体の製造方法。
     

     
    A method of manufacturing a laminate including a base material and a functional layer, the method comprising:
    (1) forming a fluorine-containing coating film by applying a fluorine-containing coating liquid containing a fluorine-containing hydrophobic resin to a substrate; and (2) forming a fluorine-containing coating film on the fluorine-containing coating film; ) By applying a coating liquid containing at least one functional particle of (a1) composite particles comprising a coating layer containing a polyfluoroalkyl methacrylate resin on the surface of inorganic oxide fine particles and (a2) hydrophobic particles. A method for producing a laminate, the method comprising the step of forming a coating film containing composite particles.


PCT/JP2023/011036 2022-03-30 2023-03-21 Laminate WO2023189866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022057687 2022-03-30
JP2022-057687 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023189866A1 true WO2023189866A1 (en) 2023-10-05

Family

ID=88201260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011036 WO2023189866A1 (en) 2022-03-30 2023-03-21 Laminate

Country Status (1)

Country Link
WO (1) WO2023189866A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177449A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Multilayer porous film
JP2017177448A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Multilayer porous film
JP2018115008A (en) * 2017-01-18 2018-07-26 凸版印刷株式会社 Packaging material and packaging container
JP2020104869A (en) * 2018-12-26 2020-07-09 東洋アルミニウム株式会社 Manufacturing method of resin container
JP2021126851A (en) * 2020-02-14 2021-09-02 清水建設株式会社 Frame mold for concrete formation and manufacturing method of concrete
WO2021182044A1 (en) * 2020-03-12 2021-09-16 凸版印刷株式会社 Liquid-repellant structure, production method for liquid-repellant structure, coating liquid for liquid-repellant layer formation, and packaging material
JP2021146651A (en) * 2020-03-20 2021-09-27 東洋アルミニウム株式会社 Laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177449A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Multilayer porous film
JP2017177448A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Multilayer porous film
JP2018115008A (en) * 2017-01-18 2018-07-26 凸版印刷株式会社 Packaging material and packaging container
JP2020104869A (en) * 2018-12-26 2020-07-09 東洋アルミニウム株式会社 Manufacturing method of resin container
JP2021126851A (en) * 2020-02-14 2021-09-02 清水建設株式会社 Frame mold for concrete formation and manufacturing method of concrete
WO2021182044A1 (en) * 2020-03-12 2021-09-16 凸版印刷株式会社 Liquid-repellant structure, production method for liquid-repellant structure, coating liquid for liquid-repellant layer formation, and packaging material
JP2021146651A (en) * 2020-03-20 2021-09-27 東洋アルミニウム株式会社 Laminate

Similar Documents

Publication Publication Date Title
KR101499766B1 (en) Water- and oil-repellent coating film and articles having this coating film
JP6368331B2 (en) Water repellent heat seal film, water repellent heat seal structure, method for producing water repellent heat seal film, and method for producing water repellent heat seal structure
US8518476B2 (en) Methods for forming fluoroplastic powder coatings
JP7232821B2 (en) Treated membrane for fragrance delivery
JPH02286331A (en) Siloxane polymer and copolymer for barrier coating and method for achieving thereby barrier coating properties
JP6255748B2 (en) Resin molded body having a surface excellent in water slidability
JP6522841B6 (en) Liquid-repellent film or sheet, and packaging material using the same
JP2013023224A (en) Water-shedding packing material
JP2022523042A (en) Ethylene Vinyl Alcohol Copolymer / Ethylene Acrylic Acid Copolymer Blend Barrier Coating
JP6666144B2 (en) Antifouling sheet
JP6123196B2 (en) Lid material
WO2023189866A1 (en) Laminate
JP6932566B2 (en) Packaging material
JP5962362B2 (en) Lid material
JP2008512551A (en) High uniformity composite membrane
JP2019166806A (en) Water-repellent oil-repellent laminate
TW202405255A (en) Laminated body
WO2020066464A1 (en) Liquid-repellent film
JP6354491B2 (en) Packaging materials and packaging containers
JP2021146651A (en) Laminate
KR101806792B1 (en) hybrid coating layer having hydrophilic and hydrophobic properties
WO2000002956A1 (en) Method of coating pre-primed polyolefin films
JP5990950B2 (en) Lid material and method for producing the lid material
JP7185837B2 (en) oil repellent laminate
JP6907795B2 (en) Adhesion-preventive laminate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779880

Country of ref document: EP

Kind code of ref document: A1