WO2023054414A1 - Composite material and production method for composite material - Google Patents

Composite material and production method for composite material Download PDF

Info

Publication number
WO2023054414A1
WO2023054414A1 PCT/JP2022/036043 JP2022036043W WO2023054414A1 WO 2023054414 A1 WO2023054414 A1 WO 2023054414A1 JP 2022036043 W JP2022036043 W JP 2022036043W WO 2023054414 A1 WO2023054414 A1 WO 2023054414A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
peak
voids
size
resin
Prior art date
Application number
PCT/JP2022/036043
Other languages
French (fr)
Japanese (ja)
Inventor
智也 加藤
孝彦 伊藤
哲弥 大塚
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280065705.4A priority Critical patent/CN118043390A/en
Publication of WO2023054414A1 publication Critical patent/WO2023054414A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients

Definitions

  • the present invention relates to composite materials and methods for manufacturing composite materials.
  • Patent Document 1 discloses a composite material comprising scale-like fillers made of an inorganic material and a binding resin made of a thermosetting resin that binds the fillers.
  • This composite material is a foamed material formed so that a plurality of voids are dispersed, and the filler is accumulated on the inner wall of the void so that the flat surfaces of the filler overlap each other (claim 1 and FIG. 1 reference).
  • Patent Document 1 describes that when the ratio of the average length of the flat surfaces of the filler to the thickness of the filler, that is, the aspect ratio is less than 50, the flat surfaces of the filler are difficult to overlap each other.
  • Patent Document 1 In the technology described in Patent Document 1, thermal conductivity is improved by accumulating fillers by foaming. On the other hand, Patent Document 1 does not discuss the relationship between the size distribution of the plurality of voids and the thermal conductivity. Accordingly, the present invention provides a composite material in which multiple void sizes are distributed in an advantageous manner from the point of view of thermal conductivity.
  • the present invention A composite material comprising a skeleton containing a resin, inorganic particles, and a plurality of voids, At least part of the inorganic particles are arranged along the boundary between the void and the skeleton, When the composite material is viewed in cross section, the first distribution of the size based on the number obtained by measuring the size of each of the plurality of voids has two or more peaks.
  • composite materials When the composite material is viewed in cross section, the first distribution of the size based on the number obtained by measuring the size of each of the plurality of voids has two or more peaks.
  • the present invention In a mixture containing a plurality of composite particles each having a first resin and inorganic particles arranged around the first resin, and a fluid resin composition filled in gaps between the composite particles, the resin reducing the fluidity of the composition to form a solid portion comprising the second resin; Arranging at least a portion of the inorganic particles along the boundary between the plurality of voids and the solid portion while forming a plurality of voids by shrinkage or removal of the first resin;
  • the plurality of composite particles includes first composite particles and second composite particles, The size of the first resin of the first composite particles is included in the first range, The size of the first resin of the second composite particle is included in a second range having an upper limit smaller than the lower limit of the first range, A method of manufacturing a composite material is provided.
  • the sizes of the plurality of voids are distributed in an advantageous manner from the viewpoint of thermal conductivity.
  • FIG. 1 is a cross-sectional view schematically showing an example of the composite material according to this embodiment.
  • FIG. 2A is a graph showing an example of a first distribution of number-based void sizes in a cross-sectional view of the composite material according to the present embodiment.
  • FIG. 2B is a graph showing an example of the second distribution of the maximum diameter of the number-based annular cross section in the cross-sectional view of the composite material according to the present embodiment.
  • FIG. 3 is a cross-sectional view schematically showing another example of the composite material according to this embodiment.
  • 4 is a photograph of a cross section of the composite material according to Example 1.
  • FIG. 5 is a photograph of a cross section of the composite material according to Comparative Example 1.
  • the composite material 1a includes a skeleton 10 containing a resin 11, inorganic particles 12, and a plurality of voids 20.
  • the skeleton 10, the inorganic particles 12, and the plurality of voids 20 form a porous structure. At least part of the inorganic particles 12 are arranged along the boundaries between the voids 20 and the skeleton portion 10 .
  • a layered structure having a predetermined thickness in which a plurality of inorganic particles 12 are stacked may be formed.
  • FIG. 2A shows a first distribution D1 of the number-based size Sz obtained by measuring the size Sz of each of the plurality of voids 20 when the composite material 1a is viewed in cross section. As shown in FIG. 2A, the first distribution D1 has two or more peaks.
  • the volume of the boundaries between the voids 20 and the framework 10 tends to increase in the porous structure of the composite material 1a.
  • the inorganic particles 12 are arranged along the boundaries between the voids 20 and the skeleton portion 10 , and the inorganic particles 12 can have a higher thermal conductivity than the resin 11 . Therefore, it is advantageous to increase the thermal conductivity of the composite material 1a if the volume of the boundary between the void 20 and the skeleton portion 10 is large. Therefore, the composite material 1a tends to have high thermal conductivity.
  • the first distribution D1 since the first distribution D1 has two or more peaks, voids 20 are likely to exist at various locations in the porous structure. Therefore, the composite material 1a tends to have flexibility.
  • the cross section where the size Sz is measured to obtain the first distribution D1 is not limited to a specific cross section.
  • the composite material 1a has, for example, a flat outer surface.
  • the cross-section for measurement of size Sz may be parallel, perpendicular or inclined to its outer surface.
  • the cross-section on which the size Sz is measured to obtain the first distribution D1 may include multiple cross-sections.
  • the number of voids 20 whose sizes Sz are measured to obtain the first distribution D1 is, for example, 200 or more. Observation of the cross section is performed using a microscope such as an optical microscope, a metallurgical microscope, and an electron microscope.
  • the size Sz is, for example, the maximum diameter of the void 20 in the cross section.
  • the maximum diameter of the gap 20 is the maximum dimension of a line segment connecting two different points within the range of the gap 20 .
  • the first distribution D1 can be created as a histogram, for example.
  • the range of each section in the histogram is not limited to specific values. The range is, for example, 10-100 ⁇ m.
  • the median value of that interval can be taken as the size Sz corresponding to that peak.
  • the multiple voids 20 have multiple first voids 21 and second voids 22.
  • the second gaps 22 are arranged, for example, between the first gaps 21 .
  • a second range is a range having an upper limit that is less than the lower limit of the first range. According to such a configuration, the inorganic particles 12 can be arranged along the boundary between the second gaps 22 and the skeleton portion 10 between the first gaps 21 . Therefore, the composite material 1a is more likely to have high thermal conductivity. In addition, the composite material 1a tends to have more flexibility.
  • the first distribution D1 has, for example, a first peak P1 and a second peak P2.
  • the size Sz of the voids 20 at the second peak P2 is smaller than the size Sz of the voids 20 at the first peak P1.
  • the ratio N2/N1 of the number N2 of voids 20 at the second peak to the number N1 of voids 20 at the first peak P1 is not limited to a specific value.
  • the ratio N2/N1 is, for example, 0.01-100.
  • the composite material 1a is more likely to have high thermal conductivity.
  • the composite material 1a tends to have more flexibility.
  • the first distribution D1 is a histogram
  • the number of voids 20 at a specific peak is the number of voids 20 in the interval to which that peak belongs in the histogram.
  • the ratio N2/N1 may be 0.05 or more, 0.1 or more, or 0.5 or more.
  • the ratio N2/N1 may be 100 or less, 50 or less, or 20 or less.
  • the first distribution D1 may have three or more peaks.
  • the inorganic particles 12 arranged along the boundary between the voids 20 and the skeleton portion 10 are, for example, a plurality of annular particles corresponding to the plurality of voids 20, respectively. has a cross section 12c.
  • FIG. 2B shows a number-based second distribution D2 obtained by measuring the maximum diameter Tz of each of the plurality of annular cross-sections 12c.
  • the second distribution D2 has, for example, a third peak P3 and a fourth peak P4.
  • the maximum diameter Tz at the fourth peak P4 is smaller than the maximum diameter Tz at the third peak P3.
  • the composite material 1a satisfies the conditions of, for example, L1/L2 ⁇ 1.25, ⁇ (L1 2 ⁇ d1 2 )h1 ⁇ / ⁇ (L2 2 ⁇ d2 2 )h2 ⁇ 0.8, and R ⁇ 0.55. Fulfill.
  • L1 is the maximum diameter Tz corresponding to the third peak P3
  • L2 is the maximum diameter Tz corresponding to the fourth peak P4.
  • d1 is the size Sz corresponding to the first peak P1
  • d2 is the size Sz corresponding to the second peak P2.
  • h1 is the number of voids 20 at the first peak P1
  • h2 is the number of voids 20 at the second peak P2.
  • R is the ratio of the cross-sectional area of the skeleton portion 10 to the cross-sectional area of the composite material 1a in a cross-sectional view of the composite material 1a.
  • L1/L2 may be 1.26 or more, 1.27 or more, or 1.28 or more.
  • L1/L2 is, for example, 15 or less, and may be 12 or less.
  • ⁇ (L1 2 ⁇ d1 2 )h1 ⁇ / ⁇ (L2 2 ⁇ d2 2 )h2 ⁇ may be 0.9 or more, 1 or more, or 1.5 or more. , 2 or more, or 2.5 or more.
  • ⁇ (L1 2 -d1 2 )h1 ⁇ / ⁇ (L2 2 -d2 2 )h2 ⁇ is, for example, 7 or less, and may be 5 or less.
  • the ratio R may be 0.54 or less, 0.53 or less, or 0.52 or less.
  • the ratio R is, for example, 0.3 or more.
  • the second distribution D2 is obtained, for example, by measuring the maximum diameter Tz of each of the plurality of annular cross sections 12c in the same cross section as the cross section for obtaining the first distribution D1.
  • the number of cross sections 12c for which the maximum diameter Tz is measured to obtain the second distribution D2 is, for example, 200 or more.
  • the maximum diameter Tz is measured for the annular cross section 12c corresponding to the void 20 whose size Sz has been measured for creating the first distribution D1.
  • the maximum diameter Tz is, for example, the maximum dimension of a line segment connecting two different points within the range of the cross section 12c.
  • the cross section 12c does not always form a perfect ring.
  • the cross-section 12c is, for example, continuous in a portion corresponding to 80% or more of the circumference of the complete ring.
  • the second distribution D2 can be created as a histogram, for example.
  • the range of each section in the histogram is not limited to specific values. The range is, for example, 10-100 ⁇ m.
  • the median value of that section can be regarded as the maximum diameter Tz corresponding to that peak.
  • the arithmetic average S AVG of the size Sz of the voids 20 obtained by measuring the size Sz of each of the multiple voids 20 when the composite material 1a is viewed in cross section is not limited to a specific value.
  • Arithmetic average S AVG is, for example, 50 to 1500 ⁇ m.
  • the first distribution D1 tends to have two or more peaks, and the composite material 1a tends to have high thermal conductivity.
  • the composite material 1a tends to have more flexibility.
  • the composite material 1a tends to have desired strength.
  • the arithmetic average S AVG may be 50 ⁇ m or more, 100 ⁇ m or more, 250 ⁇ m or more, 350 ⁇ m or more, 400 ⁇ m or more, or 450 ⁇ m or more. It may be 500 ⁇ m or more.
  • the arithmetic average S AVG may be 550 ⁇ m or more, 600 ⁇ m or more, 650 ⁇ m or more, or 700 ⁇ m or more.
  • the arithmetic average S AVG may be 1450 ⁇ m or less, 1400 ⁇ m or less, 1350 ⁇ m or less, or 1300 ⁇ m or less.
  • the arithmetic average S AVG may be 1250 ⁇ m or less, 1200 ⁇ m or less, 1150 ⁇ m or less, 1100 ⁇ m or less, 1050 ⁇ m or less, or 1000 ⁇ m or less.
  • the relationship between the first peak P1 and the second peak P2 is not limited to a specific relationship.
  • the first peak P1 exists in the size Sz range of 500-1200 ⁇ m
  • the second peak P2 exists in the size Sz range of 50-700 ⁇ m.
  • the composite material 1a is more likely to have high thermal conductivity.
  • the composite material 1a tends to have more flexibility.
  • the outer shape of the void 20 is not limited to a specific shape.
  • the outer shape of the void 20 is, for example, spherical and may be substantially spherical.
  • substantially spherical means that the ratio of maximum diameter to minimum diameter (maximum diameter/minimum diameter) is 1.0 to 1.5.
  • the ratio of the largest diameter to the smallest diameter of the substantially spherical void 20 may be between 1.0 and 1.3.
  • the outer shape of the void 20 may be rod-like, polyhedral, or elliptical with a ratio of maximum diameter to minimum diameter greater than 1.5.
  • 50% or more of the plurality of voids 20 are spherical.
  • 80% or more of the plurality of voids 20 may be spherical.
  • the foaming technique since the shape of the voids becomes irregular, it is difficult to form the voids with such a uniform shape.
  • the porosity which is the ratio of the volume of the plurality of voids 20 to the volume of the composite material 1a, is not limited to a specific value.
  • the porosity is, for example, 10% to 60% by volume, may be 15% to 50% by volume, or may be 20% to 45% by volume.
  • the porosity is determined, for example, by observing the cross section of the composite material 1a, calculating the ratio of the total area of the voids 20 to the total area of the observed cross section, and averaging the ratio for 10 different cross section images. can.
  • the porosity may be determined based on the results of X-ray CT scanning of the composite material 1a.
  • the manufacturing process of the composite material 1a it may be determined as follows.
  • the mass of the inorganic particles 12 contained in the composite particles is calculated from the mass of the resin particles and the mass of the composite particles in which the inorganic particles 12 are arranged on the surfaces of the resin particles, which will be described later.
  • the content [% by mass] of the inorganic particles 12 in the composite material 1a is calculated based on the result of the inorganic elemental analysis of the composite material 1a.
  • the mass of the inorganic particles 12 in the composite material 1a is calculated from the content [% by mass] of the inorganic particles 12 in the composite material 1a and the mass of the composite material 1a.
  • the number of composite particles used in manufacturing the composite material 1a is calculated from the mass of the inorganic particles 12 in the composite material 1a and the mass of the inorganic particles 12 contained in the composite particles.
  • the volume of the voids 20 is calculated from the average diameter of the voids 20 .
  • the total volume of the voids 20 in the composite material 1a is obtained by multiplying the volume of the voids 20 by the number of composite particles.
  • the porosity is calculated by dividing this value by the volume of the composite material 1a.
  • the plurality of voids 20 have, for example, external shapes similar to each other.
  • 80% or more of the plurality of voids 20 have outlines similar to each other.
  • the outer shapes of the plurality of voids 20 that are similar to each other are, for example, spherical. This contour may be substantially spherical.
  • a plurality of voids formed by foaming may also come into contact with each other as they expand. In this case, however, the internal pressure generated by the foaming usually acts on the connecting portion of the voids, and greatly deforms the vicinity of the connecting portion. For this reason, the technique of foaming cannot actually form a plurality of voids that are in contact with each other and have substantially similar external shapes.
  • the porous structure of the composite material 1a may have through holes extending from one main surface of the composite material 1a to the other main surface.
  • the gap 20 provided on one outer surface of the composite material 1a may communicate with the space facing the other outer surface of the composite material 1a.
  • the void provided on one outer surface of the composite material 1a may communicate with a space in contact with a side surface intersecting one outer surface of the composite material 1a.
  • the composite material 1a has heat transfer paths 5 formed of inorganic particles 12, for example. According to such a configuration, heat is easily conducted through the composite material 1a by heat conduction in the heat transfer path 5, and the composite material 1a tends to have a high thermal conductivity.
  • the heat transfer path 5 is, for example, continuously formed by a plurality of inorganic particles 12 that are in contact with or close to each other.
  • the heat transfer path 5 extends across a plurality of gaps 20, for example.
  • the heat transfer path 5 extends, for example, along the boundary between the skeleton portion 10 and the plurality of voids 20 without passing through the inside of the skeleton portion 10 .
  • the composite material 1a may for example have a first outer surface 2a and a second outer surface 2b parallel to each other, the heat transfer path 5 extending from the first outer surface 2a to the second outer surface 2b.
  • the inorganic particles 12 may be in direct contact with each other, or the inorganic particles 12 may be close to each other while a predetermined resin exists between the inorganic particles 12 .
  • the multiple voids 20 may be arranged so as to be in contact with each other.
  • a pair of gaps 20 that are in contact with each other may be connected by a connecting portion 20j containing the inorganic particles 12 .
  • a pair of gaps 20 that are in contact with each other may be connected by a connecting portion 20k that does not contain the inorganic particles 12 .
  • the pair of gaps 20 form one space that communicates with each other through the connecting portion 20k.
  • the dimension of the connecting portion 20k is, for example, 25% or less of the size Sz of the gap 20, may be 20% or less, or may be 15% or less.
  • the size Sz of each gap 20 is determined assuming that a pair of gaps 20 are partitioned by the connecting portion 20k.
  • a pair of gaps 20 that are in contact with each other may be connected by a connection portion 20m that contains only resin and does not contain inorganic particles 12 .
  • heat transfer paths 5 appear in a specific cross section as shown in FIG. 1, and furthermore, not all parts of a specific heat transfer path 5 appear.
  • the inorganic particles 12 that do not appear in the cross section It may extend to the outer surface 2b or to both the first outer surface 2a and the second outer surface 2b.
  • the contact of all voids 20 cannot be confirmed with only a specific cross section.
  • void 20i is isolated as far as FIG. 1 is concerned.
  • the air gap 20i is in contact with another adjacent air gap 20 in the direction perpendicular to this cross section.
  • the material forming the inorganic particles 12 is not limited to a specific inorganic material.
  • the material forming the inorganic particles 12 has, for example, a thermal conductivity higher than that of the resin 11 .
  • Examples of materials forming the inorganic particles 12 include hexagonal boron nitride (h-BN), alumina, crystalline silica, amorphous silica, aluminum nitride, magnesium oxide, carbon fiber, silver, copper, aluminum, silicon carbide, and graphite. , zinc oxide, silicon nitride, silicon carbide, cubic boron nitride (c-BN), beryllia, diamond, carbon black, magnesium hydroxide, graphene, carbon nanotubes, carbon fibers, and aluminum hydroxide. Only one type of inorganic particles 12 may be used in the composite material 1a and the composite material 1b, or two or more types of inorganic particles 12 may be used in combination in the composite material 1a and the composite material 1b.
  • the shape of the inorganic particles 12 is not limited to a specific shape. Examples of shapes of the inorganic particles 12 are spherical, rod-like, fibrous, and scale-like. The shape of the inorganic particles 12 may be irregular-shaped lumps.
  • the aspect ratio of the inorganic particles 12 is not limited to a specific value.
  • the aspect ratio of the inorganic particles 12 is, for example, less than 50, may be 40 or less, or may be 30 or less.
  • the aspect ratio of the inorganic particles 12 may be 1, 2 or more, or 3 or more.
  • the aspect ratio of a particle is determined as the ratio of the second dimension of the particle to the first dimension of the particle (second dimension/first dimension), unless otherwise stated.
  • the second dimension of the particles corresponds to the largest dimension of the particles.
  • the first dimension of the particle is the largest dimension of the particle in a direction perpendicular to the line defining the largest dimension of the particle.
  • the average particle size of the inorganic particles 12 is not limited to a specific value.
  • the average particle diameter of the inorganic particles 12 is, for example, 0.05 ⁇ m to 100 ⁇ m, may be 0.1 ⁇ m to 50 ⁇ m, may be 0.1 ⁇ m to 30 ⁇ m, and may be 0.5 ⁇ m to 10 ⁇ m. .
  • the "average particle size" can be determined, for example, by a laser diffraction scattering method.
  • the average particle diameter is, for example, the median diameter in the volume-based particle size distribution.
  • the volume-based particle size distribution of the inorganic particles 12 can be obtained, for example, using a particle size distribution meter Microtrac MT3300EXII manufactured by Microtrac Bell.
  • the shape of the inorganic particles 12 can be determined, for example, by observation using a scanning electron microscope (SEM) or the like.
  • SEM scanning electron microscope
  • the inorganic particles 12 may be spherical.
  • the inorganic particles 12 may have an aspect ratio of 1.0 or more and 1.5 or less, particularly 1.0 or more and 1.3 or less.
  • a scaly shape is a plate-like shape having a pair of main surfaces and side surfaces.
  • the main surface is the surface of the inorganic particles 12 with the largest area. This main surface may be a flat surface or a surface having irregularities.
  • the aspect ratio is instead defined as the ratio of the average dimension of the major surfaces to the average thickness of the inorganic particles 12 .
  • the thickness of the scaly inorganic particles 12 means the distance between a pair of main surfaces.
  • the average thickness can be obtained by measuring the thickness of arbitrary 50 inorganic particles 12 using SEM and calculating the average value.
  • the average dimension of the main surface the value of the median diameter d50 measured using the particle size distribution analyzer described above can be used.
  • the average particle size is, for example, 0.1 ⁇ m to 50 ⁇ m, may be 0.1 ⁇ m to 10 ⁇ m, or may be 0.5 ⁇ m to 5 ⁇ m.
  • the average size of the major surfaces of the inorganic particles 12 is, for example, 0.1 ⁇ m to 20 ⁇ m, and may be 0.5 ⁇ m to 15 ⁇ m.
  • the average thickness of the inorganic particles 12 is, for example, 0.05 ⁇ m to 1 ⁇ m, and may be 0.08 ⁇ m to 0.5 ⁇ m.
  • the minimum diameter (usually the minor axis length) of the inorganic particles 12 is, for example, 0.01 ⁇ m to 10 ⁇ m, and may be 0.05 ⁇ m to 1 ⁇ m.
  • the maximum diameter (usually the major axis length) of the inorganic particles 12 is, for example, 0.1 ⁇ m to 20 ⁇ m, and may be 0.5 ⁇ m to 10 ⁇ m. If the size of the inorganic particles 12 is within this range, the inorganic particles 12 are likely to be arranged along the boundaries between the voids 20 and the skeleton portion 10, and the heat transfer paths 5 extending over the multiple voids 20 are likely to be formed.
  • the average particle size of the inorganic particles 12 is, for example, 10 ⁇ m to 100 ⁇ m, and may be 20 ⁇ m to 60 ⁇ m.
  • the content of the inorganic particles 12 in the composite material 1a is not limited to a specific value.
  • the content of the inorganic particles 12 in the composite material 1a is, for example, 10% by mass to 80% by mass, may be 10% by mass to 70% by mass, or may be 10% by mass to 55% by mass.
  • the content of the inorganic particles 12 in the composite material 1a is, for example, 1% to 50% by volume, may be 2% to 45% by volume, or may be 5% to 40% by volume. , 5% to 30% by volume.
  • the content [mass %] of the inorganic particles 12 in the composite material 1a can be determined by removing materials other than the inorganic particles 12 from the composite material 1a by burning or decomposing.
  • the content [% by mass] of the inorganic particles 12 may be determined using elemental analysis. Specifically, an acid is added to the composite material 1a, microwaves are applied, and the composite material 1a is acid-decomposed under pressure. Acids that can be used include, for example, hydrofluoric acid, concentrated sulfuric acid, concentrated hydrochloric acid, and aqua regia. Elements of the solution obtained by pressure acid decomposition are analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The content [% by mass] of the inorganic particles 12 may be determined based on the result.
  • ICP-AES inductively coupled plasma atomic emission spectrometry
  • the density of the inorganic particles 12 is based on the Japanese Industrial Standards (JIS) R 1628: 1997 or JIS Z 2504: 2012 for the inorganic particles 12 remaining after the organic material is burned off by heating the composite material 1a at a high temperature in an electric furnace. can be asked for.
  • JIS Japanese Industrial Standards
  • the resin 11 contained in the skeleton portion 10 is not limited to a specific resin.
  • Resin 11 includes, for example, a crosslinked polymer.
  • Resin 11 may be a thermosetting resin.
  • thermosetting resins include phenolic resins, urea resins, melamine resins, diallyl phthalate resins, polyester resins, epoxy resins, aniline resins, silicone resins, furan resins, polyurethane resins, alkylbenzene resins, guanamine resins, xylene resins, and imides.
  • the curing temperature of the resin 11 is, for example, 25.degree. C. to 160.degree.
  • the resin 11 may be a thermoplastic resin.
  • thermoplastic resins are (meth)acrylic resins, styrene resins, polyethylene terephthalate resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, acrylonitrile-butadiene-styrene resins, and acrylonitrile-styrene resins.
  • the composite material 1a is, for example, a non-foam.
  • a conventional foam such as that described in Patent Document 1 cannot have the characteristic structure shown in FIG.
  • the composite material 1a is manufactured, for example, by a method including the following steps (I) and (II).
  • a fluid resin composition is filled in the gaps between the composite particles.
  • Each of the plurality of composite particles has a first resin and inorganic particles arranged around the first resin.
  • the fluidity of the resin composition is reduced to form a solid portion containing the second resin.
  • By shrinking or removing the first resin a plurality of voids are formed, and at least a portion of the inorganic particles are arranged along the boundaries between the plurality of voids and the solid portion.
  • the plurality of composite particles includes first composite particles and second composite particles.
  • the size of the first resin in the first composite particles is included in the first range.
  • the size of the first resin in the second composite particles falls within a second range having an upper limit less than the lower limit of the first range.
  • the first distribution D1 has two or more peaks.
  • the size of the first resin is, for example, the maximum diameter of the first resin.
  • the step (I) for example, at least part of the second composite particles are arranged between the first composite particles.
  • gaps 20 having a relatively small size are likely to be formed between gaps 20 having a relatively large size.
  • Composite particles can be produced, for example, as follows.
  • a premix of the resin particles formed by the first resin and the binder is prepared.
  • the adhesive contains, for example, a predetermined resin.
  • the resin includes, for example, a crosslinkable polymer or a thermosetting resin.
  • the inorganic particles 12 are added to the preliminary mixture and mixed to obtain composite particles in which the inorganic particles 12 are arranged on the surfaces of a plurality of resin particles.
  • the step of adding the binder to the resin particles to obtain a preliminary mixture and the step of adding the inorganic particles 12 to the preliminary mixture may be repeated multiple times.
  • a mixing method is not limited to a specific method.
  • Examples of methods of mixing are ball mills, bead mills, planetary mixers, ultrasonic mixers, homogenizers, rotation or revolution mixers, fluidized bed mixers, Henschel mixers, vessel rotary blenders, ribbon blenders, and mixing using conical screw blenders.
  • the composite particles are placed inside the mold so that the composite particles are in contact with each other.
  • a separately prepared resin composition having fluidity is added to this mold, and the gaps between the composite particles are filled with this resin composition to obtain the mixture in step (I) above.
  • the composite particles and the resin composition are mixed in advance to prepare a preliminary mixture, and after the preliminary mixture is poured into a mold, the preliminary mixture is treated so that the composite particles are in contact with each other, so that the mixture in the above step (I) is may be obtained.
  • a method for removing air bubbles from the mixture is not limited to a specific method.
  • An example of such a method is vacuum degassing. Vacuum degassing is performed, for example, at 25° C. to 200° C. for 1 second to 10 seconds.
  • the fluidity of the resin composition is lowered by heating the mixture.
  • the resin composition is heated, for example, the curing reaction of the thermosetting resin proceeds and the fluidity of the resin composition decreases.
  • the method of shrinking or removing the first resin of the composite particles is not limited to a specific method. Examples of such methods are a method of heating the precursor of the composite material 1a and a method of immersing the precursor of the composite material 1a in a specific solvent. These methods may be used in combination. Thereby, a plurality of voids 20 are formed.
  • the temperature for heating the precursor of the composite material 1a is not limited to a specific temperature, as long as it can soften the first resin.
  • the temperature is, for example, 95°C to 130°C, and may be 120°C to 160°C.
  • the solvent does not dissolve the second resin and dissolves the first resin. It is not limited to solvents. Examples of solvents are toluene, ethyl acetate, methyl ethyl ketone, and acetone.
  • the resin particles formed by the first resin may have a hollow structure.
  • the hollow part in the hollow structure may be a single hollow part or may be composed of a plurality of hollow parts.
  • the heat treatment softens the resin constituting the resin particles, causing the hollow portions to disappear or shrink, and a plurality of voids 20 can be formed accordingly.
  • the resin particles formed by the first resin may be solid particles.
  • first resins are polystyrene (PS), polyethylene (PE), polymethyl methacrylate (PMMA), ethylene vinyl acetate copolymer (EVA), polyvinyl chloride (PVC), polypropylene (PP), acrylonitrile butadiene • Styrene copolymer (ABS), ethylene-propylene-diene rubber (EPDM), thermoplastic elastomer (TPE), and polyvinyl alcohol (PVA).
  • PS polystyrene
  • PE polyethylene
  • PMMA polymethyl methacrylate
  • EVA ethylene vinyl acetate copolymer
  • PVC polyvinyl chloride
  • PP polypropylene
  • ABS acrylonitrile butadiene • Styrene copolymer
  • EPDM ethylene-propylene-diene rubber
  • TPE thermoplastic elastomer
  • PVA polyvinyl alcohol
  • the plurality of voids 20 are formed without going through the foaming process.
  • the composite material 1a can be changed from various points of view.
  • composite material 1a may be modified as composite material 1b shown in FIG.
  • the composite material 1b is configured in the same manner as the composite material 1a except for the parts that are particularly described.
  • Components of the composite material 1b that are the same as or correspond to components of the composite material 1a are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the description regarding the composite material 1a also applies to the composite material 1b unless technically contradictory.
  • particles 30 are arranged inside the voids 20 in the composite material 1b.
  • Particles 30 are typically resin particles.
  • the particles 30 may be resin particles that have shrunk due to heat treatment.
  • the resin particles before shrinkage may have a shape corresponding to the voids 20 .
  • the resin occupying the spaces corresponding to the voids 20 is removed.
  • the resin occupying the spaces corresponding to the voids 20 remains deformed. Even for particles 30 whose existence cannot be confirmed in a specific cross section, the existence of particles 30 may be confirmed when another cross section is observed.
  • Example 1 100 parts by weight of pure water, 0.2 parts by weight of tricalcium phosphate, and 0.01 parts by weight of sodium dodecylbenzenesulfonate were added to an autoclave equipped with a stirrer. Into this autoclave, 0.15 parts by weight of benzoyl peroxide and 0.25 parts by weight of 1,1-bis(t-butylperoxy)cyclohexane were added as initiators to prepare a mixture. 100 parts by weight of styrene monomer was added while stirring the mixture at 350 rpm. Thereafter, the polymerization reaction was carried out by raising the temperature of this solution to 98°C. When the polymerization reaction was about 80% complete, the reaction solution was heated to 120° C.
  • reaction solution was kept at 120° C. for 1 hour to prepare a solution containing styrene resin particles.
  • 2 parts by weight of cyclohexane and 7 parts by weight of butane as blowing agents were injected into the autoclave.
  • the solution was then heated to 120°C again.
  • the solution was kept at 120° C. for 1 hour and then cooled to room temperature to obtain a polymerization slurry.
  • Expandable styrene resin particles were obtained by dehydrating, washing and drying the polymerized slurry.
  • the expandable styrene resin particles were sieved to obtain expandable styrene resin particles having a particle size of 0.2 mm to 0.3 mm. These expandable styrene resin particles were used in a pressurized expansion machine (BHP) manufactured by Daikai Kogyo Co., Ltd. to obtain spherical expanded polystyrene beads ⁇ having an average diameter of 650 ⁇ m to 1200 ⁇ m. The expanded polystyrene beads ⁇ were passed through a JIS test sieve with a nominal mesh size (JIS Z 8801-1:2019) of 1.18 mm and 1 mm.
  • BHP pressurized expansion machine
  • expanded polystyrene beads A which passed through a sieve with a nominal opening of 1.18 mm but did not pass through a sieve with a nominal opening of 1 mm, were used to prepare samples.
  • the expanded polystyrene beads A had an average particle size of 1050 ⁇ m and a bulk density of 0.025 g/milliliter (mL).
  • Spherical expanded polystyrene beads ⁇ were produced in the same manner as for the expanded polystyrene beads ⁇ , except that the BHP expansion conditions were adjusted so that the average diameter was 400 ⁇ m to 600 ⁇ m.
  • the expanded polystyrene beads ⁇ were passed through sieves with nominal openings of 500 ⁇ m and 600 ⁇ m.
  • expanded polystyrene beads B that passed through a sieve with a nominal opening of 600 ⁇ m but did not pass through a nominal opening of 500 ⁇ m were used for preparing samples.
  • the expanded polystyrene beads B had an average particle diameter of 550 ⁇ m and a bulk density of 0.088 g/mL.
  • a coating agent was prepared by mixing silicone resin KE-106F manufactured by Shin-Etsu Chemical Co., Ltd., curing agent CAT-106F manufactured by Shin-Etsu Chemical Co., Ltd., and silicone oil KF-96-10CS manufactured by Shin-Etsu Chemical Co., Ltd.
  • For 1 part by mass of foamed polystyrene beads A 7 parts by mass of the adhesive was prepared.
  • 14 parts by mass of scale-like boron nitride was prepared for 1 part by mass of expanded polystyrene beads A.
  • the boron nitride had an average thickness of 0.4 ⁇ m and an aspect ratio of 20.
  • DOWSIL SE 1817 CVM manufactured by Dow Toray at a mass ratio of 1:1.
  • the diameter of the openings in the plain weave wire mesh was 0.18 mm and the mesh of the plain weave wire mesh was 50.
  • the diameter of the openings was 5 mm, and the pitch between adjacent openings was 8 mm.
  • the thickness of the punching metal was 1 mm.
  • the plain weave wire mesh and the punching metal were fixed with clamps.
  • the above resin precursor was added to the inside of the case, and the resin precursor was degassed under reduced pressure.
  • the gauge pressure in this vacuum defoaming was adjusted to -0.08 MPa to -0.09 MPa.
  • the operation including adding the resin precursor and degassing under reduced pressure was repeated three times to impregnate the resin precursor between the composite particles.
  • the silicone resin contained in the resin precursor is cured, and the resin molded article in which the composite particles are embedded. got This resin molded article was cut into a predetermined size, and the cut resin molded article was immersed in acetone for 30 minutes.
  • Example 3 was carried out in the same manner as in Example 1, except that boron nitride having an aspect ratio of 50 and an average thickness of 0.8 ⁇ m was used instead of the boron nitride used in Example 1 in the preparation of the composite particles. A composite material was made.
  • Example 4 was prepared in the same manner as in Example 1, except that scaly graphite having an aspect ratio of 12 and an average thickness of 1.8 ⁇ m was used instead of the boron nitride used in Example 1 in the preparation of the composite particles. A composite material according to was produced.
  • Example 5 A composite material according to Example 5 was produced in the same manner as in Example 1, except for the following points.
  • a mixture of polyurethane SU-3001A and SU-3001B manufactured by Sanyu Rec Co., Ltd. was used as a resin precursor instead of a silicone resin.
  • the polyurethane contained in the resin precursor was cured by heating such that the environment in which the resin precursor was placed was maintained at 80° C. for 2 hours.
  • Example 6 A composite material according to Example 6 was produced in the same manner as in Example 1, except for the following points.
  • the amount of the impregnating agent was changed to 3.5 parts by mass, and the amount of boron nitride was changed to 7 parts by mass.
  • the amount of the impregnating agent was changed to 3 parts by mass, and the amount of boron nitride was changed to 6 parts by mass.
  • Example 7 A composite material according to Example 7 was produced in the same manner as in Example 2, except for the following points.
  • the amount of the impregnating agent was changed to 3.5 parts by mass, and the amount of boron nitride was changed to 7 parts by mass.
  • the amount of the impregnating agent was changed to 3 parts by mass, and the amount of boron nitride was changed to 6 parts by mass.
  • a silicone resin precursor was prepared by mixing DOWSIL SE 1896 FR A/B agent A and agent B in a weight ratio of 1:1 as an adhesive agent. 10 parts by weight of this silicone resin precursor was prepared for 1 part by weight of plastic microballoons (Matsumoto Microsphere F-80DE) manufactured by Matsumoto Yushi Seiyaku. Separately, 25 parts by weight of scale-like boron nitride was prepared for 1 part by weight of F-80DE. The boron nitride had an aspect ratio of 20 and an average thickness of boron nitride of 0.4 ⁇ m.
  • F-80DE One part by weight of F-80DE was added to Kawata's high-speed fluid mixer SMP-2. Next, while simultaneously adding the silicone resin precursor and the boron nitride and adding each of the silicone resin precursor and the boron nitride in equal amounts over 30 minutes, using the mixer, 1000 The mixture was stirred at revolutions/minute. This operation yielded plastic microballoons coated with boron nitride by the silicone resin precursor. The plastic microballoons were heated in a constant temperature bath at 80° C. for 2 hours to cure the silicone resin and obtain composite particles C coated with boron nitride.
  • a composite material according to Example 8 was produced in the same manner as in Example 1, except that the composite particles C described above were used instead of the composite particles B used in Example 1.
  • Example 9 The composite according to Example 9 was prepared in the same manner as in Example 1 except that the composite particles B were used instead of the composite particles A used in Example 1, and the composite particles C were used instead of the composite particles B. Material was made.
  • Comparative Example 1 A composite material according to Comparative Example 1 was produced in the same manner as in Example 1, except that only composite particles A were used as the composite particles to be filled in the case.
  • Comparative Example 2 A composite material according to Comparative Example 2 was produced in the same manner as in Example 4, except that only composite particles A were used as the composite particles to be filled in the case.
  • Comparative Example 3 A composite material according to Comparative Example 3 was produced in the same manner as in Example 5, except that only composite particles A were used as the composite particles to be filled in the case.
  • Comparative Example 5 was prepared in the same manner as in Comparative Example 4, except that boron nitride having an aspect ratio of 50 and an average thickness of 0.4 ⁇ m was used instead of the boron nitride used in Comparative Example 4 in the preparation of the composite particles. A composite material was made.
  • the size of the void corresponding to the peak (first peak) with the largest void size among the multiple peaks was determined as d1.
  • the pore size corresponding to the second largest peak (second peak) among the plurality of peaks was determined as d2.
  • the range of each interval of the histogram used for determination of d2 in Examples 8 and 9 was 20 ⁇ m.
  • the frequency (number) of intervals including d1 in the histogram was determined as h1
  • the frequency (number) of intervals including d2 in the histogram was determined as h2.
  • the arithmetic mean of the maximum diameter of the voids was obtained based on the measurement results. The results are shown in Tables 1 and 2.
  • a photograph of a cross section of the composite material according to Example 1 and a photograph of a cross section of the composite material according to Comparative Example 1 are shown in FIGS. 4 and 5, respectively.
  • the maximum diameter of the annular cross section corresponding to the peak (third peak) at which the maximum diameter of the annular cross section is maximum among the plurality of peaks was determined as L1.
  • the maximum diameter of the annular cross section corresponding to the peak (fourth peak) having the second largest maximum diameter of the annular cross section among the plurality of peaks was determined as L2.
  • the range of each section of the histogram used for determining L2 in Examples 8 and 9 was 20 ⁇ m. Table 1 shows the results.
  • the ratio R of the cross-sectional area of the skeletal part to the cross-sectional area of the entire cross section of the observation target was obtained.
  • the cross-sectional area of the skeleton was determined by subtracting the sum of the area of the voids in the cross-section and the area of the above-mentioned annular cross-section where boron nitride or graphite agglomerates from the entire cross-sectional area of the cross-section to be observed. Table 1 shows the results.
  • the content [% by mass] of the inorganic particles was determined as follows. First, about 10 mg of the composite material was weighed and added to a fluororesin container. Hydrofluoric acid was added to a fluororesin container and the container was sealed. A container made of fluororesin was irradiated with microwaves, and pressurized acid decomposition was carried out at a maximum temperature of 220°C. Ultrapure water was added to the resulting solution to adjust the volume to 50 mL.
  • Boron atoms (B) were quantitatively analyzed by ICP-AES SPS-3520UV manufactured by Hitachi High-Tech Science Co., Ltd., and the boron nitride content [% by mass] was calculated from the detected boron atom content.
  • the inorganic particles were graphite, the content of the inorganic particles [% by mass] was calculated by filtering the solution after pressure decomposition of the composite material with hydrofluoric acid and measuring the weight of the residue. Table 2 shows the results.
  • the thermal conductivity of silicone grease was 0.84 W/(m ⁇ K).
  • an upper rod with a heating block adjusted to 110° C. and a lower rod with a cooling block adjusted to 20° C. were used.
  • a block made of oxygen-free copper was used as a test block.
  • a measurement sample was prepared by sandwiching the test piece between blocks made of oxygen-free copper with a silicone grease layer interposed therebetween. This measurement sample was sandwiched between the upper rod and the lower rod. Heat was applied in the thickness direction of the test piece.
  • a temperature difference ⁇ T S between the upper and lower surfaces of the test piece was determined according to the following equations (1) and (2).
  • ⁇ T C is the temperature difference between the top and bottom surfaces of the oxygen-free copper block (test block).
  • q 1 is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at the multiple temperature measuring points of the upper rod
  • q 2 is the multiple It is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at the temperature measuring points.
  • t b is the sum of the thicknesses of the oxygen-free copper blocks.
  • kb is the thermal conductivity of the oxygen-free copper block.
  • ⁇ T S ⁇ T C ⁇ (q S ⁇ t b )/k b formula (1)
  • q S (q 1 +q 2 )/2
  • the thermal conductivity ⁇ [W/(m ⁇ K)] in the thickness direction of the test piece was determined according to the following formula (3).
  • Table 2 shows the results.
  • the thickness t of the test piece was measured using a camera.
  • the thermal resistance value R T was obtained from the relationship of Equation (4).
  • Table 2 shows the results.
  • q S ⁇ t/ ⁇ T S formula (3)
  • R T t/ ⁇ Formula (4)
  • compression test A test piece for compression test having a thickness of 3 mm was produced from the composite material according to each example and each comparative example. Using a testing machine EZ-test manufactured by Shimadzu Corporation, a compression test was performed at a compression speed of 0.5 mm/min so that a compression strain of 30% was generated in the test piece. The stress corresponding to 30% compressive strain was measured. Table 2 shows the results.
  • the pore size distribution of the composite material has two peaks, so that the thermal conductivity of the composite material tends to increase. is understood. In addition, it is understood that the presence of two peaks in the pore size distribution of the composite material tends to reduce the compressive stress of the composite material and increase the flexibility of the composite material. The same is understood from the comparison between Example 4 and Comparative Example 2 and the comparison between Example 5 and Comparative Example 3.
  • a first aspect of the present invention is A composite material comprising a skeleton containing a resin, inorganic particles, and a plurality of voids, At least part of the inorganic particles are arranged along the boundary between the void and the skeleton, When the composite material is viewed in cross section, the first distribution of the size based on the number obtained by measuring the size of each of the plurality of voids has two or more peaks.
  • a composite material comprising a skeleton containing a resin, inorganic particles, and a plurality of voids, At least part of the inorganic particles are arranged along the boundary between the void and the skeleton, When the composite material is viewed in cross section, the first distribution of the size based on the number obtained by measuring the size of each of the plurality of voids has two or more peaks.
  • the second aspect according to the present invention is, in the first aspect,
  • the plurality of voids has a plurality of first voids and second voids arranged between the first voids,
  • the size of the first voids is included in the first range, and the size of the second voids is in a second range having an upper limit smaller than the lower limit of the first range.
  • a third aspect according to the present invention is, in the first aspect or the second aspect,
  • the first distribution has a first peak and a second peak, the size at the second peak is smaller than the size at the first peak;
  • the inorganic particles arranged along the boundary have a plurality of annular cross sections corresponding to the plurality of voids,
  • a number-based second distribution obtained by measuring the maximum diameter of each of the plurality of annular cross sections has a third peak and a fourth peak, The maximum diameter at the fourth peak is smaller than the maximum diameter at the third peak,
  • the composite material satisfies the conditions of L1/L2 ⁇ 1.25, ⁇ (L1 2 ⁇ d1 2 )h1 ⁇ / ⁇ (L2 2 ⁇ d2 2 )h2 ⁇ 0.8, and R ⁇ 0.55;
  • L1 is the maximum diameter corresponding to the third peak
  • L2 is the maximum diameter corresponding to the fourth peak
  • d1 is the size corresponding to the first peak
  • d2 is is the size corresponding to corresponding
  • a fourth aspect of the present invention is, in the first aspect or the second aspect,
  • the first distribution has a first peak and a second peak, the size at the second peak is smaller than the size at the first peak;
  • the ratio of the number of voids in the second peak to the number of voids in the first peak is 0.01 to 100.
  • the fifth aspect of the present invention is any one of the first to fourth aspects,
  • the arithmetic mean of the size obtained by measuring the size of each of the plurality of voids is 50 to 1500 ⁇ m. Provide composite materials.
  • the sixth aspect of the present invention in any one of the first to fifth aspects, has a first peak and a second peak, the first peak is present in the size range of 500-1200 ⁇ m and the second peak is present in the size range of 50-700 ⁇ m; Provide composite materials.
  • the seventh aspect of the present disclosure in any one of the first to sixth aspects, Having a heat transfer path formed by the inorganic particles, Provide composite materials.
  • the eighth aspect of the present disclosure is, in the seventh aspect,
  • the composite material has a first major surface and a second major surface parallel to each other, at least one of the heat transfer paths extends from the first major surface to the second major surface; Provide composite materials.
  • the plurality of voids have external shapes that are similar to each other; Provide composite materials.
  • the tenth aspect of the present disclosure includes, in any one of the first to ninth aspects, wherein the composite material is non-foamed; Provide composite materials.
  • An eleventh aspect of the present disclosure includes: In a mixture containing a plurality of composite particles each having a first resin and inorganic particles arranged around the first resin, and a fluid resin composition filled in gaps between the composite particles, the resin reducing the fluidity of the composition to form a solid portion comprising the second resin; Arranging at least a portion of the inorganic particles along the boundary between the plurality of voids and the solid portion while forming a plurality of voids by shrinkage or removal of the first resin;
  • the plurality of composite particles includes first composite particles and second composite particles, The size of the first resin of the first composite particles is included in the first range, The size of the first resin of the second composite particle is included in a second range having an upper limit smaller than the lower limit of the first range, A method of manufacturing a composite material is provided.
  • a twelfth aspect of the present disclosure in the eleventh aspect, At least part of the second composite particles are arranged between the first composite particles, A method of manufacturing a composite material is provided.
  • a thirteenth aspect of the present disclosure in the eleventh or twelfth aspect, The plurality of voids are formed without undergoing a foaming process, A method of manufacturing a composite material is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

A composite material 1a includes: a framework 10 that includes a resin 11; inorganic particles 12; and voids 20. At least a portion of the inorganic particles 12 are arranged along the boundaries between the framework 10 and the voids 20. A number-based first size Sz distribution D1 obtained by measuring the size Sz of each of the voids 20 in a cross-section of the composite material 1a has at least two peaks.

Description

複合材料及び複合材料の製造方法Composite material and method for producing composite material
 本発明は、複合材料及び複合材料の製造方法に関する。 The present invention relates to composite materials and methods for manufacturing composite materials.
 従来、発泡材料などの複数の空隙を有する材料において熱伝導性を高める試みがなされている。 Conventionally, attempts have been made to increase the thermal conductivity of materials with multiple voids, such as foamed materials.
 例えば、特許文献1には、無機材料からなる鱗片状のフィラーと、そのフィラーを結合する熱硬化性樹脂からなる結合樹脂と、を備えた複合材料が開示されている。この複合材料は、複数のボイドが分散するように形成された発泡材料であり、ボイドの内壁には、フィラーの平坦面同士が重なるように、フィラーが集積されている(請求項1及び図1参照)。特許文献1には、フィラーの厚さに対するフィラーの平坦面の平均長さの比率、すなわちアスペクト比が50未満であると、フィラーの平坦面同士が重なり難いことが記載されている。 For example, Patent Document 1 discloses a composite material comprising scale-like fillers made of an inorganic material and a binding resin made of a thermosetting resin that binds the fillers. This composite material is a foamed material formed so that a plurality of voids are dispersed, and the filler is accumulated on the inner wall of the void so that the flat surfaces of the filler overlap each other (claim 1 and FIG. 1 reference). Patent Document 1 describes that when the ratio of the average length of the flat surfaces of the filler to the thickness of the filler, that is, the aspect ratio is less than 50, the flat surfaces of the filler are difficult to overlap each other.
特開2018-109101号公報JP 2018-109101
 特許文献1に記載の技術では、発泡によるフィラーの集積により熱伝導性の向上が図られている。一方、特許文献1では、複数の空隙のサイズの分布と熱伝導性との関係について何ら検討されていない。そこで、本発明は、熱伝導性の観点から有利な状態で複数の空隙のサイズが分布している複合材料を提供する。 In the technology described in Patent Document 1, thermal conductivity is improved by accumulating fillers by foaming. On the other hand, Patent Document 1 does not discuss the relationship between the size distribution of the plurality of voids and the thermal conductivity. Accordingly, the present invention provides a composite material in which multiple void sizes are distributed in an advantageous manner from the point of view of thermal conductivity.
 本発明は、
 樹脂を含む骨格部と、無機粒子と、複数の空隙とを含む複合材料であって、
 前記無機粒子の少なくとも一部は、前記空隙と前記骨格部との境界に沿って配置されており、
 前記複合材料を断面視したときに、前記複数の空隙のそれぞれのサイズを測定して得られる個数基準の前記サイズの第一分布は2以上のピークを有する、
 複合材料を提供する。
The present invention
A composite material comprising a skeleton containing a resin, inorganic particles, and a plurality of voids,
At least part of the inorganic particles are arranged along the boundary between the void and the skeleton,
When the composite material is viewed in cross section, the first distribution of the size based on the number obtained by measuring the size of each of the plurality of voids has two or more peaks.
Provide composite materials.
 また、本発明は、
 第一樹脂及び前記第一樹脂の周りに配置された無機粒子をそれぞれ有する複数の複合粒子と、前記複合粒子同士の隙間に充填された流動性を有する樹脂組成物とを含む混合物において、前記樹脂組成物の流動性を低下させて第二樹脂を含む固体部を形成することと、
 前記第一樹脂の収縮又は除去により、複数の空隙を形成しつつ、前記複数の空隙と前記固体部との境界に沿って前記無機粒子の少なくとも一部を配置させることと、を含み、
 前記複数の複合粒子は、第一複合粒子及び第二複合粒子を含み、
 前記第一複合粒子の前記第一樹脂のサイズは、第一範囲に含まれ、
 前記第二複合粒子の前記第一樹脂のサイズは、前記第一範囲の下限より小さい上限を有する第二範囲に含まれる、
 複合材料の製造方法を提供する。
In addition, the present invention
In a mixture containing a plurality of composite particles each having a first resin and inorganic particles arranged around the first resin, and a fluid resin composition filled in gaps between the composite particles, the resin reducing the fluidity of the composition to form a solid portion comprising the second resin;
Arranging at least a portion of the inorganic particles along the boundary between the plurality of voids and the solid portion while forming a plurality of voids by shrinkage or removal of the first resin;
The plurality of composite particles includes first composite particles and second composite particles,
The size of the first resin of the first composite particles is included in the first range,
The size of the first resin of the second composite particle is included in a second range having an upper limit smaller than the lower limit of the first range,
A method of manufacturing a composite material is provided.
 上記の複合材料によれば、複数の空隙のサイズは、熱伝導性の観点から有利な状態で分布している。 According to the above composite material, the sizes of the plurality of voids are distributed in an advantageous manner from the viewpoint of thermal conductivity.
図1は、本実施形態に係る複合材料の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the composite material according to this embodiment. 図2Aは、本実施形態に係る複合材料の断面視における個数基準の空隙のサイズの第一分布の一例を示すグラフである。FIG. 2A is a graph showing an example of a first distribution of number-based void sizes in a cross-sectional view of the composite material according to the present embodiment. 図2Bは、本実施形態に係る複合材料の断面視における個数基準の環状の断面の最大径の第二分布の一例を示すグラフである。FIG. 2B is a graph showing an example of the second distribution of the maximum diameter of the number-based annular cross section in the cross-sectional view of the composite material according to the present embodiment. 図3は、本実施形態に係る複合材料の別の一例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing another example of the composite material according to this embodiment. 図4は、実施例1に係る複合材料の断面の写真である。4 is a photograph of a cross section of the composite material according to Example 1. FIG. 図5は、比較例1に係る複合材料の断面の写真である。5 is a photograph of a cross section of the composite material according to Comparative Example 1. FIG.
 以下、本発明の実施形態について図面を参照しながら説明する。以下の説明は、本発明の例示であり、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description is illustrative of the invention, and the invention is not limited to the following embodiments.
 図1に示す通り、複合材料1aは、樹脂11を含む骨格部10と、無機粒子12と、複数の空隙20とを含んでいる。複合材料1aにおいて、骨格部10、無機粒子12、及び複数の空隙20によって多孔質構造が形成されている。無機粒子12の少なくとも一部は、空隙20と骨格部10との境界に沿って配置されている。 As shown in FIG. 1, the composite material 1a includes a skeleton 10 containing a resin 11, inorganic particles 12, and a plurality of voids 20. In the composite material 1a, the skeleton 10, the inorganic particles 12, and the plurality of voids 20 form a porous structure. At least part of the inorganic particles 12 are arranged along the boundaries between the voids 20 and the skeleton portion 10 .
 複合材料1aにおいて、空隙20と骨格部10との境界に沿って、複数の無機粒子12が重ねられた所定の厚みを有する層状構造が形成されていてもよい。 In the composite material 1a, along the boundary between the voids 20 and the skeleton portion 10, a layered structure having a predetermined thickness in which a plurality of inorganic particles 12 are stacked may be formed.
 図2Aは、複合材料1aを断面視したときに、複数の空隙20のそれぞれのサイズSzを測定して得られる個数基準のサイズSzの第一分布D1を示す。図2Aに示す通り、第一分布D1は、2つ以上のピークを有する。 FIG. 2A shows a first distribution D1 of the number-based size Sz obtained by measuring the size Sz of each of the plurality of voids 20 when the composite material 1a is viewed in cross section. As shown in FIG. 2A, the first distribution D1 has two or more peaks.
 第一分布D1が2つ以上のピークを有することにより、複合材料1aの多孔質構造において空隙20と骨格部10との境界の体積が大きくなりやすい。上記の通り、無機粒子12は、空隙20と骨格部10との境界に沿って配置されており、無機粒子12は、樹脂11の熱伝導率よりも高い熱伝導率を有しうる。このため、空隙20と骨格部10との境界の体積が大きいことは複合材料1aの熱伝導性を高めるうえで有利である。このため、複合材料1aは高い熱伝導率を有しやすい。加えて、第一分布D1が2つ以上のピークを有することにより、多孔質構造の様々な場所に空隙20が存在しやすい。このため、複合材料1aが柔軟性を有しやすい。 When the first distribution D1 has two or more peaks, the volume of the boundaries between the voids 20 and the framework 10 tends to increase in the porous structure of the composite material 1a. As described above, the inorganic particles 12 are arranged along the boundaries between the voids 20 and the skeleton portion 10 , and the inorganic particles 12 can have a higher thermal conductivity than the resin 11 . Therefore, it is advantageous to increase the thermal conductivity of the composite material 1a if the volume of the boundary between the void 20 and the skeleton portion 10 is large. Therefore, the composite material 1a tends to have high thermal conductivity. In addition, since the first distribution D1 has two or more peaks, voids 20 are likely to exist at various locations in the porous structure. Therefore, the composite material 1a tends to have flexibility.
 複合材料1aにおいて、第一分布D1を得るためにサイズSzの測定が行われる断面は、特定の断面に限定されない。複合材料1aは、例えば、平坦な外面を有する。サイズSzの測定のための断面は、その外面に対して、平行であってもよいし、垂直であってもよいし、傾斜していてもよい。第一分布D1を得るためにサイズSzの測定が行われる断面は、複数の断面を含んでいてもよい。第一分布D1を得るためにサイズSzの測定を行う空隙20の個数は、例えば200以上である。断面の観察は、例えば、光学顕微鏡、金属顕微鏡、及び電子顕微鏡等の顕微鏡を用いてなされる。サイズSzは、例えば、断面における空隙20の最大径である。空隙20の最大径は、空隙20の範囲中の異なる二点を結ぶ線分が最大となる寸法である。 In the composite material 1a, the cross section where the size Sz is measured to obtain the first distribution D1 is not limited to a specific cross section. The composite material 1a has, for example, a flat outer surface. The cross-section for measurement of size Sz may be parallel, perpendicular or inclined to its outer surface. The cross-section on which the size Sz is measured to obtain the first distribution D1 may include multiple cross-sections. The number of voids 20 whose sizes Sz are measured to obtain the first distribution D1 is, for example, 200 or more. Observation of the cross section is performed using a microscope such as an optical microscope, a metallurgical microscope, and an electron microscope. The size Sz is, for example, the maximum diameter of the void 20 in the cross section. The maximum diameter of the gap 20 is the maximum dimension of a line segment connecting two different points within the range of the gap 20 .
 図2Aに示す通り、第一分布D1は、例えば、ヒストグラムとして作成されうる。この場合、ヒストグラムにおける各区間のレンジは、特定の値に限定されない。そのレンジは、例えば、10~100μmである。例えば、第一分布D1のピークがヒストグラムの特定の区間にある場合、その区間の中央値をそのピークに対応するサイズSzとみなしうる。 As shown in FIG. 2A, the first distribution D1 can be created as a histogram, for example. In this case, the range of each section in the histogram is not limited to specific values. The range is, for example, 10-100 μm. For example, if the peak of the first distribution D1 is in a particular interval of the histogram, the median value of that interval can be taken as the size Sz corresponding to that peak.
 図1に示す通り、複合材料1aにおいて、複数の空隙20は、複数の第一空隙21と、第二空隙22とを有している。第二空隙22は、例えば、第一空隙21同士の間に配置されている。複合材料1aを断面視したときに、第一空隙21のサイズSzは第一範囲に含まれ、第二空隙22のサイズSzは第二範囲に含まれる。第二範囲は、第一範囲の下限より小さい上限を有する範囲である。このような構成によれば、第一空隙21同士の間において、第二空隙22と骨格部10との境界に沿って無機粒子12が配置されうる。このため、複合材料1aは高い熱伝導率をより有しやすい。加えて、複合材料1aが柔軟性をより有しやすい。 As shown in FIG. 1, in the composite material 1a, the multiple voids 20 have multiple first voids 21 and second voids 22. As shown in FIG. The second gaps 22 are arranged, for example, between the first gaps 21 . When cross-sectionally viewing the composite material 1a, the size Sz of the first voids 21 is included in the first range, and the size Sz of the second voids 22 is included in the second range. A second range is a range having an upper limit that is less than the lower limit of the first range. According to such a configuration, the inorganic particles 12 can be arranged along the boundary between the second gaps 22 and the skeleton portion 10 between the first gaps 21 . Therefore, the composite material 1a is more likely to have high thermal conductivity. In addition, the composite material 1a tends to have more flexibility.
 図2Aに示す通り、第一分布D1は、例えば、第一ピークP1及び第二ピークP2を有する。第二ピークP2における空隙20のサイズSzは、第一ピークP1における空隙20のサイズSzより小さい。第一ピークP1における空隙20の個数N1に対する、第二ピークにおける空隙20の個数N2の比N2/N1は、特定の値に限定されない。比N2/N1は、例えば、0.01~100である。このような構成によれば、複合材料1aが高い熱伝導率をより有しやすい。加えて、複合材料1aが柔軟性をより有しやすい。第一分布D1がヒストグラムである場合、特定のピークにおける空隙20の個数は、ヒストグラムにおいてそのピークが属する区間における空隙20の個数である。 As shown in FIG. 2A, the first distribution D1 has, for example, a first peak P1 and a second peak P2. The size Sz of the voids 20 at the second peak P2 is smaller than the size Sz of the voids 20 at the first peak P1. The ratio N2/N1 of the number N2 of voids 20 at the second peak to the number N1 of voids 20 at the first peak P1 is not limited to a specific value. The ratio N2/N1 is, for example, 0.01-100. According to such a configuration, the composite material 1a is more likely to have high thermal conductivity. In addition, the composite material 1a tends to have more flexibility. When the first distribution D1 is a histogram, the number of voids 20 at a specific peak is the number of voids 20 in the interval to which that peak belongs in the histogram.
 比N2/N1は、0.05以上であってもよく、0.1以上であってもよく、0.5以上であってもよい。比N2/N1は、100以下であってもよく、50以下であってもよく、20以下であってもよい。第一分布D1は、3つ以上のピークを有していてもよい。 The ratio N2/N1 may be 0.05 or more, 0.1 or more, or 0.5 or more. The ratio N2/N1 may be 100 or less, 50 or less, or 20 or less. The first distribution D1 may have three or more peaks.
 図1に示す通り、複合材料1aを断面視したときに、空隙20と骨格部10との境界に沿って配置された無機粒子12は、例えば、複数の空隙20のそれぞれに対応する複数の環状の断面12cをなしている。図2Bは、複数の環状の断面12cのそれぞれの最大径Tzを測定して得られる個数基準の第二分布D2を示す。図2Bに示す通り、第二分布D2は、例えば、第三ピークP3及び第四ピークP4を有する。第四ピークP4における最大径Tzは、第三ピークP3における最大径Tzより小さい。複合材料1aは、例えば、L1/L2≧1.25、{(L12-d12)h1}/{(L22-d22)h2}≧0.8、及びR≦0.55の条件を満たす。これらの条件において、L1は第三ピークP3に対応する最大径Tzであり、L2は第四ピークP4に対応する最大径Tzである。d1は第一ピークP1に対応するサイズSzであり、d2は第二ピークP2に対応するサイズSzである。h1は第一ピークP1における空隙20の個数であり、h2は第二ピークP2における空隙20の個数である。Rは複合材料1aの断面視における複合材料1aの断面積に対する骨格部10の断面積の比である。本発明者らは、鋭意検討を重ねた結果、複合材料1aにおいて、L1、L2、d1、d2、h1、h2、及びRが上記の条件を満たすように調整されると、複合材料1aが高い熱伝導率をより有しやすいことを突き止めた。加えて、上記の条件が満たされていると、複数の空隙20が所望の状態で存在しやすく、複合材料1aが柔軟性をより有しやすい。 As shown in FIG. 1 , when the composite material 1a is viewed in cross section, the inorganic particles 12 arranged along the boundary between the voids 20 and the skeleton portion 10 are, for example, a plurality of annular particles corresponding to the plurality of voids 20, respectively. has a cross section 12c. FIG. 2B shows a number-based second distribution D2 obtained by measuring the maximum diameter Tz of each of the plurality of annular cross-sections 12c. As shown in FIG. 2B, the second distribution D2 has, for example, a third peak P3 and a fourth peak P4. The maximum diameter Tz at the fourth peak P4 is smaller than the maximum diameter Tz at the third peak P3. The composite material 1a satisfies the conditions of, for example, L1/L2≧1.25, {(L1 2 −d1 2 )h1}/{(L2 2 −d2 2 )h2}≧0.8, and R≦0.55. Fulfill. Under these conditions, L1 is the maximum diameter Tz corresponding to the third peak P3, and L2 is the maximum diameter Tz corresponding to the fourth peak P4. d1 is the size Sz corresponding to the first peak P1, and d2 is the size Sz corresponding to the second peak P2. h1 is the number of voids 20 at the first peak P1, and h2 is the number of voids 20 at the second peak P2. R is the ratio of the cross-sectional area of the skeleton portion 10 to the cross-sectional area of the composite material 1a in a cross-sectional view of the composite material 1a. As a result of extensive studies, the inventors of the present invention have found that when L1, L2, d1, d2, h1, h2, and R are adjusted to satisfy the above conditions, the composite material 1a is high. It was found that they tended to have higher thermal conductivity. In addition, when the above conditions are satisfied, the plurality of voids 20 tend to exist in a desired state, and the composite material 1a tends to have more flexibility.
 複合材料1aにおいて、L1/L2は、1.26以上であってもよく、1.27以上であってもよく、1.28以上であってもよい。L1/L2は、例えば15以下であり、12以下であってもよい。 In the composite material 1a, L1/L2 may be 1.26 or more, 1.27 or more, or 1.28 or more. L1/L2 is, for example, 15 or less, and may be 12 or less.
 複合材料1aにおいて、{(L12-d12)h1}/{(L22-d22)h2}は、0.9以上であってもよく、1以上であってもよく、1.5以上であってもよく、2以上であってもよく、2.5以上であってもよい。{(L12-d12)h1}/{(L22-d22)h2}は、例えば7以下であり、5以下であってもよい。 In the composite material 1a, {(L1 2 −d1 2 )h1}/{(L2 2 −d2 2 )h2} may be 0.9 or more, 1 or more, or 1.5 or more. , 2 or more, or 2.5 or more. {(L1 2 -d1 2 )h1}/{(L2 2 -d2 2 )h2} is, for example, 7 or less, and may be 5 or less.
 複合材料1aにおいて、比Rは、0.54以下であってもよいし、0.53以下であってもよいし、0.52以下であってもよい。比Rは、例えば0.3以上である。 In the composite material 1a, the ratio R may be 0.54 or less, 0.53 or less, or 0.52 or less. The ratio R is, for example, 0.3 or more.
 第二分布D2は、例えば、第一分布D1を得るための断面と同一の断面において複数の環状の断面12cのそれぞれの最大径Tzを測定することによって得られる。第二分布D2を得るために最大径Tzの測定を行う断面12cの個数は、例えば200以上である。例えば、第一分布D1の作成のためのサイズSzの測定がなされた空隙20に対応する環状の断面12cについて最大径Tzを測定する。最大径Tzは、例えば、断面12cの範囲中の異なる二点を結ぶ線分が最大となる寸法である。断面12cは、完全な環をなしているとは限らない。断面12cは、例えば、完全な環の周長の80%以上に対応する部分において連続的に存在する。 The second distribution D2 is obtained, for example, by measuring the maximum diameter Tz of each of the plurality of annular cross sections 12c in the same cross section as the cross section for obtaining the first distribution D1. The number of cross sections 12c for which the maximum diameter Tz is measured to obtain the second distribution D2 is, for example, 200 or more. For example, the maximum diameter Tz is measured for the annular cross section 12c corresponding to the void 20 whose size Sz has been measured for creating the first distribution D1. The maximum diameter Tz is, for example, the maximum dimension of a line segment connecting two different points within the range of the cross section 12c. The cross section 12c does not always form a perfect ring. The cross-section 12c is, for example, continuous in a portion corresponding to 80% or more of the circumference of the complete ring.
 図2Bに示す通り、第二分布D2は、例えば、ヒストグラムとして作成されうる。この場合、ヒストグラムにおける各区間のレンジは、特定の値に限定されない。そのレンジは、例えば、10~100μmである。例えば、第二分布D2のピークがヒストグラムの特定の区間にある場合、その区間の中央値をそのピークに対応する最大径Tzとみなしうる。 As shown in FIG. 2B, the second distribution D2 can be created as a histogram, for example. In this case, the range of each section in the histogram is not limited to specific values. The range is, for example, 10-100 μm. For example, if the peak of the second distribution D2 is in a specific section of the histogram, the median value of that section can be regarded as the maximum diameter Tz corresponding to that peak.
 複合材料1aを断面視したときに、複数の空隙20のそれぞれのサイズSzを測定して得られる空隙20のサイズSzの算術平均SAVGは、特定の値に限定されない。算術平均SAVGは、例えば50~1500μmである。算術平均SAVGが50μm以上であると、第一分布D1が2つ以上のピークを有しやすく、複合材料1aが高い熱伝導率をより有しやすい。加えて、複合材料1aが柔軟性をより有しやすい。算術平均SAVGが1500μm以下であると、複合材料1aが所望の強度を有しやすい。 The arithmetic average S AVG of the size Sz of the voids 20 obtained by measuring the size Sz of each of the multiple voids 20 when the composite material 1a is viewed in cross section is not limited to a specific value. Arithmetic average S AVG is, for example, 50 to 1500 μm. When the arithmetic average S AVG is 50 µm or more, the first distribution D1 tends to have two or more peaks, and the composite material 1a tends to have high thermal conductivity. In addition, the composite material 1a tends to have more flexibility. When the arithmetic average S AVG is 1500 µm or less, the composite material 1a tends to have desired strength.
 算術平均SAVGは、50μm以上であってもよく、100μm以上であってもよく、250μm以上であってもよく、350μm以上であってもよく、400μm以上であってもよく、450μm以上であってもよく、500μm以上であってもよい。算術平均SAVGは、550μm以上であってもよく、600μm以上であってもよく、650μm以上であってもよく、700μm以上であってもよい。算術平均SAVGは、1450μm以下であってもよく、1400μm以下であってもよく、1350μm以下であってもよく、1300μm以下であってもよい。算術平均SAVGは、1250μm以下であってもよく、1200μm以下であってもよく、1150μm以下であってもよく、1100μm以下であってもよく、1050μm以下であってもよく、1000μm以下であってもよい。 The arithmetic average S AVG may be 50 μm or more, 100 μm or more, 250 μm or more, 350 μm or more, 400 μm or more, or 450 μm or more. It may be 500 μm or more. The arithmetic average S AVG may be 550 μm or more, 600 μm or more, 650 μm or more, or 700 μm or more. The arithmetic average S AVG may be 1450 μm or less, 1400 μm or less, 1350 μm or less, or 1300 μm or less. The arithmetic average S AVG may be 1250 μm or less, 1200 μm or less, 1150 μm or less, 1100 μm or less, 1050 μm or less, or 1000 μm or less. may
 第一分布D1が2つ以上のピークを有する限り、第一ピークP1と第二ピークP2との間の関係は、特定の関係に限定されない。例えば、第一ピークP1は、500~1200μmのサイズSzの範囲に存在し、第二ピークP2は50~700μmのサイズSzの範囲に存在する。このような構成によれば、複合材料1aが高い熱伝導率をより有しやすい。加えて、複合材料1aが柔軟性をより有しやすい。 As long as the first distribution D1 has two or more peaks, the relationship between the first peak P1 and the second peak P2 is not limited to a specific relationship. For example, the first peak P1 exists in the size Sz range of 500-1200 μm, and the second peak P2 exists in the size Sz range of 50-700 μm. According to such a configuration, the composite material 1a is more likely to have high thermal conductivity. In addition, the composite material 1a tends to have more flexibility.
 空隙20の外形は、特定の形状に限定されない。空隙20の外形は、例えば、球形状であり、実質的に球形であってもよい。本明細書において、「実質的に球形」は、最小径に対する最大径の比(最大径/最小径)が1.0~1.5であることを意味する。実質的に球形な空隙20の最小径に対する最大径の比は、1.0~1.3であってもよい。空隙20の外形は、ロッド状、多面体状であってもよく、最小径に対する最大径の比が1.5より大きい楕円状であってもよい。複合材料1aにおいて、例えば、複数の空隙20の個数基準で50%以上が球形状である。複数の空隙20の個数基準で80%以上が球形状であってもよい。発泡技術では、空隙の形状が不規則になるので、この程度に揃った形状の空隙を形成することは困難である。 The outer shape of the void 20 is not limited to a specific shape. The outer shape of the void 20 is, for example, spherical and may be substantially spherical. As used herein, "substantially spherical" means that the ratio of maximum diameter to minimum diameter (maximum diameter/minimum diameter) is 1.0 to 1.5. The ratio of the largest diameter to the smallest diameter of the substantially spherical void 20 may be between 1.0 and 1.3. The outer shape of the void 20 may be rod-like, polyhedral, or elliptical with a ratio of maximum diameter to minimum diameter greater than 1.5. In the composite material 1a, for example, 50% or more of the plurality of voids 20 are spherical. 80% or more of the plurality of voids 20 may be spherical. In the foaming technique, since the shape of the voids becomes irregular, it is difficult to form the voids with such a uniform shape.
 複合材料1aにおいて、複合材料1aの体積に対する複数の空隙20の体積の比である空隙率は、特定の値に限定されない。その空隙率は、例えば、10体積%~60体積%であり、15体積%~50体積%であってもよく、20体積%~45体積%であってもよい。 In the composite material 1a, the porosity, which is the ratio of the volume of the plurality of voids 20 to the volume of the composite material 1a, is not limited to a specific value. The porosity is, for example, 10% to 60% by volume, may be 15% to 50% by volume, or may be 20% to 45% by volume.
 空隙率は、例えば、複合材料1aの断面を観察し、観察した断面の全面積に対する空隙20の総面積の比率を算出し、10枚の異なる断面の画像についてその比率の平均をとることによって決定できる。また、複合材料1aのX線CTスキャンの結果に基づいて空隙率を決定してもよい。一方、複合材料1aの製造過程が既知の場合には、以下のようにして求めてもよい。後述する樹脂粒子の質量及び樹脂粒子の表面に無機粒子12が配置された複合粒子の質量から、複合粒子に含まれている無機粒子12の質量を算出する。これとは別に、複合材料1aの無機元素分析の結果に基づいて複合材料1aにおける無機粒子12の含有量[質量%]を算出する。複合材料1aにおける無機粒子12の含有量[質量%]と複合材料1aの質量とから、複合材料1aにおける無機粒子12の質量が算出される。複合材料1aにおける無機粒子12の質量と複合粒子に含まれている無機粒子12の質量とから、複合材料1aを製造するときに使用した複合粒子の数量が算出される。空隙20の平均径から空隙20の体積を算出する。空隙20の体積と複合粒子の数量の積によって、複合材料1aにおける空隙20の総体積を求める。この値を複合材料1aの体積で除することによって空隙率を算出する。 The porosity is determined, for example, by observing the cross section of the composite material 1a, calculating the ratio of the total area of the voids 20 to the total area of the observed cross section, and averaging the ratio for 10 different cross section images. can. Alternatively, the porosity may be determined based on the results of X-ray CT scanning of the composite material 1a. On the other hand, if the manufacturing process of the composite material 1a is known, it may be determined as follows. The mass of the inorganic particles 12 contained in the composite particles is calculated from the mass of the resin particles and the mass of the composite particles in which the inorganic particles 12 are arranged on the surfaces of the resin particles, which will be described later. Separately from this, the content [% by mass] of the inorganic particles 12 in the composite material 1a is calculated based on the result of the inorganic elemental analysis of the composite material 1a. The mass of the inorganic particles 12 in the composite material 1a is calculated from the content [% by mass] of the inorganic particles 12 in the composite material 1a and the mass of the composite material 1a. The number of composite particles used in manufacturing the composite material 1a is calculated from the mass of the inorganic particles 12 in the composite material 1a and the mass of the inorganic particles 12 contained in the composite particles. The volume of the voids 20 is calculated from the average diameter of the voids 20 . The total volume of the voids 20 in the composite material 1a is obtained by multiplying the volume of the voids 20 by the number of composite particles. The porosity is calculated by dividing this value by the volume of the composite material 1a.
 複数の空隙20は、例えば、互いに相似である外形を有している。例えば、複合材料1aにおいて、個数基準で、複数の空隙20の80%以上が互いに相似である外形を有している。互いに相似である複数の空隙20の外形は、例えば球形状である。この外形は実質的に球形であってもよい。発泡により形成した複数の空隙も個々の膨張に伴って互いに接することがある。しかし、この場合は、通常、発泡により生じる内部圧力が空隙の接続部に作用し、接続部近傍を大きく変形させる。このため、発泡による技術では、事実上、互いに接するとともに実質的に外形が相似である複数の空隙を形成することができない。 The plurality of voids 20 have, for example, external shapes similar to each other. For example, in the composite material 1a, 80% or more of the plurality of voids 20 have outlines similar to each other. The outer shapes of the plurality of voids 20 that are similar to each other are, for example, spherical. This contour may be substantially spherical. A plurality of voids formed by foaming may also come into contact with each other as they expand. In this case, however, the internal pressure generated by the foaming usually acts on the connecting portion of the voids, and greatly deforms the vicinity of the connecting portion. For this reason, the technique of foaming cannot actually form a plurality of voids that are in contact with each other and have substantially similar external shapes.
 複合材料1aの多孔質構造は、複合材料1aの一方の主面から他方の主面に至る貫通孔を有していてもよい。複合材料1aが互いに平行な一対の外面を有する場合、複合材料1aの一方の外面に設けられている空隙20は、複合材料1aの他方の外面に面した空間に連通していてもよい。また、複合材料1aの一方の外面に設けられている空隙は、複合材料1aの一方の外面と交差する側面に接した空間に連通していてもよい。このような構成によれば、複合材料1aは、熱伝導性と通気性とを両立しうる。 The porous structure of the composite material 1a may have through holes extending from one main surface of the composite material 1a to the other main surface. When the composite material 1a has a pair of parallel outer surfaces, the gap 20 provided on one outer surface of the composite material 1a may communicate with the space facing the other outer surface of the composite material 1a. Moreover, the void provided on one outer surface of the composite material 1a may communicate with a space in contact with a side surface intersecting one outer surface of the composite material 1a. With such a configuration, the composite material 1a can achieve both thermal conductivity and air permeability.
 図1に示す通り、複合材料1aは、例えば、無機粒子12によって形成された伝熱路5を有する。このような構成によれば、伝熱路5における熱伝導によって複合材料1aを熱が伝わりやすく、複合材料1aは高い熱伝導率を有しやすい。 As shown in FIG. 1, the composite material 1a has heat transfer paths 5 formed of inorganic particles 12, for example. According to such a configuration, heat is easily conducted through the composite material 1a by heat conduction in the heat transfer path 5, and the composite material 1a tends to have a high thermal conductivity.
 伝熱路5は、例えば、互いに接する又は近接する複数の無機粒子12によって連続して形成されている。伝熱路5は、例えば、複数の空隙20にわたって延びている。伝熱路5は、例えば、骨格部10の内部を通らずに骨格部10と複数の空隙20との境界に沿って延びている。複合材料1aは、例えば、互いに平行な第一外面2a及び第二外面2bを有し、伝熱路5は、第一外面2aから第二外面2bまで延びていてもよい。無機粒子12同士が直接接触していてもよいし、無機粒子12同士の間に所定の樹脂が存在している状態で無機粒子12同士が近接していてもよい。 The heat transfer path 5 is, for example, continuously formed by a plurality of inorganic particles 12 that are in contact with or close to each other. The heat transfer path 5 extends across a plurality of gaps 20, for example. The heat transfer path 5 extends, for example, along the boundary between the skeleton portion 10 and the plurality of voids 20 without passing through the inside of the skeleton portion 10 . The composite material 1a may for example have a first outer surface 2a and a second outer surface 2b parallel to each other, the heat transfer path 5 extending from the first outer surface 2a to the second outer surface 2b. The inorganic particles 12 may be in direct contact with each other, or the inorganic particles 12 may be close to each other while a predetermined resin exists between the inorganic particles 12 .
 複合材料1aにおいて、複数の空隙20の少なくとも一部は、互いに接するように配置されていてもよい。この場合、互いに接する一対の空隙20は、無機粒子12を含む接続部20jによって接続されていてもよい。互いに接する一対の空隙20は、無機粒子12を含まない接続部20kによって接続されていてもよい。この場合、一対の空隙20は、接続部20kによって連通する1つの空間を形成している。接続部20kの寸法は、例えば、空隙20のサイズSzの25%以下であり、20%以下であってもよく、15%以下であってもよい。この場合、接続部20kによって、一対の空隙20が仕切られているとみなして各空隙20のサイズSzが決定される。互いに接する一対の空隙20は、無機粒子12を含まず樹脂のみを含む接続部20mによって接続されていてもよい。 In the composite material 1a, at least some of the multiple voids 20 may be arranged so as to be in contact with each other. In this case, a pair of gaps 20 that are in contact with each other may be connected by a connecting portion 20j containing the inorganic particles 12 . A pair of gaps 20 that are in contact with each other may be connected by a connecting portion 20k that does not contain the inorganic particles 12 . In this case, the pair of gaps 20 form one space that communicates with each other through the connecting portion 20k. The dimension of the connecting portion 20k is, for example, 25% or less of the size Sz of the gap 20, may be 20% or less, or may be 15% or less. In this case, the size Sz of each gap 20 is determined assuming that a pair of gaps 20 are partitioned by the connecting portion 20k. A pair of gaps 20 that are in contact with each other may be connected by a connection portion 20m that contains only resin and does not contain inorganic particles 12 .
 図1に示したような特定の断面において、すべての伝熱路5が現れるとは限らず、さらに特定の伝熱路5のすべての部分が現れるとは限らない。特定の断面において、第一外面2aと第二外面2bとの間で途切れているように見える伝熱路5であっても、その断面には現れない無機粒子12によって第一外面2a、第二外面2b、又は第一外面2a及び第二外面2bの両方まで延びている可能性がある。同様に、特定の断面のみではすべての空隙20の接触は確認できない。例えば、空隙20iは、図1を見る限りは孤立している。しかし、空隙20iは、この断面に垂直な方向において隣接する別の空隙20に接触している。 Not all heat transfer paths 5 appear in a specific cross section as shown in FIG. 1, and furthermore, not all parts of a specific heat transfer path 5 appear. In a specific cross section, even if the heat transfer path 5 appears to be interrupted between the first outer surface 2a and the second outer surface 2b, the inorganic particles 12 that do not appear in the cross section It may extend to the outer surface 2b or to both the first outer surface 2a and the second outer surface 2b. Similarly, the contact of all voids 20 cannot be confirmed with only a specific cross section. For example, void 20i is isolated as far as FIG. 1 is concerned. However, the air gap 20i is in contact with another adjacent air gap 20 in the direction perpendicular to this cross section.
 一方、すべての伝熱路5が第一外面2aから第二外面2bまで延びている必要はない。複合材料1aに含まれるすべての空隙20が別の空隙20に直接又は無機粒子12を介して接している必要はない。 On the other hand, not all heat transfer paths 5 need to extend from the first outer surface 2a to the second outer surface 2b. It is not necessary that all the voids 20 included in the composite material 1a are in contact with another void 20 directly or via the inorganic particles 12 .
 無機粒子12をなす材料は、特定の無機材料に限定されない。無機粒子12をなす材料は、例えば、樹脂11の熱伝導率より高い熱伝導率を有する。無機粒子12をなす材料の例は、六方晶窒化ホウ素(h-BN)、アルミナ、結晶性シリカ、非晶性シリカ、窒化アルミニウム、酸化マグネシウム、炭素繊維、銀、銅、アルミニウム、炭化ケイ素、グラファイト、酸化亜鉛、窒化ケイ素、炭化ケイ素、立方晶窒化ホウ素(c-BN)、べリリア、ダイヤモンド、カーボンブラック、水酸化マグネシウム、グラフェン、カーボンナノチューブ、カーボンファイバー、及び水酸化アルミニウムである。複合材料1a及び複合材料1bにおける無機粒子12の種類は1種類のみであってもよいし、複合材料1a及び複合材料1bにおいて、2種類以上の無機粒子12が組み合わせられて用いられてもよい。 The material forming the inorganic particles 12 is not limited to a specific inorganic material. The material forming the inorganic particles 12 has, for example, a thermal conductivity higher than that of the resin 11 . Examples of materials forming the inorganic particles 12 include hexagonal boron nitride (h-BN), alumina, crystalline silica, amorphous silica, aluminum nitride, magnesium oxide, carbon fiber, silver, copper, aluminum, silicon carbide, and graphite. , zinc oxide, silicon nitride, silicon carbide, cubic boron nitride (c-BN), beryllia, diamond, carbon black, magnesium hydroxide, graphene, carbon nanotubes, carbon fibers, and aluminum hydroxide. Only one type of inorganic particles 12 may be used in the composite material 1a and the composite material 1b, or two or more types of inorganic particles 12 may be used in combination in the composite material 1a and the composite material 1b.
 無機粒子12の形状は、特定の形状に限定されない。無機粒子12の形状の例は、球状、ロッド状、繊維状、及び鱗片状である。無機粒子12の形状は、不定形状の塊であってもよい。 The shape of the inorganic particles 12 is not limited to a specific shape. Examples of shapes of the inorganic particles 12 are spherical, rod-like, fibrous, and scale-like. The shape of the inorganic particles 12 may be irregular-shaped lumps.
 無機粒子12のアスペクト比は特定の値に限定されない。無機粒子12のアスペクト比は、例えば50未満であり、40以下であってもよく、30以下であってもよい。無機粒子12のアスペクト比は、1であってもよく、2以上であってもよく、3以上であってもよい。本明細書において、粒子のアスペクト比は、特に説明する場合を除き、粒子の第一寸法に対する粒子の第二寸法の比(第二寸法/第一寸法)として決定される。粒子の第二寸法は、粒子の最大寸法に相当する。粒子の第一寸法は、粒子の最大寸法を定める線分に垂直な方向における粒子の最大寸法である。 The aspect ratio of the inorganic particles 12 is not limited to a specific value. The aspect ratio of the inorganic particles 12 is, for example, less than 50, may be 40 or less, or may be 30 or less. The aspect ratio of the inorganic particles 12 may be 1, 2 or more, or 3 or more. As used herein, the aspect ratio of a particle is determined as the ratio of the second dimension of the particle to the first dimension of the particle (second dimension/first dimension), unless otherwise stated. The second dimension of the particles corresponds to the largest dimension of the particles. The first dimension of the particle is the largest dimension of the particle in a direction perpendicular to the line defining the largest dimension of the particle.
 無機粒子12の平均粒径は、特定の値に限定されない。無機粒子12の平均粒径は、例えば0.05μm~100μmであり、0.1μm~50μmであってもよく、0.1μm~30μmであってもよく、0.5μm~10μmであってもよい。「平均粒径」は、例えば、レーザー回折散乱法によって求めることができる。平均粒径は、例えば、体積基準の粒度分布におけるメディアン径である。無機粒子12の体積基準の粒度分布は、例えば、マイクロトラック・ベル社製の粒度分布計 マイクロトラックMT3300EXIIを用いて得られる。 The average particle size of the inorganic particles 12 is not limited to a specific value. The average particle diameter of the inorganic particles 12 is, for example, 0.05 μm to 100 μm, may be 0.1 μm to 50 μm, may be 0.1 μm to 30 μm, and may be 0.5 μm to 10 μm. . The "average particle size" can be determined, for example, by a laser diffraction scattering method. The average particle diameter is, for example, the median diameter in the volume-based particle size distribution. The volume-based particle size distribution of the inorganic particles 12 can be obtained, for example, using a particle size distribution meter Microtrac MT3300EXII manufactured by Microtrac Bell.
 無機粒子12の形状は、例えば、走査型電子顕微鏡(SEM)等を用いた観察によって決定できる。例えば、無機粒子12が1.0以上1.7未満のアスペクト比を有し、無機粒子12の輪郭の少なくとも一部が円弧として観察される場合、無機粒子12は球状でありうる。無機粒子12が球状である場合、無機粒子12は、1.0以上1.5以下のアスペクト比を有し、特に1.0以上1.3以下のアスペクト比を有しうる。 The shape of the inorganic particles 12 can be determined, for example, by observation using a scanning electron microscope (SEM) or the like. For example, when the inorganic particles 12 have an aspect ratio of 1.0 or more and less than 1.7 and at least part of the outline of the inorganic particles 12 is observed as an arc, the inorganic particles 12 may be spherical. When the inorganic particles 12 are spherical, the inorganic particles 12 may have an aspect ratio of 1.0 or more and 1.5 or less, particularly 1.0 or more and 1.3 or less.
 鱗片状は一対の主面及び側面を有する板状の形状である。主面は、無機粒子12の最も面積の大きい面である。この主面は、平坦な面であってもよいし、凹凸を有する面であってもよい。無機粒子12が鱗片状である場合、アスペクト比は、上述の定義に代え、無機粒子12の平均厚さに対する主面の平均寸法の比として定義される。鱗片状である無機粒子12の厚さは、一対の主面間の距離を意味する。平均厚さは、SEMを用いて任意の50個の無機粒子12の厚さを測定し、その平均値を算出することによって求めることができる。主面の平均寸法は、上述の粒度分布計を用いて測定したメディアン径d50の値を用いることができる。鱗片状である無機粒子12のアスペクト比は、例えば1.5以上であり、1.7以上であってもよく、5以上であってもよい。ロッド状は、棒状、柱状、及び円錐台状などの形状を含みうる。ロッド状である無機粒子12のアスペクト比は、例えば1.5以上であり、1.7以上であってもよく、5以上であってもよい。 A scaly shape is a plate-like shape having a pair of main surfaces and side surfaces. The main surface is the surface of the inorganic particles 12 with the largest area. This main surface may be a flat surface or a surface having irregularities. When the inorganic particles 12 are scaly, the aspect ratio is instead defined as the ratio of the average dimension of the major surfaces to the average thickness of the inorganic particles 12 . The thickness of the scaly inorganic particles 12 means the distance between a pair of main surfaces. The average thickness can be obtained by measuring the thickness of arbitrary 50 inorganic particles 12 using SEM and calculating the average value. As the average dimension of the main surface, the value of the median diameter d50 measured using the particle size distribution analyzer described above can be used. The aspect ratio of the scale-like inorganic particles 12 is, for example, 1.5 or more, may be 1.7 or more, or may be 5 or more. Rod-like can include shapes such as rod-like, columnar, and frusto-conical. The aspect ratio of the rod-shaped inorganic particles 12 is, for example, 1.5 or more, may be 1.7 or more, or may be 5 or more.
 無機粒子12が球形状である場合、平均粒径は、例えば、0.1μm~50μmであり、0.1μm~10μmであってもよく、0.5μm~5μmであってもよい。無機粒子12が鱗片状である場合、無機粒子12の主面の平均寸法は、例えば、0.1μm~20μmであり、0.5μm~15μmであってもよい。また、無機粒子12の平均厚さは、例えば0.05μm~1μmであり、0.08μm~0.5μmであってもよい。無機粒子12がロッド状である場合、無機粒子12の最小径(通常は短軸長さ)は、例えば0.01μm~10μmであり、0.05μm~1μmであってもよい。また、無機粒子12の最大径(通常は長軸長さ)は、例えば0.1μm~20μmであり、0.5μm~10μmであってもよい。無機粒子12のサイズがこのような範囲であれば、空隙20と骨格部10との境界に沿って無機粒子12が配置されやすく、複数の空隙20にわたって延びる伝熱路5が形成されやすい。無機粒子12が不定形状の塊である場合、無機粒子12の平均粒径は、例えば10μm~100μmであり、20μm~60μmであってもよい。 When the inorganic particles 12 are spherical, the average particle size is, for example, 0.1 μm to 50 μm, may be 0.1 μm to 10 μm, or may be 0.5 μm to 5 μm. When the inorganic particles 12 are scaly, the average size of the major surfaces of the inorganic particles 12 is, for example, 0.1 μm to 20 μm, and may be 0.5 μm to 15 μm. Also, the average thickness of the inorganic particles 12 is, for example, 0.05 μm to 1 μm, and may be 0.08 μm to 0.5 μm. When the inorganic particles 12 are rod-shaped, the minimum diameter (usually the minor axis length) of the inorganic particles 12 is, for example, 0.01 μm to 10 μm, and may be 0.05 μm to 1 μm. Also, the maximum diameter (usually the major axis length) of the inorganic particles 12 is, for example, 0.1 μm to 20 μm, and may be 0.5 μm to 10 μm. If the size of the inorganic particles 12 is within this range, the inorganic particles 12 are likely to be arranged along the boundaries between the voids 20 and the skeleton portion 10, and the heat transfer paths 5 extending over the multiple voids 20 are likely to be formed. When the inorganic particles 12 are lumps of irregular shape, the average particle size of the inorganic particles 12 is, for example, 10 μm to 100 μm, and may be 20 μm to 60 μm.
 複合材料1aにおける無機粒子12の含有量は、特定の値に限定されない。複合材料1aにおける無機粒子12の含有量は、例えば、10質量%~80質量%であり、10質量%~70質量%であってもよく、10質量%~55質量%であってもよい。また、複合材料1aにおける無機粒子12の含有量は、例えば1体積%~50体積%であり、2体積%~45体積%であってもよく、5体積%~40体積%であってもよく、5体積%~30体積%であってもよい。無機粒子12の含有量を適切に調節することによって、複合材料1aは、高い熱伝導率を有しやすく、所望の柔軟性を有しやすい。 The content of the inorganic particles 12 in the composite material 1a is not limited to a specific value. The content of the inorganic particles 12 in the composite material 1a is, for example, 10% by mass to 80% by mass, may be 10% by mass to 70% by mass, or may be 10% by mass to 55% by mass. In addition, the content of the inorganic particles 12 in the composite material 1a is, for example, 1% to 50% by volume, may be 2% to 45% by volume, or may be 5% to 40% by volume. , 5% to 30% by volume. By appropriately adjusting the content of the inorganic particles 12, the composite material 1a tends to have high thermal conductivity and desired flexibility.
 複合材料1aにおける無機粒子12の含有量[質量%]は、複合材料1aから無機粒子12以外の材料を焼失・分解等により除去して決定できる。無機粒子12の含有量[質量%]は、元素分析を用いて決定してもよい。具体的には、複合材料1aに酸を加え、マイクロ波を照射し、複合材料1aを加圧酸分解する。酸は、例えば、フッ酸、濃硫酸、濃塩酸、及び王水等を使用できる。加圧酸分解して得られた溶液について、誘導結合プラズマ発光分光分析法(ICP-AES)を用いて元素を分析する。その結果に基づいて無機粒子12の含有量[質量%]を決定してもよい。 The content [mass %] of the inorganic particles 12 in the composite material 1a can be determined by removing materials other than the inorganic particles 12 from the composite material 1a by burning or decomposing. The content [% by mass] of the inorganic particles 12 may be determined using elemental analysis. Specifically, an acid is added to the composite material 1a, microwaves are applied, and the composite material 1a is acid-decomposed under pressure. Acids that can be used include, for example, hydrofluoric acid, concentrated sulfuric acid, concentrated hydrochloric acid, and aqua regia. Elements of the solution obtained by pressure acid decomposition are analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). The content [% by mass] of the inorganic particles 12 may be determined based on the result.
 無機粒子12の密度は、複合材料1aを電気炉にて高温加熱により有機材料を焼失させて残った無機粒子12について、日本産業規格(JIS) R 1628:1997又はJIS Z 2504:2012に準拠して求めることができる。 The density of the inorganic particles 12 is based on the Japanese Industrial Standards (JIS) R 1628: 1997 or JIS Z 2504: 2012 for the inorganic particles 12 remaining after the organic material is burned off by heating the composite material 1a at a high temperature in an electric furnace. can be asked for.
 骨格部10に含まれる樹脂11は、特定の樹脂に限定されない。樹脂11は、例えば、架橋ポリマーを含む。樹脂11は、熱硬化性樹脂であってもよい。熱硬化性樹脂の例は、フェノール樹脂、尿素樹脂、メラミン樹脂、ジアリルフタレート樹脂、ポリエステル樹脂、エポキシ樹脂、アニリン樹脂、シリコーン樹脂、フラン樹脂、ポリウレタン樹脂、アルキルベンゼン樹脂、グアナミン樹脂、キシレン樹脂、及びイミド樹脂である。樹脂11の硬化温度は、例えば25℃~160℃である。 The resin 11 contained in the skeleton portion 10 is not limited to a specific resin. Resin 11 includes, for example, a crosslinked polymer. Resin 11 may be a thermosetting resin. Examples of thermosetting resins include phenolic resins, urea resins, melamine resins, diallyl phthalate resins, polyester resins, epoxy resins, aniline resins, silicone resins, furan resins, polyurethane resins, alkylbenzene resins, guanamine resins, xylene resins, and imides. Resin. The curing temperature of the resin 11 is, for example, 25.degree. C. to 160.degree.
 樹脂11は、熱可塑性樹脂であってもよい。熱可塑性樹脂の例は、(メタ)アクリル樹脂、スチレン樹脂、ポリエチレンテレフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、アクリロニトリル・ブタジエン・スチレン樹脂、及びアクリロニトリル・スチレン樹脂である。 The resin 11 may be a thermoplastic resin. Examples of thermoplastic resins are (meth)acrylic resins, styrene resins, polyethylene terephthalate resins, polyethylene resins, polypropylene resins, polyvinyl chloride resins, acrylonitrile-butadiene-styrene resins, and acrylonitrile-styrene resins.
 複合材料1aは、例えば、非発泡体である。特許文献1に記載されたような従来の発泡体は、図1に示したような特徴的な構造、すなわち微細かつ正確に無機粒子12の配置が制御された構造を有し得ない。 The composite material 1a is, for example, a non-foam. A conventional foam such as that described in Patent Document 1 cannot have the characteristic structure shown in FIG.
 複合材料1aの製造方法の一例について説明する。複合材料1aは、例えば、以下の(I)及び(II)の工程を含む方法によって製造される。流動性を有する樹脂組成物は、複合粒子同士の隙間に充填されている。複数の複合粒子のそれぞれは、第一樹脂及び第一樹脂の周りに配置された無機粒子を有する。
(I)複数の複合粒子と、流動性を有する樹脂組成物とを含む混合物において、樹脂組成物の流動性を低下させて第二樹脂を含む固体部を形成する。
(II)第一樹脂の収縮又は除去により、複数の空隙を形成しつつ、複数の空隙と固体部との境界に沿って無機粒子の少なくとも一部を配置させる。
An example of a method for manufacturing the composite material 1a will be described. The composite material 1a is manufactured, for example, by a method including the following steps (I) and (II). A fluid resin composition is filled in the gaps between the composite particles. Each of the plurality of composite particles has a first resin and inorganic particles arranged around the first resin.
(I) In a mixture containing a plurality of composite particles and a fluid resin composition, the fluidity of the resin composition is reduced to form a solid portion containing the second resin.
(II) By shrinking or removing the first resin, a plurality of voids are formed, and at least a portion of the inorganic particles are arranged along the boundaries between the plurality of voids and the solid portion.
 (I)の工程で用いられる混合物において、複数の複合粒子は、第一複合粒子と、第二複合粒子とを含んでいる。第一複合粒子における第一樹脂のサイズは、第一範囲に含まれる。第二複合粒子における第一樹脂のサイズは、第一範囲の下限より小さい上限を有する第二範囲に含まれる。これにより、複合材料1aにおいて、第一分布D1が2つ以上のピークを有する。第一樹脂のサイズは、例えば、第一樹脂の最大径である。 In the mixture used in step (I), the plurality of composite particles includes first composite particles and second composite particles. The size of the first resin in the first composite particles is included in the first range. The size of the first resin in the second composite particles falls within a second range having an upper limit less than the lower limit of the first range. Thereby, in the composite material 1a, the first distribution D1 has two or more peaks. The size of the first resin is, for example, the maximum diameter of the first resin.
 (I)の工程において、例えば、第二複合粒子の少なくとも一部は、第一複合粒子同士の間に配置されている。この場合、複合材料1aにおいて、比較的大きなサイズを有する空隙20同士の間に比較的小さいサイズを有する空隙20が形成されやすい。 In the step (I), for example, at least part of the second composite particles are arranged between the first composite particles. In this case, in the composite material 1a, gaps 20 having a relatively small size are likely to be formed between gaps 20 having a relatively large size.
 複合粒子は、例えば、以下の様に作製されうる。第一樹脂によって形成された樹脂粒子と添着剤との予備混合物を調整する。添着剤は、例えば、所定の樹脂を含む。この樹脂は、例えば、架橋性ポリマー又は熱硬化性樹脂を含む。次に、この予備混合物に無機粒子12を加えて混合することによって、複数の樹脂粒子の表面に無機粒子12が配置された複合粒子が得られる。樹脂粒子に添着剤を加えて予備混合物を得る工程と、この予備混合物に無機粒子12を加える工程とが、複数回繰り返されてもよい。混合の方法は、特定の方法に限定されない。混合の方法の例は、ボールミル、ビーズミル、プラネタリミキサー、超音波ミキサー、ホモジナイザ、自転公転ミキサー、流動混合機、ヘンシェルミキサー、容器回転型ブレンダー、リボンブレンダー、及び円錐スクリューブレンダーを用いた混合である。 Composite particles can be produced, for example, as follows. A premix of the resin particles formed by the first resin and the binder is prepared. The adhesive contains, for example, a predetermined resin. The resin includes, for example, a crosslinkable polymer or a thermosetting resin. Next, the inorganic particles 12 are added to the preliminary mixture and mixed to obtain composite particles in which the inorganic particles 12 are arranged on the surfaces of a plurality of resin particles. The step of adding the binder to the resin particles to obtain a preliminary mixture and the step of adding the inorganic particles 12 to the preliminary mixture may be repeated multiple times. A mixing method is not limited to a specific method. Examples of methods of mixing are ball mills, bead mills, planetary mixers, ultrasonic mixers, homogenizers, rotation or revolution mixers, fluidized bed mixers, Henschel mixers, vessel rotary blenders, ribbon blenders, and mixing using conical screw blenders.
 次に、複合粒子が互いに接するように複合粒子を型の内部に収容する。この型へ別途調製した流動性を有する樹脂組成物を加えて、複合粒子同士の隙間をこの樹脂組成物で充填し、上記の工程(I)における混合物が得られる。もしくは、複合粒子と樹脂組成物とを予め混合して予備混合物を調整し、予備混合物を型に流し込んだ後に複合粒子が互いに接するように予備混合物を処理して上記の工程(I)における混合物が得られてもよい。 Next, the composite particles are placed inside the mold so that the composite particles are in contact with each other. A separately prepared resin composition having fluidity is added to this mold, and the gaps between the composite particles are filled with this resin composition to obtain the mixture in step (I) above. Alternatively, the composite particles and the resin composition are mixed in advance to prepare a preliminary mixture, and after the preliminary mixture is poured into a mold, the preliminary mixture is treated so that the composite particles are in contact with each other, so that the mixture in the above step (I) is may be obtained.
 必要に応じて、混合物から気泡が取り除かれる。混合物から気泡を取り除く方法は、特定の方法に限定されない。その方法の例は、減圧脱気である。減圧脱気は、例えば、25℃~200℃で1秒間~10秒間実施される。 If necessary, air bubbles are removed from the mixture. A method for removing air bubbles from the mixture is not limited to a specific method. An example of such a method is vacuum degassing. Vacuum degassing is performed, for example, at 25° C. to 200° C. for 1 second to 10 seconds.
 (I)の工程において、例えば、混合物を加熱することによって樹脂組成物の流動性が低下する。樹脂組成物が加熱されることによって、例えば、熱硬化性樹脂の硬化反応が進行し、樹脂組成物の流動性が低下する。
 (II)の工程において、複合粒子の第一樹脂を収縮又は除去する方法は、特定の方法に限定されない。その方法の例は、複合材料1aの前駆体を加熱する方法と、複合材料1aの前駆体を特定の溶媒に浸漬させる方法である。これらの方法が併用されてもよい。これにより、複数の空隙20が形成される。
In the step (I), for example, the fluidity of the resin composition is lowered by heating the mixture. When the resin composition is heated, for example, the curing reaction of the thermosetting resin proceeds and the fluidity of the resin composition decreases.
In step (II), the method of shrinking or removing the first resin of the composite particles is not limited to a specific method. Examples of such methods are a method of heating the precursor of the composite material 1a and a method of immersing the precursor of the composite material 1a in a specific solvent. These methods may be used in combination. Thereby, a plurality of voids 20 are formed.
 複合材料1aの前駆体を加熱する温度は、第一樹脂を軟化させることができる温度であれば、特定の温度に限定されない。その温度は、例えば95℃~130℃であり、120℃~160℃であってもよい。 The temperature for heating the precursor of the composite material 1a is not limited to a specific temperature, as long as it can soften the first resin. The temperature is, for example, 95°C to 130°C, and may be 120°C to 160°C.
 複合材料1aの前駆体を特定の溶媒に浸漬させて第一樹脂を収縮又は除去する場合、溶媒は、第二樹脂を溶解させず、かつ、第一樹脂を溶解させることができる限り、特定の溶媒に限定されない。溶媒の例は、トルエン、酢酸エチル、メチルエチルケトン、及びアセトンである。 When the precursor of the composite material 1a is immersed in a specific solvent to shrink or remove the first resin, the solvent does not dissolve the second resin and dissolves the first resin. It is not limited to solvents. Examples of solvents are toluene, ethyl acetate, methyl ethyl ketone, and acetone.
 第一樹脂によって形成された樹脂粒子は、中空構造を有していてもよい。中空構造における中空部は、単一の中空部であってもよく、複数の中空部から構成されていてもよい。複合粒子が中空構造を有する樹脂粒子を備える場合、加熱処理により樹脂粒子を構成する樹脂が軟化して中空部が消失又は収縮し、それに応じて複数の空隙20を形成できる。第一樹脂によって形成された樹脂粒子は、中実の粒子であってもよい。 The resin particles formed by the first resin may have a hollow structure. The hollow part in the hollow structure may be a single hollow part or may be composed of a plurality of hollow parts. When the composite particles include resin particles having a hollow structure, the heat treatment softens the resin constituting the resin particles, causing the hollow portions to disappear or shrink, and a plurality of voids 20 can be formed accordingly. The resin particles formed by the first resin may be solid particles.
 (II)の工程において、複合材料1aの前駆体を特定の溶媒に浸漬させる場合、第一樹脂は、例えば、固体部に含まれる第二樹脂より容易にその溶媒に溶解する。このため、所望の形状を有する空隙20が形成されやすい。第一樹脂の例は、ポリスチレン(PS)、ポリエチレン(PE)、ポリメタクリル酸メチル(PMMA)、エチレン酢酸ビニル共重合体(EVA)、ポリ塩化ビニル(PVC)、ポリプロピレン(PP)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、エチレン・プロピレン・ジエンゴム(EPDM)、熱可塑性エラストマー(TPE)、及びポリビニルアルコール(PVA)である。 In the step (II), when the precursor of the composite material 1a is immersed in a specific solvent, the first resin dissolves in the solvent more easily than the second resin contained in the solid portion, for example. Therefore, voids 20 having a desired shape are easily formed. Examples of first resins are polystyrene (PS), polyethylene (PE), polymethyl methacrylate (PMMA), ethylene vinyl acetate copolymer (EVA), polyvinyl chloride (PVC), polypropylene (PP), acrylonitrile butadiene • Styrene copolymer (ABS), ethylene-propylene-diene rubber (EPDM), thermoplastic elastomer (TPE), and polyvinyl alcohol (PVA).
 上記の製造方法によれば、複数の空隙20は、発泡工程を経ることなく形成される。 According to the manufacturing method described above, the plurality of voids 20 are formed without going through the foaming process.
 複合材料1aは、様々な観点から変更可能である。例えば、複合材料1aは、図3に示す複合材料1bのように変更されてもよい。複合材料1bは、特に説明する部分を除き、複合材料1aと同様に構成されている。複合材料1aの構成要素と同一又は対応する複合材料1bの構成要素には同一の符号を付し、詳細な説明を省略する。複合材料1aに関する説明は、技術的に矛盾しない限り複合材料1bにも当てはまる。 The composite material 1a can be changed from various points of view. For example, composite material 1a may be modified as composite material 1b shown in FIG. The composite material 1b is configured in the same manner as the composite material 1a except for the parts that are particularly described. Components of the composite material 1b that are the same as or correspond to components of the composite material 1a are denoted by the same reference numerals, and detailed description thereof is omitted. The description regarding the composite material 1a also applies to the composite material 1b unless technically contradictory.
 図3に示す通り、複合材料1bにおいて、空隙20の内部には粒子30が配置されている。粒子30は、典型的には樹脂粒子である。粒子30は、熱処理により収縮した樹脂粒子でありうる。収縮前の樹脂粒子は、空隙20に相当する形状を有していてもよい。複合材料1aにおいて、空隙20に相当する空間を占めていた樹脂は、除去されている。一方、図3に示す通り、複合材料1bにおいて、空隙20に相当する空間を占めていた樹脂は、変形して残存している。特定の断面では存在が確認できない粒子30であっても、別の断面を観察すると粒子30の存在が確認されることがある。 As shown in FIG. 3, particles 30 are arranged inside the voids 20 in the composite material 1b. Particles 30 are typically resin particles. The particles 30 may be resin particles that have shrunk due to heat treatment. The resin particles before shrinkage may have a shape corresponding to the voids 20 . In the composite material 1a, the resin occupying the spaces corresponding to the voids 20 is removed. On the other hand, as shown in FIG. 3, in the composite material 1b, the resin occupying the spaces corresponding to the voids 20 remains deformed. Even for particles 30 whose existence cannot be confirmed in a specific cross section, the existence of particles 30 may be confirmed when another cross section is observed.
 実施例により、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be described in more detail with examples. In addition, the present invention is not limited to the following examples.
 <実施例1>
 純水100重量部、リン酸三カルシウム0.2重量部、及びドデシルベンゼンスルホン酸ナトリウム0.01重量部を、撹拌機が付属されているオートクレーブに加えた。このオートクレーブに、開始剤としてベンゾイルパーオキサイド0.15重量部及び1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.25重量部を加えて混合液を調製した。混合液を350回転/分で撹拌しながら、スチレンモノマー100重量部を加えた。その後、この溶液を98℃まで昇温させることによって重合反応を実施した。重合反応が約80%終了したとき、反応溶液を30分間かけて120℃まで昇温させた。その後、反応溶液を120℃で1時間保温して、スチレン樹脂粒子含有溶液を調製した。スチレン樹脂粒子含有溶液を95℃まで冷却した後、発泡剤としてシクロヘキサン2重量部及びブタン7重量部をオートクレーブに圧入した。その後、この溶液を再度120℃まで昇温させた。その後、溶液を120℃で1時間保温した後、室温まで冷却することによって、重合スラリーを得た。この重合スラリーを脱水、洗浄、及び乾燥させることによって、発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子をふるいにかけて、粒子径が0.2mm~0.3mmの発泡性スチレン樹脂粒子を得た。この発泡性スチレン樹脂粒子を、大開工業社製の加圧式発泡機(BHP)を用いて、650μm~1200μmの平均径を有する球形状の発泡ポリスチレンビーズαを得た。この発泡ポリスチレンビーズαを、公称目開き(JIS Z 8801-1:2019)が1.18mm及び1mmであるJIS試験用ふるいにかけた。このとき、公称目開きが1.18mmのふるいを通過し、かつ、公称目開きが1mmのふるいを通過しなかった発泡ポリスチレンビーズAをサンプルの作製に使用した。発泡ポリスチレンビーズAの平均粒子径は1050μmであり、発泡ポリスチレンビーズAの嵩密度は0.025g/ミリリットル(mL)であった。
<Example 1>
100 parts by weight of pure water, 0.2 parts by weight of tricalcium phosphate, and 0.01 parts by weight of sodium dodecylbenzenesulfonate were added to an autoclave equipped with a stirrer. Into this autoclave, 0.15 parts by weight of benzoyl peroxide and 0.25 parts by weight of 1,1-bis(t-butylperoxy)cyclohexane were added as initiators to prepare a mixture. 100 parts by weight of styrene monomer was added while stirring the mixture at 350 rpm. Thereafter, the polymerization reaction was carried out by raising the temperature of this solution to 98°C. When the polymerization reaction was about 80% complete, the reaction solution was heated to 120° C. over 30 minutes. Thereafter, the reaction solution was kept at 120° C. for 1 hour to prepare a solution containing styrene resin particles. After cooling the styrene resin particle-containing solution to 95° C., 2 parts by weight of cyclohexane and 7 parts by weight of butane as blowing agents were injected into the autoclave. The solution was then heated to 120°C again. After that, the solution was kept at 120° C. for 1 hour and then cooled to room temperature to obtain a polymerization slurry. Expandable styrene resin particles were obtained by dehydrating, washing and drying the polymerized slurry. The expandable styrene resin particles were sieved to obtain expandable styrene resin particles having a particle size of 0.2 mm to 0.3 mm. These expandable styrene resin particles were used in a pressurized expansion machine (BHP) manufactured by Daikai Kogyo Co., Ltd. to obtain spherical expanded polystyrene beads α having an average diameter of 650 μm to 1200 μm. The expanded polystyrene beads α were passed through a JIS test sieve with a nominal mesh size (JIS Z 8801-1:2019) of 1.18 mm and 1 mm. At this time, expanded polystyrene beads A, which passed through a sieve with a nominal opening of 1.18 mm but did not pass through a sieve with a nominal opening of 1 mm, were used to prepare samples. The expanded polystyrene beads A had an average particle size of 1050 μm and a bulk density of 0.025 g/milliliter (mL).
 400μm~600μmの平均径を有するようにBHPにおける発泡条件を調整した以外は、発泡ポリスチレンビーズαと同様にして、球形状の発泡ポリスチレンビーズβを作製した。この発泡ポリスチレンビーズβを、500μm及び600μmの公称目開きのふるいにかけた。このとき、600μmの公称目開きのふるいを通過し、かつ、500μmの公称目開きを通過しなかった発泡ポリスチレンビーズBをサンプルの作製に使用した。発泡ポリスチレンビーズBの平均粒子径は550μmであり、発泡ポリスチレンビーズBの嵩密度は0.088g/mLであった。 Spherical expanded polystyrene beads β were produced in the same manner as for the expanded polystyrene beads α, except that the BHP expansion conditions were adjusted so that the average diameter was 400 μm to 600 μm. The expanded polystyrene beads β were passed through sieves with nominal openings of 500 μm and 600 μm. At this time, expanded polystyrene beads B that passed through a sieve with a nominal opening of 600 μm but did not pass through a nominal opening of 500 μm were used for preparing samples. The expanded polystyrene beads B had an average particle diameter of 550 μm and a bulk density of 0.088 g/mL.
 信越化学工業社製のシリコーン樹脂KE-106F、信越化学工業社製の硬化剤CAT-106F、及び信越化学工業社製のシリコーンオイルKF-96-10CSを混合することによって、添着剤を調製した。添着剤において、シリコーン樹脂の質量:硬化剤の質量:シリコーンオイルの質量=10:1:10の関係が満たされていた。1質量部の発泡ポリスチレンビーズAに対して、7質量部の添着剤を準備した。加えて、1質量部の発泡ポリスチレンビーズAに対して、14質量部の鱗片状の窒化ホウ素を準備した。窒化ホウ素の平均厚みは0.4μmであり、窒化ホウ素のアスペクト比は20であった。 A coating agent was prepared by mixing silicone resin KE-106F manufactured by Shin-Etsu Chemical Co., Ltd., curing agent CAT-106F manufactured by Shin-Etsu Chemical Co., Ltd., and silicone oil KF-96-10CS manufactured by Shin-Etsu Chemical Co., Ltd. In the adhesive, the relationship of mass of silicone resin: mass of curing agent: mass of silicone oil=10:1:10 was satisfied. For 1 part by mass of foamed polystyrene beads A, 7 parts by mass of the adhesive was prepared. In addition, 14 parts by mass of scale-like boron nitride was prepared for 1 part by mass of expanded polystyrene beads A. The boron nitride had an average thickness of 0.4 μm and an aspect ratio of 20.
 カワタ社製の高速流動混合機SMP-2に、1質量部の発泡ポリスチレンビーズAを加えた。次に、0.7質量部の上記の添着剤を加えて混合物を調製した。この混合物を、高速流動混合機において1000回転/分で1分間撹拌した。次に、1.4質量部の窒化ホウ素を高速流動混合機に加え、得られた混合物を、高速流動混合機において1000回転/分で1分間撹拌した。このようにして、発泡ポリスチレンビーズAに、添着剤を介して窒化ホウ素を付着させる操作を10回繰り返し、窒化ホウ素で被覆された発泡ポリスチレンビーズMを得た。このポリスチレンビーズMを60℃の恒温槽にて2時間加熱して、添着剤のシリコーン樹脂を硬化させ、窒化ホウ素で被覆されたポリスチレンビーズである複合粒子Aを得た。  1 part by mass of expanded polystyrene beads A was added to a high-speed fluid mixer SMP-2 manufactured by Kawata Corporation. Next, a mixture was prepared by adding 0.7 parts by mass of the above-mentioned impregnating agent. The mixture was stirred for 1 minute at 1000 revolutions/minute in a high-speed fluid mixer. Next, 1.4 parts by weight of boron nitride were added to the high-fluid mixer and the resulting mixture was stirred in the high-fluid mixer at 1000 rpm for 1 minute. In this way, the operation of adhering boron nitride to the expanded polystyrene beads A via the attaching agent was repeated 10 times to obtain expanded polystyrene beads M coated with boron nitride. The polystyrene beads M were heated in a constant temperature bath at 60° C. for 2 hours to cure the silicone resin as the adhesive, thereby obtaining composite particles A, which are polystyrene beads coated with boron nitride.
 1質量部の発泡ポリスチレンビーズBに対して、2質量部の上記の添着剤を準備した。加えて、1質量部の発泡ポリスチレンビーズBに対して、4質量部の鱗片状の窒化ホウ素を準備した。窒化ホウ素の平均厚みは0.4μmであり、窒化ホウ素のアスペクト比は20であった。 2 parts by mass of the above-mentioned impregnating agent was prepared for 1 part by mass of expanded polystyrene beads B. In addition, 4 parts by mass of scale-like boron nitride was prepared for 1 part by mass of expanded polystyrene beads B. The boron nitride had an average thickness of 0.4 μm and an aspect ratio of 20.
 カワタ社製の高速流動混合機SMP-2に、1質量部の発泡ポリスチレンビーズBを加えた。次に、0.2質量部の上記の添着剤を加えて混合物を調製した。この混合物を、高速流動混合機において1000回転/分で1分間撹拌した。次に、0.4質量部の窒化ホウ素を高速流動混合機に加え、得られた混合物を、高速流動混合機において1000回転/分で1分間撹拌した。このようにして、発泡ポリスチレンビーズBに、添着剤を介して窒化ホウ素を付着させる操作を10回繰り返し、窒化ホウ素で被覆された発泡ポリスチレンビーズNを得た。このポリスチレンビーズNを60℃の恒温槽にて2時間加熱して、添着剤のシリコーン樹脂を硬化させ、窒化ホウ素で被覆されたポリスチレンビーズである複合粒子Bを得た。  1 part by mass of expanded polystyrene beads B was added to a high-speed fluid mixer SMP-2 manufactured by Kawata Corporation. Next, 0.2 parts by mass of the above-mentioned impregnating agent was added to prepare a mixture. The mixture was stirred for 1 minute at 1000 revolutions/minute in a high-speed fluid mixer. Next, 0.4 parts by mass of boron nitride was added to the high-fluid mixer and the resulting mixture was stirred in the high-fluid mixer at 1000 rpm for 1 minute. In this manner, the operation of adhering boron nitride to the expanded polystyrene beads B via the attaching agent was repeated 10 times to obtain expanded polystyrene beads N coated with boron nitride. The polystyrene beads N were heated in a constant temperature bath at 60° C. for 2 hours to cure the silicone resin as the adhesive, thereby obtaining composite particles B which were polystyrene beads coated with boron nitride.
 ダウ・東レ社製の熱硬化性シリコーン樹脂DOWSIL SE 1817 CV MのA剤及びB剤を1:1の質量比で混合し、樹脂前駆体を調製した。複合粒子A及び複合粒子Bを十分に混合した。この混合において、複合粒子Aの嵩体積:複合粒子Bの嵩体積=90:10の関係が満たされていた。次に、95mm、95mm、及び24mmの内部寸法を有する直方体状のプラスチック製のケースの内部に、複合粒子Aと複合粒子Bとの混合物を20mmの高さに充填した。吉田隆社製のステンレス製の平織金網をケースの内部において複合粒子Aと複合粒子Bとの混合物の上に敷き、平織金網の上にステンレス製のパンチングメタルを敷いた。平織金網における開口の直径は、0.18mmであり、平織金網のメッシュは50であった。パンチングメタルにおいて、開口の直径は5mmであり、隣り合う開口同士のピッチは8mmであった。パンチングメタルの厚みは1mmであった。平織金網とパンチングメタルとをクランプで固定した。 A resin precursor was prepared by mixing ingredients A and B of a thermosetting silicone resin DOWSIL SE 1817 CVM manufactured by Dow Toray at a mass ratio of 1:1. Composite particles A and composite particles B were thoroughly mixed. In this mixing, the relationship of bulk volume of composite particles A:bulk volume of composite particles B=90:10 was satisfied. Next, a mixture of Composite Particles A and Composite Particles B was filled to a height of 20 mm inside rectangular parallelepiped plastic cases having internal dimensions of 95 mm, 95 mm, and 24 mm. A plain-woven wire mesh made of stainless steel manufactured by Takashi Yoshida Co., Ltd. was laid on the mixture of composite particles A and B inside the case, and a stainless steel punching metal was laid on the plain-woven wire mesh. The diameter of the openings in the plain weave wire mesh was 0.18 mm and the mesh of the plain weave wire mesh was 50. In the punching metal, the diameter of the openings was 5 mm, and the pitch between adjacent openings was 8 mm. The thickness of the punching metal was 1 mm. The plain weave wire mesh and the punching metal were fixed with clamps.
 ケースの内部に上記の樹脂前駆体を加え、樹脂前駆体を減圧脱泡させた。この減圧脱泡におけるゲージ圧は、-0.08MPa~-0.09MPaに調整した。樹脂前駆体の加入及び減圧脱泡を含む操作を3回繰り返して、複合粒子同士の間に樹脂前駆体を含浸させた。次に、樹脂前駆体が置かれた環境が80℃で2時間保たれるように加熱することによって、樹脂前駆体に含まれるシリコーン樹脂を硬化させて、複合粒子が包埋された樹脂成形品を得た。この樹脂成形品を所定の寸法に切断し、切断された樹脂成形品をアセトンに30分間浸漬させた。これにより、複合粒子に含まれるポリスチレンがアセトンに溶解し、樹脂成形品から溶出した。その後、樹脂成形品を90℃で加熱してアセトンを揮発させ、実施例1に係る複合材料を得た。 The above resin precursor was added to the inside of the case, and the resin precursor was degassed under reduced pressure. The gauge pressure in this vacuum defoaming was adjusted to -0.08 MPa to -0.09 MPa. The operation including adding the resin precursor and degassing under reduced pressure was repeated three times to impregnate the resin precursor between the composite particles. Next, by heating so that the environment in which the resin precursor is placed is maintained at 80° C. for 2 hours, the silicone resin contained in the resin precursor is cured, and the resin molded article in which the composite particles are embedded. got This resin molded article was cut into a predetermined size, and the cut resin molded article was immersed in acetone for 30 minutes. As a result, polystyrene contained in the composite particles was dissolved in acetone and eluted from the resin molding. After that, the resin molded product was heated at 90° C. to volatilize acetone, and a composite material according to Example 1 was obtained.
 <実施例2>
 複合粒子Aの嵩体積:複合粒子Bの嵩体積=80:20の関係が満たされるように、複合粒子Aと複合粒子Bとの混合の条件を変更した以外は、実施例1と同様にして実施例2に係る複合材料を作製した。
<Example 2>
In the same manner as in Example 1, except that the conditions for mixing Composite Particle A and Composite Particle B were changed so that the relationship of bulk volume of Composite Particle A:bulk volume of Composite Particle B=80:20 was satisfied. A composite material according to Example 2 was produced.
 <実施例3>
 複合粒子の作製において実施例1で使用した窒化ホウ素に代えて、50のアスペクト比及び0.8μmの平均厚みを有する窒化ホウ素を用いた以外は、実施例1と同様にして実施例3に係る複合材料を作製した。
<Example 3>
Example 3 was carried out in the same manner as in Example 1, except that boron nitride having an aspect ratio of 50 and an average thickness of 0.8 μm was used instead of the boron nitride used in Example 1 in the preparation of the composite particles. A composite material was made.
 <実施例4>
 複合粒子の作製において実施例1で使用した窒化ホウ素に代えて、12のアスペクト比及び1.8μmの平均厚みを有する鱗片状のグラファイトを用いた以外は、実施例1と同様にして実施例4に係る複合材料を作製した。
<Example 4>
Example 4 was prepared in the same manner as in Example 1, except that scaly graphite having an aspect ratio of 12 and an average thickness of 1.8 μm was used instead of the boron nitride used in Example 1 in the preparation of the composite particles. A composite material according to was produced.
 <実施例5>
 下記の点以外は、実施例1と同様にして、実施例5に係る複合材料を作製した。樹脂前駆体としてシリコーン樹脂の代わりに、サンユレック社製のポリウレタンSU-3001A及びSU-3001Bの混合物を使用した。この混合物において、SU-3001Aの質量:SU-3001Bの質量=34:100の関係が満たされるように、SU-3001A及びSU-3001Bの分量を調整した。樹脂前駆体が置かれた環境が80℃で2時間保たれるように加熱することによって、樹脂前駆体に含まれるポリウレタンを硬化させた。
<Example 5>
A composite material according to Example 5 was produced in the same manner as in Example 1, except for the following points. A mixture of polyurethane SU-3001A and SU-3001B manufactured by Sanyu Rec Co., Ltd. was used as a resin precursor instead of a silicone resin. In this mixture, the amounts of SU-3001A and SU-3001B were adjusted so that the relationship of SU-3001A mass:SU-3001B mass=34:100 was satisfied. The polyurethane contained in the resin precursor was cured by heating such that the environment in which the resin precursor was placed was maintained at 80° C. for 2 hours.
 <実施例6>
 下記の点以外は、実施例1と同様にして、実施例6に係る複合材料を作製した。複合粒子Aの作製において、添着剤の量を3.5質量部に変更し、窒化ホウ素の量を7質量部に変更した。複合粒子Bの作製において、添着剤の量を3質量部、窒化ホウ素の量を6質量部に変更した。
<Example 6>
A composite material according to Example 6 was produced in the same manner as in Example 1, except for the following points. In the production of Composite Particle A, the amount of the impregnating agent was changed to 3.5 parts by mass, and the amount of boron nitride was changed to 7 parts by mass. In the production of Composite Particle B, the amount of the impregnating agent was changed to 3 parts by mass, and the amount of boron nitride was changed to 6 parts by mass.
 <実施例7>
 下記の点以外は、実施例2と同様にして、実施例7に係る複合材料を作製した。複合粒子Aの作製において、添着剤の量を3.5質量部に変更し、窒化ホウ素の量を7質量部に変更した。複合粒子Bの作製において、添着剤の量を3質量部、窒化ホウ素の量を6質量部に変更した。
<Example 7>
A composite material according to Example 7 was produced in the same manner as in Example 2, except for the following points. In the production of Composite Particle A, the amount of the impregnating agent was changed to 3.5 parts by mass, and the amount of boron nitride was changed to 7 parts by mass. In the production of Composite Particle B, the amount of the impregnating agent was changed to 3 parts by mass, and the amount of boron nitride was changed to 6 parts by mass.
 <実施例8>
 添着剤として、ダウ社製のDOWSIL SE 1896 FR A/BのA剤及びB剤を1:1の重量比で混合して、シリコーン樹脂前駆体を調製した。このシリコーン樹脂前駆体を、松本油脂製薬社製のプラスチックマイクロバルーン(マツモトマイクロスフェアー F-80DE)1重量部に対して10重量部準備した。これとは別に、F-80DE 1重量部に対して、鱗片状の窒化ホウ素 25重量部を準備した。窒化ホウ素のアスペクト比は20であり、窒化ホウ素の平均厚みは0.4μmであった。
<Example 8>
A silicone resin precursor was prepared by mixing DOWSIL SE 1896 FR A/B agent A and agent B in a weight ratio of 1:1 as an adhesive agent. 10 parts by weight of this silicone resin precursor was prepared for 1 part by weight of plastic microballoons (Matsumoto Microsphere F-80DE) manufactured by Matsumoto Yushi Seiyaku. Separately, 25 parts by weight of scale-like boron nitride was prepared for 1 part by weight of F-80DE. The boron nitride had an aspect ratio of 20 and an average thickness of boron nitride of 0.4 μm.
 カワタ社製の高速流動混合機SMP-2に、1重量部のF-80DEを加えた。次に、上記のシリコーン樹脂前駆体及び上記の窒化ホウ素を同時に、かつ、シリコーン樹脂前駆体及び窒化ホウ素のそれぞれを均等な量で30分間かけて添加しながら、上記した混合機を用いて、1000回転/分でこの混合物を撹拌した。この操作により、シリコーン樹脂前駆体によって窒化ホウ素で被覆されたプラスチックマイクロバルーンを得た。このプラスチックマイクロバルーンを80℃の恒温槽にて2時間加熱して、シリコーン樹脂を硬化させ、窒化ホウ素で被覆された複合粒子Cを得た。 One part by weight of F-80DE was added to Kawata's high-speed fluid mixer SMP-2. Next, while simultaneously adding the silicone resin precursor and the boron nitride and adding each of the silicone resin precursor and the boron nitride in equal amounts over 30 minutes, using the mixer, 1000 The mixture was stirred at revolutions/minute. This operation yielded plastic microballoons coated with boron nitride by the silicone resin precursor. The plastic microballoons were heated in a constant temperature bath at 80° C. for 2 hours to cure the silicone resin and obtain composite particles C coated with boron nitride.
 実施例1で使用した複合粒子Bに代えて、上記の複合粒子Cを用いたこと以外は、実施例1と同様にして、実施例8に係る複合材料を作製した。 A composite material according to Example 8 was produced in the same manner as in Example 1, except that the composite particles C described above were used instead of the composite particles B used in Example 1.
 <実施例9>
 実施例1で使用した複合粒子Aに代えて複合粒子Bを用い、かつ、複合粒子Bに代えて複合粒子Cを用いたこと以外は、実施例1と同様にして、実施例9に係る複合材料を作製した。
<Example 9>
The composite according to Example 9 was prepared in the same manner as in Example 1 except that the composite particles B were used instead of the composite particles A used in Example 1, and the composite particles C were used instead of the composite particles B. Material was made.
 <比較例1>
 ケースに充填する複合粒子として複合粒子Aのみを使用したこと以外は、実施例1と同様にして、比較例1に係る複合材料を作製した。
<Comparative Example 1>
A composite material according to Comparative Example 1 was produced in the same manner as in Example 1, except that only composite particles A were used as the composite particles to be filled in the case.
 <比較例2>
 ケースに充填する複合粒子として複合粒子Aのみを使用したこと以外は、実施例4と同様にして、比較例2に係る複合材料を作製した。
<Comparative Example 2>
A composite material according to Comparative Example 2 was produced in the same manner as in Example 4, except that only composite particles A were used as the composite particles to be filled in the case.
 <比較例3>
 ケースに充填する複合粒子として複合粒子Aのみを使用したこと以外は、実施例5と同様にして、比較例3に係る複合材料を作製した。
<Comparative Example 3>
A composite material according to Comparative Example 3 was produced in the same manner as in Example 5, except that only composite particles A were used as the composite particles to be filled in the case.
 <比較例4>
 20のアスペクト比及び0.4μmの平均厚みを有する窒化ホウ素、ダウ東レ社製のシリコーン樹脂DOWSIL SE 1817 CV MのA剤及びB剤、及びエタノールを混合してスラリー状の混合物を調製した。この混合物において、窒化ホウ素の質量:A剤の質量:B剤の質量:エタノールの質量=23:38:38:1の関係が満たされていた。この混合物を、50mmの直径及び7mmの高さを有する有底筒状の金型内に加えた。次に、金型内の混合物を150℃で1時間加熱することによって、エタノールを発泡剤として作用させてシリコーン樹脂を発泡させつつ、発泡したシリコーン樹脂を硬化させた。このようにして、比較例4に係る複合材料を作製した。
<Comparative Example 4>
A slurry mixture was prepared by mixing boron nitride having an aspect ratio of 20 and an average thickness of 0.4 μm, agents A and B of silicone resin DOWSIL SE 1817 CVM manufactured by Dow Toray Industries, Inc., and ethanol. In this mixture, the relationship of mass of boron nitride:mass of agent A:mass of agent B:mass of ethanol=23:38:38:1 was satisfied. This mixture was added into a bottomed cylindrical mold with a diameter of 50 mm and a height of 7 mm. Next, the mixture in the mold was heated at 150° C. for 1 hour to cure the foamed silicone resin while allowing the ethanol to act as a foaming agent to foam the silicone resin. Thus, a composite material according to Comparative Example 4 was produced.
 <比較例5>
 複合粒子の作製において比較例4で使用した窒化ホウ素に代えて、50のアスペクト比及び0.4μmの平均厚みを有する窒化ホウ素を用いた以外は、比較例4と同様にして比較例5に係る複合材料を作製した。
<Comparative Example 5>
Comparative Example 5 was prepared in the same manner as in Comparative Example 4, except that boron nitride having an aspect ratio of 50 and an average thickness of 0.4 μm was used instead of the boron nitride used in Comparative Example 4 in the preparation of the composite particles. A composite material was made.
(顕微鏡観察)
 キーエンス社製の顕微鏡デジタルマイクロスコープVHX-7000を用いて、各実施例及び各比較例に係る複合材料の断面を観察した。この観察において、200個以上の空隙が確認できるように観察対象の複数の断面を選択した。この観察において、各空隙の最大径を測定した。この測定結果に基づき、各複合材料における個数基準の空隙の最大径(サイズ)の分布を求めた。この分布は、ヒストグラムとして作成され、ヒストグラムにおける各区間のレンジは50μmであった。この分布におけるピークに対応する区間の中央値をそのピークに対応する空隙のサイズとみなした。この分布が複数のピークを有する場合、その複数のピークにおいて空隙のサイズが最大になるピーク(第一ピーク)に対応する空隙のサイズをd1と決定した。加えて、その複数のピークにおいて空隙のサイズが二番目に大きいピーク(第二ピーク)に対応する空隙のサイズをd2と決定した。なお、実施例8及び9におけるd2の決定のために使用したヒストグラムの各区間のレンジは20μmであった。ヒストグラムのd1を含む区間の頻度(個数)をh1と決定し、ヒストグラムのd2を含む区間の頻度(個数)をh2と決定した。加えて、この測定結果に基づき、空隙の最大径の算術平均を求めた。結果を表1及び表2に示す。実施例1に係る複合材料の断面の写真及び比較例1に係る複合材料の断面の写真を、それぞれ、図4及び図5に示す。
(Microscopic observation)
A cross section of the composite material according to each example and each comparative example was observed using a digital microscope VHX-7000 manufactured by Keyence Corporation. In this observation, a plurality of cross sections to be observed were selected so that 200 or more voids could be confirmed. In this observation, the maximum diameter of each void was measured. Based on the measurement results, the distribution of the maximum diameter (size) of the number-based voids in each composite material was determined. This distribution was generated as a histogram, and the range of each interval in the histogram was 50 μm. The median value of the interval corresponding to the peak in this distribution was taken as the pore size corresponding to that peak. When this distribution had multiple peaks, the size of the void corresponding to the peak (first peak) with the largest void size among the multiple peaks was determined as d1. In addition, the pore size corresponding to the second largest peak (second peak) among the plurality of peaks was determined as d2. The range of each interval of the histogram used for determination of d2 in Examples 8 and 9 was 20 μm. The frequency (number) of intervals including d1 in the histogram was determined as h1, and the frequency (number) of intervals including d2 in the histogram was determined as h2. In addition, the arithmetic mean of the maximum diameter of the voids was obtained based on the measurement results. The results are shown in Tables 1 and 2. A photograph of a cross section of the composite material according to Example 1 and a photograph of a cross section of the composite material according to Comparative Example 1 are shown in FIGS. 4 and 5, respectively.
 上記の複合材料の断面において、窒化ホウ素又はグラファイトは、最大径の測定がなされた200個以上の空隙のそれぞれに対応して200個の環状の断面をなすように凝集していた。この200個の環状の断面のそれぞれの最大径を測定した。この測定結果に基づき、各複合材料における環状の断面の最大径の分布を求めた。この分布は、ヒストグラムとして作成され、ヒストグラムにおける各区間のレンジは50μmであった。この分布におけるピークに対応する区間の中央値をそのピークに対応する環状の断面の最大径とみなした。この分布が複数のピークを有する場合、その複数のピークにおいて環状の断面の最大径が最大になるピーク(第三ピーク)に対応する環状の断面の最大径をL1と決定した。加えて、その複数のピークにおいて環状の断面の最大径が二番目に大きいピーク(第四ピーク)に対応する環状の断面の最大径をL2と決定した。なお、実施例8及び9におけるL2の決定のために使用したヒストグラムの各区間のレンジは20μmであった。結果を表1に示す。 In the cross section of the above composite material, boron nitride or graphite agglomerated to form 200 annular cross sections corresponding to each of the 200 or more voids whose maximum diameter was measured. The maximum diameter of each of these 200 annular cross-sections was measured. Based on this measurement result, the distribution of the maximum diameter of the annular cross section in each composite material was obtained. This distribution was generated as a histogram, and the range of each interval in the histogram was 50 μm. The median value of the interval corresponding to the peak in this distribution was taken as the maximum diameter of the circular cross-section corresponding to that peak. When this distribution has a plurality of peaks, the maximum diameter of the annular cross section corresponding to the peak (third peak) at which the maximum diameter of the annular cross section is maximum among the plurality of peaks was determined as L1. In addition, the maximum diameter of the annular cross section corresponding to the peak (fourth peak) having the second largest maximum diameter of the annular cross section among the plurality of peaks was determined as L2. The range of each section of the histogram used for determining L2 in Examples 8 and 9 was 20 μm. Table 1 shows the results.
 上記の観察対象の断面の全体の断面積に対する、骨格部の断面積の比Rを求めた。観察対象の断面の全体の断面積から、その断面における空隙の面積と窒化ホウ素又はグラファイトが凝集している上記の環状の断面の面積との和を差し引いて骨格部の断面積を決定した。結果を表1に示す。 The ratio R of the cross-sectional area of the skeletal part to the cross-sectional area of the entire cross section of the observation target was obtained. The cross-sectional area of the skeleton was determined by subtracting the sum of the area of the voids in the cross-section and the area of the above-mentioned annular cross-section where boron nitride or graphite agglomerates from the entire cross-sectional area of the cross-section to be observed. Table 1 shows the results.
(無機粒子の含有量[質量%]の算出)
 無機粒子の含有量[質量%]を以下のようにして求めた。まず、約10mgの複合材料をフッ素樹脂製の容器に秤量して加えた。フッ素樹脂製の容器にフッ酸を加えて密栓した。フッ素樹脂製の容器にマイクロ波を照射し、最高温度220℃で加圧酸分解した。得られた溶液に超純水を加えて50mLに定容した。日立ハイテクサイエンス社製のICP-AES SPS-3520UVによってホウ素原子(B)を定量分析し、検出されたホウ素原子の含有量から窒化ホウ素の含有量[質量%]を算出した。また、無機粒子がグラファイトの場合は、複合材料をフッ酸により加圧分解後の溶液を濾過して、残留物の重量を測ることで無機粒子の含有量[質量%]を算出した。結果を表2に示す。
(Calculation of content [mass%] of inorganic particles)
The content [% by mass] of the inorganic particles was determined as follows. First, about 10 mg of the composite material was weighed and added to a fluororesin container. Hydrofluoric acid was added to a fluororesin container and the container was sealed. A container made of fluororesin was irradiated with microwaves, and pressurized acid decomposition was carried out at a maximum temperature of 220°C. Ultrapure water was added to the resulting solution to adjust the volume to 50 mL. Boron atoms (B) were quantitatively analyzed by ICP-AES SPS-3520UV manufactured by Hitachi High-Tech Science Co., Ltd., and the boron nitride content [% by mass] was calculated from the detected boron atom content. When the inorganic particles were graphite, the content of the inorganic particles [% by mass] was calculated by filtering the solution after pressure decomposition of the composite material with hydrofluoric acid and measuring the weight of the residue. Table 2 shows the results.
(熱伝導率の測定)
 米国材料試験協会規格(ASTM) D5470-01(一方向熱流定常法)に準拠して、レスカ社製の熱伝導率測定装置TCM1001を用いて、試験体1枚及び対称構成方式にて熱流計法により各実施例及び各比較例に係る複合材料の熱伝導率を測定した。厚さtを有する各複合材料を平面視で1辺の長さが20mmの正方形状に切断し、試験片を得た。試験片の主面の両面に、サンハヤト社製のシリコーングリース SCH-20を、シリコーングリース層の厚さが100μmになるように塗布した。シリコーングリースの熱伝導率は0.84W/(m・K)であった。標準ロッドとして、110℃に調整される加熱ブロックを有する上部ロッド及び20℃に調整される冷却ブロックを有する下部ロッドを使用した。試験ブロックとして、無酸素銅製のブロックを使用した。試験片を、シリコーングリース層を介して無酸素銅製のブロックで挟んで測定試料を作製した。この測定試料を、上部ロッドと下部ロッドとの間に挟んだ。試験片の厚み方向に熱を流した。
(Measurement of thermal conductivity)
In accordance with the American Society for Testing and Materials Standard (ASTM) D5470-01 (unidirectional heat flow steady state method), using a thermal conductivity measurement device TCM1001 manufactured by Lesca, one test piece and a symmetrical configuration method are used for the heat flow measurement method. was used to measure the thermal conductivity of the composite material according to each example and each comparative example. Each composite material having a thickness t was cut into a square having a side length of 20 mm in plan view to obtain a test piece. Silicone grease SCH-20 manufactured by Sanhayato Co., Ltd. was applied to both main surfaces of the test piece so that the silicone grease layer had a thickness of 100 μm. The thermal conductivity of silicone grease was 0.84 W/(m·K). As standard rods, an upper rod with a heating block adjusted to 110° C. and a lower rod with a cooling block adjusted to 20° C. were used. A block made of oxygen-free copper was used as a test block. A measurement sample was prepared by sandwiching the test piece between blocks made of oxygen-free copper with a silicone grease layer interposed therebetween. This measurement sample was sandwiched between the upper rod and the lower rod. Heat was applied in the thickness direction of the test piece.
 試験片の上面及び下面の間の温度差ΔTSを下記式(1)及び(2)に従って決定した。式(1)及び(2)において、ΔTCは、無酸素銅製のブロック(試験ブロック)の上面及び下面の間の温度差である。加えて、q1は、上部ロッドの複数の測温点における温度差に基づいて算出される温度勾配によって決定される熱流束[W/m2]であり、q2は、下部ロッドの複数の測温点における温度差に基づいて算出される温度勾配によって決定される熱流束[W/m2]である。tbは、無酸素銅製のブロックの厚みの和である。kbは、無酸素銅製のブロックの熱伝導率である。
 ΔTS=ΔTC-(qS×tb)/kb   式(1)
 qS=(q1+q2)/2   式(2)
A temperature difference ΔT S between the upper and lower surfaces of the test piece was determined according to the following equations (1) and (2). In equations (1) and (2), ΔT C is the temperature difference between the top and bottom surfaces of the oxygen-free copper block (test block). In addition, q 1 is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at the multiple temperature measuring points of the upper rod, and q 2 is the multiple It is the heat flux [W/m 2 ] determined by the temperature gradient calculated based on the temperature difference at the temperature measuring points. t b is the sum of the thicknesses of the oxygen-free copper blocks. kb is the thermal conductivity of the oxygen-free copper block.
ΔT S =ΔT C −(q S ×t b )/k b formula (1)
q S =(q 1 +q 2 )/2 Formula (2)
 試験片の厚み方向における熱伝導率λ[W/(m・K)]を、下記式(3)に従って決定した。結果を表2に示す。なお、試験片の厚さtは、カメラを用いた測定により行った。加えて、熱抵抗値RTを式(4)の関係から求めた。結果を表2に示す。
 λ=qS×t/ΔTS   式(3)
 RT=t/λ   式(4)
The thermal conductivity λ [W/(m·K)] in the thickness direction of the test piece was determined according to the following formula (3). Table 2 shows the results. The thickness t of the test piece was measured using a camera. In addition, the thermal resistance value R T was obtained from the relationship of Equation (4). Table 2 shows the results.
λ=q S ×t/ΔT S formula (3)
R T =t/λ Formula (4)
 (圧縮試験)
 各実施例及び各比較例に係る複合材料から3mmの厚みを有する圧縮試験用の試験片を作製した。島津製作所社製の試験機EZ-testを用いて、試験片に30%の圧縮ひずみが生じるように0.5mm/分の圧縮速度で圧縮試験を行った。30%の圧縮ひずみに対応する応力を測定した。結果を表2に示す。
(Compression test)
A test piece for compression test having a thickness of 3 mm was produced from the composite material according to each example and each comparative example. Using a testing machine EZ-test manufactured by Shimadzu Corporation, a compression test was performed at a compression speed of 0.5 mm/min so that a compression strain of 30% was generated in the test piece. The stress corresponding to 30% compressive strain was measured. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~3と、比較例1、4、及び5との対比によれば、複合材料の空隙のサイズの分布が2つのピークを有することにより、複合材料の熱伝導率が高くなりやすいことが理解される。加えて、複合材料の空隙のサイズの分布が2つのピークを有することにより、複合材料の圧縮応力が低くなりやすく、複合材料の柔軟性が高まることが理解される。実施例4と比較例2との対比及び実施例5と比較例3との対比からも同様のことが理解される。 According to the comparison between Examples 1 to 3 and Comparative Examples 1, 4, and 5, the pore size distribution of the composite material has two peaks, so that the thermal conductivity of the composite material tends to increase. is understood. In addition, it is understood that the presence of two peaks in the pore size distribution of the composite material tends to reduce the compressive stress of the composite material and increase the flexibility of the composite material. The same is understood from the comparison between Example 4 and Comparative Example 2 and the comparison between Example 5 and Comparative Example 3.
 表1に示す通り、実施例1~9において、L1/L2≧1.25、{(L12-d12)h1}/{(L22-d22)h2}≧0.8、及びR≦0.55の条件が満たされていた。実施例1~7によれば、このような条件が満たされていることにより、複合材料の熱伝導率が高くなりやすいことが示唆された。 As shown in Table 1, in Examples 1 to 9, L1/L2≧1.25, {(L1 2 −d1 2 )h1}/{(L2 2 −d2 2 )h2}≧0.8, and R≦ The 0.55 condition was met. According to Examples 1 to 7, it was suggested that the thermal conductivity of the composite material tends to be high when such conditions are satisfied.
 本発明に係る第1側面は、
 樹脂を含む骨格部と、無機粒子と、複数の空隙とを含む複合材料であって、
 前記無機粒子の少なくとも一部は、前記空隙と前記骨格部との境界に沿って配置されており、
 前記複合材料を断面視したときに、前記複数の空隙のそれぞれのサイズを測定して得られる個数基準の前記サイズの第一分布は2以上のピークを有する、
 複合材料を提供する。
A first aspect of the present invention is
A composite material comprising a skeleton containing a resin, inorganic particles, and a plurality of voids,
At least part of the inorganic particles are arranged along the boundary between the void and the skeleton,
When the composite material is viewed in cross section, the first distribution of the size based on the number obtained by measuring the size of each of the plurality of voids has two or more peaks.
Provide composite materials.
 本発明に係る第2側面は、第1側面において、
前記複数の空隙は、複数の第一空隙と、前記第一空隙同士の間に配置された第二空隙とを有し、
 前記複合材料を断面視したときに、前記第一空隙の前記サイズは第一範囲に含まれ、かつ、前記第二空隙の前記サイズは、前記第一範囲の下限より小さい上限を有する第二範囲に含まれる、
 複合材料を提供する。
The second aspect according to the present invention is, in the first aspect,
The plurality of voids has a plurality of first voids and second voids arranged between the first voids,
When the composite material is viewed in cross section, the size of the first voids is included in the first range, and the size of the second voids is in a second range having an upper limit smaller than the lower limit of the first range. include,
Provide composite materials.
 本発明に係る第3側面は、第1側面又は第2側面において、
 前記第一分布は、第一ピーク及び第二ピークを有し、
 前記第二ピークにおける前記サイズは、前記第一ピークにおける前記サイズより小さく、
 前記複合材料を断面視したときに、前記境界に沿って配置された前記無機粒子は、前記複数の空隙のそれぞれに対応する複数の環状の断面をなしており、
 前記複数の環状の断面のそれぞれの最大径を測定して得られる個数基準の第二分布は、第三ピーク及び第四ピークを有し、
 前記第四ピークにおける前記最大径は、前記第三ピークにおける前記最大径より小さく、
 前記複合材料は、L1/L2≧1.25、{(L12-d12)h1}/{(L22-d22)h2}≧0.8、及びR≦0.55の条件を満たし、
 前記条件において、L1は前記第三ピークに対応する前記最大径であり、L2は前記第四ピークに対応する前記最大径であり、d1は前記第一ピークに対応する前記サイズであり、d2は前記第二ピークに対応する前記サイズであり、h1は前記第一ピークにおける個数であり、h2は前記第二ピークにおける個数であり、Rは前記複合材料の断面視における前記複合材料の断面積に対する前記骨格部の断面積の比である、
 複合材料を提供する。
A third aspect according to the present invention is, in the first aspect or the second aspect,
The first distribution has a first peak and a second peak,
the size at the second peak is smaller than the size at the first peak;
When the composite material is viewed in cross section, the inorganic particles arranged along the boundary have a plurality of annular cross sections corresponding to the plurality of voids,
A number-based second distribution obtained by measuring the maximum diameter of each of the plurality of annular cross sections has a third peak and a fourth peak,
The maximum diameter at the fourth peak is smaller than the maximum diameter at the third peak,
The composite material satisfies the conditions of L1/L2≧1.25, {(L1 2 −d1 2 )h1}/{(L2 2 −d2 2 )h2}≧0.8, and R≦0.55;
In the above conditions, L1 is the maximum diameter corresponding to the third peak, L2 is the maximum diameter corresponding to the fourth peak, d1 is the size corresponding to the first peak, and d2 is is the size corresponding to the second peak, h1 is the number at the first peak, h2 is the number at the second peak, and R is the cross-sectional area of the composite material in cross-sectional view of the composite material is the ratio of the cross-sectional areas of the skeleton,
Provide composite materials.
 本発明の第4側面は、第1側面又は第2側面において、
 前記第一分布は、第一ピーク及び第二ピークを有し、
 前記第二ピークにおける前記サイズは、前記第一ピークにおける前記サイズより小さく、
 前記第一ピークにおける前記空隙の個数に対する、前記第二ピークにおける前記空隙の個数の比は、0.01~100である、
 複合材料を提供する。
A fourth aspect of the present invention is, in the first aspect or the second aspect,
The first distribution has a first peak and a second peak,
the size at the second peak is smaller than the size at the first peak;
The ratio of the number of voids in the second peak to the number of voids in the first peak is 0.01 to 100.
Provide composite materials.
 本発明の第5側面は、第1側面~第4側面のいずれか1つにおいて、
 前記複合材料を断面視したときに、前記複数の空隙のそれぞれのサイズを測定して得られる前記サイズの算術平均は、50~1500μmである、
 複合材料を提供する。
The fifth aspect of the present invention is any one of the first to fourth aspects,
When the composite material is viewed in cross section, the arithmetic mean of the size obtained by measuring the size of each of the plurality of voids is 50 to 1500 μm.
Provide composite materials.
 本発明の第6側面は、第1側面~第5側面のいずれか1つにおいて、
 前記第一分布は、第一ピーク及び第二ピークを有し、
 前記第一ピークは500~1200μmの前記サイズの範囲に存在し、かつ、前記第二ピークは50~700μmの前記サイズの範囲に存在する、
 複合材料を提供する。
The sixth aspect of the present invention, in any one of the first to fifth aspects,
The first distribution has a first peak and a second peak,
the first peak is present in the size range of 500-1200 μm and the second peak is present in the size range of 50-700 μm;
Provide composite materials.
 本開示の第7側面は、第1側面~第6側面のいずれか1つにおいて、
 前記無機粒子によって形成された伝熱路を有する、
 複合材料を提供する。
The seventh aspect of the present disclosure, in any one of the first to sixth aspects,
Having a heat transfer path formed by the inorganic particles,
Provide composite materials.
 本開示の第8側面は、第7側面において、
 前記複合材料は、互いに平行な第一主面及び第二主面を有し、
 前記伝熱路の少なくとも1つは、前記第一主面から前記第二主面まで延びている、
 複合材料を提供する。
The eighth aspect of the present disclosure is, in the seventh aspect,
The composite material has a first major surface and a second major surface parallel to each other,
at least one of the heat transfer paths extends from the first major surface to the second major surface;
Provide composite materials.
 本開示の第9側面は、第1側面~第8側面のいずれか1つにおいて、
 前記複数の空隙は、互いに相似である外形を有する、
 複合材料を提供する。
The ninth aspect of the present disclosure, in any one of the first to eighth aspects,
the plurality of voids have external shapes that are similar to each other;
Provide composite materials.
 本開示の第10側面は、第1側面~第9側面のいずれか1つにおいて、
 前記複合材料は、非発泡体である、
 複合材料を提供する。
The tenth aspect of the present disclosure includes, in any one of the first to ninth aspects,
wherein the composite material is non-foamed;
Provide composite materials.
 本開示の第11側面は、
 第一樹脂及び前記第一樹脂の周りに配置された無機粒子をそれぞれ有する複数の複合粒子と、前記複合粒子同士の隙間に充填された流動性を有する樹脂組成物とを含む混合物において、前記樹脂組成物の流動性を低下させて第二樹脂を含む固体部を形成することと、
 前記第一樹脂の収縮又は除去により、複数の空隙を形成しつつ、前記複数の空隙と前記固体部との境界に沿って前記無機粒子の少なくとも一部を配置させることと、を含み、
 前記複数の複合粒子は、第一複合粒子及び第二複合粒子を含み、
 前記第一複合粒子の前記第一樹脂のサイズは、第一範囲に含まれ、
 前記第二複合粒子の前記第一樹脂のサイズは、前記第一範囲の下限より小さい上限を有する第二範囲に含まれる、
 複合材料の製造方法を提供する。
An eleventh aspect of the present disclosure includes:
In a mixture containing a plurality of composite particles each having a first resin and inorganic particles arranged around the first resin, and a fluid resin composition filled in gaps between the composite particles, the resin reducing the fluidity of the composition to form a solid portion comprising the second resin;
Arranging at least a portion of the inorganic particles along the boundary between the plurality of voids and the solid portion while forming a plurality of voids by shrinkage or removal of the first resin;
The plurality of composite particles includes first composite particles and second composite particles,
The size of the first resin of the first composite particles is included in the first range,
The size of the first resin of the second composite particle is included in a second range having an upper limit smaller than the lower limit of the first range,
A method of manufacturing a composite material is provided.
 本開示の第12側面は、第11側面において、
 前記第二複合粒子の少なくとも一部は、前記第一複合粒子同士の間に配置されている、
 複合材料の製造方法を提供する。
A twelfth aspect of the present disclosure, in the eleventh aspect,
At least part of the second composite particles are arranged between the first composite particles,
A method of manufacturing a composite material is provided.
 本開示の第13側面は、第11側面又は第12側面において、
 前記複数の空隙は、発泡工程を経ることなく形成される、
 複合材料の製造方法を提供する。
A thirteenth aspect of the present disclosure, in the eleventh or twelfth aspect,
The plurality of voids are formed without undergoing a foaming process,
A method of manufacturing a composite material is provided.

Claims (13)

  1.  樹脂を含む骨格部と、無機粒子と、複数の空隙とを含む複合材料であって、
     前記無機粒子の少なくとも一部は、前記空隙と前記骨格部との境界に沿って配置されており、
     前記複合材料を断面視したときに、前記複数の空隙のそれぞれのサイズを測定して得られる個数基準の前記サイズの第一分布は2以上のピークを有する、
     複合材料。
    A composite material comprising a skeleton containing a resin, inorganic particles, and a plurality of voids,
    At least part of the inorganic particles are arranged along the boundary between the void and the skeleton,
    When the composite material is viewed in cross section, the first distribution of the size based on the number obtained by measuring the size of each of the plurality of voids has two or more peaks.
    Composite material.
  2.  前記複数の空隙は、複数の第一空隙と、前記第一空隙同士の間に配置された第二空隙とを有し、
     前記複合材料を断面視したときに、前記第一空隙の前記サイズは第一範囲に含まれ、かつ、前記第二空隙の前記サイズは、前記第一範囲の下限より小さい上限を有する第二範囲に含まれる、
     請求項1に記載の複合材料。
    The plurality of voids has a plurality of first voids and second voids arranged between the first voids,
    When the composite material is viewed in cross section, the size of the first voids is included in the first range, and the size of the second voids is in a second range having an upper limit smaller than the lower limit of the first range. include,
    A composite material according to claim 1 .
  3.  前記第一分布は、第一ピーク及び第二ピークを有し、
     前記第二ピークにおける前記サイズは、前記第一ピークにおける前記サイズより小さく、
     前記複合材料を断面視したときに、前記境界に沿って配置された前記無機粒子は、前記複数の空隙のそれぞれに対応する複数の環状の断面をなしており、
     前記複数の環状の断面のそれぞれの最大径を測定して得られる個数基準の第二分布は、第三ピーク及び第四ピークを有し、
     前記第四ピークにおける前記最大径は、前記第三ピークにおける前記最大径より小さく、
     前記複合材料は、L1/L2≧1.25、{(L12-d12)h1}/{(L22-d22)h2}≧0.8、及びR≦0.55の条件を満たし、
     前記条件において、L1は前記第三ピークに対応する前記最大径であり、L2は前記第四ピークに対応する前記最大径であり、d1は前記第一ピークに対応する前記サイズであり、d2は前記第二ピークに対応する前記サイズであり、h1は前記第一ピークにおける個数であり、h2は前記第二ピークにおける個数であり、Rは前記複合材料の断面視における前記複合材料の断面積に対する前記骨格部の断面積の比である、
     請求項1に記載の複合材料。
    The first distribution has a first peak and a second peak,
    the size at the second peak is smaller than the size at the first peak;
    When the composite material is viewed in cross section, the inorganic particles arranged along the boundary have a plurality of annular cross sections corresponding to the plurality of voids,
    A number-based second distribution obtained by measuring the maximum diameter of each of the plurality of annular cross sections has a third peak and a fourth peak,
    The maximum diameter at the fourth peak is smaller than the maximum diameter at the third peak,
    The composite material satisfies the conditions of L1/L2≧1.25, {(L1 2 −d1 2 )h1}/{(L2 2 −d2 2 )h2}≧0.8, and R≦0.55;
    In the above conditions, L1 is the maximum diameter corresponding to the third peak, L2 is the maximum diameter corresponding to the fourth peak, d1 is the size corresponding to the first peak, and d2 is is the size corresponding to the second peak, h1 is the number at the first peak, h2 is the number at the second peak, and R is the cross-sectional area of the composite material in cross-sectional view of the composite material is the ratio of the cross-sectional areas of the skeleton,
    A composite material according to claim 1 .
  4.  前記第一分布は、第一ピーク及び第二ピークを有し、
     前記第二ピークにおける前記サイズは、前記第一ピークにおける前記サイズより小さく、
     前記第一ピークにおける前記空隙の個数に対する、前記第二ピークにおける前記空隙の個数の比は、0.01~100である、
     請求項1に記載の複合材料。
    The first distribution has a first peak and a second peak,
    the size at the second peak is smaller than the size at the first peak;
    The ratio of the number of voids in the second peak to the number of voids in the first peak is 0.01 to 100.
    A composite material according to claim 1 .
  5.  前記複合材料を断面視したときに、前記複数の空隙のそれぞれのサイズを測定して得られる前記サイズの算術平均は、50~1500μmである、請求項1に記載の複合材料。 The composite material according to claim 1, wherein when the composite material is viewed in cross section, the arithmetic mean of the size obtained by measuring the size of each of the plurality of voids is 50 to 1500 μm.
  6.  前記第一分布は、第一ピーク及び第二ピークを有し、
     前記第一ピークは500~1200μmの前記サイズの範囲に存在し、かつ、前記第二ピークは50~700μmの前記サイズの範囲に存在する、
     請求項1に記載の複合材料。
    The first distribution has a first peak and a second peak,
    the first peak is present in the size range of 500-1200 μm and the second peak is present in the size range of 50-700 μm;
    A composite material according to claim 1 .
  7.  前記無機粒子によって形成された伝熱路を有する、
     請求項1に記載の複合材料。
    Having a heat transfer path formed by the inorganic particles,
    A composite material according to claim 1 .
  8.  前記複合材料は、互いに平行な第一主面及び第二主面を有し、
     前記伝熱路の少なくとも1つは、前記第一主面から前記第二主面まで延びている、
     請求項7に記載の複合材料。
    The composite material has a first major surface and a second major surface parallel to each other,
    at least one of the heat transfer paths extends from the first major surface to the second major surface;
    A composite material according to claim 7 .
  9.  前記複数の空隙は、互いに相似である外形を有する、
     請求項1に記載の複合材料。
    the plurality of voids have external shapes that are similar to each other;
    A composite material according to claim 1 .
  10.  前記複合材料は、非発泡体である、
     請求項1に記載の複合材料。
    wherein the composite material is non-foamed;
    A composite material according to claim 1 .
  11.  第一樹脂及び前記第一樹脂の周りに配置された無機粒子をそれぞれ有する複数の複合粒子と、前記複合粒子同士の隙間に充填された流動性を有する樹脂組成物とを含む混合物において、前記樹脂組成物の流動性を低下させて第二樹脂を含む固体部を形成することと、
     前記第一樹脂の収縮又は除去により、複数の空隙を形成しつつ、前記複数の空隙と前記固体部との境界に沿って前記無機粒子の少なくとも一部を配置させることと、を含み、
     前記複数の複合粒子は、第一複合粒子及び第二複合粒子を含み、
     前記第一複合粒子の前記第一樹脂のサイズは、第一範囲に含まれ、
     前記第二複合粒子の前記第一樹脂のサイズは、前記第一範囲の下限より小さい上限を有する第二範囲に含まれる、
     複合材料の製造方法。
    In a mixture containing a plurality of composite particles each having a first resin and inorganic particles arranged around the first resin, and a fluid resin composition filled in gaps between the composite particles, the resin reducing the fluidity of the composition to form a solid portion comprising the second resin;
    Arranging at least a portion of the inorganic particles along the boundary between the plurality of voids and the solid portion while forming a plurality of voids by shrinkage or removal of the first resin;
    The plurality of composite particles includes first composite particles and second composite particles,
    The size of the first resin of the first composite particles is included in the first range,
    The size of the first resin of the second composite particle is included in a second range having an upper limit smaller than the lower limit of the first range,
    A method of manufacturing a composite material.
  12.  前記第二複合粒子の少なくとも一部は、前記第一複合粒子同士の間に配置されている、
     請求項11に記載の複合材料の製造方法。
    At least part of the second composite particles are arranged between the first composite particles,
    A method for manufacturing a composite material according to claim 11 .
  13.  前記複数の空隙は、発泡工程を経ることなく形成される、
     請求項11に記載の複合材料の製造方法。
     
    The plurality of voids are formed without undergoing a foaming process,
    A method for manufacturing a composite material according to claim 11 .
PCT/JP2022/036043 2021-09-30 2022-09-27 Composite material and production method for composite material WO2023054414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280065705.4A CN118043390A (en) 2021-09-30 2022-09-27 Composite material and method for producing composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021162184 2021-09-30
JP2021-162184 2021-09-30
JP2022061267 2022-03-31
JP2022-061267 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023054414A1 true WO2023054414A1 (en) 2023-04-06

Family

ID=85782814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036043 WO2023054414A1 (en) 2021-09-30 2022-09-27 Composite material and production method for composite material

Country Status (1)

Country Link
WO (1) WO2023054414A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320988A (en) * 2006-05-30 2007-12-13 Futamura Chemical Co Ltd Interconnected porous structure member containing sealed material and method for producing the same
JP2013014716A (en) * 2011-07-06 2013-01-24 Nitto Denko Corp Inorganic particle-containing foam
JP2017128691A (en) * 2016-01-22 2017-07-27 東京応化工業株式会社 Porous film, roll body, and method for producing porous film
JP2018109101A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Composite material and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007320988A (en) * 2006-05-30 2007-12-13 Futamura Chemical Co Ltd Interconnected porous structure member containing sealed material and method for producing the same
JP2013014716A (en) * 2011-07-06 2013-01-24 Nitto Denko Corp Inorganic particle-containing foam
JP2017128691A (en) * 2016-01-22 2017-07-27 東京応化工業株式会社 Porous film, roll body, and method for producing porous film
JP2018109101A (en) * 2016-12-28 2018-07-12 トヨタ自動車株式会社 Composite material and method of producing the same

Similar Documents

Publication Publication Date Title
JP7271591B2 (en) Composite material and method for producing composite material
JP7271592B2 (en) Composite material
WO2023054414A1 (en) Composite material and production method for composite material
JP7271593B2 (en) Composite material
JP2004359936A (en) Porous product, its production process, and composite material using porous product
EP4317277A1 (en) Composite material and method for manufacturing composite material
CN118043390A (en) Composite material and method for producing composite material
WO2023189776A1 (en) Temperature control module
JP7184953B2 (en) Composite material
JP6171257B2 (en) Composite material and manufacturing method thereof
JP7345516B2 (en) composite material
WO2023189778A1 (en) Composite material sheet
US20230131295A1 (en) Composite material
JP6646273B2 (en) Preformed body, metal matrix composite material using the same, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551562

Country of ref document: JP