WO2023189778A1 - Composite material sheet - Google Patents

Composite material sheet Download PDF

Info

Publication number
WO2023189778A1
WO2023189778A1 PCT/JP2023/010754 JP2023010754W WO2023189778A1 WO 2023189778 A1 WO2023189778 A1 WO 2023189778A1 JP 2023010754 W JP2023010754 W JP 2023010754W WO 2023189778 A1 WO2023189778 A1 WO 2023189778A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
material sheet
surface layer
inorganic particles
fluid
Prior art date
Application number
PCT/JP2023/010754
Other languages
French (fr)
Japanese (ja)
Inventor
智也 加藤
哲弥 大塚
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023189778A1 publication Critical patent/WO2023189778A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to a composite material sheet.
  • thermosetting resins Conventionally, composite materials containing inorganic materials and thermosetting resins are known.
  • Patent Document 1 describes a composite material including a filler and a binding resin.
  • the filler is a scaly filler made of an inorganic material.
  • the binding resin is a thermosetting resin that binds the filler.
  • This composite material is a foam material formed so that a plurality of voids are dispersed.
  • the filler is accumulated on the inner wall of the void so that the flat surfaces of the filler overlap each other.
  • a slurry-like mixture is prepared by mixing a filler, a polyester resin, and a blowing agent such as ethanol, and the mixture is poured into a mold.
  • a composite material is produced by heating a mixture in a mold to a temperature higher than a curing temperature, foaming a polyester resin, and curing the foamed polyester resin.
  • Patent Document 1 has room for reexamination from the viewpoint of increasing the thermal conductivity in the surface layer of a sheet-like composite material.
  • the present invention provides a composite material sheet that is advantageous from the viewpoint of increasing thermal conductivity in the surface layer.
  • the present invention A skeleton part containing resin, multiple voids, a heat transfer path formed by inorganic particles; having a surface layer in which the resin and the inorganic particles are present; In a plan view of the surface layer, the ratio of the area of the portion where the inorganic particles are present to the area of the surface layer is 10% or more; Provides composite material sheets.
  • the above composite material sheet is advantageous from the viewpoint of increasing thermal conductivity in the surface layer.
  • FIG. 1 is a plan view schematically showing the surface of a composite material sheet in this embodiment.
  • FIG. 2 is a cross-sectional view of the composite material sheet taken along line II-II in FIG. 1.
  • FIG. 3A is a drawing schematically illustrating an example of a method for manufacturing a composite material sheet.
  • FIG. 3B is a drawing schematically illustrating another example of a method for manufacturing a composite material sheet.
  • FIG. 4A is a photograph of the composite material sheet according to Example 1 in plan view.
  • FIG. 4B is a photograph of the cross section of the composite material sheet according to Example 1.
  • FIG. 5A is a photograph of the composite material sheet according to Comparative Example 1 in plan view.
  • FIG. 5B is a photograph of the composite material sheet according to Comparative Example 1.
  • the composite material sheet 1 includes a skeleton portion 11, a plurality of voids 12, and a heat transfer path 15.
  • the skeleton portion 11 contains resin.
  • the heat transfer path 15 is formed by inorganic particles 13.
  • the composite material sheet 1 has a surface layer 1s in which resin and inorganic particles 13 contained in the skeleton portion 11 are present. In a plan view of the surface layer 1s, the ratio S 13 /S 1S of the area S 13 of the portion where the inorganic particles 13 are present to the area S 1S of the surface layer 1s is 10% or more.
  • the ratio S 13 /S 1S is preferably 12% or more, more preferably 15% or more, and still more preferably 20% or more.
  • the ratio S 13 /S 1S is, for example, 80% or less. Thereby, since the skeleton portion 11 occupies a certain amount of volume in the surface layer 1s, the composite material sheet 1 tends to have desired strength.
  • the ratio S 13 /S 1S may be included in any of the ranges determined by all combinations of the lower limit of any one of 10%, 12%, 15%, and 20% and 80%.
  • the inorganic particles 13 form a plurality of scattered aggregates 13a in a plan view of the surface layer 1s. According to such a configuration, variations in thermal conductivity are less likely to occur within the plane of the surface layer 1s.
  • the plurality of aggregates 13a are arranged, for example, to form a sea-island structure.
  • the average diameter of the aggregates 13a in a plan view of the surface layer 1s is not limited to a specific value. Its average diameter is, for example, 600 ⁇ m to 1100 ⁇ m. According to such a configuration, the ratio S 13 /S 1S can be easily adjusted to a desired range, and the thermal conductivity in the surface layer 1s of the composite material sheet 1 can be easily increased.
  • the average diameter of the aggregates 13a in a plan view of the surface layer 1s can be determined, for example, by measuring the maximum diameter of 50 or more aggregates 13a in a plan view of the surface layer 1s, and calculating the arithmetic average of the maximum diameters.
  • the average diameter of the aggregates 13a in a plan view of the surface layer 1s may be 650 ⁇ m or more, 700 ⁇ m or more, or 800 ⁇ m or more.
  • the average diameter may be 1050 ⁇ m or less, or 1000 ⁇ m or less.
  • the average diameter of the aggregates 13a in a plan view of the surface layer 1s is determined by all combinations of the lower limit of any one of 600 ⁇ m, 650 ⁇ m, 700 ⁇ m, and 800 ⁇ m and the upper limit of any one of 1100 ⁇ m, 1000 ⁇ m, and 1050 ⁇ m. It may be included in any of the specified ranges.
  • the ratio of the average value of the distance between the centers of the aggregates 13a to the average diameter of the aggregates 13a is not limited to a specific value.
  • the ratio is, for example, 2 or less.
  • the ratio S 13 /S 1S can be easily adjusted to a desired range, and the thermal conductivity in the surface layer 1s of the composite material sheet 1 can be easily increased.
  • the average value of the distance between the centers of the aggregates 13a in a plan view of the surface layer 1s is, for example, the distance between the centers of the aggregates 13a closest to the center of a circle whose diameter is the maximum diameter of 50 or more aggregates 13a in a plan view of the surface layer 1s. It can be determined by measuring the shortest distance to the center of a circle whose diameter is the maximum diameter of the aggregate 13a and finding the arithmetic average of the shortest distances.
  • the ratio of the average distance between the centers of the aggregates 13a to the average diameter of the aggregates 13a may be 1.75 or less, or may be 1.5 or less.
  • the ratio may be 1 or more, 1.1 or more, or 1.2 or more.
  • the ratio is within the range determined by all combinations of the lower limit of any one of 1, 1.1, and 1.2 and the upper limit of any one of 2, 1.75, and 1.5. may be included in
  • the inorganic particles 13 are arranged, for example, along the periphery of the voids 12 in the surface layer 1s. As a result, aggregates 13a are formed.
  • the maximum diameter d2 is larger than the maximum diameter d1.
  • the maximum diameter d1 is the maximum diameter of the surface layer 1s of the void 12 in the thickness direction.
  • the maximum diameter d2 is the maximum diameter in the in-plane direction of the surface layer 1s of the void 12 that is in contact with the surface layer 1s. According to such a configuration, the ratio S 13 /S 1S can be easily adjusted to a desired range, and the thermal conductivity in the surface layer 1s of the composite material sheet 1 can be easily increased.
  • the ratio d2/d1 of the maximum diameter d2 to the maximum diameter d1 in the void 12 in contact with the surface layer 1s is, for example, greater than 1, may be 1.1 or more, or may be 1.2 or more, It may be 1.3 or more, 1.4 or more, or 1.5 or more.
  • the ratio d2/d1 is, for example, 3 or less.
  • the thickness of the composite material sheet 1 is not limited to a specific value.
  • the thickness of the composite material sheet 1 is, for example, 10 mm or less. In this case, the ratio S 13 /S 1S is easily adjusted to a desired range, and the thermal conductivity in the surface layer 1s of the composite material sheet 1 is likely to be high.
  • the thickness of the composite material sheet 1 may be 8 mm or less, 5 mm or less, or 3 mm or less.
  • the thickness of the composite material sheet 1 is, for example, 0.1 mm or more.
  • the thickness of the surface layer 1s is, for example, 0.1 to 10% of the thickness of the composite material sheet 1, and is, for example, 1 ⁇ m to 300 ⁇ m.
  • the thickness of the surface layer 1s may correspond to, for example, the shortest distance from the surface of the composite material sheet 1 to the void 12 in a cross-sectional view of the composite material sheet 1.
  • the resin contained in the skeleton portion 11 is not limited to a specific resin.
  • the resin contained in the skeleton portion 11 is, for example, a thermosetting resin.
  • thermosetting resins are phenolic resins, urea resins, melamine resins, diallyl phthalate resins, polyester resins, epoxy resins, aniline resins, silicone resins, furan resins, polyurethane resins, alkylbenzene resins, guanamine resins, xylene resins, and imides. It is resin.
  • the curing temperature of the thermosetting resin is, for example, 25°C to 160°C.
  • the inorganic particles 13 are not limited to specific particles.
  • the inorganic particles 13 have, for example, a higher thermal conductivity than that of the resin included in the skeleton portion 11.
  • Examples of inorganic materials contained in the inorganic particles 13 include hexagonal boron nitride (h-BN), alumina, crystalline silica, amorphous silica, aluminum nitride, magnesium oxide, carbon fiber, silver, copper, aluminum, and silicon carbide. , graphite, zinc oxide, silicon nitride, silicon carbide, cubic boron nitride (c-BN), beryllia, diamond, carbon black, graphene, carbon nanotubes, carbon fiber, and aluminum hydroxide.
  • the number of types of inorganic particles 13 in the composite material sheet 1 may be only one, or two or more types of inorganic particles 13 may be used in combination in the composite material sheet 1.
  • the shape of the inorganic particles 13 is not limited to a specific shape. Examples of the shape are spherical shape, rod shape (including short fiber shape), scale shape, and needle shape.
  • the aspect ratio of the inorganic particles 13 is not limited to a specific value.
  • the aspect ratio of the inorganic particles 13 is, for example, less than 50, may be 40 or less, or may be 30 or less.
  • the aspect ratio of the inorganic particles 13 may be 1, 2 or more, or 3 or more.
  • the aspect ratio is the ratio of the maximum diameter of the particles to the minimum diameter of the particles (maximum diameter/minimum diameter) when the inorganic particles 13 are viewed from the direction in which the projected area of the inorganic particles 13 is maximized.
  • the average particle diameter of the inorganic particles 13 is not limited to a specific value.
  • the average particle size of the inorganic particles 13 is, for example, 0.05 ⁇ m to 100 ⁇ m, may be 0.1 ⁇ m to 50 ⁇ m, may be 0.1 ⁇ m to 30 ⁇ m, or may be 0.5 to 10 ⁇ m. .
  • the "average particle size" can be determined, for example, by a laser diffraction scattering method.
  • the average particle diameter is determined by the 50% cumulative value (median diameter ) d50 .
  • the shape of the inorganic particles 13 can be determined, for example, by observation using a scanning electron microscope (SEM) or the like.
  • the aspect ratio is 1.0 or more and less than 1.7, particularly 1.0 or more and 1.5 or less, and even 1.0 or more and 1.3 or less, and at least part of the outline
  • the inorganic particles 13 have a spherical shape.
  • the average particle size of the inorganic particles 13 is, for example, 0.1 ⁇ m to 50 ⁇ m, may be 0.1 ⁇ m to 10 ⁇ m, or may be 0.5 ⁇ m to 5 ⁇ m.
  • the average particle size of the inorganic particles 13 is, for example, 0.1 ⁇ m to 20 ⁇ m, and may be 0.5 ⁇ m to 15 ⁇ m.
  • the average thickness of the inorganic particles 13 is, for example, 0.05 ⁇ m to 1 ⁇ m, and may be 0.08 ⁇ m to 0.5 ⁇ m.
  • the average thickness can be determined by measuring the thickness of 50 arbitrary inorganic particles 13 using a SEM and calculating the arithmetic mean value.
  • the minimum diameter (usually short axis length) of the inorganic particles 13 is, for example, 0.01 ⁇ m to 10 ⁇ m, and may be 0.05 ⁇ m to 1 ⁇ m.
  • the maximum diameter (usually the major axis length) of the inorganic particles 13 is, for example, 0.1 ⁇ m to 20 ⁇ m, and may be 0.5 ⁇ m to 10 ⁇ m. If the size of the inorganic particles 13 is within this range, the heat transfer paths 15 are likely to be formed in the thickness direction of the composite material sheet 1 by the plurality of inorganic particles 13.
  • the content of inorganic particles 13 in the composite material sheet 1 is not limited to a specific value.
  • the content of inorganic particles 13 in the composite material sheet 1 is, for example, 10% by mass to 80% by mass, may be 10% by mass to 70% by mass, or may be 10% by mass to 55% by mass.
  • the content of inorganic particles 13 in the composite material sheet 1 is, for example, 1% to 50% by volume, may be 2% to 45% by volume, or may be 5% to 40% by volume, It may be 5% to 30% by volume.
  • the composite material sheet 1 can have high thermal conductivity and desired rigidity.
  • the mass-based content of the inorganic particles 13 in the composite material sheet 1 can be determined, for example, by removing materials other than the inorganic particles 13 from the composite material sheet 1. For example, materials other than the inorganic particles 13 are burned out from the composite material sheet 1.
  • the content of the inorganic particles 13 may be determined using elemental analysis. For example, acid is added to the composite material sheet 1, microwave irradiation is applied, and the composite material sheet 1 is subjected to pressure acid decomposition. Examples of acids that can be used include hydrofluoric acid, concentrated sulfuric acid, concentrated hydrochloric acid, and aqua regia.
  • the solution obtained by pressure acid decomposition is analyzed for elements using inductively coupled plasma optical emission spectroscopy (ICP-AES). Based on the results, the content of inorganic particles 13 on a mass basis in the composite material sheet 1 can be determined.
  • ICP-AES inductively coupled plasma optical emission spectroscopy
  • the volume-based content of inorganic particles 13 in the composite material sheet 1 can be determined from the mass and density of the inorganic particles 13 contained in the composite material sheet 1 and the volume and porosity of the composite material sheet 1. Specifically, the volume A of the inorganic particles 13 in the composite material sheet 1 is calculated from the mass and density of the inorganic particles 13. Separately, the volume B of the composite material sheet 1 excluding the volume of voids is calculated based on the porosity of the composite material sheet 1. The volume-based content of inorganic particles 13 in the composite material sheet 1 can be determined based on the relationship (A/B) ⁇ 100.
  • the density of the inorganic particles 13 can be determined, for example, by heating the composite material sheet 1 at high temperature in an electric furnace to burn off the organic material, and then determining the density of the remaining inorganic particles 13 according to Japanese Industrial Standards (JIS) R 1628:1997 or JIS Z 2504:2012. You can ask for it in compliance.
  • JIS Japanese Industrial Standards
  • the method for manufacturing the composite material sheet 1 is not limited to a specific method.
  • the composite material sheet 1 can be manufactured using, for example, a manufacturing apparatus 100 shown in FIG. 3A.
  • the fluid 2 is subjected to a predetermined process to manufacture the composite material sheet 1.
  • the fluid 2 contains a thermosetting resin 2b and inorganic particles 13.
  • the fluid 2 is heated and the thermosetting resin 2b is cured. Thereby, a composite material sheet 1 is obtained.
  • the thickness t1 and the thickness t2 are not limited to specific values as long as the relationship t1>t2 is satisfied.
  • the thickness t1 is, for example, 0.5 mm or more, may be 1 mm or more, or may be 3 mm or more.
  • the thickness t1 is, for example, 30 mm or less, may be 20 mm or less, or may be 10 mm or less.
  • the thickness t2 is, for example, 0.1 mm or more, may be 0.5 mm or more, or may be 1 mm or more.
  • the thickness t2 is, for example, 20 mm or less, may be 10 mm or less, or may be 5 mm or less.
  • the thickness of the composite material sheet 1 is, for example, the same as the thickness t2.
  • the thickness of the composite material sheet 1 may be 90% to 110% of the thickness t2.
  • the temperature around the fluid 2 is maintained at a temperature higher than the curing temperature of the thermosetting resin 2b.
  • the heating time of the fluid 2 is not limited to a specific value as long as the thermosetting resin 2b can be cured.
  • the heating time of the fluid 2 depends on the type and additives of the thermosetting resin 2b, but is, for example, 10 seconds or more and 1 hour or less.
  • the method for preparing the fluid 2 is not limited to a specific method.
  • the fluid 2 is obtained by kneading the thermosetting resin 2b and the inorganic particles 13.
  • the fluid 2 may be obtained by infiltrating the thermosetting resin 2b into the gaps between the inorganic particles 13. Therefore, the inorganic particles 13 are uniformly dispersed in the fluid 2. Thereby, the thermal conductivity of the composite material sheet 1 is less likely to vary within the plane of the composite material sheet 1.
  • the fluid 2 contains, for example, a porosity agent 2p.
  • a plurality of voids 12 are formed in the composite material sheet 1 by the porosity forming agent 2p, and the composite material sheet 1 has a porous structure.
  • the pore-forming agent 2p is not limited to a specific porosity-forming agent as long as it can form a plurality of voids 12 in the composite material sheet 1.
  • the porosity-forming agent 2p is dissolved in a specific solvent.
  • the porosity agent 2p may be evaporated, softened, or thermally decomposed by heating.
  • the porosity agent 2p may be shrunk or removed.
  • the porosity agent 2p can be shrunk or removed by contact with a specific solvent or by heating. The shrunken porosity agent 2p may remain in the composite material sheet 1.
  • the pore-forming agent 2p may have a hollow structure or a solid structure.
  • the pore-forming agent 2p may be hollow resin particles.
  • the heat treatment softens the resin constituting the resin particles, causing the hollow portion to disappear or shrink, and voids 12 may be formed accordingly.
  • the porosity forming agent 2p may be solid resin particles. In this case, when the porosity-forming agent 2p comes into contact with a specific solvent, the porosity-forming agent 2p is dissolved in the solvent, and voids 12 can be formed.
  • resins contained in hollow or solid resin particles include polystyrene (PS), polyethylene (PE), polymethyl methacrylate (PMMA), ethylene vinyl acetate copolymer (EVA), polyethylene (PE), These are polyvinyl chloride (PVC), polypropylene (PP), acrylonitrile-butadiene-styrene copolymer (ABS), ethylene-propylene-diene rubber (EPDM), thermoplastic elastomer (TPE), and polyvinyl alcohol (PVA).
  • PS polystyrene
  • PE polyethylene
  • PMMA polymethyl methacrylate
  • EVA ethylene vinyl acetate copolymer
  • PVC polyvinyl chloride
  • PP polypropylene
  • ABS acrylonitrile-butadiene-styrene copolymer
  • EPDM ethylene-propylene-diene rubber
  • TPE thermoplastic elastomer
  • PVA polyvinyl alcohol
  • the inorganic particles 13 form hollow aggregates in the fluid 2, for example.
  • the pores 2h are formed inside the aggregate of the inorganic particles 13.
  • the inorganic particles 13 are aggregated around the holes 2h so as to cover the holes 2h. For example, a plurality of aggregates are dispersed in the fluid 2.
  • the inorganic particles 13 are aggregated around the pore-forming agent 2p so as to cover the outer surface of the porosity-forming agent 2p. Therefore, the inorganic particles 13 can be arranged along the periphery of the voids 12 in the composite material sheet 1 .
  • the manufacturing apparatus 100 includes, for example, a pair of members 20.
  • the pair of members 20 are arranged at a predetermined interval.
  • the fluid 2 is sandwiched between a pair of members 20 and formed to have a second thickness t2.
  • the distance between the pair of members 20 may or may not be constant.
  • the interval between the pair of members 20 may narrow or widen as the fluid 2 passes, as long as the fluid 2 can be formed to have the second thickness t2.
  • the fluid 2 is formed to have a second thickness t2 in a state where it can flow in the plane of the fluid 2 between the pair of members 20.
  • the thickness of the fluid 2 decreases while the fluid 2 flows in the plane of the fluid 2, so that the inorganic particles 13 aggregate along the flat surface in the surface layer 1s of the composite material sheet 1. It is easy to become in a state of
  • the pair of members 20 is not limited to a specific member as long as the fluid 2 can flow so that the fluid 2 has the second thickness t2.
  • the manufacturing apparatus 100 includes, for example, a transport device 40.
  • the conveyance device 40 conveys the fluid 2 so that the fluid 2 passes between the pair of members 20 .
  • the productivity of the composite material sheet 1 tends to be high.
  • the manufacturing apparatus 100 includes, for example, a heater 30.
  • the heater 30 heats the fluid 2 when the fluid 2 is between the pair of members 20 or after the fluid 2 passes between the pair of members 20. Thereby, the fluid 2 is heated in a state where the fluid 2 has the second thickness t2, and the thermosetting resin 2b can be cured.
  • the pair of members 20 includes, for example, a conveying belt 22.
  • the fluid 2 can be heated by a belt 22, for example.
  • the heater 30 is placed in contact with the belt 22.
  • the belt 22 is heated by the heater 30, and the belt 22 further heats the fluid 2.
  • the heater 30 is arranged inside the belt 22, for example.
  • the belt 22 may be made of metal or resin.
  • the molding machine including the belt 22 is, for example, a double belt press machine.
  • the double belt press machine may be a sliding shoe type double belt press machine or a roller type double belt press machine.
  • a pressure block with a built-in heater is placed inside the belt. This pressurizes and heats the belt.
  • the pressure block is fixed and a belt slides on the pressure block.
  • the sliding shoe type double belt press machine may include a plurality of pressure blocks. The temperatures of the plurality of pressure blocks may be the same or different. Some of the plurality of pressure blocks may be used as pressure blocks for cooling.
  • pressure is applied from the inside of the belt using multiple rollers. In this case, the roller itself may have a built-in heater, or the belt may be indirectly heated by another heater.
  • the manufacturing apparatus 100 includes, for example, a supply device 10.
  • the supply device 10 supplies the fluid 2.
  • the fluid 2 having the first thickness t1 is supplied.
  • a fluid 2 is placed on a substrate 3.
  • the fluid 2 is conveyed together with the base material 3 between the pair of members 20 .
  • the feeder 10 feeds the fluid 2 toward the substrate 3, and the fluid 2 is placed on the substrate 3.
  • the pair of members 20 deform the fluid 2 so that it has a second thickness t2 that is smaller than the first thickness t1 when the fluid 2 is supplied from the supply device 10.
  • the fluid 2 is continuously placed on the base material 3 that is unwound from a rolled body (not shown). Thereby, continuous production of the composite material sheet 1 is possible, and the productivity of the composite material sheet 1 tends to be high.
  • a laminate 5 may be formed by disposing the fluid 2 between the base material 3 and the release sheet 4.
  • the laminate 5 is conveyed between a pair of members 20.
  • the composite material sheet 1 can be protected by the base material 3 and the release sheet 4.
  • the fluid 2 may be placed between the pair of members 20 in a state where it is in contact with at least one of the members 20 .
  • the supply device 10 is not limited to a specific supply device as long as it can supply the fluid 2.
  • the supply device 10 is, for example, a die coater.
  • the fluid 2 is placed on the substrate 3 by die coating. According to such a configuration, the fluid 2 can be placed on the base material 3 with a uniform thickness.
  • the manufacturing apparatus 100 can be modified from various viewpoints. For example, after molding the fluid 2 having a first thickness t1 to have a second thickness t2 smaller than the first thickness t1, the fluid 2 may be heated to harden the thermosetting resin 2b.
  • the inorganic particles 13 tend to aggregate along the flat surface in the surface layer 1s of the composite material sheet 1, and the inorganic particles 13 tend to be arranged at a high density in the surface layer 1s of the composite material sheet 1. Therefore, the thermal conductivity of the surface layer 1s of the composite material sheet 1 tends to increase, and the thermal conductivity of the composite material sheet 1 also tends to increase.
  • the manufacturing apparatus 100 may further include a partition having a dimension equal to or larger than the distance between the pair of members 20, if necessary. Such a partition facilitates suppressing deformation of a portion of the fluid 1 along the gap between the pair of members 20.
  • the manufacturing apparatus 100 may be modified, for example, to a manufacturing apparatus 200 shown in FIG. 3B.
  • the manufacturing apparatus 200 is configured in the same manner as the manufacturing apparatus 100 except for parts that are specifically explained. Components of the manufacturing apparatus 200 that are the same as or correspond to those of the manufacturing apparatus 100 are given the same reference numerals, and detailed description thereof will be omitted. The description regarding the manufacturing apparatus 200 also applies to the manufacturing apparatus 100 unless technically contradictory.
  • the pair of members 20 includes a first pair of rollers 24 and a second pair of rollers 25.
  • the fluid 2 is conveyed by a pair of members 20.
  • the second pair of rollers 25 is arranged downstream of the first pair of rollers 24 in the transport direction of the fluid 2.
  • the distance between the rollers in the second pair of rollers 25 is less than or equal to the distance between the rollers in the first pair of rollers 24.
  • the distance between the rollers is the shortest distance between the rollers.
  • the fluid 2 having the first thickness t1 is made to have the second thickness t2 by passing between the first pair of rollers 24 and between the second pair of rollers 25. molded.
  • the distance between the rollers in the second pair of rollers 25 may be smaller than the distance between the rollers in the first pair of rollers 24.
  • the heater 30 is arranged downstream of the second pair of rollers 25, for example. According to such a configuration, the fluid 2 is heated after passing between the pair of members 20.
  • the fluid 2 may be heated by at least one of the first pair of rollers 24 and the second pair of rollers 25, or may not be heated by the first pair of rollers 24 and the second pair of rollers 25. .
  • the composite material sheet 1 may be manufactured using a device other than the manufacturing device 100 and the manufacturing device 200.
  • the composite material sheet 1 may be manufactured, for example, by a method including the following (i), (ii), and (iii).
  • (ii) A predetermined plate is placed on the fluid 2 with a spacer placed between the plate and the base material, and a weight is placed on the plate so that the fluid 2 has the second thickness t2. Let it flow.
  • the laminate of the base material, fluid 2, plate, and weight prepared in (ii) is placed in a heating furnace to harden the thermosetting resin 2b of the fluid 2, thereby obtaining a composite material sheet 1.
  • the reaction solution was heated to 120° C. over 30 minutes. Thereafter, the reaction solution was kept at 120° C. for 1 hour to prepare a styrene resin particle-containing solution. After the liquid containing styrene resin particles was cooled to 95° C., 2 parts by weight of cyclohexane and 7 parts by weight of butane were pressurized into the autoclave as blowing agents. Thereafter, the temperature of this solution was raised to 120°C again. Thereafter, the solution was kept at 120° C. for 1 hour, and then cooled to room temperature to obtain a slurry. Expandable styrene resin particles were obtained by dehydrating, washing, and drying this slurry.
  • the expandable styrene resin particles were sieved to obtain expandable styrene resin particles having a particle diameter of 0.2 mm to 0.3 mm.
  • the expandable styrene resin particles were foamed using a pressure foaming machine (BHP) manufactured by Daikai Kogyo Co., Ltd. to obtain spherical expanded polystyrene beads having an average diameter of 650 ⁇ m to 1200 ⁇ m.
  • the expanded polystyrene beads were passed through a JIS test sieve with nominal openings (JIS Z 8801-1:2019) of 1.18 mm and 1 mm.
  • Example 1 A silicone resin precursor was prepared by mixing agents A and B of DOWSIL SE 1896 FR A/B manufactured by Dow Corporation at a weight ratio of 1:1 as an impregnant. 11.3 parts by weight of this silicone resin precursor was prepared for 1 part by weight of expanded polystyrene beads. Separately, 20 parts by weight of scale-like boron nitride (aspect ratio 20) was prepared for 1 part by weight of expanded polystyrene beads.
  • the fluid according to Example 1 was obtained by adding the above thermosetting resin to a container containing the above composite particles and filling the spaces between the composite particles with the thermosetting resin.
  • a coating film of this fluid was formed by die coating on a base material which is a PET film SS4A (thickness: 50 ⁇ m) manufactured by Nipper Co., Ltd. The thickness of this coating film was 5.0 mm.
  • the above-mentioned PET film was layered on top of the coating film to obtain a laminate.
  • the fluid in the laminate was made to flow to a thickness of 3.0 mm using a sliding shoe type double belt press, and the temperature of the belt of the double belt press was adjusted to 100°C to release the thermosetting resin in the fluid. hardened.
  • the heating time of the fluid was 5 minutes. Peel the cured product of the fluid from the base material and release sheet, cut the cured product into predetermined dimensions, and immerse it in acetone for 30 minutes to dissolve the polyethylene beads in the composite particles and remove the polystyrene beads from the cured product. did. Thereafter, the cured product was heated at 90° C. to volatilize acetone to obtain a composite material sheet according to Example 1.
  • the thickness of the composite material sheet according to Example 1 was 3.05 mm.
  • Example 2 A composite material sheet according to Example 2 was produced in the same manner as in Example 1, except that a roller type double belt press machine was used instead of the sliding shoe type double belt press machine. The fluid in the laminate was fluidized using a roller type double belt press to have a thickness of 3.0 mm. The thickness of the composite material sheet according to Example 2 was 3.0 mm.
  • Example 3 Instead of a sliding shoe type double belt press machine, multiple pairs of rollers are used to flow the fluid in the laminate to a thickness of 3.0 mm, and then the fluid is heated in a heating furnace to form the fluid.
  • a composite material sheet according to Example 3 was produced in the same manner as in Example 1, except that the thermosetting resin in Example 3 was cured. In molding using multiple pairs of rollers, the fluid passed between the rollers in the multiple pairs of rollers. The distance between the rollers in the most upstream pair of rollers was 3.5 mm, and the distance between the rollers in another pair of most downstream rollers was 3.0 mm. During heating in the heating furnace, the temperature inside the heating furnace was adjusted to 100°C. The heating time of the fluid was 5 minutes. The thickness of the composite material sheet according to Example 3 was 2.9 mm.
  • thermosetting resin was added to this plastic case and defoamed under reduced pressure.
  • the pressure at this time was -0.08 MPa to -0.09 MPa in gauge pressure.
  • This operation was repeated three times to impregnate the thermosetting resin between the polystyrene beads.
  • the silicone resin was cured by heating at 80° C. for 2 hours to obtain a resin molded product containing polystyrene beads.
  • This resin molded product was cut into predetermined dimensions. By immersing this in acetone for 30 minutes, the polystyrene beads were dissolved and removed from the resin molded product.
  • a composite material sheet according to Comparative Example 1 was produced by heating the resin molded product at 90° C. to volatilize acetone. In the composite material sheet according to Comparative Example 1, the surface layer (skin layer) was not cut.
  • the thickness of the composite material sheet according to Comparative Example 1 was 3.5 mm.
  • ⁇ Thermal conductivity> In accordance with the American Society for Testing and Materials standard (ASTM) D5470-01 (one-way steady heat flow method), a heat flow meter method was used using a single test specimen and a symmetric configuration method using a thermal conductivity measuring device TCM1001 manufactured by Resca. The thermal conductivity in the thickness direction of the composite material sheets according to each Example and Comparative Example 1 was measured. Each composite material sheet having a thickness t was cut into a square shape with a side length of 20 mm in plan view to obtain a test piece. Silicone grease SCH-20 manufactured by Sunhayato Co., Ltd. was applied to both main surfaces of the test piece so that the thickness of the silicone grease layer was 100 ⁇ m.
  • the thermal conductivity of the silicone grease was 0.84 W/(m ⁇ K).
  • an upper rod with a heating block adjusted to 110°C and a lower rod with a cooling block adjusted to 20°C was used.
  • a block made of oxygen-free copper was used as the test block.
  • a measurement sample was prepared by sandwiching the test piece between oxygen-free copper blocks with a silicone grease layer in between. This measurement sample was sandwiched between an upper rod and a lower rod. Heat was applied in the thickness direction of the test piece.
  • the temperature difference ⁇ T S between the upper and lower surfaces of the test piece was determined according to the following formulas (1) and (2).
  • ⁇ T C is the temperature difference between the top and bottom surfaces of the oxygen-free copper block (test block).
  • q 1 is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at multiple temperature measurement points on the upper rod
  • q 2 is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at multiple temperature measurement points on the upper rod. It is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at the temperature measurement point.
  • t b is the sum of the thicknesses of the oxygen-free copper blocks.
  • k b is the thermal conductivity of the block made of oxygen-free copper.
  • the average diameter dBN of the boron nitride aggregates in the surface layer in plan view and the average value D S of the distance between the centers of the aggregates were determined.
  • the average diameter dBN was determined by measuring the maximum diameter of 50 or more boron nitride aggregates in a plan view of the surface layer of each composite material sheet, and calculating the arithmetic average of the maximum diameters.
  • the average value D S is the maximum diameter of the boron nitride aggregates closest to the center of a circle whose diameter is the maximum diameter of 50 or more boron nitride aggregates in a plan view of the surface layer of each composite material sheet.
  • the diameter was determined by measuring the shortest distance from the center of the circle and finding the arithmetic average of the shortest distances. The results are shown in Table 1.
  • the thermal conductivity in the thickness direction of the composite material sheet according to the example was higher than the thermal conductivity in the thickness direction of the composite material sheet according to Comparative Example 1.
  • the ratio S BN /S 1S in the composite material sheet according to the example was higher than the ratio S BN /S 1S in the composite material sheet according to Comparative Example 1.
  • the first aspect of the present invention is A skeleton part containing resin, multiple voids, a heat transfer path formed by inorganic particles; having a surface layer in which the resin and the inorganic particles are present; In a plan view of the surface layer, the ratio of the area of the portion where the inorganic particles are present to the area of the surface layer is 10% or more; Provides composite material sheets.
  • the second aspect of the present invention is The inorganic particles form a plurality of scattered aggregates in a plan view of the surface layer, A composite material sheet according to the first aspect is provided.
  • the third aspect of the present invention is In a plan view of the surface layer, the ratio of the average value of the distance between the centers of the aggregates to the average diameter of the aggregates is 2 or less, A composite material sheet according to the second aspect is provided.
  • the fourth aspect of the present invention is The average diameter of the aggregates in a plan view of the surface layer is 600 ⁇ m to 1100 ⁇ m, A composite material sheet according to the second side or the third side is provided.
  • the fifth aspect of the present invention is The inorganic particles are arranged along the periphery of the void in the surface layer to form the aggregate,
  • the maximum diameter of the void in contact with the surface layer in the in-plane direction of the surface layer is larger than the maximum diameter of the void in the thickness direction of the surface layer.
  • a composite material sheet according to any one of the second to fourth sides is provided.
  • the sixth aspect of the present invention is The thickness of the composite material sheet is 10 mm or less, A composite material sheet according to any one of the first side to the fifth side is provided.

Abstract

A composite material sheet 1 comprises a skeleton part 11, a plurality of gaps 12, and a heat transfer path 15. The skeleton part 11 includes a resin. The heat transfer path 15 is formed of inorganic particles 13. The composite material sheet 1 has a surface layer 1s in which the resin included in the skeleton part 11 and the inorganic particles 13 are present. The ratio S13/S1Sof the area S13 of the section in which the inorganic particles 13 are present to the area S1S of the surface layer 1s in the plan view of the surface layer 1s is not less than 10%.

Description

複合材料シートcomposite material sheet
 本発明は、複合材料シートに関する。 The present invention relates to a composite material sheet.
 従来、無機材料及び熱硬化性樹脂を含む複合材料が知られている。 Conventionally, composite materials containing inorganic materials and thermosetting resins are known.
 例えば、特許文献1には、フィラーと、結合樹脂とを備えた複合材料が記載されている。フィラーは、無機材料からなる鱗片状のフィラーである。結合樹脂は、そのフィラーを結合する熱硬化性樹脂である。この複合材料は、複数のボイドが分散するように形成された発泡材料である。ボイドの内壁には、フィラーの平坦面同士が重なるように、フィラーが集積されている。例えば、フィラー、ポリエステル系樹脂、及びエタノール等の発泡剤が混合されてスラリー状の混合物が調製され、その混合物が金型内に投入されている。金型内の混合物を硬化温度以上で加熱して、ポリエステル系樹脂を発泡させつつ発泡したポリエステル樹脂を硬化させることによって、複合材料が作製されている。 For example, Patent Document 1 describes a composite material including a filler and a binding resin. The filler is a scaly filler made of an inorganic material. The binding resin is a thermosetting resin that binds the filler. This composite material is a foam material formed so that a plurality of voids are dispersed. The filler is accumulated on the inner wall of the void so that the flat surfaces of the filler overlap each other. For example, a slurry-like mixture is prepared by mixing a filler, a polyester resin, and a blowing agent such as ethanol, and the mixture is poured into a mold. A composite material is produced by heating a mixture in a mold to a temperature higher than a curing temperature, foaming a polyester resin, and curing the foamed polyester resin.
特開2018-109101号公報Japanese Patent Application Publication No. 2018-109101
 特許文献1に記載の技術は、シート状の複合材料の表層における熱伝導率を高める観点から再検討の余地を有する。 The technique described in Patent Document 1 has room for reexamination from the viewpoint of increasing the thermal conductivity in the surface layer of a sheet-like composite material.
 そこで、本発明は、表層における熱伝導率を高める観点から有利な複合材料シートを提供する。 Therefore, the present invention provides a composite material sheet that is advantageous from the viewpoint of increasing thermal conductivity in the surface layer.
 本発明は、
 樹脂を含む骨格部と、
 複数の空隙と、
 無機粒子によって形成された伝熱路と、を含み、
 前記樹脂及び前記無機粒子が存在する表層を有し、
 前記表層の平面視において、前記表層の面積に対する、前記無機粒子が存在する部分の面積の比は、10%以上である、
 複合材料シートを提供する。
The present invention
A skeleton part containing resin,
multiple voids,
a heat transfer path formed by inorganic particles;
having a surface layer in which the resin and the inorganic particles are present;
In a plan view of the surface layer, the ratio of the area of the portion where the inorganic particles are present to the area of the surface layer is 10% or more;
Provides composite material sheets.
 上記の複合材料シートは、表層における熱伝導率を高める観点から有利である。 The above composite material sheet is advantageous from the viewpoint of increasing thermal conductivity in the surface layer.
図1は、本実施形態における複合材料シートの表面を模式的に示す平面図である。FIG. 1 is a plan view schematically showing the surface of a composite material sheet in this embodiment. 図1のII-II線を切断線とする複合材料シートの断面図である。FIG. 2 is a cross-sectional view of the composite material sheet taken along line II-II in FIG. 1. FIG. 図3Aは、複合材料シートの製造方法の一例を模式的に説明する図面である。FIG. 3A is a drawing schematically illustrating an example of a method for manufacturing a composite material sheet. 図3Bは、複合材料シートの製造方法の別の一例を模式的に説明する図面である。FIG. 3B is a drawing schematically illustrating another example of a method for manufacturing a composite material sheet. 図4Aは、平面視における実施例1に係る複合材料シートの写真である。FIG. 4A is a photograph of the composite material sheet according to Example 1 in plan view. 図4Bは、実施例1に係る複合材料シートの断面の写真である。FIG. 4B is a photograph of the cross section of the composite material sheet according to Example 1. 図5Aは、平面視における比較例1に係る複合材料シートの写真である。FIG. 5A is a photograph of the composite material sheet according to Comparative Example 1 in plan view. 図5Bは、比較例1に係る複合材料シートの写真である。FIG. 5B is a photograph of the composite material sheet according to Comparative Example 1.
 以下、本発明の実施形態について図面を参照しながら説明する。以下の説明は、本発明の例示であり、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description is an illustration of the present invention, and the present invention is not limited to the following embodiments.
 図1及び図2に示す通り、複合材料シート1は、骨格部11と、複数の空隙12と、伝熱路15とを含んでいる。骨格部11は、樹脂を含んでいる。伝熱路15は、無機粒子13によって形成されている。複合材料シート1は、骨格部11に含まれる樹脂及び無機粒子13が存在する表層1sを有する。表層1sの平面視において、表層1sの面積S1Sに対する無機粒子13が存在する部分の面積S13の比S13/S1Sは10%以上である。 As shown in FIGS. 1 and 2, the composite material sheet 1 includes a skeleton portion 11, a plurality of voids 12, and a heat transfer path 15. The skeleton portion 11 contains resin. The heat transfer path 15 is formed by inorganic particles 13. The composite material sheet 1 has a surface layer 1s in which resin and inorganic particles 13 contained in the skeleton portion 11 are present. In a plan view of the surface layer 1s, the ratio S 13 /S 1S of the area S 13 of the portion where the inorganic particles 13 are present to the area S 1S of the surface layer 1s is 10% or more.
 例えば、特許文献1に記載の複合材料の作製方法によれば、複合材料の表層におけるフィラーの密度を高めることは難しいと理解される。なぜなら、フィラー、樹脂、及び発泡剤を含むスラリー状の混合物が発泡しながら樹脂が硬化する過程において、フィラーの配置は発泡の成り行きで決まり、複合材料の表層におけるフィラーの密度を調整できるわけではないからである。一方、複合材料シート1では比S13/S1Sが10%以上となっており、表層1sにおいて無機粒子13が高い密度で配置されている。このため、複合材料シート1の表層1sにおける熱伝導率が高くなりやすい。ひいては、複合材料シート1の厚み方向における熱伝導率が高くなりやすい。 For example, according to the method for producing a composite material described in Patent Document 1, it is understood that it is difficult to increase the density of the filler in the surface layer of the composite material. This is because, in the process of foaming a slurry-like mixture containing filler, resin, and foaming agent while the resin hardens, the placement of the filler is determined by the foaming process, and the density of the filler in the surface layer of the composite material cannot be adjusted. It is from. On the other hand, in the composite material sheet 1, the ratio S 13 /S 1S is 10% or more, and the inorganic particles 13 are arranged at a high density in the surface layer 1s. Therefore, the thermal conductivity in the surface layer 1s of the composite material sheet 1 tends to be high. As a result, the thermal conductivity of the composite material sheet 1 in the thickness direction tends to increase.
 比S13/S1Sは、望ましくは12%以上であり、より望ましくは15%以上であり、さらに望ましくは20%以上である。比S13/S1Sは、例えば80%以下である。これにより、表層1sにおいて骨格部11がある程度の体積を占めるので、複合材料シート1が所望の強度を有しやすい。比S13/S1Sは、10%、12%、15%、及び20%のいずれか1つの下限値と、80%との全ての組み合わせによって定まる範囲のいずれかに含まれてもよい。 The ratio S 13 /S 1S is preferably 12% or more, more preferably 15% or more, and still more preferably 20% or more. The ratio S 13 /S 1S is, for example, 80% or less. Thereby, since the skeleton portion 11 occupies a certain amount of volume in the surface layer 1s, the composite material sheet 1 tends to have desired strength. The ratio S 13 /S 1S may be included in any of the ranges determined by all combinations of the lower limit of any one of 10%, 12%, 15%, and 20% and 80%.
 図1に示す通り、無機粒子13は、表層1sの平面視において、点在する複数の凝集物13aをなしている。このような構成によれば、表層1sの面内において熱伝導率のばらつきが生じにくい。複数の凝集物13aは、例えば、海島構造をなすように配置されている。 As shown in FIG. 1, the inorganic particles 13 form a plurality of scattered aggregates 13a in a plan view of the surface layer 1s. According to such a configuration, variations in thermal conductivity are less likely to occur within the plane of the surface layer 1s. The plurality of aggregates 13a are arranged, for example, to form a sea-island structure.
 表層1sの平面視における凝集物13aの平均径は、特定の値に限定されない。その平均径は、例えば600μm~1100μmである。このような構成によれば、比S13/S1Sが所望の範囲に調整されやすく、複合材料シート1の表層1sにおける熱伝導率が高くなりやすい。表層1sの平面視における凝集物13aの平均径は、例えば、表層1sの平面視において50個以上の凝集物13aの最大径を測定し、その最大径の算術平均を求めることによって決定できる。 The average diameter of the aggregates 13a in a plan view of the surface layer 1s is not limited to a specific value. Its average diameter is, for example, 600 μm to 1100 μm. According to such a configuration, the ratio S 13 /S 1S can be easily adjusted to a desired range, and the thermal conductivity in the surface layer 1s of the composite material sheet 1 can be easily increased. The average diameter of the aggregates 13a in a plan view of the surface layer 1s can be determined, for example, by measuring the maximum diameter of 50 or more aggregates 13a in a plan view of the surface layer 1s, and calculating the arithmetic average of the maximum diameters.
 表層1sの平面視における凝集物13aの平均径は、650μm以上であってもよいし、700μm以上であってもよいし、800μm以上であってもよい。その平均径は、1050μm以下であってもよいし、1000μm以下であってもよい。表層1sの平面視における凝集物13aの平均径は、600μm、650μm、700μm、及び800μmのいずれか1つの下限値と、1100μm、1000μm、及び1050μmのいずれか1つの上限値との全ての組み合わせによって定まる範囲のいずれかに含まれてもよい。 The average diameter of the aggregates 13a in a plan view of the surface layer 1s may be 650 μm or more, 700 μm or more, or 800 μm or more. The average diameter may be 1050 μm or less, or 1000 μm or less. The average diameter of the aggregates 13a in a plan view of the surface layer 1s is determined by all combinations of the lower limit of any one of 600 μm, 650 μm, 700 μm, and 800 μm and the upper limit of any one of 1100 μm, 1000 μm, and 1050 μm. It may be included in any of the specified ranges.
 表層1sの平面視において、凝集物13aの平均径に対する凝集物13a同士の中心間距離の平均値の比は、特定の値に限定されない。その比は、例えば2以下である。このような構成によれば、比S13/S1Sが所望の範囲に調整されやすく、複合材料シート1の表層1sにおける熱伝導率が高くなりやすい。表層1sの平面視における凝集物13a同士の中心間距離の平均値は、例えば、表層1sの平面視において50個以上の凝集物13aの最大径を直径とする円の中心に対して最近接の凝集物13aの最大径を直径とする円の中心との最短距離を測定し、その最短距離の算術平均を求めることによって決定できる。 In a plan view of the surface layer 1s, the ratio of the average value of the distance between the centers of the aggregates 13a to the average diameter of the aggregates 13a is not limited to a specific value. The ratio is, for example, 2 or less. According to such a configuration, the ratio S 13 /S 1S can be easily adjusted to a desired range, and the thermal conductivity in the surface layer 1s of the composite material sheet 1 can be easily increased. The average value of the distance between the centers of the aggregates 13a in a plan view of the surface layer 1s is, for example, the distance between the centers of the aggregates 13a closest to the center of a circle whose diameter is the maximum diameter of 50 or more aggregates 13a in a plan view of the surface layer 1s. It can be determined by measuring the shortest distance to the center of a circle whose diameter is the maximum diameter of the aggregate 13a and finding the arithmetic average of the shortest distances.
 表層1sの平面視において、凝集物13aの平均径に対する凝集物13a同士の中心間距離の平均値の比は、1.75以下であってもよく、1.5以下であってもよい。その比は1以上であってもよく、1.1以上であってもよく、1.2以上であってもよい。その比は、1、1.1、及び1.2のいずれか1つの下限値と、2、1.75、及び1.5のいずれか1つの上限値との全ての組み合わせによって定まる範囲のいずれかに含まれてもよい。 In a plan view of the surface layer 1s, the ratio of the average distance between the centers of the aggregates 13a to the average diameter of the aggregates 13a may be 1.75 or less, or may be 1.5 or less. The ratio may be 1 or more, 1.1 or more, or 1.2 or more. The ratio is within the range determined by all combinations of the lower limit of any one of 1, 1.1, and 1.2 and the upper limit of any one of 2, 1.75, and 1.5. may be included in
 図2に示す通り、無機粒子13は、例えば、表層1sにおいて空隙12の周縁に沿って配置されている。これにより、凝集物13aが形成されている。表層1sに接している空隙12において、最大径d2は、最大径d1よりも大きい。最大径d1は、空隙12の表層1sの厚み方向における最大径である。最大径d2は、表層1sに接している空隙12の表層1sの面内方向における最大径である。このような構成によれば、比S13/S1Sが所望の範囲に調整されやすく、複合材料シート1の表層1sにおける熱伝導率が高くなりやすい。 As shown in FIG. 2, the inorganic particles 13 are arranged, for example, along the periphery of the voids 12 in the surface layer 1s. As a result, aggregates 13a are formed. In the void 12 in contact with the surface layer 1s, the maximum diameter d2 is larger than the maximum diameter d1. The maximum diameter d1 is the maximum diameter of the surface layer 1s of the void 12 in the thickness direction. The maximum diameter d2 is the maximum diameter in the in-plane direction of the surface layer 1s of the void 12 that is in contact with the surface layer 1s. According to such a configuration, the ratio S 13 /S 1S can be easily adjusted to a desired range, and the thermal conductivity in the surface layer 1s of the composite material sheet 1 can be easily increased.
 表層1sに接している空隙12における最大径d1に対する最大径d2の比d2/d1は、例えば1より大きく、1.1以上であってもよいし、1.2以上であってもよいし、1.3以上であってもよいし、1.4以上であってもよいし、1.5以上であってもよい。比d2/d1は、例えば3以下である。 The ratio d2/d1 of the maximum diameter d2 to the maximum diameter d1 in the void 12 in contact with the surface layer 1s is, for example, greater than 1, may be 1.1 or more, or may be 1.2 or more, It may be 1.3 or more, 1.4 or more, or 1.5 or more. The ratio d2/d1 is, for example, 3 or less.
 複合材料シート1の厚みは、特定の値に限定されない。複合材料シート1の厚みは、例えば10mm以下である。この場合、比S13/S1Sが所望の範囲に調整されやすく、複合材料シート1の表層1sにおける熱伝導率が高くなりやすい。 The thickness of the composite material sheet 1 is not limited to a specific value. The thickness of the composite material sheet 1 is, for example, 10 mm or less. In this case, the ratio S 13 /S 1S is easily adjusted to a desired range, and the thermal conductivity in the surface layer 1s of the composite material sheet 1 is likely to be high.
 複合材料シート1の厚みは、8mm以下であってもよく、5mm以下であってもよく、3mm以下であってもよい。複合材料シート1の厚みは、例えば、0.1mm以上である。 The thickness of the composite material sheet 1 may be 8 mm or less, 5 mm or less, or 3 mm or less. The thickness of the composite material sheet 1 is, for example, 0.1 mm or more.
 表層1sの厚みは、例えば、複合材料シート1の厚みの0.1~10%であり、例えば、1μm~300μmである。表層1sの厚みは、例えば、複合材料シート1の断面視において複合材料シート1の表面から空隙12までの最短距離に相当しうる。 The thickness of the surface layer 1s is, for example, 0.1 to 10% of the thickness of the composite material sheet 1, and is, for example, 1 μm to 300 μm. The thickness of the surface layer 1s may correspond to, for example, the shortest distance from the surface of the composite material sheet 1 to the void 12 in a cross-sectional view of the composite material sheet 1.
 骨格部11に含まれる樹脂は、特定の樹脂に限定されない。骨格部11に含まれる樹脂は、例えば、熱硬化性樹脂である。熱硬化性樹脂の例は、フェノール樹脂、尿素樹脂、メラミン樹脂、ジアリルフタレート樹脂、ポリエステル樹脂、エポキシ樹脂、アニリン樹脂、シリコーン樹脂、フラン樹脂、ポリウレタン樹脂、アルキルベンゼン樹脂、グアナミン樹脂、キシレン樹脂、及びイミド樹脂である。熱硬化性樹脂の硬化温度は、例えば、25℃~160℃である。 The resin contained in the skeleton portion 11 is not limited to a specific resin. The resin contained in the skeleton portion 11 is, for example, a thermosetting resin. Examples of thermosetting resins are phenolic resins, urea resins, melamine resins, diallyl phthalate resins, polyester resins, epoxy resins, aniline resins, silicone resins, furan resins, polyurethane resins, alkylbenzene resins, guanamine resins, xylene resins, and imides. It is resin. The curing temperature of the thermosetting resin is, for example, 25°C to 160°C.
 無機粒子13は特定の粒子に限定されない。無機粒子13は、例えば、骨格部11に含まれる樹脂の熱伝導率よりも高い熱伝導率を有する。無機粒子13に含まれる無機材料の例は、六方晶窒化ホウ素(h‐BN)、アルミナ、結晶性シリカ、非晶性シリカ、窒化アルミニウム、酸化マグネシウム、炭素繊維、銀、銅、アルミニウム、炭化ケイ素、黒鉛、酸化亜鉛、窒化ケイ素、炭化ケイ素、立方晶窒化ホウ素(c‐BN)、べリリア、ダイヤモンド、カーボンブラック、グラフェン、カーボンナノチューブ、カーボンファイバー、及び水酸化アルミニウムである。複合材料シート1における無機粒子13の種類は1種類のみであってもよいし、複合材料シート1において2種類以上の無機粒子13が組み合わせられて用いられてもよい。 The inorganic particles 13 are not limited to specific particles. The inorganic particles 13 have, for example, a higher thermal conductivity than that of the resin included in the skeleton portion 11. Examples of inorganic materials contained in the inorganic particles 13 include hexagonal boron nitride (h-BN), alumina, crystalline silica, amorphous silica, aluminum nitride, magnesium oxide, carbon fiber, silver, copper, aluminum, and silicon carbide. , graphite, zinc oxide, silicon nitride, silicon carbide, cubic boron nitride (c-BN), beryllia, diamond, carbon black, graphene, carbon nanotubes, carbon fiber, and aluminum hydroxide. The number of types of inorganic particles 13 in the composite material sheet 1 may be only one, or two or more types of inorganic particles 13 may be used in combination in the composite material sheet 1.
 無機粒子13の形状は、特定の形状に限定されない。その形状の例は、球形状、ロッド状(短繊維状を含む)、鱗片状、及び針状である。 The shape of the inorganic particles 13 is not limited to a specific shape. Examples of the shape are spherical shape, rod shape (including short fiber shape), scale shape, and needle shape.
 無機粒子13のアスペクト比は特定の値に限定されない。無機粒子13のアスペクト比は、例えば50未満であり、40以下であってもよく、30以下であってもよい。無機粒子13のアスペクト比は、1であってもよく、2以上であってもよく、3以上であってもよい。アスペクト比は、無機粒子13の投影面積が最大となる方向から無機粒子13を見たときの、粒子の最小径に対する粒子の最大径の比(最大径/最小径)である。 The aspect ratio of the inorganic particles 13 is not limited to a specific value. The aspect ratio of the inorganic particles 13 is, for example, less than 50, may be 40 or less, or may be 30 or less. The aspect ratio of the inorganic particles 13 may be 1, 2 or more, or 3 or more. The aspect ratio is the ratio of the maximum diameter of the particles to the minimum diameter of the particles (maximum diameter/minimum diameter) when the inorganic particles 13 are viewed from the direction in which the projected area of the inorganic particles 13 is maximized.
 無機粒子13の平均粒径は、特定の値に限定されない。無機粒子13の平均粒径は、例えば0.05μm~100μmであり、0.1μm~50μmであってもよく、0.1μm~30μmであってもよく、0.5~10μmであってもよい。「平均粒径」は、例えば、レーザー回折散乱法によって求めることができる。平均粒径は、例えば、マイクロトラック・ベル社製の粒度分布計(マイクロトラックMT3300EXII)を用いて、頻度が体積基準の分率で示される粒度分布曲線より求められる、50%累積値(メディアン径)d50である。 The average particle diameter of the inorganic particles 13 is not limited to a specific value. The average particle size of the inorganic particles 13 is, for example, 0.05 μm to 100 μm, may be 0.1 μm to 50 μm, may be 0.1 μm to 30 μm, or may be 0.5 to 10 μm. . The "average particle size" can be determined, for example, by a laser diffraction scattering method. The average particle diameter is determined by the 50% cumulative value (median diameter ) d50 .
 無機粒子13の形状は、例えば、走査型電子顕微鏡(SEM)等を用いた観察によって決定できる。例えば、アスペクト比(最大径/最小径)が1.0以上1.7未満、特に1.0以上1.5以下、さらには1.0以上1.3以下であって、輪郭の少なくとも一部、特に実質的に全部が弧状の曲線である場合、無機粒子13は、球形状であると判断できる。 The shape of the inorganic particles 13 can be determined, for example, by observation using a scanning electron microscope (SEM) or the like. For example, the aspect ratio (maximum diameter/minimum diameter) is 1.0 or more and less than 1.7, particularly 1.0 or more and 1.5 or less, and even 1.0 or more and 1.3 or less, and at least part of the outline In particular, when substantially all of the curves are arcuate, it can be determined that the inorganic particles 13 have a spherical shape.
 無機粒子13が球形状である場合、無機粒子13の平均粒径は、例えば0.1μm~50μmであり、0.1μm~10μmであってもよく、0.5μ~5μmであってもよい。無機粒子13が鱗片状である場合、無機粒子13の平均粒径は、例えば0.1μm~20μmであり、0.5μm~15μmであってもよい。加えて、無機粒子13の平均厚さは、例えば0.05μm~1μmであり、0.08μm~0.5μmであってもよい。平均厚さは、SEMを用いて任意の50個の無機粒子13の厚さを測定し、その算術平均値を求めることによって決定できる。無機粒子13がロッド状である場合、無機粒子13の最小径(通常は短軸長さ)は、例えば、0.01μm~10μmであり、0.05μm~1μmであってもよい。また、無機粒子13の最大径(通常は長軸長さ)は、例えば、0.1μm~20μmであり、0.5μ~10μmであってもよい。無機粒子13のサイズがこのような範囲であれば、複数の無機粒子13によって複合材料シート1の厚み方向に伝熱路15が形成されやすい。 When the inorganic particles 13 are spherical, the average particle size of the inorganic particles 13 is, for example, 0.1 μm to 50 μm, may be 0.1 μm to 10 μm, or may be 0.5 μm to 5 μm. When the inorganic particles 13 are scale-like, the average particle size of the inorganic particles 13 is, for example, 0.1 μm to 20 μm, and may be 0.5 μm to 15 μm. In addition, the average thickness of the inorganic particles 13 is, for example, 0.05 μm to 1 μm, and may be 0.08 μm to 0.5 μm. The average thickness can be determined by measuring the thickness of 50 arbitrary inorganic particles 13 using a SEM and calculating the arithmetic mean value. When the inorganic particles 13 are rod-shaped, the minimum diameter (usually short axis length) of the inorganic particles 13 is, for example, 0.01 μm to 10 μm, and may be 0.05 μm to 1 μm. Further, the maximum diameter (usually the major axis length) of the inorganic particles 13 is, for example, 0.1 μm to 20 μm, and may be 0.5 μm to 10 μm. If the size of the inorganic particles 13 is within this range, the heat transfer paths 15 are likely to be formed in the thickness direction of the composite material sheet 1 by the plurality of inorganic particles 13.
 複合材料シート1における無機粒子13の含有量は、特定の値に限定されない。複合材料シート1における無機粒子13の含有量は、例えば10質量%~80質量%であり、10質量%~70質量%であってもよく、10質量%~55質量%であってもよい。複合材料シート1における無機粒子13の含有量は、例えば1体積%~50体積%であり、2体積%~45体積%であってもよく、5体積%~40体積%であってもよく、5体積%~30体積%であってもよい。無機粒子13の含有量の調節により、複合材料シート1は高い熱伝導性能及び所望の剛性を有しうる。 The content of inorganic particles 13 in the composite material sheet 1 is not limited to a specific value. The content of inorganic particles 13 in the composite material sheet 1 is, for example, 10% by mass to 80% by mass, may be 10% by mass to 70% by mass, or may be 10% by mass to 55% by mass. The content of inorganic particles 13 in the composite material sheet 1 is, for example, 1% to 50% by volume, may be 2% to 45% by volume, or may be 5% to 40% by volume, It may be 5% to 30% by volume. By adjusting the content of the inorganic particles 13, the composite material sheet 1 can have high thermal conductivity and desired rigidity.
 複合材料シート1における無機粒子13の質量基準の含有量は、例えば、複合材料シート1から無機粒子13以外の材料を除去して求めることができる。例えば、複合材料シート1から無機粒子13以外の材料を焼失させる。精度の高い測定とするために、無機粒子13の含有量は、元素分析を用いて決定してもよい。例えば、複合材料シート1に酸を加え、マイクロ波を照射し、複合材料シート1を加圧酸分解する。酸は、例えば、フッ酸、濃硫酸、濃塩酸、及び王水等を使用できる。加圧酸分解して得られた溶液について、誘導結合プラズマ発光分光分析法(ICP‐AES)を用いて元素を分析する。その結果に基づいて、複合材料シート1における質量基準の無機粒子13の含有量を求めることができる。 The mass-based content of the inorganic particles 13 in the composite material sheet 1 can be determined, for example, by removing materials other than the inorganic particles 13 from the composite material sheet 1. For example, materials other than the inorganic particles 13 are burned out from the composite material sheet 1. In order to measure with high precision, the content of the inorganic particles 13 may be determined using elemental analysis. For example, acid is added to the composite material sheet 1, microwave irradiation is applied, and the composite material sheet 1 is subjected to pressure acid decomposition. Examples of acids that can be used include hydrofluoric acid, concentrated sulfuric acid, concentrated hydrochloric acid, and aqua regia. The solution obtained by pressure acid decomposition is analyzed for elements using inductively coupled plasma optical emission spectroscopy (ICP-AES). Based on the results, the content of inorganic particles 13 on a mass basis in the composite material sheet 1 can be determined.
 複合材料シート1における体積基準の無機粒子13の含有量は、複合材料シート1に含まれている無機粒子13の質量及び密度と、複合材料シート1の体積及び空隙率とから求めることができる。具体的には、無機粒子13の質量と密度とから、複合材料シート1における無機粒子13の体積Aを算出する。これとは別に、複合材料シート1の空隙率に基づいて、空隙の体積を含まない複合材料シート1の体積Bを算出する。複合材料シート1における体積基準の無機粒子13の含有量は、(A/B)×100の関係に基づいて決定できる。 The volume-based content of inorganic particles 13 in the composite material sheet 1 can be determined from the mass and density of the inorganic particles 13 contained in the composite material sheet 1 and the volume and porosity of the composite material sheet 1. Specifically, the volume A of the inorganic particles 13 in the composite material sheet 1 is calculated from the mass and density of the inorganic particles 13. Separately, the volume B of the composite material sheet 1 excluding the volume of voids is calculated based on the porosity of the composite material sheet 1. The volume-based content of inorganic particles 13 in the composite material sheet 1 can be determined based on the relationship (A/B)×100.
 無機粒子13の密度は、例えば、複合材料シート1を電気炉における高温加熱によって有機材料を焼失させ、残った無機粒子13について、日本産業規格(JIS) R 1628:1997又はJIS Z 2504:2012に準拠して求めることができる。 The density of the inorganic particles 13 can be determined, for example, by heating the composite material sheet 1 at high temperature in an electric furnace to burn off the organic material, and then determining the density of the remaining inorganic particles 13 according to Japanese Industrial Standards (JIS) R 1628:1997 or JIS Z 2504:2012. You can ask for it in compliance.
 複合材料シート1を製造する方法は、特定の方法に限定されない。複合材料シート1は、例えば、図3Aに示す製造装置100を用いて製造できる。製造装置100において、流動体2に所定の処理がなされて複合材料シート1が製造される。流動体2は、熱硬化性樹脂2b及び無機粒子13を含んでいる。製造装置100において、第一の厚みt1を有する流動体2が第二の厚みt2を有するように成形されながら流動体2が加熱されて熱硬化性樹脂2bが硬化する。これにより、複合材料シート1が得られる。 The method for manufacturing the composite material sheet 1 is not limited to a specific method. The composite material sheet 1 can be manufactured using, for example, a manufacturing apparatus 100 shown in FIG. 3A. In the manufacturing apparatus 100, the fluid 2 is subjected to a predetermined process to manufacture the composite material sheet 1. The fluid 2 contains a thermosetting resin 2b and inorganic particles 13. In the manufacturing apparatus 100, while the fluid 2 having the first thickness t1 is being molded to have the second thickness t2, the fluid 2 is heated and the thermosetting resin 2b is cured. Thereby, a composite material sheet 1 is obtained.
 複合材料シート1の製造において、厚みt1及び厚みt2は、t1>t2の関係を満たす限り、特定の値に限定されない。厚みt1は、例えば0.5mm以上であり、1mm以上であってもよく、3mm以上であってもよい。厚みt1は、例えば30mm以下であり、20mm以下であってもよく、10mm以下であってもよい。厚みt2は、例えば0.1mm以上であり、0.5mm以上であってもよく、1mm以上であってもよい。厚みt2は、例えば20mm以下であり、10mm以下であってもよく、5mm以下であってもよい。複合材料シート1の厚みは、例えば、厚みt2と同じである。複合材料シート1の厚みは、厚みt2の90%~110%であってもよい。 In manufacturing the composite material sheet 1, the thickness t1 and the thickness t2 are not limited to specific values as long as the relationship t1>t2 is satisfied. The thickness t1 is, for example, 0.5 mm or more, may be 1 mm or more, or may be 3 mm or more. The thickness t1 is, for example, 30 mm or less, may be 20 mm or less, or may be 10 mm or less. The thickness t2 is, for example, 0.1 mm or more, may be 0.5 mm or more, or may be 1 mm or more. The thickness t2 is, for example, 20 mm or less, may be 10 mm or less, or may be 5 mm or less. The thickness of the composite material sheet 1 is, for example, the same as the thickness t2. The thickness of the composite material sheet 1 may be 90% to 110% of the thickness t2.
 流動体2を加熱するときに、流動体2の周囲の温度は熱硬化性樹脂2bの硬化温度以上に保たれる。流動体2の加熱時間は、熱硬化性樹脂2bが硬化可能である限り特定の値に限定されない。流動体2の加熱時間は、熱硬化性樹脂2bの種類及び添加剤に左右されるが、例えば10秒間以上1時間以下である。 When heating the fluid 2, the temperature around the fluid 2 is maintained at a temperature higher than the curing temperature of the thermosetting resin 2b. The heating time of the fluid 2 is not limited to a specific value as long as the thermosetting resin 2b can be cured. The heating time of the fluid 2 depends on the type and additives of the thermosetting resin 2b, but is, for example, 10 seconds or more and 1 hour or less.
 複合材料シート1の製造において、流動体2の調製方法は特定の方法に限定されない。例えば、熱硬化性樹脂2b及び無機粒子13を混錬して流動体2が得られる。もしくは、無機粒子13同士の隙間に熱硬化性樹脂2bを浸透させて、流動体2を得てもよい。このため、流動体2において無機粒子13が均一に分散している。これにより、複合材料シート1の面内において複合材料シート1の熱伝導率がばらつきにくい。 In manufacturing the composite material sheet 1, the method for preparing the fluid 2 is not limited to a specific method. For example, the fluid 2 is obtained by kneading the thermosetting resin 2b and the inorganic particles 13. Alternatively, the fluid 2 may be obtained by infiltrating the thermosetting resin 2b into the gaps between the inorganic particles 13. Therefore, the inorganic particles 13 are uniformly dispersed in the fluid 2. Thereby, the thermal conductivity of the composite material sheet 1 is less likely to vary within the plane of the composite material sheet 1.
 複合材料シート1の製造において、流動体2は、例えば、多孔化剤2pを含む。多孔化剤2pによって複合材料シート1に複数の空隙12が形成され、複合材料シート1が多孔構造を有する。 In manufacturing the composite material sheet 1, the fluid 2 contains, for example, a porosity agent 2p. A plurality of voids 12 are formed in the composite material sheet 1 by the porosity forming agent 2p, and the composite material sheet 1 has a porous structure.
 多孔化剤2pは、複合材料シート1に複数の空隙12を形成しうる限り、特定の多孔化剤に限定されない。多孔化剤2pは、例えば、特定の溶剤に溶解する。多孔化剤2pは、加熱によって蒸発、軟化、又は熱分解してもよい。複合材料シート1の製造において、多孔化剤2pは、収縮又は除去されてもよい。例えば、複合材料シート1の製造において、多孔化剤2pは、特定の溶媒との接触又は加熱によって収縮又は除去されうる。複合材料シート1において収縮した多孔化剤2pが残っていてもよい。 The pore-forming agent 2p is not limited to a specific porosity-forming agent as long as it can form a plurality of voids 12 in the composite material sheet 1. For example, the porosity-forming agent 2p is dissolved in a specific solvent. The porosity agent 2p may be evaporated, softened, or thermally decomposed by heating. In manufacturing the composite material sheet 1, the porosity agent 2p may be shrunk or removed. For example, in manufacturing the composite material sheet 1, the porosity agent 2p can be shrunk or removed by contact with a specific solvent or by heating. The shrunken porosity agent 2p may remain in the composite material sheet 1.
 多孔化剤2pは、中空構造を有していてもよいし、中実構造を有していてもよい。多孔化剤2pは、中空の樹脂粒子であってもよい。この場合、加熱処理により樹脂粒子を構成する樹脂が軟化して中空部が消失又は収縮し、それに応じて空隙12が形成されうる。多孔化剤2pは、中実の樹脂粒子であってもよい。この場合、多孔化剤2pが特定の溶媒に接触することにより、多孔化剤2pが溶媒に溶解し、空隙12が形成されうる。中空又は中実の樹脂粒子に含まれる樹脂の例は、例えば、ポリスチレン(PS)、ポリエチレン(PE)、ポリメタクリル酸メチル(PMMA)、エチレン酢酸ビニル共重合体(EVA)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、エチレン・プロピレン・ジエンゴム(EPDM)、熱可塑性エラストマー(TPE)、及びポリビニルアルコール(PVA)である。 The pore-forming agent 2p may have a hollow structure or a solid structure. The pore-forming agent 2p may be hollow resin particles. In this case, the heat treatment softens the resin constituting the resin particles, causing the hollow portion to disappear or shrink, and voids 12 may be formed accordingly. The porosity forming agent 2p may be solid resin particles. In this case, when the porosity-forming agent 2p comes into contact with a specific solvent, the porosity-forming agent 2p is dissolved in the solvent, and voids 12 can be formed. Examples of resins contained in hollow or solid resin particles include polystyrene (PS), polyethylene (PE), polymethyl methacrylate (PMMA), ethylene vinyl acetate copolymer (EVA), polyethylene (PE), These are polyvinyl chloride (PVC), polypropylene (PP), acrylonitrile-butadiene-styrene copolymer (ABS), ethylene-propylene-diene rubber (EPDM), thermoplastic elastomer (TPE), and polyvinyl alcohol (PVA).
 図3Aに示す通り、無機粒子13は、例えば、流動体2において中空な凝集物をなしている。換言すると、無機粒子13の凝集物の内部に空孔2hが形成されている。無機粒子13は、空孔2hを覆うように空孔2hの周囲で凝集している。例えば、流動体2において複数の凝集物が分散している。 As shown in FIG. 3A, the inorganic particles 13 form hollow aggregates in the fluid 2, for example. In other words, the pores 2h are formed inside the aggregate of the inorganic particles 13. The inorganic particles 13 are aggregated around the holes 2h so as to cover the holes 2h. For example, a plurality of aggregates are dispersed in the fluid 2.
 無機粒子13は、例えば、多孔化剤2pの外面を覆うように多孔化剤2pの周囲で凝集している。このため、複合材料シート1において空隙12の周縁に沿って無機粒子13が配置されうる。 For example, the inorganic particles 13 are aggregated around the pore-forming agent 2p so as to cover the outer surface of the porosity-forming agent 2p. Therefore, the inorganic particles 13 can be arranged along the periphery of the voids 12 in the composite material sheet 1 .
 図1に示す通り、製造装置100は、例えば、一対の部材20を備えている。一対の部材20は、所定の間隔で配置されている。複合材料シート1の製造において、流動体2は、一対の部材20の間に挟まれることによって第二厚みt2を有するように成形される。一対の部材20の間隔は、一定であってもよいし、一定でなくてもよい。一対の部材20の間隔は、第二厚みt2を有するように流動体2を成形できれば、流動体2の通過に伴って、狭まってもよく、広がってもよい。 As shown in FIG. 1, the manufacturing apparatus 100 includes, for example, a pair of members 20. The pair of members 20 are arranged at a predetermined interval. In manufacturing the composite material sheet 1, the fluid 2 is sandwiched between a pair of members 20 and formed to have a second thickness t2. The distance between the pair of members 20 may or may not be constant. The interval between the pair of members 20 may narrow or widen as the fluid 2 passes, as long as the fluid 2 can be formed to have the second thickness t2.
 流動体2は、例えば、一対の部材20の間で流動体2の面内において流動可能な状態で第二厚みt2を有するように成形される。このような構成によれば、流動体2の面内において流動体2が流動しつつ流動体2の厚みが小さくなるので、無機粒子13が複合材料シート1の表層1sにおいて平坦面に沿って凝集した状態になりやすい。 For example, the fluid 2 is formed to have a second thickness t2 in a state where it can flow in the plane of the fluid 2 between the pair of members 20. According to such a configuration, the thickness of the fluid 2 decreases while the fluid 2 flows in the plane of the fluid 2, so that the inorganic particles 13 aggregate along the flat surface in the surface layer 1s of the composite material sheet 1. It is easy to become in a state of
 一対の部材20は、流動体2が第二厚みt2を有するように流動体2を流動させることができる限り、特定の部材に限定されない。図3Aに示す通り、製造装置100は、例えば、搬送装置40を備えている。搬送装置40は、流動体2が一対の部材20の間を通過するように流動体2を搬送する。これにより、複合材料シート1の製造において、流動体2は一対の部材20の間を搬送されながら第二厚みt2を有するように流動する。このため、複合材料シート1の生産性が高くなりやすい。 The pair of members 20 is not limited to a specific member as long as the fluid 2 can flow so that the fluid 2 has the second thickness t2. As shown in FIG. 3A, the manufacturing apparatus 100 includes, for example, a transport device 40. The conveyance device 40 conveys the fluid 2 so that the fluid 2 passes between the pair of members 20 . Thereby, in manufacturing the composite material sheet 1, the fluid 2 flows while being conveyed between the pair of members 20 so as to have the second thickness t2. Therefore, the productivity of the composite material sheet 1 tends to be high.
 製造装置100は、例えば、加熱器30を備えている。加熱器30は、流動体2が一対の部材20の間にあるとき又は流動体2が一対の部材20の間を通過した後に流動体2を加熱する。これにより、流動体2が第二の厚みt2を有する状態で流動体2が加熱され、熱硬化性樹脂2bが硬化しうる。 The manufacturing apparatus 100 includes, for example, a heater 30. The heater 30 heats the fluid 2 when the fluid 2 is between the pair of members 20 or after the fluid 2 passes between the pair of members 20. Thereby, the fluid 2 is heated in a state where the fluid 2 has the second thickness t2, and the thermosetting resin 2b can be cured.
 図3Aに示す通り、一対の部材20は、例えば、搬送用のベルト22を含む。このような構成によれば、複合材料シート1の厚みが均一になりやすい。流動体2は、例えば、ベルト22によって加熱されうる。例えば、加熱器30は、ベルト22に接して配置されている。加熱器30によってベルト22が加熱され、ベルト22がさらに流動体2を加熱する。加熱器30は、例えば、ベルト22の内側に配置されている。ベルト22は、金属製であってもよいし、樹脂製であってもよい。 As shown in FIG. 3A, the pair of members 20 includes, for example, a conveying belt 22. According to such a configuration, the thickness of the composite material sheet 1 tends to be uniform. The fluid 2 can be heated by a belt 22, for example. For example, the heater 30 is placed in contact with the belt 22. The belt 22 is heated by the heater 30, and the belt 22 further heats the fluid 2. The heater 30 is arranged inside the belt 22, for example. The belt 22 may be made of metal or resin.
 製造装置100において、ベルト22を含む成形機は、例えば、ダブルベルトプレス機である。ダブルベルトプレス機は、スライディングシュー式のダブルベルトプレス機であってもよいし、ローラー式のダブルベルトプレス機であってもよい。スライディングシュー式のダブルベルトプレス機では、例えば、ベルトの内側にヒータ内蔵の加圧ブロックが配置されている。これにより、ベルトが加圧及び加熱される。加圧ブロックは固定されており、ベルトが加圧ブロックを摺動する。スライディングシュー式のダブルベルトプレス機は、複数の加圧ブロックを備えていてもよい。複数の加圧ブロックの温度は同じであってもよいし、異なっていてもよい。複数の加圧ブロックの一部は冷却用の加圧ブロックとして用いられてもよい。ローラー式のダブルベルトプレス機では、複数のローラーでベルトの内側から加圧がなされる。この場合、ローラー自体にヒータが内蔵されていてもよいし、別のヒータによってベルトが間接的に加熱されてもよい。 In the manufacturing apparatus 100, the molding machine including the belt 22 is, for example, a double belt press machine. The double belt press machine may be a sliding shoe type double belt press machine or a roller type double belt press machine. In a sliding shoe type double belt press machine, for example, a pressure block with a built-in heater is placed inside the belt. This pressurizes and heats the belt. The pressure block is fixed and a belt slides on the pressure block. The sliding shoe type double belt press machine may include a plurality of pressure blocks. The temperatures of the plurality of pressure blocks may be the same or different. Some of the plurality of pressure blocks may be used as pressure blocks for cooling. In a roller-type double belt press machine, pressure is applied from the inside of the belt using multiple rollers. In this case, the roller itself may have a built-in heater, or the belt may be indirectly heated by another heater.
 図3Aに示す通り、製造装置100は、例えば、供給器10を備えている。供給器10は、流動体2を供給する。これにより、第一厚みt1を有する流動体2が供給される。複合材料シート1の製造において、例えば、流動体2が基材3上に配置される。流動体2は、基材3とともに一対の部材20の間に搬送される。例えば、供給器10は、流動体2を基材3に向かって供給し、流動体2が基材3上に配置される。 As shown in FIG. 3A, the manufacturing apparatus 100 includes, for example, a supply device 10. The supply device 10 supplies the fluid 2. Thereby, the fluid 2 having the first thickness t1 is supplied. In the manufacture of the composite material sheet 1, for example, a fluid 2 is placed on a substrate 3. The fluid 2 is conveyed together with the base material 3 between the pair of members 20 . For example, the feeder 10 feeds the fluid 2 toward the substrate 3, and the fluid 2 is placed on the substrate 3.
 図3Aに示す通り、一対の部材20は、流動体2が供給器10から供給されたときの第一厚みt1よりも小さい第二厚みt2を有するように流動体2を変形させる。 As shown in FIG. 3A, the pair of members 20 deform the fluid 2 so that it has a second thickness t2 that is smaller than the first thickness t1 when the fluid 2 is supplied from the supply device 10.
 複合材料シート1の製造において、例えば、巻回体(図示省略)から繰り出された基材3上に流動体2が連続的に配置される。これにより、複合材料シート1の連続的な製造が可能であり、複合材料シート1の生産性が高くなりやすい。 In manufacturing the composite material sheet 1, for example, the fluid 2 is continuously placed on the base material 3 that is unwound from a rolled body (not shown). Thereby, continuous production of the composite material sheet 1 is possible, and the productivity of the composite material sheet 1 tends to be high.
 図3Aに示す通り、例えば、複合材料シート1の製造において、基材3とはく離シート4との間に流動体2を配置して積層体5が形成されてもよい。積層体5は、一対の部材20の間に搬送される。この場合、基材3及びはく離シート4によって複合材料シート1が保護されうる。 As shown in FIG. 3A, for example, in manufacturing the composite material sheet 1, a laminate 5 may be formed by disposing the fluid 2 between the base material 3 and the release sheet 4. The laminate 5 is conveyed between a pair of members 20. In this case, the composite material sheet 1 can be protected by the base material 3 and the release sheet 4.
 複合材料シート1の製造において、基材3のみが用いられてもよいし、基材3及びはく離シート4の両方が用いられなくてもよい。この場合、流動体2は、一対の部材20の少なくとも一方に接触した状態で一対の部材20の間に配置されうる。 In manufacturing the composite material sheet 1, only the base material 3 may be used, or both the base material 3 and the release sheet 4 may not be used. In this case, the fluid 2 may be placed between the pair of members 20 in a state where it is in contact with at least one of the members 20 .
 供給器10は、流動体2を供給できる限り、特定の供給器に限定されない。供給器10は、例えば、ダイコーターである。この場合、複合材料シート1の製造において、流動体2はダイコーティングによって基材3上に配置される。このような構成によれば、流動体2が均一な厚みで基材3上に配置されうる。 The supply device 10 is not limited to a specific supply device as long as it can supply the fluid 2. The supply device 10 is, for example, a die coater. In this case, in the production of the composite sheet 1, the fluid 2 is placed on the substrate 3 by die coating. According to such a configuration, the fluid 2 can be placed on the base material 3 with a uniform thickness.
 製造装置100は、様々な観点から変更可能である。例えば、第一厚みt1を有する流動体2を第一厚みt1よりも小さい第二厚みt2を有するように成形した後に流動体2を加熱して熱硬化性樹脂2bを硬化させてもよい。この場合も、無機粒子13が複合材料シート1の表層1sにおいて平坦面に沿って凝集した状態になりやすく、複合材料シート1の表層1sに無機粒子13が高い密度で配置されやすい。このため、複合材料シート1の表層1sにおける熱伝導率が高くなりやすく、複合材料シート1の熱伝導率も高くなりやすい。 The manufacturing apparatus 100 can be modified from various viewpoints. For example, after molding the fluid 2 having a first thickness t1 to have a second thickness t2 smaller than the first thickness t1, the fluid 2 may be heated to harden the thermosetting resin 2b. In this case as well, the inorganic particles 13 tend to aggregate along the flat surface in the surface layer 1s of the composite material sheet 1, and the inorganic particles 13 tend to be arranged at a high density in the surface layer 1s of the composite material sheet 1. Therefore, the thermal conductivity of the surface layer 1s of the composite material sheet 1 tends to increase, and the thermal conductivity of the composite material sheet 1 also tends to increase.
 製造装置100は、必要に応じて、一対の部材20の間隔以上の寸法を有する仕切りをさらに備えていてもよい。このような仕切りにより、一対の部材20の間隙に沿って流動体1の一部が変形することを抑制しやすい。 The manufacturing apparatus 100 may further include a partition having a dimension equal to or larger than the distance between the pair of members 20, if necessary. Such a partition facilitates suppressing deformation of a portion of the fluid 1 along the gap between the pair of members 20.
 製造装置100は、例えば、図3Bに示す製造装置200のように変更されてもよい。製造装置200は、特に説明する部分を除き、製造装置100と同様に構成されている。製造装置100の構成要素と同一又は対応する製造装置200の構成要素には同一の符号を付し、詳細な説明を省略する。製造装置200に関する説明は、技術的に矛盾しない限り、製造装置100にも当てはまる。 The manufacturing apparatus 100 may be modified, for example, to a manufacturing apparatus 200 shown in FIG. 3B. The manufacturing apparatus 200 is configured in the same manner as the manufacturing apparatus 100 except for parts that are specifically explained. Components of the manufacturing apparatus 200 that are the same as or correspond to those of the manufacturing apparatus 100 are given the same reference numerals, and detailed description thereof will be omitted. The description regarding the manufacturing apparatus 200 also applies to the manufacturing apparatus 100 unless technically contradictory.
 図3Bに示す通り、製造装置200において、一対の部材20は、第一対のローラー24と、第二対のローラー25とを含んでいる。製造装置200において、一対の部材20によって流動体2が搬送される。第二対のローラー25は、流動体2の搬送方向において第一対のローラー24の下流に配置されている。第二対のローラー25におけるローラー間の距離は、第一対のローラー24におけるローラー間の距離以下である。ローラー間の距離は、ローラー同士の最短距離である。このような構成によれば、第一厚みt1を有する流動体2は、第一対のローラー24の間及び第二対のローラー25の間を通過することによって、第二厚みt2を有するように成形される。第二対のローラー25におけるローラー間の距離は、第一対のローラー24におけるローラー間の距離よりも小さくてもよい。 As shown in FIG. 3B, in the manufacturing apparatus 200, the pair of members 20 includes a first pair of rollers 24 and a second pair of rollers 25. In the manufacturing apparatus 200, the fluid 2 is conveyed by a pair of members 20. The second pair of rollers 25 is arranged downstream of the first pair of rollers 24 in the transport direction of the fluid 2. The distance between the rollers in the second pair of rollers 25 is less than or equal to the distance between the rollers in the first pair of rollers 24. The distance between the rollers is the shortest distance between the rollers. According to such a configuration, the fluid 2 having the first thickness t1 is made to have the second thickness t2 by passing between the first pair of rollers 24 and between the second pair of rollers 25. molded. The distance between the rollers in the second pair of rollers 25 may be smaller than the distance between the rollers in the first pair of rollers 24.
 製造装置200において、加熱器30は、例えば、第二対のローラー25の下流に配置されている。このような構成によれば、流動体2は、一対の部材20の間を通過した後に加熱される。流動体2は、第一対のローラー24及び第二対のローラー25の少なくとも1つによって加熱されてもよいし、第一対のローラー24及び第二対のローラー25によって加熱されなくてもよい。 In the manufacturing apparatus 200, the heater 30 is arranged downstream of the second pair of rollers 25, for example. According to such a configuration, the fluid 2 is heated after passing between the pair of members 20. The fluid 2 may be heated by at least one of the first pair of rollers 24 and the second pair of rollers 25, or may not be heated by the first pair of rollers 24 and the second pair of rollers 25. .
 複合材料シート1は、製造装置100及び製造装置200以外の装置を用いて製造されてもよい。複合材料シート1は、例えば、以下の(i)、(ii)、(iii)を含む方法によって製造されてもよい。
(i)所定の基材上に第一厚みt1で流動体2を供給する。
(ii)プレートと基材との間にスペーサーを配置した状態で流動体2上に所定のプレートを配置し、プレートの上に重しを載せて流動体2が第二厚みt2を有するように流動させる。
(iii)(ii)で準備した基材、流動体2、プレート、及び重しの積層物を加熱炉に入れて流動体2の熱硬化性樹脂2bを硬化させ、複合材料シート1を得る。
The composite material sheet 1 may be manufactured using a device other than the manufacturing device 100 and the manufacturing device 200. The composite material sheet 1 may be manufactured, for example, by a method including the following (i), (ii), and (iii).
(i) Supplying the fluid 2 to a first thickness t1 onto a predetermined base material.
(ii) A predetermined plate is placed on the fluid 2 with a spacer placed between the plate and the base material, and a weight is placed on the plate so that the fluid 2 has the second thickness t2. Let it flow.
(iii) The laminate of the base material, fluid 2, plate, and weight prepared in (ii) is placed in a heating furnace to harden the thermosetting resin 2b of the fluid 2, thereby obtaining a composite material sheet 1.
 実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be explained in more detail with reference to Examples. Note that the present invention is not limited to the following examples.
 (ポリスチレンビーズの作製)
 純水100重量部、リン酸三カルシウム0.2重量部、及びドデシルベンゼンスルホン酸ナトリウム0.01重量部を、撹拌機が付属されているオートクレーブに加えた。このオートクレーブに、開始剤としてベンゾイルパーオキサイド0.15重量部及び1,1‐ビス(t‐ブチルパーオキシ)シクロヘキサン0.25重量部を加えて混合液を作製した。混合液を350回転/分で撹拌しながら、スチレンモノマー100重量部を加えた。その後、この溶液を98℃まで昇温させることによって重合反応を実施した。重合反応が約80%終了したとき、反応溶液を30分間かけて120℃まで昇温させた。その後、反応溶液を120℃で1時間保温して、スチレン樹脂粒子含有液を作製した。スチレン樹脂粒子含有液を95℃まで冷却した後、発泡剤としてシクロヘキサン2重量部及びブタン7重量部をオートクレーブに圧入した。その後、この溶液を再度120℃まで昇温させた。その後、溶液を120℃で1時間保温した後、室温まで冷却することによって、スラリーを得た。このスラリーを脱水、洗浄、及び乾燥させることによって、発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子をふるいにかけて、粒子径が0.2mm~0.3mmの発泡性スチレン樹脂粒子を得た。大開工業社製の加圧式発泡機(BHP)を用いてこの発泡性スチレン樹脂粒子を発泡させ、650μm~1200μmの平均径を有する球形状の発泡ポリスチレンビーズを得た。この発泡ポリスチレンビーズを、公称目開き(JIS Z 8801-1:2019)が1.18mm及び1mmであるJIS試験用ふるいにかけた。このとき、公称目開きが1.18mmのふるいを通過し、かつ、公称目開きが1mmのふるいを通過しなかった発泡ポリスチレンビーズを各複合材料シートの作製に用いた。なお、この発泡ポリスチレンビーズの嵩密度は、0.025g/cm3であった。
(Preparation of polystyrene beads)
100 parts by weight of pure water, 0.2 parts by weight of tricalcium phosphate, and 0.01 parts by weight of sodium dodecylbenzenesulfonate were added to an autoclave equipped with a stirrer. A mixed solution was prepared by adding 0.15 parts by weight of benzoyl peroxide and 0.25 parts by weight of 1,1-bis(t-butylperoxy)cyclohexane as an initiator to this autoclave. While stirring the mixed solution at 350 rpm, 100 parts by weight of styrene monomer was added. Thereafter, a polymerization reaction was carried out by raising the temperature of this solution to 98°C. When the polymerization reaction was about 80% complete, the reaction solution was heated to 120° C. over 30 minutes. Thereafter, the reaction solution was kept at 120° C. for 1 hour to prepare a styrene resin particle-containing solution. After the liquid containing styrene resin particles was cooled to 95° C., 2 parts by weight of cyclohexane and 7 parts by weight of butane were pressurized into the autoclave as blowing agents. Thereafter, the temperature of this solution was raised to 120°C again. Thereafter, the solution was kept at 120° C. for 1 hour, and then cooled to room temperature to obtain a slurry. Expandable styrene resin particles were obtained by dehydrating, washing, and drying this slurry. The expandable styrene resin particles were sieved to obtain expandable styrene resin particles having a particle diameter of 0.2 mm to 0.3 mm. The expandable styrene resin particles were foamed using a pressure foaming machine (BHP) manufactured by Daikai Kogyo Co., Ltd. to obtain spherical expanded polystyrene beads having an average diameter of 650 μm to 1200 μm. The expanded polystyrene beads were passed through a JIS test sieve with nominal openings (JIS Z 8801-1:2019) of 1.18 mm and 1 mm. At this time, expanded polystyrene beads that passed through a sieve with a nominal opening of 1.18 mm but did not pass through a sieve with a nominal opening of 1 mm were used to prepare each composite material sheet. The bulk density of the expanded polystyrene beads was 0.025 g/cm 3 .
 (実施例1)
 添着剤として、ダウ社製のDOWSIL SE 1896 FR A/BのA剤及びB剤を1:1の重量比で混合して、シリコーン樹脂前駆体を調製した。このシリコーン樹脂前駆体を、発泡ポリスチレンビーズ1重量部に対して11.3重量部準備した。これとは別に、発泡ポリスチレンビーズ1重量部に対して、鱗片状の窒化ホウ素(アスペクト比20)を20重量部準備した。
(Example 1)
A silicone resin precursor was prepared by mixing agents A and B of DOWSIL SE 1896 FR A/B manufactured by Dow Corporation at a weight ratio of 1:1 as an impregnant. 11.3 parts by weight of this silicone resin precursor was prepared for 1 part by weight of expanded polystyrene beads. Separately, 20 parts by weight of scale-like boron nitride (aspect ratio 20) was prepared for 1 part by weight of expanded polystyrene beads.
 カワタ社製の高速流動混合機(SMP‐2)に、前述の球形状の発泡ポリスチレンビーズ1重量部を加えた。次に、上記したシリコーン樹脂前駆体を0.3重量部加えて混合物を1000回転/分で1分撹拌させた。この混合物に、残りのシリコーン樹脂前駆体と上記した窒化ホウ素とを同時に、かつシリコーン樹脂前駆体と窒化ホウ素とを均等な質量で30分間かけて添加しながら、上記した混合機を用いて、1000回転/分で撹拌を行った。この操作により、発泡ポリスチレンビーズが、シリコーン樹脂前駆体を介して窒化ホウ素で被覆された発泡ポリスチレンビーズを得た。このポリスチレンビーズを80℃の恒温槽にて2時間加熱して、シリコーン樹脂を硬化させることで、窒化ホウ素で被覆されたポリスチレンビーズ(複合粒子)を得た。 1 part by weight of the aforementioned spherical expanded polystyrene beads was added to a high-speed fluid mixer (SMP-2) manufactured by Kawata. Next, 0.3 parts by weight of the silicone resin precursor described above was added and the mixture was stirred at 1000 rpm for 1 minute. To this mixture, while simultaneously adding the remaining silicone resin precursor and the boron nitride described above, and adding the silicone resin precursor and boron nitride in equal mass over 30 minutes, using the mixer described above, Stirring was performed at revolutions/min. Through this operation, expanded polystyrene beads coated with boron nitride via a silicone resin precursor were obtained. The polystyrene beads were heated in a constant temperature bath at 80° C. for 2 hours to harden the silicone resin, thereby obtaining polystyrene beads (composite particles) coated with boron nitride.
 熱硬化性樹脂として、ダウ社製のDOWSIL SE 1817 CV MのA剤及びB剤と、信越シリコーン社製のシリコーンオイルKF‐96‐10000CSと、信越シリコーン社製の反応促進剤CAT‐PL‐56を使用した。A剤、B剤、シリコーンオイル、及び反応促進剤を、A剤の質量:B剤の質量:シリコーンオイルの質量:反応促進剤の質量=35:35:29.5:0.5の関係が満たされるように混合して、熱硬化性樹脂を作製した。 As the thermosetting resin, agents A and B of DOWSIL SE 1817 CV M manufactured by Dow, silicone oil KF-96-10000CS manufactured by Shin-Etsu Silicone, and reaction accelerator CAT-PL-56 manufactured by Shin-Etsu Silicone were used. It was used. Part A, Part B, silicone oil, and reaction accelerator are arranged in such a manner that the mass of Part A: the mass of Part B: the mass of silicone oil: the mass of reaction promoter = 35:35:29.5:0.5. A thermosetting resin was produced by mixing so that the mixture was filled.
 上記の複合粒子が入った容器に上記の熱硬化性樹脂を加え、複合粒子間に熱硬化性樹脂を充填することで、実施例1に係る流動体を得た。流動体における複合粒子と熱硬化性樹脂の配合は、複合粒子の嵩体積:熱硬化樹脂の体積=100:45の関係を満たしていた。ニッパ社製のPETフィルムSS4A(厚み50μm)である基材上にダイコーティングによってこの流動体の塗膜を形成した。この塗膜の厚みは5.0mmであった。塗膜の上に前述のPETフィルムを重ねて積層体を得た。スライディングシュー式のダブルベルトプレス機によって積層体における流動体を3.0mmの厚みを有するように流動させ、ダブルベルトプレス機のベルトの温度を100℃に調節して流動体における熱硬化性樹脂を硬化させた。流動体の加熱時間は5分間であった。基材及び剥離シートから流動体の硬化物を剥離させ、この硬化物を所定の寸法に切断して、アセトンに30分間浸漬させ、複合粒子におけるポリエチレンビーズを溶解させ、硬化物からポリスチレンビーズを除去した。その後、硬化物を90℃で加熱してアセトンを揮発させ、実施例1に係る複合材料シートを得た。実施例1に係る複合材料シートの厚みは3.05mmであった。 The fluid according to Example 1 was obtained by adding the above thermosetting resin to a container containing the above composite particles and filling the spaces between the composite particles with the thermosetting resin. The blending of the composite particles and the thermosetting resin in the fluid satisfied the relationship of bulk volume of the composite particles: volume of the thermosetting resin = 100:45. A coating film of this fluid was formed by die coating on a base material which is a PET film SS4A (thickness: 50 μm) manufactured by Nipper Co., Ltd. The thickness of this coating film was 5.0 mm. The above-mentioned PET film was layered on top of the coating film to obtain a laminate. The fluid in the laminate was made to flow to a thickness of 3.0 mm using a sliding shoe type double belt press, and the temperature of the belt of the double belt press was adjusted to 100°C to release the thermosetting resin in the fluid. hardened. The heating time of the fluid was 5 minutes. Peel the cured product of the fluid from the base material and release sheet, cut the cured product into predetermined dimensions, and immerse it in acetone for 30 minutes to dissolve the polyethylene beads in the composite particles and remove the polystyrene beads from the cured product. did. Thereafter, the cured product was heated at 90° C. to volatilize acetone to obtain a composite material sheet according to Example 1. The thickness of the composite material sheet according to Example 1 was 3.05 mm.
 (実施例2)
 スライディングシュー式のダブルベルトプレス機の代わりに、ローラー式のダブルベルトプレス機を用いた以外は、実施例1と同様にして実施例2に係る複合材料シートを作製した。ローラー式のダブルベルトプレス機によって積層体における流動体は3.0mmの厚みを有するように流動した。実施例2に係る複合材料シートの厚みは3.0mmであった。
(Example 2)
A composite material sheet according to Example 2 was produced in the same manner as in Example 1, except that a roller type double belt press machine was used instead of the sliding shoe type double belt press machine. The fluid in the laminate was fluidized using a roller type double belt press to have a thickness of 3.0 mm. The thickness of the composite material sheet according to Example 2 was 3.0 mm.
 (実施例3)
 スライディングシュー式のダブルベルトプレス機の代わりに、複数対のローラーを用いて、積層体における流動体を3.0mmの厚みを有するように流動させ、その後加熱炉において流動体を加熱して流動体における熱硬化性樹脂を硬化させたこと以外は、実施例1と同様にして実施例3に係る複合材料シートを作製した。複数対のローラーを用いた成形において、流動体は複数対のローラーにおけるローラー同士の間で通過した。最上流の一対のローラーにおけるローラー間の距離は3.5mmであり、最下流の別の対のローラーにおけるローラー間の距離は3.0mmであった。加熱炉における加熱において、加熱炉の内部の温度は100℃に調節された。流動体の加熱時間は5分間であった。実施例3に係る複合材料シートの厚みは2.9mmであった。
(Example 3)
Instead of a sliding shoe type double belt press machine, multiple pairs of rollers are used to flow the fluid in the laminate to a thickness of 3.0 mm, and then the fluid is heated in a heating furnace to form the fluid. A composite material sheet according to Example 3 was produced in the same manner as in Example 1, except that the thermosetting resin in Example 3 was cured. In molding using multiple pairs of rollers, the fluid passed between the rollers in the multiple pairs of rollers. The distance between the rollers in the most upstream pair of rollers was 3.5 mm, and the distance between the rollers in another pair of most downstream rollers was 3.0 mm. During heating in the heating furnace, the temperature inside the heating furnace was adjusted to 100°C. The heating time of the fluid was 5 minutes. The thickness of the composite material sheet according to Example 3 was 2.9 mm.
 (比較例1)
 上記の複合粒子を内径95mm×95mm×3.5mmのプラスチックケースに充填し、プラスチックケースに吉田隆ステンレス社製の平織金網(直径:0.18mm、50メッシュ)を敷き、さらにその上に、ステンレス製パンチングメタル(直径:5mm、厚さ:1mm、ピッチ:8mm)を敷き、ステンレス製パンチングメタルをクランプで固定した。
(Comparative example 1)
The above composite particles were filled into a plastic case with an inner diameter of 95 mm x 95 mm x 3.5 mm, and a plain-woven wire mesh (diameter: 0.18 mm, 50 mesh) manufactured by Takashi Yoshida Stainless Steel Co., Ltd. was placed in the plastic case. A stainless steel punching metal (diameter: 5 mm, thickness: 1 mm, pitch: 8 mm) was laid, and the stainless steel punching metal was fixed with a clamp.
 このプラスチックケースに前述の熱硬化性樹脂を加え、減圧脱泡させた。このときの圧力は、ゲージ圧で、-0.08MPa~-0.09MPaであった。この操作を3回繰り返して、ポリスチレンビーズ間に、熱硬化性樹脂を含浸させた。次に80℃で2時間加熱することによってシリコーン樹脂を硬化させて、ポリスチレンビーズが内包された樹脂成形品を得た。この樹脂成形品を所定の寸法に切断した。これを30分、アセトンに浸漬させることで、ポリスチレンビーズを溶解させ、樹脂成形品からポリスチレンビーズを除去した。その後、樹脂成形品を90℃で加熱してアセトンを揮発させることで、比較例1に係る複合材料シートを作製した。比較例1に係る複合材料シートでは、表層(スキン層)のカットは行わなかった。比較例1に係る複合材料シートの厚みは3.5mmであった。 The above-mentioned thermosetting resin was added to this plastic case and defoamed under reduced pressure. The pressure at this time was -0.08 MPa to -0.09 MPa in gauge pressure. This operation was repeated three times to impregnate the thermosetting resin between the polystyrene beads. Next, the silicone resin was cured by heating at 80° C. for 2 hours to obtain a resin molded product containing polystyrene beads. This resin molded product was cut into predetermined dimensions. By immersing this in acetone for 30 minutes, the polystyrene beads were dissolved and removed from the resin molded product. Thereafter, a composite material sheet according to Comparative Example 1 was produced by heating the resin molded product at 90° C. to volatilize acetone. In the composite material sheet according to Comparative Example 1, the surface layer (skin layer) was not cut. The thickness of the composite material sheet according to Comparative Example 1 was 3.5 mm.
 <熱伝導率>
 米国材料試験協会規格(ASTM) D5470-01(一方向熱流定常法)に準拠して、レスカ社製の熱伝導率測定装置TCM1001を用いて、試験体1枚及び対称構成方式にて熱流計法により各実施例及び比較例1に係る複合材料シートの厚さ方向の熱伝導率を測定した。厚さtを有する各複合材料シートを平面視で1辺の長さが20mmの正方形状に切断し、試験片を得た。試験片の主面の両面に、サンハヤト社製のシリコーングリース SCH-20を、シリコーングリース層の厚さが100μmになるように塗布した。、シリコーングリースの熱伝導率は0.84W/(m・K)であった。標準ロッドとして、110℃に調整される加熱ブロックを有する上部ロッド及び20℃に調整される冷却ブロックを有する下部ロッドを使用した。試験ブロックとして、無酸素銅製のブロックを使用した。試験片を、シリコーングリース層を介して無酸素銅製のブロックで挟んで測定試料を作製した。この測定試料を、上部ロッドと下部ロッドとの間に挟んだ。試験片の厚み方向に熱を流した。
<Thermal conductivity>
In accordance with the American Society for Testing and Materials standard (ASTM) D5470-01 (one-way steady heat flow method), a heat flow meter method was used using a single test specimen and a symmetric configuration method using a thermal conductivity measuring device TCM1001 manufactured by Resca. The thermal conductivity in the thickness direction of the composite material sheets according to each Example and Comparative Example 1 was measured. Each composite material sheet having a thickness t was cut into a square shape with a side length of 20 mm in plan view to obtain a test piece. Silicone grease SCH-20 manufactured by Sunhayato Co., Ltd. was applied to both main surfaces of the test piece so that the thickness of the silicone grease layer was 100 μm. The thermal conductivity of the silicone grease was 0.84 W/(m·K). As standard rods, an upper rod with a heating block adjusted to 110°C and a lower rod with a cooling block adjusted to 20°C was used. A block made of oxygen-free copper was used as the test block. A measurement sample was prepared by sandwiching the test piece between oxygen-free copper blocks with a silicone grease layer in between. This measurement sample was sandwiched between an upper rod and a lower rod. Heat was applied in the thickness direction of the test piece.
 試験片の上面及び下面の間の温度差ΔTSを下記式(1)及び(2)に従って決定した。式(1)及び(2)において、ΔTCは、無酸素銅製のブロック(試験ブロック)の上面及び下面の間の温度差である。加えて、q1は、上部ロッドの複数の測温点における温度差に基づいて算出される温度勾配によって決定される熱流束[W/m2]であり、q2は、下部ロッドの複数の測温点における温度差に基づいて算出される温度勾配によって決定される熱流束[W/m2]である。tbは、無酸素銅製のブロックの厚みの和である。kbは、無酸素銅製のブロックの熱伝導率である。
 ΔTS=ΔTC-(qS×tb)/kb   式(1)
 qS=(q1+q2)/2   式(2)
The temperature difference ΔT S between the upper and lower surfaces of the test piece was determined according to the following formulas (1) and (2). In equations (1) and (2), ΔT C is the temperature difference between the top and bottom surfaces of the oxygen-free copper block (test block). In addition, q 1 is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at multiple temperature measurement points on the upper rod, and q 2 is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at multiple temperature measurement points on the upper rod. It is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at the temperature measurement point. t b is the sum of the thicknesses of the oxygen-free copper blocks. k b is the thermal conductivity of the block made of oxygen-free copper.
ΔT S =ΔT C - (q S ×t b )/k b Formula (1)
q S = (q 1 + q 2 )/2 Formula (2)
 試験片の厚み方向における熱伝導率λ[W/(m・K)]を、下記式(3)に従って決定した。結果を表1に示す。なお、試験片の厚さtは、カメラを用いた測定により行った。
 λ=qS×t/ΔTS   式(3)
The thermal conductivity λ [W/(m·K)] of the test piece in the thickness direction was determined according to the following formula (3). The results are shown in Table 1. Note that the thickness t of the test piece was measured using a camera.
λ=q S ×t/ΔT S formula (3)
 <観察>
 各実施例及び各比較例に係る複合材料シートの一方の主面をカメラで撮影し、平面視における各複合材料シートの写真を得た。平面視における実施例1及び比較例1に係る複合材料シートの写真をそれぞれ図4A及び図5Aに示す。また、キーエンス社製の顕微鏡デジタルマイクロスコープVHX-7000を用いて、各実施例及び各比較例に係る複合材料シートの断面を観察した。実施例1に係る複合材料シートの断面の写真及び比較例1に係る複合材料シートの断面の写真を、それぞれ、図4B及び図5Bに示す。
<Observation>
One main surface of the composite material sheet according to each Example and each Comparative Example was photographed with a camera to obtain a photograph of each composite material sheet in plan view. Photographs of the composite material sheets according to Example 1 and Comparative Example 1 in plan view are shown in FIGS. 4A and 5A, respectively. Further, the cross section of the composite material sheet according to each Example and each Comparative Example was observed using a digital microscope VHX-7000 manufactured by Keyence Corporation. A photograph of the cross section of the composite material sheet according to Example 1 and a photograph of the cross section of the composite material sheet according to Comparative Example 1 are shown in FIGS. 4B and 5B, respectively.
 平面視における各複合材料シートの写真から、複合材料シートの表層の面積S1Sに対する、その表層において窒化ホウ素が存在する部分の面積SBNの比SBN/S1Sを求めた。結果を表1に示す。図4A及び図5Aに示す通り、複合材料シートの表層において窒化ホウ素が占める部分は、写真において白みがかっており、他の部分と明確に区別できた。 From a photograph of each composite material sheet in plan view, the ratio S BN /S 1S of the area S BN of the portion where boron nitride is present in the surface layer to the area S 1S of the surface layer of the composite material sheet was determined. The results are shown in Table 1. As shown in FIGS. 4A and 5A, the part occupied by boron nitride in the surface layer of the composite material sheet was whitish in the photograph and could be clearly distinguished from other parts.
 平面視における各複合材料シートの写真から、表層の平面視における窒化ホウ素の凝集物の平均径dBN及び凝集物同士の中心間距離の平均値DSを求めた。平均径dBNは、各複合材料シートの表層の平面視において50個以上の窒化ホウ素の凝集物の最大径を測定し、その最大径の算術平均を求めることによって決定した。平均値DSは、各複合材料シートの表層の平面視において50個以上の窒化ホウ素の凝集物の最大径を直径とする円の中心に対して最近接の窒化ホウ素の凝集物の最大径を直径とする円の中心との最短距離を測定し、その最短距離の算術平均を求めることによって決定した。結果を表1に示す。 From the photograph of each composite material sheet in plan view, the average diameter d BN of the boron nitride aggregates in the surface layer in plan view and the average value D S of the distance between the centers of the aggregates were determined. The average diameter dBN was determined by measuring the maximum diameter of 50 or more boron nitride aggregates in a plan view of the surface layer of each composite material sheet, and calculating the arithmetic average of the maximum diameters. The average value D S is the maximum diameter of the boron nitride aggregates closest to the center of a circle whose diameter is the maximum diameter of 50 or more boron nitride aggregates in a plan view of the surface layer of each composite material sheet. The diameter was determined by measuring the shortest distance from the center of the circle and finding the arithmetic average of the shortest distances. The results are shown in Table 1.
 表1に示す通り、実施例に係る複合材料シートの厚み方向における熱伝導率は、比較例1に係る複合材料シートの厚み方向における熱伝導率よりも高かった。加えて、実施例に係る複合材料シートにおける比SBN/S1Sは、比較例1に係る複合材料シートにおける比SBN/S1Sより高かった。 As shown in Table 1, the thermal conductivity in the thickness direction of the composite material sheet according to the example was higher than the thermal conductivity in the thickness direction of the composite material sheet according to Comparative Example 1. In addition, the ratio S BN /S 1S in the composite material sheet according to the example was higher than the ratio S BN /S 1S in the composite material sheet according to Comparative Example 1.
 図4Bに示す通り、実施例1に係る複合材料シートの表層において、窒化ホウ素が平坦面に沿って凝集していることが確認された。加えて、表層に接する空隙の表層の面内方向における最大径はその空隙の表層の厚み方向における最大径よりも大きい傾向にあった。他の実施例に係る複合材料シートにおいても同様の状態が確認された。一方、図5Bに示す通り、比較例1に係る複合材料シートの表層では、窒化ホウ素が丸みを帯びて凝集していた。このような、実施例及び比較例1に係る複合材料シートの複合材料シートの表層における窒化ホウ素の凝集の態様の違いが、両者の熱伝導率及び比SBN/S1Sの相違につながったのではないかと考えられる。 As shown in FIG. 4B, it was confirmed that boron nitride aggregated along the flat surface in the surface layer of the composite material sheet according to Example 1. In addition, the maximum diameter of the voids in contact with the surface layer in the in-plane direction of the surface layer tended to be larger than the maximum diameter of the voids in the thickness direction of the surface layer. Similar conditions were confirmed in composite material sheets according to other examples. On the other hand, as shown in FIG. 5B, in the surface layer of the composite material sheet according to Comparative Example 1, boron nitride was aggregated in a rounded shape. This difference in the mode of agglomeration of boron nitride in the surface layer of the composite material sheets of the composite material sheets according to Example and Comparative Example 1 led to the difference in thermal conductivity and ratio S BN /S 1S between the two. It is thought that this is the case.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の第1側面は、
 樹脂を含む骨格部と、
 複数の空隙と、
 無機粒子によって形成された伝熱路と、を含み、
 前記樹脂及び前記無機粒子が存在する表層を有し、
 前記表層の平面視において、前記表層の面積に対する、前記無機粒子が存在する部分の面積の比は、10%以上である、
 複合材料シートを提供する。
The first aspect of the present invention is
A skeleton part containing resin,
multiple voids,
a heat transfer path formed by inorganic particles;
having a surface layer in which the resin and the inorganic particles are present;
In a plan view of the surface layer, the ratio of the area of the portion where the inorganic particles are present to the area of the surface layer is 10% or more;
Provides composite material sheets.
 本発明の第2側面は、
 前記無機粒子は、前記表層の平面視において、点在する複数の凝集物をなしている、
 第1側面に係る複合材料シートを提供する。
The second aspect of the present invention is
The inorganic particles form a plurality of scattered aggregates in a plan view of the surface layer,
A composite material sheet according to the first aspect is provided.
 本発明の第3側面は、
 前記表層の平面視において、前記凝集物の平均径に対する前記凝集物同士の中心間距離の平均値の比は2以下である、
 第2側面に係る複合材料シートを提供する。
The third aspect of the present invention is
In a plan view of the surface layer, the ratio of the average value of the distance between the centers of the aggregates to the average diameter of the aggregates is 2 or less,
A composite material sheet according to the second aspect is provided.
 本発明の第4側面は、
 前記表層の平面視における前記凝集物の平均径は、600μm~1100μmである、
 第2側面又は第3側面に係る複合材料シートを提供する。
The fourth aspect of the present invention is
The average diameter of the aggregates in a plan view of the surface layer is 600 μm to 1100 μm,
A composite material sheet according to the second side or the third side is provided.
 本発明の第5側面は、
 前記無機粒子は、前記表層において前記空隙の周縁に沿って配置されて前記凝集物をなしており、
 前記表層に接している前記空隙の前記表層の面内方向における最大径は、前記空隙の前記表層の厚み方向における最大径よりも大きい、
 第2側面~第4側面のいずれか1つに係る複合材料シートを提供する。
The fifth aspect of the present invention is
The inorganic particles are arranged along the periphery of the void in the surface layer to form the aggregate,
The maximum diameter of the void in contact with the surface layer in the in-plane direction of the surface layer is larger than the maximum diameter of the void in the thickness direction of the surface layer.
A composite material sheet according to any one of the second to fourth sides is provided.
 本発明の第6側面は、
 前記複合材料シートの厚みは10mm以下である、
 第1側面~第5側面のいずれか1つに係る複合材料シートを提供する。
The sixth aspect of the present invention is
The thickness of the composite material sheet is 10 mm or less,
A composite material sheet according to any one of the first side to the fifth side is provided.

Claims (6)

  1.  樹脂を含む骨格部と、
     複数の空隙と、
     無機粒子によって形成された伝熱路と、を含み、
     前記樹脂及び前記無機粒子が存在する表層を有し、
     前記表層の平面視において、前記表層の面積に対する、前記無機粒子が存在する部分の面積の比は、10%以上である、
     複合材料シート。
    A skeleton part containing resin,
    multiple voids,
    a heat transfer path formed by inorganic particles;
    having a surface layer in which the resin and the inorganic particles are present;
    In a plan view of the surface layer, the ratio of the area of the portion where the inorganic particles are present to the area of the surface layer is 10% or more;
    Composite material sheet.
  2.  前記無機粒子は、前記表層の平面視において、点在する複数の凝集物をなしている、
     請求項1に記載の複合材料シート。
    The inorganic particles form a plurality of scattered aggregates in a plan view of the surface layer,
    The composite material sheet according to claim 1.
  3.  前記表層の平面視において、前記凝集物の平均径に対する前記凝集物同士の中心間距離の平均値の比は2以下である、
     請求項2に記載の複合材料シート。
    In a plan view of the surface layer, the ratio of the average value of the distance between the centers of the aggregates to the average diameter of the aggregates is 2 or less,
    The composite material sheet according to claim 2.
  4.  前記表層の平面視における前記凝集物の平均径は、600μm~1100μmである、
     請求項2に記載の複合材料シート。
    The average diameter of the aggregates in a plan view of the surface layer is 600 μm to 1100 μm,
    The composite material sheet according to claim 2.
  5.  前記無機粒子は、前記表層において前記空隙の周縁に沿って配置されて前記凝集物をなしており、
     前記表層に接している前記空隙の前記表層の面内方向における最大径は、前記空隙の前記表層の厚み方向における最大径よりも大きい、
     請求項2に記載の複合材料シート。
    The inorganic particles are arranged along the periphery of the void in the surface layer to form the aggregate,
    The maximum diameter of the void in contact with the surface layer in the in-plane direction of the surface layer is larger than the maximum diameter of the void in the thickness direction of the surface layer.
    The composite material sheet according to claim 2.
  6.  前記複合材料シートの厚みは10mm以下である、
     請求項1に記載の複合材料シート。
     
    The thickness of the composite material sheet is 10 mm or less,
    The composite material sheet according to claim 1.
PCT/JP2023/010754 2022-03-29 2023-03-17 Composite material sheet WO2023189778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022053252 2022-03-29
JP2022-053252 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189778A1 true WO2023189778A1 (en) 2023-10-05

Family

ID=88201073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010754 WO2023189778A1 (en) 2022-03-29 2023-03-17 Composite material sheet

Country Status (2)

Country Link
TW (1) TW202348700A (en)
WO (1) WO2023189778A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320988A (en) * 2006-05-30 2007-12-13 Futamura Chemical Co Ltd Interconnected porous structure member containing sealed material and method for producing the same
JP2013014716A (en) * 2011-07-06 2013-01-24 Nitto Denko Corp Inorganic particle-containing foam
JP2018109101A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Composite material and method of producing the same
WO2021201065A1 (en) * 2020-03-31 2021-10-07 日東電工株式会社 Composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320988A (en) * 2006-05-30 2007-12-13 Futamura Chemical Co Ltd Interconnected porous structure member containing sealed material and method for producing the same
JP2013014716A (en) * 2011-07-06 2013-01-24 Nitto Denko Corp Inorganic particle-containing foam
JP2018109101A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Composite material and method of producing the same
WO2021201065A1 (en) * 2020-03-31 2021-10-07 日東電工株式会社 Composite material

Also Published As

Publication number Publication date
TW202348700A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
CN108250691B (en) Composite material and method for producing same
CN102007090A (en) Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof
JP7271591B2 (en) Composite material and method for producing composite material
JP7271592B2 (en) Composite material
WO2023189778A1 (en) Composite material sheet
WO2023189777A1 (en) Method for producing composite material sheet and device for producing composite material sheet
JP7271593B2 (en) Composite material
TW202403488A (en) Temperature control module
JP7345516B2 (en) composite material
WO2021201062A1 (en) Composite material
WO2022210805A1 (en) Composite material and method for manufacturing composite material
WO2023054414A1 (en) Composite material and production method for composite material
JP7367088B2 (en) Thermal conductive sheet and method for manufacturing the thermally conductive sheet
TW202200689A (en) Composite material
JP2009057584A (en) Aluminum porous body having superior water absorbability, and manufacturing method therefor
JP2010248064A (en) Method for manufacturing scale-like graphite powder molding and sintered molding
JP2004018354A (en) Carbon porous adsorption plate having high porosity, method of producing the same and vacuum chuck equipped therewith
CN115885006A (en) Composite material, preform for composite material, and method for producing composite material
JPH01259915A (en) Heating and pressure molding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511846

Country of ref document: JP

Kind code of ref document: A