WO2023189855A1 - マトリックス内への導電性高分子の複合化 - Google Patents

マトリックス内への導電性高分子の複合化 Download PDF

Info

Publication number
WO2023189855A1
WO2023189855A1 PCT/JP2023/010994 JP2023010994W WO2023189855A1 WO 2023189855 A1 WO2023189855 A1 WO 2023189855A1 JP 2023010994 W JP2023010994 W JP 2023010994W WO 2023189855 A1 WO2023189855 A1 WO 2023189855A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppy
matrix
composite
conductive polymer
composite material
Prior art date
Application number
PCT/JP2023/010994
Other languages
English (en)
French (fr)
Inventor
佑哉 緒明
彩夏 平井
勇貴 都倉
智希 佐久間
Original Assignee
慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慶應義塾 filed Critical 慶應義塾
Publication of WO2023189855A1 publication Critical patent/WO2023189855A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Definitions

  • the present invention relates to a composite material containing a matrix made of resin, elastomer, rubber, etc., and a conductive polymer.
  • the inventors have developed a unique method of polymerizing a monomer, which is a heterocyclic aromatic compound, onto a substrate or base material through the gas phase under mild conditions such as low temperature and normal pressure.
  • a monomer such as pyrrole (Py) with copper nitrate or iron nitrate in a container and raise the temperature to around 60°C
  • active nitropyrrole (Py-NO 2 ) vapor is generated due to contact between Py vapor and nitrate.
  • Py-NO 2 active nitropyrrole
  • PPy polypyrrole
  • PPy is produced while being adsorbed to a substrate or base material such as glass or indium tin oxide (ITO) that coexisted in the container.
  • ITO indium tin oxide
  • Non-patent Document 1 We further demonstrated that when pyrrole (Py) and benzoquinone (BQ) without substituents are used, an amorphous BQ-Py network polymer can be obtained by two-dimensional random copolymerization of Py and BQ. (Non-patent Document 2, Patent Document 1).
  • An object of the present invention is to provide a composite material in which a conductive polymer is composited inside a matrix of resin, elastomer, rubber, or the like.
  • the present invention includes the embodiments described below.
  • Item 1 a matrix that is at least one selected from the group consisting of resin, elastomer, and rubber; A composite material containing a conductive polymer, which is a polymer having a structural unit derived from a heterocyclic aromatic compound, existing inside a matrix.
  • Item 2 The composite material according to item 1, wherein a coating made of the conductive polymer is provided on the surface of the matrix, and the conductive polymer permeates from the surface toward the interior of the matrix.
  • Item 3. The composite according to item 1 or 2, wherein the matrix includes at least one selected from the group consisting of a crystalline resin, an amorphous resin, an elastomer, and a rubber, each having a free volume space capable of accommodating a conductive polymer. material.
  • Item 4. The composite material according to any one of Items 1 to 3, wherein the conductive polymer is a polymer of a heterocyclic aromatic compound.
  • Item 5 The composite material according to item 1 or 2, wherein the conductive polymer includes at least one polymer of a 5-membered or 6-membered heterocyclic aromatic compound containing a nitrogen atom or a sulfur atom.
  • Item 6. The composite material according to Item 5, wherein the 5-membered or 6-membered heterocyclic aromatic compound contains at least one of polypyrrole and polythiophene.
  • Item 3 The composite material according to Item 1 or 2, wherein the conductive polymer includes at least one of polypyrrole and polypyrrole.
  • Section 8 A pressure-sensitive sensor comprising the composite material according to any one of Items 1 to 7.
  • Item 9 A method for producing a composite material according to item 1, Monomers of the heteroaromatic compound are evaporated in the presence of an oxidizing agent to form the heteroaromatic compound into a matrix that is at least one selected from the group consisting of resins, elastomers, and rubbers. A method comprising the step of infiltrating a polymer having structural units derived from it.
  • the infiltration step includes coating the surface of the matrix with a polymer having structural units derived from the heterocyclic aromatic compound, thereby introducing structural units derived from the heterocyclic aromatic compound into the interior of the matrix.
  • a polymer having structural units derived from the heterocyclic aromatic compound thereby introducing structural units derived from the heterocyclic aromatic compound into the interior of the matrix.
  • Item 11 The method according to item 9 or 10, wherein the oxidizing agent contains a transition metal nitrate or benzoquinone which may have a substituent.
  • a composite material contains a conductive polymer, which is a polymer having a structural unit derived from a heterocyclic aromatic compound, inside a matrix.
  • Py polypyrrole
  • E Planar photograph of the polytetrafluoroethylene base material before composite,
  • F Enlarged cross-sectional view of the polypropylene base material before composite,
  • G (H) An enlarged cross-sectional view of the silicone rubber base material before composite.
  • Enlarged sectional view of polytetrafluoroethylene base material (K) Planar view photograph of polypropylene base material after composite, (L) Planar view photograph of polymethyl methacrylate base material after composite, (M) After composite Planar view photograph of silicone rubber base material, (N) Planar view photograph of polyurethane rubber base material after composite, (O) Planar view photograph of polytetrafluoroethylene base material after composite, (P) Planar view photograph of polytetrafluoroethylene base material after composite.
  • PTFE polytetrafluoroethylene
  • FIG. 5(C) Optical micrograph of a cross section of the polytetrafluoroethylene base material after composite with PPy.
  • D An enlarged SEM image of the boxed area in Fig. 5(C).
  • A Comparison of IR spectra of silicone rubber (SR) alone and a composite material of silicone rubber (SR) and polypyrrole (PPy).
  • A Comparison of IR spectra of polytetrafluoroethylene (PTFE) alone and a composite material of polytetrafluoroethylene (PTFE) and polypyrrole (PPy).
  • A SEM image of the cross section of the SR/PPy composite material
  • B EDS line profile in the thickness direction of the SR/PPy composite material.
  • A Life curves of SR materials and SR/PPy composite materials measured by positron annihilation lifetime measurement (PALS),
  • B distribution curves.
  • the combined conditions were TEBQ 1.84g, Py 699 ⁇ L, and reaction time 12 hours.
  • the combined conditions were TEBQ 1.84g, Py 699 ⁇ L, and reaction time 12 hours.
  • TG curves of PU, PU/PPy_1, PU/PPy_2 and PPy specimens (A) Schematic diagram of the test piece bent convexly, (B) Change in resistance value ⁇ R/R 0 in the state of FIG. 15(A), (C) Schematic diagram of the test piece bent concavely, (D) Change in resistance value ⁇ R/R 0 in the state of FIG. 15(C). Schematic diagram of the PEDOT composite production system. (A) Photographs of the SR surface before composite and (B)-(E) SR surface after PEDOT composite. The reaction time was (B) 24 hours, (C) 48 hours, (D) 72 hours, and (E) 96 hours.
  • A SR/Ppy
  • B SR/PPy-1Me
  • C SR/PPy-3Me
  • D SR/PPy-1Et
  • E SR/PPy-3COOH
  • F SR/PPy- 1ClEt
  • G SR/PPy-1BrEt
  • H SR/PPy-1Ami
  • I SR/PEDOT
  • J SR/PTp-3MeO
  • K SR/PTp-3Me
  • L SR/ PTp-3Hx.
  • A-D Substrate surfaces before BQ-Py compounding to various matrices and (E-H) after compounding under compounding conditions BQ 1.10 g, Py 699 ⁇ L, 24 h.
  • A, E PP,
  • B, F PTFE,
  • C, G PMMA,
  • D, H SR. All scale bars are 0.5 cm.
  • A-D Optical microscope images of cross-sections before and (E-H) after BQ-Py compounding to various matrices under compounding conditions BQ 1.10 g, Py 699 ⁇ L, 24 h.
  • a conductive polymer developed by the present inventors which is made by polymerizing a monomer of a heterocyclic aromatic compound such as pyrrole, was coated on a matrix material such as resin or rubber, and the coating was carefully observed. They discovered that the conductive polymer permeated not only the surface of the base material (including the substrate) but also the inside of it, creating a composite material of the matrix and conductive polymer.
  • the matrix is at least one selected from the group consisting of resin, elastomer, and rubber;
  • a composite material containing a conductive polymer is provided.
  • thermoplastic resins examples include thermoplastic resins, thermosetting resins, and combinations thereof.
  • thermoplastic resins include polyolefin resins such as polypropylene resins, polyethylene resins, poly(1-)butene resins, and polypentene resins, polyester resins such as polyethylene terephthalate, polystyrene resins, acrylonitrile-butadiene-styrene (ABS) resins, and ethylene.
  • polyester resins such as polyethylene terephthalate, polystyrene resins, acrylonitrile-butadiene-styrene (ABS) resins, and ethylene.
  • synthetic resins such as vinyl acetate copolymer (EVA), polycarbonate resin, polyphenylene ether resin, (meth)acrylic resin, polyamide resin, polyvinyl chloride resin, novolak resin, polyurethane resin, and polyisobutylene.
  • EVA vinyl acetate copolymer
  • (meth)acrylic resin includes acrylic resin, methacrylic resin, or both.
  • thermosetting resins include synthetic resins such as polyurethane resins, phenol resins, epoxy resins, urea resins, melamine resins, unsaturated polyester resins, and polyimides.
  • An elastomer is a substance consisting of soft segments that exhibit rubber elasticity and hard segments that serve as crosslinking points.
  • Examples of the elastomer include olefin elastomer, styrene elastomer, ester elastomer, amide elastomer, vinyl chloride elastomer, and acrylic elastomer.
  • Rubbers include natural rubber, polyurethane rubber, silicone rubber, isoprene rubber, butadiene rubber, 1,2-polybutadiene rubber, styrene-butadiene rubber, chloroprene rubber, nitrile rubber, butyl rubber, chlorinated butyl rubber, ethylene-propylene rubber, and ethylene-propylene rubber.
  • Examples include propylene-diene rubber (EPDM), chlorosulfonated polyethylene, acrylic rubber, epichlorohydrin rubber, polyvulcanized rubber, non-vulcanized rubber, fluororubber, and the like.
  • Each of these resins, elastomers, and rubbers can be used alone or in combination of two or more. Moreover, a combination of resin, elastomer, and rubber can also be used.
  • the matrix is a crystalline plastic, it is preferably a crystalline resin having a free volume space capable of accommodating a conductive polymer, and mainly contains polyolefin resins including polypropylene, polyamide resins, polyphenylene ether resins, and polyphenylene ethers.
  • modified polyphenylene ether resin which is a polymer alloy of thermoplastic resin as a component
  • modified polyphenylene ether resin consisting of polyphenylene ether resin and crystalline resin such as polyamide resin, polyester resin, polypropylene resin
  • the matrix is at least one selected from the group consisting of amorphous plastics, elastomers and rubbers.
  • the polymer having structural units derived from a heteroaromatic compound is a polymer of monomers that are heteroaromatic compounds.
  • One type of monomer which is a heterocyclic aromatic compound may be used, or a plurality of types may be used in combination.
  • the polymer having a structural unit derived from a heterocyclic aromatic compound may be a polymer consisting only of a monomer that is a heterocyclic aromatic compound, or a polymer having a structural unit derived from a heterocyclic aromatic compound and a heterocyclic aromatic compound. It may also be a copolymer of an aromatic compound of the formula formula and a polymerizable compound.
  • the compound that can be polymerized with the heterocyclic aromatic compound include benzoquinone which may have a substituent or an aromatic hydrocarbon having an electron-withdrawing functional group. When benzoquinone has a substituent, examples of the substituent include hydrogen, halogen, nitro, amide, thiol, and hydroxy.
  • Examples of the aromatic ring of the monocyclic aromatic hydrocarbon having an electron-withdrawing substituent include a benzene ring, cyclohexadiene, and cyclopentadiene.
  • Examples of the electron-withdrawing substituent of the monocyclic aromatic hydrocarbon having an electron-withdrawing substituent include, but are not limited to, a vinyl group, an acyl group, a cyano group, a halogen group, a nitro group, and a hydroxy group; Examples thereof include a halogen group, a cyano group, a nitro group, or an alkenyl group substituted with a hydroxy group; a vinyl group is preferred.
  • the alkenyl group preferably has 2 to 5 carbon chains.
  • the heterocyclic aromatic compound is not particularly limited, but for example, a cyclic aromatic compound having a 3- to 6-membered ring can be used. Among these, it is desirable to use a 5-membered or 6-membered ring heteroaromatic compound containing a nitrogen atom or a sulfur atom.
  • the heteroaromatic compound is preferably a nitrogen-containing heteroaromatic compound.
  • the nitrogen-containing heterocyclic aromatic compound preferably has a carbon-carbon double bond in the nitrogen heterocycle.
  • Examples of 5-membered nitrogen-containing heteroaromatic compounds include pyrrole (1H-azole), 2H-pyrrole (22H-azole), imidazole (1,3-diazole), pyrazole (1,2-diazole), and thiazole.
  • isothiazole (1,3-thiazole) oxazole, isoxazole (1,3-oxazole), furazane (1,2,5-oxadiazole), 1,2,5-thiadiazole, 1,2,3- Examples include thiadiazole, 1,2,3-triazole, and the like.
  • pyrrole compounds and thiazole are preferred.
  • pyrrole compounds include pyrrole, N-methylpyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole , 3,4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxypyrrole, 3-methyl-4-carboxypyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3 -hydroxypyrrole, 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, and 3-methyl-4-hexyloxypyrrole.
  • 6-membered nitrogen-containing heteroaromatic compound examples include pyridine, pyrimidine, and pyridazine.
  • heterocyclic aromatic compound may be a sulfur-containing heteroaromatic compound such as a thiophene compound or 3,4-ethylenedioxythiophene (EDOT).
  • sulfur-containing heteroaromatic compound such as a thiophene compound or 3,4-ethylenedioxythiophene (EDOT).
  • thiophene compounds include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3-butylthiophene, 3-hexylthiophene, 3-heptylthiophene, 3-octylthiophene, 3-decylthiophene, -Dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenylthiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3- Hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene), 3-hexyloxythiophene, 3-heptyloxythiophene, 3-octyloxythiophene, 3-
  • the conductive polymer contains at least one of polypyrrole and polythiophene.
  • the conductive polymer contains at least one of polypyrrole and polythiophene represented by the following formula (1).
  • polypyrrole examples include polypyrrole, poly(N-methylpyrrole), poly(3-methylpyrrole), poly(3-ethylpyrrole), poly(3-n-propylpyrrole), poly(3-butylpyrrole), Poly(3-octylpyrrole), poly(3-decylpyrrole), poly(3-dodecylpyrrole), poly(3,4-dimethylpyrrole), poly(3,4-dibutylpyrrole), poly(3-carboxypyrrole) ), poly(3-methyl-4-carboxypyrrole), poly(3-methyl-4-carboxyethylpyrrole), poly(3-methyl-4-carboxybutylpyrrole), poly(3-hydroxypyrrole), poly( Examples include poly(3-methoxypyrrole), poly(3-ethoxypyrrole), poly(3-butoxypyrrole), poly(3-hexyloxypyrrole), and poly(3
  • polythiophene examples include polythiophene, poly(3-methylthiophene), poly(3-ethylthiophene), poly(3-propylthiophene), poly(3-butylthiophene), poly(3-hexylthiophene), poly( 3-heptylthiophene), poly(3-octylthiophene), poly(3-decylthiophene), poly(3-dodecylthiophene), poly(3-octadecylthiophene), poly(3-bromothiophene), poly(3- chlorothiophene), poly(3-iodothiophene), poly(3-cyanothiophene), poly(3-phenylthiophene), poly(3,4-dimethylthiophene), poly(3,4-dibutylthiophene), poly( 3-hydroxythiophene), poly(3-methoxythiophene), poly(
  • the amount of conductive polymer in the composite material of the embodiment of the present invention is not particularly limited, and may be 0.1 to 99.9% by mass.
  • the content of the conductive polymer is preferably 10% by mass or more, and in terms of maintaining the physical properties of the matrix material (e.g. flexibility, elasticity), the content of the conductive polymer is preferably 50% by mass or less. It is preferable that
  • the mass ratio of the matrix to the conductive polymer is not particularly limited, and may be 0.1 to 99.9:99.9 to 0.1, and the mass ratio of the matrix to the conductive polymer may be 0.1 to 99.9: 50-90:50-10 is preferred from the viewpoint of maintaining elasticity.
  • the composite material includes a coating of a conductive polymer on the surface of the matrix, and the conductive polymer permeates from the surface of the matrix toward the interior of the matrix.
  • Conductive polymers deposited on the surface of the matrix and conductive polymers penetrating from the surface of the matrix toward the interior of the matrix can be confirmed using a microscope (optical microscope, scanning electron microscope). I can do it.
  • the thickness of the coating made of conductive polymer on the surface of the matrix and the depth of penetration of the conductive polymer into the interior of the matrix are determined by the conditions under which the coating made of conductive polymer is applied, e.g. It can be adjusted as appropriate by selecting the amount of constituent monomers applied to the matrix, vapor deposition temperature, vapor deposition time, etc.
  • the thickness of the coating made of conductive polymer on the surface of the matrix can be adjusted as appropriate to 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the depth of the conductive polymer penetrating from the surface of the matrix toward the interior of the matrix can also be adjusted as appropriate to 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
  • the thickness of the coating made of conductive polymer on the surface of the matrix and the depth of the conductive polymer penetrating into the interior of the matrix can be measured, for example, by scanning electron microscopy images.
  • the composite material of the embodiment of the present invention has effects such as improving the mechanical strength of the matrix, imparting conductivity to the matrix, and improving the gas barrier properties of the matrix. Therefore, it can be used to strengthen rubber materials such as tires, strengthen the gas barrier properties of matrices, and develop force sensors using conductive rubber.
  • a pressure-sensitive sensor including the above composite material is provided.
  • the matrix of the composite material of the pressure-sensitive sensor is rubber or elastomer. Since rubber or elastomer has elasticity, it follows deformations such as tension and compression.
  • the pressure-sensitive sensor according to the embodiment of the present invention includes a composite material in which a conductive polymer is infiltrated into a matrix, it is possible to measure changes in electrical resistance caused by pressure applied to the composite material.
  • the shape of the pressure-sensitive sensor is not particularly limited, it is preferably a molded body of a composite material, and more preferably a sheet-like molded body.
  • a method for manufacturing the above-described composite material comprising: evaporating a monomer of a heterocyclic aromatic compound in the presence of an oxidizing agent; A method is provided that includes the step of infiltrating a polymer having a structural unit derived from a heterocyclic aromatic compound into a matrix that is at least one selected from the group consisting of an elastomer and a rubber.
  • a monomer of a heterocyclic aromatic compound serving as a precursor of a conductive polymer and an oxidizing agent are respectively evaporated to generate steam.
  • a composite material can be manufactured by bringing the generated steam into contact with the matrix and further infiltrating the interior of the matrix with a polymer having a structural unit derived from a heterocyclic aromatic compound. can.
  • the oxidizing agent examples include transition metal nitrates and aromatic hydrocarbons having electron-withdrawing functional groups such as tetrafluoro-1,4-benzoquinone (TFBQ).
  • TFBQ tetrafluoro-1,4-benzoquinone
  • Penetration of the monomers constituting the conductive polymer into the free volume space within the matrix is considered to be a phenomenon observed when monomers are combined from the gas phase, and TFBQ is advantageous because it has moderate oxidizing power and sublimation ability.
  • other oxidizing agents may be used as long as they have oxidizing power and sublimation properties.
  • the transition metal nitrate is not particularly limited, but for example, copper nitrate, iron nitrate, or hydrates thereof can be used. Specifically, Cu(NO 3 ) 2 ⁇ 3H 2 O, Fe(NO 3 ) 3 ⁇ 9H 2 O, etc. can be used. In addition, one type of transition metal nitrate may be used alone, or a plurality of types may be used in combination.
  • the amount of the transition metal nitrate added is not particularly limited, but is preferably 10 parts by mass of the monomer of the heterocyclic aromatic compound that is the precursor of the conductive polymer.
  • the amount is at least 20 parts by mass, more preferably at least 20 parts by mass, preferably at most 80 parts by mass, and even more preferably at most 50 parts by mass.
  • the amount of the aromatic hydrocarbon having an electron-withdrawing functional group to be added is not particularly limited; The amount is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, preferably 250 parts by mass or less, and more preferably 150 parts by mass or less, based on 100 parts by mass of the monomer of the heterocyclic aromatic compound.
  • a monomer 13 of a heterocyclic aromatic compound that will be a precursor of a conductive polymer is added into a glass container 10 and a glass container 12 with an open top. Meanwhile, an oxidizing agent 15 is added to a glass container 14 with an open top. Glass containers 12, 14 are placed at the bottom of glass container 10. Next, the matrix 16 as a base material is placed on the lid 11 side of the glass container 10. Thereafter, a lid 11 is attached to the glass container 10, and the glass container 10 is sealed.
  • the glass container 10 is heated to evaporate the monomer 13 and the oxidizing agent 15 to generate steam.
  • the generated vapor is adsorbed on the matrix 16, and the monomers 13 polymerize with each other.
  • monomer 13 also reacts with oxidizing agent 15.
  • the oxidizing agent 15 is a transition metal nitrate, some of the monomers 13 are nitrated. Therefore, a nitro group is introduced into the resulting conductive polymer.
  • a composite material is obtained in which not only the conductive polymer coating is applied to the surface of the matrix, but also the conductive polymer penetrates into the interior of the matrix, and the conductive polymer is present inside the matrix. be able to.
  • the monomer 13 and the oxidizing agent 15 are evaporated in a state where they are placed separately in the glass container 10 without being mixed.
  • the temperature at which the glass container 10 is heated is not particularly limited, but is preferably 100° C. or lower, for example.
  • the heating temperature of the glass container 10 is preferably 15°C or higher, more preferably 40°C or higher, preferably 100°C or lower, and more preferably 80°C or lower.
  • the heating time of the glass container 10 is not particularly limited, but can be preferably 5 minutes or more, more preferably 15 minutes or more, preferably 96 hours or less, and more preferably 72 hours or less.
  • heating of the glass container 10 may be performed under atmospheric pressure, or may be performed under reduced pressure to promote the reaction. Further, the glass container 10 can be heated, for example, in an air atmosphere. However, it may also be carried out under an inert gas atmosphere such as a nitrogen atmosphere.
  • a conductive polymer is synthesized in the free volume space existing between the molecular chains of the matrix by a new method of infiltrating low-molecular-weight monomer vapor into the interior of the matrix.
  • this method is an example of synthesis in small spaces (scale of about 2 nanometers or less) such as free volume spaces. There is no.
  • This method enables in-situ gas phase polymerization of conjugated polymers at the molecular chain level into general-purpose polymeric matrix materials, and improves the performance of the matrix by generating a uniform composite. can.
  • Example 1 Preparation and analysis of a polymer (PPy complex) having a structural unit derived from pyrrole (1)
  • PPy complex 699 ⁇ L of pyrrole (Py) was placed in a glass container, and this was placed in a 120 mL polypropylene container.
  • 2.42 g of copper nitrate trihydrate or 1.84 g of tetrafluoro-1,4-benzoquinone (TFBQ) was placed in a 120 mL polypropylene container.
  • Various matrices polypropylene (PP), polytetrafluoroethylene (PTFE), polymethyl methacrylate (PMMA), silicone rubber (SR), urethane rubber (PU)) with dimensions of 4 cm x 4 cm, 120 mL polypropylene It was attached to the lid of the manufactured container and sealed. Pyrrole (Py), copper nitrate trihydrate, TFBQ, and various matrices were placed in a 120 mL polypropylene container so that they did not touch each other, and this was left standing in a constant temperature bath at 60 °C for 24 hours. Made it react.
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • PMMA polymethyl methacrylate
  • SR silicone rubber
  • PU urethane rubber
  • FIG. 6 shows the IR spectra of SR alone and the SR/PPy complex.
  • A is NH stretching
  • B aromatic CH stretching
  • C CH stretching
  • E CN stretching
  • F Si -C bending vibration
  • G Si-O stretching
  • H C-HH out-of-plane bending vibration
  • a and C to G are peaks derived from ⁇ -PP, where A is the (110) plane and C is the peak derived from ⁇ -PP. It was possible to attribute the (040) plane, D to the (130) plane, E to the (111) plane, F to the (041) plane, and G to the (150) plane.
  • B is a peak derived from ⁇ -PP, which is an amorphous portion. Therefore, it is thought that PPy penetrated into the amorphous part of PP and caused a slight change in the crystal structure.
  • dispersion 1 made from the PMMA/PPy composite was performed using FE-TEM (Tecnai G2, FEI). Dispersion 1 was dropped onto a Cu grid, the solvent was evaporated, and then the sample was observed.
  • Dispersion 1 was identified using an energy dispersive X-ray spectrometer (QUANTEX EDS, Bruker, X-Max N 80T, Oxford Instruments).
  • FIG. 9(A) and FIG. 9(B) show the EDX spectrum and TEM image of Dispersion 1 made from the PMMA/PPy composite. Each peak from A to D in the EDX spectrum was assigned as C, N, O, and F in that order. Since these are constituent elements of PPy and TEBQ, it was confirmed that PPy and TFBQ were present inside the complex.
  • Table 1 shows the ratio of each element in SR alone and in the SR/PPy complex. Furthermore, the SEM image of the ES measurement range of SR/PPy is shown in Fig. 10(A), and the EDS line profile of the abundance of N and F in the thickness direction of the SR/PPy composite is shown in Fig. 10(B).
  • the five elements in Table 1 are all constituent elements of SR/PPy and TFBQ, and N and F were confirmed only after the composite, indicating that PPy and TFBQ exist inside the composite. Additionally, since the mapping was present throughout the entire cross section, it was confirmed that PPy existed and was complex throughout the thickness direction of the SR within the measured range.
  • the free volume fraction of SR/PPy is calculated to be approximately 8.10%.
  • the combined amount of PPy is 21.17%, and it is understood that the free volume in SR decreases after PPy combined.
  • the density of PPy is 1.6 g/cm 3
  • the amount of PPy composite is converted into mass, which is 0.339 g per 1 cm 3 of the SR substrate.
  • the density of SR is 1.13 g/cm 3
  • when the occupied volume is converted into mass it is 0.799 g per 1 cm 3 of the SR substrate.
  • the mass remaining after the measurement was 49.17wt%, and the mass of SR that decreased at 100 to 800°C, excluding water combustion, was 99.57wt%.
  • the mass decreased by 100°C was 0.61wt%. From the above, the combined amount of PPy relative to SR alone was determined to be 44.88wt%.
  • the composite amount calculated from TG generally agreed with the value calculated from the actual measured value by the PALS method.
  • Tensile stress was applied using a small tabletop testing machine, stopped at every 5% strain, and the resistance was measured using a digital multimeter.
  • the test conditions were as follows: test mode was controlled, test speed was 1 mm sec -1 , distance between grips was 1.5 cm, resistance measurement distance was 1 cm, and measurements were taken using four test pieces cut from the same sample. went. Note that the resistance value change ⁇ R/R 0 was calculated using the following equation (2). Here, the resistance value at each strain was R, and the resistance value at 0% strain was R0 .
  • Compressive stress was applied using a small tabletop testing machine, and a 5 mm x 30 mm toothed push rod was selected as the compression jig.
  • the test was stopped at every 10% strain and the resistance was measured using a digital multimeter.
  • the test conditions were that the test mode was controlled, the test speed was 10 mm min -1 , and the resistance value measurement distance was 8 mm, and each test piece was measured three times.
  • the resistance value change ⁇ R/R 0 was calculated according to equation (2) in “(8) Evaluation of mechanical properties of SR/PPy composite” above.
  • FIG. 13(B) A graph of the average value of ⁇ R/R 0 of each test piece (No. 1 to No. 3) against the compressive strain and compressive stress applied to each of PU/PPy_1 and PU/PPy_2 is shown in FIG. 13(B).
  • TG curves of PU, PU/PPy_1, PU/PPy_2, and PPy samples measured in the same manner as in “(7) Analysis of molecular structure of SR/PPy complex by thermogravimetry (TG-DTA)” above ( Figure 14) From this, the combined amount of PPy to PU was calculated. The process will be described below. First, regarding PU, the mass remaining after the measurement was 12.98 wt%, and there was no effect of water combustion. Regarding PU/PPy_1, the remaining mass was 10.87 wt%, so the mass of PU decreased from 100 to 800°C was 83.74 wt%. In addition, the mass decreased by 100°C was 0.01 wt%.
  • the combined amount of PPy to PU in PU/PPy_1 was found to be 16.25 wt%.
  • the remaining mass was 9.63 wt%, so the mass of PU decreased from 100 to 800°C was 74.19 wt%. In addition, the mass decreased by 100°C was 0.22 wt%.
  • the combined amount of PPy to PU in PU/PPy_2 was found to be 25.59 wt%.
  • Example 2 Preparation and analysis of a polymer (PEDOT complex) having a structural unit derived from ethylenedioxythiophene (1)
  • PEDOT complex a polymer having a structural unit derived from ethylenedioxythiophene
  • TFBQ tetrafluoro-1,4-benzoquinone
  • EDOT 3,4-ethylenedioxythiophene
  • FIGS. 18(A)-(H) show the cross-sectional optical microscope images before and after compounding.
  • the SR substrate showed light blue coloring after 24 hours of reaction time. After that, it was completely colored by reacting for 48 hours, and it was confirmed that PEDOT had penetrated into the SR or was complexed.
  • Figure 19 shows a SEM image of the surface layer of the PEDOT composite that was reacted for 72 hours. It was confirmed that there were particularly many composites in the area approximately 9.0 ⁇ m from the surface.
  • the cross section of SR/PEDOT was vertically divided into six sections (area 1 to 6 from the surface), and each spectrum was measured. Further, Table 6 shows the abundance ratio of each element.
  • the peak is large near the surface where the monomer vapor is exposed and the back surface where the monomer vapor wraps around and comes into contact with the reaction vessel, and is small at the center, indicating that Raman is penetrating into the interior, but that the penetration is small. This was clear from the results.
  • Example 3 Preparation of composite materials using various heterocyclic aromatic compounds and analysis of physical properties
  • conductive composite Place 5 mmol of each of the 12 types of heteroaromatic compounds shown below in a glass container (2 mL screw tube), and place a silicone rubber (SR) with a size of 4 cm ⁇ 4 cm. ) was attached to the lid of a 120 mL polypropylene container, and each was placed in the 120 mL polypropylene container so that they did not touch each other. This was allowed to stand for 24 hours in a constant temperature bath at 60°C to react. Thereafter, the SR was taken out and placed in a 120 mL polypropylene container containing TFBQ so that they did not touch each other.
  • SR silicone rubber
  • the reaction mixture was allowed to stand again for 24 hours in a constant temperature bath at 60°C (Fig. 24).
  • the product was collected and vacuum-dried at 60°C for 48 hours to remove unreacted monomer molecules and remaining oligomers to obtain a conductive polymer composite.
  • the complex will be referred to as SR/(conductive polymer name).
  • FIGS. 26(A)-(L) Microscopic observation of test materials before and after composite Microscopic images are shown in FIGS. 26(A)-(L).
  • the bottom surface is the surface to which monomer vapor is exposed during synthesis.
  • the cross section was cut from the back side of the composite using an SD type lever type sample cutter (SDL-100, Dumbbell).
  • the composite amount of the conductive polymer was calculated in two ways using the following formula from the remaining amount after the thermogravimetric measurement was completed.
  • PPy-1Ami had the highest amount of compounding both on a g basis and on a mol basis. This is considered to be because the monomer size is relatively small and the volatilization rate is high, so that the monomer immediately evaporates into the reaction vessel and diffuses into the free volume space of the SR.
  • Another possible cause is that the amino group, which is an electron-donating group, is bonded to the 1-position of Py, which increases the electron density within the Py ring and lowers the reaction potential.
  • Example 4 Production of composite material containing copolymer and analysis of physical properties (1) Production of composite material containing copolymer Instead of tetrafluoro-1,4-benzoquinone (TFBQ) in Example 1, 1,4 - Using benzoquinone (BQ) and under the same conditions as in Example 1, a conductive polymer which is a copolymer of pyrrole (Pr) and benzoquinone (BQ) was obtained.
  • the matrices were polypropylene (PP), polytetrafluoroethylene (PTFE), polymethyl methacrylate (PMMA), and silicone rubber (SR).
  • FIG. 29 shows photographs of the substrate before and after compounding the copolymer
  • FIG. 30 shows an optical microscope image of a cross section of the substrate.
  • the upper surface is the surface to which monomer vapor is exposed during synthesis.
  • IR spectra of SR and SR/BQ-Py are shown in FIG. 32.
  • A is O-H stretching
  • B is N-H stretching
  • C is aromatic C-H stretching
  • D is C-H stretching
  • G could be attributed to C-N stretching, H to Si-C bending vibration, I to Si-O stretching, and J to C-H out-of-plane bending vibration.
  • BQ-Py was composited within SR by gas phase polymerization using BQ.
  • Figure 33 shows the Raman spectra of PTFE/BQ-Py and SR/BQ-Py.
  • A is benzoid type C-H out-of-plane bending vibration
  • B is C-H stretching
  • C is C-O stretching
  • D is C-H in-plane bending vibration
  • BQ-Py was composited on PTFE and within SR by gas phase polymerization using BQ.
  • Figure 34 shows the stress strain curves in the tensile test of three types of SR/BQ-Py with different SR and reaction times, and Table 9 shows the elastic modulus.
  • the test conditions were a test piece size of 4 cm x 0.2 cm, a test mode of single, a test speed of 100 mm min -1 , and a distance between grips of 1.5 cm.
  • SR consists of a siloxane skeleton in which Si and O are alternately bonded to the main chain, and polysiloxane units with methyl groups in the side chains, forming a three-dimensional network structure, which increases the ease of movement of the main chain and thermal stability. It is characterized by gender.
  • rubber elasticity which refers to entropic elasticity, which is the ability to recover when the entropy decreased by stretching is increased.
  • the entropic elasticity of SR decreases due to the composite, and the energy elasticity generated by applying tensile stress to BQ-Py is added, so it can be said that the higher the composite amount, the higher the elastic modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つであるマトリックスと、マトリックスの内部に存在する導電性高分子を含有する複合材料。導電性高分子は、複素環式芳香族化合物に由来する構造単位を有する重合体である。

Description

マトリックス内への導電性高分子の複合化
 本発明は、樹脂、エラストマー、及びゴム等からなるマトリックスと、導電性高分子とを含有する複合材料に関する。
 発明者らは、低温及び常圧下といった温和な条件で、複素環式芳香族化合物であるモノマーを、気相を介して、基板又は基材に重合する独自の手法を開拓してきた。例えば、我々はピロール(Py)などのモノマーを硝酸銅や硝酸鉄を容器内に共存させて60℃程度に昇温すると、Py蒸気と硝酸塩の接触により活性なニトロピロール(Py-NO 2)蒸気が生成し、これがPy蒸気とカップリングすることで重合が進み、容器内に共存したガラス、酸化インジウム錫(ITO)等の基板又は基材に吸着しながらポリピロール(PPy)が生成することを偶然発見した(非特許文献1)。我々はさらに、ピロール(Py)と、置換基を持たないベンゾキノン(BQ)とを使用した場合、PyとBQの二次元的なランダム共重合による非晶質BQ-Pyネットワーク高分子が得られることを見出した(非特許文献2、特許文献1)。
 これらの複素環式芳香族化合物であるモノマーを気相重合させてなる重合体は導電性を有するため、かかる導電性高分子を含む電極活物質が作製されている(特許文献2及び3)。
WO2018/207699 日本国特願2019-060012 日本国特願2019-050649
Nanoscale 2017, 9, 7895-7900. Communications Chemistry 2019, 2, 97.
 従来の技術では、ピロールなどの複素環式芳香族化合物のモノマーの蒸気を、気相を介して重合し、重合された導電性高分子を基板又は基材の「表面」にコーティングするにとどまっていた。
 本発明の目的は、樹脂、エラストマー、及びゴム等のマトリックスの内部に導電性高分子を複合させた複合材料を提供することにある。
 本発明は、以下に記載の実施形態を包含する。
 項1.
 樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つであるマトリックスと、
 マトリックスの内部に存在する、複素環式芳香族化合物に由来する構造単位を有する重合体である導電性高分子と
を含有する複合材料。
 項2.
 前記マトリックスの表面上に前記導電性高分子からなるコーティングを備え、前記表面から前記マトリックスの内部に向かって前記導電性高分子が浸透している項1に記載の複合材料。
 項3.
 前記マトリックスが、導電性高分子を収容可能な自由体積空間を有する結晶性樹脂、非結晶性樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つを含む項1又は2に記載の複合材料。
 項4.
 前記導電性高分子が、複素環式芳香族化合物の重合体である項1~3のいずれか一項に記載の複合材料。
 項5.
 前記導電性高分子が、窒素原子若しくは硫黄原子を含む、5員環又は6員環の複素環式芳香族化合物の重合体のうちの少なくとも一つを含む項1又2に記載の複合材料。
 項6.
 前記5員環又は6員環の複素環式芳香族化合物が、ポリピロール及びポリチオフェンのうちの少なくとも一つを含む項5に記載の複合材料。
 項7.
 前記導電性高分子が、ポリピロール及びポリピロールのうちの少なくとも一つを含む項1又は2に記載の複合材料。
 項8.
 項1~7のいずれか一項に記載の複合材料を備えた感圧センサ。
 項9.
 項1に記載の複合材料の製造方法であって、
 複素環式芳香族化合物のモノマーを、酸化剤の存在下で蒸発させて、樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つであるマトリックスの内部に、複素環式芳香族化合物に由来する構造単位を有する重合体を浸透させる工程を含む方法。
 項10.
 前記浸透させる工程が、前記複素環式芳香族化合物に由来する構造単位を有する重合体のコーティングをマトリックスの表面に施すことにより、前記マトリックスの内部に複素環式芳香族化合物に由来する構造単位を有する重合体を浸透させることを含む項9に記載の方法。
 項11.
 前記酸化剤が、遷移金属硝酸塩又は置換基を有してもよいベンゾキノンを含む項9又は10に記載の方法。
 本発明によれば、複素環式芳香族化合物に由来する構造単位を有する重合体である導電性高分子をマトリックスの内部に含む複合材料が提供される。
モノマーの蒸気を利用したマトリックスへの導電性高分子の複合化のための系を示す略図。 各種マトリックスにおけるポリピロール(PPy)の堆積と浸透。(A)複合前のポリプロピレン基材の平面視の写真、(B)複合前のポリメタクリル酸メチル基材の平面視の写真、(C)複合前のシリコーンゴム基材の平面視の写真、(D)複合前のポリウレタンゴム基材の平面視の写真、(E)複合前のポリテトラフルオロエチレン基材の平面視の写真、(F)複合前のポリプロピレン基材の拡大断面図、(G)複合前のポリメタクリル酸メチル基材の拡大断面図、(H)複合前のシリコーンゴム基材の拡大断面図、(I)複合前のポリウレタンゴム基材の拡大断面図、(J)複合前のポリテトラフルオロエチレン基材の拡大断面図、(K)複合後のポリプロピレン基材の平面視の写真、(L)複合後のポリメタクリル酸メチル基材の平面視の写真、(M)複合後のシリコーンゴム基材の平面視の写真、(N)複合後のポリウレタンゴム基材の平面視の写真、(O)複合後のポリテトラフルオロエチレン基材の平面視の写真、(P)複合後のポリプロピレン基材の拡大断面図、(Q)複合後のポリメタクリル酸メチル基材の拡大断面図、(R)複合後のシリコーンゴム基材の拡大断面図、(S)複合後のポリウレタンゴム基材の拡大断面図、(T)複合後のポリテトラフルオロエチレン基材の拡大断面図、ただし、(P)~(S)中の矢印は内部に浸透した領域を示す。 (A)PPyとの複合前のポリプロピレン基材の断面の光学顕微鏡写真、(B)図3(A)の四角で囲んだ部分を拡大したSEM像。(C)PPyとの複合後のポリプロピレン基材の断面の光学顕微鏡写真。(D)図3(C)の四角で囲んだ部分を拡大したSEM像。 (A)PPyとの複合前のシリコーンゴム基材の断面の光学顕微鏡写真、(B)図4(A)の四角で囲んだ部分を拡大したSEM像。(C)PPyとの複合後のシリコーンゴム基材の断面の光学顕微鏡写真。(D)図4(C)の四角で囲んだ部分を拡大したSEM像。 (A)PPyとの複合前のポリテトラフルオロエチレン(PTFE)基材の断面の光学顕微鏡写真、(B)図5(A)の四角で囲んだ部分を拡大したSEM像。(C)PPyとの複合後のポリテトラフルオロエチレン基材の断面の光学顕微鏡写真。(D)図5(C)の四角で囲んだ部分を拡大したSEM像。 (A)シリコーンゴム(SR)単体と、シリコーンゴム(SR)とポリピロール(PPy)の複合材料のIRスペクトルの比較。 (A)ポリテトラフルオロエチレン(PTFE)単体と、ポリテトラフルオロエチレン(PTFE)とポリピロール(PPy)の複合材料のIRスペクトルの比較。 PP単体及びPP/PPy複合体のXRD。 PMMA/PPy複合体から作成した分散液1におけるEDXスペクトル及びTEM像。 (A)SR/PPy複合材料の断面のSEM像、(B)SR/PPy複合材料の厚さ方向におけるEDSのラインプロファイル。 (A)SR材料及びSR/PPy複合材料の陽電子消滅寿命測定法(PALS)による寿命曲線、(B)分布曲線。複合条件はTEBQ 1.84g、Py 699μL、反応時間12時間とした。 TGによるSR、SR/PPy及びPPy標品の重量変化のグラフ。複合条件はTEBQ 1.84g、Py 699μL、反応時間12時間とした。 (A)SR/PPy_1(PPyの含有量が約32重量%)の場合及びSR/PPy_2(PPyの含有量が約37重量%)の場合のそれぞれのSR/PPy複合材料の引っ張りひずみに対する抵抗値ΔR/R0。各点は3回の平均。(B)PU/PPy_1(PPyの含有量が約16重量%)の場合及びPU/PPy_2(PPyの含有量が約26重量%)の場合のそれぞれのPU/PPy複合材料の圧縮ひずみに対する抵抗値(ΔR/R0)。各点は3回の平均。 PU,PU/PPy_1,PU/PPy_2およびPPy標品のTG曲線 (A)試験片を凸に曲げた状態の略図、(B)図15(A)の状態のときの抵抗値ΔR/R0の変化、(C)試験片を凹に曲げた状態の略図、(D)図15(C)の状態のときの抵抗値ΔR/R0の変化。 PEDOT複合体の作製系の模式図。 (A)複合前のSRの表面と、(B)-(E)PEDOT複合後のSRの表面の写真。反応時間は(B)24時間、(C)48時間、(D)72時間、(E)96時間。 (A)及び(B)複合前のSRの断面と、(C)-(H)PEDOT複合後のSRの断面の写真。反応時間は(C)及び(D)24時間、(E)及び(F)48時間、(G)及び(H)72時間、(I)及び(J)96時間。バーはスケールを示す。 72 時間反応させたSR/PEDOT複合体の断面SEM像。 PEDOT複合体、PEDOT粉末、およびTFBQ標品のFT-IRスペクトル。 SR/PEDOT断面のEDX元素マッピング。(A)断面のSEM像、(B)C(炭素)、(C)O(酸素)、(D)F(フッ素)、(E)S(硫黄)、(F)Si(ケイ素)。 SR/PEDOT断面のEDX元素スペクトル。(A)断面6分割を説明する写真、(B)EDX元素スペクトル。 SR/PEDOT(反応時間時間)の断面、TFBQ結晶表面で得られたPEDOT粉末、SR断面のRamanスペクトル。 導電性高分子複合体の作製系の模式図。 SR基板に対し12種類の各複素環式芳香族化合物を複合した後の表面の光学顕微鏡像。(A)SR/Ppy、(B)SR/PPy-1Me、(C)SR/PPy-3Me、(D)SR/PPy-1Et、(E)SR/PPy-3COOH、(F)SR/PPy-1ClEt、(G)SR/PPy-1BrEt、(H)SR/PPy-1Ami、(I)SR/PEDOT、(J)SR/PTp-3MeO、(K)SR/PTp-3Me、(L)SR/PTp-3Hx。 SR基板に対し12種類の各複素環式芳香族化合物を複合した後の断面の光学顕微鏡像。(A)SR/Ppy、(B)SR/PPy-1Me、(C)SR/PPy-3Me、(D)SR/PPy-1Et、(E)SR/PPy-3COOH、(F)SR/PPy-1ClEt、(G)SR/PPy-1BrEt、(H)SR/PPy-1Ami、(I)SR/PEDOT、(J)SR/PTp-3MeO、(K)SR/PTp-3Me、(L)SR/PTp-3Hx。 ピロール(Py)系モノマーを複合したSR基板のTG曲線。 チオフェン(Tp)系モノマーを複合したSR基板のTG曲線。 (A-D)各種マトリックスへのBQ-Py複合の前と(E-H)複合条件BQ 1.10 g, Py 699 μL, 24 hでの複合後の基板表面。(A,E)PP、(B,F)PTFE、(C、G)PMMA、(D,H)SR 。スケールバーはすべて0.5 cm。 (A-D)各種マトリックスへのBQ-Py複合の前と(E-H)複合条件BQ 1.10 g, Py 699 μL, 24 hでの複合後の断面の光学顕微鏡像。 PTFEおよびPTFE/BQ-PyのIRスペクトル。 SRおよびSR/BQ-PyのIRスペクトル。 PTFE/BQ-PyおよびSR/BQ-PyのRamanスペクトル。 SRおよび3 種類のSR/BQ-Pyの引張試験における応力ひずみ曲線。
 本発明者らが開発した、ピロールなどの複素環式芳香族化合物のモノマーを重合してなる導電性高分子を、最近、樹脂、ゴムなどのマトリックス素材に対してコーティングし、それらを注意深く観察してみたところ、基材(基板を含む)の表面のみならず、その内部にまで導電性高分子が浸透し、マトリックスと導電性高分子の複合材料が得られていることを発見した。
 本発明の態様によれば、樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つであるマトリックスと、マトリックスの内部に存在する、複素環式芳香族化合物に由来する構造単位を有する重合体である導電性高分子とを含有する複合材料が提供される。
 樹脂としては、熱可塑性樹脂、熱硬化性樹脂、及びこれらの組み合わせが挙げられる。
 熱可塑性樹脂としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ(1-)ブテン樹脂、ポリペンテン樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、エチレン酢酸ビニル共重合体(EVA)、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、(メタ)アクリル樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ノボラック樹脂、ポリウレタン樹脂、ポリイソブチレン等の合成樹脂が挙げられる。なお、「(メタ)アクリル樹脂」はアクリル樹脂、メタアクリル樹脂、又はその両方を含む。
 熱硬化性樹脂としては、例えば、ポリウレタン樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリイミド等の合成樹脂が挙げられる。
 エラストマーは、ゴム弾性を示すソフトセグメントと、架橋点の役割を果たすハードセグメントとからなる物質である。エラストマーとしては、オレフィン系エラストマー、スチレン系エラストマー、エステル系エラストマー、アミド系エラストマー、塩化ビニル系エラストマー、アクリル系エラストマー等が挙げられる。
 ゴムとしては、天然ゴム、ポリウレタンゴム、シリコーンゴム、イソプレンゴム、ブタジエンゴム、1,2-ポリブタジエンゴム、スチレン-ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、塩素化ブチルゴム、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム(EPDM)、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多加硫ゴム、非加硫ゴム、フッ素ゴム、等が挙げられる。
 これらの樹脂、エラストマー、及びゴムの各々は、一種もしくは二種以上を使用することができる。また、樹脂、エラストマー、及びゴムを組み合わせて使用することもできる。
 得られたマトリックスと導電性高分子の複合材料について各種分析を進めたところ、導電性高分子を構成するモノマーが、マトリックスを構成する分子鎖間の自由体積空間へ浸透し、自由体積空間内で導電性高分子(以下、共役高分子とも称する)が生成している可能性が高いことがわかった。
 このため、複素環式芳香族化合物に由来する構造単位を有する重合体が、マトリックスの表面に堆積するだけなく、マトリックスの内部に存在するためには、マトリックスの密度が小さく、より大きな内部空間が存在する方が有利である。マトリックスが結晶性プラスチックである場合、導電性高分子を収容可能な自由体積空間を有する結晶性樹脂であることが好ましく、ポリプロピレンをはじめとするポリオレフィン樹脂、ポリアミド樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンエーテルを主成分とする熱可塑性樹脂のポリマーアロイである変性ポリフェニレンエーテル樹脂(例えば、ポリフェニレンエーテル樹脂とポリアミド樹脂、ポリエステル樹脂、ポリプロピレン樹脂等の結晶性樹脂とからなる変性ポリフェニレンエーテル樹脂)のように、密度が小さい樹脂であることが好ましい。代わりに、マトリックスは、非結晶性プラスチック、エラストマー及びゴムからなる群から選択される少なくとも一つであることが好ましい。
 なお、自由体積空間へモノマーが浸透するという上記仮説に従わずに製造された複合材料であっても、本発明で規定する構成要件を満足するのであれば、本発明の技術的範囲に包含される。
 いくつかの実施形態において、複素環式芳香族化合物に由来する構造単位を有する重合体は、複素環式芳香族化合物であるモノマーの重合体である。複素環式芳香族化合物であるモノマーは、1種類を用いてもよく、複数種を組み合わせて用いてもよい。
 なお、複素環式芳香族化合物に由来する構造単位を有する重合体は、複素環式芳香族化合物であるモノマーのみからなる重合体であってもよいし、複素環式芳香族化合物と、複素環式芳香族化合物と重合可能な化合物との共重合体であってもよい。複素環式芳香族化合物と重合可能な化合物としては、置換基を有してもよいベンゾキノン又は電子求引性の官能基を有する芳香族炭化水素が挙げられる。ベンゾキノンが置換基を有する場合の置換基としては、水素、ハロゲン、ニトロ、アミド、チオール、ヒドロキシ等が挙げられる。電子求引性の置換基を有する単環式芳香族炭化水素の芳香環としては、ベンゼン環、シクロヘキサジエン、シクロペンタジエン等が挙げられる。電子求引性の置換基を有する単環式芳香族炭化水素の電子求引性の置換基としては、特に限定されないが、ビニル基、アシル基、シアノ基、ハロゲン基、ニトロ基、ヒドロキシ基;ハロゲン基、シアノ基、ニトロ基、又はヒドロキシ基により置換されたアルケニル基;等が挙げられ、ビニル基が好ましい。アルケニル基の炭素鎖は2~5個が好ましい。
 複素環式芳香族化合物としては、特に限定されないが、例えば、3~6員環の環式芳香族化合物を用いることができる。なかでも、複素環式芳香族化合物としては、窒素原子若しくは硫黄原子を含む、5員環又は6員環の複素環式芳香族化合物を用いることが望ましい。複素環式芳香族化合物は、含窒素複素環式芳香族化合物であることが好ましい。含窒素複素環式芳香族化合物は、窒素複素環中に炭素-炭素二重結合を有することが望ましい。
 5員環の含窒素複素環式芳香族化合物としては、ピロール(1H-アゾール) 、2H-ピロール(22H-アゾール) 、イミダゾール(1,3-ジアゾール)、ピラゾール(1,2-ジアゾール)、チアゾール、イソチアゾール(1,3-チアゾール)、オキサゾール、イソオキサゾール(1,3-オキサゾール)、フラザン(1,2,5-オキサジアゾール)、1,2,5-チアジアゾール、1,2,3-チアジアゾール、1,2,3-トリアゾール等が挙げられる。なかでも、ピロール化合物、チアゾールが好ましい。
 ピロール化合物としては、例えば、ピロール、N-メチルピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシピロール、3-メチル-4-カルボキシピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、及び3-メチル-4-ヘキシルオキシピロール等が挙げられる。
 6員環の含窒素複素環式芳香族化合物としては、ピリジン、ピリミジン、ピリダジン等が挙げられる。
 また、複素環式芳香族化合物は、チオフェン化合物、3,4-エチレンジオキシチオフェン(EDOT)のような含硫黄複素環式芳香族化合物であってもよい。
 チオフェン化合物としては、例えば、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン)、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、及び3-メチル-4-カルボキシブチルチオフェン等が挙げられる。
 好ましくは、導電性高分子は、ポリピロール及びポリチオフェンのうちの少なくとも一つを含む。
 より好ましくは、導電性高分子は、下記式(1)に示すポリピロール及びポリチオフェンのうちの少なくとも一つを含む。
Figure JPOXMLDOC01-appb-C000001
 ポリピロールとしては、例えば、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、及びポリ(3-メチル-4-ヘキシルオキシピロール)等が挙げられる。
 ポリチオフェンとしては、例えば、ポリチオフェン、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)及びポリ(3-メチル-4-カルボキシブチルチオフェン)等が挙げられる。
 本発明の態様の複合材料中の導電性高分子の量は特に限定されず、0.1~99.9質量%であってよい。複合材料の導電性の点で、導電性高分子は10質量%以上であることが好ましく、マトリックス材料の物性(例えば柔軟性、弾性)の維持の点で、導電性高分子は50質量%以下であることが好ましい。
 本発明の態様の複合材料における、マトリックスの導電性高分子に対する質量比は特に限定されず、0.1~99.9:99.9~0.1であってよく、複合材料の導電性とマトリックスの物性(例えば柔軟性、弾性)の維持の点から、50~90:50~10が好ましい。
 いくつかの実施形態において、複合材料は、マトリックスの表面上に導電性高分子からなるコーティングを備え、マトリックスの該表面からマトリックスの内部に向かって前記導電性高分子が浸透している。マトリックスの表面上に堆積している導電性高分子と、マトリックスの該表面からマトリックスの内部に向かって浸透している導電性高分子は、顕微鏡(光学顕微鏡、走査型電子顕微鏡)により確認することができる。
 マトリックスの表面上の導電性高分子からなるコーティングの厚さと、マトリックスの内部に向かって導電性高分子が浸透する深さは、導電性高分子からなるコーティングを施す条件、例えば導電性高分子を構成するモノマーのマトリックスに対する適用量、蒸着温度、蒸着時間などの選択により、適宜調節することができる。
 例えば、マトリックスの表面上の導電性高分子からなるコーティングの厚さは、1μm以上、5μm以上、又は10μm以上等に適宜調節することができる。
 例えば、マトリックスの該表面からマトリックスの内部に向かって浸透する導電性高分子の深さも、1μm以上、5μm以上、又は10μm以上等に適宜調節することができる。
 マトリックスの表面上の導電性高分子からなるコーティングの厚さ及びマトリックスの内部に浸透している導電性高分子の深さは、例えば走査型電子顕微鏡画像により測定することができる。
 本発明の態様の複合材料は、マトリックスに対する機械的強度の向上、マトリックスへの導電性の付与、マトリックスのガスバリア性の向上等の効果を奏する。このため、タイヤ等のゴム材料の強化、マトリックスのガスバリア性強化、導電性ゴムをつかった力センサの開拓などに使用することができる。
 例えば、本発明の態様によれば、上記複合材料を備えた感圧センサが提供される。
 感圧センサの複合材料のマトリックスはゴム又はエラストマーであることが好ましい。ゴム又はエラストマーは、弾性を備えるため、引張り、圧縮などの変形に追従する。
 本発明の態様の感圧センサは、導電性重合体がマトリックスに浸透した複合材料を備えるため、複合材料に加えられた圧力に対して引き起こされる電気抵抗の変化を測定することができる。感圧センサの形状は特に限定されないが、複合材料の成形体であることが好ましく、シート状の成形体であることがより好ましい。
 本発明の態様によれば、上述の複合材料の製造方法であって、複合材料の製造方法であって、複素環式芳香族化合物のモノマーを、酸化剤の存在下で蒸発させて、樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つであるマトリックスの内部に、複素環式芳香族化合物に由来する構造単位を有する重合体を浸透させる工程を含む方法が提供される。
 具体的には、まず、導電性高分子の前駆体となる複素環式芳香族化合物のモノマーと、酸化剤とをそれぞれ蒸発させ、蒸気を発生させる。次に、発生させた蒸気と、マトリックスとを接触させ、さらにはマトリックスの内部に、複素環式芳香族化合物に由来する構造単位を有する重合体を浸透させることにより、複合材料を製造することができる。
 酸化剤としては、遷移金属の硝酸塩、テトラフルオロ-1,4-ベンゾキノン(TFBQ)などの電子求引性の官能基を有する芳香族炭化水素が挙げられる。導電性高分子を構成するモノマーのマトリックス内の自由体積空間への浸透は、モノマーを気相から複合する場合に見られる現象と考えられ、TFBQは適度な酸化力と昇華性があるため有利であるが、酸化力と昇華性がある酸化剤であれば他の酸化剤でもよい。
 遷移金属硝酸塩としては、特に限定されないが、例えば、硝酸銅、硝酸鉄、又はそれらの水和物等を用いることができる。具体的には、Cu(NO 3)2・3H2Oや、Fe(NO 3)3・9H2O等を用いることができる。なお、遷移金属硝酸塩は、1種を単独で用いてもよく、複数種を併用してもよい。
 酸化剤が遷移金属硝酸塩である場合、遷移金属硝酸塩の添加量は、特に限定されないが、導電性高分子の前駆体となる複素環式芳香族化合物のモノマー100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、好ましくは80質量部以下、より好ましくは50質量部以下である。
 複素環式芳香族化合物のモノマーを、酸化剤の存在下で蒸発させることにより、複素環式芳香族化合物の重合体である導電性高分子が生じる。
 酸化剤が電子求引性の官能基を有する芳香族炭化水素である場合、電子求引性の官能基を有する芳香族炭化水素の添加量は、特に限定されないが、導電性高分子の前駆体となる複素環式芳香族化合物のモノマー100質量部に対して、好ましくは20質量部以上、より好ましくは50質量部以上、好ましくは250質量部以下、より好ましくは150質量部以下である。
 図1を参照しつつ、気相法によって、マトリックスの内部に複素環式芳香族化合物に由来する構造単位を有する重合体が浸透するように、マトリックス表面をコーティングする方法の一例について説明する。なお、本発明の複合材料の製造方法は、図1に示すコーティング方法に限定されない。
 図1に示すように、まず、ガラス容器10内に、上部が開口したガラス容器12内に、導電性高分子の前駆体となる複素環式芳香族化合物のモノマー13を添加する。一方で、上部が開口したガラス容器14に、酸化剤15を添加する。ガラス容器12,14をガラス容器10の底部に配置する。次いで、基材であるマトリックス16をガラス容器10の蓋11側に配置する。その後、ガラス容器10に蓋11を取り付け、ガラス容器10を密閉する。
 次に、ガラス容器10を加熱し、モノマー13及び酸化剤15を蒸発させ、蒸気を発生させる。発生させた蒸気は、マトリックス16に吸着し、モノマー13同士が重合する。この時、モノマー13は、酸化剤15とも反応する。酸化剤15が遷移金属硝酸塩である場合、一部のモノマー13がニトロ化する。そのため、得られる導電性高分子にニトロ基が導入される。
 上記方法により、マトリックスの表面に、導電性高分子のコーティングが施されるだけでなく、マトリックスの内部に導電性高分子が浸透し、マトリックスの内部に導電性高分子が存在する複合材料を得ることができる。
 なお、図1に示すように、ガラス容器10内においては、モノマー13と、酸化剤15を混合せずに、別々に配置した状態で蒸発させることが望ましい。
 ガラス容器10の加熱温度としては、特に限定されないが、例えば、100℃以下で行うことが望ましい。ガラス容器10の加熱温度は、好ましくは15℃以上、より好ましくは40℃以上、好ましくは100℃以下、より好ましくは80℃以下である。
 ガラス容器10の加熱時間は、特に限定されないが、好ましくは5分以上、より好ましくは15分以上、好ましくは96時間以下、より好ましくは72時間以下とすることができる。
 また、ガラス容器10の加熱は、大気圧下で行ってもよく、反応を促進させるために減圧下で行ってもよい。また、ガラス容器10の加熱は、例えば、空気雰囲気下で行うことができる。もっとも、窒素雰囲気下などの不活性ガス雰囲気下で行ってもよい。
 従来より、化学気相蒸着法(CVD法)など、気相から原料を供給してコーティングを行う方法は多数存在する。しかし、それらの手法は、あくまで基板又は基材の「表面」をコーティングするものであり、その「内部」に物質を生成させることは難しかった。しかしながら、本発明の態様の複合材料の製造方法では、マトリックスの内部に低分子モノマー蒸気を浸透させる新しい手法により、マトリックスの分子鎖間に存在する自由体積空間に導電性高分子が合成される。これまでも、鋳型となるナノスケールの空間を利用した高分子の合成は報告されているが、本手法における自由体積空間のような小さな空間(約2ナノメートル以下のスケール)で複合された例は無い。本手法により、共役高分子を汎用的な高分子マトリックス材料中に分子鎖レベルでその場(in situ)で気相重合することが可能となり、均一な複合体の生成によるマトリックスの性能向上を実現できる。
 例えば、マトリックスの機械的強度、気体透過性、導電性等の制御や向上により、共役高分子強化型プラスチック、高性能ガスバリアフィルム、柔軟性と導電性を両立したゴムなどの革新的な高分子材料を実現できる。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されない。
実施例1 ピロールに由来する構造単位を有する重合体(PPy複合体)の作製及び分析
(1)PPy複合体の作製
 ピロール(Py)699μLをガラス容器に入れ、これを120 mL ポリプロピレン製容器内に入れた。硝酸銅三水和物2.42g、又はテトラフルオロ-1,4-ベンゾキノン(TFBQ)1.84gを120 mL ポリプロピレン製容器内に入れた。4cm x 4cmの大きさの各種マトリックス(ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ポリメタクリル酸メチル(PMMA)、シリコーンゴム(SR)、ウレタンゴム(PU)の5種類)、120 mL ポリプロピレン製容器の蓋に貼り付け、密封した。ピロール(Py)と、硝酸銅三水和物と、TFBQと、各種マトリックスとが互いが触れないように120 mLポリプロピレン製容器内に設置し、これを60℃の恒温槽で24時間静置し反応させた。生成物を回収し、未反応のモノマー分子や残存するオリゴマーを除去するため、60℃で48時間真空乾燥を行い、ポリピロール(PPy)複合体を得た。TFBQを用いて作製したPPy複合体を、(樹脂名)/PPyとして観察および評価を行った。
Figure JPOXMLDOC01-appb-C000002
 以下、異なりのない限り、光学顕微鏡による各種PPy複合体の観察は、デジタルマイクロスコープ(VHX-1000, Keyence)を用いて行った。走査型顕微鏡による各種PPy複合体の観察は、FE-SEM(JSM-7600-F, JEOL、GeminiSEM 450, Carl Zeiss)を用いて行った。
Figure JPOXMLDOC01-appb-C000003
(結果)
 ポリプロピレン(PP)、ポリテトラフルオロエチレン(PTFE)、ポリメタクリル酸メチル(PMMA)、シリコーンゴム(SR)、ウレタンゴム(PU)の5種類のマトリックス基板に対し、テトラフルオロ-1,4-ベンゾキノン(TFBQ)を用いてPPy重合体複合前後での表面の光学顕微鏡像を図2(A)-(E)及び図2(K)-(O)、断面の光学顕微鏡像を図2(F)-(J)及び図2(P)-(T)に示す。なお、顕微鏡像においては上面が合成時にモノマー蒸気が暴露される表面としている。なお、複合材料の断面は複合体裏面からSD型レバー式試料裁断器(SDL-100, Dumbbell)を用いて切断した。
 5種類のマトリックス基板すべてで、表面が黒くPPyによりコーティングされたことがわかった(図2(K)-(O))。PPはマトリックス表側の内部の一部、PMMA,SR,PUはマトリックスの内部全体でPPyの浸透が見られたが、PTFEでは浸透は見られなかった(図2(P)-(T))。PP,PTFE,SRの3種類については、図3(A)-5(D)で示すSEM像でさらなる表層部の形態観察を行った。
 PP/PPyについて、PPyは表面から22μm程度 PPマトリックスの内部に浸透し、220μmほどマトリックスの表面に堆積していることがわかった(図3(D))。さらに、SR/PPyでは厚さ方向に均一にPPyが浸透していることがわかった(図4(C)。一方PTFE/PPyでは、厚さ1.68μm程度のPPy薄膜が均一にマトリックス基板表面にコーティングされていて、浸透は見られなかった(図5(D))。
 PPyが浸透するものとしないものの相違点について考察すると、ガラス<結晶性プラスチック(PTFE,PP)<非晶性プラスチック(PMMA) <エラストマー(SR,PU)の順で浸透しやすくなる傾向にある。結晶性プラスチックの中でも、密度がより小さなPPでは浸透が見られた。ここから、浸透現象が起こるメカニズムとして高分子固体の持つ自由体積空間内でモノマーが重合しているという仮説が立てられる。これについては下記の(6)及び(7)で検討および考察を行う。
(2)フーリエ変換赤外分光法(FT-IR)による分子構造の解析
 上記「(1)PPy複合体の作製」で作製した各種PPyの複合体の確認を、フーリエ変換赤外分光装置(FT-IR-4200, JASCO)を用いて行った。ステージ上に基板試料を置き、ZnSeプリズムを用いた一回反射型AT R法(ATR PR0450-S)で測定を行った。測定条件は、測定範囲を4000~600cm-1、分解能を4cm-1、積算回数を128回とした。
(結果)
 SR単体およびSR/PPy複合体のIRスペクトルを図6に示す。スペクトルのAからHの各ピークについて、AがN-H伸縮、Bが芳香族C-H伸縮、CがC-H伸縮、Dが芳香族C=C面内振動、EがC-N伸縮、FがSi
-C変角振動、GがSi-O伸縮、HがC-HH面外変角振動と帰属できた。つまり、TFBQを用いた気相重合によりスチレンゴム(SR)にポリピロール(PPy)が複合されていることが確認された。TFBQはドーパントとして複合体中に存在する。
 なお、PTFE/PPy複合体の場合は、図7に示すように、両スペクトルのAからGの各ピークについて、AがN-H伸縮、Bが芳香族C-H伸縮、Cが芳香族C=C面内振動、DがC-N伸縮、EがC-F伸縮、FがC-H面内及び面外変角、GがC-F 2変角振動と帰属できた。つまり、つまり、TFBQを用いた気相重合により、PTFEの表面にPPyが堆積する様式でPTFEとPPyが複合されていることが確認された。
(3)X線回折による分子構造の解析
 上記「(1)PPy複合体の作製」で作製したPPy複合体の結晶構造の解析を、X線回折装置(Mini Flex and Bruker D8 Advance, Rigaku)を用いて行った。試料ホルダーに基板試料をのせ、CuKα線により連続スキャン法で測定を行った。測定条件は、走査速度を4 degree min -1、走査範囲を2~35 degreeとした。
(結果)
 図8に示すように、PP単体とPP/PPy複合体のスペクトルのAからGの各ピークについて、AおよびCからGはα-PP由来のピークであり、Aが(110)面、Cが(040)面、Dが(130)面、Eが(111)面、Fが(041)面、Gが(150)面と帰属できた。Bは非晶質部分であるβ-PP由来のピークである。よって、PPyはPPの非晶質部分に浸透し、結晶構造にわずかな変化を及ぼしたと考えられる。
(4)エネルギー分散型X線分析法(EDX)によるPMMA/PPy複合体の分子構造の解析
 上記「(1)PPy複合体の作製」で作製したPMMA/PPy複合体を2cm x 2cmに切り出し、ガラス容器に入れた。これにアセトン 20 mLを加え1時間超音波をかけて作成した分散液を得た。さらにPMMAの貧溶媒であるメタノール 40 mLを加え、1日間静置してPMMAのみを再沈殿させた。デカンテーションを行い、得られた分散液を分散液1とした。
 PMMA/PPy複合体から作成した分散液1のTEM観察はFE-TEM (Tecnai G2, FEI)を用いて行った。分散液1をCuグリッドに滴下し、溶媒を蒸発させてから試料を観察した。
 また、分散液1の試料内に存在する元素種の同定を、エネルギー分散型X線分光器(QUANTEX EDS, Bruker、X-Max N 80T, Oxford Instruments)を用いて行った。
(結果)
 図9(A)および図9(B)に、PMMA/PPy複合体から作成した分散液1におけるEDXスペクトル及びTEM像を示す。EDXスペクトルのAからDの各ピークについて、順にC、N、O、Fと帰属された。これらはPPyおよびTEBQの構成元素であることから、複合体内部にPPy及びTFBQが存在していることが確認された。
(5)エネルギー分散型X線分析法(EDS)によるSR/PPy複合体の分子構造の解析
 上記「(1)PPy複合体の作製」で作製したSR単体及びSR/PPy複合体について、エネルギー分散型X線分光器(QUANTEX EDS, Bruker、X-Max N 80T, Oxford Instruments)を用いて元素種の同定を行った。また、SR/PPy複合体の厚さ方向におけるN及びFの存在量のEDSラインプロファイルを行った。
(結果)
 SR単体及びSR/PPy複合体における各元素の比を表1に示す。またSR/PPyのES測定範囲のSEM像を図10(A)に、SR/PPy複合体の厚さ方向におけるN及びFの存在量のEDSラインプロファイルを図10(B)に示す。
 表1の5種類の元素は全てSR/PPy及びTFBQの構成元素であり、複合後のみN,Fが確認されたことから、複合体内部にPPy及びTFBQが存在していることがわかる。また、マッピングが断面全体に存在することから、測定した範囲でのSRの厚さ方向全体にPPyが存在して複合していることが確認された。
Figure JPOXMLDOC01-appb-T000004
(6)電子消滅寿命測定法によるSR/PPy複合体の分子構造の解析
 SR単体およびSR/PPy複合体の複合の評価を、薄膜対応陽電子消滅寿命測定装置(PALS-200A, Fuji Imvac)を用いて行った。試料を室温で真空脱気させてから、陽電子線源に22Naベースの陽電子ビームを用い、測定条件は、ビーム強度を5kV、温度を室温とし、真空雰囲気下で行った。得られた陽電子消滅寿命曲線から、平均自由体積半径:非線形最小二乗プログラムPOSITRONFITにより、成分の解析を行った。
(結果)
 図11(A),(B)の両曲線から、SRの自由体積がPPyの複合後に減少していることがわかった。陽電子消滅寿命測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 ここから、SR単体およびSR/PPy複合体の自由体積分率およびPPyの複合量を算出した。以下、その過程を述べる。
 まず自由堆積分率fは
Figure JPOXMLDOC01-appb-M000006
で表される。
SRについて、式(1)および表2から自由体積分率は約29.27%と計算される。
Figure JPOXMLDOC01-appb-M000007
同様に、SR/PPyの自由体積分率は約8.10%と計算される。
Figure JPOXMLDOC01-appb-M000008
 自由体積分率の減少量がPPyの複合量に相当するため、PPy複合量は、21.17%であり、PPy複合後にSR中の自由体積が減少していることが理解される。
 なお、PPyの密度1.6g/cm3であるので、PPy複合量を質量に換算するとSR基板1cm3あたり0.339gである。またSRの密度は1.13g/cm3であるので、占有体積を質量に換算するとSR基板1cm3あたり0.799gである。
Figure JPOXMLDOC01-appb-M000009
 以上のことから、SRマトリックスに対するPPyの複合量は0.3387/0.7992*100=42.38wt%と求まる。
(7)熱重量測定(TG-DTA)によるSR/PPy複合体の分子構造の解析
 SR単体およびSR/PPy複合体の複合の評価を、TG-DTA装置(DTA-60, Shimadzu)を用いて行った。測定条件は、温度範囲を30℃~800℃、昇温速度を10min-1とし、空気雰囲気下で行った。
(結果)
 図12に示すSR単体,SR/PPy複合体およびPPy標品のTG曲線から、SRへのPPyの複合量を算出した。以下、その過程を述べる。
 まずSR単体について、測定終了後に残存した質量は49.17wt%、水の燃焼を除いた100~800℃で減少したSRの質量は99.57wt%であった。SR/PPy複合体について、残存した質量は26.92wt%であったことから、100~800℃で減少したSRの質量は、99.57*26.92/49.17=54.51wt%であった。また、100℃までに減少した質量は0.61wt%であった。以上のことから、SR単体に対するPPyの複合量は44.88wt%であると求まった。
Figure JPOXMLDOC01-appb-M000010
 (6)で算出したPALSによるPPy複合量の実測値との相関を考察すると、TGから算出された複合量は、PALS法の実測値から算出された値とおおむね一致した。
(8)SR/PPy複合体の機械的特性の評価
 上記「(1)PPy複合体の作製」の方法に従って製造した厚さ0.5 mmのSR/PPy複合体について、裁断器を用いて4cm  x  0.4 cmに切り出したものをSR/PPy試験片とした。SR/PPy試験片は、導電性と形状の観点からコ-ティング条件が1 mmol 24時間,48時間のものを用いることとし、それぞれSR/PPy_1およびSR/PPy_2とした(表3)。
Figure JPOXMLDOC01-appb-T000011
 引張応力の印加は小型卓上試験機を用いて行い、ひずみ5%ごとに停止しデジタルマルチメ-タ-を用いて抵抗値を測定した。試験条件は、試験モードをコントロ-ル、試験速度を 1 mm sec -1、つかみ具間距離を1.5cm、抵抗値測定距離を1cmとし、同一の試料から切り出した4本の試験片で測定を行った。なお、抵抗値変化ΔR/R0は以下の式(2)で算出した。ここで、各ひずみでの抵抗値をR、ひずみ0%の抵抗値をR0とした。
Figure JPOXMLDOC01-appb-M000012
(結果)
 印加する引張応力が増加するにしたがって、抵抗値Rが増加することがわかった。試験片No. 1~No. 4のR0のばらつき(表4)は、PPyを複合する際にモノマ-および酸化剤蒸気の暴露量や拡散の程度が不均一となったことで、試験片を切り出す部分によってPPy複合量に差が生じたためと考えられる。
 SR/PPy_1及びSR/PPy_2の各々に印加した引張ひずみに対する、各試験片(No. 1~No. 4)のΔR/R0を計算値をプロットし、グラフの概形からSR/PPy_1のNo. 1およびSR/PPy_2のNo. 2を外れ値とみなし、これらを除いた値の平均値のグラフを図13(A)に示す。
Figure JPOXMLDOC01-appb-T000013
 上記「(7)熱重量測定(TG-DTA)によるSR/PPy複合体の分子構造の解析」と同様にSR/PPy_1及びSR/PPy_2のTG曲線(図14)からSR/PPy_1およびSR/PPy_2のPPy複合量を求めたところ、それぞれ約32wt%及び約37wt%と算出される。この結果から、PPy複合量が増加すると抵抗値変化の幅も増大することがわかった。つまり、PPyの複合量を調節することで外部刺激に対する感度の調節が可能であることがわかった。
(9)PU/PPy複合体の機械的特性の評価
 上記「(1)PPy複合体の作製」の方法に従って製造した厚さ6mmのPU/PPy複合体について、1.5cm  x 1cmに切り出したものをPU/PPy試験片とした。PU/PPy試験片は、導電性と形状の観点から10 mmol  24時間,48時間のものを用いることとし、それぞれPU/PPy_1およびPU/PPy_2とした。
 圧縮応力の印加は小型卓上試験機を用いて行い、圧縮治具は5mm x 30mmの歯形押し棒を選択した。ひずみ10%ごとに停止しデジタルマルチメ-タ-を用いて抵抗値を測定した。試験条件は、試験モ-ドをコントロ-ル、試験速度を10mm min -1、抵抗値測定距離を8mmとし、1つの試験片で3回測定を行った。抵抗値変化ΔR/R0は上記「(8)SR/PPy複合体の機械的特性の評価」の式(2)に従って算出した。
(結果)
 印加する圧縮応力が増加するにしたがって、抵抗値Rが減少することがわかった。また、同一の試験片で3回連続して測定を行ってもR0および抵抗値変化の幅に大きな差は生じず再現性があることがわかった。試験片No. 1~No. 3のR0を表5に示す。
 PU/PPy_1およびPU/PPy_2の各々に印加した圧縮ひずみおよび圧縮応力に対する、各試験片(No. 1~No. 3)のΔR/R0の平均値のグラフを図13(B)に示す。
Figure JPOXMLDOC01-appb-T000014
 上記「(7)熱重量測定(TG-DTA)によるSR/PPy複合体の分子構造の解析」と同様に測定したPU、PU/PPy_1、PU/PPy_2およびPPy標品のTG曲線(図14)から、PUへのPPy複合量を算出した。以下、その過程を述べる。まずPUについて、測定終了後に残存した質量は12.98 wt%、水の燃焼の影響はなかった。PU/PPy_1について、残存した質量は10.87 wt%であったことから、100~800℃で減少したPUの質量は83.74 wt%であった。また、100℃までに減少した質量は0.01 wt%であった。
Figure JPOXMLDOC01-appb-M000015
以上のことから、PU/PPy_1のPUに対するPPyの複合量は16.25 wt%であると求まった。
Figure JPOXMLDOC01-appb-M000016
 また同様にPU/PPy_2について、残存した質量は9.63 wt%であったことから、100~800℃で減少したPUの質量は74.19 wt%であった。また、100℃までに減少した質量は0.22 wt%であった。
Figure JPOXMLDOC01-appb-M000017
 以上のことから、PU/PPy_2のPUに対するPPyの複合量は25.59 wt%であると求まった。
Figure JPOXMLDOC01-appb-M000018
 以上の算出結果と図13(B)より、SR/PPy_1およびSR/PPy_2と同様、PU/PPy_1およびPU/PPy_2でも、PPyの複合量が増加すると抵抗値変化の幅が増大することがわかった。つまり、PU/PPyはPPyの複合量に応じた外部刺激に対する感度の調節が可能であることがわかった。
(10)複合体の感圧センサとしての応用
 上記「(1)PPy複合体の作製」の方法に従って作製した4cm x 4cmのSR/PPy複合体をSR/PPy試験片とした。曲げ応力の印加は手動で行い、一定の時間間隔で凸型および凹型と水平な状態を繰りかえしデジタルマルチメーターを用いて抵抗値を測定した。ここで、合成時にモノマー蒸気が直接暴露する面を表としたとき、凸型は表が外側、凹型は表が内側になるように曲げた状態を指す。測定条件は、曲げは手動で行い、抵抗値測定距離を3cmとした。
(結果)
 SR/PPy複合体への曲げ操作時間に対する抵抗値変化のグラフをそれぞれ示す(図15(B)及び(D)に該当)。なお、抵抗値変化は、抵抗値変化ΔR/R0は上記「(8)SR/PPy複合体の機械的特性の評価」の式(2)に従って算出した。凸型(図15(A))に曲げると抵抗値は上昇し、凹型(図15(C))に曲げると抵抗値は減少することがわかった。
実施例2 エチレンジオキシチオフェンに由来する構造単位を有する重合体(PEDOT複合体)の作製及び分析
(1)PEDOT複合体の作製
テトラフルオロ-1, 4-ベンゾキノン (TFBQ)1 mmolをガラス容器 (6 mLガラス管)に入れ、これを40 mLガラス製容器内に入れた。3, 4 -エチレンジオキシチオフェン(EDOT) 10 mmolを40 mLガラス製容器内に入れた。2 cm × 2 cmの大きさのシリコーンゴム (SR)を、40 mLガラス製容器の蓋に貼り付け、TFBQ、EDOP、SRのそれぞれが互いが触れないように40 mLガラス製容器内に設置した(図16)。これを60 ℃の恒温槽で24、48、72、96 時間静置し反応させた。生成物を回収し、未反応のモノマー分子や残存するオリゴマーを除去するため、60 ℃で48 時間真空乾燥を行い、ポリエチレンジオキシチオフェン(PEDOT)複合体を得た。その後、PEDOT複合体の観察および評価を行った。また、反応後のTFBQを取り出し、アセトンで洗浄することでPEDOT粉末を得た。
Figure JPOXMLDOC01-appb-C000019
(2)PEDOT複合前後の試験試料の顕微鏡観察
 シリコーンゴム (SR)に対してテトラフルオロ-1,4-ベンゾキノン (TFBQ)を用いてPEDOT複合体を作製する前後の試験材料の表面及び断面を、デジタルマイクロスコープ (VHX-1000, Keyence)を用いて観察した。なお、顕微鏡像においては上面が合成時にモノマー蒸気が暴露される表面としている。また、断面は複合体裏面からSD型レバー式試料裁断器 (SDL-100, Dumbbell)を用いて切断した。72時間後のPEDOT複合体についてはFE-SEM (JSM-7600-F, JEOL、GeminiSEM 450, Carl Zeiss)を用いて行った。
複合前と複合後のSRの表面を図17(A)-(E)に、複合前と複合後の断面の光学顕微鏡像を図18(A)-(H)に示す。SR基板は反応時間24 時間で薄い青色の着色が見られた。その後、48 h反応させることで完全に着色し、SRへのPEDOTの浸透又は複合化が確認された。72 時間反応させたPEDOT複合体の表層部のSEM像を図19に示す。表面から9.0μm程度の部分に特に複合が多いことが確認された。
(3)PEDOT複合体のFT-IRスペクトル分析
 上記「(1)PEDOT複合体の作製」と同様の方法で24 時間反応させ、ただしSi基板にコーティングしたPEDOT複合体、TFBQ結晶表面で得られたPEDOT粉末、及びTFBQ標品のFI-IRスペクトルを測定した。
 結果を図20に示す。3つのスペクトルのA~Gの各ピークについて、AがC=O伸縮振動、BがC=C伸縮振動、CがC-F伸縮振動、DがC-C変角振動、EがC-O-C伸縮振動、FがC -C伸縮振動、GがC-S-C伸縮振動とそれぞれ帰属できた。以上より、TFBQがドープされたPEDOT複合体がコーティングできたことが確認された。
(4)エネルギー分散型X線分析
 PEDOT複合体がSR基板の内部まで浸透していることを確認するために、(1)の方法で作製したSR/PEDOT(反応時間96時間)の断面のEDX元素マッピングを行い、スペクトルを測定した。EDX元素マッピングにはFE-SEMおよびFE-TEMに付属のエネルギー分散型X線分光器 (QUANTEX EDS, Bruker、X-Max N 80T, Oxford Instruments)を用いた。
 その結果をそれぞれ図21(A)~(F)および図22(A)及び(B)に示す。ここで、EDXスペクトルはSR/PEDOTの断面を垂直方向に6分割(表面からarea 1~6)し、それぞれのスペクトルを測定した。また、各元素の存在比を表6に示す。
 EDX元素マッピング、スペクトルの結果より、PEDOT由来のSはわずかに検出された。また、存在比を示した5 種類の元素は全てSR、PPyおよびTFBQの構成元素であり、PEDOT由来のS、ドーパントであるTFBQ由来のFの断面内部の存在量は少なかった。
Figure JPOXMLDOC01-appb-T000020
(6)Ramanスペクトル分析
 上記「(1)PEDOT複合体の作製」の方法により作製したSR/PEDOT複合体(反応時間96時間)の断面を4分割し、それぞれのRamanスペクトルを測定した。顕微レーザーラマン分光装置 (In Via Raman Microscope, Renishaw)を用いて行った。レーザー光源に波長532 nmの緑色波長のレーザーを用い、測定条件は、露光時間を1秒、積算回数を10回とした。図23にSR/PEDOT複合体(反応時間96 時間)の断面、TFBQ結晶表面で得られたPEDOT粉末、およびSR断面のRamanスペクトルを示す。
 6つのスペクトルのA、Bの各ピークについて、AがC=C対称伸縮振動、BがC=C逆対称伸縮振動とそれぞれ帰属できた。モノマー蒸気の暴露面である表面と、モノマー蒸気が反応容器内で回り込み接触する裏面付近ではそのピークが大きく、中心部分では小さいことから、内部に浸透しているが、浸透が少ないことがRamanの結果からもわかった。
 作製したSR/PEDOT(反応時間96 h)について二端子法で導電性評価を行ったところ、抵抗値は4.0 kΩであり、電気伝導率は
Figure JPOXMLDOC01-appb-M000021
と算出された。
実施例3 各種複素環式芳香族化合物を用いた複合材料の作製及び物性の分析
(1)導電性複合体の作製
 下記に示す12種類の複素環式芳香族化合物の各々5 mmolをガラス容器 (2 mLスクリュー管)に入れ、4 cm × 4 cmの大きさのシリコーンゴム (SR)を、120 mLポリプロピレン製容器の蓋に貼り付け、それぞれ120 mLポリプロピレン製容器内に互いが触れないように設置した。これを60 ℃の恒温槽で24 時間静置し反応させた。その後、SRを取り出し、TFBQを入れた120 mLポリプロピレン製容器内に互いが触れないように設置した。そして再度60 ℃の恒温槽で24 時間静置し反応させた(図24)。生成物を回収し、未反応のモノマー分子や残存するオリゴマーを除去するため、60 ℃で48 時間真空乾燥を行い、導電性高分子複合体を得た。以下、複合体を、SR/(導電性高分子名)で示す。
Figure JPOXMLDOC01-appb-C000022
(2)複合前後の試験資料の顕微鏡観察
 上記複素環式芳香族化合物の各モノマーをSR基板に対しTFBQを用いて複合した後の表面を図25(A)-(L)に、断面の光学顕微鏡像を図26(A)-(L)に示す。なお、顕微鏡像においては下面が合成時にモノマー蒸気が暴露される表面としている。また、断面は複合体裏面からSD型レバー式試料裁断器 (SDL-100, Dumbbell)を用いて切断した。
 本実験ではモノマーと酸化剤TFBQを別々に供給し反応させているが、図25(A)-(L)及び図26(A)-(L)よりSR内への導電性高分子の複合が確認された。これよりSR基板の自由体積空間中へモノマーが浸透・吸収され、その後自由体積空間内での酸化重合が進行したと考えられる。
(3)熱重量測定(TG-DTA)
 作製した12種類のSR複合体への導電性高分子の複合量を定量的に評価するため、実施例7と同じ条件でTGの測定を行った。得られたTG曲線を図27及び図28に示す。
 また、熱重量測定終了後の残存量より、以下の式を用いて導電性高分子の複合量を2通りの方法で算出した。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
ここで、導電性高分子を複合していないSRのみのTG測定後の残存量は44.89 %であった。算出した複合量を以下の表7及び表8に示す。
Figure JPOXMLDOC01-appb-T000025
 以上より、複合量が最も多かったのはg基準でも、mol基準でもPPy-1Amiであった。これはモノマーの大きさが比較的小さく、揮発速度が大きいため、モノマーが反応容器内に即座に蒸発し、SRの自由体積空間内に拡散していくためであると考えられる。また、Pyの1位に電子供与基であるアミノ基が結合していることで、Py環内の電子密度が高くなり、反応電位が下がったことも原因であると考えられる。
実施例4 共重合体を含む複合材料の作製及び物性の分析
(1)共重合体を含む複合体の作製
 実施例1のテトラフルオロ-1,4-ベンゾキノン(TFBQ)の代わりに、1,4-ベンゾキノン(BQ)を用いて、実施例1と同様の条件で、ピロール(Pr)とベンゾキノン(BQ)の共重合体である導電性高分子を得た。マトリックスはポリプロピレン (PP)、ポリテトラフルオロエチレン (PTFE)、ポリメタクリル酸メチル (PMMA),、及びシリコーンゴム (SR)とした。図29は共重合体の複合前後の基板の写真を、図30は基板の断面の光学顕微鏡像を示す。ここで、顕微鏡像においては上面が合成時にモノマー蒸気が暴露される表面としている。
(結果)
 4種類の基板すべてで表面が黒くBQ-Pyコーティングされた(図29(E)-(H))。PPは表側の一部、PMMA, SRは内部全体でBQ-Pyの浸透が見られたが、PTFEでは浸透は見られなかった(図30(E)-(H))。PMMAについて、反応終了直後は溶けて軟化していたが、その後室温で硬化し変形および脆くなることが確認された。
(2)分子構造の解析
 PTFEおよびPTFE/BQ-PyのIRスペクトルを図31に示す。両スペクトルのAからIの各ピークについて、AがO-H伸縮、BがN-H伸縮、Cが芳香族C-H伸縮、DがC=O伸縮、Eが芳香族C=C面内振動、FがC-N伸縮、GがC-F伸縮、HがC-H面内・面外変角IがC-F2変角振動と帰属できた。つまり、BQを用いた気相重合によりPTFE上にBQ-Pyが複合されたといえる。
 また同様に、SRおよびSR/BQ-PyのIRスペクトルを図32に示す。両スペクトルのAからJの各ピークについて、AがO-H伸縮、BがN-H伸縮、Cが芳香族C-H伸縮、DがC-H伸縮、EがC=O伸縮、Fが芳香族C=C面内振動、GがC-N伸縮、HがSi-C変角振動、IがSi-O伸縮、JがC-H面外変角振動と帰属できた。つまり、BQを用いた気相重合によりSR内にBQ-Pyが複合されたといえる。
 PTFE/BQ-PyおよびSR/BQ-PyのRamanスペクトルを図33に示す。両スペクトルのAからFの各ピークについて、Aがベンゾイド型のC-H面外変角振動、BがC-H伸縮、CがC-O伸縮、DがC-H面内変角振動、Eが芳香族C=C面内振動、FがC=O伸縮と帰属できた。つまり、BQを用いた気相重合によりPTFE上およびSR内にBQ-Pyが複合されたといえる。
(3)機械的特性の評価
 SRおよび反応時間の異なる3 種類のSR/BQ-Pyの引張試験における応力ひずみ曲線を図34に、弾性率を表9に示す。試験条件は、試験片サイズを4 cm × 0.2 cm、試験モードをシングル、試験速度を100 mm min-1、つかみ具間距離を1.5 cmで行った。
Figure JPOXMLDOC01-appb-T000026
 SR/BQ-Pyについて、BQ-Pyの複合量が多いほど最大応力および最大ひずみは減少し、弾性率は増加することがわかった。
 弾性率が増加する要因を考察すると、複合によりSRの自由体積空間にBQ-Pyが充填されたことでSR分子鎖の回転および移動の自由度が制限されるとともに、剛直な炭素骨格を持つBQ-Pyにかかる応力の寄与があるためと考えられる。そもそもSRは、主鎖にSiとOが交互に単結合したシロキサン骨格、側鎖にメチル基を有するポリシロキサンのユニットが三次元網目構造を構成しており、主鎖の動きやすさや熱的安定性が特徴である。これはゴム弾性を示すが、これは伸張によって減少したエントロピーを増大させるときの回復力であるエントロピー弾性のことである。複合によりSRのエントロピー弾性が減少するとともに、引張応力がBQ-Pyにもかかることで生じるエネルギー弾性が加わることで、複合量が多いほど弾性率が増加したといえる。
 一方で最大応力および最大ひずみが減少する要因を考察すると、SRの三次元網目構造部分にBQ-Pyが充填されて分子運動の自由度が低下することで、ゴム弾性による弾性変形の維持が困難になったためと考えられる。つまり、SRに対してBQ-Pyを複合することで力学的に強く脆いものへと変化し、複合量と相関があることがわかった。

Claims (11)

  1.  樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つであるマトリックスと、
     マトリックスの内部に存在する、複素環式芳香族化合物に由来する構造単位を有する重合体である導電性高分子と
    を含有する複合材料。
  2.  前記マトリックスの表面上に前記導電性高分子からなるコーティングを備え、前記表面から前記マトリックスの内部に向かって前記導電性高分子が浸透している請求項1に記載の複合材料。
  3.  前記マトリックスが、導電性高分子を収容可能な自由体積空間を有する結晶性樹脂、非結晶性樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つを含む請求項1に記載の複合材料。
  4.  前記導電性高分子が、複素環式芳香族化合物の重合体である請求項1に記載の複合材料。
  5.  前記導電性高分子が、窒素原子若しくは硫黄原子を含む、5員環又は6員環の複素環式芳香族化合物の重合体のうちの少なくとも一つを含む請求項1に記載の複合材料。
  6.  前記5員環又は6員環の複素環式芳香族化合物が、ポリピロール及びポリチオフェンのうちの少なくとも一つを含む請求項5に記載の複合材料。
  7.  前記導電性高分子が、ポリピロール及びポリチオフェンのうちの少なくとも一つを含む請求項1に記載の複合材料。
  8.  請求項1~7のいずれか一項に記載の複合材料を備えた感圧センサ。
  9.  請求項1に記載の複合材料の製造方法であって、
     複素環式芳香族化合物のモノマーを、酸化剤の存在下で蒸発させて、樹脂、エラストマー、及びゴムからなる群から選択される少なくとも一つであるマトリックスの内部に、複素環式芳香族化合物に由来する構造単位を有する重合体を浸透させる工程を含む方法。
  10.  前記浸透させる工程が、前記複素環式芳香族化合物に由来する構造単位を有する重合体のコーティングをマトリックスの表面に施すことにより、前記マトリックスの内部に複素環式芳香族化合物に由来する構造単位を有する重合体を浸透させることを含む請求項9に記載の方法。
  11.  前記酸化剤が、遷移金属硝酸塩又は置換基を有してもよいベンゾキノンを含む請求項9又は10に記載の方法。
PCT/JP2023/010994 2022-03-29 2023-03-20 マトリックス内への導電性高分子の複合化 WO2023189855A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052945 2022-03-29
JP2022-052945 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189855A1 true WO2023189855A1 (ja) 2023-10-05

Family

ID=88201250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010994 WO2023189855A1 (ja) 2022-03-29 2023-03-20 マトリックス内への導電性高分子の複合化

Country Status (1)

Country Link
WO (1) WO2023189855A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320361A (ja) * 1986-07-11 1988-01-28 Hoechst Gosei Kk 導電性高分子成形体の製造方法
JPS6320883A (ja) * 1986-07-14 1988-01-28 Fujikura Ltd 圧電フイルムおよびその製造方法
JPS63213209A (ja) * 1987-02-27 1988-09-06 凸版印刷株式会社 導電性フイルムの製造方法
JPH04149267A (ja) * 1990-10-12 1992-05-22 Bridgestone Corp 導電性高分子複合体の製造方法
JPH04307231A (ja) * 1991-01-17 1992-10-29 Dsm Nv 耐熱微孔性フィルムおよびコーティング方法
JP2006153471A (ja) * 2004-11-25 2006-06-15 Hitachi Cable Ltd 感圧センサ
JP2008022002A (ja) * 2006-07-10 2008-01-31 Samsung Electro Mech Co Ltd 印刷回路基板の製造方法
WO2018207699A1 (ja) * 2017-05-08 2018-11-15 学校法人 慶應義塾 グラファイト又はグラフェン様の層状構造を有する重合体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320361A (ja) * 1986-07-11 1988-01-28 Hoechst Gosei Kk 導電性高分子成形体の製造方法
JPS6320883A (ja) * 1986-07-14 1988-01-28 Fujikura Ltd 圧電フイルムおよびその製造方法
JPS63213209A (ja) * 1987-02-27 1988-09-06 凸版印刷株式会社 導電性フイルムの製造方法
JPH04149267A (ja) * 1990-10-12 1992-05-22 Bridgestone Corp 導電性高分子複合体の製造方法
JPH04307231A (ja) * 1991-01-17 1992-10-29 Dsm Nv 耐熱微孔性フィルムおよびコーティング方法
JP2006153471A (ja) * 2004-11-25 2006-06-15 Hitachi Cable Ltd 感圧センサ
JP2008022002A (ja) * 2006-07-10 2008-01-31 Samsung Electro Mech Co Ltd 印刷回路基板の製造方法
WO2018207699A1 (ja) * 2017-05-08 2018-11-15 学校法人 慶應義塾 グラファイト又はグラフェン様の層状構造を有する重合体

Similar Documents

Publication Publication Date Title
Kim et al. One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers
Yassar et al. Conductivity and conjugation length in poly (3-methylthiophene) thin films
Lee et al. Growth and properties of hybrid organic‐inorganic metalcone films using molecular layer deposition techniques
Choi et al. Flexible, low-power thin-film transistors made of vapor-phase synthesized high-k, ultrathin polymer gate dielectrics
Schopf et al. Polythiophenes-electrically conductive polymers
Smolin et al. Oxidative chemical vapor deposition of polyaniline thin films
Kee et al. Tuning the mechanical and electrical properties of stretchable PEDOT: PSS/ionic liquid conductors
Beland et al. Antimony‐Functionalized Phosphine‐Based Photopolymer Networks
Njoroge et al. Surface-initiated ring-opening metathesis polymerization of dicyclopentadiene from the vapor phase
Miao et al. Soluble polymer precursors via ring-Expansion metathesis polymerization for the synthesis of cyclic polyacetylene
Momin et al. Microstructural, compositional, topological and optical properties of plasma polymerized cyclohexane amorphous thin films
Dolynchuk et al. Elucidating the effect of interfacial interactions on crystal orientations in thin films of polythiophenes
WO2023189855A1 (ja) マトリックス内への導電性高分子の複合化
KR101809653B1 (ko) 발수성 및 발유성을 갖는 고분자 박막 및 이의 제조 방법
Li et al. Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride–ethyl ether as the electrolyte
Li et al. Adjusting the energy levels and bandgaps of conjugated polymers via Lewis acid–base reactions
TW201420720A (zh) 導電聚合物組合物及由其製成之透明電極和/或防靜電層
Kim et al. Synchronous Polymerization of 3, 4-Ethylenedioxythiophene and Pyrrole by Plasma Enhanced Chemical Vapor Deposition (PECVD) for Conductive Thin Film with Tunable Energy Bandgap
An et al. A robust and self-healing elastomer achieved by a thio-β-diketone-Cu (ii) coordination and H-bonding dual crosslinked system
Jang et al. Preparation of cationic latent initiators containing imidazole group and their effects on the properties of DGEBA epoxy resin
Guo et al. Dynamic borate ester bond-based 3D printing fluorescence polysiloxane with self-healing, antimicrobial, and shape memory
Zotti et al. Polyconjugated Azomethine Layers by Sequential Condensation of α, α ‘-Dialdehyde-oligothiophenes and 4, 4 ‘-Diamino-diphenylenes on ITO/Glass Electrodes
JP2011508954A (ja) ポリチオフェンおよびその誘導体に基づく高い導電率を示す塗膜の製造方法
Arslanov Polymer monolayers and Langmuir–Blodgett films. Polythiophenes
US8288507B2 (en) Metastable reaction mixtures for the in situ polymerization of conducting polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511905

Country of ref document: JP

Kind code of ref document: A