JP2010248064A - Method for manufacturing scale-like graphite powder molding and sintered molding - Google Patents
Method for manufacturing scale-like graphite powder molding and sintered molding Download PDFInfo
- Publication number
- JP2010248064A JP2010248064A JP2010072802A JP2010072802A JP2010248064A JP 2010248064 A JP2010248064 A JP 2010248064A JP 2010072802 A JP2010072802 A JP 2010072802A JP 2010072802 A JP2010072802 A JP 2010072802A JP 2010248064 A JP2010248064 A JP 2010248064A
- Authority
- JP
- Japan
- Prior art keywords
- graphite powder
- molding
- thickness
- powder
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
本発明は、鱗状黒鉛粉末の成形体の製造方法に関する。さらに詳しくは、鱗状黒鉛の焼結体を製造することが可能な前駆体を製造するに好適な鱗状黒鉛粉末成形体の製造方法に関する。 The present invention relates to a method for producing a shaped body of scaly graphite powder. More specifically, the present invention relates to a method for producing a scaly graphite powder compact suitable for producing a precursor capable of producing a scaly graphite sintered body.
半導体の放熱部品用の材料として高い熱伝導性と適度な熱線膨張係数を有するものが必要とされており、特に、装置の形状から軽量でしかも2次元的に熱を放散できる構造のものが必要とされている。そのような材料として黒鉛質炭素繊維が注目されている。一方、黒鉛と金属の複合材料は黒鉛粉末の自己潤滑性を生かして直流電動機用ブラシなどの摺動部品に広く使われており(特許文献1参照)、偏平状金属との複合体を用いて金属を表面に偏析させることで耐食性を改善することが提案されている(特許文献2参照)。 As a material for semiconductor heat dissipation parts, a material having high thermal conductivity and an appropriate coefficient of thermal expansion is required, and in particular, a device that is lightweight and has a structure that can dissipate heat two-dimensionally is required. It is said that. Graphite carbon fiber has attracted attention as such a material. On the other hand, a composite material of graphite and metal is widely used for sliding parts such as brushes for DC motors by taking advantage of the self-lubricating property of graphite powder (see Patent Document 1), and uses a composite with a flat metal. It has been proposed to improve corrosion resistance by segregating metal on the surface (see Patent Document 2).
本発明者らは、先に、鱗状黒鉛粉末と金属粉からなり、鱗状黒鉛が面方向に配向した焼結複合材料が2軸方向に高熱伝導率を有する優れたものであることを見出し提案した(特許文献3参照)。 The present inventors have previously found and proposed that a sintered composite material composed of scaly graphite powder and metal powder, in which scaly graphite is oriented in the plane direction, has excellent thermal conductivity in the biaxial direction. (See Patent Document 3).
上記、鱗状黒鉛粉末と金属粉を特定の割合で混合し成形し、さらに加圧しながら焼結することで得られる、相対密度が大きく、黒鉛粉末が配向した焼結体は熱の二次元的な拡散に好適であるが、そのような焼結体は、特にその前駆体の製造法が煩雑であり、大面積の成形体を得るのが困難であり、しかも面積の小さい焼結体であっても厚さむらが生じやすいことからその、前駆体を簡便に効率よく製造するに好適な方法を開発することが望まれている。 The above-mentioned sintered body with a large relative density and oriented graphite powder is obtained by mixing and forming the scale-like graphite powder and the metal powder at a specific ratio, and further sintering it under pressure. Although suitable for diffusion, such a sintered body is a sintered body having a small area, in particular, a method for producing the precursor is complicated, and it is difficult to obtain a large-area molded body. Therefore, it is desired to develop a method suitable for producing the precursor simply and efficiently.
本発明者らは、上記問題を解決して大面積で厚さむらの小さい成形体を製造する方法について鋭意探索した結果、特定の方法が優れていることを見出し本発明を完成した。 As a result of diligent search for a method for producing a molded article having a large area and a small thickness unevenness by solving the above problems, the present inventors have found that a specific method is excellent and completed the present invention.
本発明は、鱗状黒鉛粉末を分散してなる流動性組成物をロール成形あるいはプレス成形することを特徴とする鱗状黒鉛粉末の板状成形体の製造方法である。 The present invention is a method for producing a plate-like shaped body of scaly graphite powder, which comprises roll-forming or press-molding a fluid composition obtained by dispersing scaly graphite powder.
また、本発明は、上記方法により製造可能な焼結体であり、鱗状黒鉛粉末を加熱焼結して得た1平方センチメートル当り9等分に分割した線の交点で測定した厚さの最大値と最小値の差の厚さの平均値に対する割合が10%以下である成形体である。 In addition, the present invention is a sintered body that can be produced by the above-described method, and has a maximum thickness measured at the intersection of lines divided into nine equal parts per square centimeter obtained by heating and sintering scaly graphite powder. It is a molded article in which the ratio of the difference in the minimum value to the average value of the thickness is 10% or less.
本発明の方法を用いることにより均一で熱伝導性に優れた焼結体を簡便に製造することが可能となり工業的に極めて有用である。 By using the method of the present invention, it is possible to easily produce a sintered body that is uniform and excellent in thermal conductivity, which is extremely useful industrially.
本発明において、鱗状黒鉛粉末とは、高い配向性を有すものであればよく、好ましくは10以上のアスペクト比、特に30〜100の平均アスペクト比を有し、平均粒子径として50〜1000μmのものが好ましく利用される。焼結体の熱伝導率を高くすると言う観点からは、高い結晶性を有するものが好ましく、学振法によって決定される鱗状黒鉛粉末のd002値は0.3345〜0.3360nmのものが好ましく利用される。 In the present invention, the scaly graphite powder has only to have high orientation, preferably has an aspect ratio of 10 or more, particularly an average aspect ratio of 30 to 100, and an average particle diameter of 50 to 1000 μm. Those are preferably used. From the standpoint of increasing the thermal conductivity of the sintered body, preferably it has a high crystallinity, d 002 value of the scaly graphite powder determined by Gakushin method is preferably from 0.3345~0.3360nm Used.
本発明において、流動性組成物とは、ロール成形あるいはプレス成形に際して、力を加えない時には流動せず、成形時には十分な流動性を有する組成物である。成形時に適度な流動性を有するように鱗状黒鉛粉末に分散性の良好な有機溶剤などの液状物の他に、成形物の形状を保持するための高分子化合物、オリゴマーなどの成分、さらに必要に応じ金属粉末などを加えた混合したものである。ロール成形あるいはプレス成形に際して加熱する場合には必ずしも液状物は必要としないが、成形物は均一に鱗状黒鉛粉末とか金属粉を分散していることが必要であり、十分に分散混合するため、有機溶剤を加えて分散した後過剰な有機溶剤を除去して流動性組成物とすることもできる。ここで液状物としては、鱗状黒鉛粉末、金属粉末に対して不活性でしかも馴染の良いものであれば特に制限は無く、混合することで分散性、流動性が良好となる。具体的にはアルカン類、芳香族炭化水素類、アルコール類、グリコール類、エーテル類、エステル類、ケトン類などが好ましく利用できる。また、高分子化合物、オリゴマーは、添加することで流動性組成物の流動性を適度なものとすることが可能であり、大きな温度依存性が生じることでロール成形あるいはプレス成形時の自由度を増すとともに、成形物の強度を所望のものとできる。熱可塑性のものは特に好ましく利用できるが、具体的には、ポリエチレングリコール、パラフィン、ポリスチレン、ポリ−α−メチルスチレン、ポリメタクリル酸メチル、ポリメタクリル酸ブチルなど合成高分子の他にセルロース、膠、エチルセルロース、ニトロセルロースなど天然高分子あるいはその修飾体なども利用可能である。 In the present invention, the fluid composition is a composition that does not flow when a force is not applied during roll molding or press molding and has sufficient fluidity during molding. In addition to liquid materials such as organic solvents with good dispersibility in scaly graphite powder so as to have appropriate fluidity during molding, components such as polymer compounds and oligomers for maintaining the shape of the molded product, and further necessary Depending on the situation, it is a mixture of metal powder added. When heating during roll forming or press forming, a liquid material is not necessarily required. However, the formed material needs to uniformly disperse scaly graphite powder or metal powder. After adding and dispersing the solvent, the excess organic solvent can be removed to obtain a fluid composition. Here, the liquid material is not particularly limited as long as it is inert to the scaly graphite powder and the metal powder and is well-familiar, and the dispersibility and fluidity are improved by mixing. Specifically, alkanes, aromatic hydrocarbons, alcohols, glycols, ethers, esters, ketones and the like can be preferably used. In addition, polymer compounds and oligomers can be added to make the fluidity of the fluid composition moderate, and the large temperature dependence gives freedom during roll molding or press molding. In addition, the strength of the molded product can be made desired. Thermoplastic materials can be used particularly preferably. Specifically, in addition to synthetic polymers such as polyethylene glycol, paraffin, polystyrene, poly-α-methylstyrene, polymethyl methacrylate, polybutyl methacrylate, cellulose, glue, Natural polymers such as ethyl cellulose and nitrocellulose or modified products thereof can also be used.
ここで成形に際して併用しても良い金属粉としては鱗状粉末であることが好ましく、平均粒径としてはアルミニウムあるいはその合金などのように比較的軽い金属で、上記鱗状黒鉛粉末の30〜90%程度、より好ましくは30〜50%程度、銅またはその合金など比較的重い金属で1〜50%である。充填量としては高熱伝導性シートを製造することを目的とする場合には金属粉と上記鱗状黒鉛粉末の合計を100として80〜20体積比率とするのが一般的である。本発明の方法は、このような組成のものを成形するに極めて好適である。また、組成物としては、さらに炭素繊維あるいはカーボンナノファイバーを含んでも良い。 Here, the metal powder that may be used in combination is preferably a scaly powder, and the average particle diameter is a relatively light metal such as aluminum or an alloy thereof, and is about 30 to 90% of the scaly graphite powder. More preferably, it is about 30 to 50%, and relatively heavy metal such as copper or its alloy is 1 to 50%. When the purpose is to produce a high thermal conductivity sheet, the filling amount is generally 80 to 20 volume ratio, where the total of the metal powder and the scaly graphite powder is 100. The method of the present invention is very suitable for molding a composition having such a composition. Further, the composition may further contain carbon fibers or carbon nanofibers.
高分子化合物とかオリゴマーを用いると流動性を制御することが容易になるが成形物を加熱加圧焼結する際の条件を適当とするなどの工夫が必要になる、即ち、予め、比較的低温で高分子化合物とかオリゴマーを加熱分解除去し、次いで焼結温度、圧力まで高めるなどが必要な場合がある。これらの使用量としては、鱗状黒鉛粉末に対して10質量%以下、特に、5%質量以下とするのが好ましい。 When polymer compounds or oligomers are used, it is easy to control the fluidity, but it is necessary to devise appropriate conditions such as heating and pressure sintering of the molded product. In some cases, it is necessary to thermally decompose and remove polymer compounds and oligomers, and then to increase the sintering temperature and pressure. The amount of these used is preferably 10% by mass or less, particularly preferably 5% by mass or less, with respect to the scaly graphite powder.
本発明において、ロール成形とは、少なくとも1本以上、好ましくは2本以上のロールによって、流動性混合物に一定方向に移動させながら圧力を加えることが可能であるような装置で成形することを意味し、加圧によって、少なくとも90%以下に厚さを小さくすることが可能であるものを用いるのが一般的である。厚さの小さくする程度としては50%以下、段階的に薄くする場合には10%以下にすることもできる。最終的な厚さとしては用途によって異なり特に制限はないが、数mm〜数μmとするのが一般的である。具体的には、カレンダー成形などの混合と成形ができるものを利用すると混合と成形が一度に可能であるが、ニーダーなどで混合した後、ロールに流動性組成物を移し、必要に応じ加熱してロール間で組成物を配向させながらシート状に成形することもできる。また、押出混練機から口金を介して押し出しながら、連続的にロール成形することも可能である。さらにはロール成形の前段階において、スクリーンプリント法により薄膜状とした流動性混合物を用いることも可能である。この際、金属箔、プラスチックシート、紙などを少なくとも片方の面に密着させることで比較的流動性の高い組成物を小さい力で鱗状黒鉛粉末がより配向する条件下にロール間で加圧して成形することも可能である。この場合には、液またはガス透過性の材質を用いると成形後の余分の溶液の除去が効率的に実施でき好ましい。またこの場合、シートの材質によっては、ロール離れが改良されることもある。 In the present invention, roll forming means forming with a device capable of applying pressure while moving the fluid mixture in a certain direction by at least one roll, preferably two or more rolls. In general, a material whose thickness can be reduced to at least 90% or less by pressurization is used. The thickness can be reduced to 50% or less as the degree of thickness reduction, or 10% or less when the thickness is reduced stepwise. Although the final thickness differs depending on the application and is not particularly limited, it is generally several mm to several μm. Specifically, using a mixture that can be mixed and molded, such as calendering, can be mixed and molded at once, but after mixing with a kneader, etc., the fluid composition is transferred to a roll and heated as necessary. Thus, the composition can be formed into a sheet shape while orienting the composition between rolls. It is also possible to continuously roll-mold while extruding from an extrusion kneader through a die. Furthermore, it is also possible to use a fluid mixture that has been made into a thin film by a screen printing method before the roll forming. At this time, a metal foil, a plastic sheet, paper, etc. are adhered to at least one surface to form a composition having a relatively high fluidity by pressing between rolls under a condition in which the scaly graphite powder is more oriented with a small force. It is also possible to do. In this case, it is preferable to use a liquid or gas permeable material because the excess solution after molding can be efficiently removed. In this case, depending on the material of the sheet, the roll separation may be improved.
本発明において、プレス成形とは、プレス装置のラムの上下にそれぞれ成形板を配し、板中央部に流動性混合物を配して、プレス装置により加圧しながら成形することを意味し、加圧によって少なくとも90%以下の厚さとすることが可能なものを用いる。最終的な厚さは用途によって異なり、特に制限は無いが、数mmから数μmとするのが一般的である。ロール成形と異なり、成形はバッチ処理により行なう。成形時に流動性混合物が延び広がり、その際に鱗状黒鉛粉末が板状成形体に平行に配向する。前段階におけるスクリーンプリント、流動性混合物に高い流動性・離型性を与えるための金属箔、プラスチックシート、紙など、温度管理についてはロール成形と同様な構成を利用できる。 In the present invention, press molding means that molding plates are arranged above and below the ram of the pressing device, a fluid mixture is arranged at the center of the plate, and molding is performed while pressing with the pressing device. Depending on the thickness, a thickness that can be at least 90% or less is used. The final thickness varies depending on the application and is not particularly limited, but is generally several mm to several μm. Unlike roll forming, forming is performed by batch processing. At the time of molding, the fluid mixture extends and spreads, and at that time, the scaly graphite powder is oriented in parallel to the plate-shaped compact. The same configuration as roll forming can be used for temperature control such as screen printing in the previous stage, metal foil, plastic sheet, paper, etc. for imparting high fluidity and mold release properties to the fluid mixture.
本発明の製造方法で製造された鱗状黒鉛粉末組成物の成形物は、そのままあるいは適当な大きさに裁断された後、必要に応じ、シートを重ね合わせて所望の厚さとし、あるいは、異なる組成のシートを組合せて所望の配置、厚さとした後に、シート面に垂直に加圧しながら加熱して焼結される。焼結温度としては、併用する金属によって異なるが金属粉として銅を用いた場合で800〜1000℃、アルミニウムの場合で500〜650℃である。また、圧力としては20〜300MPaとするのが一般的である。シートが高分子化合物とかオリゴマーを有する場合には加圧下あるいは加圧することなく、200〜350℃で、雰囲気として減圧下に高分子化合物などを分解して飛散させた後に、所望の圧力まで加圧するなどの工夫をすることで空隙の極めて少ない焼結体、より好ましくは空隙のない焼結体とすることが可能である。 The scale-shaped graphite powder composition molded product produced by the production method of the present invention is cut as it is or after being cut into an appropriate size, and if necessary, the sheets are stacked to obtain a desired thickness, or a different composition. The sheets are combined to obtain a desired arrangement and thickness, and then heated and sintered while being pressed perpendicularly to the sheet surface. As sintering temperature, although it changes with metals to use together, it is 800-1000 degreeC in the case of using copper as metal powder, and is 500-650 degreeC in the case of aluminum. The pressure is generally 20 to 300 MPa. When the sheet has a polymer compound or an oligomer, the polymer compound is decomposed and scattered under reduced pressure as an atmosphere at 200 to 350 ° C. under pressure or without pressurization, and then pressurized to a desired pressure. Thus, it is possible to obtain a sintered body having very few voids, more preferably a sintered body having no voids.
こうして製造された焼結体は、理論上の密度(各成分の質量の総和を、各成分質量とその密度よりより算出した各成分の体積の総和で除した値)に対して95%以上、特に96%以上の密度(以下相対密度と言う)を有するものとなる。また、厚さのバラツキは非常に小さく、1平方センチあたり9等分に分割した線の交点で測定した厚さの最大値と最小値の差の厚さの平均値に対する割合(以下厚さ誤差)が10%以下、通常8%以下と極めて均一な焼結体となる。 The sintered body thus produced has a theoretical density of 95% or more with respect to the theoretical density (the value obtained by dividing the sum of the mass of each component by the sum of the volume of each component calculated from the mass of each component and its density). In particular, it has a density of 96% or more (hereinafter referred to as relative density). The thickness variation is very small, and the ratio of the difference between the maximum and minimum thicknesses measured at the intersection of the lines divided into 9 equal parts per square centimeter to the average thickness (hereinafter referred to as thickness error) ) Is 10% or less, and usually 8% or less, resulting in a very uniform sintered body.
[実施例1]
平均粒子サイズ5μm、平均厚さ200nm、平均アスペクト比が25の銅の鱗状粉末47.9質量部、平均粒子サイズ300μm、平均厚さ10nm、平均アスペクト比が30の鱗状黒鉛粉末28.5質量部、キシレン23.1質量部、ポリスチレンペレット0.5質量部を入江商会株式会社製ベンチニーダPNV-1Hに投入し、室温で20rpmにて60分間混練した。この混練された流動性組成物は、液状物として約60体積%のキシレンを含み、乾燥、焼結後は30体積%の銅と70体積%の黒鉛を有することになる。この組成物を日本電産シンポ株式会社製2本ロールに仕掛け連続的に厚さ3mmのシートを取出した。取出したシートは室温で4時間乾燥した後、カッターで50mm×50mmに切出し、更に20時間乾燥した後、50mm角の貫通孔を有する黒鉛製ダイスに1枚入れ、50MPaの圧力を加え、雰囲気の圧力を10Pa以下に減圧してパルス幅0.5ms、周波数375Hz、電流密度1000A/cm2の電流を流して焼結を実施した。その際の最高到達温度は900℃でありその温度に20分間保持した。得られた焼結体の相対密度は96.70%、厚さ1.25mm、厚さ誤差±6%であった。
[Example 1]
47.9 parts by mass of copper scaly powder having an average particle size of 5 μm, an average thickness of 200 nm, and an average aspect ratio of 25, 28.5 parts by mass of a scaly graphite powder having an average particle size of 300 μm, an average thickness of 10 nm, and an average aspect ratio of 30 Then, 23.1 parts by mass of xylene and 0.5 parts by mass of polystyrene pellets were charged into a bench kneader PNV-1H manufactured by Irie Shokai Co., Ltd. and kneaded at room temperature at 20 rpm for 60 minutes. This kneaded fluid composition contains about 60% by volume of xylene as a liquid, and after drying and sintering, has 30% by volume of copper and 70% by volume of graphite. This composition was placed on a two roll made by Nidec Simpo Co., Ltd., and a sheet having a thickness of 3 mm was continuously taken out. The sheet taken out was dried at room temperature for 4 hours, then cut to 50 mm × 50 mm with a cutter, further dried for 20 hours, and then put into a graphite die having a 50 mm square through hole, and a pressure of 50 MPa was applied. The pressure was reduced to 10 Pa or less, and sintering was performed by applying a current having a pulse width of 0.5 ms, a frequency of 375 Hz, and a current density of 1000 A / cm 2 . The maximum temperature reached at that time was 900 ° C., and the temperature was maintained for 20 minutes. The relative density of the obtained sintered body was 96.70%, the thickness was 1.25 mm, and the thickness error was ± 6%.
[実施例2]
実施例1で製造した厚さ3mmのシートを4時間乾燥した後、カッターで20mm×20mmに切出し、更に20時間乾燥したものを20mm角の貫通孔を有する黒鉛製ダイスに8枚入れ、50MPaの圧力を加え、雰囲気を圧力を10Pa以下に減圧してパルス幅0.5ms、周波数375Hz、電流密度1000A/cm2の電流を流して焼結を実施した。その際の最高到達温度は900℃でありその温度に20分間保持した。得られた焼結体の相対密度、熱伝導率の面に平行方向(XY)、面に垂直方向(Z)、熱膨張係数の面に平行方向(XY)、面に垂直方向(Z)、黒鉛配向性は表1に示すとおりである。また、焼結体の断面の微細構造をSEMで観察した結果を図1に示す。
[Example 2]
The sheet of 3 mm thickness produced in Example 1 was dried for 4 hours, then cut into 20 mm × 20 mm with a cutter, and further dried for 20 hours into 8 graphite dies having 20 mm square through holes. Sintering was performed by applying a pressure, reducing the pressure to 10 Pa or less, and passing a current having a pulse width of 0.5 ms, a frequency of 375 Hz, and a current density of 1000 A / cm 2 . The maximum temperature reached at that time was 900 ° C., and the temperature was maintained for 20 minutes. Relative density of the obtained sintered body, parallel direction to the surface of thermal conductivity (XY), vertical direction to the surface (Z), parallel direction to the surface of the thermal expansion coefficient (XY), vertical direction to the surface (Z), The graphite orientation is as shown in Table 1. Moreover, the result of having observed the microstructure of the cross section of the sintered compact by SEM is shown in FIG.
[実施例3]
平均粒子サイズ30μm、平均厚さ1μm、平均アスペクト比が30のアルミニウムの鱗状粉末38.9質量部、平均粒子サイズ300μm、平均厚さ10nm、平均アスペクト比が30の鱗状黒鉛粉末32.7質量部、ミネラルスピリット11.0質量部、キシレン16.8質量部、ポリスチレンペレット0.7質量部を用いた他は実施例1と同様にして流動性組成物を製造した。この組成物はキシレンを乾燥した後に3体積%のポリスチレンを有し、加熱焼結後は50体積%のアルミニウムと50体積%の黒鉛を有する焼結体になる。流動性組成物を実施例1と同様のロール成形機で連続的に厚さ3mmのシートに成形し室温で4時間乾燥後に、カッターで50mm×50mmに切出し、更に20時間乾燥した後、50mm角の貫通孔を有する黒鉛製ダイスに1枚入れ、50MPaの圧力を加え、雰囲気の圧力を10Pa以下に減圧してパルス幅0.5ms、周波数375Hz、電流密度1000A/cm2の電流を流して焼結を実施した。その際の最高到達温度は630℃でありその温度に5分間保持した。得られた焼結体の相対密度は98.20%、厚さ1.26mm、厚さ誤差±7%であった。
[Example 3]
38.9 parts by weight of an aluminum scale powder having an average particle size of 30 μm, an average thickness of 1 μm, and an average aspect ratio of 30; 32.7 parts by weight of a scale-like graphite powder having an average particle size of 300 μm, an average thickness of 10 nm, and an average aspect ratio of 30 A fluid composition was produced in the same manner as in Example 1 except that 11.0 parts by mass of mineral spirit, 16.8 parts by mass of xylene, and 0.7 parts by mass of polystyrene pellets were used. This composition has 3% by volume of polystyrene after drying xylene, and becomes a sintered body having 50% by volume of aluminum and 50% by volume of graphite after heat sintering. The flowable composition was continuously formed into a sheet having a thickness of 3 mm using the same roll forming machine as in Example 1, dried at room temperature for 4 hours, cut into 50 mm × 50 mm with a cutter, and further dried for 20 hours, and then 50 mm square. One piece of graphite die having a through-hole is applied, pressure of 50 MPa is applied, the pressure of the atmosphere is reduced to 10 Pa or less, and a pulse width of 0.5 ms, a frequency of 375 Hz, and a current density of 1000 A / cm 2 are flown and fired. Yui was carried out. The maximum temperature reached at that time was 630 ° C., and the temperature was maintained for 5 minutes. The relative density of the obtained sintered body was 98.20%, the thickness was 1.26 mm, and the thickness error was ± 7%.
[実施例4]
実施例3で得た厚さ3mmのシートを室温で4時間乾燥した後、カッターで20mm×20mmに切出し、更に室温で20時間乾燥したものを20mm角の貫通孔を有する黒鉛製ダイスに8枚重ねて入れ、50MPaの圧力を加え、雰囲気の圧力を10Pa以下に減圧してパルス幅0.5ms、周波数375Hz、電流密度1000A/cm2の電流を流して焼結を実施した。その際の最高到達温度は630℃でありその温度に5分間保持した。得られた焼結体の相対密度、熱伝導率、熱膨張係数、黒鉛配向性は表1に示すとおりである。断面の微細構造をSEMで観察した結果を図2に示す。
[Example 4]
The sheet of 3 mm thickness obtained in Example 3 was dried at room temperature for 4 hours, then cut into 20 mm × 20 mm with a cutter, and further dried at room temperature for 20 hours on 8 sheets of graphite dies having 20 mm square through holes. Sintering was performed by applying a pressure of 50 MPa, reducing the pressure of the atmosphere to 10 Pa or less, and applying a current with a pulse width of 0.5 ms, a frequency of 375 Hz, and a current density of 1000 A / cm 2 . The maximum temperature reached at that time was 630 ° C., and the temperature was maintained for 5 minutes. The relative density, thermal conductivity, thermal expansion coefficient, and graphite orientation of the obtained sintered body are as shown in Table 1. The result of observing the fine structure of the cross section with SEM is shown in FIG.
[実施例5]
実施例3で得た厚さ3mmのシートを室温で4時間乾燥した後、カッターで20mm×18mmに切出し、更に室温で20時間乾燥したものと、鱗状黒鉛粉末を用いることなく同様の方法で作成し室温で乾燥し、カッターで20mm×2mmに切出したものを20mm角の貫通孔を有する黒鉛製ダイスに1枚ずつ入れ20mm角とし、50MPaの圧力を加え、雰囲気の圧力を10Pa以下に減圧してパルス幅0.5ms、周波数375Hz、電流密度1000A/cm2の電流を流して焼結を実施した。その際の最高到達温度は630℃でありその温度に5分間保持した。得られた焼結体のアルミニウム−黒鉛複合材料の界面部分の断面をSEMで観察した結果を図3に示す。このような構造はダイス内部に異組成の成形体を自由に配置できる本発明の成形法により初めて可能となり、粉末の混合物のままでは自由な配置を取ることが困難である。
[Example 5]
The sheet of 3 mm thickness obtained in Example 3 was dried at room temperature for 4 hours, then cut into 20 mm × 18 mm with a cutter and further dried at room temperature for 20 hours, and prepared in the same manner without using scaly graphite powder. Dry at room temperature and cut into 20mm x 2mm with a cutter into graphite dies with 20mm square through holes one by one to make 20mm square, apply 50MPa pressure, and reduce the atmospheric pressure to 10Pa or less. Sintering was performed by applying a current having a pulse width of 0.5 ms, a frequency of 375 Hz, and a current density of 1000 A / cm 2 . The maximum temperature reached at that time was 630 ° C., and the temperature was maintained for 5 minutes. The result of having observed the cross section of the interface part of the aluminum-graphite composite material of the obtained sintered compact by SEM is shown in FIG. Such a structure becomes possible for the first time by the molding method of the present invention in which molded articles of different compositions can be freely arranged inside the die, and it is difficult to obtain a free arrangement with the powder mixture as it is.
[比較例1]
実施例1で用いた銅粉末48.8質量部、および黒鉛粉末28.1質量部とエタノール23.1質量部をSUS製ポットに入れ、銅粉末と黒鉛粉末を合わせた質量の3倍の質量のφ10mmのSUSボールと共に遊星ボールミル(フリッチュ株式会社製P-4)にて150rpmの公転数、公転と逆方向に2.5倍の回転数の自転数にて10分間混合をした。得られた混合物を1日室温で乾燥した後、温風で70℃に加熱して1時間乾燥して粉末状の混合物を得た。得られた粉末を50mm角の貫通孔を有する黒鉛製ダイスに焼結後の厚さが1.3mmになるように計量(相対密度が95%として計算した質量)して充填した。50MPaの圧力を加え、雰囲気の圧力を10Pa以下に減圧してパルス幅0.5ms、周波数375Hz、電流密度1000A/cm2の電流を流して焼結を実施した。その際の最高到達温度は900℃でありその温度に20分間保持した。得られた焼結体の相対密度は95.10%、厚さ1.28mm、厚さ誤差±11%であった。
[Comparative Example 1]
48.8 parts by mass of copper powder used in Example 1, 28.1 parts by mass of graphite powder, and 23.1 parts by mass of ethanol were put in a SUS pot, and the mass was three times the total mass of copper powder and graphite powder. A SUS 10 mm SUS ball was mixed with a planetary ball mill (P-4, manufactured by Fritsch Co., Ltd.) for 10 minutes at a revolution number of 150 rpm and a rotation speed of 2.5 times the number of revolutions in the opposite direction to the revolution. The obtained mixture was dried at room temperature for 1 day, heated to 70 ° C. with warm air and dried for 1 hour to obtain a powdery mixture. The obtained powder was filled in a graphite die having a 50 mm square through hole so as to have a thickness after sintering of 1.3 mm (mass calculated with a relative density of 95%). Sintering was performed by applying a pressure of 50 MPa, reducing the pressure of the atmosphere to 10 Pa or less, and passing a current having a pulse width of 0.5 ms, a frequency of 375 Hz, and a current density of 1000 A / cm 2 . The maximum temperature reached at that time was 900 ° C., and the temperature was maintained for 20 minutes. The relative density of the obtained sintered body was 95.10%, the thickness was 1.28 mm, and the thickness error was ± 11%.
[比較例2]
比較例1で混合、乾燥さらに温風で乾燥して得た粉末を20mm角の貫通孔を有する黒鉛製のダイスに4.5g充填し20MPaで圧粉した。この工程を繰返して焼結後の厚さが20mmとなるように計量した枚数(充填率が95%として計算した質量)を充填した。50MPaの圧力を加え、雰囲気の圧力を10Pa以下に減圧してパルス幅0.5ms、周波数375Hz、電流密度1000A/cm2の電流を流して焼結を実施した。その際の最高到達温度は900℃でありその温度に20分間保持した。得られた焼結体の相対密度、熱伝導率、熱膨張係数、黒鉛配向性は表1に示すとおりである。断面をSEMで観察した結果を図4に示す。
[Comparative Example 2]
The powder obtained by mixing, drying and drying with warm air in Comparative Example 1 was filled in 4.5 g in a graphite die having 20 mm square through holes, and compacted at 20 MPa. This process was repeated, and the number of sheets weighed so that the thickness after sintering was 20 mm (mass calculated with a filling rate of 95%) was filled. Sintering was performed by applying a pressure of 50 MPa, reducing the pressure of the atmosphere to 10 Pa or less, and passing a current having a pulse width of 0.5 ms, a frequency of 375 Hz, and a current density of 1000 A / cm 2 . The maximum temperature reached at that time was 900 ° C., and the temperature was maintained for 20 minutes. The relative density, thermal conductivity, thermal expansion coefficient, and graphite orientation of the obtained sintered body are as shown in Table 1. The result of observing the cross section with SEM is shown in FIG.
[実施例6]
実施例1と同様の方法で作製した流動物を、WEBER-HYDRULIC社製油圧プレス装置に厚さ10mm、300mm角の鉄板を取り付け、鉄板上に約180g設置した。鉄板上の流動物の更に上に同寸の鉄板を載せ、厚さ3mmまで圧下し、厚さ3mmのシートを取り出した。実施例2と同様の乾燥、切断、焼結工程により焼結体を得た。得られた焼結体の相対密度、熱伝導率、熱膨張率、黒鉛配向性は表1に示すとおりである。
[Example 6]
A fluid produced by the same method as in Example 1 was attached to a 10 mm thick, 300 mm square iron plate on a hydraulic press device manufactured by WEBER-HYDRULIC, and about 180 g was installed on the iron plate. An iron plate of the same size was placed on the fluid on the iron plate, the sheet was reduced to a thickness of 3 mm, and a sheet having a thickness of 3 mm was taken out. A sintered body was obtained by the same drying, cutting, and sintering steps as in Example 2. Table 1 shows the relative density, thermal conductivity, thermal expansion coefficient, and graphite orientation of the obtained sintered body.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010072802A JP5640239B2 (en) | 2009-03-26 | 2010-03-26 | Scale-like graphite-containing plate precursor and sintered compact |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009076268 | 2009-03-26 | ||
JP2009076268 | 2009-03-26 | ||
JP2010072802A JP5640239B2 (en) | 2009-03-26 | 2010-03-26 | Scale-like graphite-containing plate precursor and sintered compact |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010248064A true JP2010248064A (en) | 2010-11-04 |
JP5640239B2 JP5640239B2 (en) | 2014-12-17 |
Family
ID=43310878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010072802A Expired - Fee Related JP5640239B2 (en) | 2009-03-26 | 2010-03-26 | Scale-like graphite-containing plate precursor and sintered compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5640239B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017534552A (en) * | 2014-09-29 | 2017-11-24 | ベイカー ヒューズ インコーポレイテッド | Carbon composite and method for producing the same |
WO2022210298A1 (en) * | 2021-03-31 | 2022-10-06 | Ube株式会社 | Graphite-copper composite material, heat sink member using same, and method for manufacturing graphite-copper composite material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH093565A (en) * | 1995-06-23 | 1997-01-07 | Akebono Brake Ind Co Ltd | Copper-base sintered friction material |
JPH0952759A (en) * | 1995-08-15 | 1997-02-25 | Nkk Corp | Refractory superior in corrosion resistance to melted metal |
JPH09222143A (en) * | 1996-02-16 | 1997-08-26 | Toshiba Tungaloy Co Ltd | Manufacture of flake graphite added sintered friction material |
WO2009051094A1 (en) * | 2007-10-18 | 2009-04-23 | Shimane Prefectural Government | Metal-graphite composite material having high thermal conductivity and method for producing the same |
-
2010
- 2010-03-26 JP JP2010072802A patent/JP5640239B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH093565A (en) * | 1995-06-23 | 1997-01-07 | Akebono Brake Ind Co Ltd | Copper-base sintered friction material |
JPH0952759A (en) * | 1995-08-15 | 1997-02-25 | Nkk Corp | Refractory superior in corrosion resistance to melted metal |
JPH09222143A (en) * | 1996-02-16 | 1997-08-26 | Toshiba Tungaloy Co Ltd | Manufacture of flake graphite added sintered friction material |
WO2009051094A1 (en) * | 2007-10-18 | 2009-04-23 | Shimane Prefectural Government | Metal-graphite composite material having high thermal conductivity and method for producing the same |
JP4441768B2 (en) * | 2007-10-18 | 2010-03-31 | 島根県 | Metal-graphite composite material having high thermal conductivity and method for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017534552A (en) * | 2014-09-29 | 2017-11-24 | ベイカー ヒューズ インコーポレイテッド | Carbon composite and method for producing the same |
WO2022210298A1 (en) * | 2021-03-31 | 2022-10-06 | Ube株式会社 | Graphite-copper composite material, heat sink member using same, and method for manufacturing graphite-copper composite material |
Also Published As
Publication number | Publication date |
---|---|
JP5640239B2 (en) | 2014-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices | |
US10384393B2 (en) | Polymeric ceramic precursors, apparatuses, systems, and methods | |
TWI613070B (en) | High conductivity graphane-metal composite and methods of manufacture | |
US9604848B2 (en) | Solid carbon products comprising carbon nanotubes and methods of forming same | |
CN101473054B (en) | Process for producing shaped refractory metal bodies | |
CN101321887A (en) | Metal-based composite material containing both micro-sized carbon fiber and nano-sized carbon fiber | |
CN107257818B (en) | Heat conductive composite material | |
US20090151847A1 (en) | Process for producing laminated exfoliated graphite composite-metal compositions for fuel cell bipolar plate applications | |
CN103801697A (en) | Method for forming mould-free gel with metal sizing agents through 3D printing | |
US10815124B2 (en) | Solid carbon products comprising carbon nanotubes and methods of forming same | |
JP2017520403A (en) | Blank manufacturing apparatus, blank manufacturing method, and blank | |
JP2005524766A (en) | Method for producing porous titanium material article | |
JP5640239B2 (en) | Scale-like graphite-containing plate precursor and sintered compact | |
JP6876569B2 (en) | Metal-carbon particle composite | |
US20190001652A1 (en) | Method for producing metal-carbon fiber composite material | |
US20200340757A1 (en) | Expanded graphite-enhanced vapor-based heat transfer device and production process | |
JP2022107536A (en) | Plastic processing material mainly comprising two-dimensional sheet-like material, preparation method therefor and application therefor | |
JP6766717B2 (en) | Heat dissipation sheet | |
JP6821409B2 (en) | Method for manufacturing metal-carbon particle composite material | |
CN112512726B (en) | Articles and methods | |
JP7273378B2 (en) | Method for producing particle-coated foil and method for producing metal-particle composite | |
Muhsan et al. | Development of nanocomposites heat sink (MWCNTs/Cu) using powder injection moulding for electronic applications | |
JP6875211B2 (en) | Method for manufacturing metal-carbon particle composite material | |
Li et al. | Vat Photopolymerization versus Conventional Colloidal Processing Methods in Structural Ceramics: Progress, Challenges, and Future Perspectives | |
JP7367088B2 (en) | Thermal conductive sheet and method for manufacturing the thermally conductive sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140528 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140909 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5640239 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |