WO2023189424A1 - 化合物、硬化性樹脂組成物およびその硬化物ならびに化合物の製造方法 - Google Patents

化合物、硬化性樹脂組成物およびその硬化物ならびに化合物の製造方法 Download PDF

Info

Publication number
WO2023189424A1
WO2023189424A1 PCT/JP2023/009322 JP2023009322W WO2023189424A1 WO 2023189424 A1 WO2023189424 A1 WO 2023189424A1 JP 2023009322 W JP2023009322 W JP 2023009322W WO 2023189424 A1 WO2023189424 A1 WO 2023189424A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
integer
resin composition
solvent
Prior art date
Application number
PCT/JP2023/009322
Other languages
English (en)
French (fr)
Inventor
隆行 遠島
昌典 橋本
政隆 中西
篤彦 長谷川
嵩 今井
弥生 多田
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2023534115A priority Critical patent/JP7353538B1/ja
Publication of WO2023189424A1 publication Critical patent/WO2023189424A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • C07C1/30Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms by splitting-off the elements of hydrogen halide from a single molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/50Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes

Definitions

  • the present invention relates to a compound, a curable resin composition, a cured product thereof, and a method for producing the compound, and relates to a semiconductor encapsulant, a printed wiring board, an electric/electronic component such as a build-up laminate, and a carbon fiber reinforced plastic. , lightweight, high-strength materials such as glass fiber reinforced plastics, and suitably used for 3D printing applications.
  • CPUs central processing units
  • PKG semiconductor packages
  • PCB printed circuit board
  • Patent Document 1 describes a thermosetting resin composition containing (A) an imide compound having a maleimide group and (B) a phenol aralkyl resin having an aliphatic unsaturated bond in one molecule as essential components.
  • Patent Document 2 describes an allyl ether-modified biphenylaralkyl novolak resin.
  • Patent Document 3 describes a compound having a styrene structure.
  • the present invention was made in view of these circumstances, and aims to provide a compound having excellent solvent stability and low dielectric properties, a curable resin composition, a cured product thereof, and a method for producing the compound. shall be.
  • the present invention relates to the following [1] to [13].
  • [1] A compound represented by the following formula (1), in which the compound in which n in formula (1) is 1 accounts for less than 50% in terms of GPC area percentage in the total amount of the compounds.
  • R's each independently represent a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • p and r are integers of 0 to 4, and q is an integer of 0 to 3.
  • n is an integer, where n is the number of repetitions, and the average value n ave satisfies 1 ⁇ n ave ⁇ 20.
  • the total HP-LC peak area ( ⁇ ) of the compounds represented by the following formulas (2) to (4) is calculated as the HP-LC peak area ( ⁇ ) of the compound where n in the formula (1) is 1.
  • each of the plurality of R's independently represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • the plurality of s's are each independently an integer of 0 to 4. .
  • each of the plurality of R's independently represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • the plurality of A's each independently represents the following formula (3-a ) to (3-c). The plural s's are each independently an integer of 0 to 4, and t is an integer of 0 to 3.
  • R's each independently represent a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • a plurality of B's each independently represent the following formula (4-d ) or (4-e).
  • D is the following formula (4-f). Multiple s are each independently an integer of 0 to 4, and t is an integer of 0 to 3. Formula (4 ), one of the five m's is 1, and the other four are 0.)
  • R's exist independently and represent a hydrocarbon group or a halogenated alkyl group having 1 to 10 carbon atoms.
  • p and r are integers of 0 to 4, and q is an integer of 0 to 4. is an integer of 3, n is the number of repetitions, and the average value n ave of n satisfies 1 ⁇ n ave ⁇ 20.
  • X represents a halogen atom.
  • the curable resin composition according to item [6] which contains any one or more of a polyphenylene ether compound, polybutadiene and a modified product thereof, and polystyrene and a modified product thereof.
  • the following formula obtained by dehydrohalogenating the compound represented by the following formula (5) in the presence of a basic catalyst in a solvent 4 to 7 times the weight of the compound represented by the following formula (5) A method for producing a compound represented by (1).
  • each of the plurality of R's exists independently and represents a hydrocarbon group or a halogenated alkyl group having 1 to 10 carbon atoms.
  • p and r are integers of 0 to 4, and q is an integer of 0 to 4.
  • n is an integer of 3, n is the number of repetitions, and the average value n ave satisfies 1 ⁇ n ave ⁇ 20.
  • R's exist independently and represent a hydrocarbon group or a halogenated alkyl group having 1 to 10 carbon atoms.
  • p and r are integers of 0 to 4, and q is an integer of 0 to 4. is an integer of 3, n is the number of repetitions, and the average value n ave of n satisfies 1 ⁇ n ave ⁇ 20.
  • X represents a halogen atom.
  • the compound of the present invention has excellent solvent solubility, and its cured product has excellent low dielectric properties. Therefore, it is a useful material for sealing electrical and electronic parts, circuit boards, carbon fiber composite materials, etc.
  • a GPC chart of Synthesis Example 1 is shown.
  • a GPC chart of Example 1 is shown.
  • a 1 H-NMR chart of Example 1 is shown.
  • An LC-MS chart of Example 1 is shown.
  • the HP-LC chart of Example 1 is shown.
  • a GPC chart of Example 2 is shown.
  • the HP-LC chart of Example 2 is shown.
  • a GPC chart of Example 3 is shown.
  • the HP-LC chart of Example 3 is shown.
  • a GPC chart of Example 4 is shown.
  • the HP-LC chart of Example 4 is shown.
  • a GPC chart of Comparative Synthesis Example 1 is shown.
  • a GPC chart of Comparative Synthesis Example 2 is shown.
  • the HP-LC chart of Comparative Synthesis Example 2 is shown.
  • the compound of the present embodiment is represented by the following formula (1), and in the total amount of the compound, the formula (1) in the chromatogram obtained by gel permeation chromatography (hereinafter also referred to as GPC) is The ratio (area percentage) of the area (time integral value of signal value) of the compound where n in formula (1) is 1 to the total area (time integral value of signal value) of the compound having the represented structure is Less than 50%. If the area percentage of the compound having a structure where n in formula (1) is 1 is 50% or more, crystals may precipitate when a resin solution containing the compound represented by formula (1) is stored. (i.e., the solubility in the solvent decreases).
  • R's each independently represent a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • p and r are integers of 0 to 4, and q is an integer of 0 to 3. It is an integer.
  • n is the number of repetitions, and the average value n ave satisfies 1 ⁇ n ave ⁇ 20.
  • n ave is usually 1 ⁇ n ⁇ 20, preferably 1.1 ⁇ n ave ⁇ 20, more preferably 1.1 ⁇ n ave ⁇ 10, and 1.1 ⁇ n ave ⁇ 5. It is particularly preferable that there be.
  • the value of n ave can be calculated from the value of the number average molecular weight (Mn) determined by GPC measurement of the compound of formula (1).
  • Mn number average molecular weight
  • the number average molecular weight is preferably 200 or more and less than 5,000, more preferably 300 or more and less than 3,000, and particularly preferably 400 or more and less than 2,000. When the number average molecular weight is less than 5,000, purification by washing with water becomes easy, and when it is 200 or more, the target compound does not volatilize in the solvent distillation step.
  • R is a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group, preferably a hydrocarbon group having 1 to 10 carbon atoms, and more preferably a hydrocarbon group having 1 to 5 carbon atoms. It is a hydrocarbon group, particularly preferably a hydrocarbon group having 1 to 3 carbon atoms. If R has a small number of carbon atoms, molecular vibration will be difficult to occur when exposed to high frequency, so when R is a hydrocarbon group having 1 to 3 carbon atoms among the above descriptions, the electrical properties are particularly excellent.
  • GPC Online degassing unit (DGU-20A3R), binary liquid feeding unit (LC-20AD), autosampler (SIL-20AHT), differential refractive index detector (RID-20A), column oven (CTO-20A), system Controller (CBM-20A) (both manufactured by Shimadzu Corporation)
  • DGU-20A3R Online degassing unit
  • LC-20AD binary liquid feeding unit
  • SIL-20AHT autosampler
  • RID-20A differential refractive index detector
  • CTO-20A column oven
  • CBM-20A system Controller
  • the compound represented by the above formula (1) may contain compounds represented by the following formulas (2) to (4) as by-products, and can be analyzed by high performance liquid chromatography (HP-LC).
  • HP-LC high performance liquid chromatography
  • the sum total ( ⁇ ) of the peak areas of the compounds represented by the following formulas (2) to (4) in the obtained chromatogram is calculated as the HP-LC peak area (
  • the value ( ⁇ / ⁇ ) divided by ⁇ ) is preferably 0.10 or less, more preferably 0.07 or less.
  • the "peak area” is the area surrounded by the peak and a straight line connecting both sides of the peak. In reality, it is determined by an approximate value using the half-width method or by the number of integrated counts of the output at the peak time (JIS K0214:2013).
  • the lower limit value of ( ⁇ / ⁇ ) may be 0, but is more preferably 0.01. This is because when it is 0.01 or more, adhesiveness, solvent solubility, and compatibility with a compound having a polar group are improved.
  • R's exist independently and represent a hydrocarbon group or a halogenated alkyl group having 1 to 10 carbon atoms.
  • s is an integer of 0 to 4.
  • each of the plurality of R's independently represents a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • the plurality of A's each independently represents the following formula (3-a ) to (3-c). s is an integer from 0 to 4, and t is an integer from 0 to 3.
  • R's each independently represent a hydrocarbon group having 1 to 10 carbon atoms or a halogenated alkyl group.
  • a plurality of B's each independently represent the following formula (4-d ) or (4-e).
  • D is the following formula (4-f). Multiple s are each independently an integer of 0 to 4, and t is an integer of 0 to 3. Formula (4 ), one of the five m's is 1, and the other four are 0.)
  • by-products such as compounds represented by formulas (2) to (4) above can be removed by purification, but in the case of compounds represented by formula (1) above, distillation, recrystallization, etc. It is difficult to remove the compounds represented by formulas (2) to (4) using purification methods such as washing with water.
  • the compound represented by the formula (1) since the compound represented by the formula (1) has a styrene structure as a functional group, it has high reactivity, and unintended polymerization occurs in purification methods that require overheating such as distillation. .
  • the compound represented by the formula (1) is a liquid compound after the solvent is distilled off, it is difficult to obtain a crystal structure, and therefore it is difficult to recrystallize it with a good yield.
  • LC-MS liquid chromatography mass spectrometry
  • HP-LC high performance liquid chromatography
  • Equipment Binary liquid feeding unit (LC-20AB), online degassing unit (DGU-20A3R), autosampler (SIL-20A), column oven (CTO-20A), system controller (CBM-20A), photodiode array detection Equipment (SPD-M20A) (both manufactured by Shimadzu Corporation)
  • LC-20AB Binary liquid feeding unit
  • DGU-20A3R online degassing unit
  • SIL-20A autosampler
  • CTO-20A column oven
  • CBM-20A system controller
  • SPD-M20A photodiode array detection Equipment
  • Flow rate 0.5ml/min.
  • the hydroxyl equivalent of the compound represented by formula (1) is 100000 g/eq. It is preferable that it is below.
  • the hydroxyl equivalent is 100000g/eq. This is because if it is below, the adhesion, solvent solubility, and compatibility with a compound having a polar group will be improved without impairing electrical properties or low heat properties.
  • the compound represented by the above formula (1) is derived from the compound represented by the following formula (5).
  • R's exist independently and represent a hydrocarbon group or a halogenated alkyl group having 1 to 10 carbon atoms.
  • p and r are integers of 0 to 4
  • q is an integer of 0 to 4.
  • n is the number of repetitions, and the average value n ave of n satisfies 1 ⁇ n ave ⁇ 20.
  • X represents a halogen atom.
  • R in the above formula (5) and the preferred range of the average value n ave of p, r, q, and n are the same as in the above formula (1).
  • the halogen atom in R and X are preferably a bromine atom or a chlorine atom, and a bromine atom is particularly preferred.
  • the compound represented by the formula (1) can be obtained, for example, by dehydrohalogenation of the compound represented by the formula (5) in a solvent in the presence of a basic catalyst.
  • the amount of solvent used is preferably 4 to 7 times the weight of the compound represented by formula (5).
  • the solvent used is preferably an aprotic polar solvent, such as dimethylsulfone, dimethylsulfoxide, dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, etc. may be used together. It is also preferable to use a water-insoluble solvent in combination with the aprotic polar solvent to form a mixed solvent.
  • the aprotic polar solvent is preferably dimethyl sulfoxide, dimethylformamide, 1,3-dimethyl-2-imidazolidinone, or N-methylpyrrolidone.
  • the water-insoluble solvent benzene, toluene, xylene, mesitylene, hexane, cyclohexane, and methylcyclohexane are preferred. Among these, the most preferred combination is dimethyl sulfoxide and toluene.
  • the aprotic polar solvent is preferably used in an amount of 1 to 10 times the weight of the water-insoluble solvent, more preferably 1 to 8 times, particularly preferably 2 to 6 times. If it is less than 1 time, the reaction will be difficult to proceed and there is a risk that raw materials may remain. If it exceeds 10 times, the reaction promoting effect is high, but the amount of the compounds represented by formulas (2) to (4) tends to increase.
  • the reaction proceeds in a state where the layers are separated into two layers, an aprotic polar solvent layer and an aqueous-insoluble solvent layer, so the above range is preferable from the viewpoint of controlling the reactivity at the interface.
  • the total amount of the solvent used is preferably 1 to 9 times the weight of the compound represented by formula (5), more preferably 2 to 8 times, particularly preferably 3 to 7 times the weight. be. If it is less than 1 times by weight, stirring may become difficult due to salt precipitation, and if it is more than 9 times by weight, there is a risk that the kettle efficiency (the amount of resin that can be synthesized in one batch) will be significantly reduced.
  • the reaction temperature is preferably 0 to 80°C, more preferably 10 to 60°C, even more preferably 26 to 70°C. If the temperature is lower than 0°C, the reaction may not proceed sufficiently, and if the temperature is higher than 80°C, the polymerization reaction of the styrene structure may occur simultaneously, so that gelation may proceed.
  • the catalyst is not particularly limited, but includes basic catalysts such as sodium hydroxide, potassium hydroxide, and potassium carbonate. Since it is difficult to allow the dehydrohalogenation reaction to proceed completely, the aprotic polar solvent may be used in large excess relative to the substrate, or the dehydrohalogenation reaction may be carried out twice or three times or more. This may be repeated multiple times. For example, in the presence of a base catalyst in an organic solvent, the compound represented by formula (2) is subjected to a dehydrohalogenation reaction, and the resulting solution is washed with water, then returned to the reaction vessel, and a base catalyst is added thereto. You may react. By doing so, the degree of progress of the dehydrohalogenation reaction can be increased.
  • basic catalysts such as sodium hydroxide, potassium hydroxide, and potassium carbonate.
  • the mass concentration of residual halogen in the target substance is preferably 1 to 10,000 ppm, more preferably 1 to 1,000 ppm, and still more preferably 1 to 750 ppm. If the mass concentration of residual halogen contained in the compound represented by formula (1) is high, molecular vibration may occur when exposed to high frequency waves, which may have a negative effect on electrical properties, particularly dielectric loss tangent. In addition, if the mass concentration of residual halogen is high, there is a risk of increasing the risk of problems such as metal corrosion and ion migration in environmental tests such as HAST tests (High Accelerated Stress Tests). It is preferable.
  • the method for producing the compound represented by formula (5) is not particularly limited, but for example, a compound having a (2-bromoethyl)benzene structure and a bishalogenated methylaryl compound (or a bishydroxymethylaryl compound, etc.) are mixed with hydrochloric acid or The reaction may be carried out under an acid catalyst such as sulfonic acid or activated clay, or a compound having a (2-bromoethyl)benzene structure and a bishydroxymethylaryl compound may be reacted under an acid catalyst such as hydrochloric acid, sulfonic acid or activated clay. good.
  • the extraction step may be performed after neutralization with an alkali metal such as sodium hydroxide or potassium hydroxide.
  • an aromatic hydrocarbon solvent such as toluene or xylene may be used alone, or a non-aromatic hydrocarbon solvent such as cyclohexane or toluene may be used in combination.
  • the organic layer is washed with water until the waste water becomes neutral, and the solvent and excess (2-bromoethyl)benzene-containing compound are distilled off using an evaporator or the like to remove at least two or more compounds in the target molecule. , a compound having a 2-bromoethylethylbenzene structure can be obtained.
  • the charging ratio of the compound having a (2-bromoethyl)benzene structure is preferably 1.0 to 4.0 times per mole of the bishalogenated methylaryl compound (or bishydroxymethylaryl compound, etc.). , more preferably from 1.0 to 3.0, even more preferably from 1.0 to 2.0.
  • the charging ratio is 4.0 times or less, significant precipitation of crystals can be avoided when the resin solution containing the compound represented by formula (1) is refrigerated or frozen. Further, if the charging ratio is 1.0 times or more, significant formation of high molecular weight substances can be avoided and purification by washing with water becomes possible.
  • the content of the compound where n in the formula (5) is 1 is determined using slice data of a chromatogram using an RI (differential refractive index) detector of GPC analysis. of the slice data corresponding to the compound where n in formula (5) is 1 with respect to the total area (time integral value of signal value) of the slice data corresponding to the compound represented by formula (5). It can be determined from the area ratio (area percentage).
  • the content (area percentage) of the compound where n in the formula (5) is 1 is preferably 25 to 75%, more preferably 30 to 60%, even more preferably 35 to 50%. be.
  • Examples of compounds having a (2-bromoethyl)benzene structure include (2-bromoethyl)benzene, 1-(2-bromoethyl)-2-methylbenzene, 1-(2-bromoethyl)-3-methylbenzene, 1- (2-bromoethyl)-4-methylbenzene, 1-(2-bromoethyl)-2,3-dimethylbenzene, 1-(2-bromoethyl)-2,4-dimethylbenzene, 1-(2-bromoethyl)-2 , 5-dimethylbenzene, 1-(2-bromoethyl)-2,6-dimethylbenzene and the like, but are not limited to these.
  • the number of carbon atoms may be used alone or in combination of two or more.
  • the number of carbon atoms is large, solvent solubility improves, but heat resistance decreases, so it is preferable that the number of carbon atoms is unsubstituted or substituted with an alkyl group having 1 to 3 carbon atoms. It is more preferably substituted with a group, and most preferably unsubstituted or substituted with a methyl group.
  • Examples of the bishalogenated methylaryl compound include schreib-xylylene difluoride, m-xylylene difluoride, p-xylylene difluoride, Occasionally-xylylene dichloride, m-xylylene dichloride, p-xylylene dichloride, Examples include, but are not limited to, o-xylylene dibromide, m-xylylene dibromide, p-xylylene dibromide, Occasionally-xylylene diiodide, m-xylylene diiodide, p-xylylene diiodide, etc. isn't it. These may be used alone or in combination of two or more. From the viewpoint of reactivity of raw materials during synthesis, chloride compounds, bromide compounds, and iodide compounds are preferred, and chloride compounds and bromide compounds are more preferred.
  • Examples of the bishydroxymethylaryl compound include, but are not limited to, schreib-benzenedimethanol, m-benzenedimethanol, p-benzenedimethanol, and the like. These may be used alone or in combination of two or more.
  • the amount used is preferably 0.05 to 0.8 parts by mass, more preferably 0.1 to 0.6 parts by mass, per 1 part by mass of the compound having a (2-bromoethyl)benzene structure. be.
  • the amount of the catalyst used is 0.05 to 0.8 mol, preferably 0.1 to 0.7 mol, per 1 mol of the compound having a (2-bromoethyl)benzene structure. If the amount of catalyst used is too large, the viscosity of the reaction solution may be too high and stirring may become difficult, while if it is too small, the progress of the reaction may be slowed down.
  • the reaction may be carried out using an organic solvent such as hexane, cyclohexane, octane, toluene, xylene, etc., selected as necessary, or may be carried out without a solvent.
  • the catalyst for example, after adding an acidic catalyst to a mixed solution of a compound having a (2-bromoethyl)benzene structure, a halogenated methylaryl compound, and a solvent, if the catalyst contains water, water is removed from the system by azeotropy. Thereafter, the reaction is carried out at 40 to 180°C, preferably 50 to 170°C, for 0.5 to 40 hours.
  • the acidic catalyst may be neutralized with an aqueous alkali solution, but it is also possible to proceed to the water washing step without neutralization. In the water washing process, a water-insoluble organic solvent is added to the oil layer and water washing is repeated until the wastewater becomes neutral.
  • the softening point of the compound represented by formula (5) is preferably 80°C or lower, more preferably 70°C or lower.
  • the viscosity when the compound represented by the formula (5) is induced into the compound represented by the formula (1) becomes low. This makes it easy to ensure fluidity, does not impair the impregnation of fibrous materials such as glass cloth and carbon fibers, and makes it possible to semi-cure the curable resin composition, such as by making it into a prepreg (B staging) becomes easier. If the viscosity is lowered by increasing the amount of diluting solvent, the curable resin composition may not adhere sufficiently to the fibrous material during the impregnation step.
  • the compound of this embodiment and the curable resin composition may contain a polymerization inhibitor.
  • a polymerization inhibitor By containing a polymerization inhibitor, storage stability is improved and the reaction initiation temperature can be controlled. By controlling the reaction initiation temperature, fluidity can be easily ensured, impregnating properties into glass cloth etc. are not impaired, and B-stage formation such as prepreg formation is facilitated. If the polymerization reaction progresses too much during prepreg formation, problems such as difficulty in lamination during the lamination process are likely to occur.
  • the polymerization inhibitor may be added when synthesizing the compound represented by formula (1), or may be added after synthesis.
  • the amount of the polymerization inhibitor used is 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, based on 100 parts by weight of the compound represented by formula (1).
  • polymerization inhibitors examples include phenol-based, sulfur-based, phosphorus-based, hindered amine-based, nitroso-based, nitroxyl radical-based, and the like. Furthermore, one kind of polymerization inhibitor may be used or a plurality of them may be used in combination. Among these, in this embodiment, phenol type, hindered amine type, nitroso type, and nitroxyl radical type are preferable.
  • phenolic polymerization inhibitor examples include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, and stearyl- ⁇ -( 3,5-di-t-butyl-4-hydroxyphenyl)propionate, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,4-bis-(n-octylthio) Monophenols such as -6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, 2,4-bis[(octylthio)methyl]-o-cresol, 2 , 2'-methylenebis(4-methyl-6-t-butylphenol), 2,2'-methylenebis(4-ethyl-6-t-butylphenol), 4,4'-thiobis(3-methyl-6-t-
  • sulfur-based polymerization inhibitor examples include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like. However, it is not limited to these.
  • Examples of the phosphorus polymerization inhibitor include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris(nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris(2,4-di-t -butylphenyl) phosphite, cyclic neopentanetetryrubis(octadecyl)phosphite, cyclic neopentanetetryruby(2,4-di-t-butylphenyl)phosphite, cyclic neopentanetetryruby(2, 4-di-t-butyl-4-methylphenyl) phosphite, bis[2-t-butyl-6-methyl-4- ⁇ 2-(octadecyloxy
  • hindered amine polymerization inhibitor examples include ADEKA STAB LA-40MP, ADEKA STAB LA-40Si, ADEKA STAB LA-402AF, ADEKA STAB LA-87, ADEKA STAB LA-82, ADEKA STAB LA-81, ADEKA STAB LA- 77Y, ADK STAB LA-77G, ADK STAB LA-72, ADK STAB LA-68, ADK STAB LA-63P, ADK STAB LA-57, ADK STAB LA-52, Chimassorb2020FDL, Chimassorb944FDL, Chimassorb944LD, Ti manufactured by BASF Japan Co., Ltd.
  • nuvin622SF TinuvinPA144, Tinuvin765, Tinuvin770DF , TinuvinXT55FB, Tinuvin111FDL, Tinuvin783FDL, Tinuvin791FB, etc., but are not limited to these.
  • nitroso-based polymerization inhibitor examples include, but are not limited to, p-nitrosophenol, N-nitrosodiphenylamine, ammonium salt of N-nitrosophenylhydroxyamine (cuperone), and the like. Among these, preferred is the ammonium salt of N-nitrosophenylhydroxyamine (cuperone).
  • nitroxyl radical polymerization inhibitor examples include di-tert-butyl nitroxide, 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6- Tetramethylpiperidine-1-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, 4- Methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-acetoxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-benzoyloxy-2,2,6,6 Examples include, but are not limited to, -tetramethylpiperidine-1-oxyl and the like.
  • the curable resin composition of this embodiment may contain a polyphenylene ether compound.
  • the polyphenylene ether compound is preferably a polyphenylene ether compound having an ethylenically unsaturated bond, and more preferably a polyphenylene ether compound having an acrylic group, methacrylic group, or styrene structure.
  • Commercially available products include SA-9000 (manufactured by SABIC, a polyphenylene ether compound having a methacrylic group) and OPE-2St 1200 (manufactured by Mitsubishi Gas Chemical Co., Ltd., a polyphenylene ether compound having a styrene structure).
  • the number average molecular weight (Mn) of the polyphenylene ether compound is preferably from 500 to 5,000, more preferably from 2,000 to 5,000, and even more preferably from 2,000 to 4,000. If the molecular weight is less than 500, the cured product tends to have insufficient heat resistance. Furthermore, if the molecular weight is greater than 5,000, the melt viscosity becomes high and sufficient fluidity cannot be obtained, which tends to result in poor molding. In addition, the reactivity decreases, and the curing reaction takes a long time, and unreacted substances increase without being incorporated into the curing system, lowering the glass transition temperature of the cured product and reducing the heat resistance of the cured product.
  • the number average molecular weight of the polyphenylene ether compound is 500 to 5000, excellent heat resistance, moldability, etc. can be exhibited while maintaining excellent dielectric properties. Note that the number average molecular weight here can be specifically measured using gel permeation chromatography or the like.
  • the polyphenylene ether compound may be one obtained by a polymerization reaction, or one obtained by subjecting a high molecular weight polyphenylene ether compound having a number average molecular weight of about 10,000 to 30,000 to a redistribution reaction.
  • radical polymerizability may be imparted to these raw materials by reacting them with a compound having an ethylenically unsaturated bond, such as methacryl chloride, acrylic chloride, or chloromethylstyrene.
  • the polyphenylene ether compound obtained by the redistribution reaction is obtained, for example, by heating a high molecular weight polyphenylene ether compound in a solvent such as toluene in the presence of a phenol compound and a radical initiator to cause a redistribution reaction.
  • the polyphenylene ether compound obtained by this redistribution reaction has hydroxyl groups derived from phenolic compounds that contribute to curing at both ends of the molecular chain, and therefore can maintain even higher heat resistance. This is preferable because functional groups can be introduced at both ends of the molecular chain even after modification with a compound having a sexually unsaturated bond. Further, polyphenylene ether compounds obtained by polymerization reactions are preferred because they exhibit excellent fluidity.
  • the molecular weight of the polyphenylene ether compound can be adjusted by adjusting the polymerization conditions, etc. Further, in the case of a polyphenylene ether compound obtained by a redistribution reaction, the molecular weight of the obtained polyphenylene ether compound can be adjusted by adjusting the conditions of the redistribution reaction. More specifically, it may be possible to adjust the amount of the phenolic compound used in the redistribution reaction. That is, the larger the amount of the phenolic compound blended, the lower the molecular weight of the resulting polyphenylene ether compound.
  • poly(2,6-dimethyl-1,4-phenylene ether) or the like can be used as the high molecular weight polyphenylene ether compound that undergoes the redistribution reaction.
  • the phenolic compound used in the redistribution reaction is not particularly limited, but for example, a polyfunctional phenol having two or more phenolic hydroxyl groups in the molecule, such as bisphenol A, phenol novolak, cresol novolak, etc. type compounds are preferably used. These may be used alone or in combination of two or more.
  • the content of the polyphenylene ether compound is not particularly limited, but it is preferably 5 to 1000 parts by mass, more preferably 10 to 750 parts by mass, based on 100 parts by mass of the compound represented by formula (1). preferable.
  • a cured product not only has excellent heat resistance but also fully exhibits the excellent dielectric properties of the polyphenylene ether compound.
  • the curable resin composition of this embodiment may contain polybutadiene and a modified product thereof.
  • Polybutadiene and its modified products are polybutadiene or compounds having a structure derived from polybutadiene in the molecule. In the structure derived from polybutadiene, some or all of the unsaturated bonds may be converted into single bonds by hydrogenation.
  • Examples of polybutadiene and modified products thereof include, but are not limited to, polybutadiene, hydroxyl group-terminated polybutadiene, terminal (meth)acrylated polybutadiene, carboxylic acid-terminated polybutadiene, amine-terminated polybutadiene, styrene-butadiene rubber, etc. .
  • polybutadiene or styrene-butadiene rubber is preferred from the viewpoint of dielectric properties.
  • SBR styrene-butadiene rubber
  • examples of styrene-butadiene rubber (SBR) include RICON-100, RICON-181, RICON-184 (all manufactured by Clay Valley), and 1,2-SBS (manufactured by Nippon Soda)
  • examples of polybutadiene include: Examples include B-1000, B-2000, and B-3000 (all manufactured by Nippon Soda Co., Ltd.).
  • the weight average molecular weight of polybutadiene and styrene-butadiene rubber is preferably 500 to 10,000, more preferably 750 to 7,500, and even more preferably 1,000 to 5,000.
  • the amount of volatilization is large, making it difficult to adjust the solid content during preparation of prepreg, and above the upper limit of the above range, compatibility with other curable resins deteriorates.
  • compounds containing heteroatoms such as oxygen and nitrogen, such as bismaleimide and polymaleimide due to their polarity, compounds consisting mainly of hydrocarbons or compounds consisting only of hydrocarbons have low polarity. It is difficult to ensure compatibility with other compounds.
  • the compound represented by formula (1) itself does not have a skeleton design that actively introduces heteroatoms such as oxygen or nitrogen, so it is a material with low polarity and low dielectric properties, It also has excellent compatibility with compounds composed only of hydrocarbons.
  • the content of polybutadiene and its modified product is not particularly limited, but it is preferably 5 to 1000 parts by mass, and 10 to 750 parts by mass, based on 100 parts by mass of the compound represented by formula (1). is more preferable. It is preferable that the polybutadiene and its modified products are within the above range, since not only are they excellent in heat resistance, but also cured products can be obtained that fully exhibit the excellent dielectric properties of the polybutadiene and its modified products.
  • the curable resin composition of this embodiment may contain polystyrene and a modified product thereof.
  • Polystyrene and modified products thereof are polystyrene or compounds having a structure derived from polystyrene in the molecule.
  • Examples of polystyrene and its modified products include polystyrene, styrene/2-isopropenyl-2-oxazoline copolymer (Epocross RPS-1005, RP-61, both manufactured by Nippon Shokubai Co., Ltd.), and SEP (styrene-ethylene/propylene copolymer).
  • SEPTON 1020 manufactured by Kuraray Co., Ltd.
  • SEPS styrene-ethylene propylene-styrene copolymer: SEPTON 2002, SEPTON 2004F, SEPTON 2005, SEPTON 2006, SEPTON 2063, SEPTON 2104 manufactured by Kuraray Co., Ltd.
  • SEEPS Styrene - Ethylene/ethylene propylene-styrene block copolymer: SEPTON 4003, SEPTON 4044, SEPTON 4055, SEPTON 4077, SEPTON 4099 (all manufactured by Kuraray), SEBS (styrene-ethylene/butylene-styrene block copolymer: SEPTON 8004) , SEPTON 8006, SEPTON 8007L (all manufactured by Kuraray), SEEPS-OH (a compound having a hydroxyl group at the end of a styrene-ethylene/ethylene propylene-styrene block copolymer: SEPTON HG
  • Polystyrene and its modified products have higher heat resistance and are less susceptible to oxidative deterioration, so polystyrenes that do not have unsaturated bonds are preferred.
  • the weight average molecular weight of polystyrene and its modified products is not particularly limited as long as it is 10,000 or more, but if it is too large, in addition to polyphenylene ether compounds, low molecular weight components with weight average molecular weights of about 50 to 1,000 and weight average molecular weights of 1,000 to 1,000 are used.
  • the molecular weight is preferably about 10,000 to 300,000, since the compatibility with oligomer components of about 5,000 will deteriorate and it will be difficult to ensure mixing and solvent stability.
  • the content of polystyrene and its modified product is not particularly limited, but it is preferably 5 to 1000 parts by mass, and 10 to 750 parts by mass, based on 100 parts by mass of the compound represented by formula (1). is more preferable.
  • a cured product not only has excellent heat resistance but also fully exhibits the excellent dielectric properties of polystyrene and its modified products.
  • the curable resin composition of this embodiment may contain an inorganic filler.
  • inorganic fillers include fused silica, crystalline silica, porous silica, alumina, zircon, calcium silicate, calcium carbonate, quartz powder, silicon carbide, silicon nitride, boron nitride, zirconia, aluminum nitride, graphite, forsterite, Examples include, but are not limited to, powders such as steatite, spinel, mullite, titania, talc, clay, iron oxide asbestos, glass powder, and inorganic fillers made of these in spherical or crushed shapes. It's not a thing. Further, these may be used alone or in combination.
  • the amount of inorganic filler used when obtaining a curable resin composition for semiconductor encapsulation is preferably 80 to 92 parts by mass, more preferably 83 to 90 parts by mass, based on 100 parts by mass of the curable resin composition. be.
  • the amount of the above-mentioned inorganic filler used is 100 parts by mass of the curable resin composition.
  • the amount is preferably 5 to 80 parts by weight, more preferably 10 to 60 parts by weight.
  • the curability of the curable resin composition of this embodiment can also be improved by adding a curing accelerator.
  • curing accelerators include anionic curing accelerators that promote the curing reaction by generating anions by irradiation or heating with ultraviolet rays or visible light, or anionic curing accelerators that promote the curing reaction by generating cations by irradiating or heating ultraviolet rays or visible light. Cationic curing accelerators are preferred.
  • anionic curing accelerators examples include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, and benzyldimethyl.
  • imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole
  • trialkylamines such as triethylamine and tributylamine
  • 4-dimethylaminopyridine 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo(5,4,0)-undecene, etc.
  • 4-dimethylaminopyridine, 1,8-diazabicyclo(5, 4,0)-undecene is preferred.
  • phosphines such as triphenylphosphine
  • quaternary ammonium salts such as tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium salt, and hexadecyltrimethylammonium hydroxide.
  • cationic curing accelerators include quaternary phosphonium salts such as triphenylbenzylphosphonium salt, triphenylethylphosphonium salt, and tetrabutylphosphonium salt (the counter ion of the quaternary salt is halogen, organic Acid ions, hydroxide ions, etc.
  • tin octylate zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, behenic acid)
  • examples include, but are not limited to, transition metal compounds (transition metal salts) such as zinc, zinc myristate) and zinc phosphate esters (octyl zinc phosphate, zinc stearyl phosphate). Further, these may be used alone or in combination.
  • the amount of the curing accelerator used is 0.01 to 5.0 parts by mass, if necessary, based on 100 parts by mass of the total nonvolatile components excluding inorganic fillers in the curable resin composition.
  • Polymerization initiator The curability of the curable resin composition of this embodiment can also be improved by adding a polymerization initiator.
  • Polymerization initiators are compounds that can polymerize olefin functional groups such as ethylenically unsaturated bonds, and include olefin metathesis polymerization initiators, anionic polymerization initiators, cationic polymerization initiators, and radical polymerization initiators. Can be mentioned. Among these, it is preferable to use a radical polymerization initiator that has curability and appropriate stability.
  • a radical polymerization initiator is a compound that generates radicals upon irradiation with ultraviolet rays or visible light or heating, and initiates a chain polymerization reaction.
  • radical polymerization initiators include organic peroxides, azo compounds, and benzopinacols.
  • organic peroxides examples include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dicumyl peroxide, and 1,3-bis-(t-butyl peroxide).
  • ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide
  • diacyl peroxides such as benzoyl peroxide, dicumyl peroxide, and 1,3-bis-(t-butyl peroxide).
  • (oxyisopropyl)-dialkyl peroxides such as benzene, peroxyketals such as t-butylperoxybenzoate, 1,1-di-t-butylperoxycyclohexane, ⁇ -cumylperoxyneodecanoate, t- Butylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t -Butylperoxy-2-ethylhexanoate, t-amylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-amylperoxy-3,5,5-trimethylhexanoate Alkyl peresters such as oxybenzoate, di-2-ethy
  • azo compounds include azobisisobutyronitrile, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2,4-dimethylvaleronitrile), and the like. However, it is not limited to these. Further, these may be used alone or in combination.
  • the amount of the polymerization initiator added is preferably 0.01 to 5 parts by mass, and 0.01 to 5 parts by mass, when the total nonvolatile content excluding inorganic fillers in the curable resin composition is 100 parts by mass. 3 parts by mass is particularly preferred. If the amount of the polymerization initiator used is less than 0.01 parts by mass, the molecular weight may not be sufficiently extended during the polymerization reaction, and if it is more than 5 parts by mass, dielectric properties such as dielectric constant and dielectric loss tangent may be impaired.
  • the curable resin composition of this embodiment may contain a flame retardant.
  • flame retardants include halogen-based flame retardants, inorganic flame retardants (antimony compounds, metal hydroxides, nitrogen compounds, boron compounds, etc.), phosphorus-based flame retardants, etc., but halogen-free flame retardance has been achieved. From this viewpoint, phosphorus-based flame retardants are preferred.
  • the above-mentioned phosphorus-based flame retardant may be a reactive type flame retardant or an additive type flame retardant.
  • trimethyl phosphate triethyl phosphate, tricresyl phosphate, tricylenyl phosphate, cresyl diphenyl phosphate, cresyl-di-2,6-xylenyl phosphate, 1,3-phenylenebis(dixylenyl phosphate).
  • phosphoric acid esters such as 1,4-phenylenebis(dixylenyl phosphate), 4,4'-biphenyl(dixylenyl phosphate), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-
  • epoxy resins are reacted with the active hydrogen of the phosphanes.
  • the resulting phosphorus-containing epoxy compounds include, but are not limited to, red phosphorus and the like. Further, these may be used alone or in combination.
  • phosphoric acid esters, phosphanes, or phosphorus-containing epoxy compounds are preferred, and 1,3-phenylene bis(dixylenyl phosphate), 1,4-phenylene bis(dixylenyl phosphate), 4,4 '-Biphenyl (dixylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • the content of the flame retardant is preferably in the range of 0.1 to 0.6 parts by mass, when the total nonvolatile content excluding inorganic fillers in the curable resin composition is 100 parts by mass. If it is less than 0.1 parts by mass, the flame retardance may be insufficient, and if it is more than 0.6 parts by mass, it may adversely affect the hygroscopicity and dielectric properties of the cured product.
  • a light stabilizer may be used in the curable resin composition of this embodiment.
  • hindered amine light stabilizers particularly HALS, etc. are suitable.
  • HALS include dibutylamine/1,3,5-triazine/N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N-( 2,2,6,6-tetramethyl-4-piperidyl)butylamine reaction product, dimethyl-1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine succinate reaction product , poly[ ⁇ 6-(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2,4-diyl ⁇ (2,2,6,6-tetramethyl-4- piperidyl)imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl)imino ⁇ ], bis(1,2,
  • the content of the light stabilizer is preferably in the range of 0.001 to 10 parts by mass, when the total nonvolatile content excluding inorganic fillers in the curable resin composition is 100 parts by mass. If it is less than 0.001 parts by mass, it may be insufficient to exhibit a photostabilizing effect, and if it is more than 10 parts by mass, it may adversely affect the hygroscopicity and dielectric properties of the cured product.
  • the curable resin composition of this embodiment may use a binder resin.
  • the binder resin include butyral resin, acetal resin, acrylic resin, epoxy-nylon resin, NBR-phenol resin, epoxy-NBR resin, silicone resin, etc., but are not limited to these. It's not something you can do. Further, these may be used alone or in combination.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and the total nonvolatile content excluding inorganic fillers in the curable resin composition is 100 parts by mass. If so, the amount is preferably 0.05 to 50 parts by weight, more preferably 0.05 to 20 parts by weight.
  • the curable resin composition of this embodiment may use additives.
  • additives include modified acrylonitrile copolymers, polyethylene, fluororesins, silicone gels, silicone oils, surface treatment agents for fillers such as silane coupling agents, mold release agents, carbon black, phthalocyanine blue, Examples include colorants such as phthalocyanine green.
  • the blending amount of the additive is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less, based on 100 parts by mass of the curable resin composition.
  • the curable resin composition of this embodiment further includes an epoxy resin, an active ester compound, a phenol resin, an amine resin, a maleimide compound, a compound having an ethylenically unsaturated bond, an isocyanate resin, a polyamide resin, a polyimide resin, and a cyanate ester resin. etc., and these may be used alone or in combination.
  • these compounds it is preferable to contain a compound having an ethylenically unsaturated bond and a cyanate ester resin in view of the balance of heat resistance, adhesion, and dielectric properties.
  • the amount of the compound to be used is preferably 10 times or less, more preferably 5 times or less, particularly preferably 3 times or less by mass, relative to the compound represented by formula (1). mass range. Further, a preferable lower limit is 0.1 times by mass or more, more preferably 0.25 times by mass or more, still more preferably 0.5 times by mass or more. By being within the above range, the effects of each compound added can be added while taking advantage of the effects of the heat resistance and dielectric properties of the compound represented by the formula (1). Regarding these components, those illustrated below can be used.
  • epoxy resin Preferred examples of the epoxy resin are shown below, but the invention is not limited thereto.
  • the epoxy resin may be liquid or solid, and may be used alone or in combination.
  • liquid epoxy resins examples include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol AF epoxy resin, naphthalene epoxy resin, glycidyl ester epoxy resin, glycidylamine epoxy resin, phenol novolac epoxy resin, and ester.
  • examples include alicyclic epoxy resins having a skeleton, cyclohexane-type epoxy resins, cyclohexanedimethanol-type epoxy resins, glycidylamine-type epoxy resins, and epoxy resins having a butadiene structure.
  • solid epoxy resin examples include bixylenol type epoxy resin, naphthalene type epoxy resin, naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, Biphenyl type epoxy resin, naphthylene ether type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, bisphenol AF type epoxy resin, tetraphenylethane type epoxy resin are preferred, naphthol type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin and biphenyl-type epoxy resins.
  • HP4032H manufactured by DIC, naphthalene type epoxy resin
  • HP-4700 manufactured by DIC
  • HP-4710 all of the above are naphthalene type tetrafunctional epoxy resins, manufactured by DIC
  • N-690 manufactured by DIC
  • the active ester compound refers to a compound that contains at least one ester bond in its structure and has an aliphatic chain, an aliphatic ring, or an aromatic ring bonded to both sides of the ester bond.
  • Examples of active ester compounds include compounds having two or more ester groups with high reaction activity in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds. It can be obtained by a condensation reaction of at least one of a carboxylic acid compound, an acid chloride, or a thiocarboxylic acid compound and at least one of a hydroxy compound or a thiol compound.
  • a carboxylic acid compound or an acid chloride and a hydroxy compound it is preferable to use a carboxylic acid compound or an acid chloride and a hydroxy compound.
  • a phenol compound or a naphthol compound is preferable.
  • the active ester compounds may be used alone or in combination of two or more.
  • carboxylic acid compounds examples include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid, and the like.
  • Examples of the acid chloride include acetyl chloride, acrylic chloride, methacrylic chloride, malonyl chloride, succinic dichloride, diglycolyl chloride, glutaric dichloride, suberic dichloride, sebacic dichloride, adipic dichloride, and dodecanedioyl.
  • dichloride azeroyl chloride, 2,5-furandicarbonyl dichloride, phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, trimesic acid chloride, bis(4-chlorocarbonylphenyl) ether, 4,4'-diphenyl dichloride Examples include carbonyl chloride and 4,4'-azodibenzoyl dichloride.
  • phenol compound and naphthol compound examples include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, Examples include phloroglucin, benzenetriol, dicyclopentadiene type diphenol compounds, phenol novolac, and phenol resins described below.
  • dicyclopentadiene type diphenol compound refers to a diphenol compound obtained by condensing two molecules of phenol with one molecule of dicyclopent
  • the active ester compound examples include an active ester compound containing a dicyclopentadiene type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated product of phenol novolac, and an active ester compound containing a benzoylated product of phenol novolac.
  • Examples include ester compounds, the compound described in Example 2 of International Publication No. 2020/095829, and the compound disclosed in International Publication No. 2020/059625.
  • active ester compounds containing a naphthalene structure and active ester compounds containing a dicyclopentadiene type diphenol structure are more preferable.
  • the dicyclopentadiene type diphenol structure represents a divalent structural unit consisting of phenylene-dicyclopentylene-phenylene.
  • active ester compounds include, for example, "EXB9451”, “EXB9460”, “EXB9460S”, “HPC-8000-65T”, and “HPC-8000H-” as active ester compounds containing a dicyclopentadiene type diphenol structure.
  • the ratio ( ⁇ / ⁇ ) of active ester equivalent ( ⁇ ) to epoxy equivalent ( ⁇ ) is preferably 0.5 to 1.5, more preferably 0. 8 to 1.2, more preferably 0.90 to 1.10. If it is out of the above range, there is a risk that excess epoxy groups or active ester groups may remain in the system. :85%, etc.), the characteristics may deteriorate in long-term reliability tests.
  • a phenolic resin is a compound having two or more phenolic hydroxyl groups in its molecule.
  • phenolic resins include reactants of phenols and aldehydes, reactants of phenols and diene compounds, reactants of phenols and ketones, reactants of phenols and substituted biphenyls, and phenols. Examples include, but are not limited to, reaction products of and substituted phenyls, and reaction products of bisphenols and aldehydes. Further, these may be used alone or in combination. Specific examples of each of the above-mentioned raw materials are illustrated below, but are not limited thereto.
  • Phenol alkyl-substituted phenol, aromatic substituted phenol, hydroquinone, resorcinol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.
  • ⁇ Aldehydes > Formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, furfural, etc.
  • ⁇ Diene compound Dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.
  • ⁇ Ketones Acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, fluorenone, etc.
  • ⁇ Substituted biphenyls > 4,4'-bis(chloromethyl)-1,1'-biphenyl, 4,4'-bis(methoxymethyl)-1,1'-biphenyl, 4,4'-bis(hydroxymethyl)-1,1' -Biphenyl etc.
  • ⁇ Substituted phenyls > 1,4-bis(chloromethyl)benzene, 1,4-bis(methoxymethyl)benzene, 1,4-bis(hydroxymethyl)benzene, etc.
  • An amine resin is a compound having two or more amino groups in its molecule.
  • amine resins include diaminodiphenylmethane, diaminodiphenylsulfone, isophorone diamine, naphthalene diamine, aniline novolac (a reaction product of aniline and formalin), N-methylaniline novolac (a reaction product of N-methylaniline and formalin), orthoethyl.
  • Aniline novolac reaction product of orthoethylaniline and formalin
  • reaction product of 2-methylaniline and formalin reaction product of 2,6-diisopropylaniline and formalin
  • reaction product of 2,6-diethylaniline and formalin reaction product of 2,6-diethylaniline and formalin
  • 2-ethyl - Reaction product of 6-ethylaniline and formalin reaction product of 2,6-dimethylaniline and formalin
  • aniline resin obtained by reaction of aniline and xylylene chloride, substituted with aniline described in Japanese Patent No.
  • a maleimide compound is a compound having one or more maleimide groups in its molecule.
  • the curable resin composition of this embodiment may contain a maleimide compound.
  • maleimide compounds include 4,4'-diphenylmethane bismaleimide, polyphenylmethane maleimide, m-phenylene bismaleimide, 2,2'-bis[4-(4-maleimidophenoxy)phenyl]propane, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylsulfone bismaleimide, 1,3-bis(3-maleimidophenoxy)benzene, 1,3-bis(4-maleimidophenoxy)benzene), Zyrock-type maleimide compound (Anilix Maleimide, manufactured by Mits
  • the amount of the maleimide compound added is preferably 10 times or less, more preferably 5 times or less, particularly preferably 3 times or less by mass relative to the compound represented by formula (1) above. Further, a preferable lower limit is 0.01 times by mass or more, more preferably 0.1 times by mass or more. Within the above range, the heat resistance, dielectric properties, and low water absorption effects of the compound represented by formula (1) can be utilized.
  • a compound containing an ethylenically unsaturated bond is a compound having one or more ethylenically unsaturated bonds in its molecule that can be polymerized by heat or light, regardless of whether a polymerization initiator is used or not.
  • Examples of compounds containing ethylenically unsaturated bonds include the above-mentioned phenolic resins and halogenated compounds containing ethylenically unsaturated bonds (chloromethylstyrene, allyl chloride, methallyl chloride, acrylic acid chloride, methacrylic acid chloride, etc.) reactants, phenols containing ethylenically unsaturated bonds (2-allylphenol, 2-propenylphenol, 4-allylphenol, 4-propenylphenol, eugenol, isoeugenol, etc.) and halogen compounds (1,4-bis( (chloromethyl)benzene, 4,4'-bis(chloromethyl)biphenyl, 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-dibromobenzophenone, cyanuric chloride, etc.), epoxy Examples include, but are not limited to, reaction products of resins or
  • An isocyanate resin is a compound having two or more isocyanate groups in its molecule.
  • Examples of the isocyanate resin include p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylene diisocyanate, m-xylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate.
  • aromatic diisocyanates such as naphthalene diisocyanate, aliphatic or alicyclic diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylene diisocyanate, norbornene diisocyanate, lysine diisocyanate, isocyanate monomers
  • polyisocyanates such as isocyanate bodies obtained by trimerizing one or more types of burettes or the above diisocyanate compounds, and polyisocyanates obtained by a urethanization reaction between the above isocyanate compounds and a polyol compound. It's not a thing. Further, these may be used alone or in combination.
  • polyamide resin examples include a reaction product of dicarboxylic acid with one or more of diamine, diisocyanate, and oxazoline, a reaction product of diamine and acid chloride, and a ring-opening polymer of a lactam compound. Further, these may be used alone or in combination. Specific examples of each of the above-mentioned raw materials are illustrated below, but are not limited thereto.
  • ⁇ Dicarboxylic acid> Oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, 5-hydroxyisophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, cyclohexanedicarboxylic acid, biphenyldicarboxylic acid, naphthalenedicarboxylic acid, benzophenonedicarboxylic acid, furandicarboxylic acid, 4 , 4'-dicarboxydiphenyl ether, 4,4'-dicarboxydiphenyl sulfide, etc.
  • ⁇ Acid chloride Acetyl chloride, acrylic acid chloride, methacrylic acid chloride, malonyl chloride, succinic acid dichloride, diglycolyl chloride, glutaric acid dichloride, suberic acid dichloride, sebacyl dichloride, adipic acid dichloride, dodecanedioyl dichloride, azeloyl chloride, 2, 5-furandicarbonyl dichloride, phthaloyl chloride, isophthaloyl chloride, terephthaloyl chloride, trimesic acid chloride, bis(4-chlorocarbonylphenyl)ether, 4,4'-diphenyldicarbonyl chloride, 4,4'-azo Dibenzoyl dichloride etc.
  • ⁇ Lactam > ⁇ -caprolactam, ⁇ -undecanelactam, ⁇ -laurolactam, etc.
  • polyimide resin examples include, but are not limited to, reaction products of the diamines described above and tetracarboxylic dianhydrides exemplified below. Further, these may be used alone or in combination.
  • Cyanate ester resin is a cyanate ester compound obtained by reacting a phenolic resin with cyanogen halide, and specific examples include dicyanatobenzene, tricyanatobenzene, dicyanatonaphthalene, dicyanatobiphenyl, 2, 2'-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)methane, bis(3,5-dimethyl-4-cyanatophenyl)methane, 2,2'-bis(3,5- Dimethyl-4-cyanatophenyl)propane, 2,2'-bis(4-cyanatophenyl)ethane, 2,2'-bis(4-cyanatophenyl)hexafluoropropane, bis(4-cyanatophenyl) Examples include, but are not limited to, sulfone, bis(4-cyanatophenyl)thioether, phenol novolac cyanate, and those obtained
  • cyanate ester compounds whose synthesis method is described in Japanese Patent Application Laid-open No. 2005-264154 are particularly preferred as cyanate ester compounds because they have low moisture absorption, excellent flame retardancy, and excellent dielectric properties.
  • the cyanate ester resin can optionally trimerize cyanate groups to form a sym-triazine ring. Catalysts such as lead acetylacetonate and dibutyltin maleate can also be included.
  • the catalyst is preferably used in an amount of 0.0001 to 0.10 parts by weight, preferably 0.00015 to 0.0015 parts by weight, per 100 parts by weight of the cyanate ester resin.
  • the curable resin composition of this embodiment is obtained by preparing the above-mentioned components in a predetermined ratio, is precured at 130 to 180°C for 30 to 500 seconds, and is further cured at 150 to 200°C for 200 to 200 seconds. By post-curing for ⁇ 15 hours, a sufficient curing reaction proceeds, and the cured product of this embodiment is obtained.
  • the components of the curable resin composition can be uniformly dispersed or dissolved in a solvent or the like, and the composition can be cured after removing the solvent.
  • the method for preparing the curable resin composition of this embodiment is not particularly limited, but the components may be simply mixed uniformly or may be prepolymerized. For example, by heating a mixture of the compound represented by formula (1) and other compounds in the presence or absence of a curing accelerator or polymerization initiator, and in the presence or absence of a solvent. Convert into prepolymer. Similarly, compounds such as amine compounds, compounds having ethylenically unsaturated bonds, maleimide compounds, cyanate ester compounds, polybutadiene and modified products thereof, polystyrene and modified products thereof, inorganic fillers, and other additives are added to preform. It may also be made into a polymer.
  • an extruder, kneader, roll, etc. are used in the absence of a solvent, and a reaction vessel equipped with a stirring device, etc., is used in the presence of a solvent.
  • the method for uniformly mixing is to knead the resin composition using a device such as a kneader, roll, or planetary mixer at a temperature within the range of 50 to 100° C. to obtain a uniform resin composition.
  • a device such as a kneader, roll, or planetary mixer
  • a curable resin composition molded product by melting it and molding it into a sheet with a thickness of 0.05 mm to 10 mm.
  • the obtained molded product becomes a non-sticky molded product at 0 to 20°C, and its fluidity and hardenability hardly decrease even if it is stored at -25 to 0°C for one week or more.
  • the obtained molded product can be molded into a cured product using a transfer molding machine or a compression molding machine.
  • the curable resin composition of this embodiment can also be made into a varnish-like composition (hereinafter simply referred to as varnish) by adding an organic solvent.
  • the curable resin composition of this embodiment is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl formamide, dimethyl acetamide, N-methyl pyrrolidone, etc. as necessary to form a varnish, which can be applied to glass fibers or carbon.
  • a cured product of the curable resin composition of this embodiment is obtained by hot press molding a prepreg obtained by impregnating a base material such as fiber, polyester fiber, polyamide fiber, alumina fiber, or paper and drying by heating.
  • the solvent used in this case is used in an amount that accounts for 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the curable resin composition of the present embodiment and the solvent. Further, if the composition is a liquid composition, a cured resin containing carbon fibers can be obtained as it is, for example, by the RTM method.
  • the curable composition of this embodiment can also be used as a modifier for film-type compositions. Specifically, it can be used to improve flexibility in the B-stage.
  • a film-type resin composition is obtained by applying the curable resin composition of the present embodiment as the curable resin composition varnish onto a release film, removing the solvent under heating, and then B-staging it. By doing this, a sheet-like adhesive is obtained.
  • This sheet adhesive can be used as an interlayer insulating layer in multilayer substrates and the like.
  • a prepreg can also be obtained by heating and melting the curable resin composition of this embodiment, reducing the viscosity, and impregnating it into reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers.
  • reinforcing fibers such as glass fibers, carbon fibers, polyester fibers, polyamide fibers, and alumina fibers.
  • Specific examples include glass fibers such as E glass cloth, D glass cloth, S glass cloth, Q glass cloth, spherical glass cloth, NE glass cloth, and T glass cloth, as well as inorganic fibers other than glass and polyester fibers.
  • Examples include, but are not limited to, paraphenylene terephthalamide (Kevlar (registered trademark), manufactured by DuPont), fully aromatic polyamide, polyester, polyparaphenylenebenzoxazole, polyimide, and organic fibers such as carbon fiber.
  • the shape of the base material is not particularly limited, and examples thereof include woven fabric, nonwoven fabric, roving, chopped strand mat, and the like.
  • plain weaving, Nanako weaving, twill weaving, etc. are known as weaving methods of the woven fabric, and the weaving method can be appropriately selected from these known methods depending on the intended use and performance.
  • woven fabrics subjected to opening treatment or glass woven fabrics whose surface is treated with a silane coupling agent or the like are preferably used.
  • the thickness of the base material is not particularly limited, but is preferably about 0.01 to 0.4 mm. Further, a prepreg can also be obtained by impregnating reinforcing fibers with the varnish and drying the impregnated fibers by heating.
  • a laminate can also be manufactured using the above prepreg.
  • the laminate is not particularly limited as long as it includes one or more prepregs, and may include any other layers.
  • the method for manufacturing the laminate is not particularly limited, and any generally known method can be appropriately applied. For example, when molding a metal foil-clad laminate, a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. can be used. Obtainable. At this time, the heating temperature is not particularly limited, but is preferably 65 to 300°C, more preferably 120 to 270°C.
  • the pressure to be applied is not particularly limited, but if the pressure is too high, it will be difficult to adjust the solids content of the resin in the laminate, and the quality will not be stable. If the pressure is too low, air bubbles and adhesion between the laminates may occur. 2.0 to 5.0 MPa is preferable, and 2.5 to 4.0 MPa is more preferable.
  • the laminate of this embodiment can be suitably used as a metal foil-clad laminate, which will be described later, by including a layer made of metal foil. After cutting the above prepreg into a desired shape and laminating it with copper foil etc. if necessary, the curable resin composition is heated and cured while applying pressure to the laminate using a press molding method, an autoclave molding method, a sheet winding molding method, etc. Electrical and electronic laminates (printed wiring boards) and carbon fiber reinforced materials can be obtained.
  • the curable resin composition of this embodiment can also be made into a resin sheet.
  • the curable resin composition is coated on a support film (support), and then dried, and the resin composition is coated on the support film.
  • Examples include a method of forming a layer.
  • the film softens under the laminating temperature conditions (70°C to 140°C) in the vacuum lamination method, and is present on the circuit board at the same time as the circuit board is laminated.
  • the resin exhibits fluidity (resin flow) that allows the resin to be filled in via holes or through holes, and it is preferable to mix the above-mentioned components so as to exhibit such characteristics.
  • the resulting resin sheets and circuit boards do not exhibit locally different characteristic values due to phase separation, and can maintain a constant level of performance at any location. In order to achieve this, uniformity in appearance is required.
  • the diameter of the through hole of the circuit board is 0.1 to 0.5 mm, and the depth is 0.1 to 1.2 mm, and it is preferable that resin filling is possible within this range. Note that when laminating both sides of the circuit board, it is desirable that about 1/2 of the through holes be filled.
  • the resin sheet after preparing a varnished resin composition by blending an organic solvent, applying the varnished resin composition to the surface of the support film (Y), Further, a method of forming the resin composition layer (X) by drying the organic solvent by heating or blowing hot air may be mentioned.
  • organic solvent used here examples include ketones such as acetone, methyl ethyl ketone, and cyclohexanone, acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate, cellosolve, butyl carbitol, and the like. It is preferable to use carbitols, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc., and it is also preferable to use them in a proportion such that the nonvolatile content is 30 to 60% by mass. preferable.
  • ketones such as acetone, methyl ethyl ketone, and cyclohexanone
  • acetic acid esters such as ethyl acetate, butyl acetate, cellosolve acetate, propylene
  • the thickness of the resin composition layer (X) to be formed needs to be greater than or equal to the thickness of the conductor layer. Since the conductor layer of the circuit board has a thickness in the range of 5 to 70 ⁇ m, the resin composition layer (X) preferably has a thickness of 10 to 100 ⁇ m.
  • the said resin composition layer (X) in this embodiment may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from adhering to the surface of the resin composition layer and from scratching it.
  • the supporting film and protective film may be made of polyolefin such as polyethylene, polypropylene, or polyvinyl chloride, polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate, polycarbonate, polyimide, or release paper or metal foil such as copper foil or aluminum foil. etc. can be mentioned.
  • PET polyethylene terephthalate
  • the support film and the protective film may be subjected to a release treatment in addition to mud treatment and corona treatment.
  • the thickness of the support film is not particularly limited, but is 10 to 150 ⁇ m, preferably 25 to 50 ⁇ m. Further, the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the support film (Y) is peeled off after being laminated onto the circuit board or after forming an insulating layer by heating and curing. If the support film (Y) is peeled off after the resin composition layer constituting the resin sheet is cured by heating, it is possible to prevent dust and the like from adhering during the curing process. If the support film is to be peeled off after curing, a release treatment is applied to the support film in advance.
  • a multilayer printed circuit board can be manufactured from the resin sheet obtained as described above.
  • the resin composition layer (X) is protected with a protective film, after peeling off the protective film, apply the resin composition layer (X) to one or both sides of the circuit board so as to be in direct contact with the circuit board.
  • the lamination method may be a batch method or a continuous method using rolls.
  • the resin sheet and the circuit board may be heated (preheated) before lamination.
  • the pressure bonding temperature (laminate temperature) is 70 to 140°C, and the pressure bonding pressure is 1 to 11 kgf/cm 2 (9.8 ⁇ 10 4 to 107.9 ⁇ 10 4 N/m 2 ). It is preferable that the lamination is carried out under a reduced air pressure of 20 mmHg (26.7 hPa) or less.
  • a semiconductor device can be manufactured using the curable resin composition of this embodiment.
  • semiconductor devices include DIP (dual in-line package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), SOP (small outline package), TSOP (thin small outline package), and TQFP. (Think Quad Flat Package), etc.
  • the curable resin composition of this embodiment and its cured product can be used in a wide range of fields. Specifically, it can be used for various purposes such as molding materials, adhesives, composite materials, and paints. Since the cured product of the curable resin composition described in this embodiment exhibits excellent heat resistance and dielectric properties, it can be used as an encapsulant for semiconductor devices, an encapsulant for liquid crystal display devices, an encapsulant for organic EL devices, and a laminate. Suitable for use in electrical and electronic components such as (printed wiring boards, BGA boards, build-up boards, etc.), lightweight and high-strength structural composite materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics, 3D printing, etc. .
  • GPC Online degassing unit (DGU-20A3R), binary liquid feeding unit (LC-20AD), autosampler (SIL-20AHT), differential refractive index detector (RID-20A), column oven (CTO-20A), system Controller (CBM-20A) (both manufactured by Shimadzu Corporation)
  • DGU-20A3R Online degassing unit
  • LC-20AD binary liquid feeding unit
  • SIL-20AHT autosampler
  • RID-20A differential refractive index detector
  • CTO-20A column oven
  • CBM-20A system Controller
  • HP-LC Binary liquid transfer unit (LC-20AB), online degassing unit (DGU-20A3), autosampler (SIL-20A), column oven (CTO-20A), system controller (CBM-20A), photodiode Array detector (SPD-M20A) (both manufactured by Shimadzu Corporation)
  • LC-20AB Binary liquid transfer unit
  • DGU-20A3 online degassing unit
  • SIL-20A autosampler
  • CTO-20A column oven
  • CBM-20A system controller
  • SPD-M20A photodiode Array detector
  • Example 1 300 parts of BEB-1 obtained in Synthesis Example 1, 245 parts of toluene, 735 parts of dimethyl sulfoxide, and 4-hydroxy-2,2,6,6-tetramethylpiperidine were placed in a flask equipped with a thermometer, a cooling tube, and a stirrer. 0.15 parts of -1-oxyl free radicals and 146.4 parts of a 50 wt% aqueous sodium hydroxide solution were added, and the reaction was continued at 40°C for 6 hours. After washing the organic layer by adding 100 parts of water, the organic layer was returned to the reaction vessel.
  • Example 2 300 parts of BEB-1 obtained in Synthesis Example 1, 245 parts of toluene, 735 parts of dimethyl sulfoxide, and 4-hydroxy-2,2,6,6-tetramethylpiperidine were placed in a flask equipped with a thermometer, a cooling tube, and a stirrer. 0.15 parts of -1-oxyl free radicals and 107.4 parts of a 50 wt% aqueous sodium hydroxide solution were added, and the reaction was continued at 40°C for 6 hours. After washing the organic layer by adding 100 parts of water, the organic layer was returned to the reaction vessel.
  • the area ratio (area percentage) of the compound having the structure where n is 1 in formula (7) to the total area of the compound having the structure represented by formula (7) is 41%.
  • the average molecular weight of the resin component was Mn: 799, Mw: 1297).
  • the HP-LC chart is shown in FIG.
  • Example 3 300 parts of BEB-1 obtained in Synthesis Example 1, 375 parts of toluene, 1125 parts of dimethyl sulfoxide, and 4-hydroxy-2,2,6,6-tetramethylpiperidine were placed in a flask equipped with a thermometer, a cooling tube, and a stirrer. 0.15 parts of -1-oxyl free radicals and 146.4 parts of a 50 wt% aqueous sodium hydroxide solution were added, and the reaction was continued at 40°C for 6 hours. After washing the organic layer by adding 100 parts of water, the organic layer was returned to the reaction vessel.
  • the area ratio (area percentage) of the compound having a structure where n in formula (7) is 1 to the total area of the compound having the structure represented by formula (7) is 35%.
  • the average molecular weight of the resin component was Mn: 834, Mw: 1170).
  • the HP-LC chart is shown in FIG.
  • Example 4 300 parts of BEB-1 obtained in Synthesis Example 1, 245 parts of toluene, 735 parts of dimethyl sulfoxide, and 4-hydroxy-2,2,6,6-tetramethylpiperidine were placed in a flask equipped with a thermometer, a cooling tube, and a stirrer. 0.15 parts of -1-oxyl free radicals and 146.4 parts of a 50 wt% aqueous sodium hydroxide solution were added, and the reaction was continued at 25°C for 6 hours. After washing the organic layer by adding 100 parts of water, the organic layer was returned to the reaction vessel.
  • the area ratio (area percentage) of the compound having the structure where n is 1 in formula (7) to the total area of the compound having the structure represented by formula (7) is 41%.
  • the average molecular weight of the resin component was Mn: 802, Mw: 1291).
  • the HP-LC chart is shown in FIG.
  • the average value n ave of repeating units n calculated from the area percentage of the GPC chart was 2.2. Furthermore, the ratio of the area of the compound having the structure where n is 1 in formula (7) to the total area of the compound having the structure represented by formula (7) in the product (GPC area percentage) is 65 % (the average molecular weight of the resin component was Mn: 624, Mw: 778).
  • the HP-LC chart is shown in FIG.
  • the sum ⁇ of the peak areas of the compounds represented by formulas (2) to (4) in the chromatogram obtained by HPLC is calculated as "the content of the compounds V to Y in each compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

優れた溶剤安定性、低誘電特性を有する化合物、硬化性樹脂組成物及びその硬化物を提供する。下記式(1)で表される化合物であって、前記化合物総量中、式(1)中のnが1である化合物がGPC面積百分率で50%未満である化合物。(式(1)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数である。nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。)

Description

化合物、硬化性樹脂組成物およびその硬化物ならびに化合物の製造方法
 本発明は、化合物、硬化性樹脂組成物、及びその硬化物ならびに化合物の製造方法に関するものであり、半導体封止材、プリント配線基板、ビルドアップ積層板などの電気・電子部品、炭素繊維強化プラスチック、ガラス繊維強化プラスチックなどの軽量高強度材料、3Dプリンティング用途に好適に使用される。
 近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。従来の半導体チップは金属製のリードフレームに搭載することが主流であったが、中央処理装置(以下、CPUと表す。)などの処理能力の高い半導体チップは高分子材料で作られる積層板に搭載されることが多くなってきている。
 特にスマートフォンなどに使用されている半導体パッケージ(以下、PKGと表す。)では小型化、薄型化および高密度化の要求に応えるために、PKG基板の薄型化が求められているが、PKG基板が薄くなると剛性が低下するため、PKGをマザーボード(プリント回路板:PCB)に半田実装する際の加熱によって、大きな反りが発生するなど不具合が発生する。これを低減するために半田実装温度以上の高TgのPKG基板材料が求められている。
 加えて、現在開発が加速している第5世代通信システム「5G」では、さらなる大容量化と高速通信が進むことが予想されている。低誘電正接材料のニーズがますます高まってきており、様々な検討が進められている。特許文献1には、(A)マレイミド基を有するイミド化合物、(B)1分子中に脂肪族不飽和結合を有するフェノールアラルキル樹脂を必須成分とする熱硬化性樹脂組成物が記載されている。特許文献2には、アリルエーテル変性ビフェニルアラルキルノボラック樹脂が記載されている。特許文献3には、スチレン構造を有する化合物が記載されている。
日本国特開平04-359911号公報 国際公開2016/002704号 日本国特許第6951829号公報
 本願出願人は、特許文献3を追試したところ、特許文献3記載の方法で合成した場合、合成した化合物をトルエン等の溶剤に溶解した状態で保管した際に、結晶が析出するといった問題が生じていた。この結晶析出の問題を解決するために、高分子量である2-ブロモエチルベンゼン構造を有する化合物前駆体を使用することも検討したが、この場合は高分子側のスチレン化反応が進行しきらないといった問題が生じた。さらに、反応を促進させるために反応条件を過酷にする検討もしたが、反応の進行率(コンバージョン)は上がるものの、不純物量の増加による電気特性の低下や、意図せぬラジカル重合反応の進行による高分子量化やゲル化といった別の問題が生じた。すなわち、溶剤安定性と不純物生成の抑制(低誘電特性)を両立することは極めて困難であった。
 本発明は、このような状況を鑑みてなされたものであり、優れた溶剤安定性、低誘電特性を有する化合物、硬化性樹脂組成物及びその硬化物ならびに化合物の製造方法を提供することを目的とする。
 すなわち本発明は、下記[1]~[13]に関する。
[1]
 下記式(1)で表される化合物であって、前記化合物総量中、式(1)中のnが1である化合物がGPC面積百分率で50%未満である化合物。
Figure JPOXMLDOC01-appb-C000010
 
(式(1)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数である、nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。)
[2]
 下記式(2)~(4)で表される化合物のHP-LCのピーク面積の総和(α)を前記式(1)中のnが1である化合物のHP-LCのピーク面積(β)で除した値(α/β)が0.10以下である前項[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000011
 
(式(2)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。複数存在するsはそれぞれ独立して0~4の整数である。)
Figure JPOXMLDOC01-appb-C000012
 
(式(3)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。複数存在するAはそれぞれ独立して、下記式(3-a)~(3-c)のいずれか1種である。複数存在するsはそれぞれ独立して0~4の整数、tは0~3の整数である。)
Figure JPOXMLDOC01-appb-C000013
 
 (式(3-a)~(3-c)中、*は、式(3)の化合物の芳香環との結合位置を表す。)
Figure JPOXMLDOC01-appb-C000014
 
(式(4)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。複数存在するBはそれぞれ独立して、下記式(4-d)または(4-e)である。Dは下記式(4-f)である。複数存在するsはそれぞれ独立して0~4の整数、tは0~3の整数である。式(4)中の5個のmのうち1つが1であり、そのほかの4つは0である。)
Figure JPOXMLDOC01-appb-C000015
 
 (式(4-d)~(4-f)中、*は、式(4)の化合物の芳香環との結合位置を表す。)
[3]
 前記式(1)中、p=0、q=0、r=0である前項[1]または[2]に記載の化合物。
[4]
 前記式(1)で表される化合物は下記式(5)で表される化合物から誘導される前項[1]から[3]のいずれか一項に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
 
(式(5)中、複数存在するRはそれぞれ独立して存在し、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数であり、nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。Xはハロゲン原子を表す。)
[5]
 重合禁止剤をさらに含有する、前項[1]から[4]のいずれか一項に記載の混合物。
[6]
 前項[1]から[4]のいずれか一項に記載の化合物、または前項[5]に記載の混合物を含有する硬化性樹脂組成物。
[7]
 ポリフェニレンエーテル化合物、ポリブタジエンおよびこの変性物、ポリスチレンおよびこの変性物、のうちいずれか1つ以上を含有する前項[6]に記載の硬化性樹脂組成物。
[8]
 ラジカル重合開始剤を含有する前項[6]または[7]に記載の硬化性樹脂組成物。
[9]
 前項[1]から[4]のいずれか一項に記載の化合物、前項[5]に記載の混合物、または前項[6]から[8]のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。
[10]
 下記式(5)で表される化合物を、塩基性触媒の存在下、下記式(5)で表される化合物の4~7重量倍の溶剤中で脱ハロゲン化水素反応させて得られる下記式(1)で表される化合物の製造方法。
Figure JPOXMLDOC01-appb-C000017
 
(式(1)中、複数存在するRはそれぞれ独立して存在し、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数である、nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。)
Figure JPOXMLDOC01-appb-C000018
 
(式(5)中、複数存在するRはそれぞれ独立して存在し、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数であり、nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。Xはハロゲン原子を表す。)
[11]
 前記溶剤が非プロトン性極性溶剤と非水溶性溶剤との混合溶剤である前項[10]に記載の化合物の製造方法。
[12]
 前記非プロトン性極性溶剤を前記非水溶性溶剤の1~10重量倍使用する前項[11]に記載の化合物の製造方法。
[13]
 前記非プロトン性極性溶剤としてジメチルスルホキシド、前記非水溶性溶剤としてトルエンを使用する前項[11]または[12]に記載の化合物の製造方法。
 本発明の化合物は溶剤溶解性に優れ、その硬化物は低誘電特性に優れた特性を有する。そのため、電気電子部品の封止や回路基板、炭素繊維複合材などに有用な材料である。
合成例1のGPCチャートを示す。 実施例1のGPCチャートを示す。 実施例1のH-NMRチャートを示す。 実施例1のLC-MSチャートを示す。 実施例1のHP-LCチャートを示す。 実施例2のGPCチャートを示す。 実施例2のHP-LCチャートを示す。 実施例3のGPCチャートを示す。 実施例3のHP-LCチャートを示す。 実施例4のGPCチャートを示す。 実施例4のHP-LCチャートを示す。 比較合成例1のGPCチャートを示す。 比較合成例2のGPCチャートを示す。 比較合成例2のHP-LCチャートを示す。
 本実施形態の化合物は下記式(1)で表されるものであって、前記化合物総量中、ゲルパーミエーションクロマトグラフィー(以下、GPCとも言う。)により得られたクロマトグラムにおける式(1)で表される構造を有する化合物の面積(信号値の時間積分値)の総和に対する、式(1)中のnが1である化合物の面積(信号値の時間積分値)の割合(面積百分率)が50%未満である。式(1)中のnが1である構造を有する化合物の面積百分率が50%以上の場合、前記式(1)で表される化合物を含有する樹脂溶液を保管した際に結晶が析出してしまう(すなわち、溶剤溶解性が低下する)恐れがある。
Figure JPOXMLDOC01-appb-C000019
 
(式(1)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数である。nは繰り返し数であってnの平均値naveは1≦nave≦20を満たす。)
 前記式(1)中、pおよびrは通常0~4であり、好ましくは0~2、さらに好ましくは0である。qは通常0~3であり、好ましくは0~2、さらに好ましくは0である。naveは通常1≦n≦20であり、1.1≦nave≦20であることが好ましく、1.1≦nave≦10であることがさらに好ましく、1.1≦nave≦5であることが特に好ましい。naveの値は式(1)の化合物のGPC測定により求められた数平均分子量(Mn)の値等から算出することができる。数平均分子量は、200以上5000未満であるときが好ましく、300以上3000未満であるときがさらに好ましく、400以上2000未満であるときが特に好ましい。数平均分子量が5000未満であると水洗による精製が容易となり、200以上であると溶剤留去工程において目的化合物が揮発することがない。
 前記式(1)中、Rは、炭素数1~10の炭化水素基またはハロゲン化アルキル基であり、好ましくは炭素数1~10の炭化水素基であり、さらに好ましくは炭素数1~5の炭化水素基であり、特に好ましくは炭素数1~3の炭化水素基である。Rは炭素数が少ない場合、高周波に晒された際に分子振動をしにくくなるため、上記記載のうち炭素数1~3の炭化水素基である場合に、特に電気特性に優れる。
 なお、本実施形態のGPC測定は以下の条件で行っている。
<GPC>
 GPC:オンライン脱気ユニット(DGU-20A3R),バイナリ送液ユニット(LC-20AD),オートサンプラ(SIL-20AHT),示差屈折率検出器(RID-20A),カラムオーブン(CTO-20A),システムコントローラ(CBM-20A)(いずれも島津製作所製)
 カラム:Shodex KF-603×1、KF-602.5×1、KF-602×1、KF-601×1(いずれも昭和電工社製)
ガードカラム:Shodex KF-G 4A(昭和電工社製)
 連結溶離液:テトラヒドロフラン
 流速:1.5ml/min.
 カラム温度:40℃
 検出:RI(示差屈折率検出器)
 前記式(1)で表される化合物は、副生成物として、下記式(2)~(4)で表される化合物を含有している場合があり、高速液体クロマトグラフィー(HP-LC)により得られたクロマトグラムにおける下記式(2)~(4)で表される化合物のピーク面積の総和(α)を、前記式(1)のnが1である化合物のHP-LCのピーク面積(β)で除した値(α/β)が0.10以下であることが好ましく、0.07以下であることが更に好ましい。ここで、「ピーク面積」とは、ピークの両すそを結ぶ直線とピークとが囲む面積である。実際には、半値幅法による近似値またはピーク時の出力を積算したカウント数で求める(JIS K0214:2013)。下記式(2)~(4)で表される化合物は、その構造中に極性基を有するため、これらの含有量が増加すると誘電特性が悪化するためである。(α/β)の値の下限値は0でも構わないが、0.01である場合がより好ましい。0.01以上であると、密着性、溶剤溶解性、極性基を有する化合物との相溶性が向上するためである。
Figure JPOXMLDOC01-appb-C000020
 
(式(2)中、複数存在するRはそれぞれ独立して存在し、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。sは0~4の整数である。)
Figure JPOXMLDOC01-appb-C000021
 
(式(3)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。複数存在するAはそれぞれ独立して、下記式(3-a)~(3-c)のいずれか1種である。sは0~4の整数、tは0~3の整数である。)
Figure JPOXMLDOC01-appb-C000022
 
 (式(3-a)~(3-c)中、*は、式(3)の化合物の芳香環との結合位置を表す。)
Figure JPOXMLDOC01-appb-C000023
 
(式(4)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。複数存在するBはそれぞれ独立して、下記式(4-d)または(4-e)である。Dは下記式(4-f)である。複数存在するsはそれぞれ独立して0~4の整数、tは0~3の整数である。式(4)中の5個のmのうち1つが1であり、そのほかの4つは0である。)
Figure JPOXMLDOC01-appb-C000024
 
 (式(4-d)~(4-f)中、*は、式(4)の化合物の芳香環との結合位置を表す。)
 一般に、前記式(2)~(4)で表される化合物のような副生成物は精製により除去することが考えられるが、前記式(1)で表される化合物の場合、蒸留、再結晶、水洗など精製方法では前記式(2)~(4)で表される化合物を除去することが難しい。具体的に説明すると、前記式(1)で表される化合物はスチレン構造を官能基として有するため、反応性が高く、蒸留等の過熱が必要な精製方法では意図せぬ重合が進行してしまう。また、前記式(1)で表される化合物は、溶剤留去後に液状の化合物であることからもわかる通り、結晶構造を取りづらいため、収率よく再結晶させることは困難である。さらに、水洗は特許文献3においてもすでに行っているが効果は少ない。
 こうしたことから、本実施形態では、前記式(1)で表される化合物の合成工程において反応温度や溶剤量および溶剤の混合比率を調整することで、前記式(2)~(4)で表される化合物の生成量を制御している。前記式(1)で表される化合物の合成方法の詳細は後述する。
 なお、本実施形態では、液体クロマトグラフィー質量分析(以下、LC-MSとも言う。)によって構造分析を行い、高速液体クロマトグラフィー(以下、HP-LCとも言う)によって前記式(2)~(4)で表される化合物の含有量を分析している。
<LC-MS>
 装置:超高速液体クロマトグラフ(UHPLC)システム(Ultimate3000)、質量分析計(Q-Exactive(登録商標))(いずれもサーモフィッシャーサイエンティフィック社製)
 カラム:ОDS-2(ジーエルサイエンス社製)
 連結溶離液:テトラヒドロフラン:水=3:1(グラジエントなし)
 流速:0.5ml/min.
 イオン化モード:ESI
 マスレンジ:m/z=150-2000
<HP-LC>
 装置:バイナリ送液ユニット(LC-20AB)、オンライン脱気ユニット(DGU-20A3R)、オートサンプラ(SIL-20A)、カラムオーブン(CTO-20A)、システムコントローラ(CBM-20A)、フォトダイオードアレイ検出器(SPD-M20A)(いずれも島津製作所製)
 カラム:ОDS-2(ジーエルサイエンス社製)
 連結溶離液:テトラヒドロフラン:水=3:1(グラジエントなし)
 流速:0.5ml/min.
 カラム温度:40℃
 検出:PDA(フォトダイオードアレイ検出器)
 検出器:274nm
 前記式(1)で表される化合物の水酸基当量は100000g/eq.以下であることが好ましい。水酸基当量が100000g/eq.以下であると、電気特性や低熱性を損なうことなく、密着性、溶剤溶解性、極性基を有する化合物との相溶性が向上するためである。
 前記式(1)で表される化合物は、下記式(5)で表される化合物から誘導される。
Figure JPOXMLDOC01-appb-C000025
 
(式(5)中、複数存在するRはそれぞれ独立して存在し、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数であり、nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。Xはハロゲン原子を表す。)
 前記式(5)中のRの定義、p、r、q、およびnの平均値naveの好ましい範囲は前記式(1)と同じである。反応性と原料の安定性の観点から、Rがハロゲン化アルキル基を表すときのR中のハロゲン原子、およびXとしては臭素原子もしくは塩素原子が好ましく、臭素原子が特に好ましい。
 前記式(1)で表される化合物は、例えば、前記式(5)で表される化合物を塩基性触媒存在下、溶剤中で脱ハロゲン化水素反応(dehydrohalogenation)させる方法で得ることができる。使用する溶剤の量は、式(5)で表される化合物の4~7重量倍であることが好ましい。
 使用する溶剤としては、非プロトン性極性溶剤が好ましく、ジメチルスルホン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンなどが挙げられ、2種以上を併用しても良い。
 また、非プロトン性極性溶剤に非水溶性溶剤を併用して混合溶剤とすることも好ましい。この場合、非プロトン性極性溶剤としては、ジメチルスルホキシド、ジメチルホルムアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドンが好ましい。非水溶性溶剤としては、ベンゼン、トルエン、キシレン、メシチレン、ヘキサン、シクロヘキサン、メチルシクロヘキサンが好ましい。これらのうち最も好ましい組み合わせとしては、ジメチルスルホキシドとトルエンの組み合わせである。
 前記混合溶剤において、前記非プロトン性極性溶剤は前記非水溶性溶剤の1~10重量倍使用することが好ましく、さらに好ましくは1~8倍、特に好ましくは2~6倍である。1倍未満の場合は反応が進行しづらくなり、原料が残存する恐れがある。10倍を超える場合、反応促進効果は高いものの、前記式(2)~(4)で表される化合物の生成量が増加しやすい。本反応は反応後半で非プロトン性極性溶剤層および非水溶性溶剤層の2層に分離した状態で反応が進行するため、界面での反応性を制御する観点から上記範囲が好ましい。
 使用する溶剤の総量は前記式(5)で表される化合物に対し、1~9重量倍であることが好ましく、さらに好ましくは2~8重量倍であり、特に好ましくは3~7重量倍である。1重量倍未満の場合は塩の析出により攪拌が困難となる恐れがあり、9重量倍より多い場合は釜効率(1バッチで合成できる樹脂の得量)が著しく低下する恐れがある。
 反応温度は0~80℃であることが好ましく、より好ましくは10~60℃、さらに好ましくは26~70℃である。0℃未満は反応が十分に進行しない恐れがあり、80℃より高いとスチレン構造の重合反応が併発するために、ゲル化が進行してしまう恐れがある。
 触媒は特に限定されないが、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等の塩基性触媒が挙げられる。完全に脱ハロゲン化水素反応を進行させるのは困難であることから、非プロトン性極性溶剤を基質に対して大過剰に用いてもよいし、脱ハロゲン化水素反応は2回もしくは3回以上の複数回繰り返し行ってもよい。例えば有機溶媒中で塩基触媒存在下、前記式(2)で表される化合物の脱ハロゲン化水素反応を実施し得られた溶液を水洗後、再び反応容器に戻して、塩基触媒を加えて再度反応させてもよい。こうすることで脱ハロゲン化水素化反応の進行度を高めることができる。即ち目的化合物中に含まれる残存ハロゲンの質量濃度を減少させることが可能である。残存ハロゲンの質量濃度としては目的物中1~10000ppmが好ましく、より好ましくは1~1000ppm、さらに好ましくは1~750ppmである。前記式(1)で表される化合物中に含まれる残存ハロゲンの質量濃度が多いと、高周波にさらされた際に分子振動を起こし、特に誘電正接などの電気特性に悪影響を及ぼす恐れがある。また、残存ハロゲンの質量濃度が多い場合、HAST試験(High Accelerated Stress Test)等の環境試験において、金属腐食やイオンマイグレーション等の不具合を起こすリスクが増大する恐れがあるため、上記ハロゲン含有量であることが好ましい。
 前記式(5)で表される化合物の製法は特に限定されないが、例えば、(2-ブロモエチル)ベンゼン構造を有する化合物とビスハロゲン化メチルアリール化合物(もしくは、ビスヒドロキシメチルアリール化合物等)を塩酸やスルホン酸、活性白土等の酸触媒下反応させても良いし、(2-ブロモエチル)ベンゼン構造を有する化合物とビスヒドロキシメチルアリール化合物を塩酸やスルホン酸、活性白土等の酸触媒下反応させても良い。スルホン酸等を触媒とした場合、水酸化ナトリウムや水酸化カリウム等のアルカリ金属で中和を行ってから抽出工程に進んでも良い。抽出工程についてはトルエンやキシレン等の芳香族炭化水素溶媒を単独で用いてもよいし、シクロヘキサンやトルエン等の非芳香族炭化水素を併用しても良い。抽出後、排水が中性になるまで有機層を水洗し、エバポレータ等を用いて溶剤および過剰の(2-ブロモエチル)ベンゼン構造を有する化合物を留去することで目的の分子内に少なくとも2つ以上、2-ブロモエチルエチルベンゼン構造を有する化合物を得ることができる。
 (2-ブロモエチル)ベンゼン構造を有する化合物の仕込み比率としては、ビスハロゲン化メチルアリール化合物(もしくは、ビスヒドロキシメチルアリール化合物等)1モルに対し、1.0~4.0倍であることが好ましく、1.0~3.0であることがより好ましく、さらに好ましくは1.0~2.0である。仕込み比率が4.0倍以下であれば、前記式(1)で表される化合物を含有する樹脂溶液を冷蔵、もしくは冷凍保管した際の著しい結晶の析出を回避することができる。また、仕込み比率が1.0倍以上であれば高分子量体の著しい生成を回避でき、水洗による精製が可能となる。
 前記式(5)で表される化合物のうち、式(5)中のnが1である化合物の含有率は、GPC分析のRI(示差屈折率)検出器を用いて、クロマトグラムのスライスデータを取得し、式(5)で表される化合物に相当するスライスデータの面積(信号値の時間積分値)の総和に対する、式(5)中のnが1である化合物に相当するスライスデータの面積の割合(面積百分率)より求めることができる。前記式(5)中のnが1である化合物の含有率(面積百分率)としては25~75%であることが好ましく、より好ましくは30~60%であり、さらに好ましくは35~50%である。75%より多いと前記式(1)で表される化合物を含有する樹脂溶液を冷蔵、もしくは冷凍保管した際の著しい結晶の析出のおそれがある。また、25%未満では高分子量体の反応性が低下する恐れがある。これは、前記式(5)で表される化合物より誘導される前記式(1)で表される化合物を前記好ましい条件で合成する場合、高分子量体ほど反応が進行しづらいためである。
 (2-ブロモエチル)ベンゼン構造を有する化合物としては、例えば、(2-ブロモエチル)ベンゼン、1-(2-ブロモエチル)-2-メチルベンゼン、1-(2-ブロモエチル)-3-メチルベンゼン、1-(2-ブロモエチル)-4-メチルベンゼン、1-(2-ブロモエチル)-2,3-ジメチルベンゼン、1-(2-ブロモエチル)-2,4-ジメチルベンゼン、1-(2-ブロモエチル)-2,5-ジメチルベンゼン、1-(2-ブロモエチル)-2,6-ジメチルベンゼン等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。炭素数が多いと溶剤溶解性は向上するが、耐熱性が低下するため、無置換または炭素数1~3のアルキル基で置換されていることが好ましく、無置換または炭素数1~2のアルキル基で置換されていることがより好ましく、無置換またはメチル基で置換されていることが最も好ましい。
 ビスハロゲン化メチルアリール化合物としては、例えば、о-キシリレンジフルオライド、m-キシリレンジフルオライド、p-キシリレンジフルオライド、о-キシリレンジクロリド、m-キシリレンジクロリド、p-キシリレンジクロリド、о-キシリレンジブロミド、m-キシリレンジブロミド、p-キシリレンジブロミド、о-キシリレンジアイオダイド、m-キシリレンジアイオダイド、p-キシリレンジアイオダイド等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。合成時の原料の反応性の観点から、クロライド系化合物、ブロマイド系化合物、アイオダイド系化合物が好ましく、より好ましくはクロライド系化合物、ブロマイド系化合物が挙げられる。
 ビスヒドロキシメチルアリール化合物としては、例えば、о-ベンゼンジメタノール、m-ベンゼンジメタノール、p-ベンゼンジメタノール、等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。これらの使用量は、(2-ブロモエチル)ベンゼン構造を有する化合物1質量部に対して0.05~0.8質量部であることが好ましく、さらに好ましくは0.1~0.6質量部である。
 (2-ブロモエチル)ベンゼン構造を有する化合物とハロゲン化メチルアリール化合物等の反応の際、必要により、触媒として塩酸、燐酸、硫酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸のほか、塩化アルミニウム、塩化亜鉛等のルイス酸、活性白土、酸性白土、ホワイトカーボン、ゼオライト、シリカアルミナ等の固体酸、酸性イオン交換樹脂等を用いることができる。これらは単独でも二種以上併用しても良い。触媒の使用量は、使用される(2-ブロモエチル)ベンゼン構造を有する化合物1モルに対して0.05~0.8モルであり、好ましくは0.1~0.7モルである。触媒の使用量が多すぎると反応溶液の粘度が高すぎて攪拌が困難になる恐れがあり、少なすぎると反応の進行が遅くなる恐れがある。反応はヘキサン、シクロヘキサン、オクタン、トルエン、キシレンなどの有機溶剤を必要により選択して使用して行っても良く、無溶剤で行っても良い。例えば、(2-ブロモエチル)ベンゼン構造を有する化合物、ハロゲン化メチルアリール化合物、および溶剤の混合溶液に酸性触媒を添加した後、触媒が水を含む場合は共沸により水を系内から除く。しかる後に、40~180℃、好ましくは50~170℃で0.5~40時間反応を行う。反応終了後、アルカリ水溶液で酸性触媒を中和してもよいが、中和せずに水洗工程に進むこともできる。水洗工程については油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返す。
 前記式(5)で表される化合物の軟化点は80℃以下が好ましく、70℃以下がより好ましい。軟化点が80℃以下であると前記式(5)で表される化合物を前記式(1)で表される化合物へ誘導した際の粘度が低くなる。これにより、流動性の確保が容易となり、ガラスクロスや炭素繊維などの繊維状材料への含侵性が損なわれない上に、プリプレグ化など硬化性樹脂組成物を半硬化状態とすること(Bステージ化)が容易となる。希釈溶剤を増やして粘度を下げた場合、含浸工程において硬化性樹脂組成物が繊維状材料に対して十分に付着しない可能性がある。
[重合禁止剤]
 本実施形態の化合物、および硬化性樹脂組成物は、重合禁止剤を含有しても良い。重合禁止剤を含有することで保管安定性が向上するとともに、反応開始温度を制御することができる。反応開始温度を制御することで、流動性の確保が容易となり、ガラスクロスなどへの含侵性が損なわれない上に、プリプレグ化などBステージ化が容易となる。プリプレグ化時に重合反応が進行しすぎると積層工程で積層が困難となるなどの不具合が発生しやすい。
 重合禁止剤は、前記式(1)で表される化合物を合成するときに添加しても、合成後に添加してもよい。重合禁止剤の使用量は、前記式(1)で表される化合物100重量部に対して、0.008~1重量部、好ましくは0.01~0.5重量部である。
 重合禁止剤としては、例えば、フェノール系、イオウ系、リン系、ヒンダートアミン系、ニトロソ系、ニトロキシルラジカル系等が挙げられる。また、重合禁止剤は1種類で用いても、複数併用してもよい。これらのうち本実施形態では、フェノール系、ヒンダートアミン系、ニトロソ系、ニトロキシルラジカル系が好ましい。
 上記フェノール系重合禁止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、等のモノフェノール類、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類等が挙げられるが、これらに限定されるものではない。
 上記イオウ系重合禁止剤としては、例えば、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリルル-3,3’-チオジプロピオネート等が挙げられるが、これらに限定されるものではない。
 上記リン系重合禁止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類等が挙げられるが、これらに限定されるものではない。
 上記ヒンダートアミン系重合禁止剤としては、例えば、株式会社ADEKA製アデカスタブLA-40MP、アデカスタブLA-40Si、アデカスタブLA-402AF、アデカスタブLA-87、アデカスタブLA-82、アデカスタブLA-81、アデカスタブLA-77Y、アデカスタブLA-77G、アデカスタブLA-72、アデカスタブLA-68、アデカスタブLA-63P、アデカスタブLA-57、アデカスタブLA-52、BASFジャパン株式会社製Chimassorb2020FDL、Chimassorb944FDL、Chimassorb944LD、Tinuvin622SF、TinuvinPA144、Tinuvin765、Tinuvin770DF、TinuvinXT55FB、Tinuvin111FDL、Tinuvin783FDL、Tinuvin791FB等が挙げられるが、これらに限定されるものではない。
 上記ニトロソ系重合禁止剤としては、例えば、p-ニトロソフェノール、N-ニトロソジフェニルアミン、N-ニトロソフェニルヒドロキシアミンのアンモニウム塩、(クペロン)等が挙げられるが、これらに限定されるものではない。これらのうち、好ましくは、N-ニトロソフェニルヒドロキシアミンのアンモニウム塩(クペロン)である。
 上記ニトロキシルラジカル系重合禁止剤としては、例えば、ジ-tert-ブチルニトロキサイド、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-オキソ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-アミノ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-アセトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等が挙げられるが、これらに限定されるものではない。
[ポリフェニレンエーテル化合物]
 本実施形態の硬化性樹脂組成物は、ポリフェニレンエーテル化合物を含有してもよい。
 ポリフェニレンエーテル化合物としては、耐熱性と電気特性の観点から、エチレン性不飽和結合を有するポリフェニレンエーテル化合物であることが好ましく、アクリル基、メタクリル基、又はスチレン構造を有するポリフェニレンエーテル化合物であることがさらに好ましい。市販品としては、SA-9000(SABIC社製、メタクリル基を有するポリフェニレンエーテル化合物)やOPE-2St 1200(三菱瓦斯化学社製、スチレン構造を有するポリフェニレンエーテル化合物)などが挙げられる。
 ポリフェニレンエーテル化合物の数平均分子量(Mn)は、500~5000であることが好ましく、2000~5000であることがより好ましく、2000~4000であることがより好ましい。分子量が500未満であると、硬化物の耐熱性としては充分なものが得られない傾向がある。また、分子量が5000より大きいと、溶融粘度が高くなり、充分な流動性が得られないため、成形不良となりやすくなる傾向がある。また、反応性も低下して、硬化反応に長い時間を要し、硬化系に取り込まれずに未反応のものが増加して、硬化物のガラス転移温度が低下し、硬化物の耐熱性が低下する傾向がある。
 ポリフェニレンエーテル化合物の数平均分子量が500~5000であれば、優れた誘電特性を維持したまま、優れた耐熱性及び成形性等を発現させることができる。なお、ここでの数平均分子量は、具体的には、ゲルパーミエーションクロマトグラフィー等を用いて測定することができる。
 ポリフェニレンエーテル化合物は、重合反応により得られたものであっても、数平均分子量10000~30000程度の高分子量のポリフェニレンエーテル化合物を再分配反応させて得られたものであってもよい。また、これらを原料として、メタクリルクロリド、アクリルクロリド、クロロメチルスチレン等、エチレン性不飽和結合を有する化合物と反応させることでラジカル重合性を付与してもよい。再分配反応によって得られたポリフェニレンエーテル化合物は、例えば、高分子量のポリフェニレンエーテル化合部をトルエン等の溶媒中で、フェノール化合物とラジカル開始剤との存在下で加熱し再分配反応させて得られる。このように再分配反応により得られるポリフェニレンエーテル化合物は、分子鎖の両末端に硬化に寄与するフェノール系化合物に由来する水酸基を有するために、さらに高い耐熱性を維持することができることに加え、エチレン性不飽和結合を有する化合物で変性した後も分子鎖の両末端に官能基を導入できる点から好ましい。また、重合反応により得られたポリフェニレンエーテル化合物は、優れた流動性を示す点から好ましい。
 ポリフェニレンエーテル化合物の分子量の調整は、重合反応により得られたポリフェニレンエーテル化合物の場合、重合条件等を調整することにより行うことができる。また、再分配反応によって得られたポリフェニレンエーテル化合物の場合は、再分配反応の条件等を調整することにより、得られるポリフェニレンエーテル化合物の分子量を調整することができる。より具体的には、再分配反応において用いるフェノール系化合物の配合量を調整すること等が考えられる。すなわち、フェノール系化合物の配合量が多いほど、得られるポリフェニレンエーテル化合物の分子量が低くなる。この際、再分配反応を受ける高分子量のポリフェニレンエーテル化合物としては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)等を用いることができる。また、前記再分配反応に用いられるフェノール系化合物としては、特に限定されないが、例えば、ビスフェノールA、フェノールノボラック、クレゾールノボラック等のように、フェノール性水酸基を分子中に2個以上有する多官能のフェノール系化合物が好ましく用いられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ポリフェニレンエーテル化合物の含有量は、特に限定されないが、前記式(1)で表される化合物100質量部に対し、5~1000質量部であることが好ましく、10~750質量部であることがより好ましい。ポリフェニレンエーテル化合物の含有量が上記範囲であると、耐熱性等に優れるだけではなく、ポリフェニレンエーテル化合物の有する優れた誘電特性を充分に発揮された硬化物が得られる点で好ましい。
[ポリブタジエンおよびこの変性物]
 本実施形態の硬化性樹脂組成物は、ポリブタジエンおよびこの変性物を含有してもよい。
 ポリブタジエンおよびこの変性物とは、ポリブタジエン、もしくはポリブタジエンに由来する構造を分子内に有する化合物である。ポリブタジエンに由来する構造は水素添加により、不飽和結合を一部、もしくは全て単結合に変換されていても良い。
 ポリブタジエンおよびこの変性物としては、例えば、ポリブタジエン、水酸基末端ポリブタジエン、末端(メタ)アクリレート化ポリブタジエン、カルボン酸末端ポリブタジエン、アミン末端ポリブタジエン、スチレンブタジエンゴム等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。これらのうち、誘電特性の観点からポリブタジエンもしくはスチレンブタジエンゴムが好ましい。スチレンブタジエンゴム(SBR)としては例えば、RICON-100、RICON-181、RICON-184(いずれもクレイバレー社製)、1,2-SBS(日本曹達社製)などが挙げられ、ポリブタジエンとしては、B-1000、B-2000、B-3000(いずれも日本曹達社製)等が挙げられる。ポリブタジエンおよびスチレンブタジエンゴムの分子量としては重量平均分子量500~10000が好ましく、より好ましくは750~7500、さらに好ましくは1000~5000である。上記範囲の下限以下では揮発量が多く、プリプレグ作成時の固形分調整が困難となり、上記範囲の上限以上では、他の硬化性樹脂との相溶性が悪化する。一般に、ビスマレイミドやポリマレイミドのような酸素や窒素などのヘテロ原子を含む化合物の場合、その極性に起因し、主に炭化水素から構成される化合物もしくは炭化水素のみからなる化合物のような低極性化合物との相溶性の担保が困難である。一方、前記式(1)で表される化合物は、それ自体が酸素や窒素などのヘテロ原子を積極的に導入した骨格設計ではないことに起因し、低極性かつ低誘電特性を有する材料や、炭化水素のみで構成される化合物との相溶性にも優れる。
 ポリブタジエンおよびこの変性物の含有量は、特に限定されないが、前記式(1)で表される化合物100質量部に対し、5~1000質量部であることが好ましく、10~750質量部であることがより好ましい。ポリブタジエンおよびこの変性物が上記範囲であると、耐熱性等に優れるだけではなく、ポリブタジエンおよびこの変性物の有する優れた誘電特性を充分に発揮された硬化物が得られる点で好ましい。
[ポリスチレンおよびこの変性物]
 本実施形態の硬化性樹脂組成物は、ポリスチレンおよびこの変性物を含有してもよい。
 ポリスチレンおよびこの変性物とは、ポリスチレン、もしくはポリスチレンに由来する構造を分子内に有する化合物である。
 ポリスチレンおよびこの変性物としては、例えば、ポリスチレン、スチレン・2-イソプロペニル-2-オキサゾリン共重合体(エポクロス RPS-1005、RP-61 いずれも日本触媒社製)、SEP(スチレン-エチレン・プロピレン共重合体:セプトン1020 クラレ社製)、SEPS(スチレン-エチレン・プロピレン-スチレン共重合体:セプトン2002、セプトン2004F、セプトン2005、セプトン2006、セプトン2063、セプトン2104 いずれもクラレ社製)、SEEPS(スチレン-エチレン/エチレン・プロピレン-スチレンブロック共重合体:セプトン4003、セプトン4044、セプトン4055、セプトン4077、セプトン4099 いずれもクラレ社製)、SEBS(スチレン-エチレン・ブチレン-スチレン ブロック共重合体:セプトン8004、セプトン8006、セプトン8007L いずれもクラレ社製)、SEEPS-ОH(スチレン-エチレン/エチレン・プロピレン-スチレンブロック共重合体の末端に水酸基を有する化合物:セプトンHG252 クラレ社製)、SIS(スチレン-イソプレン-スチレン ブロック共重合体:セプトン5125、セプトン5127 いずれもクラレ社製)、水添SIS(水添スチレン-イソプレン-スチレン ブロック共重合体:ハイブラー7125F、ハイブラー7311F いずれもクラレ社製)、SIBS(スチレン-イソブチレン-スチレンブロック共重合体:SIBSTAR073T、SIBSTAR102T、SIBSTAR103T(いずれもカネカ社製)、セプトンV9827(クラレ社製))等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。ポリスチレンおよびこの変性物は、より高い耐熱性を有し、かつ酸化劣化しにくいため、不飽和結合を有さないものが好ましい。また、ポリスチレンおよびこの変性物の重量平均分子量は10000以上であれば特に制限はないが、大きすぎるとポリフェニレンエーテル化合物のほか、重量平均分子量50~1000程度の低分子量成分および、重量平均分子量1000~5000程度のオリゴマー成分との相溶性が悪化し、混合および溶剤安定性の担保が困難になることから、10000~300000程度であることが好ましい。
 ポリスチレンおよびこの変性物の含有量は、特に限定されないが、前記式(1)で表される化合物100質量部に対し、5~1000質量部であることが好ましく、10~750質量部であることがより好ましい。スチレンおよびこの変性物が上記範囲であると、耐熱性等に優れるだけではなく、ポリスチレンおよびこの変性物の有する優れた誘電特性を充分に発揮された硬化物が得られる点で好ましい。
[無機充填剤]
 本実施形態の硬化性樹脂組成物は、無機充填剤を含有しても良い。無機充填剤としては、例えば、溶融シリカ、結晶シリカ、多孔質シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、石英粉、炭化珪素、窒化珪素、窒化ホウ素、ジルコニア、窒化アルミニウム、グラファイト、フォルステライト、ステアタイト、スピネル、ムライト、チタニア、タルク、クレー、酸化鉄アスベスト、ガラス粉末等の粉体、またはこれらを球形状あるいは破砕状にした無機充填材等を挙げることができるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 無機充填材を半導体封止用の硬化性樹脂組成物を得る場合の使用量は硬化性樹脂組成物100質量部中、好ましくは80~92質量部であり、さらに好ましくは83~90質量部である。また、層間絶縁層形成材料、銅張積層板やプリプレグ、RCC等の基板材料用の硬化性樹脂組成物を得る場合、上記の無機充填材の使用量は硬化性樹脂組成物100質量部中、好ましくは5~80質量部、さらに好ましくは10~60質量部である。
[硬化促進剤]
 本実施形態の硬化性樹脂組成物は、硬化促進剤を添加することにより硬化性を向上させることもできる。硬化促進剤としては、紫外線や可視光の照射または加熱によりアニオンを発生することで硬化反応を促すアニオン系硬化促進剤もしくは、紫外線や可視光の照射または加熱によりカチオンを発生することで硬化反応を促すカチオン系硬化促進剤が好ましい。
 アニオン系硬化促進剤としては例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましい。その他、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウムヒドロキシドなどの4級アンモニウム塩等が挙げられる。
 カチオン系硬化促進剤としては例えば、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級フォスフォニウム塩(4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。)、オクチル酸スズ、カルボン酸亜鉛(2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミリスチン酸亜鉛)、リン酸エステル亜鉛(オクチルリン酸亜鉛、ステアリルリン酸亜鉛)等の遷移金属化合物(遷移金属塩)等を挙げることができるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 硬化促進剤の配合量は、硬化性樹脂組成物中の無機充填剤(フィラー)を除く不揮発分の合計100質量部に対して0.01~5.0質量部が必要に応じて用いられる。
[重合開始剤]
 本実施形態の硬化性樹脂組成物は、重合開始剤を添加することにより硬化性を向上させることもできる。重合開始剤としては、エチレン性不飽和結合等のオレフィン官能基を重合させることが可能な化合物であり、オレフィンメタセシス重合開始剤、アニオン重合開始剤、カチオン重合開始剤のほか、ラジカル重合開始剤が挙げられる。このなかでも硬化性および適度な安定性を有するラジカル重合開始剤を使用することが好ましい。モリブデンを中心金属とするSchrоck触媒等のオレフィンメタセシス重合開始剤、BuLi等のアニオン重合開始剤や、トリエチルアルミニウム等のカチオン重合開始剤の場合、空気中の水分と反応してしまう等安定性に乏しい。
 ラジカル重合開始剤とは紫外線や可視光の照射または加熱によりラジカルを生じ、連鎖重合反応を開始させる化合物をいう。用い得るラジカル重合開始剤としては、有機過酸化物、アゾ系化合物、ベンゾピナコール類等が挙げられ、硬化温度制御やアウトガス抑制、分解物の電気特性への影響が少ないことから有機過酸化物を使用することが好ましい。
 上記有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド類、過酸化ベンゾイル等のジアシルパーオキサイド類、ジクミルパーオキサイド、1,3-ビス-(t-ブチルパーオキシイソプロピル)-ベンゼン等のジアルキルパーオキサイド類、t-ブチルパーオキシベンゾエート、1,1-ジ-t-ブチルパーオキシシクロヘキサン等のパーオキシケタール類、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-アミルパーオキシベンゾエート等のアルキルパーエステル類、ジ-2-エチルヘキシルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート、1,6-ビス(t-ブチルパーオキシカルボニルオキシ)ヘキサン等のパーオキシカーボネート類、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、ラウロイルパーオキサイド等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。上記有機過酸化物の中でも、ケトンパーオキサイド類、ジアシルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーオキシカーボネート類等が好ましく、ジアルキルパーオキサイド類がより好ましい。
 上記アゾ系化合物としては、例えば、アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 重合開始剤の添加量としては、硬化性樹脂組成物中の無機充填剤(フィラー)を除く不揮発分の合計を100質量部とした場合、0.01~5質量部が好ましく、0.01~3質量部が特に好ましい。用いる重合開始剤の量が0.01質量部未満であると重合反応時に分子量が十分に伸長しない恐れがあり、5質量部より多いと誘電率、誘電正接等の誘電特性を損なう恐れがある。
[難燃剤]
 本実施形態の硬化性樹脂組成物は、難燃剤を用いてもよい。難燃剤としては、例えば、ハロゲン系難燃剤、無機系難燃剤(アンチモン化合物、金属水酸化物、窒素化合物、ホウ素化合物等)、リン系難燃剤等が挙げられるが、ハロゲンフリー難燃性を達成する観点からリン系難燃剤が好ましい。
 上記リン系難燃剤としては反応型のものでも添加型のものでもよい。具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル-ジ-2,6-キシレニルホスフェート、1,3-フェニレンビス(ジキシレニルホスフェート)、1,4-フェニレンビス(ジキシレニルホスフェート)、4,4’-ビフェニル(ジキシレニルホスフェート)等のリン酸エステル類、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類のほか、エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。上記例示物質のうち、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシレニルホスフェート)、1,4-フェニレンビス(ジキシレニルホスフェート)、4,4’-ビフェニル(ジキシレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。
 難燃剤の含有量は硬化性樹脂組成物中の無機充填剤(フィラー)を除く不揮発分の合計を100質量部とした場合、0.1~0.6質量部の範囲であることが好ましい。0.1質量部未満では難燃性が不十分となる恐れがあり、0.6質量部より多いと硬化物の吸湿性、誘電特性に悪影響を及ぼす恐れがある。
[光安定剤]
 本実施形態の硬化性樹脂組成物は、光安定剤を用いてもよい。光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては、例えば、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの反応物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン反応物、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 光安定剤の含有量は、硬化性樹脂組成物中の無機充填剤(フィラー)を除く不揮発分の合計を100質量部とした場合、0.001~10質量部の範囲であることが好ましい。0.001質量部未満では光安定効果を発現するのに不十分となる恐れがあり、10質量部より多いと硬化物の吸湿性、誘電特性に悪影響を及ぼす恐れがある。
[バインダー樹脂]
 本実施形態の硬化性樹脂組成物は、バインダー樹脂を用いてもよい。バインダー樹脂としては、例えば、ブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、シリコーン系樹脂等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、硬化性樹脂組成物中の無機充填剤(フィラー)を除く不揮発分の合計を100質量部とした場合、0.05~50質量部であることが好ましく、さらに好ましくは0.05~20質量部である。
[添加剤]
 本実施形態の硬化性樹脂組成物は、添加剤を用いてもよい。添加剤としては、例えば、アクリロニトリル共重合体の変性物、ポリエチレン、フッ素樹脂、シリコーンゲル、シリコーンオイル、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。
 添加剤の配合量は、硬化性樹脂組成物100質量部に対して好ましくは1,000質量部以下、より好ましくは700質量部以下の範囲である。
 本実施形態の硬化性樹脂組成物は、さらに、エポキシ樹脂、活性エステル化合物、フェノール樹脂、アミン樹脂、マレイミド化合物、エチレン性不飽和結合を有する化合物、イソシアネート樹脂、ポリアミド樹脂、ポリイミド樹脂、シアネートエステル樹脂等を用いてもよく、これらは1種類で用いても、複数併用してもよい。これらの化合物のうち、耐熱性、密着性、誘電特性のバランスから、エチレン性不飽和結合を有する化合物、シアネートエステル樹脂を含有することが好ましい。これらの化合物を含有することによって、硬化物の脆さの改善および金属への密着性を向上でき、はんだリフロー時や冷熱サイクルなどの信頼性試験におけるパッケージのクラックを抑制できる。
 上記化合物の使用量は、特に断りがない場合、前記式(1)で表される化合物に対して、好ましくは10質量倍以下、さらに好ましくは5質量倍以下、特に好ましくは3質量倍以下の質量範囲である。また、好ましい下限値は0.1質量倍以上、より好ましくは0.25質量倍以上、更に好ましくは0.5質量倍以上である。上記範囲内であることにより、前記式(1)で表される化合物の耐熱性や誘電特性の効果を活かしつつ、添加する各化合物の効果を付加することができる。これらの成分については、以下に例示するものを使用することができる。
[エポキシ樹脂]
 エポキシ樹脂として好ましいものを以下に例示するがこれらに限定されるものではない。なお、エポキシ樹脂の性状は液状であっても固形であってもよく、1種類で用いても、複数併用してもよい。
 液状エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂等を挙げることができる。具体例としては、「RE310S」、「RE410S」(以上、日本化薬社製、ビスフェノールA型エポキシ樹脂)、「RE303S」、「RE304S」、「RE403S」、「RE404S」(以上、日本化薬社製、ビスフェノールF型エポキシ樹脂)、「HP4032」、「HP4032D」、「HP4032SS」(以上、DIC社製、ナフタレン型エポキシ樹脂)、「828US」、「jER828EL」、「825」、「828EL」(以上、三菱ケミカル社製、ビスフェノールA型エポキシ樹脂)、「jE807」、「1750」(以上、三菱ケミカル社製、ビスフェノールF型エポキシ樹脂)、「jER152」(三菱ケミカル社製、フェノールノボラック型エポキシ樹脂)、「630」、「630LSD」(以上、三菱ケミカル社製、グリシジルアミン型エポキシ樹脂)、「ZX1059」(新日鉄住金化学社製、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)、「EX-721」(ナガセケムテックス社製、グリシジルエステル型エポキシ樹脂)、「セロキサイド2021P」(ダイセル社製、エステル骨格を有する脂環式エポキシ樹脂)、「PB-3600」(ダイセル社製、ブタジエン構造を有するエポキシ樹脂)、「ZX1658」、「ZX1658GS」(以上、新日鉄住金化学社製、液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 固形エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ナフトール型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、及びビフェニル型エポキシ樹脂を挙げることができる。具体例としては、「HP4032H」(DIC社製、ナフタレン型エポキシ樹脂)、「HP-4700」、「HP-4710」(以上、DIC社製、ナフタレン型4官能エポキシ樹脂)、「N-690」(DIC社製、クレゾールノボラック型エポキシ樹脂)、「N-695」(DIC社製、クレゾールノボラック型エポキシ樹脂)、「HP-7200」(DIC社製、ジシクロペンタジエン型エポキシ樹脂)、「HP-7200」、「HP-7200HH」、「HP-7200H」(以上、DIC社製、ジシクロペンタジエン型エポキシ樹脂)、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP-6000」(以上、DIC社製、ナフチレンエーテル型エポキシ樹脂)、「EPPN-502H」(日本化薬社製、トリスフェノール型エポキシ樹脂)、「NC-7000L」、「NC-7300」(以上、日本化薬社製、ナフトール-クレゾールノボラック型エポキシ樹脂)、「NC-3000H」、「NC-3000」、「NC-3000L」、「NC-3100」(以上、日本化薬社製、ビフェニルアラルキル型エポキシ樹脂)、「XD-1000-2L」、「XD-1000-L」、「XD-1000-H」、「XD-1000-H」(以上、日本化薬社製、ジシクロペンタジエン型エポキシ樹脂)、「ESN475V」(新日鉄住金化学社製、ナフトール型エポキシ樹脂)、「ESN485」(新日鉄住金化学社製、ナフトールノボラック型エポキシ樹脂)、「YX-4000H」、「YX-4000」、「YL6121」(以上、三菱ケミカル社製、ビフェニル型エポキシ樹脂)、「YX-4000HK」(三菱ケミカル社製、ビキシレノール型エポキシ樹脂)、「YX-8800」(三菱ケミカル社製、アントラセン型エポキシ樹脂)、「PG-100」、「CG-500」(大阪ガスケミカル社製、フルオレン系エポキシ樹脂)、「YL-7760」(三菱ケミカル社製、ビスフェノールAF型エポキシ樹脂)、「YL-7800」(三菱ケミカル社製、フルオレン型エポキシ樹脂)「jER1010」(三菱ケミカル社製、固体状ビスフェノールA型エポキシ樹脂)、「jER1031S」(三菱ケミカル社製、テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[活性エステル化合物]
 活性エステル化合物とは、構造体中にエステル結合を少なくとも1つ含み、かつ、エステル結合の両側に脂肪族鎖、脂肪族環又は芳香族環が結合している化合物をいう。活性エステル化合物としては、例えば、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物を挙げることができ、カルボン酸化合物、酸塩化物、またはチオカルボン酸化合物の少なくともいずれかの化合物と、ヒドロキシ化合物またはチオール化合物の少なくともいずれかの化合物との縮合反応によって得られる。特に、耐熱性向上の観点から、カルボン酸化合物、または酸塩化物とヒドロキシ化合物から得られるときが好ましく、ヒドロキシ化合物としてはフェノール化合物またはナフトール化合物が好ましい。活性エステル化合物は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記カルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。
 上記酸塩化物としては、例えば、アセチルクロリド、アクリル酸クロリド、メタクリル酸クロリド、マロニルクロリド、コハク酸ジクロリド、ジグリコリルクロリド、グルタル酸ジクロリド、スベリン酸ジクロリド、セバシン酸ジクロリド、アジピン酸ジクロリド、ドデカンジオイルジクロリド、アゼラオイルクロリド、2,5-フランジカルボニルジクロリド、フタロイルクロリド、イソフタロイルクロリド、テレフタロイルクロリド、トリメシン酸クロリド、ビス(4-クロロカルボニルフェニル)エーテル、4,4’-ジフェニルジカルボニルクロリド、4,4’-アゾジベンゾイルジクロリド等が挙げられる。
 上記フェノール化合物及び上記ナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック、後述するフェノール樹脂等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
 活性エステル化合物の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物、国際公開第2020/095829号実施例2に記載の化合物、国際公開第2020/059625号にて開示されている化合物等が挙げられる。中でも、ナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。ジシクロペンタジエン型ジフェノール構造とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。
 活性エステル化合物の市販品としては、例えば、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」、「EXB-8150-65T」(DIC社製)、ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」(DIC社製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱化学社製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」、「YLH1030」、「YLH1048」(三菱化学社製)、フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱化学社製)、リン原子含有活性エステル系硬化剤としてDIC社製の「EXB-9050L-62M」等が挙げられる。
 活性エステル化合物およびエポキシ樹脂の配合比に関しては、活性エステル当量(α)とエポキシ当量(β)の比率(α/β)が0.5~1.5であることが好ましく、より好ましくは0.8~1.2、さらに好ましくは、0.90~1.10である。上記範囲を外れる場合、過剰となったエポキシ基もしくは活性エステル基が系中に残存するおそれがあり、高温放置試験(150℃、1000時間など)や高温高湿条件下(温度:85℃、湿度:85%など)での長期信頼性試験等で特性が悪化するおそれがある。
[フェノール樹脂]
 フェノール樹脂とは、分子内に2つ以上フェノール性水酸基を有する化合物である。フェノール樹脂としては、例えば、フェノール類とアルデヒド類との反応物、フェノール類とジエン化合物との反応物、フェノール類とケトン類との反応物、フェノール類と置換ビフェニル類との反応物、フェノール類と置換フェニル類との反応物、ビスフェノール類とアルデヒド類との反応物等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 上記各原料の具体例を以下に例示するが、これらに限定されるものではない。
<フェノール類>
 フェノール、アルキル置換フェノール、芳香族置換フェノール、ハイドロキノン、レゾルシン、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等。
<アルデヒド類>
 ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド、フルフラール等。
<ジエン化合物>
 ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等。
<ケトン類>
 アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン、フルオレノン等。
<置換ビフェニル類>
 4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、4,4’-ビス(ヒドロキシメチル)-1,1’-ビフェニル等。
<置換フェニル類>
 1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン、1,4-ビス(ヒドロキシメチル)ベンゼン等。
[アミン樹脂]
 アミン樹脂とは、分子内に2つ以上アミノ基を有する化合物である。アミン樹脂としては、例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、イソホロンジアミン、ナフタレンジアミン、アニリンノボラック(アニリンとホルマリンの反応物)、N-メチルアニリンノボラック(N-メチルアニリンとホルマリンの反応物)、オルソエチルアニリンノボラック(オルソエチルアニリンとホルマリンの反応物)、2-メチルアニリンとホルマリンの反応物、2,6-ジイソプロピルアニリンとホルマリンの反応物、2,6-ジエチルアニリンとホルマリンの反応物、2-エチル-6-エチルアニリンとホルマリンの反応物、2,6-ジメチルアニリンとホルマリンの反応物、アニリンとキシリレンクロライドとの反応により得られるアニリン樹脂、日本国特許第6429862号公報に記載のアニリンと置換ビフェニル類(4,4’-ビス(クロルメチル)-1,1’-ビフェニル及び4,4’-ビス(メトキシメチル)-1,1’-ビフェニル等)の反応物、アニリンと置換フェニル類(1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン及び1,4-ビス(ヒドロキシメチル)ベンゼン等)の反応物、4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン、4,4’-(1,4-フェニレンジイソプロピリデン)ビスアニリン、アニリンとジイソプロペニルベンゼンの反応物、ダイマージアミン等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[マレイミド化合物]
 マレイミド化合物とは分子内に1つ以上マレイミド基を有する化合物である。本実施形態の硬化性樹脂組成物は、マレイミド化合物を含有しても良い。マレイミド化合物としては、例えば、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン)、ザイロック型マレイミド化合物(アニリックス マレイミド、三井化学ファイン社製)、ビフェニルアラルキル型マレイミド化合物(日本国特開2009-001783号公報の実施例4に記載のマレイミド化合物(M2)を含む樹脂溶液を減圧下溶剤留去することにより固形化したもの)、ビスアミノクミルベンゼン型マレイミド(国際公開第2020/054601号記載のマレイミド化合物)、特許-6629692号または、国際公開第2020/217679号記載のインダン構造を有するマレイミド化合物、MATERIAL STAGE Vоl.18,Nо.12 2019 『~続・エポキシ樹脂CAS番号物語~硬化剤CAS番号備忘録 第31回 ビスマレイミド(1)』や、MATERIAL STAGE Vоl.19,Nо.2 2019 『~続・エポキシ樹脂CAS番号物語~硬化剤CAS番号備忘録 第32回 ビスマレイミド(2)』にて公開されているマレイミド化合物等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 マレイミド化合物の添加量としては、前記式(1)で表される化合物に対して、好ましくは10質量倍以下、さらに好ましくは5質量倍以下、特に好ましくは3質量倍以下の質量範囲である。また、好ましい下限値は0.01質量倍以上、更に好ましくは0.1質量倍以上である。上記範囲であれば、前記式(1)で表される化合物の耐熱性、誘電特性、低吸水性の効果を活かすことができる。
[エチレン性不飽和結合を含有する化合物]
 エチレン性不飽和結合を含有する化合物とは、重合開始剤の使用・不使用を問わず、熱もしくは光により重合可能なエチレン性不飽和結合を分子内に1つ以上有する化合物である。
 エチレン性不飽和結合を含有する化合物としては、例えば、前記のフェノール樹脂とエチレン性不飽和結合含有のハロゲン系化合物(クロロメチルスチレン、アリルクロライド、メタリルクロライド、アクリル酸クロリド、メタクリル酸クロリド等)の反応物、エチレン性不飽和結合含有フェノール類(2-アリルフェノール、2-プロペニルフェノール、4-アリルフェノール、4-プロペニルフェノール、オイゲノール、イソオイゲノール等)とハロゲン系化合物(1,4-ビス(クロロメチル)ベンゼン、4,4’-ビス(クロロメチル)ビフェニル、4,4’-ジフルオロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ジブロモベンゾフェノン、塩化シアヌル等)の反応物、エポキシ樹脂若しくはアルコール類と(メタ)アクリル酸類(アクリル酸、メタクリル酸等)の反応物及びこれらの酸変性化物等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[イソシアネート樹脂]
 イソシアネート樹脂とは、分子内に2つ以上イソシアネート基を有する化合物である。イソシアネート樹脂としては、例えば、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシレンジイソシアネート、m-キシレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート類、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、水添キシレンジイソシアネート、ノルボルネンジイソシアネート、リジンジイソシアネート等の脂肪族又は脂環構造のジイソシアネート類、イソシアネートモノマーの一種類以上のビュレット体、又は上記ジイソシアネート化合物を3量化したイソシアネート体等のポリイソシアネート、上記イソシアネート化合物とポリオール化合物とのウレタン化反応によって得られるポリイソシアネート等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
[ポリアミド樹脂]
 ポリアミド樹脂としては、例えば、ジアミン、ジイソシアネート、オキサゾリンのいずれか1種以上とジカルボン酸の反応物、ジアミンと酸塩化物の反応物、ラクタム化合物の開環重合物が挙げられる。また、これらは1種類で用いても、複数併用してもよい。
 上記各原料の具体例を以下に例示するが、これらに限定されるものではない。
<ジアミン>
 エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、トリデカンジアミン、テトラデカンジアミン、ペンタデカンジアミン、ヘキサデカンジアミン、ヘプタデカンジアミン、オクタデカンジアミン、ノナデカンジアミン、エイコサンジアミン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,8-ジアミノオクタン、ダイマージアミン、シクロヘキサンジアミン、ビス-(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、キシリレンジアミン、ノルボルナンジアミン、イソホロンジアミン、ビスアミノメチルトリシクロデカン、フェニレンジアミン、ジエチルトルエンジアミン、ナフタレンジアミン、ジアミノジフェニルメタン、ビス(4-アミノ-3,5-ジメチルフェニル)メタンビス(4-アミノ-3,5-ジエチルフェニル)メタン、4,4'-メチレンビス-о-トルイジン、4,4'-メチレンビス-о-エチルアニリン、4,4'-メチレンビス-2-エチル-6-メチルアニリン、4,4'-メチレンビス-2,6-ジイソプロピルアニリン、4,4-エチレンジアニリン、ジアミノジフェニルスルホン、ジアミノジフェニルエーテル、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4'-(1,3-フェニレンジイソプロピリデン)ビスアニリン、4,4'-(1,4-フェニレンジイソプロピリデン)ビスアニリン、9,9-ビス(4-アミノフェニル)フルオレン、2,7-ジアミノフルオレン、アミノベンジルアミン、ジアミノベンゾフェノン等。
<ジイソシアネート>
 ベンゼンジイソシアネート、トルエンジイソシアネート、1,3-ビス(イソシアナトメチル)ベンゼン、1,3-ビス(イソシアナトメチル)シクロヘキサン、ビス(4-イソシアナトフェニル)メタン、イソホロンジイソシアネート、1,3-ビス(2-イソシアナト-2-プロピル)ベンゼン、2,2-ビス(4-イソシアナトフェニル)ヘキサフルオロプロパン、ジシクロヘキシルメタン-4,4'-ジイソシアナート等。
<ジカルボン酸>
 シュウ酸、マロン酸、スクシン酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、テレフタル酸、イソフタル酸、5-ヒドロキシイソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、シクロヘキサンジカルボン酸、ビフェニルジカルボン酸、ナフタレンジカルボン酸、ベンゾフェノンジカルボン酸、フランジカルボン酸、4,4'-ジカルボキシジフェニルエーテル、4,4'-ジカルボキシジフェニルスルフィド等。
<酸塩化物>
 アセチルクロリド、アクリル酸クロリド、メタクリル酸クロリド、マロニルクロリド、コハク酸ジクロリド、ジグリコリルクロリド、グルタル酸ジクロリド、スベリン酸ジクロリド、セバシン酸ジクロリド、アジピン酸ジクロリド、ドデカンジオイルジクロリド、アゼラオイルクロリド、2,5-フランジカルボニルジクロリド、フタロイルクロリド、イソフタロイルクロリド、テレフタロイルクロリド、トリメシン酸クロリド、ビス(4-クロロカルボニルフェニル)エーテル、4,4’-ジフェニルジカルボニルクロリド、4,4’-アゾジベンゾイルジクロリド等。
<ラクタム>
 ε-カプロラクタム、ω-ウンデカンラクタム、ω-ラウロラクタム等。
[ポリイミド樹脂]
 ポリイミド樹脂としては、例えば、前記ジアミンと以下に例示するテトラカルボン酸二無水物の反応物が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
<テトラカルボン酸二無水物>
 4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2’-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物)、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、rel-[1S,5R,6R]-3-オキサビシクロ[3,2,1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、エチレングリコール-ビス-(3,4-ジカルボン酸無水物フェニル)エーテル、4,4’-ビフェニルビス(トリメリット酸モノエステル酸無水物)、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物等。
[シアネートエステル樹脂]
 シアネートエステル樹脂は、フェノール樹脂をハロゲン化シアンと反応させることにより得られるシアネートエステル化合物であり、具体例としては、ジシアナートベンゼン、トリシアナートベンゼン、ジシアナートナフタレン、ジシアンートビフェニル、2、2’-ビス(4-シアナートフェニル)プロパン、ビス(4-シアナートフェニル)メタン、ビス(3,5-ジメチル-4-シアナートフェニル)メタン、2,2’-ビス(3,5-ジメチル-4-シアナートフェニル)プロパン、2,2’-ビス(4-シアナートフェニル)エタン、2,2’-ビス(4-シアナートフェニル)ヘキサフロロプロパン、ビス(4-シアナートフェニル)スルホン、ビス(4-シアナートフェニル)チオエーテル、フェノールノボラックシアナート、フェノール・ジシクロペンタジエン共縮合物の水酸基をシアネート基に変換したもの等が挙げられるが、これらに限定されるものではない。また、これらは1種類で用いても、複数併用してもよい。
 また、日本国特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
 シアネートエステル樹脂は、必要に応じてシアネート基を三量化させてsym-トリアジン環を形成するために、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸鉛、オクチル酸亜鉛、オクチル酸錫、鉛アセチルアセトナート、ジブチル錫マレエート等の触媒を含有させることもできる。
 触媒は、シアネートエステル樹脂100質量部に対して0.0001~0.10質量部、好ましくは0.00015~0.0015質量部使用することが好ましい。
 本実施形態の硬化性樹脂組成物は、上記各成分を所定の割合で調製することにより得られ、130~180℃で30~500秒の範囲で予備硬化し、更に、150~200℃で2~15時間、後硬化することにより充分な硬化反応が進行し、本実施形態の硬化物が得られる。また、硬化性樹脂組成物の成分を溶剤等に均一に分散または溶解させ、溶媒を除去した後硬化させることもできる。
 本実施形態の硬化性樹脂組成物の調製方法は特に限定されないが、各成分を均一に混合するだけでも、あるいはプレポリマー化してもよい。例えば、前記式(1)で表される化合物およびその他の化合物を配合した混合物に対し硬化促進剤や重合開始剤の存在下または非存在下、溶剤の存在下または非存在下において加熱することによりプレポリマー化する。同様に、アミン化合物、エチレン性不飽和結合を有する化合物、マレイミド化合物、シアネートエステル化合物、ポリブタジエンおよびこの変性物、ポリスチレンおよびこの変性物などの化合物、無機充填剤、及びその他添加剤を追加してプレポリマー化してもよい。各成分の混合またはプレポリマー化は溶剤の非存在下では例えば押出機、ニーダ、ロールなどを用い、溶剤の存在下では攪拌装置つきの反応釜などを使用する。
 均一に混合する手法としては50~100℃の範囲内の温度でニーダ、ロール、プラネタリーミキサー等の装置を用いて練りこむように混合し、均一な樹脂組成物とする。得られた樹脂組成物は粉砕後、タブレットマシーン等の成型機で円柱のタブレット状に成型、もしくは顆粒状の粉体、もしくは粉状の成型体とする、もしくはこれら組成物を表面支持体の上で溶融し0.05mm~10mmの厚みのシート状に成型し、硬化性樹脂組成物成型体とすることもできる。得られた成型体は0~20℃でべたつきのない成型体となり、-25~0℃で1週間以上保管しても流動性、硬化性をほとんど低下させない。
 得られた成型体についてトランスファー成型機、コンプレッション成型機にて硬化物に成型することができる。
 本実施形態の硬化性樹脂組成物は、有機溶剤を添加してワニス状の組成物(以下、単にワニスという。)とすることもできる。本実施形態の硬化性樹脂組成物を必要に応じてトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させてワニスとし、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本実施形態の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本実施形態の硬化性樹脂組成物と該溶剤の混合物中で10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物であれば、そのまま例えば、RTM方式でカーボン繊維を含有する硬化性樹脂硬化物を得ることもできる。
 また、本実施形態の硬化性組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物は、本実施形態の硬化性樹脂組成物を前記硬化性樹脂組成物ワニスとして剥離フィルム上に塗布し、加熱下で溶剤を除去した後、Bステージ化を行うことによりシート状の接着剤として得られる。このシート状接着剤は多層基板などにおける層間絶縁層として使用することができる。
 本実施形態の硬化性樹脂組成物は、加熱溶融し、低粘度化してガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維などの強化繊維に含浸させることによりプリプレグを得ることもできる。その具体例としては、例えば、Eガラスクロス、Dガラスクロス、Sガラスクロス、Qガラスクロス、球状ガラスクロス、NEガラスクロス、及びTガラスクロス等のガラス繊維、更にガラス以外の無機物の繊維やポリパラフェニレンテレフタラミド(ケブラー(登録商標)、デュポン社製)、全芳香族ポリアミド、ポリエステル、ポリパラフェニレンベンズオキサゾール、ポリイミド及び炭素繊維などの有機繊維が挙げられるが、これらに特に限定されない。基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマットなどが挙げられる。また、織布の織り方としては、平織り、ななこ織り、綾織り等が知られており、これら公知のものから目的とする用途や性能により適宜選択して使用することができる。また、織布を開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さは、特に限定されないが、好ましくは0.01~0.4mm程度である。また、前記ワニスを、強化繊維に含浸させて加熱乾燥させることによりプリプレグを得ることもできる。
 また、上記プリプレグを用いて積層板を製造することもできる。積層板はプリプレグを1枚以上備えるものであれば特に限定されず、他のいかなる層を有していてもよい。積層板の製造方法としては、一般に公知の方法を適宜適用でき、特に限定されない。例えば、金属箔張積層板の成形時には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機などを用いることができ、上記プリプレグ同士を積層し、加熱加圧成形することで積層板を得ることができる。このとき、加熱する温度は、特に限定されないが、65~300℃が好ましく、120~270℃がより好ましい。また、加圧する圧力は、特に限定されないが、加圧が大きすぎると積層板の樹脂の固形分調整が難しく品質が安定せず、また、圧力が小さすぎると、気泡や積層間の密着性が悪くなってしまうため2.0~5.0MPaが好ましく、2.5~4.0MPaがより好ましい。本実施形態の積層板は、金属箔からなる層を備えることにより、後述する金属箔張積層板として好適に用いることができる。
 上記プリプレグを所望の形に裁断、必要により銅箔などと積層後、積層物にプレス成形法やオートクレーブ成形法、シートワインディング成形法などで圧力をかけながら硬化性樹脂組成物を加熱硬化させることにより電気電子用積層板(プリント配線板)や、炭素繊維強化材を得ることができる。
 本実施形態の硬化性樹脂組成物は、樹脂シートにすることもできる。本実施形態の硬化性樹脂組成物から樹脂シートを得る方法としては、例えば、支持フィルム(支持体)上に硬化性樹脂組成物を塗布したのち、乾燥させて、支持フィルムの上に樹脂組成物層を形成する方法が挙げられる。本実施形態の硬化性樹脂組成物を樹脂シートに用いる場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(70℃~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう前記各成分を配合することが好ましい。なお、得られる樹脂シートや回路基板(銅張積層板等)においては、相分離などに起因する、局所的に異なる特性値を示すといった現象を生じさせず、任意の部位において、一定の性能を発現させるため、外観均一性が要求される。
 ここで、回路基板のスルーホールの直径は0.1~0.5mm、深さは0.1~1.2mmであり、この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
 前記樹脂シートを製造する具体的な方法としては、有機溶剤を配合してワニス化した樹脂組成物を調製した後、支持フィルム(Y)の表面に、前記ワニス化した樹脂組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥して、樹脂組成物層(X)を形成する方法が挙げられる。
 ここで用いる有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分30~60質量%となる割合で使用することが好ましい。
 なお、形成される前記樹脂組成物層(X)の厚さは、導体層の厚さ以上とする必要がある。回路基板が有する導体層の厚さは5~70μmの範囲であるので、前記樹脂組成物層(X)の厚さは10~100μmの厚みを有するのが好ましい。なお、本実施形態における前記樹脂組成物層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
 前記支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。支持フィルムの厚さは特に限定されないが、10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。
 前記支持フィルム(Y)は、回路基板にラミネートした後に、あるいは、加熱硬化することにより、絶縁層を形成した後に、剥離される。樹脂シートを構成する樹脂組成物層が加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、支持フィルムには予め離型処理が施される。
 なお、前記のようにして得られた樹脂シートから多層プリント回路基板を製造することができる。例えば、前記樹脂組成物層(X)が保護フィルムで保護されている場合はこれらを剥離した後、前記樹脂組成物の層(X)を回路基板に直接接するように回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。また必要により、ラミネートを行う前に樹脂シート及び回路基板を必要により加熱(プレヒート)しておいてもよい。ラミネートの条件は、圧着温度(ラミネート温度)を70~140℃とすることが好ましく、圧着圧力を1~11kgf/cm(9.8×10~107.9×10N/m)とすることが好ましく、空気圧を20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
 また、本実施形態の硬化性樹脂組成物を用いて半導体装置は製造することができる。半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。
 本実施形態の硬化性樹脂組成物およびその硬化物は、広範な分野で用いることができる。具体的には、成型材料、接着剤、複合材料、塗料など各種用途に使用できる。本実施形態記載の硬化性樹脂組成物の硬化物は優れた耐熱性と誘電特性を示すため、半導体素子用封止材、液晶表示素子用封止材、有機EL素子用封止材、積層板(プリント配線板、BGA用基板、ビルドアップ基板など)等の電気・電子部品や炭素繊維強化プラスチック、ガラス繊維強化プラスチック等の軽量高強度構造材用複合材料、3Dプリンティング等に好適に使用される。
 次に本発明を実施例により更に具体的に説明する。以下、特に断わりのない限り、部は質量部である。尚、本発明はこれら実施例に限定されるものではない。
 以下に実施例で用いた各種分析方法について記載する。
<重量平均分子量(Mw)、数平均分子量(Mn)、前記式(1)中のnが1である化合物の化合物総量中のGPC面積百分率>
 ポリスチレン標準液を用いてポリスチレン換算により重量平均分子量(Mw)および数平均分子量(Mn)を算出した。
 GPC:オンライン脱気ユニット(DGU-20A3R),バイナリ送液ユニット(LC-20AD),オートサンプラ(SIL-20AHT),示差屈折率検出器(RID-20A),カラムオーブン(CTO-20A),システムコントローラ(CBM-20A)(いずれも島津製作所製)
 カラム:Shodex KF-603×1、KF-602.5×1、KF-602×1、KF-601×1(いずれも昭和電工社製)
ガードカラム:Shodex KF-G 4A(昭和電工社製)
 連結溶離液:テトラヒドロフラン
 流速:1.5ml/min.
 カラム温度:40℃
 検出:RI(示差屈折率検出器)
 クロマトグラムのスライスデータを取得し、式(1)で表される化合物に相当するスライスデータの面積(信号値の時間積分値)の総和に対する、式(1)中のnが1である化合物に相当するスライスデータの面積の割合(面積百分率)を算出した。
<式(2)~(4)で表される化合物の含有率>
 HP-LC:バイナリ送液ユニット(LC-20AB)、オンライン脱気ユニット(DGU-20A3)、オートサンプラ(SIL-20A)、カラムオーブン(CTO-20A)、システムコントローラ(CBM-20A)、フォトダイオードアレイ検出器(SPD-M20A)(いずれも島津製作所製)
 カラム:ОDS-2(ジーエルサイエンス社製)
 連結溶離液:テトラヒドロフラン:水=3:1(グラジエントなし)
 流速:0.5ml/min.
 カラム温度:40℃
 検出:PDA(フォトダイオードアレイ検出器)
 検出器:274nm
 高速液体クロマトグラフィー(HP-LC)により得られたクロマトグラムにおける、式(2)~(4)で表される化合物のピーク面積の総和(α)、および、式(1)中のnが1である化合物のピーク面積(β)を算出し、(α/β)を算出した。
<構造分析>
 LC-MS:超高速液体クロマトグラフ(UHPLC)システム(Ultimate3000)、質量分析計(Q-Exactive(登録商標))(いずれもサーモフィッシャーサイエンティフィック社製)
 カラム:ОDS-2(ジーエルサイエンス社製)
 連結溶離液:テトラヒドロフラン:水=3:1(グラジエントなし)
 流速:0.5ml/min.
 イオン化モード:ESI
 マスレンジ:m/z=150-2000
[合成例1]
 温度計、冷却管、撹拌機を取り付けたフラスコに、アスピレータおよび塩基トラップを設置した。このフラスコに(2-ブロモエチル)ベンゼン(東京化成社製)370.1部、α,α’-ジクロロ-p-キシレン(東京化成社製)175.1部、メタンスルホン酸(東京化成社製)27.3部を仕込み、発生する塩化水素を塩基トラップで捕集しながら130℃で6時間反応させた。メタノール50部、シクロヘキサン700部を加え、30%水酸化ナトリウム水溶液56.8部で中和後、有機層を水100部で5回洗浄した。加熱減圧下、溶剤および過剰の(2-ブロモエチル)ベンゼンを留去することにより下記式(6)で表される(2-ブロモエチル)ベンゼン構造を有する化合物(BEB-1)380部を液状樹脂として得た(Mn:938、Mw:1290)。得られた化合物のGPCチャートを図1に示す。GPCチャートの面積百分率より計算した繰り返し単位nの平均値naveは2.2であった。また、GPCチャートの、式(6)で表される構造を有する化合物の面積の総和に対する、式(6)中のnが1である構造を有する化合物の面積の割合(面積百分率)は45%であった。
Figure JPOXMLDOC01-appb-C000026
 
[実施例1]
 温度計、冷却管、撹拌機を取り付けたフラスコに合成例1で得られたBEB-1 300部、トルエン245部、ジメチルスルホキシド735部、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル0.15部、50wt%水酸化ナトリウム水溶液146.4部を加え、40℃で6時間反応を継続した。水100部を加え、有機層を洗浄後、有機層を反応容器に戻した。ジメチルスルホキシド735部、50wt%水酸化ナトリウム水溶液9.8部を加え、40℃で1時間再び反応させ、トルエン1050部を加え、排水が中性になるまで有機層を水100部で繰り返し洗浄した。エバポレータにて減圧濃縮し、下記式(7)で表される分子内に2つ以上スチレン構造を有する化合物(O-1)を180部得た。得られた化合物のGPCチャートを図2に示す。また、得られた化合物のH-NMRデータ(重クロロホルム)を図3に示す。H-NMRチャートの5.10-5.30ppm、5.50-5.85ppm、および、6.60-6.80ppmにビニル基由来のシグナルが観測された。GPCチャートの面積百分率より計算した繰り返し単位nの平均値naveは2.3であった。また、GPCチャートの、式(7)で表される構造を有する化合物の面積の総和に対する、式(7)中のnが1である構造を有する化合物の面積の割合(面積百分率)は40%であった(樹脂成分の平均分子量は、Mn:803、Mw:1190であった)。LC-MSチャートを図4に示し、HP-LCチャートを図5に示す。LC-MS分析により表1に示す化合物V~Yを検出した(表1は代表構造式を記載している。)。化合物Wにおいて、2-フェニルエタノール構造とスチレン構造の位置は順不同である。化合物Xにおいて、2-フェニルエタノール構造とスチレン構造と2-フェニルアセトアルデヒド構造の位置は順不同である。化合物Yにおいて、2-フェニルエタノール構造とエチルベンゼン構造の位置は順不同であり、フェニルエチル基はいずれの芳香環に結合していても良い。
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-T000028
 
[実施例2]
 温度計、冷却管、撹拌機を取り付けたフラスコに合成例1で得られたBEB-1 300部、トルエン245部、ジメチルスルホキシド735部、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル0.15部、50wt%水酸化ナトリウム水溶液107.4部を加え、40℃で6時間反応を継続した。水100部を加え、有機層を洗浄後、有機層を反応容器に戻した。ジメチルスルホキシド735部、50wt%水酸化ナトリウム水溶液9.8部を加え、40℃で1時間再び反応させ、トルエン1050部を加え、排水が中性になるまで有機層を水100部で繰り返し洗浄した。エバポレータにて減圧濃縮し、前記式(7)で表される分子内に2つ以上スチレン構造を有する化合物(O-2)を180部得た。得られた化合物のGPCチャートを図6に示す。GPCチャートの面積百分率より計算した繰り返し単位nの平均値naveは2.4であった。また、GPCチャートの、式(7)で表される構造を有する化合物の面積の総和に対する、式(7)中のnが1である構造を有する化合物の面積の割合(面積百分率)は41%であった(樹脂成分の平均分子量は、Mn:799、Mw:1297であった)。HP-LCチャートを図7に示す。
[実施例3]
 温度計、冷却管、撹拌機を取り付けたフラスコに合成例1で得られたBEB-1 300部、トルエン375部、ジメチルスルホキシド1125部、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル0.15部、50wt%水酸化ナトリウム水溶液146.4部を加え、40℃で6時間反応を継続した。水100部を加え、有機層を洗浄後、有機層を反応容器に戻した。ジメチルスルホキシド735部、50wt%水酸化ナトリウム水溶液9.8部を加え、40℃で1時間再び反応させ、トルエン1050部を加え、排水が中性になるまで有機層を水100部で繰り返し洗浄した。エバポレータにて減圧濃縮し、前記式(7)で表される分子内に2つ以上スチレン構造を有する化合物(O-3)を180部得た。得られた化合物のGPCチャートを図8に示す。GPCチャートの面積百分率より計算した繰り返し単位nの平均値naveは2.3であった。また、GPCチャートの、式(7)で表される構造を有する化合物の面積の総和に対する、式(7)中のnが1である構造を有する化合物の面積の割合(面積百分率)は35%であった(樹脂成分の平均分子量は、Mn:834、Mw:1170であった)。HP-LCチャートを図9に示す。
[実施例4]
 温度計、冷却管、撹拌機を取り付けたフラスコに合成例1で得られたBEB-1 300部、トルエン245部、ジメチルスルホキシド735部、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル0.15部、50wt%水酸化ナトリウム水溶液146.4部を加え、25℃で6時間反応を継続した。水100部を加え、有機層を洗浄後、有機層を反応容器に戻した。ジメチルスルホキシド735部、50wt%水酸化ナトリウム水溶液9.8部を加え、25℃で1時間再び反応させ、トルエン1050部を加え、排水が中性になるまで有機層を水100部で繰り返し洗浄した。エバポレータにて減圧濃縮し、前記式(7)で表される分子内に2つ以上スチレン構造を有する化合物(O-4)を180部得た。得られた化合物のGPCチャートを図10に示す。GPCチャートの面積百分率より計算した繰り返し単位nの平均値naveは2.5であった。また、GPCチャートの、式(7)で表される構造を有する化合物の面積の総和に対する、式(7)中のnが1である構造を有する化合物の面積の割合(面積百分率)は41%であった(樹脂成分の平均分子量は、Mn:802、Mw:1291であった)。HP-LCチャートを図11に示す。
[比較合成例1]
 温度計、冷却管、撹拌機を取り付けたフラスコに、アスピレータおよび塩基トラップを設置した。このフラスコに(2-ブロモエチル)ベンゼン(東京化成社製)296部、α,α’-ジクロロ-p-キシレン(東京化成社製)70部、メタンスルホン酸(東京化成社製)18.4部を仕込み、発生する塩化水素を塩基トラップで捕集しながら130℃で6時間反応させた。メタノール50部、シクロヘキサン700部を加え、30%水酸化ナトリウム水溶液26.8部で中和後、有機層を水100部で5回洗浄した。加熱減圧下、溶剤および過剰の(2-ブロモエチル)ベンゼンを留去することにより前記式(6)で表される(2-ブロモエチル)ベンゼン構造を有する化合物(BEB-2)171部を液状樹脂として得た(Mn:793、Mw:970)。得られた化合物のGPCチャートを図12に示す。GPCチャートの面積百分率より計算した繰り返し単位nの平均値avenは1.6であった。また、GPCチャートの、式(6)で表される構造を有する化合物の面積の総和に対する、式(6)中のnが1であ構造を有する化合物の面積の割合(GPC面積百分率)は65%であった。
[比較合成例2]
 温度計、冷却管、撹拌機を取り付けたフラスコに比較合成例1で得られたBEB-2 22部、トルエン50部、ジメチルスルホキシド150部、水15部、水酸化ナトリウム5.4部を加え、40℃で6時間反応を継続した。トルエン100部を加え、排水が中性になるまで有機層を水100部で繰り返し洗浄した。エバポレータにて減圧濃縮し、前記式(7)で表される分子内に2つ以上スチレン構造を有する化合物(O-5)を12.5部得た。得られた化合物のGPCチャートを図13に示す。GPCチャートの面積百分率より計算した繰り返し単位nの平均値naveは2.2であった。また、生成物中の式(7)で表される構造を有する化合物の面積の総和に対する、式(7)中のnが1であ構造を有する化合物の面積の割合(GPC面積百分率)は65%であった(樹脂成分の平均分子量は、Mn:624、Mw:778であった)。HP-LCチャートを図14に示す。
 化合物O-1~O-5の分子量データとして、数平均分子量(Mn)、重量平均分子量(Mw)および式(1)中のnが1である化合物の面積百分率を「n=1含有量(GPC面積%)」として、HPLCにより得られたクロマトグラムにおける、式(2)~(4)で表される化合物のピーク面積の総和αを「各化合物中のV~Yの化合物の含有量の合計(HP-LC面積)」として、式(1)のnが1である化合物のピーク面積βを「n=1含有量(HP-LC面積)」として、及びαをβで除した値(α/β)を表2に記す。
Figure JPOXMLDOC01-appb-T000029
 
[実施例5~8、比較例1]
<溶剤溶解後の安定性試験>
 5mLガラス製サンプル瓶に化合物O-1~O-5を1.2g、トルエンを0.8g配合後、ローラーミキサー(MIX-RОTAR VMR-5:アズワン社製)を用いて回転数100rpmで25℃1時間攪拌し、各化合物の固形分60wt%トルエン溶液を調製した。得られた溶液を-18℃の冷凍庫に保管し、10分後取り出したサンプルを用いて以下の判定基準で評価を実施した。結果は表3に示す。
・結晶が析出していない場合:〇
・結晶が析出している場合:×
<誘電率試験・誘電正接試験>
 化合物O-1~O-5を、鏡面銅箔(T4X:福田金属銅箔社製)で挟み込みながら真空プレス成型し、220℃で2時間硬化させた。その後、レーザーカッターを用いて、幅1.7mm×長さ100mm×厚さ0.2mmのサンプルサイズにし、(株)ATE社製の10GHz空洞共振器を用いて、空洞共振器摂動法にてテストを行った。評価結果は表3に示す。
Figure JPOXMLDOC01-appb-T000030
 
 表3の結果より、実施例5~8は優れた溶剤溶解後の安定性を有するとともに、誘電特性に優れることが確認された。
 本願は、2022年3月29日付で出願された日本国特願第2022-54487号に基づく優先権を主張する。
 

Claims (13)

  1.  下記式(1)で表される化合物であって、前記化合物総量中、式(1)中のnが1である化合物がGPC面積百分率で50%未満である化合物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数である。nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。)
  2.  下記式(2)~(4)で表される化合物のHP-LCのピーク面積の総和(α)を前記式(1)中のnが1である化合物のHP-LCのピーク面積(β)で除した値(α/β)が0.10以下である請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(2)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。複数存在するsはそれぞれ独立して0~4の整数である。)
    Figure JPOXMLDOC01-appb-C000003
     
    (式(3)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。複数存在するAはそれぞれ独立して、下記式(3-a)~(3-c)のいずれか1種である。複数存在するsはそれぞれ独立して0~4の整数、tは0~3の整数である。)
    Figure JPOXMLDOC01-appb-C000004
     
     (式(3-a)~(3-c)中、*は、式(3)の化合物の芳香環との結合位置を表す。)
    Figure JPOXMLDOC01-appb-C000005
     
    (式(4)中、複数存在するRはそれぞれ独立して、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。複数存在するBはそれぞれ独立して、下記式(4-d)または(4-e)である。Dは下記式(4-f)である。複数存在するsはそれぞれ独立して0~4の整数、tは0~3の整数である。式(4)中の5個のmのうち1つが1であり、そのほかの4つは0である。)
    Figure JPOXMLDOC01-appb-C000006
     
     (式(4-d)~(4-f)中、*は、式(4)の化合物の芳香環との結合位置を表す。)
  3.  前記式(1)中、p=0、q=0、r=0である請求項1または2に記載の化合物。
  4.  前記式(1)で表される化合物は下記式(5)で表される化合物から誘導される、請求項1から3のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
     
    (式(5)中、複数存在するRはそれぞれ独立して存在し、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数であり、nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。Xはハロゲン原子を表す。)
  5.  重合禁止剤をさらに含有する、請求項1から4のいずれか一項に記載の混合物。
  6.  請求項1から4のいずれか一項に記載の化合物、または請求項5に記載の混合物を含有する硬化性樹脂組成物。
  7.  ポリフェニレンエーテル化合物、ポリブタジエンおよびこの変性物、ポリスチレンおよびこの変性物、のうちいずれか1つ以上を含有する請求項6に記載の硬化性樹脂組成物。
  8.  ラジカル重合開始剤を含有する請求項6または7に記載の硬化性樹脂組成物。
  9.  請求項1から4のいずれか一項に記載の化合物、請求項5に記載の混合物、または請求項6から8のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。
  10.  下記式(5)で表される化合物を、塩基性触媒の存在下、下記式(5)で表される化合物の4~7重量倍の溶剤中で脱ハロゲン化水素反応させて得られる下記式(1)で表される化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000008
     
    (式(1)中、複数存在するRはそれぞれ独立して存在し、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数である、nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。)
    Figure JPOXMLDOC01-appb-C000009
     
    (式(5)中、複数存在するRはそれぞれ独立して存在し、炭素数1~10の炭化水素基またはハロゲン化アルキル基を表す。p、rは0~4の整数、qは0~3の整数であり、nは繰り返し数であって、nの平均値naveは1≦nave≦20を満たす。Xはハロゲン原子を表す。)
  11.  前記溶剤が非プロトン性極性溶剤と非水溶性溶剤との混合溶剤である請求項10に記載の化合物の製造方法。
  12.  前記非プロトン性極性溶剤を前記非水溶性溶剤の1~10重量倍使用する請求項11に記載の化合物の製造方法。
  13.  前記非プロトン性極性溶剤としてジメチルスルホキシド、前記非水溶性溶剤としてトルエンを使用する請求項11または12に記載の化合物の製造方法。
     
     
PCT/JP2023/009322 2022-03-29 2023-03-10 化合物、硬化性樹脂組成物およびその硬化物ならびに化合物の製造方法 WO2023189424A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023534115A JP7353538B1 (ja) 2022-03-29 2023-03-10 化合物、硬化性樹脂組成物およびその硬化物ならびに化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022054487 2022-03-29
JP2022-054487 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189424A1 true WO2023189424A1 (ja) 2023-10-05

Family

ID=88200829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009322 WO2023189424A1 (ja) 2022-03-29 2023-03-10 化合物、硬化性樹脂組成物およびその硬化物ならびに化合物の製造方法

Country Status (2)

Country Link
TW (1) TW202406970A (ja)
WO (1) WO2023189424A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100658A1 (ja) * 2019-11-19 2021-05-27 日本化薬株式会社 化合物、混合物、硬化性樹脂組成物およびその硬化物、並びに化合物の製造方法
WO2022244728A1 (ja) * 2021-05-17 2022-11-24 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100658A1 (ja) * 2019-11-19 2021-05-27 日本化薬株式会社 化合物、混合物、硬化性樹脂組成物およびその硬化物、並びに化合物の製造方法
WO2022244728A1 (ja) * 2021-05-17 2022-11-24 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Also Published As

Publication number Publication date
TW202406970A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
KR20220103945A (ko) 화합물, 혼합물, 경화성 수지 조성물 및 그의 경화물, 그리고 화합물의 제조 방법
JP7353538B1 (ja) 化合物、硬化性樹脂組成物およびその硬化物ならびに化合物の製造方法
WO2023189424A1 (ja) 化合物、硬化性樹脂組成物およびその硬化物ならびに化合物の製造方法
JP7340904B1 (ja) 硬化性樹脂組成物、樹脂シート、およびその硬化物
JP7565403B1 (ja) 硬化性樹脂組成物およびその硬化物
JP7418644B2 (ja) マレイミド化合物、硬化性樹脂組成物及びその硬化物、並びにアミン化合物
JP7570449B2 (ja) 硬化性樹脂組成物およびその硬化物
JP7551036B1 (ja) 化合物、硬化性樹脂組成物およびその硬化物
WO2024154628A1 (ja) 混合物、硬化性樹脂組成物およびその硬化物
JP7530537B1 (ja) 化合物および化合物の製造方法、硬化性樹脂組成物およびその硬化物
JP7572496B1 (ja) 硬化性樹脂組成物およびその硬化物
WO2024219273A1 (ja) 硬化性樹脂組成物およびその硬化物
JP7500693B2 (ja) 化合物、硬化性樹脂組成物およびその硬化物
WO2024195767A1 (ja) 化合物および化合物の製造方法、硬化性樹脂組成物およびその硬化物
JP7561302B1 (ja) 化合物、硬化性樹脂組成物およびその硬化物
WO2024195765A1 (ja) 硬化性樹脂組成物およびその硬化物
WO2024190736A1 (ja) 硬化性樹脂、硬化性樹脂組成物、硬化物、プリプレグ、積層板、および半導体基板
WO2024122376A1 (ja) エポキシ樹脂、硬化性樹脂組成物、硬化物、およびフェノール樹脂
WO2024070793A1 (ja) 硬化性樹脂組成物、樹脂シート、および硬化物
WO2024219272A1 (ja) 硬化性樹脂組成物およびその硬化物
WO2024203532A1 (ja) 硬化性樹脂組成物、プリプレグおよびそれらの硬化物
JP2023130776A (ja) 硬化性樹脂組成物、樹脂シート、およびその硬化物
JP2024139797A (ja) 化合物、硬化性樹脂組成物およびその硬化物
JP2023130778A (ja) 硬化性樹脂組成物、およびその硬化物
KR20240151239A (ko) 화합물, 혼합물, 경화성 수지 조성물 및 그의 경화물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023534115

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020247032231

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2401006463

Country of ref document: TH