WO2023189399A1 - Polymer and use thereof - Google Patents

Polymer and use thereof Download PDF

Info

Publication number
WO2023189399A1
WO2023189399A1 PCT/JP2023/009226 JP2023009226W WO2023189399A1 WO 2023189399 A1 WO2023189399 A1 WO 2023189399A1 JP 2023009226 W JP2023009226 W JP 2023009226W WO 2023189399 A1 WO2023189399 A1 WO 2023189399A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
charge transporting
formula
och
Prior art date
Application number
PCT/JP2023/009226
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 倉田
圭介 首藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023189399A1 publication Critical patent/WO2023189399A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to polymers and their uses.
  • organic EL organic electroluminescent
  • the hole injection layer transfers charge between the anode and the hole transport layer or the light emitting layer, and plays an important function in achieving low voltage driving and high brightness of the organic EL element.
  • Formation methods for hole injection layers can be broadly divided into dry processes, typified by vapor deposition, and wet processes, typified by spin coating and inkjet methods. Comparing these processes, wet processes are generally superior. Thin films with high area flatness can be efficiently manufactured. Therefore, as organic EL displays are becoming larger in size, there is a demand for a hole injection layer that can be formed by a wet process, and there have been reports on technology related to hole injection materials that can be formed by a wet process. (Patent Document 1).
  • quantum dot electroluminescent (hereinafter referred to as quantum dot EL) elements that use quantum dot materials as light emitting layers have appeared, and are showing prospects for wide application.
  • Quantum dot EL devices can be manufactured at low cost using a wet process, while their properties include control of emission wavelength, high color purity, high luminous efficiency, and use in flexible applications, making them ideal for use in display technology, lighting, etc. is attracting a lot of attention in the field of
  • the present applicant has developed a charge transporting material that can be applied to various wet processes and provides a thin film that can realize excellent EL device characteristics when applied to the hole injection layer of an organic EL device.
  • compounds suitable as charge transporting substances and dopants that exhibit solubility in organic solvents used therein have been developed (see Patent Documents 2 to 8 and Non-Patent Document 1).
  • the present invention also aims to provide a polymer that can be suitably used for forming charge transporting thin films used in organic EL devices and the like.
  • a polymer containing a repeating unit having a group and an aryl group containing at least one sulfonic acid ester group in its side chain has high solubility in organic solvents, has excellent functions as a charge transport substance, and has a high charge transport property.
  • R M is a hydrogen atom or a methyl group.
  • R 1a and R 2a each independently represent a single bond or a phenylene group, and some or all of the hydrogen atoms of the phenylene group are a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, or an acryloyl group.
  • X 1a is -N(Ar 3a )-, -S- or -O-.
  • Ar 1a is a divalent group obtained by removing two hydrogen atoms on the aromatic ring of an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 3 to 20 carbon atoms, or a dialkylfluorene represented by the following formula (A2).
  • a group in which some or all of the hydrogen atoms on the aromatic rings of these groups are a cyano group, nitro group, halogen atom, vinyl group, trifluorovinyl group, acryloyl group, methacryloyl group, oxetanyl group, or epoxy group. , may be substituted with an alkyl group having 1 to 20 carbon atoms or a halogenated alkyl group having 1 to 20 carbon atoms.
  • Ar 2a and Ar 3a are each independently an aryl group having 6 to 20 carbon atoms or a monovalent group obtained by removing one hydrogen atom on the aromatic ring of dialkylfluorene represented by the following formula (A2).
  • Some or all of the hydrogen atoms on the aromatic ring of these groups are cyano group, nitro group, halogen atom, vinyl group, trifluorovinyl group, acryloyl group, methacryloyl group, oxetanyl group, epoxy group, carbon number It may be substituted with an alkyl group having 1 to 20 carbon atoms or a halogenated alkyl group having 1 to 20 carbon atoms.
  • X 1a is -N(Ar 3a )-
  • Ar 2a and Ar 3a may be bonded to each other to form a ring together with the nitrogen atom to which they are bonded.
  • R 2a is a phenylene group
  • R 2a and Ar 2a may be bonded to each other to form a ring together with the nitrogen atom, sulfur atom or oxygen atom to which they are bonded.
  • at least one of Ar 1a to Ar 3a is a group obtained by removing the hydrogen atom on the aromatic ring of dialkylfluorene represented by the following formula (A2).
  • R 3a and R 4a are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms containing at least one ether structure.
  • Ar F represents a fluorinated arylene group
  • X 1b represents O, S, NH, CONH or NHCO
  • Ar S represents at least one SO 3 D 1 D 2 on the ring.
  • D 1 represents a substituted or unsubstituted divalent hydrocarbon group
  • D 2 represents a single bond, O, S, or a substituted or unsubstituted divalent amino group.
  • D 3 represents a substituted or unsubstituted monovalent hydrocarbon group, but if D 2 is a single bond, it may be a hydrogen atom.
  • Polymer 1 wherein the repeating unit represented by the above formula (A1) is represented by the following formula (A1-1). (In the formula, R M , R 1a , R 2a and Ar 1a to Ar 3a represent the same meanings as above.) 3. 1 or 2 polymers in which the above R 1a is a single bond. 4. Any one of the polymers 1 to 3, wherein R 2a is a phenylene group. 5. Any one of the polymers 1 to 4, wherein Ar 1a is a 9,9-dimethyl-9H-fluorene-2,7-diyl group. 6. Any one of the polymers 1 to 5, wherein Ar F is a perfluoroarylene group. 7. 6.
  • Electronic device comprising 15 charge transporting thin films.
  • An organic electroluminescent device comprising 15 charge transporting thin films.
  • the charge transporting thin film is a hole injection layer or a hole transport layer.
  • Quantum dot electroluminescent device comprising 15 charge transporting thin films.
  • the polymer of the present invention has high solubility in organic solvents and has excellent functions as a charge transporting substance, so it provides a charge transporting thin film with excellent electrical properties, and an organic EL device equipped with the thin film has the following properties: It exhibits good characteristics and is particularly excellent in life performance. Furthermore, since the obtained thin film has high solvent resistance, film thinning and swelling when other functional films are formed thereon are reduced.
  • the polymer of the present invention having such characteristics can be suitably used in thin films for electronic devices such as organic EL devices and quantum dot EL devices, particularly in compositions for forming thin films for organic EL displays and quantum dot EL displays. I can do it.
  • the polymer of the present invention is characterized by containing a repeating unit represented by the following formula (A1) and a repeating unit represented by the following formula (B1).
  • R M is a hydrogen atom or a methyl group.
  • R 1a and R 2a each independently represent a single bond or a phenylene group, and some or all of the hydrogen atoms of the phenylene group are a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, or an acryloyl group. may be substituted with a methacryloyl group, an oxetanyl group, an epoxy group, an alkyl group having 1 to 20 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms.
  • phenylene group examples include a 1,2-phenylene group, a 1,3-phenylene group, and a 1,4-phenylene group, with a 1,4-phenylene group being preferred.
  • the above alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, and isobutyl group.
  • a straight group having 1 to 20 carbon atoms such as sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc.
  • Chain or branched alkyl group cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group , a bicyclooctyl group, a bicyclononyl group, a bicyclodecyl group, and a cyclic alkyl group having 3 to 20 carbon atoms.
  • the halogenated alkyl group having 1 to 20 carbon atoms is not particularly limited as long as it is a group in which some or all of the hydrogen atoms of the alkyl group having 1 to 20 carbon atoms are substituted with halogen atoms.
  • Specific examples include trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2, 2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4 , 4-pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group, etc. can be mentioned.
  • R 1a is preferably a single bond, and R 2a is preferably a phenylene group.
  • X 1a is -N(Ar 3a )-, -S- or -O-.
  • Ar 1a represents an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 3 to 20 carbon atoms, or two hydrogen atoms on the aromatic ring of dialkylfluorene represented by the following formula (A2). It is a divalent group obtained by removing a part or all of the hydrogen atoms on the aromatic ring of these groups, such as a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, an acryloyl group, or a methacryloyl group.
  • an oxetanyl group an epoxy group, an alkyl group having 1 to 20 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms.
  • an alkyl group having 1 to 20 carbon atoms and the halogenated alkyl group having 1 to 20 carbon atoms include those mentioned above.
  • R 3a and R 4a are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms containing at least one ether structure. be.
  • the above arylene groups having 6 to 20 carbon atoms include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,2-naphthalene-diyl group, 2,3-naphthalene-diyl group, 1,4-naphthalenediyl group, 1,5-naphthalenediyl group, 2,6-naphthalenediyl, 2,7-naphthalenediyl group, 1,8-naphthalenediyl group, 1,2-anthracenediyl group, 1, 3-anthracenediyl group, 1,4-anthracenediyl group, 1,5-anthracenediyl group, 1,6-anthracenediyl group, 1,7-anthracenediyl group, 1,8-anthracenediyl group, 2,3- Examples include anthracenediyl group, 2,6-anthracenediyl group, 2,7-anthracenediyl group, 2,9-anthracenediyl
  • Examples of the above heteroarylene group having 3 to 20 carbon atoms include 9-phenylcarbazole-3,6-diyl group, 9-phenylcarbazole-2,7-diyl group, 9-phenylcarbazole-3,6-dimethyl-2, Examples include a 7-diyl group, groups represented by the following formulas (H1) to (H33), and the like.
  • R 3a and R 4a are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms containing at least one ether structure. It is the basis.
  • the above alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, and isobutyl group.
  • a straight group having 1 to 20 carbon atoms such as sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc.
  • Chain or branched alkyl group ; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group , a bicyclooctyl group, a bicyclononyl group, a bicyclodecyl group, and a cyclic alkyl group having 3 to 20 carbon atoms.
  • methyl group and ethyl group are preferred, and methyl group is more preferred.
  • the above alkoxy group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, 1 carbon number such as isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyl group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, etc.
  • ⁇ 20 linear or branched alkoxy groups cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, cyclononyloxy group, cyclodecyloxy group
  • Examples include cyclic alkoxy groups having 3 to 20 carbon atoms such as bicyclobutyloxy, bicyclopentyloxy, bicyclohexyloxy, bicycloheptyloxy, bicyclooctyloxy, bicyclononyloxy, and bicyclodecyloxy.
  • Examples of the alkyl group having 2 to 20 carbon atoms containing at least one ether structure include linear or branched alkyl groups in which at least one methylene group is substituted with an oxygen atom.
  • the methylene group bonded to the fluorene skeleton is not substituted with an oxygen atom, and the adjacent methylene groups are not substituted with oxygen atoms at the same time.
  • a group represented by formula (A2-1) is preferable, and a group represented by formula (A2-2) is more preferable, considering the availability of the raw material compound.
  • R 5a represents a linear or branched alkylene group having 1 to 4 carbon atoms
  • R 6a represents a linear or branched alkylene group having 1 to 20 carbon atoms (number of carbon atoms in R) x p).
  • p is an integer of 1 to 9. From the viewpoint of compatibility with the dopant, p is preferably 2 or more, more preferably 3 or more, and from the viewpoint of the ease of obtaining the raw material compound. , preferably 5 or less, more preferably 4 or less.
  • alkyl group having 2 to 20 carbon atoms containing at least one ether structure examples include -CH 2 OCH 3 , -CH 2 OCH 2 CH 3 , -CH 2 O(CH 2 ) 2 CH 3 , -CH 2 OCH(CH 3 ) 2 , -CH 2 O(CH 2 ) 3 CH 3 , -CH 2 OCH 2 CH(CH 3 ) 2 , -CH 2 OC(CH 3 ) 3 , -CH 2 O(CH 2 ) 4 CH 3 , -CH 2 OCH(CH 3 )(CH 2 ) 2 CH 3 , -CH 2 O(CH 2 ) 2 CH(CH 3 ) 2 , -CH 2 OCH 2 CH(CH 3 )CH 2 CH 3 , -CH 2 OCH 2 C(CH 3 ) 3 , -CH 2 OCH(CH 3 )CH(CH 3 ) 2 , -CH 2 OC(CH 3 ) 2 CH 2 CH 3 , -CH 2 OCH(CH(
  • Divalent groups obtained by removing two hydrogen atoms on the aromatic ring of dialkylfluorene represented by formula (A2) include 9,9-dimethyl-9H-fluorene-2,7-diyl group, 9, 9-diethyl-9H-fluorene-2,7-diyl group, 9,9-dipropyl-9H-fluorene-2,7-diyl group, 9,9-dibutyl-9H-fluorene-2,7-diyl group, 9 ,9-dihexyl-9H-fluorene-2,7-diyl group, 9,9-dioctyl-9H-fluorene-2,7-diyl group, 9,9-bis(2-ethylhexyl)-9H-fluorene- 2,7-diyl group, 9,9-dimethoxy-9H-fluorene-2,7-diyl group, 9,9-diethoxy-9H-fluorene-2
  • Ar 1a a group obtained by removing two hydrogen atoms on the aromatic ring of dialkylfluorene represented by formula (A2) is preferable, and in particular, 9,9-dimethyl-9H-fluorene-2, 7-diyl group is preferred.
  • Ar 2a and Ar 3a are each independently obtained by removing one hydrogen atom on the aromatic ring of the aryl group having 6 to 20 carbon atoms or the dialkylfluorene represented by formula (A2). It is a monovalent group, and some or all of the hydrogen atoms on the aromatic ring of these groups are a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, an acryloyl group, a methacryloyl group, an oxetanyl group, It may be substituted with an epoxy group, an alkyl group having 1 to 20 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms. Specific examples of the alkyl group having 1 to 20 carbon atoms and the halogenated alkyl group having 1 to 20 carbon atoms include those mentioned above.
  • the above aryl group having 6 to 20 carbon atoms includes phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, Examples include 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, biphenyl-2-yl group, biphenyl-3-yl group, biphenyl-4-yl group, and the like.
  • Monovalent groups obtained by removing one hydrogen atom on the aromatic ring of dialkylfluorene represented by formula (A2) include 9,9-dimethyl-9H-fluoren-2-yl group, 9,9- Dimethyl-9H-fluoren-3-yl group, 9,9-diethyl-9H-fluoren-2-yl group, 9,9-diethyl-9H-fluoren-3-yl group, 9,9-dipropyl-9H-fluorene -2-yl group, 9,9-dipropyl-9H-fluoren-3-yl group, 9,9-dibutyl-9H-fluoren-2-yl group, 9,9-dibutyl-9H-fluoren-3-yl group , 9,9-dihexyl-9H-fluoren-2-yl group, 9,9-dihexyl-9H-fluoren-3-yl group, 9,9-dioctyl-9H-fluoren-2-yl group, 9,9-
  • Ar 2a and Ar 3a may be bonded to each other to form a ring with the nitrogen atom to which they are bonded.
  • the structure of the ring is preferably a carbazole ring.
  • R 2a is a phenylene group
  • R 2a and Ar 2a may be bonded to each other to form a ring together with the nitrogen atom, sulfur atom or oxygen atom to which they are bonded.
  • the structure of the above ring is preferably a carbazole ring, a dibenzothiophene ring or a dibenzofuran ring.
  • At least one of Ar 1a to Ar 3a is a group obtained by removing a hydrogen atom on the aromatic ring of dialkylfluorene represented by formula (A2).
  • the repeating unit represented by formula (A1) is preferably one in which X 1a is -N(Ar 3a )-, and more preferably one represented by the following formula (A1-1).
  • repeating unit represented by formula (A1-1) one represented by the following formula (A1-2) is even more preferable.
  • Ar F represents a fluorinated arylene group.
  • the fluorinated arylene group of Ar F is not particularly limited as long as at least one hydrogen atom on the arylene group is replaced with a fluorine atom, but at least one of the remaining hydrogen atoms is an electron-withdrawing group other than a sulfo group. It is preferable that it is substituted with.
  • electron-withdrawing groups include halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom; nitro group; cyano group; acyl group; carboxy group; carboxylic acid ester group; acyl group such as formyl group and acetyl group.
  • the fluorinated arylene group of Ar F is preferably an arylene group substituted with two or more fluorine atoms, and more preferably a perfluoroarylene group.
  • Ar F is preferably a tetrafluorophenylene group, more preferably a 2,3,5,6-tetrafluoro-1,4-phenylene group.
  • X represents O, S, NH, CONH or NHCO, preferably O or S, and more preferably O.
  • repeating unit represented by the above formula (B1) includes those represented by the following formula (B1-1).
  • n1 represents an integer from 1 to 4.
  • repeating unit represented by the above formula (B1) include those represented by the following formula (B1-2).
  • n1 represents an integer from 1 to 4.
  • repeating unit represented by the above formula (B1) include those represented by the following formula (B1-3).
  • Ar S represents an aryl group having at least one SO 3 D 1 D 2 D 3 group on the ring, D 1 represents a substituted or unsubstituted divalent hydrocarbon group, D 2 represents a single bond, O, S, or a substituted or unsubstituted divalent amino group, and D 3 represents a substituted or unsubstituted monovalent hydrocarbon group, but if D 2 is a single bond, even if it is a hydrogen atom. good.
  • the number of carbon atoms in the aryl group constituting Ar S is not particularly limited, but preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 6 to 12 carbon atoms.
  • Specific examples include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4 -phenanthryl group, 9-phenanthryl group, etc., but naphthyl group is preferable, and 1-naphthyl group is more preferable.
  • the number of SO 3 D 1 D 2 D 3 groups that Ar S has may be one or more, but preferably 2 to 4, and more preferably 2.
  • the substituted or unsubstituted divalent hydrocarbon group for D 1 is, for example, a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, alkylene group having 1 to 2 carbon atoms, alkylene group having 1 to 2 carbon atoms, or 1 to 2 carbon atoms; ⁇ 2 Alkylenethio Alkylene group with 1 to 2 carbon atoms, Alkylene carbonyl group with 1 to 2 carbon atoms, Alkylene group with 1 to 2 carbon atoms, and some or all of the hydrogen atoms of these groups can further be hydroxyl group, amino group, silanol group, Thiol group, carboxyl group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, nitro group, monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, Examples include those substituted with an organothio group, an
  • an alkylene group having 1 to 5 carbon atoms is preferred.
  • the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, trimethylene, tetramethylene and pentamethylene groups, with methylene, ethylene, propylene and trimethylene groups being preferred.
  • D 2 is a single bond, O, S, or a substituted or unsubstituted divalent amino group, and O is preferred in the present invention.
  • examples of the divalent substituted amino group include -N(CH 3 )-, -N(C 2 H 5 )-, and -N(C 3 H 7 )-.
  • D 3 represents a substituted or unsubstituted monovalent hydrocarbon group, but may be a hydrogen atom when D 2 is a single bond.
  • Substituted or unsubstituted monovalent hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-hexyl, n-octyl, 2-ethylhexyl, decyl.
  • Alkyl groups such as groups; cycloalkyl groups such as cyclopentyl and cyclohexyl groups; bicycloalkyl groups such as bicyclohexyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, Alkenyl groups such as 2-butenyl, 3-butenyl, hexenyl groups; aromatic ring groups (aryl groups) such as phenyl, xylyl, tolyl, biphenyl, naphthyl groups; aralkyl groups such as benzyl, phenylethyl, phenylcyclohexyl groups; Examples include those in which some or all of the hydrogen atoms of the group are further substituted with the above-mentioned substituents. According to the invention, methyl, ethyl, n-propyl, n-butyl and phenyl groups are preferred.
  • the above D 1 to D 3 more preferably have a structure represented by the following formula (D).
  • R 1d and R 2d each independently represent a hydrogen atom, a linear or branched monovalent aliphatic hydrocarbon group, and R 3d represents a linear or branched monovalent aliphatic hydrocarbon group. Represents an aliphatic hydrocarbon group or an alkoxy group.
  • the total number of carbon atoms in R 1d , R 2d and R 3d is 2 or more.
  • the total number of carbon atoms in R 1d , R 2d and R 3d is not particularly limited, but is preferably 20 or less, more preferably 10 or less.
  • the linear or branched monovalent aliphatic hydrocarbon group is not particularly limited, but includes methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-hexyl. , n-octyl, 2-ethylhexyl, alkyl groups having 1 to 18 carbon atoms such as decyl; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, 2-butenyl , 3-butenyl, hexenyl, and other alkenyl groups having 2 to 18 carbon atoms.
  • an alkoxy group having 1 to 10 carbon atoms is preferable, and specifically, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy and phenoxy Examples include groups.
  • R 1d a methyl group is more preferable.
  • R 2d a hydrogen atom is preferable.
  • R 3d is preferably an alkoxy group, more preferably a methoxy, ethoxy, n-propoxy, n-butoxy and phenoxy group, even more preferably an ethoxy, n-butoxy and phenoxy group.
  • the structure represented by the above formula (D) is obtained by converting a predetermined arylsulfonic acid halide into a predetermined alcohol compound, for example, with reference to the method described in International Publication No. 2020/218316 (Patent Document 7). , can be introduced by esterification using an alcohol compound represented by the following formula (D').
  • the repeating unit represented by formula (B1) has such a sulfonic acid ester group, thereby improving solubility in an organic solvent.
  • the sulfonic acid ester groups are decomposed by the heating process and sulfonic acid groups are generated, which improves the hydrophilicity of the thin film and improves its resistance to low polar solvents such as toluene. improves. This reduces thinning and swelling of the resulting charge transporting thin film.
  • R 1d to R 3d represent the same meanings as above.
  • Ar S examples include those represented by the following formulas (Ar S -1) to (Ar S -6).
  • n an integer from 2 to 4.
  • Ar S More preferred embodiments of the above Ar S include those represented by the following formulas (Ar S -7) to (Ar S -12).
  • R 1d to R 3d represent the same meanings as above.
  • n represents an integer from 2 to 4.
  • R 1d to R 3d represent the same meanings as above.
  • R 1d to R 3d have the same meanings as above.
  • R 1d to R 3d represent the same meanings as above.
  • the polymer of the present invention may be a polymer containing only the repeating unit represented by the above formula (A1) and the repeating unit represented by the above formula (B1). Further, the polymer of the present invention may be a random copolymer, an alternating copolymer, or a block copolymer.
  • repeating units other than the repeating unit represented by formula (A1) and the repeating unit represented by formula (B1) may be included as long as the effects of the present invention are not impaired.
  • Other repeating units include those containing polymerizable functional groups such as an acryloyl group, an acrylamide group, a methacryloyl group, a methacrylamide group, a vinyl ether group, and maleic anhydride.
  • a repeating unit represented by the following formula (B2) is preferred.
  • R' represents a monovalent organic group.
  • the monovalent organic group include a monovalent hydrocarbon group, a heteroaryl group, a -COOR" group (R" represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms), and the like.
  • R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, Alkyl groups such as n-nonyl and n-decyl groups; phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl , aryl groups such as 9-phenanthryl group, and the like.
  • heteroaryl groups include 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2 - Thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-imidazolyl, 4-imidazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, etc. with 2 to 20 carbon atoms
  • heteroaryl groups include 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2 - Thiazolyl, 4-thiazolyl, 5-thiazolyl
  • Examples of the alkyl group having 1 to 10 carbon atoms for R'' include the same groups as exemplified above, but among them, an alkyl group having 1 to 5 carbon atoms is preferred.
  • halogen atom examples include a halogen atom, a cyano group, a nitro group, a carboxy group, a sulfo group, a hydroxyl group, etc.
  • halogen atom examples include the same atoms as exemplified above.
  • R' is preferably an aryl group substituted with a halogen atom, more preferably a fluorinated aryl group, in consideration of improving the device characteristics and life characteristics of the resulting organic EL device or quantum dot EL device.
  • perfluoroaryl groups are even more preferred.
  • a phenyl group substituted with a halogen atom is preferred, a fluorinated phenyl group is more preferred, and a perfluorophenyl group is even more preferred.
  • the molecular weight of the polymer of the present invention is not particularly limited, but from the viewpoint of improving heat resistance and ensuring solubility in solvents, the weight average molecular weight Mw is preferably 1,000 to 50,000, 1,500 to 10, 000 is more preferable, and 2,000 to 10,000 is even more preferable. Further, the molecular weight distribution (Mw/Mn) is not particularly limited, but is preferably from 1.0 to 5.0, more preferably from 1.0 to 3.0. Note that this weight average molecular weight is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard sample.
  • GPC gel permeation chromatography
  • the polymer of the present invention is produced by a known radical polymerization method using a monomer represented by the following formula (a1) and a monomer represented by the following formula (b1) in the presence of a solvent and a radical polymerization initiator. It can be obtained by polymerization.
  • the monomers represented by formula (a1) may be used in combination of two or more types
  • the monomers represented by formula (b1) may be used in combination of two or more types.
  • R M , R 1a , R 2a , Ar 1a , Ar 2a , Ar F , Ar S , X 1a and X 1b represent the same meanings as above.
  • a monomer represented by the following formula (a2) may be added as necessary.
  • radical thermal polymerization initiator known compounds such as radical thermal polymerization initiators and radical photopolymerization initiators can be used.
  • a radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature.
  • radical thermal polymerization initiators include, for example, ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxycyclohexane) ), alkyl peresters (peroxyneodecanoic acid tert-
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • Such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(
  • the solvent used in the polymerization reaction is not particularly limited as long as it dissolves the produced polymer.
  • Specific examples include water; N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, dimethylsulfoxide, tetra Methylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 2-propanol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve , methyl cellosolve acetate, ethyl cellosolve acetate, buty
  • the polymerization temperature during radical polymerization can be any temperature in the range of 30 to 150°C, but is preferably in the range of 50 to 100°C.
  • the monomer represented by the above formula (a1) can be synthesized by combining various coupling reactions.
  • a styrene compound represented by formula (a1-1) and an amine compound represented by formula (a1-2) below are subjected to a coupling reaction. There are several methods.
  • R M , R 1a , R 2a , X 1a , Ar 1a and Ar 2a have the same meanings as above.
  • X A is any group used in the coupling reaction.
  • groups include, for example, boronic acid groups such as -B(OH) 2 and boronic acid ester groups when using the Suzuki-Miyaura coupling reaction.
  • each X B is independently a halogen atom or a pseudohalogen group.
  • the halogen atom represented by X B include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, with a bromine atom or an iodine atom being preferred.
  • the pseudohalogen group represented by Examples include sulfonyloxy group.
  • the solvent used in the coupling reaction is not particularly limited as long as it does not adversely affect the reaction, but examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), Halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), ethers (diethyl ether, etc.) , diisopropyl ether, tert-butyl methyl ether, THF, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), amides (N,N-dimethylformamide (DMF), N,N-dimethyl
  • preferred solvents are aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.) and aromatic hydrocarbons (benzene, nitrobenzene, toluene, etc.) from the viewpoint of efficiently obtaining the target product.
  • ethers diethyl ether, diisopropyl ether, tert-butyl methyl ether, THF, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.) ), more preferably aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), ethers (diethyl ether, diisopropyl ether, tert-butyl methyl ether, THF, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.).
  • Catalysts used in the above coupling reaction include [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride (PdCl 2 (dppf)), tetrakis(triphenylphosphine)palladium (Pd(PPh 3 )), 4 ), bis(triphenylphosphine)dichloropalladium (Pd(PPh 3 ) 2 Cl 2 ), bis(benzylideneacetone)palladium (Pd(dba) 2 ), tris(benzylideneacetone)dipalladium (Pd 2 (dba) 3 ) ), bis(tri-tert-butylphosphine)palladium (Pd(Pt-Bu 3 ) 2 ), palladium(II) acetate (Pd(OAc) 2 ), and other palladium catalysts. These catalysts may be used with known suitable ligands.
  • the amount of the catalyst used is preferably an amount such that the molar ratio is 0.01 to 0.2, more preferably 0.03 to 0.1 with respect to the amine compound represented by formula (a1-2). .
  • the amount used can be 0.1 to 3.0 equivalents, preferably 0.8 to 1.5 equivalents, relative to the metal complex used.
  • a base may be used in the above coupling reaction.
  • the base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkoxyalkali metals such as tert-butoxylithium, tert-butoxysodium, and tert-butoxypotassium; sodium carbonate, potassium carbonate, etc.
  • the amount of the base used is usually about 1 to 20, preferably 4 to 8, in molar ratio to the amine compound represented by formula (a1-2).
  • the charging ratio of the styrene compound represented by the formula (a1-1) and the amine compound represented by the following formula (a1-2) is such that the styrene compound represented by the formula (a1-1)
  • the amount of the amine compound represented by formula (a1-2) is preferably 0.2 to 2.0 in terms of molar ratio, and more preferably 0.5 to 1.0.
  • the reaction temperature is appropriately set in the range from the melting point to the boiling point of the solvent, taking into consideration the type and amount of the raw material compounds and catalysts used, but is usually about 20 to 120°C, preferably The temperature is 60-100°C.
  • the reaction time cannot be absolutely defined because it varies depending on the raw material compounds used, the reaction temperature, etc., but is usually about 0.5 to 12 hours.
  • the desired monomer can be obtained by post-treatment according to a conventional method.
  • the monomer of formula (b1) above can be obtained by esterifying an arylsulfonic acid compound, which can be produced by a known method disclosed in Patent Document 6, by a known method. Esterification of the above-mentioned arylsulfonic acid compound can be carried out by esterifying a predetermined arylsulfonic acid halide using a predetermined alcohol compound, for example, International Publication No. 2020/218316 (Patent Document 7) The method disclosed in can be adopted.
  • charge-transporting varnish of the present invention contains a charge-transporting substance made of the above-mentioned polymer and a solvent.
  • charge transport property is synonymous with electroconductivity, and is synonymous with hole transport property.
  • the charge-transporting varnish may be one that itself has charge-transporting properties, or the solid film obtained therefrom may have charge-transporting properties.
  • the content of the above polymer in the charge transporting varnish of the present invention is preferably 0.1 to 100% by mass, more preferably 10 to 100% by mass, based on the solid content, from the viewpoint of the electrical properties and solvent resistance of the obtained thin film. Even more preferably, it is 20 to 100% by mass.
  • the upper limit of the content of the polymer is usually 100% by mass or less, but when it contains optional components such as thiophene derivatives and arylamine derivatives described below, it is preferably 99.95% by mass or less, more preferably 99.95% by mass or less. .90% by mass or less.
  • the present invention may further contain charge transporting substances other than the above-mentioned polymers.
  • the other charge-transporting substances mentioned above are not particularly limited, and may be appropriately selected from charge-transporting compounds, charge-transporting oligomers, charge-transporting polymers, etc. used in the fields of organic EL and quantum dot EL. Can be used.
  • arylamine derivatives such as oligoaniline derivatives, N,N'-diarylbenzidine derivatives, N,N,N',N'-tetraarylbenzidine derivatives (excluding the above polymers); oligothiophene derivatives , thiophene derivatives such as thienothiophene derivatives, thienobenzothiophene derivatives; various charge transport compounds such as pyrrole derivatives such as oligopyrrole; charge transport polymers such as charge transport oligomers, polythiophene derivatives, polyaniline derivatives, polypyrrole derivatives, etc. Among these, polythiophene derivatives and arylamine derivatives are preferred.
  • a charge transporting compound low molecular weight compound
  • a charge transporting oligomer such as an arylamine compound represented by the formula (T2) or (T3) described below is useful from the viewpoint of producing a thin film with high flatness. Therefore, it is preferably monodisperse (that is, the molecular weight distribution is 1).
  • the molecular weight of the charge transporting substance is usually about 200 to 9,000 from the viewpoint of preparing a uniform varnish that provides a thin film with high flatness, but from the viewpoint of obtaining a thin film with even better charge transportability, It is preferably 300 or more, more preferably 400 or more, and from the viewpoint of preparing a uniform varnish that provides a highly flat thin film with good reproducibility, it is preferably 8,000 or less, more preferably 7,000 or less, and 6,000 or less. is even more preferable, and even more preferably 5,000 or less.
  • charge transporting substances include, for example, JP2002-151272A, WO2004/105446, WO2005/043962, WO2008/032617, and WO2008/032616. , International Publication No. 2013/042623, International Publication No. 2014/141998, International Publication No. 2014/185208, International Publication No. 2015/050253, International Publication No. 2015/137391, International Publication No. 2015/137395, International Publication No. Examples include those disclosed in Publication No. 2015/146912, International Publication No. 2015/146965, International Publication No. 2016/190326, International Publication No. 2016/136544, International Publication No. 2016/204079, etc.
  • the other charge transporting substance is a polythiophene derivative containing a repeating unit represented by formula (T1) or an amine adduct thereof.
  • R 1t and R 2t each independently represent a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms, or a C 1 to 40 alkoxy group.
  • Y is an alkylene group having 1 to 40 carbon atoms which may contain an ether bond and may be substituted with a sulfo group, and Z may be substituted with a halogen atom.
  • the alkyl group having 1 to 40 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and s-butyl.
  • t-butyl n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n -hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosanyl, behenyl, triacontyl, tetracontyl groups and the like.
  • an alkyl group having 1 to 18 carbon atoms is preferred, and an alkyl group having 1 to 8 carbon atoms is more preferred.
  • the fluoroalkyl group having 1 to 40 carbon atoms is not particularly limited as long as it is an alkyl group having 1 to 40 carbon atoms in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and the specific Examples include fluoromethyl, difluoromethyl, perfluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 1,2-difluoroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, 1,1,2 -Trifluoroethyl, 1,2,2-trifluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, 1,2,2,2-tetrafluoroethyl, perfluoroethyl Fluoroethyl, 1-fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, 1,1-di
  • the alkyl group therein may be linear, branched, or cyclic, and specific examples include methoxy, ethoxy, n-propoxy, i-propoxy, c -Propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexoxy, n-heptyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, n-undecyloxy , n-dodecyloxy, n-tridecyloxy, n-tetradecyloxy, n-pentadecyloxy, n-hexadecyloxy, n-heptadecyloxy, n-octadecyloxy, n-nonadecyloxy, n-eicosanyl
  • the fluoroalkoxy group having 1 to 40 carbon atoms is not particularly limited as long as it is an alkoxy group having 1 to 40 carbon atoms in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and the specific Examples include fluoromethoxy, difluoromethoxy, perfluoromethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 1,2-difluoroethoxy, 1,1-difluoroethoxy, 2,2-difluoroethoxy, 1,1,2 -Trifluoroethoxy, 1,2,2-trifluoroethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 1,2,2,2-tetrafluoroethoxy, perfluoroethoxy, Fluoroethoxy, 1-fluoropropoxy, 2-fluoropropoxy, 3-fluoropropoxy, 1,1-difluoropropoxy, 1,2-diflu
  • the alkylene group having 1 to 40 carbon atoms may be linear, branched, or cyclic, and specific examples include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, and heptamethylene. , octamethylene, nonamethylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene, pentadecylene, hexadecylene, heptadecylene, octadecylene, nonadecylene, eicosanylene groups, and the like.
  • aryl group having 6 to 20 carbon atoms include phenyl, tolyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, Examples include 4-phenanthryl and 9-phenanthryl groups, with phenyl, tolyl and naphthyl groups being preferred.
  • aryloxy group having 6 to 20 carbon atoms include phenoxy, anthracenoxy, naphthoxy, phenanthrenoxy, and fluorenoxy groups.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • R 1t and R 2t each independently represent a hydrogen atom, a fluoroalkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms, -O[C(R a R b ) -C(R c R d )-O] h -R e , -OR f , or a sulfo group, or -O-Y-O- formed by combining R 1t and R 2t is preferred.
  • R a to R d each independently represent a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms; Examples include the same groups as listed above. Among these, R a to R d are each independently preferably a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluoroalkyl group having 1 to 8 carbon atoms, or a phenyl group.
  • R e is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluoroalkyl group having 1 to 8 carbon atoms, or a phenyl group, and preferably a hydrogen atom, a methyl group, a propyl group, or a butyl group.
  • h is preferably 1 to 5, more preferably 1, 2 or 3.
  • R f is a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms; A fluoroalkyl group having 1 to 8 carbon atoms or a phenyl group is preferred, and -CH 2 CF 3 is more preferred.
  • R 1t is preferably a hydrogen atom or a sulfo group, more preferably a sulfo group
  • R 2t is preferably an alkoxy group having 1 to 40 carbon atoms or -O-[Z-O] h -R e , more preferably -O[C(R a R b )-C(R c R d )-O] h -R e or -OR f , even more preferably -O[C(R a R b )-C (R c R d )-O] h -R e , -O-CH 2 CH 2 -O-CH 2 CH 2 -O-CH 3 , -O-CH 2 CH 2 -O-CH 2 CH 2 -OH or -O-CH 2 CH 2 -OH, or -O-Y-O- formed by combining R 1t and R 2t with each other.
  • the polythiophene derivative according to a preferred embodiment of the present invention contains a repeating unit in which R 1t is a sulfo group and R 2t is other than a sulfo group, or is formed by combining R 1t and R 2t . -O-Y-O-.
  • the polythiophene derivative contains a repeating unit in which R 1t is a sulfo group and R 2t is an alkoxy group having 1 to 40 carbon atoms or -O-[Z-O] h -R e , Or it includes a repeating unit that is -O-Y-O- formed by combining R 1t and R 2t .
  • R 1t is a sulfo group
  • R 2t is -O[C(R a R b )-C(R c R d )-O] h -R e or -OR Contains a repeating unit that is f .
  • R 1t is a sulfo group
  • R 2t is -O[C(R a R b )-C(R c R d )-O] h -R e It contains a repeating unit, or it contains a repeating unit which is -O-Y-O- formed by combining R 1t and R 2t .
  • R 1t is a sulfo group
  • R 2t is -O-CH 2 CH 2 -O-CH 2 CH 2 -O-CH 3
  • -O-CH 2 CH 2 - Contains a repeating unit that is O-CH 2 CH 2 -OH or -O-CH 2 CH 2 -OH, or R 1t and R 2t are bonded to each other and are represented by the following formulas (Y1) and (Y2). Contains repeating units that are groups.
  • polythiophene derivatives include polythiophenes containing at least one type of repeating unit represented by the following formulas (T1-1) to (T1-5).
  • each unit may be bonded randomly or may be bonded as a block polymer.
  • polythiophene derivatives may be homopolymers or copolymers (including statistical, random, gradient, and block copolymers).
  • block copolymers include, for example, AB diblock copolymers, ABA triblock copolymers, and (AB) k -multiblock copolymers.
  • Polythiophenes also contain repeating units derived from other types of monomers, such as thienothiophenes, selenophenes, pyrroles, furans, tellurophenes, anilines, arylamines, and arylenes (such as phenylene, phenylene vinylene, and fluorene). May contain.
  • the content of the repeating unit represented by formula (T1) in the polythiophene derivative is preferably more than 50 mol%, more preferably 80 mol% or more, and more preferably 90 mol% or more, based on all the repeating units contained in the polythiophene derivative. It is more preferably 95 mol% or more, and most preferably 100 mol%.
  • the above polythiophene derivative may contain repeating units derived from impurities, depending on the purity of the starting monomer used for polymerization.
  • the term "homopolymer” above refers to a polymer containing repeat units derived from one type of monomer, but may also contain repeat units derived from impurities.
  • the polythiophene derivative is preferably a polymer in which basically all of the repeating units are repeating units represented by the above formula (T1), and the polythiophene derivative is preferably a polymer in which basically all repeating units are repeating units represented by the above formula (T1-1) to (T1-5). More preferably, it is a polymer containing at least one repeating unit.
  • the polythiophene derivative contains a repeating unit having a sulfo group, from the viewpoint of further improving solubility and dispersibility in organic solvents, the polythiophene derivative has an amine compound added to at least a part of the sulfo group contained therein. Amine adducts are preferred.
  • Amine compounds that can be used to form amine adducts include methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, s-butylamine, t-butylamine, n-pentylamine, n-hexylamine.
  • n-heptylamine, n-octylamine 2-ethylhexylamine, n-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-penta Monoalkylamine compounds such as decylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, n-nonadecylamine, n-eicosanylamine; aniline, tolylamine, 1-naphthylamine, 2-naphthylamine, 1- Anthrylamine, 2-anthrylamine, 9-anthrylamine, 1-phenanthrylamine, 2-phenanthrylamine, 3-phenanthrylamine, 4-phenanthrylamine, 9-phenanthrylamine Primary
  • the amine adduct can be obtained by adding the polythiophene derivative to the amine itself or its solution and stirring well.
  • polythiophene derivative or its amine adduct may be treated with a reducing agent.
  • some of their constituent repeating units may have an oxidized chemical structure called a "quinoid structure.”
  • the term ⁇ quinoid structure'' is used for the term ⁇ benzenoid structure.'' The latter is a structure containing an aromatic ring, whereas the former is a structure in which the double bond within the aromatic ring moves outside the ring (its (As a result, the aromatic ring disappears), meaning a structure in which two extracyclic double bonds are formed that are conjugated with other double bonds remaining in the ring.
  • This quinoid structure is produced by a process in which a polythiophene derivative containing the repeating unit represented by the above formula (T1) undergoes an oxidation reaction with a dopant, a so-called doping reaction, and a "polaron structure” and " It forms part of a structure called "bipolaron structure”.
  • T1 a polythiophene derivative containing the repeating unit represented by the above formula (T1) undergoes an oxidation reaction with a dopant, a so-called doping reaction, and a "polaron structure” and " It forms part of a structure called "bipolaron structure”.
  • the reason why the polythiophene derivative contains a quinoid structure before undergoing this doping reaction is that the polythiophene derivative undergoes an unintended oxidation reaction equivalent to the doping reaction during its manufacturing process (especially in the sulfonation step). This is thought to be due to the
  • polythiophene derivatives vary in their solubility and dispersibility in organic solvents, and one of the reasons for this is that the amount of quinoid structure introduced into polythiophene due to the above-mentioned unintended oxidation reaction is This is thought to vary depending on differences in the manufacturing conditions of each polythiophene derivative. Therefore, when the above polythiophene derivative is subjected to a reduction treatment using a reducing agent, even if an excessive amount of quinoid structure is introduced into the polythiophene derivative, the reduction reduces the quinoid structure, improving the solubility and dispersibility of the polythiophene derivative in organic solvents. As a result, it becomes possible to stably produce a varnish with good charge transport properties that provides a thin film with excellent homogeneity.
  • the conditions for the reduction treatment are such that the quinoid structure is reduced and appropriately converted to a non-oxidized structure, that is, the benzenoid structure (for example, in a polythiophene derivative containing a repeating unit represented by the above formula (T1), There is no particular restriction as long as the quinoid structure represented by the above formula (T1') can be converted into the structure represented by the above formula (T1), but for example, in the presence of a suitable solvent or This treatment can be carried out simply by contacting the polythiophene derivative or amine adduct with a reducing agent in the absence of the reducing agent.
  • Such a reducing agent is not particularly limited as long as the reduction is carried out appropriately, but suitable examples include aqueous ammonia, hydrazine, etc., which are easily available commercially.
  • the amount of the reducing agent cannot be unconditionally defined as it varies depending on the amount of the reducing agent used, but from the viewpoint that the reduction is usually appropriate for 100 parts by mass of the polythiophene derivative or amine adduct to be treated, The content is 0.1 parts by mass or more, and from the viewpoint of preventing excessive reducing agent from remaining, the content is 10 parts by mass or less.
  • a polythiophene derivative or an amine adduct is stirred in 28% ammonia water at room temperature overnight.
  • the reduction treatment under such relatively mild conditions sufficiently improves the solubility and dispersibility of the polythiophene derivative and amine adduct in organic solvents.
  • the above reduction treatment may be performed before or after forming the amine adduct.
  • the solubility and dispersibility of the polythiophene derivative or its amine adduct in the solvent changes, and as a result, the polythiophene derivative or its amine adduct that was not dissolved in the reaction system at the start of the treatment is Sometimes it is dissolved.
  • an organic solvent that is incompatible with the polythiophene derivative or its amine adduct (for sulfonated polythiophene, acetone, 2-propanol, etc.) is added to the reaction system to dissolve the polythiophene derivative or its amine adduct.
  • the polythiophene derivative or its amine adduct can be recovered by a method such as precipitation and filtration.
  • the weight average molecular weight of the polythiophene derivative containing the repeating unit represented by formula (T1) or its amine adduct is preferably about 1,000 to 1,000,000, more preferably about 5,000 to 100,000, Even more preferred is about 10,000 to about 50,000.
  • this weight average molecular weight is a polystyrene equivalent value determined by GPC.
  • the polythiophene derivative or its amine adduct contained in the charge-transporting varnish used in the present invention may be only one type of polythiophene derivative or its amine adduct containing the repeating unit represented by formula (T1), or may be two types. It may be more than that.
  • the polythiophene derivative containing the repeating unit represented by formula (T1) may be a commercially available product or one polymerized by a known method using a thiophene derivative as a starting material, but in either case, It is also preferable to use one purified by a method such as reprecipitation or ion exchange. By using a purified product, the characteristics of an organic EL device or a quantum dot EL device including a thin film obtained from the charge transporting varnish of the present invention can be further improved.
  • the polythiophene derivative or an amine adduct thereof containing a repeating unit represented by formula (T1) when used, the polythiophene derivative or an amine adduct thereof and another charge transporting compound are used as charge transporting substances.
  • a charge transporting substance consisting of the following may be used in combination, it is preferable that only a polythiophene derivative containing a repeating unit represented by formula (T1) or an amine adduct thereof is included.
  • the content is usually 0.05% in the solid content, taking into consideration the desired film thickness and viscosity of the varnish. It is preferably determined in the range of 0.1 to 35% by weight, more preferably 0.1 to 35% by weight.
  • the aniline derivative represented by formula (T2) may be an oxidized aniline derivative (quinone diimine derivative) having a quinone diimine structure represented by the following formula in its molecule.
  • Examples of the method of oxidizing an aniline derivative to obtain a quinone diimine derivative include the methods described in International Publication No. 2008/010474 and International Publication No. 2014/119782.
  • R 1 to R 6 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, or an alkyl group having 1 to 20 carbon atoms, which may be substituted with Z 1 .
  • Y 1 to Y 5 are each independently an alkyl group having 1 to 20 carbon atoms, which may be substituted with Z 1 group, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 .
  • Z 1 represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with a halogen atom, nitro group, cyano group, amino group, or Z 3
  • Z 2 is a halogen atom, a nitro group, a cyano group, an amino group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkenyl group having 2 to 20 carbon atoms, which may be substituted with Z 3 represents an alkynyl group
  • Z 3 represents a halogen atom, a nitro group, a cyano group, or an amino group
  • k and l are each independently an integer of 1 to 5.
  • R 7 to R 10 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfo group, a carboxy group, or a Z 1 an alkoxy group having 1 to 20 carbon atoms, a thioalkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms; , represents an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an acyl group having 1 to 20 carbon atoms, which may be substituted with hydrogen atom, phenyl group, naphthyl group, pyridyl group, pyrimidinyl group, pyri
  • R 15 to R 18 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfo group, a carboxy group, or a Z 1 an alkoxy group having 1 to 20 carbon atoms, a thioalkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms; , represents an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an acyl group having 1 to 20 carbon atoms, which may be substituted with phenyl group, naphthyl group, anthryl group, pyridyl group, pyrimidinyl group,
  • alkyl group having 1 to 20 carbon atoms alkyl group having 1 to 20 carbon atoms, haloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, 7 to 20 carbon atoms (Optionally substituted with 20 aralkyl groups or acyl groups having 1 to 20 carbon atoms.)
  • Z 1 and Z 2 have the same meanings as above.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl.
  • n-pentyl n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl and other linear or branched alkyl groups having 1 to 20 carbon atoms; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl , cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclobutyl, bicyclopentyl, bicyclohexyl, bicycloheptyl, bicyclooctyl, bicyclononyl, bicyclodecyl, and other cyclic alkyl groups having 3 to 20 carbon atoms.
  • alkenyl groups having 2 to 20 carbon atoms include ethenyl, n-1-propenyl, n-2-propenyl, 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2-Methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl, n-1-decenyl, n- Examples include 1-eicosenyl group.
  • alkynyl groups having 2 to 20 carbon atoms include ethynyl, n-1-propynyl, n-2-propynyl, n-1-butynyl, n-2-butynyl, n-3-butynyl, 1-methyl- 2-propynyl, n-1-pentynyl, n-2-pentynyl, n-3-pentynyl, n-4-pentynyl, 1-methyl-n-butynyl, 2-methyl-n-butynyl, 3-methyl-n- Examples include butynyl, 1,1-dimethyl-n-propynyl, n-1-hexynyl, n-1-decynyl, n-1-pentadecynyl, n-1-eicosynyl and the like.
  • aryl groups having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4- Examples include phenanthryl and 9-phenanthryl groups.
  • aralkyl groups having 7 to 20 carbon atoms include benzyl, phenylethyl, phenylpropyl, naphthylmethyl, naphthylethyl, naphthylpropyl groups, and the like.
  • heteroaryl groups having 2 to 20 carbon atoms include 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl.
  • 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-imidazolyl, 4-imidazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl group, etc. can be mentioned.
  • haloalkyl group having 1 to 20 carbon atoms examples include those in which at least one hydrogen atom of the above alkyl group having 1 to 20 carbon atoms has been replaced with a halogen atom. Among them, a fluoroalkyl group is preferred, and a perfluoro Alkyl groups are more preferred.
  • alkoxy groups having 1 to 20 carbon atoms include methoxy, ethoxy, n-propoxy, i-propoxy, c-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexoxy, n-heptyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, n-undecyloxy, n-dodecyloxy, n-tridecyloxy, n-tetradecyloxy, n-pentadecyloxy , n-hexadecyloxy, n-heptadecyloxy, n-octadecyloxy, n-nonadecyloxy, n-eicosanyloxy and the like.
  • thioalkoxy (alkylthio) groups having 1 to 20 carbon atoms include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, s-butylthio, t-butylthio, n-pentylthio, n- hexylthio, n-heptylthio, n-octylthio, n-nonylthio, n-decylthio, n-undecylthio, n-dodecylthio, n-tridecylthio, n-tetradecylthio, n-pentadecylthio, n-hexadecylthio, n-heptadecylthio, Examples include n-octadecylthio,
  • acyl group having 1 to 20 carbon atoms include formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, and benzoyl groups.
  • R 1 to R 6 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , or an alkyl group having 6 to 20 carbon atoms which may be substituted with Z 2 20 aryl groups, -NHY 1 , -NY 2 Y 3 , -OY 4 , or -SY 5 are preferred, and in this case, Y 1 to Y 5 have 1 to 1 carbon atoms, which may be substituted with Z 1 10 alkyl group or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 2 is preferable, and an alkyl group having 1 to 6 carbon atoms which may be substituted with Z 1 or an aryl group having 6 to 6 carbon atoms which may be substituted with Z 2 is preferable.
  • a phenyl group is more preferred, and an alkyl group having 1 to 6 carbon atoms or a phenyl group is even more preferred.
  • R 1 to R 6 are more preferably a hydrogen atom, a fluorine atom, a methyl group, a phenyl group, or a diphenylamino group (-NY 2 Y 3 in which Y 2 and Y 3 are phenyl groups), and R 1 to R 4 is a hydrogen atom, and it is even more preferable that R 5 and R 6 are both hydrogen atoms or diphenylamino groups.
  • Z 1 is preferably a halogen atom or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 3 , and more preferably a fluorine atom or a phenyl group. Preferably, it is not present (that is, it is an unsubstituted group), and Z 2 is preferably a halogen atom or an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 3 .
  • a fluorine atom or an alkyl group having 1 to 6 carbon atoms is more preferred, and its absence (ie, an unsubstituted group) is even more preferred.
  • Z 3 is preferably a halogen atom, more preferably a fluorine atom, and even more preferably absent (that is, an unsubstituted group).
  • k and l preferably satisfy k+l ⁇ 8, and more preferably k+l ⁇ 5.
  • R 7 to R 10 are preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms; Hydrogen atoms are more preferred. Further, in consideration of increasing the solubility of the aniline derivative represented by formula (T3) in a solvent and increasing the uniformity of the obtained thin film, it is preferable that R 11 and R 13 are both hydrogen atoms.
  • R 11 and R 13 are both hydrogen atoms
  • R 12 and R 14 are each independently a phenyl group (this phenyl group can be a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, group, sulfo group, carboxy group, alkoxy group having 1 to 20 carbon atoms, thioalkoxy group having 1 to 20 carbon atoms, alkyl group having 1 to 20 carbon atoms, haloalkyl group having 1 to 20 carbon atoms, 2 to 20 carbon atoms may be substituted with an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an acyl group having 1 to 20 carbon atoms.) or a group represented by the above formula (T
  • m is preferably 2 to 4 in consideration of the ease of obtaining the compound, ease of production, cost, etc., and more preferably 2 or 3 in consideration of increasing the solubility in the solvent. Considering the balance of availability, ease of manufacture, manufacturing cost, solubility in solvents, transparency of the obtained thin film, etc., 2 is optimal.
  • the aniline derivatives represented by formulas (T2) and (T3) may be commercially available products or those produced by known methods such as those described in the above publications; In this case, it is preferable to use a varnish purified by recrystallization, vapor deposition, etc. before preparing the charge transporting varnish. By using a purified varnish, the characteristics of an electronic device including a thin film obtained from the varnish can be further improved.
  • a purified varnish By using a purifying by recrystallization, for example, 1,4-dioxane, tetrahydrofuran, etc. can be used as the solvent.
  • the charge transport substance represented by formulas (T2) and (T3) is one type of compound selected from the compounds represented by formulas (T2) and (T3) (i.e., the dispersity of molecular weight distribution 1) may be used alone or in combination of two or more compounds.
  • charge transporting substances represented by formulas (T2) and (T3) that can be suitably used in the present invention include, but are not limited to, the following.
  • DPA represents a diphenylamino group.
  • the content thereof is usually determined in consideration of the desired film thickness, viscosity of the varnish, etc. in the solid content. It is preferably 0.05 to 90% by mass, more preferably 0.1 to 75% by mass, determined as appropriate.
  • the charge transporting varnish of the present invention may contain a known organic dopant substance or inorganic dopant substance.
  • a highly polar solvent that can satisfactorily dissolve the charge transporting substance, dopant substance, etc. to be used can be used.
  • a low polarity solvent may be used because it has better process compatibility than a highly polar solvent.
  • a low polar solvent is defined as one having a dielectric constant of less than 7 at a frequency of 100 kHz
  • a high polar solvent is defined as one having a dielectric constant of 7 or more at a frequency of 100 kHz.
  • low polar solvents examples include: Chlorinated solvents such as chloroform and chlorobenzene; Aromatic hydrocarbon solvents such as toluene, xylene, tetralin, cyclohexylbenzene, decylbenzene; Aliphatic alcohol solvents such as 1-octanol, 1-nonanol, 1-decanol; Ether solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether; Methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, dimethyl phthalate, bis(2-ethylhexyl) phthalate, dibutyl maleate, di
  • Amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylisobutyramide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone; Ketone solvents such as methyl ethyl ketone, isophorone, and cyclohexanone; Cyano solvents such as acetonitrile and 3-methoxypropionitrile; Polyhydric alcohol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, 2,3-butanediol; Other than aliphatic alcohols such as diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyloxyethanol, 3-phenoxy
  • the charge transporting varnish of the present invention may contain one or more metal oxide nanoparticles.
  • Nanoparticles refer to fine particles whose average primary particle diameter is on the order of nanometers (typically 500 nm or less).
  • Metal oxide nanoparticles refer to metal oxides shaped into nanoparticles.
  • the primary particle diameter of the metal oxide nanoparticles is not particularly limited as long as it is nanosized, but is preferably from 2 to 150 nm, more preferably from 3 to 100 nm, and even more preferably from 5 to 50 nm. Note that the particle diameter is a value measured using a nitrogen adsorption isotherm according to the BET method.
  • the metal constituting the metal oxide nanoparticles includes not only metals in the usual sense but also metalloids.
  • Metals in the usual sense include, but are not limited to, tin (Sn), titanium (Ti), aluminum (Al), zirconium (Zr), zinc (Zn), niobium (Nb), tantalum ( It is preferable to use one or more selected from the group consisting of Ta) and W (tungsten).
  • metalloid means an element whose chemical and/or physical properties are intermediate between metals and nonmetals.
  • metalloids boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te).
  • B boron
  • Si silicon
  • Ge germanium
  • As arsenic
  • Sb antimony
  • Te tellurium
  • the element is a metalloid.
  • These metalloids may be used alone or in combination of two or more types, or may be used in combination with metals in the usual sense.
  • metal oxide nanoparticles include boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), tin (Sn), titanium (Ti), aluminum It is preferable that the metal oxide contains one or more metal oxides selected from (Al), zirconium (Zr), zinc (Zn), niobium (Nb), tantalum (Ta), and W (tungsten). Note that when the metals are a combination of two or more types, the metal oxide may be a mixture of oxides of individual metals, or may be a composite oxide containing a plurality of metals.
  • metal oxides include B 2 O 3 , B 2 O, SiO 2 , SiO, GeO 2 , GeO, As 2 O 4 , As 2 O 3 , As 2 O 5 , Sb 2 O 3 , Sb 2 Examples include O 5 , TeO 2 , SnO 2 , SnO, ZrO 2 , Al 2 O 3 , ZnO, etc., but B 2 O 3 , B 2 O, SiO 2 , SiO, GeO 2 , GeO, As 2 O 4 , As 2 O 3 , As 2 O 5 , SnO 2 , SnO, Sb 2 O 3 , TeO 2 and mixtures thereof are preferred, and SiO 2 is more preferred.
  • the amount of metal oxide nanoparticles is not particularly limited, but from the viewpoint of improving the transparency of the thin film obtained and the uniformity of the film, the lower limit of the amount of metal oxide nanoparticles in the solid content is usually 50%. It is preferably 60% by mass, more preferably 65% by mass, and its upper limit is usually 95% by mass, preferably 90% by mass.
  • silica sol in which SiO 2 nanoparticles are dispersed in a dispersion medium as the metal oxide nanoparticles.
  • the silica sol is not particularly limited, and can be appropriately selected from known silica sols. Commercially available silica sols are usually in the form of dispersions. Commercially available silica sols include SiO2 nanoparticles in various solvents, such as water, methanol, methyl ethyl ketone, methyl isobutyl ketone, N,N-dimethylacetamide, ethylene glycol, isopropanol, methanol, ethylene glycol monopropyl ether, cyclohexanone, acetic acid. Examples include those dispersed in ethyl, toluene, propylene glycol monomethyl ether acetate, and the like.
  • silica sols include Snowtex (registered trademark) ST-O, ST-OS, ST-O-40, ST-OL manufactured by Nissan Chemical Co., Ltd., and Silicadol 20 manufactured by Nippon Kagaku Kogyo Co., Ltd. , 30, 40, etc.; methanol silica sol manufactured by Nissan Chemical Co., Ltd., MA-ST-M, MA-ST-L, IPA-ST, IPA-ST-L, IPA-ST-ZL, EG- Examples include, but are not limited to, organosilica sols such as ST.
  • the solid content concentration of the silica sol is also not particularly limited, but is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and even more preferably 15 to 30% by mass.
  • the amount of silica sol used is appropriately determined in consideration of its concentration so that the amount of silica ultimately contained in the charge transporting varnish corresponds to the amount of metal oxide nanoparticles described above.
  • the charge transporting varnish of the present invention improves the injection property to the hole transport layer and improves the life characteristics of the device.
  • an organic silane compound may be included. Its content is usually about 1 to 30% by mass based on the total mass of the charge transport material and the dopant material.
  • the organic silane compound include dialkoxysilane compounds, trialkoxysilane compounds, and tetraalkoxysilane compounds.
  • the viscosity of the charge transporting varnish is determined appropriately depending on the thickness of the thin film to be produced and the solid content concentration, but it is usually 1 to 50 mPa ⁇ s at 25°C.
  • the solid content refers to components other than the solvent contained in the charge transporting varnish.
  • the solid content concentration of the charge transporting varnish is determined as appropriate by taking into account the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but it is usually 0.1 to 20.0% by mass. %, and in consideration of improving the coatability of the varnish, it is preferably about 0.2 to 10.0% by mass, more preferably about 0.5 to 8.0% by mass.
  • the method for preparing the charge-transporting varnish is not particularly limited, but for example, a charge-transporting substance and a dopant substance are dissolved in a highly polar solvent, and a low-polar solvent and surface-treated metal oxide nanoparticles, etc. are added thereto. Examples include a method in which a highly polar solvent and a low polar solvent are mixed, a charge transporting substance and a dopant substance are dissolved therein, and further surface-treated metal oxide nanoparticles are added.
  • the charge-transporting varnish described above can be used to easily produce a charge-transporting thin film, and therefore can be suitably used in producing electronic devices, particularly organic EL devices and quantum dot EL devices.
  • the charge-transporting thin film can be formed by applying the above-described charge-transporting varnish onto a base material and baking it.
  • the varnish application method is not particularly limited, and examples include dip method, spin coating method, transfer printing method, roll coating method, brush coating, inkjet method, spray method, slit coating method, etc. It is preferable to adjust the viscosity and surface tension of the varnish accordingly.
  • the firing atmosphere of the charge transporting varnish after application is not particularly limited, and a thin film with a uniform coating surface and high charge transporting properties can be produced not only in the air but also in an inert gas such as nitrogen or in a vacuum.
  • an inert gas such as nitrogen or in a vacuum.
  • a thin film having charge transporting properties may be obtained with good reproducibility by firing the varnish in the atmosphere.
  • the firing temperature is determined as appropriate within the range of about 100 to 260°C, taking into account the purpose of the thin film to be obtained, the degree of charge transport property to be imparted to the thin film, the type and boiling point of the solvent, etc.
  • the temperature is preferably about 140 to 250°C, more preferably about 145 to 240°C, but when the above-mentioned arylamine compound is used as a charge transporting substance, Even when firing at a low temperature of 200° C. or lower, a thin film having good charge transport properties can be obtained.
  • the temperature may be changed in two or more steps in order to develop more uniform film formation or to advance the reaction on the substrate, and the heating may be performed using, for example, a hot plate or This may be done using a suitable device such as an oven.
  • the thickness of the charge transporting thin film is not particularly limited, but it may be provided between an anode and a light emitting layer such as a hole injection layer, a hole transport layer, a hole injection transport layer, etc. of an organic EL element or a quantum dot EL element. When used as a functional layer, the thickness is preferably 5 to 300 nm.
  • a method for changing the film thickness there are methods such as changing the solid content concentration in the varnish or changing the amount of solution on the substrate during coating.
  • Organic EL device and quantum dot EL device When applying the above charge transporting thin film to an organic EL device or a quantum dot EL device, the above-mentioned It can be configured to include a charge transporting thin film.
  • Typical configurations of organic EL devices and quantum dot EL devices include (a) to (f) below, but are not limited to these.
  • an electron blocking layer etc. can also be provided between a light emitting layer and an anode
  • a hole (hole) blocking layer etc. can also be provided between a light emitting layer and a cathode as needed.
  • the hole injection layer, the hole transport layer, or the hole injection transport layer may also have a function as an electron blocking layer, etc., and the electron injection layer, the electron transport layer, or the electron injection transport layer may block holes. It may also have a function as a block layer or the like. Furthermore, it is also possible to provide an arbitrary functional layer between each layer as necessary.
  • Hole injection layer is layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. If only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transport layer”, and between the light emitting layer and the anode, When two or more layers of hole-transporting materials are provided, the layer close to the anode is the “hole-injection layer” and the other layers are the “hole-transporting layers.”
  • the hole injection (transport) layer a thin film is used that is excellent not only in the ability to accept holes from the anode but also in the ability to inject holes into the hole transport (light emitting) layer.
  • Electrode layer is layers formed between a light emitting layer and a cathode, and have the function of transporting electrons from the cathode to the light emitting layer. If only one layer of electron transport material is provided between the light emitting layer and the cathode, it is an “electron injection transport layer”, and the layer of electron transport material is provided between the light emitting layer and the cathode. When two or more layers are provided, the layer close to the cathode is the “electron injection layer”, and the other layers are the “electron transport layers”.
  • the "light-emitting layer” is an organic layer having a light-emitting function, and may be an organic light-emitting layer or a quantum dot light-emitting layer.
  • the light emitting layer is an EL device of an organic light emitting layer, it is an organic EL device, and when the light emitting layer is an EL device of a quantum dot light emitting layer, it is a quantum dot EL device.
  • a doping system when a doping system is adopted, it includes a host material and a dopant material.
  • the host material mainly has the function of promoting recombination of electrons and holes and confining excitons within the light emitting layer, and the dopant material makes the excitons obtained by recombination efficiently emit light.
  • the host material mainly has the function of confining excitons generated by the dopant within the light emitting layer.
  • the charge transporting thin film of the present invention can be used as a functional layer provided between an anode and a light emitting layer in an organic EL device or a quantum dot EL device. It is suitable as a layer, more suitable as a hole injection layer or a hole transport layer, and even more suitable as a hole injection layer.
  • Examples of the materials used and the manufacturing method for manufacturing an EL device using the charge-transporting varnish of the present invention include, but are not limited to, the following.
  • An example of a method for producing an organic EL device or a quantum dot EL device having a hole injection layer made of a thin film obtained from the charge transporting varnish of the present invention is as follows. Note that it is preferable that the electrode is previously subjected to surface treatment such as cleaning with alcohol, pure water, etc., UV ozone treatment, oxygen-plasma treatment, etc. within a range that does not adversely affect the electrode.
  • a hole injection layer made of the charge transporting thin film of the present invention is formed on the anode substrate by the method described above.
  • a hole transport layer, a light emitting layer, an electron transport layer/hole blocking layer, an electron injection layer, and a cathode metal are sequentially deposited.
  • a composition for forming a hole transport layer containing a hole transporting polymer and a composition for forming a light emitting layer containing a light emitting polymer may be used. These layers are formed using a wet process. Note that, if necessary, an electron blocking layer may be provided between the light emitting layer and the hole transport layer.
  • an example (sequential structure) in which the anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer/hole blocking layer, electron injection layer, and cathode are laminated in this order has been described, but the present invention is not limited to this.
  • a cathode, an electron injection layer, an electron transport layer/hole blocking layer, a light emitting layer, a hole transport layer, a hole injection layer, and an anode may be laminated in this order (reverse structure).
  • anode materials include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and metal anodes made of metals typified by aluminum and their alloys. Preferably, the material has been subjected to chemical treatment. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used. Note that other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
  • Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimer, N,N'-bis(naphthalen-1-yl)-N,N'-bis (phenyl)-benzidine ( ⁇ -NPD), 4,4',4"-tris[3-methylphenyl(phenyl)amino]triphenylamine (m-MTDATA), 4,4',4"-tris[1 -Triarylamines such as naphthyl(phenyl)amino]triphenylamine (1-TNATA), 5,5''-bis- ⁇ 4-[bis(4-methylphenyl)amino]phenyl ⁇ -2,2': Examples include, but are not limited to, oligothiophenes such as 5',2''-terthiophene (BMA-3T).
  • Examples of materials forming the light-emitting layer include metal complexes such as aluminum complexes of 8-hydroxyquinoline, metal complexes of 10-hydroxybenzo[h]quinoline, bisstyrylbenzene derivatives, bisstyrylarylene derivatives, and (2-hydroxyphenyl)benzo Low-molecular luminescent materials such as thiazole metal complexes and silole derivatives; poly(p-phenylene vinylene), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene], poly(3-alkyl) Examples include, but are not limited to, systems in which a light-emitting material and an electron transfer material are mixed with a polymer compound such as thiophene) or polyvinylcarbazole.
  • metal complexes such as aluminum complexes of 8-hydroxyquinoline, metal complexes of 10-hydroxybenzo[h]quinoline, bisstyrylbenzene derivatives, bisstyryl
  • a light-emitting layer when forming a light-emitting layer by vapor deposition, it may be co-deposited with a light-emitting dopant, and examples of the light-emitting dopant include metal complexes such as tris(2-phenylpyridine)iridium(III) (Ir(ppy) 3 ). Examples include, but are not limited to, naphthacene derivatives such as rubrene, quinacridone derivatives, and fused polycyclic aromatic rings such as perylene.
  • Materials for forming the electron transport layer/hole blocking layer include, but are not limited to, oxydiazole derivatives, triazole derivatives, phenanthroline derivatives, phenylquinoxaline derivatives, benzimidazole derivatives, pyrimidine derivatives, and the like.
  • Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (MgO), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). metal fluorides, but are not limited to these.
  • metal oxides such as lithium oxide (Li 2 O), magnesium oxide (MgO), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF).
  • metal fluorides but are not limited to these.
  • Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
  • Examples of the material for forming the electron block layer include tris(phenylpyrazole)iridium, but are not limited thereto.
  • hole-transporting polymers include poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid), poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-( N,N'-bis ⁇ p-butylphenyl ⁇ -1,4-diaminophenylene)], poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N'-bis ⁇ p-butylphenyl ⁇ -1,1'-biphenylene-4,4-diamine)], poly[(9,9-bis ⁇ 1'-penten-5'-yl ⁇ fluorenyl-2,7-diyl)- co-(N,N'-bis ⁇ p-butylphenyl ⁇ -1,4-diaminophenylene)], poly[N,N'-bis(4-butylphenyl)-N,
  • luminescent polymers include polyfluorene derivatives such as poly(9,9-dialkylfluorene) (PDAF), poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylenevinylene) (MEH- Examples include, but are not limited to, polyphenylene vinylene derivatives such as PPV), polythiophene derivatives such as poly(3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
  • PDAF poly(9,9-dialkylfluorene)
  • MEH- Examples include, but are not limited to, polyphenylene vinylene derivatives such as PPV), polythiophene derivatives such as poly(3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
  • the quantum dot material may include a II-VI group semiconductor, a III-V group semiconductor, an I-III-VI group semiconductor, a group IV semiconductor, and a semiconductor material. It can contain at least one semiconductor material selected from the group consisting of Group I-II-IV-VI semiconductors.
  • the semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgST e, HgZnSeS, CdHgSeTe, CdHgST e, HgZnSeS, HgZnS
  • the charge transporting varnish of the present invention can be used to connect an anode and a light emitting layer such as a hole injection layer, a hole transport layer, a hole injection transport layer, etc. of an organic EL device or a quantum dot EL device (quantum dot light emitting diode).
  • a light emitting layer such as a hole injection layer, a hole transport layer, a hole injection transport layer, etc. of an organic EL device or a quantum dot EL device (quantum dot light emitting diode).
  • organic photoelectric conversion elements organic thin film solar cells, organic perovskite photoelectric conversion elements, organic integrated circuits, organic field effect transistors, organic thin film transistors, organic light emitting transistors, It can also be used to form charge-transporting thin films in electronic devices such as organic optical analyzers, organic photoreceptors, organic field quenchers, light-emitting electrochemical cells, quantum lasers, organic laser diodes, and organic plasmon light-emitting devices. .
  • compound 3 (2.4 g) and 7.68 g of 1-ethoxy-2-propanol (manufactured by Junsei Kagaku Co., Ltd., the same hereinafter) were added to a 20 mL two-necked flask, and stirred at 0 to 5 °C. .
  • Example 2-2 Add 60 mg of P2 obtained in Example 1-2, 0.97 g of triethylene glycol butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate to a sample tube, and stir at room temperature for 30 minutes using a stirrer. Stirred. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 ⁇ m to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
  • Example 2-3 In a sample tube, 30 mg of P2 obtained in Example 1-2, 30 mg of arylsulfonic acid ester compound A of the following formula, 0.97 g of triethylene glycol butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate. was added and stirred for 30 minutes at room temperature using a stirrer. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 ⁇ m to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
  • the following arylsulfonic acid ester compound was synthesized according to the method described in International Publication No. 2017/217457.
  • Example 2-4 In a sample tube, 36 mg of P2 obtained in Example 1-2, 0.12 g of silica sol dispersed in triethylene glycol butyl methyl ether obtained in Preparation Example 1-1, 0.88 g of triethylene glycol butyl methyl ether, and benzoic acid. 0.58 g of butyl and 0.39 g of dimethyl phthalate were added, and the mixture was stirred at room temperature for 30 minutes using a stirrer. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 ⁇ m to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
  • Example 2-5 In a sample tube, 18 mg of P2 obtained in Example 1-2, 18 mg of the above arylsulfonic acid ester compound A, 0.12 g of the triethylene glycol butyl methyl ether-dispersed silica sol obtained in Preparation Example 1-1, and triethylene glycol. 0.88 g of butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate were added, and the mixture was stirred at room temperature using a stirrer for 30 minutes. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 ⁇ m to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
  • the thickness of the charge-transporting thin film of the ITO substrate with the charge-transporting thin film prepared above was measured using a stylus-type thin-film profilometer. Thereafter, the ITO substrate with the charge transporting thin film after the film thickness measurement was completely immersed in a petri dish filled with toluene solvent, and left to stand for 15 minutes. Thereafter, the substrate was pulled up, the solvent was removed by air blowing, and then the solvent was completely removed by heating and drying at 100° C. for 5 minutes. Thereafter, the thickness of the charge transporting thin film of each substrate was measured again using a stylus meter, and changes in the film thickness before and after immersion in toluene solvent were evaluated. Table 1 shows the results of the film thickness change rate (remaining film rate) before and after immersion in the solvent.
  • P1 and P2 used in the charge transporting varnishes of Examples 2-1 to 2-5 have an arylsulfonic acid ester moiety inside the polymer, so when the charge transporting thin film is fired, the sulfonic acid It is speculated that solvent resistance to toluene was developed by deprotecting the ester moiety and forming a sulfonic acid group. On the other hand, since Comparative Example 2-1 does not have an arylsulfonic acid ester moiety inside the polymer, it is presumed that the charge transporting thin film after firing lacked solvent resistance to toluene.
  • Example 3-1 Fabrication and characteristic evaluation of organic EL device
  • the charge transporting varnish obtained in Example 2-1 was applied to an ITO substrate using a spin coater, and then dried at 120° C. for 1 minute in the atmosphere. Next, the dried ITO substrate was baked at 180° C. for 15 minutes in an air atmosphere to form a uniform thin film of 50 nm on the ITO substrate.
  • the ITO substrate used was a 25 mm x 25 mm x 0.7 t glass substrate with a patterned 150 nm thick ITO film formed on the surface, and the surface was cleaned using an O 2 plasma cleaning device (150 W, 30 seconds) before use. The impurities above were removed.
  • ⁇ -NPD N,N'-di(1- naphthyl )-N,N'- diphenylbenzidine
  • HTEB-01 electronic block material
  • a light-emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Ir(ppy) 3 light-emitting layer dopant material
  • the deposition rate was 0.2 nm/sec for Alq 3 and aluminum, and 0.02 nm/sec for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
  • the organic EL element was sealed with a sealing substrate, and then its characteristics were evaluated.
  • the sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76°C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is bonded with an adhesive (Moresco Moisture Cut WB90US (P) manufactured by MORESCO Co., Ltd.). It was pasted together. At this time, a water absorbing agent (manufactured by Dynic Co., Ltd., HD-071010W-40) was placed in the sealing substrate together with the organic EL element. The bonded sealing substrates were irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ/cm 2 ) and then annealed at 80° C. for 1 hour to cure the adhesive.
  • UV light wavelength: 365 nm, irradiation amount: 6,000 mJ/cm 2
  • Example 3-2 The procedure of Example 3-1 was repeated except that the charge-transporting varnish obtained in Example 2-2 was used instead of the charge-transporting varnish obtained in Example 2-1, and an organic EL element was manufactured. Obtained.
  • Example 3-3 The procedure of Example 3-1 was repeated except that the charge-transporting varnish obtained in Example 2-3 was used instead of the charge-transporting varnish obtained in Example 2-1, and an organic EL element was manufactured. Obtained.
  • Example 3-4 An organic EL element was obtained by repeating the procedure of Example 3-1, except that the charge transporting varnish obtained in Example 2-4 was used instead of the charge transporting varnish obtained in Example 2-1. Ta.
  • Example 3-5 An organic EL element was obtained by repeating the procedure of Example 3-1, except that the charge transporting varnish obtained in Example 2-5 was used instead of the charge transporting varnish obtained in Example 2-1. Ta.
  • the organic EL devices produced in Examples 3-1 to 3-5 all exhibited good organic EL device characteristics.
  • the results of Examples 3-1 and 3-2 show that polymers P1 and P2 have good charge transport properties even when used alone, that is, polymers P1 and P2 have aryl sulfonic acid esters inside the polymer. This indicates that the site functions as a dopant. It is inferred that by containing a dopant function inside the polymer, doping occurs smoothly in the charge transporting site made of arylamine, and the polymer exhibits good charge transporting properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a polymer suitable for use in forming charge-transporting thin films for use in organic EL elements, etc., the polymer being characterized by including, for example, the repeating units represented by the formulae.

Description

ポリマーおよびその利用Polymers and their uses
 本発明は、ポリマーおよびその利用に関する。 The present invention relates to polymers and their uses.
 有機エレクトロルミネッセンス(以下、有機ELという)素子には、発光層や電荷注入層として、有機化合物からなる有機機能膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動および高輝度を達成するために重要な機能を果たす。 An organic functional film made of an organic compound is used as a light emitting layer or a charge injection layer in an organic electroluminescent (hereinafter referred to as organic EL) element. In particular, the hole injection layer transfers charge between the anode and the hole transport layer or the light emitting layer, and plays an important function in achieving low voltage driving and high brightness of the organic EL element.
 正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法やインクジェット法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれており、ウェットプロセスで成膜可能な正孔注入材料に関する技術の報告がなされている(特許文献1)。 Formation methods for hole injection layers can be broadly divided into dry processes, typified by vapor deposition, and wet processes, typified by spin coating and inkjet methods. Comparing these processes, wet processes are generally superior. Thin films with high area flatness can be efficiently manufactured. Therefore, as organic EL displays are becoming larger in size, there is a demand for a hole injection layer that can be formed by a wet process, and there have been reports on technology related to hole injection materials that can be formed by a wet process. (Patent Document 1).
 また、近年ではディスプレイ技術の発展に伴い、量子ドット材料を発光層とする量子ドットエレクトロルミネッセンス(以下、量子ドットELという)素子が登場し、広い応用の見通しを示している。この量子ドットEL素子は、ウェットプロセスで低コストに製造できる一方で、発光波長の制御、色純度の高さ、発光効率の高さ、フレキシブル用途に用いられるなどの特性により、ディスプレイ技術、照明などの分野で多くの注目を集めている。 Additionally, in recent years, with the development of display technology, quantum dot electroluminescent (hereinafter referred to as quantum dot EL) elements that use quantum dot materials as light emitting layers have appeared, and are showing prospects for wide application. Quantum dot EL devices can be manufactured at low cost using a wet process, while their properties include control of emission wavelength, high color purity, high luminous efficiency, and use in flexible applications, making them ideal for use in display technology, lighting, etc. is attracting a lot of attention in the field of
 このような事情に鑑み、本出願人は、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性を示す電荷輸送性物質やドーパントとして好適な化合物を開発してきている(特許文献2~8、非特許文献1参照)。 In view of these circumstances, the present applicant has developed a charge transporting material that can be applied to various wet processes and provides a thin film that can realize excellent EL device characteristics when applied to the hole injection layer of an organic EL device. In addition, compounds suitable as charge transporting substances and dopants that exhibit solubility in organic solvents used therein have been developed (see Patent Documents 2 to 8 and Non-Patent Document 1).
 また、形成された薄膜の上に更に他の機能膜を積層する際には、当該薄膜の機能を保持する観点から、その上に塗布される機能膜形成用組成物によって薄膜が侵されないようにすることを要するため、高い溶剤耐性が求められる。 In addition, when laminating another functional film on top of the formed thin film, in order to maintain the function of the thin film, care should be taken to prevent the thin film from being attacked by the functional film forming composition applied thereon. Therefore, high solvent resistance is required.
国際公開第2008/032616号International Publication No. 2008/032616 国際公開第2008/129947号International Publication No. 2008/129947 国際公開第2006/025342号International Publication No. 2006/025342 国際公開第2010/058777号International Publication No. 2010/058777 国際公開第2005/000832号International Publication No. 2005/000832 国際公開第2009/096352号International Publication No. 2009/096352 国際公開第2020/218316号International Publication No. 2020/218316 国際公開第2017/217455号International Publication No. 2017/217455
 本発明も、これまでに開発してきた上記特許文献の技術と同様に、有機EL素子等に用いられる電荷輸送性薄膜の形成に好適に使用し得るポリマーを提供することを目的とする。 Similar to the techniques of the above-mentioned patent documents that have been developed so far, the present invention also aims to provide a polymer that can be suitably used for forming charge transporting thin films used in organic EL devices and the like.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、トリアリールアミン構造、ジアリールエーテル構造またはジアリールスルフィド構造と、ジアルキルフルオレン構造とを側鎖に有する繰り返し単位、および、フッ化アリーレン基と、少なくとも1つのスルホン酸エステル基を含むアリール基とを側鎖に有する繰り返し単位を含むポリマーが、有機溶媒への溶解性が高く、電荷輸送性物質として優れた機能を有し、電荷輸送性と溶剤耐性に優れる薄膜を実現できることを見出し、本発明を完成させた。 As a result of extensive studies to solve the above problems, the present inventors have discovered that repeating units having a triarylamine structure, diaryl ether structure, or diaryl sulfide structure and a dialkylfluorene structure in their side chains, and fluorinated arylene A polymer containing a repeating unit having a group and an aryl group containing at least one sulfonic acid ester group in its side chain has high solubility in organic solvents, has excellent functions as a charge transport substance, and has a high charge transport property. They discovered that it is possible to create a thin film with excellent properties and solvent resistance, and completed the present invention.
 すなわち、本発明は、下記ポリマーおよびその利用を提供する。
1. 下記式(A1)で表される繰り返し単位および下記式(B1)で表される繰り返し単位を含むことを特徴とするポリマー。
Figure JPOXMLDOC01-appb-C000004
〔{式(A1)中、RMは、水素原子またはメチル基である。R1aおよびR2aは、それぞれ独立に、単結合またはフェニレン基であり、該フェニレン基の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。
 X1aは、-N(Ar3a)-、-S-または-O-である。
 Ar1aは、炭素数6~20のアリーレン基、炭素数3~20のヘテロアリーレン基または下記式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を2つ取り除いて得られる2価の基であり、これらの基の芳香環上の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。
 Ar2aおよびAr3aは、それぞれ独立に、炭素数6~20のアリール基または下記式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を1つ取り除いて得られる1価の基であり、これらの基の芳香環上の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。
 X1aが-N(Ar3a)-のとき、Ar2aとAr3aとが互いに結合してこれらが結合する窒素原子とともに環を形成してもよい。
 R2aがフェニレン基のとき、R2aとAr2aとが互いに結合してこれらが結合する窒素原子、硫黄原子または酸素原子とともに環を形成してもよい。
 ただし、Ar1a~Ar3aの少なくも1つは、下記式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を取り除いて得られる基である。
Figure JPOXMLDOC01-appb-C000005
(式中、R3aおよびR4aは、それぞれ独立に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、または少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基である。)}
(式(B1)中、ArFは、フッ化アリーレン基を表し、X1bは、O、S、NH、CONHまたはNHCOを表し、ArSは、環上に少なくとも1つのSO3123基を有するアリール基を表し、D1は、置換または非置換の二価炭化水素基を示し、D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基を示し、D3は、置換または非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。)〕
2. 上記式(A1)で表される繰り返し単位が、下記式(A1-1)で表されるものである1のポリマー。
Figure JPOXMLDOC01-appb-C000006
(式中、RM、R1a、R2aおよびAr1a~Ar3aは、上記と同じ意味を表す。)
3. 上記R1aが、単結合である1または2のポリマー。
4. 上記R2aが、フェニレン基である1~3のいずれかのポリマー。
5. 上記Ar1aが、9,9-ジメチル-9H-フルオレン-2,7-ジイル基である1~4のいずれかのポリマー。
6. 上記ArFが、パーフルオロアリーレン基である1~5のいずれかのポリマー。
7. 上記ArFが、テトラフルオロフェニレン基である6のポリマー。
8. 上記ArSが、環上に2つ以上の上記SO3123基を有するアリール基である1~7のいずれかのポリマー。
9. 上記アリール基が、ナフチル基である8のポリマー。
10. 上記X1bが、Oである1~9のいずれかのポリマー。
11. 1~10のいずれかのポリマーからなる電荷輸送性物質。
12. 1~11のいずれかのポリマーと、溶媒とを含む電荷輸送性ワニス。
13. さらに、1~11のいずれかのポリマー以外のその他の電荷輸送性物質を含む12の電荷輸送性ワニス。
14. 上記その他の電荷輸送性物質が、アリールアミン誘導体(ただし、上記ポリマーを除く)またはチオフェン誘導体である13の電荷輸送性ワニス。
15. 12~14のいずれかの電荷輸送性ワニスから得られた電荷輸送性薄膜。
16. 15の電荷輸送性薄膜を備える電子素子。
17. 15の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。
18. 上記電荷輸送性薄膜が、正孔注入層または正孔輸送層である17の有機エレクトロルミネッセンス素子。
19. 15の電荷輸送性薄膜を備える量子ドットエレクトロルミネッセンス素子。
20. 上記電荷輸送性薄膜が、正孔注入層または正孔輸送層である19の量子ドットエレクトロルミネッセンス素子。
That is, the present invention provides the following polymer and its use.
1. A polymer characterized by containing a repeating unit represented by the following formula (A1) and a repeating unit represented by the following formula (B1).
Figure JPOXMLDOC01-appb-C000004
[{In formula (A1), R M is a hydrogen atom or a methyl group. R 1a and R 2a each independently represent a single bond or a phenylene group, and some or all of the hydrogen atoms of the phenylene group are a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, or an acryloyl group. may be substituted with a methacryloyl group, an oxetanyl group, an epoxy group, an alkyl group having 1 to 20 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms.
X 1a is -N(Ar 3a )-, -S- or -O-.
Ar 1a is a divalent group obtained by removing two hydrogen atoms on the aromatic ring of an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 3 to 20 carbon atoms, or a dialkylfluorene represented by the following formula (A2). A group in which some or all of the hydrogen atoms on the aromatic rings of these groups are a cyano group, nitro group, halogen atom, vinyl group, trifluorovinyl group, acryloyl group, methacryloyl group, oxetanyl group, or epoxy group. , may be substituted with an alkyl group having 1 to 20 carbon atoms or a halogenated alkyl group having 1 to 20 carbon atoms.
Ar 2a and Ar 3a are each independently an aryl group having 6 to 20 carbon atoms or a monovalent group obtained by removing one hydrogen atom on the aromatic ring of dialkylfluorene represented by the following formula (A2). Some or all of the hydrogen atoms on the aromatic ring of these groups are cyano group, nitro group, halogen atom, vinyl group, trifluorovinyl group, acryloyl group, methacryloyl group, oxetanyl group, epoxy group, carbon number It may be substituted with an alkyl group having 1 to 20 carbon atoms or a halogenated alkyl group having 1 to 20 carbon atoms.
When X 1a is -N(Ar 3a )-, Ar 2a and Ar 3a may be bonded to each other to form a ring together with the nitrogen atom to which they are bonded.
When R 2a is a phenylene group, R 2a and Ar 2a may be bonded to each other to form a ring together with the nitrogen atom, sulfur atom or oxygen atom to which they are bonded.
However, at least one of Ar 1a to Ar 3a is a group obtained by removing the hydrogen atom on the aromatic ring of dialkylfluorene represented by the following formula (A2).
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 3a and R 4a are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms containing at least one ether structure. be.)}
(In formula (B1), Ar F represents a fluorinated arylene group, X 1b represents O, S, NH, CONH or NHCO, and Ar S represents at least one SO 3 D 1 D 2 on the ring. Represents an aryl group having D 3 group, D 1 represents a substituted or unsubstituted divalent hydrocarbon group, and D 2 represents a single bond, O, S, or a substituted or unsubstituted divalent amino group. , D 3 represents a substituted or unsubstituted monovalent hydrocarbon group, but if D 2 is a single bond, it may be a hydrogen atom.)
2. Polymer 1, wherein the repeating unit represented by the above formula (A1) is represented by the following formula (A1-1).
Figure JPOXMLDOC01-appb-C000006
(In the formula, R M , R 1a , R 2a and Ar 1a to Ar 3a represent the same meanings as above.)
3. 1 or 2 polymers in which the above R 1a is a single bond.
4. Any one of the polymers 1 to 3, wherein R 2a is a phenylene group.
5. Any one of the polymers 1 to 4, wherein Ar 1a is a 9,9-dimethyl-9H-fluorene-2,7-diyl group.
6. Any one of the polymers 1 to 5, wherein Ar F is a perfluoroarylene group.
7. 6. The polymer of 6, wherein Ar F is a tetrafluorophenylene group.
8. The polymer according to any one of 1 to 7, wherein the Ar S is an aryl group having two or more of the SO 3 D 1 D 2 D 3 groups on the ring.
9. 8. The polymer of 8, wherein the aryl group is a naphthyl group.
10. Any one of the polymers 1 to 9, wherein X 1b is O.
11. A charge-transporting substance consisting of any one of polymers 1 to 10.
12. A charge transporting varnish comprising any one of the polymers 1 to 11 and a solvent.
13. Furthermore, 12 charge transporting varnishes containing a charge transporting substance other than any one of the polymers 1 to 11.
14. 13. The charge transporting varnish of 13, wherein the other charge transporting substance is an arylamine derivative (excluding the above polymer) or a thiophene derivative.
15. A charge transporting thin film obtained from the charge transporting varnish according to any one of items 12 to 14.
16. Electronic device comprising 15 charge transporting thin films.
17. An organic electroluminescent device comprising 15 charge transporting thin films.
18. 17. The organic electroluminescent device of 17, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
19. Quantum dot electroluminescent device comprising 15 charge transporting thin films.
20. 19. The quantum dot electroluminescent device of 19, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
 本発明のポリマーは、有機溶媒への溶解性が高く、電荷輸送性物質として優れた機能を有することから、電気特性に優れた電荷輸送性薄膜を与え、当該薄膜を備えた有機EL素子は、良好な特性を発揮し、特に寿命性能に優れたものとなる。また、得られる薄膜は溶剤耐性が高いため、その上に他の機能膜を形成する際の膜減りや膨潤が低減される。
 このような特性を有する本発明のポリマーは、有機EL素子や量子ドットEL素子をはじめとする電子素子用薄膜、特に有機ELディスプレイおよび量子ドットELディスプレイ用薄膜形成用の組成物において好適に用いることができる。
The polymer of the present invention has high solubility in organic solvents and has excellent functions as a charge transporting substance, so it provides a charge transporting thin film with excellent electrical properties, and an organic EL device equipped with the thin film has the following properties: It exhibits good characteristics and is particularly excellent in life performance. Furthermore, since the obtained thin film has high solvent resistance, film thinning and swelling when other functional films are formed thereon are reduced.
The polymer of the present invention having such characteristics can be suitably used in thin films for electronic devices such as organic EL devices and quantum dot EL devices, particularly in compositions for forming thin films for organic EL displays and quantum dot EL displays. I can do it.
 以下、本発明についてさらに詳しく説明する。
[1]ポリマー
 本発明のポリマーは、下記式(A1)で表される繰り返し単位および下記式(B1)で表される繰り返し単位を含むことを特徴とする。
The present invention will be explained in more detail below.
[1] Polymer The polymer of the present invention is characterized by containing a repeating unit represented by the following formula (A1) and a repeating unit represented by the following formula (B1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(A1)において、RMは、水素原子またはメチル基である。R1aおよびR2aは、それぞれ独立に、単結合またはフェニレン基であり、該フェニレン基の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。 In formula (A1), R M is a hydrogen atom or a methyl group. R 1a and R 2a each independently represent a single bond or a phenylene group, and some or all of the hydrogen atoms of the phenylene group are a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, or an acryloyl group. may be substituted with a methacryloyl group, an oxetanyl group, an epoxy group, an alkyl group having 1 to 20 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms.
 フェニレン基としては、1,2-フェニレン基、1,3-フェニレン基および1,4-フェニレン基が挙げられるが、1,4-フェニレン基が好ましい。 Examples of the phenylene group include a 1,2-phenylene group, a 1,3-phenylene group, and a 1,4-phenylene group, with a 1,4-phenylene group being preferred.
 上記炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状または分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。 The above alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, and isobutyl group. A straight group having 1 to 20 carbon atoms such as sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc. Chain or branched alkyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group , a bicyclooctyl group, a bicyclononyl group, a bicyclodecyl group, and a cyclic alkyl group having 3 to 20 carbon atoms.
 上記炭素数1~20のハロゲン化アルキル基は、上記炭素数1~20のアルキル基の水素原子の一部または全部がハロゲン原子で置換された基であれば、特に限定されない。その具体例としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 The halogenated alkyl group having 1 to 20 carbon atoms is not particularly limited as long as it is a group in which some or all of the hydrogen atoms of the alkyl group having 1 to 20 carbon atoms are substituted with halogen atoms. Specific examples include trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2, 2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4 , 4-pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group, etc. can be mentioned.
 R1aとしては単結合が好ましく、R2aとしてはフェニレン基が好ましい。 R 1a is preferably a single bond, and R 2a is preferably a phenylene group.
 式(A1)中、X1aは、-N(Ar3a)-、-S-または-O-である。 In formula (A1), X 1a is -N(Ar 3a )-, -S- or -O-.
 式(A1)中、Ar1aは、炭素数6~20のアリーレン基、炭素数3~20のヘテロアリーレン基または下記式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を2つ取り除いて得られる2価の基であり、これらの基の芳香環上の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。上記炭素数1~20のアルキル基および炭素数1~20のハロゲン化アルキル基の具体例としては、前述したものと同様のものが挙げられる。 In formula (A1), Ar 1a represents an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 3 to 20 carbon atoms, or two hydrogen atoms on the aromatic ring of dialkylfluorene represented by the following formula (A2). It is a divalent group obtained by removing a part or all of the hydrogen atoms on the aromatic ring of these groups, such as a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, an acryloyl group, or a methacryloyl group. , an oxetanyl group, an epoxy group, an alkyl group having 1 to 20 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms. Specific examples of the alkyl group having 1 to 20 carbon atoms and the halogenated alkyl group having 1 to 20 carbon atoms include those mentioned above.
Figure JPOXMLDOC01-appb-C000008
(式中、R3aおよびR4aは、それぞれ独立に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、または少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基である。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 3a and R 4a are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms containing at least one ether structure. be.)
 上記炭素数6~20のアリーレン基としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、1,2-ナフタレン-ジイル基、2,3-ナフタレンジイル基、1,4-ナフタレンジイル基、1,5-ナフタレンジイル基、2,6-ナフタレンジイル、2,7-ナフタレンジイル基、1,8-ナフタレンンジイル基、1,2-アントラセンジイル基、1,3-アントラセンジイル基、1,4-アントラセンジイル基、1,5-アントラセンジイル基、1,6-アントラセンジイル基、1,7-アントラセンジイル基、1,8-アントラセンジイル基、2,3-アントラセンジイル基、2,6-アントラセンジイル基、2,7-アントラセンジイル基、2,9-アントラセンジイル基、2,10-アントラセンジイル基、9,10-アントラセンジイル基等が挙げられる。 The above arylene groups having 6 to 20 carbon atoms include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 1,2-naphthalene-diyl group, 2,3-naphthalene-diyl group, 1,4-naphthalenediyl group, 1,5-naphthalenediyl group, 2,6-naphthalenediyl, 2,7-naphthalenediyl group, 1,8-naphthalenediyl group, 1,2-anthracenediyl group, 1, 3-anthracenediyl group, 1,4-anthracenediyl group, 1,5-anthracenediyl group, 1,6-anthracenediyl group, 1,7-anthracenediyl group, 1,8-anthracenediyl group, 2,3- Examples include anthracenediyl group, 2,6-anthracenediyl group, 2,7-anthracenediyl group, 2,9-anthracenediyl group, 2,10-anthracenediyl group, and 9,10-anthracenediyl group.
 上記炭素数3~20のヘテロアリーレン基としては、9-フェニルカルバゾール-3,6-ジイル基、9-フェニルカルバゾール-2,7-ジイル基、9-フェニルカルバゾール-3,6-ジメチル-2,7-ジイル基、下記式(H1)~(H33)で表される基等が挙げられる。 Examples of the above heteroarylene group having 3 to 20 carbon atoms include 9-phenylcarbazole-3,6-diyl group, 9-phenylcarbazole-2,7-diyl group, 9-phenylcarbazole-3,6-dimethyl-2, Examples include a 7-diyl group, groups represented by the following formulas (H1) to (H33), and the like.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(A2)中、R3aおよびR4aは、それぞれ独立に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、または少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基である。 In formula (A2), R 3a and R 4a are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms containing at least one ether structure. It is the basis.
 上記炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状または分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。これらのうち、メチル基、エチル基が好ましく、メチル基がより好ましい。 The above alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, and isobutyl group. A straight group having 1 to 20 carbon atoms such as sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc. Chain or branched alkyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group , a bicyclooctyl group, a bicyclononyl group, a bicyclodecyl group, and a cyclic alkyl group having 3 to 20 carbon atoms. Among these, methyl group and ethyl group are preferred, and methyl group is more preferred.
 上記炭素数1~20のアルコキシ基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチル基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等の炭素数1~20の直鎖状または分岐状アルコキシ基;シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロノニルオキシ基、シクロデシルオキシ基、ビシクロブチルオキシ基、ビシクロペンチルオキシ基、ビシクロヘキシルオキシ基、ビシクロヘプチルオキシ基、ビシクロオクチルオキシ基、ビシクロノニルオキシ基、ビシクロデシルオキシ基等の炭素数3~20の環状アルコキシ基が挙げられる。 The above alkoxy group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, 1 carbon number such as isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyl group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, etc. ~20 linear or branched alkoxy groups; cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, cyclononyloxy group, cyclodecyloxy group, Examples include cyclic alkoxy groups having 3 to 20 carbon atoms such as bicyclobutyloxy, bicyclopentyloxy, bicyclohexyloxy, bicycloheptyloxy, bicyclooctyloxy, bicyclononyloxy, and bicyclodecyloxy.
 上記少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基としては、少なくとも1つのメチレン基が酸素原子で置換された直鎖状または分岐状のアルキル基が挙げられる。ただし、フルオレン骨格に結合するメチレン基が酸素原子で置換されたものではなく、かつ、隣接するメチレン基が同時に酸素原子に置換されたものではない。このような基としては、原料化合物の入手容易性を考慮すると、式(A2-1)で表される基が好ましく、このうち、式(A2-2)で表される基がより好ましい。
   -(R5aO)p-R6a         (A2-1)
   -(CH2CH2O)p-CH3      (A2-2)
(式中、R5aは炭素数1~4の直鎖状または分岐状のアルキレン基を表し、R6aは炭素数1~[20-(Rの炭素数)×p]の直鎖状または分岐状のアルキル基を表し、pは1~9の整数である。pは、ドーパントとの相溶性の観点から、好ましくは2以上、より好ましくは3以上であり、原料化合物の入手容易性の観点から、好ましくは5以下、より好ましくは4以下である。)
Examples of the alkyl group having 2 to 20 carbon atoms containing at least one ether structure include linear or branched alkyl groups in which at least one methylene group is substituted with an oxygen atom. However, the methylene group bonded to the fluorene skeleton is not substituted with an oxygen atom, and the adjacent methylene groups are not substituted with oxygen atoms at the same time. As such a group, a group represented by formula (A2-1) is preferable, and a group represented by formula (A2-2) is more preferable, considering the availability of the raw material compound.
-(R 5a O) p -R 6a (A2-1)
-(CH 2 CH 2 O) p -CH 3 (A2-2)
(In the formula, R 5a represents a linear or branched alkylene group having 1 to 4 carbon atoms, and R 6a represents a linear or branched alkylene group having 1 to 20 carbon atoms (number of carbon atoms in R) x p). p is an integer of 1 to 9. From the viewpoint of compatibility with the dopant, p is preferably 2 or more, more preferably 3 or more, and from the viewpoint of the ease of obtaining the raw material compound. , preferably 5 or less, more preferably 4 or less.)
 少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基としては、-CH2OCH3、-CH2OCH2CH3、-CH2O(CH2)2CH3、-CH2OCH(CH3)2、-CH2O(CH2)3CH3、-CH2OCH2CH(CH3)2、-CH2OC(CH3)3、-CH2O(CH2)4CH3、-CH2OCH(CH3)(CH2)2CH3、-CH2O(CH2)2CH(CH3)2、-CH2OCH2CH(CH3)CH2CH3、-CH2OCH2C(CH3)3、-CH2OCH(CH3)CH(CH3)2、-CH2OC(CH3)2CH2CH3、-CH2OCH(CH2CH3)2、-CH2O(CH2)5CH3、-CH2OCH(CH3)(CH2)3CH3、-CH2OCH2CH(CH3)(CH2)2CH3、-CH2O(CH2)2CH(CH3)CH2CH3、-CH2O(CH2)3CH(CH3)2、-CH2OC(CH3)2(CH2)2CH3、-CH2OCH(CH2CH3)(CH2)2CH3、-CH2OC(CH3)2CH(CH3)2、-CH2O(CH2)6CH3、-CH2O(CH2)7CH3、-CH2OCH2CH(CH2CH3)(CH2)3CH3、-CH2O(CH2)8CH3、-CH2O(CH2)9CH3、-CH2O(CH2)10CH3、-CH2O(CH2)11CH3、-CH2O(CH2)12CH3、-CH2O(CH2)13CH3、-CH2O(CH2)14CH3、-CH2O(CH2)15CH3、-CH2O(CH2)16CH3、-CH2O(CH2)17CH3、-CH2O(CH2)18CH3、-CH2CH2OCH3、-CH2CH2OCH2CH3、-CH2CH2O(CH2)2CH3、-CH2CH2OCH(CH3)2、-CH2CH2O(CH2)3CH3、-CH2CH2OCH2CH(CH3)2、-CH2CH2OC(CH3)3、-CH2CH2O(CH2)4CH3、-CH2CH2OCH(CH3)(CH2)2CH3、-CH2CH2O(CH2)2CH(CH3)2、-CH2CH2OCH2CH(CH3)CH2CH3、-CH2CH2OCH2C(CH3)3、-CH2CH2OCH(CH3)CH(CH3)2、-CH2CH2OC(CH3)2CH2CH3、-CH2CH2OCH(CH2CH3)2、-CH2CH2O(CH2)5CH3、-CH2CH2OCH(CH3)(CH2)3CH3、-CH2CH2OCH2CH(CH3)(CH2)2CH3、-CH2CH2O(CH2)2CH(CH3)CH2CH3、-CH2CH2O(CH2)3CH(CH3)2、-CH2CH2OC(CH3)2(CH2)2CH3、-CH2CH2OCH(CH2CH3)(CH2)2CH3、-CH2CH2OC(CH3)2CH(CH3)2、-CH2CH2O(CH2)6CH3、-CH2CH2O(CH2)7CH3、-CH2CH2OCH2CH(CH2CH3)(CH2)3CH3、-CH2CH2O(CH2)8CH3、-CH2CH2O(CH2)9CH3、-CH2CH2O(CH2)10CH3、-CH2CH2O(CH2)11CH3、-CH2CH2O(CH2)12CH3、-CH2CH2O(CH2)13CH3、-CH2CH2O(CH2)14CH3、-CH2CH2O(CH2)15CH3、-CH2CH2O(CH2)16CH3、-CH2CH2O(CH2)17CH3、-CH2CH2CH2OCH3、-CH2CH2CH2OCH2CH3、-CH2CH2CH2O(CH2)2CH3、-CH2CH2CH2OCH(CH3)2、-CH2CH2CH2O(CH2)3CH3、-CH2CH2CH2OCH2CH(CH3)2、-CH2CH2CH2OC(CH3)3、-CH2CH2CH2O(CH2)4CH3、-CH2CH2CH2OCH(CH3)(CH2)2CH3、CH2CH2CH2O(CH2)2CH(CH3)2、-CH2CH2CH2O(CH2)5CH3、-CH2CH2CH2OCH2CH(CH3)CH2CH3、-CH2CH2CH2OCH2C(CH3)3、-CH2CH2CH2OCH(CH3)CH(CH3)2、-CH2CH2CH2OC(CH3)2CH2CH3、-CH2CH2CH2OCH(CH2CH3)2、-CH2CH2CH2OCH(CH3)(CH2)3CH3、-CH2CH2CH2OCH2CH(CH3)(CH2)2CH3、-CH2CH2CH2O(CH2)2CH(CH3)CH2CH3、-CH2CH2CH2O(CH2)3CH(CH3)2、-CH2CH2CH2OC(CH3)2(CH2)2CH3、-CH2CH2CH2OCH(CH2CH3)(CH2)2CH3、-CH2CH2CH2OC(CH3)2CH(CH3)2、-CH2CH2CH2O(CH2)6CH3、-CH2CH2CH2O(CH2)7CH3、-CH2CH2CH2OCH2CH(CH2CH3)(CH2)3CH3、-CH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3
、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH2CH2CH2OCH3、-CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、-CH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH2CH2CH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2CH2CH2O(CH2)8CH3、-CH2CH2CH2O(CH2)9CH3、-CH2CH2CH2O(CH2)10CH3、-CH2CH2CH2O(CH2)11CH3、-CH2CH2CH2O(CH2)12CH3、-CH2CH2CH2O(CH2)13CH3、-CH2CH2CH2O(CH2)14CH3、-CH2CH2CH2O(CH2)15CH3、-CH2CH2CH2O(CH2)16CH3等が挙げられる。
Examples of the alkyl group having 2 to 20 carbon atoms containing at least one ether structure include -CH 2 OCH 3 , -CH 2 OCH 2 CH 3 , -CH 2 O(CH 2 ) 2 CH 3 , -CH 2 OCH(CH 3 ) 2 , -CH 2 O(CH 2 ) 3 CH 3 , -CH 2 OCH 2 CH(CH 3 ) 2 , -CH 2 OC(CH 3 ) 3 , -CH 2 O(CH 2 ) 4 CH 3 , -CH 2 OCH(CH 3 )(CH 2 ) 2 CH 3 , -CH 2 O(CH 2 ) 2 CH(CH 3 ) 2 , -CH 2 OCH 2 CH(CH 3 )CH 2 CH 3 , -CH 2 OCH 2 C(CH 3 ) 3 , -CH 2 OCH(CH 3 )CH(CH 3 ) 2 , -CH 2 OC(CH 3 ) 2 CH 2 CH 3 , -CH 2 OCH(CH 2 CH 3 ) 2 , -CH 2 O(CH 2 ) 5 CH 3 , -CH 2 OCH(CH 3 )(CH 2 ) 3 CH 3 , -CH 2 OCH 2 CH(CH 3 )(CH 2 ) 2 CH 3 , -CH 2 O (CH 2 ) 2 CH(CH 3 )CH 2 CH 3 , -CH 2 O(CH 2 ) 3 CH(CH 3 ) 2 , -CH 2 OC(CH 3 ) 2 (CH 2 ) 2 CH 3 , -CH 2 OCH(CH 2 CH 3 )(CH 2 ) 2 CH 3 , -CH 2 OC(CH 3 ) 2 CH(CH 3 ) 2 , -CH 2 O(CH 2 ) 6 CH 3 , -CH 2 O(CH 2 ) 7 CH 3 , -CH 2 OCH 2 CH(CH 2 CH 3 )(CH 2 ) 3 CH 3 , -CH 2 O(CH 2 ) 8 CH 3 , -CH 2 O(CH 2 ) 9 CH 3 , -CH 2 O(CH 2 ) 10 CH 3 , -CH 2 O(CH 2 ) 11 CH 3 , -CH 2 O(CH 2 ) 12 CH 3 , -CH 2 O(CH 2 ) 13 CH 3 , -CH 2 O(CH 2 ) 14 CH 3 , -CH 2 O(CH 2 ) 15 CH 3 , -CH 2 O(CH 2 ) 16 CH 3 , -CH 2 O(CH 2 ) 17 CH 3 , -CH 2 O (CH 2 ) 18 CH 3 , -CH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 O(CH 2 ) 2 CH 3 , -CH 2 CH 2 OCH(CH 3 ) 2 , -CH 2 CH 2 O(CH 2 ) 3 CH 3 , -CH 2 CH 2 OCH 2 CH(CH 3 ) 2 , -CH 2 CH 2 OC(CH 3 ) 3 , -CH 2 CH 2 O(CH 2 ) 4 CH 3 , -CH 2 CH 2 OCH(CH 3 )(CH 2 ) 2 CH 3 , -CH 2 CH 2 O(CH 2 ) 2 CH(CH 3 ) 2 , -CH 2 CH 2 OCH 2 CH (CH 3 )CH 2 CH 3 , -CH 2 CH 2 OCH 2 C(CH 3 ) 3 , -CH 2 CH 2 OCH(CH 3 )CH(CH 3 ) 2 , -CH 2 CH 2 OC(CH 3 ) 2 CH 2 CH 3 , -CH 2 CH 2 OCH(CH 2 CH 3 ) 2 , -CH 2 CH 2 O(CH 2 ) 5 CH 3 , -CH 2 CH 2 OCH(CH 3 )(CH 2 ) 3 CH 3 , -CH 2 CH 2 OCH 2 CH(CH 3 )(CH 2 ) 2 CH 3 , -CH 2 CH 2 O(CH 2 ) 2 CH(CH 3 )CH 2 CH 3 , -CH 2 CH 2 O( CH 2 ) 3 CH(CH 3 ) 2 , -CH 2 CH 2 OC(CH 3 ) 2 (CH 2 ) 2 CH 3 , -CH 2 CH 2 OCH(CH 2 CH 3 )(CH 2 ) 2 CH 3 , -CH 2 CH 2 OC(CH 3 ) 2 CH(CH 3 ) 2 , -CH 2 CH 2 O(CH 2 ) 6 CH 3 , -CH 2 CH 2 O(CH 2 ) 7 CH 3 , -CH 2 CH 2 OCH 2 CH(CH 2 CH 3 )(CH 2 ) 3 CH 3 , -CH 2 CH 2 O(CH 2 ) 8 CH 3 , -CH 2 CH 2 O(CH 2 ) 9 CH 3 , -CH 2 CH 2 O(CH 2 ) 10 CH 3 , -CH 2 CH 2 O(CH 2 ) 11 CH 3 , -CH 2 CH 2 O(CH 2 ) 12 CH 3 , -CH 2 CH 2 O(CH 2 ) 13 CH 3 , -CH 2 CH 2 O(CH 2 ) 14 CH 3 , -CH 2 CH 2 O(CH 2 ) 15 CH 3 , -CH 2 CH 2 O(CH 2 ) 16 CH 3 , -CH 2 CH 2 O (CH 2 ) 17 CH 3 , -CH 2 CH 2 CH 2 OCH 3 , -CH 2 CH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 2 CH 3 , -CH 2 CH 2 CH 2 OCH(CH 3 ) 2 , -CH 2 CH 2 CH 2 O(CH 2 ) 3 CH 3 , -CH 2 CH 2 CH 2 OCH 2 CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 OC (CH 3 ) 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 4 CH 3 , -CH 2 CH 2 CH 2 OCH(CH 3 )(CH 2 ) 2 CH 3 , CH 2 CH 2 CH 2 O( CH 2 ) 2 CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 O(CH 2 ) 5 CH 3 , -CH 2 CH 2 CH 2 OCH 2 CH(CH 3 )CH 2 CH 3 , -CH 2 CH 2 CH 2 OCH 2 C(CH 3 ) 3 , -CH 2 CH 2 CH 2 OCH(CH 3 )CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 OC(CH 3 ) 2 CH 2 CH 3 , - CH 2 CH 2 CH 2 OCH(CH 2 CH 3 ) 2 , -CH 2 CH 2 CH 2 OCH(CH 3 )(CH 2 ) 3 CH 3 , -CH 2 CH 2 CH 2 OCH 2 CH(CH 3 )( CH 2 ) 2 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 2 CH(CH 3 )CH 2 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 3 CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 OC(CH 3 ) 2 (CH 2 ) 2 CH 3 , -CH 2 CH 2 CH 2 OCH(CH 2 CH 3 )(CH 2 ) 2 CH 3 , -CH 2 CH 2 CH 2 OC(CH 3 ) 2 CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 O(CH 2 ) 6 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 7 CH 3 , -CH 2 CH 2 CH 2 OCH 2 CH(CH 2 CH 3 )(CH 2 ) 3 CH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , -CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , -CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3
, -CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , -CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , -CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 OCH 3 , -CH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 3 , -CH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 8 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 9 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 10 CH 3 , - CH 2 CH 2 CH 2 O(CH 2 ) 11 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 12 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 13 CH 3 , -CH 2 Examples include CH 2 CH 2 O(CH 2 ) 14 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 15 CH 3 , -CH 2 CH 2 CH 2 O(CH 2 ) 16 CH 3 and the like.
 式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を2つ取り除いて得られる2価の基としては、9,9-ジメチル-9H-フルオレン-2,7-ジイル基、9,9-ジエチル-9H-フルオレン-2,7-ジイル基、9,9-ジプロピル-9H-フルオレン-2,7-ジイル基、9,9-ジブチル-9H-フルオレン-2,7-ジイル基、9,9-ジヘキシル-9H-フルオレン-2,7-ジイル基、9,9-ジオクチル-9H-フルオレン-2,7-ジイル基、9,9-ビス(2-エチルへキシル)-9H-フルオレン-2,7-ジイル基、9,9-ジメトキシ-9H-フルオレン-2,7-ジイル基、9,9-ジエトキシ-9H-フルオレン-2,7-ジイル基、9,9-ビス[2-(2-(2-メトキシエトキシ)エトキシ)エチル]-9H-フルオレン-2,7-ジイル基等が挙げられるが、これらに限定されない。 Divalent groups obtained by removing two hydrogen atoms on the aromatic ring of dialkylfluorene represented by formula (A2) include 9,9-dimethyl-9H-fluorene-2,7-diyl group, 9, 9-diethyl-9H-fluorene-2,7-diyl group, 9,9-dipropyl-9H-fluorene-2,7-diyl group, 9,9-dibutyl-9H-fluorene-2,7-diyl group, 9 ,9-dihexyl-9H-fluorene-2,7-diyl group, 9,9-dioctyl-9H-fluorene-2,7-diyl group, 9,9-bis(2-ethylhexyl)-9H-fluorene- 2,7-diyl group, 9,9-dimethoxy-9H-fluorene-2,7-diyl group, 9,9-diethoxy-9H-fluorene-2,7-diyl group, 9,9-bis[2-( Examples include, but are not limited to, 2-(2-methoxyethoxy)ethoxy)ethyl]-9H-fluorene-2,7-diyl group.
 これらのうち、Ar1aとしては、式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を2つ取り除いて得られる基が好ましく、特に9,9-ジメチル-9H-フルオレン-2,7-ジイル基が好ましい。 Among these, as Ar 1a , a group obtained by removing two hydrogen atoms on the aromatic ring of dialkylfluorene represented by formula (A2) is preferable, and in particular, 9,9-dimethyl-9H-fluorene-2, 7-diyl group is preferred.
 式(A1)中、Ar2aおよびAr3aは、それぞれ独立に、炭素数6~20のアリール基または式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を1つ取り除いて得られる1価の基であり、これらの基の芳香環上の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。上記炭素数1~20のアルキル基および炭素数1~20のハロゲン化アルキル基の具体例としては、前述したものと同様のものが挙げられる。 In formula (A1), Ar 2a and Ar 3a are each independently obtained by removing one hydrogen atom on the aromatic ring of the aryl group having 6 to 20 carbon atoms or the dialkylfluorene represented by formula (A2). It is a monovalent group, and some or all of the hydrogen atoms on the aromatic ring of these groups are a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, an acryloyl group, a methacryloyl group, an oxetanyl group, It may be substituted with an epoxy group, an alkyl group having 1 to 20 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms. Specific examples of the alkyl group having 1 to 20 carbon atoms and the halogenated alkyl group having 1 to 20 carbon atoms include those mentioned above.
 上記炭素数6~20のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基等が挙げられる。 The above aryl group having 6 to 20 carbon atoms includes phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, Examples include 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, biphenyl-2-yl group, biphenyl-3-yl group, biphenyl-4-yl group, and the like.
 式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を1つ取り除いて得られる1価の基としては、9,9-ジメチル-9H-フルオレン-2-イル基、9,9-ジメチル-9H-フルオレン-3-イル基、9,9-ジエチル-9H-フルオレン-2-イル基、9,9-ジエチル-9H-フルオレン-3-イル基、9,9-ジプロピル-9H-フルオレン-2-イル基、9,9-ジプロピル-9H-フルオレン-3-イル基、9,9-ジブチル-9H-フルオレン-2-イル基、9,9-ジブチル-9H-フルオレン-3-イル基、9,9-ジヘキシル-9H-フルオレン-2-イル基、9,9-ジヘキシル-9H-フルオレン-3-イル基、9,9-ジオクチル-9H-フルオレン-2-イル基、9,9-ジオクチル-9H-フルオレン-3-イル基、9,9-ビス(2-エチルへキシル)-9H-フルオレン-2-イル基、9,9-ビス(2-エチルへキシル)-9H-フルオレン-3-イル基、9,9-ジメトキシ-9H-フルオレン-2-イル基、9,9-ジメトキシ-9H-フルオレン-3-イル基、9,9-ジエトキシ-9H-フルオレン-2-イル基、9,9-ジエトキシ-9H-フルオレン-3-イル基、9,9-ビス[2-(2-(2-メトキシエトキシ)エトキシ)エチル]-9H-フルオレン-2-イル基、9,9-ビス[2-(2-(2-メトキシエトキシ)エトキシ)エチル]-9H-フルオレン-3-イル基等が挙げられるが、これらに限定されない。 Monovalent groups obtained by removing one hydrogen atom on the aromatic ring of dialkylfluorene represented by formula (A2) include 9,9-dimethyl-9H-fluoren-2-yl group, 9,9- Dimethyl-9H-fluoren-3-yl group, 9,9-diethyl-9H-fluoren-2-yl group, 9,9-diethyl-9H-fluoren-3-yl group, 9,9-dipropyl-9H-fluorene -2-yl group, 9,9-dipropyl-9H-fluoren-3-yl group, 9,9-dibutyl-9H-fluoren-2-yl group, 9,9-dibutyl-9H-fluoren-3-yl group , 9,9-dihexyl-9H-fluoren-2-yl group, 9,9-dihexyl-9H-fluoren-3-yl group, 9,9-dioctyl-9H-fluoren-2-yl group, 9,9- Dioctyl-9H-fluoren-3-yl group, 9,9-bis(2-ethylhexyl)-9H-fluoren-2-yl group, 9,9-bis(2-ethylhexyl)-9H-fluoren- 3-yl group, 9,9-dimethoxy-9H-fluoren-2-yl group, 9,9-dimethoxy-9H-fluoren-3-yl group, 9,9-diethoxy-9H-fluoren-2-yl group, 9,9-diethoxy-9H-fluoren-3-yl group, 9,9-bis[2-(2-(2-methoxyethoxy)ethoxy)ethyl]-9H-fluoren-2-yl group, 9,9- Examples include, but are not limited to, bis[2-(2-(2-methoxyethoxy)ethoxy)ethyl]-9H-fluoren-3-yl group and the like.
 X1aが-N(Ar3a)-のとき、Ar2aおよびAr3aは、互いに結合してこれらが結合する窒素原子とともに環を形成してもよい。このとき、上記環の構造としては、カルバゾール環が好ましい。 When X 1a is -N(Ar 3a )-, Ar 2a and Ar 3a may be bonded to each other to form a ring with the nitrogen atom to which they are bonded. At this time, the structure of the ring is preferably a carbazole ring.
 R2aがフェニレン基のとき、R2aおよびAr2aは、互いに結合してこれらが結合する窒素原子、硫黄原子または酸素原子とともに環を形成してもよい。このとき、上記環の構造としては、カルバゾール環、ジベンゾチオフェン環またはジベンゾフラン環が好ましい。 When R 2a is a phenylene group, R 2a and Ar 2a may be bonded to each other to form a ring together with the nitrogen atom, sulfur atom or oxygen atom to which they are bonded. At this time, the structure of the above ring is preferably a carbazole ring, a dibenzothiophene ring or a dibenzofuran ring.
 ただし、Ar1a~Ar3aの少なくとも1つは、式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を取り除いて得られる基である。 However, at least one of Ar 1a to Ar 3a is a group obtained by removing a hydrogen atom on the aromatic ring of dialkylfluorene represented by formula (A2).
 式(A1)で表される繰り返し単位としては、X1aが-N(Ar3a)-であるものが好ましく、下記式(A1-1)で表されるものがより好ましい。 The repeating unit represented by formula (A1) is preferably one in which X 1a is -N(Ar 3a )-, and more preferably one represented by the following formula (A1-1).
Figure JPOXMLDOC01-appb-C000012
(式中、RM、R1a、R2aおよびAr1a~Ar3aは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000012
(In the formula, R M , R 1a , R 2a and Ar 1a to Ar 3a represent the same meanings as above.)
 さらに、式(A1-1)で表される繰り返し単位としては、下記式(A1-2)で表されるものがより一層好ましい。 Further, as the repeating unit represented by formula (A1-1), one represented by the following formula (A1-2) is even more preferable.
Figure JPOXMLDOC01-appb-C000013
(式中、RM、R1a、R2aおよびAr1a~Ar3aは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000013
(In the formula, R M , R 1a , R 2a and Ar 1a to Ar 3a have the same meanings as above.)
 式(B1)において、ArFは、フッ化アリーレン基を表す。
 ArFのフッ化アリーレン基は、アリーレン基上の少なくとも1つの水素原子がフッ素原子で置換されたものであれば特に限定はないが、残りの水素原子の少なくとも1つがスルホ基以外の電子吸引基で置換されていることが好ましい。
 電子吸引基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ニトロ基;シアノ基;アシル基;カルボキシ基;カルボン酸エステル基;ホルミル基、アセチル基等のアシル基などが挙げられる。
 特にArFのフッ化アリーレン基は、2つ以上のフッ素原子で置換されたアリーレン基が好ましく、パーフルオロアリーレン基がより好ましい。
In formula (B1), Ar F represents a fluorinated arylene group.
The fluorinated arylene group of Ar F is not particularly limited as long as at least one hydrogen atom on the arylene group is replaced with a fluorine atom, but at least one of the remaining hydrogen atoms is an electron-withdrawing group other than a sulfo group. It is preferable that it is substituted with.
Examples of electron-withdrawing groups include halogen atoms such as fluorine atom, chlorine atom, bromine atom, and iodine atom; nitro group; cyano group; acyl group; carboxy group; carboxylic acid ester group; acyl group such as formyl group and acetyl group. Can be mentioned.
In particular, the fluorinated arylene group of Ar F is preferably an arylene group substituted with two or more fluorine atoms, and more preferably a perfluoroarylene group.
 ArFを構成するアリーレン基の炭素数に特に制限はないが、炭素数6~20が好ましく、炭素数6~16がより好ましい。その具体例としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、1,5-ナフチレン基、1,7-ナフチレン基、1,8-ナフチレン基、2,6-ナフチレン基、2,7-ナフチレン基、4,4’-ビフェニリレン基、アントラセニル基等が挙げられるが、フェニレン基が好ましく、1,4-フェニレン基がより好ましい。
 したがって、ArFとしては、テトラフルオロフェニレン基が好ましく、2,3,5,6-テトラフルオロ-1,4-フェニレン基がより好ましい。
There is no particular restriction on the number of carbon atoms in the arylene group constituting Ar F , but preferably 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms. Specific examples include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 1,5-naphthylene group, 1,7-naphthylene group, 1,8-naphthylene group, 2, Examples include 6-naphthylene group, 2,7-naphthylene group, 4,4'-biphenylylene group, and anthracenyl group, with phenylene group being preferred and 1,4-phenylene group being more preferred.
Therefore, Ar F is preferably a tetrafluorophenylene group, more preferably a 2,3,5,6-tetrafluoro-1,4-phenylene group.
 Xは、O、S、NH、CONHまたはNHCOを表すが、O、Sが好ましく、Oがより好ましい。 X represents O, S, NH, CONH or NHCO, preferably O or S, and more preferably O.
 上記式(B1)で表される繰り返し単位のより好適な態様としては、下記式(B1-1)で示されるものが挙げられる。 More preferred embodiments of the repeating unit represented by the above formula (B1) include those represented by the following formula (B1-1).
Figure JPOXMLDOC01-appb-C000014
(式中、n1は、1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000014
(In the formula, n1 represents an integer from 1 to 4.)
 上記式(B1)で表される繰り返し単位のより好適な態様としては、下記式(B1-2)で示されるものが挙げられる。 More preferred embodiments of the repeating unit represented by the above formula (B1) include those represented by the following formula (B1-2).
Figure JPOXMLDOC01-appb-C000015
(式中、n1は、1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, n1 represents an integer from 1 to 4.)
 より一層好適な上記式(B1)で表される繰り返し単位の態様としては、下記式(B1-3)で示されるものが挙げられる。 More preferred embodiments of the repeating unit represented by the above formula (B1) include those represented by the following formula (B1-3).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 ArSは、環上に少なくとも1つのSO3123基を有するアリール基を表し、D1は、置換または非置換の二価炭化水素基を示し、D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基を示し、D3は、置換または非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。 Ar S represents an aryl group having at least one SO 3 D 1 D 2 D 3 group on the ring, D 1 represents a substituted or unsubstituted divalent hydrocarbon group, D 2 represents a single bond, O, S, or a substituted or unsubstituted divalent amino group, and D 3 represents a substituted or unsubstituted monovalent hydrocarbon group, but if D 2 is a single bond, even if it is a hydrogen atom. good.
 ArSを構成するアリール基の炭素数に特に制限はないが、炭素数6~30が好ましく、炭素数6~20がより好ましく、炭素数6~12がより一層好ましい。その具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられるが、ナフチル基が好ましく、1-ナフチル基がより好ましい。
 また、ArSが有するSO3123基の数は、1つ以上であればよいが、2~4個が好ましく、2個がより好ましい。
The number of carbon atoms in the aryl group constituting Ar S is not particularly limited, but preferably 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 6 to 12 carbon atoms. Specific examples include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4 -phenanthryl group, 9-phenanthryl group, etc., but naphthyl group is preferable, and 1-naphthyl group is more preferable.
Further, the number of SO 3 D 1 D 2 D 3 groups that Ar S has may be one or more, but preferably 2 to 4, and more preferably 2.
 D1の置換または非置換の二価炭化水素基としては、例えば、置換または非置換の炭素数1~5のアルキレン基、炭素数1~2アルキレンオキシ炭素数1~2アルキレン基、炭素数1~2アルキレンチオ炭素数1~2アルキレン基、炭素数1~2アルキレンカルボニル炭素数1~2アルキレン基や、これらの基の水素原子の一部または全部がさらに、水酸基、アミノ基、シラノール基、チオール基、カルボキシル基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホン基、ハロゲン原子等で置換されたものが挙げられる。本発明では、炭素数1~5のアルキレン基が好ましい。炭素数1~5のアルキレン基としては、例えば、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレンおよびペンタメチレン基が挙げられ、メチレン、エチレン、プロピレンおよびトリメチレン基が好ましい。 The substituted or unsubstituted divalent hydrocarbon group for D 1 is, for example, a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, alkylene group having 1 to 2 carbon atoms, alkylene group having 1 to 2 carbon atoms, or 1 to 2 carbon atoms; ~2 Alkylenethio Alkylene group with 1 to 2 carbon atoms, Alkylene carbonyl group with 1 to 2 carbon atoms, Alkylene group with 1 to 2 carbon atoms, and some or all of the hydrogen atoms of these groups can further be hydroxyl group, amino group, silanol group, Thiol group, carboxyl group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, nitro group, monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, Examples include those substituted with an organothio group, an acyl group, a sulfone group, a halogen atom, and the like. In the present invention, an alkylene group having 1 to 5 carbon atoms is preferred. Examples of the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, propylene, trimethylene, tetramethylene and pentamethylene groups, with methylene, ethylene, propylene and trimethylene groups being preferred.
 D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基であるが、本発明ではOが好ましい。ここで、2価の置換アミノ基としては、-N(CH3)-、-N(C25)-、-N(C37)-等が挙げられる。 D 2 is a single bond, O, S, or a substituted or unsubstituted divalent amino group, and O is preferred in the present invention. Here, examples of the divalent substituted amino group include -N(CH 3 )-, -N(C 2 H 5 )-, and -N(C 3 H 7 )-.
 D3は、置換または非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。置換もしくは非置換の一価炭化水素基としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、t-ブチル、n-ヘキシル、n-オクチル、2-エチルヘキシル、デシル基等のアルキル基;シクロペンチル、シクロヘキシル基等のシクロアルキル基;ビシクロヘキシル基等のビシクロアルキル基;ビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-メチル-2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ヘキセニル基等のアルケニル基;フェニル、キシリル、トリル、ビフェニル、ナフチル基等の芳香環基(アリール基);ベンジル、フェニルエチル、フェニルシクロヘキシル基等のアラルキル基や、これらの基の水素原子の一部または全部がさらに、上述した置換基で置換されたものが挙げられる。本発明では、メチル、エチル、n-プロピル、n-ブチルおよびフェニル基が好ましい。 D 3 represents a substituted or unsubstituted monovalent hydrocarbon group, but may be a hydrogen atom when D 2 is a single bond. Substituted or unsubstituted monovalent hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-hexyl, n-octyl, 2-ethylhexyl, decyl. Alkyl groups such as groups; cycloalkyl groups such as cyclopentyl and cyclohexyl groups; bicycloalkyl groups such as bicyclohexyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, Alkenyl groups such as 2-butenyl, 3-butenyl, hexenyl groups; aromatic ring groups (aryl groups) such as phenyl, xylyl, tolyl, biphenyl, naphthyl groups; aralkyl groups such as benzyl, phenylethyl, phenylcyclohexyl groups; Examples include those in which some or all of the hydrogen atoms of the group are further substituted with the above-mentioned substituents. According to the invention, methyl, ethyl, n-propyl, n-butyl and phenyl groups are preferred.
 上記D1~D3は、これらが一緒になって下記式(D)で表される構造がより好ましい。 The above D 1 to D 3 more preferably have a structure represented by the following formula (D).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(D)中、R1dおよびR2dは、それぞれ独立に、水素原子、直鎖状もしくは分岐状の一価脂肪族炭化水素基を表し、R3dは、直鎖状もしくは分岐状の一価脂肪族炭化水素基またはアルコキシ基を表す。ただし、R1d、R2dおよびR3dの炭素数の合計は2以上である。R1d、R2dおよびR3dの炭素数の合計は、特に限定されないが、20以下が好ましく、10以下がより好ましい。 In formula (D), R 1d and R 2d each independently represent a hydrogen atom, a linear or branched monovalent aliphatic hydrocarbon group, and R 3d represents a linear or branched monovalent aliphatic hydrocarbon group. Represents an aliphatic hydrocarbon group or an alkoxy group. However, the total number of carbon atoms in R 1d , R 2d and R 3d is 2 or more. The total number of carbon atoms in R 1d , R 2d and R 3d is not particularly limited, but is preferably 20 or less, more preferably 10 or less.
 上記直鎖状もしくは分岐状の一価脂肪族炭化水素基としては、特に限定されないが、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、t-ブチル、n-ヘキシル、n-オクチル、2-エチルヘキシル、デシル基等の炭素数1~18のアルキル基;ビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-メチル-2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ヘキセニル基等の炭素数2~18のアルケニル基等が挙げられる。 The linear or branched monovalent aliphatic hydrocarbon group is not particularly limited, but includes methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-hexyl. , n-octyl, 2-ethylhexyl, alkyl groups having 1 to 18 carbon atoms such as decyl; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, 2-butenyl , 3-butenyl, hexenyl, and other alkenyl groups having 2 to 18 carbon atoms.
 アルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、具体的には、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシおよびフェノキシ基等が挙げられる。 As the alkoxy group, an alkoxy group having 1 to 10 carbon atoms is preferable, and specifically, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy and phenoxy Examples include groups.
 R1dとしては、メチル基がより好ましい。R2dとしては、水素原子が好ましい。R3dとしては、アルコキシ基が好ましく、メトキシ、エトキシ、n-プロポキシ、n-ブトキシおよびフェノキシ基がより好ましく、エトキシ、n-ブトキシおよびフェノキシ基がより一層好ましい。 As R 1d , a methyl group is more preferable. As R 2d , a hydrogen atom is preferable. R 3d is preferably an alkoxy group, more preferably a methoxy, ethoxy, n-propoxy, n-butoxy and phenoxy group, even more preferably an ethoxy, n-butoxy and phenoxy group.
 なお、上記式(D)で表される構造は、国際公開第2020/218316号(特許文献7)に記載された方法を参考にして、所定のアリールスルホン酸ハロゲン化物を所定のアルコール化合物、例えば、下記式(D’)で表されるアルコール化合物を用いてエステル化することにより導入することができる。本発明では、式(B1)で表される繰り返し単位が、このようなスルホン酸エステル基を有することにより、有機溶媒への溶解性が向上する。さらに、電荷輸送性薄膜を成膜後は、加熱工程によりスルホン酸エステル基が分解し、スルホン酸基が発生することで、薄膜の親水性が向上し、トルエン等の低極性溶媒に対する溶剤耐性が向上する。それにより、得られる電荷輸送性薄膜の膜減りや膨潤が低減される。 The structure represented by the above formula (D) is obtained by converting a predetermined arylsulfonic acid halide into a predetermined alcohol compound, for example, with reference to the method described in International Publication No. 2020/218316 (Patent Document 7). , can be introduced by esterification using an alcohol compound represented by the following formula (D'). In the present invention, the repeating unit represented by formula (B1) has such a sulfonic acid ester group, thereby improving solubility in an organic solvent. Furthermore, after the charge transporting thin film is formed, the sulfonic acid ester groups are decomposed by the heating process and sulfonic acid groups are generated, which improves the hydrophilicity of the thin film and improves its resistance to low polar solvents such as toluene. improves. This reduces thinning and swelling of the resulting charge transporting thin film.
Figure JPOXMLDOC01-appb-C000018
(式中、R1d~R3dは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000018
(In the formula, R 1d to R 3d represent the same meanings as above.)
 好適なArSとしては、下記式(ArS-1)~(ArS-6)で示されるものが挙げられる。 Suitable examples of Ar S include those represented by the following formulas (Ar S -1) to (Ar S -6).
Figure JPOXMLDOC01-appb-C000019
(式中、D1~D3は、上記と同じ意味を表す。nは、2~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000019
(In the formula, D 1 to D 3 represent the same meanings as above. n represents an integer from 2 to 4.)
Figure JPOXMLDOC01-appb-C000020
(式中、D1~D3は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000020
(In the formula, D 1 to D 3 have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000021
(式中、D1~D3は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000021
(In the formula, D 1 to D 3 have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000022
(式中、D1~D3は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000022
(In the formula, D 1 to D 3 have the same meanings as above.)
 上記ArSのより好適な態様としては、下記式(ArS-7)~(ArS-12)で示されるものが挙げられる。 More preferred embodiments of the above Ar S include those represented by the following formulas (Ar S -7) to (Ar S -12).
Figure JPOXMLDOC01-appb-C000023
(式中、R1d~R3dは、上記と同じ意味を表す。nは、2~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000023
(In the formula, R 1d to R 3d represent the same meanings as above. n represents an integer from 2 to 4.)
Figure JPOXMLDOC01-appb-C000024
(式中、R1d~R3dは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000024
(In the formula, R 1d to R 3d represent the same meanings as above.)
Figure JPOXMLDOC01-appb-C000025
(式中、R1d~R3dは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000025
(In the formula, R 1d to R 3d have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000026
(式中、R1d~R3dは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000026
(In the formula, R 1d to R 3d represent the same meanings as above.)
 本発明のポリマーは、上記式(A1)で表される繰り返し単位および上記式(B1)で表される繰り返し単位のみを含むポリマーでよい。また、本発明のポリマーは、ランダム共重合体、交互共重合体、ブロック共重合体のいずれでもよい。 The polymer of the present invention may be a polymer containing only the repeating unit represented by the above formula (A1) and the repeating unit represented by the above formula (B1). Further, the polymer of the present invention may be a random copolymer, an alternating copolymer, or a block copolymer.
 式(A1)の単位と式(B1)の単位との含有比率は、特に限定されるものではないが、得られる薄膜の電荷輸送性と溶剤耐性を向上させることを考慮すると、モル比で、式(A1):式(B1)=20:1~1:20が好ましく、10:1~1:10がより好ましく、5:1~1:5がより一層好ましい。 The content ratio of the units of formula (A1) and the units of formula (B1) is not particularly limited, but in consideration of improving the charge transport properties and solvent resistance of the obtained thin film, the molar ratio is as follows: Formula (A1):Formula (B1)=20:1 to 1:20 is preferable, 10:1 to 1:10 is more preferable, and 5:1 to 1:5 is even more preferable.
 また、本発明の効果を損なわない範囲で、式(A1)で表される繰り返し単位および式(B1)で表される繰り返し単位以外の繰り返し単位を含んでもよい。その他の繰り返し単位としては、アクリロイル基、アクリルアミド基、メタクリロイル基、メタクリルアミド基、ビニルエーテル基、無水マレイン酸等の重合性官能基を含むものが挙げられる。また、有機溶媒に対する溶解性を高めるという点から、下記式(B2)で表される繰り返し単位が好適なものとして挙げられる。 In addition, repeating units other than the repeating unit represented by formula (A1) and the repeating unit represented by formula (B1) may be included as long as the effects of the present invention are not impaired. Other repeating units include those containing polymerizable functional groups such as an acryloyl group, an acrylamide group, a methacryloyl group, a methacrylamide group, a vinyl ether group, and maleic anhydride. Further, from the viewpoint of increasing solubility in organic solvents, a repeating unit represented by the following formula (B2) is preferred.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(B2)において、R’は、1価の有機基を表す。
 この1価の有機基としては、1価炭化水素基、ヘテロアリール基、-COOR”基(R”は、水素原子または炭素数1~10のアルキル基を表す。)等が挙げられる。
 1価炭化水素基の炭素数に特に制限はないが、炭素数1~20が好ましく、炭素数6~20がより好ましく、炭素数6~10がより一層好ましい。その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、シクロペンチル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等のアルキル基;フェニル、1-ナフチル、2-ナフチル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル基等のアリール基等が挙げられる。
In formula (B2), R' represents a monovalent organic group.
Examples of the monovalent organic group include a monovalent hydrocarbon group, a heteroaryl group, a -COOR" group (R" represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms), and the like.
There is no particular restriction on the number of carbon atoms in the monovalent hydrocarbon group, but it preferably has 1 to 20 carbon atoms, more preferably 6 to 20 carbon atoms, and even more preferably 6 to 10 carbon atoms. Specific examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, Alkyl groups such as n-nonyl and n-decyl groups; phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl , aryl groups such as 9-phenanthryl group, and the like.
 ヘテロアリール基の具体例としては、2-チエニル、3-チエニル、2-フラニル、3-フラニル、2-オキサゾリル、4-オキサゾリル、5-オキサゾリル、3-イソオキサゾリル、4-イソオキサゾリル、5-イソオキサゾリル、2-チアゾリル、4-チアゾリル、5-チアゾリル、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル、2-イミダゾリル、4-イミダゾリル、2-ピリジル、3-ピリジル、4-ピリジル基等の炭素数2~20のヘテロアリール基などが挙げられる。 Specific examples of heteroaryl groups include 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2 - Thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-imidazolyl, 4-imidazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, etc. with 2 to 20 carbon atoms Examples include heteroaryl groups.
 R”の炭素数1~10のアルキル基としては、上記で例示した基と同様のものが挙げられるが、中でも、炭素数1~5のアルキル基が好ましい。 Examples of the alkyl group having 1 to 10 carbon atoms for R'' include the same groups as exemplified above, but among them, an alkyl group having 1 to 5 carbon atoms is preferred.
 なお、上記1価炭化水素基、ヘテロアリール基、R”の炭素数1~10のアルキル基は、その水素原子の一部または全部が置換基で置換されていてもよい。そのような置換基としては、ハロゲン原子、シアノ基、ニトロ基、カルボキシ基、スルホ基、水酸基等が挙げられる。ハロゲン原子としては、上記で例示した原子と同様のものが挙げられる。 In addition, in the monovalent hydrocarbon group, heteroaryl group, and alkyl group having 1 to 10 carbon atoms of R'', some or all of the hydrogen atoms thereof may be substituted with a substituent.Such a substituent Examples of the halogen atom include a halogen atom, a cyano group, a nitro group, a carboxy group, a sulfo group, a hydroxyl group, etc. Examples of the halogen atom include the same atoms as exemplified above.
 これらの中でも、得られる有機EL素子や量子ドットEL素子の素子特性や寿命特性を向上させることを考慮すると、R’は、ハロゲン原子で置換されたアリール基が好ましく、フッ化アリール基がより好ましく、パーフルオロアリール基がより一層好ましい。
 特に、ハロゲン原子で置換されたフェニル基が好ましく、フッ化フェニル基がより好ましく、パーフルオロフェニル基がより一層好ましい。
Among these, R' is preferably an aryl group substituted with a halogen atom, more preferably a fluorinated aryl group, in consideration of improving the device characteristics and life characteristics of the resulting organic EL device or quantum dot EL device. , perfluoroaryl groups are even more preferred.
In particular, a phenyl group substituted with a halogen atom is preferred, a fluorinated phenyl group is more preferred, and a perfluorophenyl group is even more preferred.
 本発明のポリマーが式(B2)で表される繰り返し単位を含む場合、その含有比率は特に限定されるものではないが、素子特性を向上させることと耐溶剤性を考慮すると、モル比で、[式(A1)および式(B1)の合計]:式(B2)=10:1~1:10が好ましく、5:1~1:5がより好ましく、3:1~1:3がより一層好ましく、1:1がさらに好ましい。 When the polymer of the present invention contains a repeating unit represented by formula (B2), the content ratio is not particularly limited, but in consideration of improving device characteristics and solvent resistance, the molar ratio is: [Sum of formula (A1) and formula (B1)]: formula (B2) = preferably 10:1 to 1:10, more preferably 5:1 to 1:5, even more preferably 3:1 to 1:3 Preferably, 1:1 is more preferable.
 本発明のポリマーの分子量は特に限定されるものではないが、耐熱性を向上効果と溶媒に対する溶解性確保の観点から、重量平均分子量Mw1,000~50,000が好ましく、1,500~10,000がより好ましく、2,000~10,000がより一層好ましい。また、分子量分布(Mw/Mn)は、特に限定されるものではないが、1.0~5.0が好ましく、1.0~3.0がより好ましい。なお、この重量平均分子量は、ポリスチレンを標準試料としたゲルパーミエーションクロマトグラフィー(GPC)による測定値である。 The molecular weight of the polymer of the present invention is not particularly limited, but from the viewpoint of improving heat resistance and ensuring solubility in solvents, the weight average molecular weight Mw is preferably 1,000 to 50,000, 1,500 to 10, 000 is more preferable, and 2,000 to 10,000 is even more preferable. Further, the molecular weight distribution (Mw/Mn) is not particularly limited, but is preferably from 1.0 to 5.0, more preferably from 1.0 to 3.0. Note that this weight average molecular weight is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard sample.
[3]ポリマーの製造方法
 本発明のポリマーは、下記式(a1)で示されるモノマーおよび下記式(b1)で示されるモノマーを、溶媒およびラジカル重合開始剤の存在下、公知のラジカル重合法によって重合させて得ることができる。なお、この際、式(a1)で表されるモノマーは2種以上を組み合わせて用いてもよく、式(b1)で表されるモノマーは2種以上を組み合わせて用いてもよい。
[3] Method for producing polymer The polymer of the present invention is produced by a known radical polymerization method using a monomer represented by the following formula (a1) and a monomer represented by the following formula (b1) in the presence of a solvent and a radical polymerization initiator. It can be obtained by polymerization. In this case, the monomers represented by formula (a1) may be used in combination of two or more types, and the monomers represented by formula (b1) may be used in combination of two or more types.
Figure JPOXMLDOC01-appb-C000028
(式中、RM、R1a、R2a、Ar1a、Ar2a、ArF、ArS、X1aおよびX1bは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000028
(In the formula, R M , R 1a , R 2a , Ar 1a , Ar 2a , Ar F , Ar S , X 1a and X 1b represent the same meanings as above.)
 また、必要に応じて、上記モノマーに加えてさらに下記式(a2)で表されるモノマーを加えてもよい。 Furthermore, in addition to the above monomers, a monomer represented by the following formula (a2) may be added as necessary.
Figure JPOXMLDOC01-appb-C000029
(式中、R’は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000029
(In the formula, R' represents the same meaning as above.)
 ラジカル重合開始剤としては、ラジカル熱重合開始剤、ラジカル光重合開始剤等の公知の化合物を使用することができる。
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル(AIBN)、2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)等が挙げられる。ラジカル熱重合開始剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
As the radical polymerization initiator, known compounds such as radical thermal polymerization initiators and radical photopolymerization initiators can be used.
A radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature. Such radical thermal polymerization initiators include, for example, ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxycyclohexane) ), alkyl peresters (peroxyneodecanoic acid tert-butyl ester, peroxypivalic acid tert-butyl ester, peroxy 2-ethylcyclohexanoic acid tert-amyl ester, etc.), persulfates (potassium persulfate, (sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile (AIBN), 2,2'-di(2-hydroxyethyl)azobisisobutyronitrile, etc.), and the like. The radical thermal polymerization initiators may be used alone or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等が挙げられる。ラジカル光重合開始剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di(tert-butylperoxycarbonyl)benzophenone, 3,4,4'-tri( tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-(4'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(3' , 4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(2',4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2 -(2'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-pentyloxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 4- [p-N,N-di(ethoxycarbonylmethyl)]-2,6-di(trichloromethyl)-s-triazine, 1,3-bis(trichloromethyl)-5-(2'-chlorophenyl)-s- Triazine, 1,3-bis(trichloromethyl)-5-(4'-methoxyphenyl)-s-triazine, 2-(p-dimethylaminostyryl)benzoxazole, 2-(p-dimethylaminostyryl)benzthiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis(7-diethylaminocoumarin), 2-(o-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2 , 2'-bis(2-chlorophenyl)-4,4',5,5'-tetrakis(4-ethoxycarbonylphenyl)-1,2'-biimidazole, 2,2'-bis(2,4-dichlorophenyl) )-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis(2,4-dibromophenyl)-4,4',5,5'-tetraphenyl- 1,2'-biimidazole, 2,2'-bis(2,4,6-trichlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 3-(2 -Methyl-2-dimethylaminopropionyl)carbazole, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenylketone, bis(5-2,4-cyclo Pentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, 3,3',4,4'-tetra(t-butylperoxycarbonyl)benzophenone , 3,3',4,4'-tetra(t-hexylperoxycarbonyl)benzophenone, 3,3'-di(methoxycarbonyl)-4,4'-di(t-butylperoxycarbonyl)benzophenone, 3,4 '-di(methoxycarbonyl)-4,3'-di(t-butylperoxycarbonyl)benzophenone, 4,4'-di(methoxycarbonyl)-3,3'-di(t-butylperoxycarbonyl)benzophenone, 2 -(3-Methyl-3H-benzothiazol-2-ylidene)-1-naphthalen-2-yl-ethanone, 2-(3-methyl-1,3-benzothiazol-2(3H)-ylidene)-1- Examples include (2-benzoyl)ethanone. The radical photopolymerization initiators may be used alone or in combination of two or more.
 重合反応に用いる溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、水;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、2-プロパノール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、トルエン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等の有機溶媒が挙げられる。 The solvent used in the polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include water; N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, dimethylsulfoxide, tetra Methylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 2-propanol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve , methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene Glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether , dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, Isobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, toluene, diethyl ether, cyclohexanone, Ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, 3-ethoxypropionic acid Ethyl, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3 Examples include organic solvents such as -methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, and 3-butoxy-N,N-dimethylpropanamide.
 ラジカル重合の際の重合温度は、30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。 The polymerization temperature during radical polymerization can be any temperature in the range of 30 to 150°C, but is preferably in the range of 50 to 100°C.
 上記式(a1)で表されるモノマーは、各種カップリング反応を組み合わせることで合成することができる。その合成方法の一例としては、例えば、下記スキームaに示すように、式(a1-1)で表されるスチレン化合物と下記式(a1-2)で表されるアミン化合物とをカップリング反応させる方法が挙げられる。 The monomer represented by the above formula (a1) can be synthesized by combining various coupling reactions. As an example of the synthesis method, for example, as shown in scheme a below, a styrene compound represented by formula (a1-1) and an amine compound represented by formula (a1-2) below are subjected to a coupling reaction. There are several methods.
Figure JPOXMLDOC01-appb-C000030
(式中、RM、R1a、R2a、X1a、Ar1aおよびAr2aは、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000030
(In the formula, R M , R 1a , R 2a , X 1a , Ar 1a and Ar 2a have the same meanings as above.)
 スキームa中、XAは、カップリング反応に使用される任意の基である。このような基の具体例としては、例えば、鈴木・宮浦カップリング反応を利用する場合は、-B(OH)2等のボロン酸基やボロン酸エステル基が挙げられる。 In scheme a, X A is any group used in the coupling reaction. Specific examples of such groups include, for example, boronic acid groups such as -B(OH) 2 and boronic acid ester groups when using the Suzuki-Miyaura coupling reaction.
 スキームa中、XBは、それぞれ独立に、ハロゲン原子または擬ハロゲン基である。XBで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられるが、臭素原子またはヨウ素原子が好ましい。XBで表される擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等のフルオロアルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基等が挙げられる。 In scheme a, each X B is independently a halogen atom or a pseudohalogen group. Examples of the halogen atom represented by X B include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, with a bromine atom or an iodine atom being preferred. Examples of the pseudohalogen group represented by Examples include sulfonyloxy group.
 上記カップリング反応において用いる溶媒としては、反応に悪影響を及ぼさないものであれば特に限定されないが、例えば、脂肪族炭化水素(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、THF、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、アミド(N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等)、ラクタムおよびラクトン(N-メチルピロリドン、γ-ブチロラクトン等)、尿素誘導体(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド(ジメチルスルホキシド、スルホラン等)、ニトリル(アセトニトリル、プロピオニトリル、ブチロニトリル等)等が挙げられる。これらのうち、目的物を効率よく得る観点から、好ましい溶媒は、脂肪族炭化水素(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、芳香族炭化水素(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、THF、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)であり、より好ましくは芳香族炭化水素(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、THF、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)である。 The solvent used in the coupling reaction is not particularly limited as long as it does not adversely affect the reaction, but examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), Halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), ethers (diethyl ether, etc.) , diisopropyl ether, tert-butyl methyl ether, THF, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), amides (N,N-dimethylformamide (DMF), N,N-dimethylacetamide, etc.) ), lactams and lactones (N-methylpyrrolidone, γ-butyrolactone, etc.), urea derivatives (N,N-dimethylimidazolidinone, tetramethylurea, etc.), sulfoxides (dimethylsulfoxide, sulfolane, etc.), nitriles (acetonitrile, propiolactone, etc.) nitrile, butyronitrile, etc.). Among these, preferred solvents are aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.) and aromatic hydrocarbons (benzene, nitrobenzene, toluene, etc.) from the viewpoint of efficiently obtaining the target product. , o-xylene, m-xylene, p-xylene, mesitylene, etc.), ethers (diethyl ether, diisopropyl ether, tert-butyl methyl ether, THF, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.) ), more preferably aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), ethers (diethyl ether, diisopropyl ether, tert-butyl methyl ether, THF, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.).
 上記カップリング反応において用いる触媒としては、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド(PdCl2(dppf))、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh34)、ビス(トリフェニルホスフィン)ジクロロパラジウム(Pd(PPh32Cl2)、ビス(ベンジリデンアセトン)パラジウム(Pd(dba)2)、トリス(ベンジリデンアセトン)ジパラジウム(Pd2(dba)3)、ビス(トリ-tert-ブチルホスフィン)パラジウム(Pd(P-t-Bu32)、酢酸パラジウム(II)(Pd(OAc)2)等のパラジウム触媒等が挙げられる。これらの触媒は、公知の適切な配位子とともに使用してもよい。 Catalysts used in the above coupling reaction include [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride (PdCl 2 (dppf)), tetrakis(triphenylphosphine)palladium (Pd(PPh 3 )), 4 ), bis(triphenylphosphine)dichloropalladium (Pd(PPh 3 ) 2 Cl 2 ), bis(benzylideneacetone)palladium (Pd(dba) 2 ), tris(benzylideneacetone)dipalladium (Pd 2 (dba) 3 ) ), bis(tri-tert-butylphosphine)palladium (Pd(Pt-Bu 3 ) 2 ), palladium(II) acetate (Pd(OAc) 2 ), and other palladium catalysts. These catalysts may be used with known suitable ligands.
 触媒の使用量は、式(a1-2)で表されるアミン化合物に対し、モル比で0.01~0.2となる量が好ましく、0.03~0.1となる量がより好ましい。また、配位子を用いる場合、その使用量は、使用する金属錯体に対し、0.1~3.0当量とすることができるが、0.8~1.5当量が好適である。 The amount of the catalyst used is preferably an amount such that the molar ratio is 0.01 to 0.2, more preferably 0.03 to 0.1 with respect to the amine compound represented by formula (a1-2). . When a ligand is used, the amount used can be 0.1 to 3.0 equivalents, preferably 0.8 to 1.5 equivalents, relative to the metal complex used.
 また、上記カップリング反応においては塩基を使用してもよい。前記塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属;tert-ブトキシリチウム、tert-ブトキシナトリウム、tert-ブトキシカリウム等のアルコキシアルカリ金属;炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ金属;炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素アルカリ金属;炭酸カルシウム等の炭酸アルカリ土類金属;n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等の有機リチウム;トリエチルアミン、ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン、ピリジン等のアミン類等が挙げられるが、この種の反応に用いられるものであれば特に限定されない。特に、取り扱いが容易であることから、炭酸ナトリウム、炭酸カリウムが好適である。前記塩基の使用量は、式(a1-2)で表されるアミン化合物に対し、モル比で通常1~20程度であり、好ましくは4~8である。 Additionally, a base may be used in the above coupling reaction. Examples of the base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkoxyalkali metals such as tert-butoxylithium, tert-butoxysodium, and tert-butoxypotassium; sodium carbonate, potassium carbonate, etc. Alkali metal carbonate; alkali metal hydrogen carbonate such as sodium hydrogen carbonate and potassium hydrogen carbonate; alkaline earth metal carbonate such as calcium carbonate; organolithium such as n-butyllithium, sec-butyllithium, tert-butyllithium; triethylamine, diisopropyl Examples include amines such as ethylamine, tetramethylethylenediamine, triethylenediamine, and pyridine, but there are no particular limitations as long as they can be used in this type of reaction. In particular, sodium carbonate and potassium carbonate are preferred because they are easy to handle. The amount of the base used is usually about 1 to 20, preferably 4 to 8, in molar ratio to the amine compound represented by formula (a1-2).
 上記カップリング反応において、式(a1-1)で表されるスチレン化合物と下記式(a1-2)で表されるアミン化合物との仕込み比は、式(a1-1)で表されるスチレン化合物に対し、式(a1-2)で表されるアミン化合物が、モル比で、0.2~2.0となる量が好ましく、0.5~1.0となる量がより好ましい。 In the above coupling reaction, the charging ratio of the styrene compound represented by the formula (a1-1) and the amine compound represented by the following formula (a1-2) is such that the styrene compound represented by the formula (a1-1) On the other hand, the amount of the amine compound represented by formula (a1-2) is preferably 0.2 to 2.0 in terms of molar ratio, and more preferably 0.5 to 1.0.
 上記カップリング反応において、反応温度は、用いる原料化合物や触媒の種類や量を考慮しつつ、溶媒の融点から沸点までの範囲で適宜設定されるが、通常20~120℃程度であり、好ましくは60~100℃である。また、反応時間は、用いる原料化合物や反応温度等に応じて異なるため一概に規定できないが、通常0.5~12時間程度である。 In the above coupling reaction, the reaction temperature is appropriately set in the range from the melting point to the boiling point of the solvent, taking into consideration the type and amount of the raw material compounds and catalysts used, but is usually about 20 to 120°C, preferably The temperature is 60-100°C. Further, the reaction time cannot be absolutely defined because it varies depending on the raw material compounds used, the reaction temperature, etc., but is usually about 0.5 to 12 hours.
 反応終了後は、定法に従って後処理をし、目的とするモノマーを得ることができる。 After the reaction is completed, the desired monomer can be obtained by post-treatment according to a conventional method.
 上記式(b1)のモノマーは、特許文献6等に開示された公知の手法によって製造できるアリールスルホン酸化合物を、公知の手法によってエステル化することにより得ることができる。上記アリールスルホン酸化合物のエステル化は、所定のアリールスルホン酸ハロゲン化物を所定のアルコール化合物を用いてエステル化することにより実施することができ、例えば、国際公開第2020/218316号(特許文献7)に開示された方法を採用することができる。 The monomer of formula (b1) above can be obtained by esterifying an arylsulfonic acid compound, which can be produced by a known method disclosed in Patent Document 6, by a known method. Esterification of the above-mentioned arylsulfonic acid compound can be carried out by esterifying a predetermined arylsulfonic acid halide using a predetermined alcohol compound, for example, International Publication No. 2020/218316 (Patent Document 7) The method disclosed in can be adopted.
[3]電荷輸送性ワニス
 本発明の電荷輸送性ワニスは、上述したポリマーからなる電荷輸送性物質と、溶媒とを含むものである。
 なお、本発明において、電荷輸送性とは、導電性と同義であり、正孔輸送性と同義である。電荷輸送性ワニスとは、それ自体に電荷輸送性があるものでもよく、それにより得られる固体膜が電荷輸送性を有するものでもよい。
[3] Charge-transporting varnish The charge-transporting varnish of the present invention contains a charge-transporting substance made of the above-mentioned polymer and a solvent.
In addition, in this invention, charge transport property is synonymous with electroconductivity, and is synonymous with hole transport property. The charge-transporting varnish may be one that itself has charge-transporting properties, or the solid film obtained therefrom may have charge-transporting properties.
 本発明の電荷輸送性ワニスにおける上記ポリマーの含有量は、得られる薄膜の電気特性と溶剤耐性の観点から、固形分中0.1~100質量%が好ましく、より好ましくは10~100質量%、より一層好ましくは20~100質量%である。なお、上記ポリマーの含有量の上限は、通常100質量%以下であるが、後述するチオフェン誘導体やアリールアミン誘導体等の任意成分を含む場合は、99.95質量%以下が好ましく、より好ましくは99.90質量%以下である。 The content of the above polymer in the charge transporting varnish of the present invention is preferably 0.1 to 100% by mass, more preferably 10 to 100% by mass, based on the solid content, from the viewpoint of the electrical properties and solvent resistance of the obtained thin film. Even more preferably, it is 20 to 100% by mass. The upper limit of the content of the polymer is usually 100% by mass or less, but when it contains optional components such as thiophene derivatives and arylamine derivatives described below, it is preferably 99.95% by mass or less, more preferably 99.95% by mass or less. .90% by mass or less.
 本発明では、さらに上記ポリマー以外のその他の電荷輸送性物質を含んでいてもよい。上記その他の電荷輸送性物質としては、特に限定されるものではなく、有機ELや量子ドットELの分野等で用いられる電荷輸送性化合物、電荷輸送性オリゴマー、電荷輸送性ポリマー等から適宜選択して用いることができる。
 その具体例としては、オリゴアニリン誘導体、N,N’-ジアリールベンジジン誘導体、N,N,N’,N’-テトラアリールベンジジン誘導体等のアリールアミン誘導体(ただし、上記ポリマーを除く);オリゴチオフェン誘導体、チエノチオフェン誘導体、チエノベンゾチオフェン誘導体等のチオフェン誘導体;オリゴピロール等のピロール誘導体などの各種電荷輸送性化合物や、電荷輸送性オリゴマー、ポリチオフェン誘導体、ポリアニリン誘導体、ポリピロール誘導体等の電荷輸送性ポリマー等が挙げられ、これらの中でも、ポリチオフェン誘導体、アリールアミン誘導体が好ましい。
The present invention may further contain charge transporting substances other than the above-mentioned polymers. The other charge-transporting substances mentioned above are not particularly limited, and may be appropriately selected from charge-transporting compounds, charge-transporting oligomers, charge-transporting polymers, etc. used in the fields of organic EL and quantum dot EL. Can be used.
Specific examples include arylamine derivatives such as oligoaniline derivatives, N,N'-diarylbenzidine derivatives, N,N,N',N'-tetraarylbenzidine derivatives (excluding the above polymers); oligothiophene derivatives , thiophene derivatives such as thienothiophene derivatives, thienobenzothiophene derivatives; various charge transport compounds such as pyrrole derivatives such as oligopyrrole; charge transport polymers such as charge transport oligomers, polythiophene derivatives, polyaniline derivatives, polypyrrole derivatives, etc. Among these, polythiophene derivatives and arylamine derivatives are preferred.
 また、例えば、後述する式(T2)または(T3)で表されるアリールアミン化合物のような電荷輸送性化合物(低分子化合物)または電荷輸送性オリゴマーは、平坦性の高い薄膜を作製するという観点から、単分散である(すなわち、分子量分布が1である)ことが好ましい。この場合、電荷輸送性物質の分子量は、平坦性の高い薄膜を与える均一なワニスを調製する観点から、通常200~9,000程度であるが、より電荷輸送性に優れる薄膜を得る観点から、300以上が好ましく、400以上がより好ましく、平坦性の高い薄膜をより再現性よく与える均一なワニスを調製する観点から、8,000以下が好ましく、7,000以下がより好ましく、6,000以下がより一層好ましく、5,000以下がさらに好ましい。 In addition, for example, a charge transporting compound (low molecular weight compound) or a charge transporting oligomer such as an arylamine compound represented by the formula (T2) or (T3) described below is useful from the viewpoint of producing a thin film with high flatness. Therefore, it is preferably monodisperse (that is, the molecular weight distribution is 1). In this case, the molecular weight of the charge transporting substance is usually about 200 to 9,000 from the viewpoint of preparing a uniform varnish that provides a thin film with high flatness, but from the viewpoint of obtaining a thin film with even better charge transportability, It is preferably 300 or more, more preferably 400 or more, and from the viewpoint of preparing a uniform varnish that provides a highly flat thin film with good reproducibility, it is preferably 8,000 or less, more preferably 7,000 or less, and 6,000 or less. is even more preferable, and even more preferably 5,000 or less.
 その他の電荷輸送性物質としては、例えば、特開2002-151272号公報、国際公開第2004/105446号、国際公開第2005/043962号、国際公開第2008/032617号、国際公開第2008/032616号、国際公開第2013/042623号、国際公開第2014/141998号、国際公開第2014/185208号、国際公開第2015/050253号、国際公開第2015/137391号、国際公開第2015/137395号、国際公開第2015/146912号、国際公開第2015/146965号、国際公開第2016/190326号、国際公開第2016/136544号、国際公開第2016/204079号等に開示されたものが挙げられる。 Other charge transporting substances include, for example, JP2002-151272A, WO2004/105446, WO2005/043962, WO2008/032617, and WO2008/032616. , International Publication No. 2013/042623, International Publication No. 2014/141998, International Publication No. 2014/185208, International Publication No. 2015/050253, International Publication No. 2015/137391, International Publication No. 2015/137395, International Publication No. Examples include those disclosed in Publication No. 2015/146912, International Publication No. 2015/146965, International Publication No. 2016/190326, International Publication No. 2016/136544, International Publication No. 2016/204079, etc.
 好ましい一態様においては、上記その他の電荷輸送性物質は、式(T1)で表される繰り返し単位を含むポリチオフェン誘導体またはそのアミン付加体である。 In a preferred embodiment, the other charge transporting substance is a polythiophene derivative containing a repeating unit represented by formula (T1) or an amine adduct thereof.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 式中、R1tおよびR2tは、それぞれ独立に、水素原子、炭素数1~40のアルキル基、炭素数1~40のフルオロアルキル基、炭素数1~40のアルコキシ基、炭素数1~40のフルオロアルコキシ基、炭素数6~20のアリールオキシ基、-O-[Z-O]h-Re、もしくはスルホ基であり、またはR1tおよびR2tが結合して形成される-O-Y-O-であり、Yは、エーテル結合を含んでいてもよく、スルホ基で置換されていてもよい炭素数1~40のアルキレン基であり、Zは、ハロゲン原子で置換されていてもよい炭素数1~40のアルキレン基であり、hは、1以上の整数であり、Reは、水素原子、炭素数1~40のアルキル基、炭素数1~40のフルオロアルキル基、または炭素数6~20のアリール基である。 In the formula, R 1t and R 2t each independently represent a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms, or a C 1 to 40 alkoxy group. is a fluoroalkoxy group, an aryloxy group having 6 to 20 carbon atoms, -O-[Z-O] h -R e , or a sulfo group, or -O- formed by combining R 1t and R 2t YO-, Y is an alkylene group having 1 to 40 carbon atoms which may contain an ether bond and may be substituted with a sulfo group, and Z may be substituted with a halogen atom. A good alkylene group having 1 to 40 carbon atoms, h is an integer of 1 or more, and R e is a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or a carbon It is an aryl group of number 6 to 20.
 炭素数1~40のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-エイコサニル、ベヘニル、トリアコンチル、テトラコンチル基等が挙げられる。本発明においては、炭素数1~18のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましい。 The alkyl group having 1 to 40 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and s-butyl. , t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl, n -hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosanyl, behenyl, triacontyl, tetracontyl groups and the like. In the present invention, an alkyl group having 1 to 18 carbon atoms is preferred, and an alkyl group having 1 to 8 carbon atoms is more preferred.
 炭素数1~40のフルオロアルキル基としては、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換された炭素数1~40のアルキル基であれば特に限定されるものではなく、その具体例としては、フルオロメチル、ジフルオロメチル、パーフルオロメチル、1-フルオロエチル、2-フルオロエチル、1,2-ジフルオロエチル、1,1-ジフルオロエチル、2,2-ジフルオロエチル、1,1,2-トリフルオロエチル、1,2,2-トリフルオロエチル、2,2,2-トリフルオロエチル、1,1,2,2-テトラフルオロエチル、1,2,2,2-テトラフルオロエチル、パーフルオロエチル、1-フルオロプロピル、2-フルオロプロピル、3-フルオロプロピル、1,1-ジフルオロプロピル、1,2-ジフルオロプロピル、1,3-ジフルオロプロピル、2,2-ジフルオロプロピル、2,3-ジフルオロプロピル、3,3-ジフルオロプロピル、1,1,2-トリフルオロプロピル、1,1,3-トリフルオロプロピル、1,2,3-トリフルオロプロピル、1,3,3-トリフルオロプロピル、2,2,3-トリフルオロプロピル、2,3,3-トリフルオロプロピル、3,3,3-トリフルオロプロピル、1,1,2,2-テトラフルオロプロピル、1,1,2,3-テトラフルオロプロピル、1,2,2,3-テトラフルオロプロピル、1,3,3,3-テトラフルオロプロピル、2,2,3,3-テトラフルオロプロピル、2,3,3,3-テトラフルオロプロピル、1,1,2,2,3-ペンタフルオロプロピル、1,2,2,3,3-ペンタフルオロプロピル、1,1,3,3,3-ペンタフルオロプロピル、1,2,3,3,3-ペンタフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、パーフルオロプロピル、パーフルオロブチル、パーフルオロペンチル、パーフルオロヘキシル、パーフルオロヘプチル、パーフルオロオクチル基等が挙げられる。 The fluoroalkyl group having 1 to 40 carbon atoms is not particularly limited as long as it is an alkyl group having 1 to 40 carbon atoms in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and the specific Examples include fluoromethyl, difluoromethyl, perfluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 1,2-difluoroethyl, 1,1-difluoroethyl, 2,2-difluoroethyl, 1,1,2 -Trifluoroethyl, 1,2,2-trifluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, 1,2,2,2-tetrafluoroethyl, perfluoroethyl Fluoroethyl, 1-fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, 1,1-difluoropropyl, 1,2-difluoropropyl, 1,3-difluoropropyl, 2,2-difluoropropyl, 2,3- Difluoropropyl, 3,3-difluoropropyl, 1,1,2-trifluoropropyl, 1,1,3-trifluoropropyl, 1,2,3-trifluoropropyl, 1,3,3-trifluoropropyl, 2,2,3-trifluoropropyl, 2,3,3-trifluoropropyl, 3,3,3-trifluoropropyl, 1,1,2,2-tetrafluoropropyl, 1,1,2,3- Tetrafluoropropyl, 1,2,2,3-tetrafluoropropyl, 1,3,3,3-tetrafluoropropyl, 2,2,3,3-tetrafluoropropyl, 2,3,3,3-tetrafluoro Propyl, 1,1,2,2,3-pentafluoropropyl, 1,2,2,3,3-pentafluoropropyl, 1,1,3,3,3-pentafluoropropyl, 1,2,3, Examples include 3,3-pentafluoropropyl, 2,2,3,3,3-pentafluoropropyl, perfluoropropyl, perfluorobutyl, perfluoropentyl, perfluorohexyl, perfluoroheptyl, perfluorooctyl group, etc. .
 炭素数1~40のアルコキシ基としては、その中のアルキル基が直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、c-プロポキシ、n-ブトキシ、i-ブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシ、n-ヘキソキシ、n-ヘプチルオキシ、n-オクチルオキシ、n-ノニルオキシ、n-デシルオキシ、n-ウンデシルオキシ、n-ドデシルオキシ、n-トリデシルオキシ、n-テトラデシルオキシ、n-ペンタデシルオキシ、n-ヘキサデシルオキシ、n-ヘプタデシルオキシ、n-オクタデシルオキシ、n-ノナデシルオキシ、n-エイコサニルオキシ基が挙げられる。 As the alkoxy group having 1 to 40 carbon atoms, the alkyl group therein may be linear, branched, or cyclic, and specific examples include methoxy, ethoxy, n-propoxy, i-propoxy, c -Propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexoxy, n-heptyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, n-undecyloxy , n-dodecyloxy, n-tridecyloxy, n-tetradecyloxy, n-pentadecyloxy, n-hexadecyloxy, n-heptadecyloxy, n-octadecyloxy, n-nonadecyloxy, n-eicosanyl An example is an oxy group.
 炭素数1~40のフルオロアルコキシ基としては、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換された炭素数1~40のアルコキシ基であれば特に限定されるものではなく、その具体例としては、フルオロメトキシ、ジフルオロメトキシ、パーフルオロメトキシ、1-フルオロエトキシ、2-フルオロエトキシ、1,2-ジフルオロエトキシ、1,1-ジフルオロエトキシ、2,2-ジフルオロエトキシ、1,1,2-トリフルオロエトキシ、1,2,2-トリフルオロエトキシ、2,2,2-トリフルオロエトキシ、1,1,2,2-テトラフルオロエトキシ、1,2,2,2-テトラフルオロエトキシ、パーフルオロエトキシ、1-フルオロプロポキシ、2-フルオロプロポキシ、3-フルオロプロポキシ、1,1-ジフルオロプロポキシ、1,2-ジフルオロプロポキシ、1,3-ジフルオロプロポキシ、2,2-ジフルオロプロポキシ、2,3-ジフルオロプロポキシ、3,3-ジフルオロプロポキシ、1,1,2-トリフルオロプロポキシ、1,1,3-トリフルオロプロポキシ、1,2,3-トリフルオロプロポキシ、1,3,3-トリフルオロプロポキシ、2,2,3-トリフルオロプロポキシ、2,3,3-トリフルオロプロポキシ、3,3,3-トリフルオロプロポキシ、1,1,2,2-テトラフルオロプロポキシ、1,1,2,3-テトラフルオロプロポキシ、1,2,2,3-テトラフルオロプロポキシ、1,3,3,3-テトラフルオロプロポキシ、2,2,3,3-テトラフルオロプロポキシ、2,3,3,3-テトラフルオロプロポキシ、1,1,2,2,3-ペンタフルオロプロポキシ、1,2,2,3,3-ペンタフルオロプロポキシ、1,1,3,3,3-ペンタフルオロプロポキシ、1,2,3,3,3-ペンタフルオロプロポキシ、2,2,3,3,3-ペンタフルオロプロポキシ、パーフルオロプロポキシ基等が挙げられる。 The fluoroalkoxy group having 1 to 40 carbon atoms is not particularly limited as long as it is an alkoxy group having 1 to 40 carbon atoms in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and the specific Examples include fluoromethoxy, difluoromethoxy, perfluoromethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 1,2-difluoroethoxy, 1,1-difluoroethoxy, 2,2-difluoroethoxy, 1,1,2 -Trifluoroethoxy, 1,2,2-trifluoroethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 1,2,2,2-tetrafluoroethoxy, perfluoroethoxy, Fluoroethoxy, 1-fluoropropoxy, 2-fluoropropoxy, 3-fluoropropoxy, 1,1-difluoropropoxy, 1,2-difluoropropoxy, 1,3-difluoropropoxy, 2,2-difluoropropoxy, 2,3- Difluoropropoxy, 3,3-difluoropropoxy, 1,1,2-trifluoropropoxy, 1,1,3-trifluoropropoxy, 1,2,3-trifluoropropoxy, 1,3,3-trifluoropropoxy, 2,2,3-trifluoropropoxy, 2,3,3-trifluoropropoxy, 3,3,3-trifluoropropoxy, 1,1,2,2-tetrafluoropropoxy, 1,1,2,3- Tetrafluoropropoxy, 1,2,2,3-tetrafluoropropoxy, 1,3,3,3-tetrafluoropropoxy, 2,2,3,3-tetrafluoropropoxy, 2,3,3,3-tetrafluoro Propoxy, 1,1,2,2,3-pentafluoropropoxy, 1,2,2,3,3-pentafluoropropoxy, 1,1,3,3,3-pentafluoropropoxy, 1,2,3, Examples include 3,3-pentafluoropropoxy, 2,2,3,3,3-pentafluoropropoxy, and perfluoropropoxy groups.
 炭素数1~40のアルキレン基としては、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチレン、エチレン、プロピレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン、ノナメチレン、デシレン、ウンデシレン、ドデシレン、トリデシレン、テトラデシレン、ペンタデシレン、ヘキサデシレン、ヘプタデシレン、オクタデシレン、ノナデシレン、エイコサニレン基等が挙げられる。 The alkylene group having 1 to 40 carbon atoms may be linear, branched, or cyclic, and specific examples include methylene, ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, and heptamethylene. , octamethylene, nonamethylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene, pentadecylene, hexadecylene, heptadecylene, octadecylene, nonadecylene, eicosanylene groups, and the like.
 炭素数6~20のアリール基の具体例としては、フェニル、トリル、1-ナフチル、2-ナフチル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル基等が挙げられ、フェニル基、トリル基、ナフチル基が好ましい。
 炭素数6~20のアリールオキシ基の具体例としては、フェノキシ、アントラセノキシ、ナフトキシ、フェナントレノキシ、フルオレノキシ基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
Specific examples of the aryl group having 6 to 20 carbon atoms include phenyl, tolyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, Examples include 4-phenanthryl and 9-phenanthryl groups, with phenyl, tolyl and naphthyl groups being preferred.
Specific examples of the aryloxy group having 6 to 20 carbon atoms include phenoxy, anthracenoxy, naphthoxy, phenanthrenoxy, and fluorenoxy groups.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
 上記式(T1)中、R1tおよびR2tは、それぞれ独立に、水素原子、炭素数1~40のフルオロアルキル基、炭素数1~40のアルコキシ基、-O[C(Rab)-C(Rcd)-O]h-Re、-ORf、もしくはスルホ基であるか、またはR1tおよびR2tが結合して形成される-O-Y-O-が好ましい。
 Ra~Rdは、それぞれ独立に、水素原子、炭素数1~40のアルキル基、炭素数1~40のフルオロアルキル基、または炭素数6~20のアリール基を表し、これらの基の具体例としては上記で挙げた基と同様のものが挙げられる。
 中でも、Ra~Rdは、それぞれ独立に、水素原子、炭素数1~8のアルキル基、炭素数1~8のフルオロアルキル基、またはフェニル基が好ましい。
 Reは、水素原子、炭素数1~8のアルキル基、炭素数1~8のフルオロアルキル基、またはフェニル基であるが、水素原子、メチル基、プロピル基、またはブチル基が好ましい。
 hは、1~5が好ましく、1、2または3がより好ましい。
In the above formula (T1), R 1t and R 2t each independently represent a hydrogen atom, a fluoroalkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms, -O[C(R a R b ) -C(R c R d )-O] h -R e , -OR f , or a sulfo group, or -O-Y-O- formed by combining R 1t and R 2t is preferred.
R a to R d each independently represent a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms; Examples include the same groups as listed above.
Among these, R a to R d are each independently preferably a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluoroalkyl group having 1 to 8 carbon atoms, or a phenyl group.
R e is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluoroalkyl group having 1 to 8 carbon atoms, or a phenyl group, and preferably a hydrogen atom, a methyl group, a propyl group, or a butyl group.
h is preferably 1 to 5, more preferably 1, 2 or 3.
 Rfは、水素原子、炭素数1~40のアルキル基、炭素数1~40のフルオロアルキル基または炭素数6~20のアリール基であるが、水素原子、炭素数1~8のアルキル基、炭素数1~8のフルオロアルキル基、またはフェニル基が好ましく、-CH2CF3がより好ましい。 R f is a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms; A fluoroalkyl group having 1 to 8 carbon atoms or a phenyl group is preferred, and -CH 2 CF 3 is more preferred.
 上記R1tは、好ましくは水素原子またはスルホ基、より好ましくはスルホ基であり、かつ、R2tは、好ましくは炭素数1~40のアルコキシ基または-O-[Z-O]h-Re、より好ましくは-O[C(Rab)-C(Rcd)-O]h-Reまたは-ORf、より一層好ましくは-O[C(Rab)-C(Rcd)-O]h-Re、-O-CH2CH2-O-CH2CH2-O-CH3、-O-CH2CH2-O-CH2CH2-OHまたは-O-CH2CH2-OHであるか、または、R1tおよびR2tが互いに結合して形成される-O-Y-O-である。 The above R 1t is preferably a hydrogen atom or a sulfo group, more preferably a sulfo group, and R 2t is preferably an alkoxy group having 1 to 40 carbon atoms or -O-[Z-O] h -R e , more preferably -O[C(R a R b )-C(R c R d )-O] h -R e or -OR f , even more preferably -O[C(R a R b )-C (R c R d )-O] h -R e , -O-CH 2 CH 2 -O-CH 2 CH 2 -O-CH 3 , -O-CH 2 CH 2 -O-CH 2 CH 2 -OH or -O-CH 2 CH 2 -OH, or -O-Y-O- formed by combining R 1t and R 2t with each other.
 例えば、本発明の好ましい態様に係る上記ポリチオフェン誘導体は、R1tが、スルホ基であり、R2tが、スルホ基以外である繰り返し単位を含むか、またはR1tおよびR2tが結合して形成される-O-Y-O-である繰り返し単位を含む。
 好ましくは、上記ポリチオフェン誘導体は、R1tが、スルホ基であり、R2tが、炭素数1~40のアルコキシ基もしくは-O-[Z-O]h-Reである繰り返し単位を含むか、またはR1tおよびR2tが結合して形成される-O-Y-O-である繰り返し単位を含む。
 より好ましくは、上記ポリチオフェン誘導体は、R1tが、スルホ基であり、R2tが、-O[C(Rab)-C(Rcd)-O]h-Reまたは-ORfである繰り返し単位を含む。
 より一層好ましくは、上記ポリチオフェン誘導体は、R1tが、スルホ基であり、R2tが、-O[C(Rab)-C(Rcd)-O]h-Reである繰り返し単位を含むか、またはR1tおよびR2tが結合して形成される-O-Y-O-である繰り返し単位を含む。
 さらに好ましくは、上記ポリチオフェン誘導体は、R1tが、スルホ基であり、R2tが、-O-CH2CH2-O-CH2CH2-O-CH3、-O-CH2CH2-O-CH2CH2-OH、もしくは-O-CH2CH2-OHである繰り返し単位を含むか、またはR1tおよびR2tが互いに結合して、下記式(Y1)および(Y2)で表される基である繰り返し単位を含む。
For example, the polythiophene derivative according to a preferred embodiment of the present invention contains a repeating unit in which R 1t is a sulfo group and R 2t is other than a sulfo group, or is formed by combining R 1t and R 2t . -O-Y-O-.
Preferably, the polythiophene derivative contains a repeating unit in which R 1t is a sulfo group and R 2t is an alkoxy group having 1 to 40 carbon atoms or -O-[Z-O] h -R e , Or it includes a repeating unit that is -O-Y-O- formed by combining R 1t and R 2t .
More preferably, in the polythiophene derivative, R 1t is a sulfo group, and R 2t is -O[C(R a R b )-C(R c R d )-O] h -R e or -OR Contains a repeating unit that is f .
Even more preferably, in the polythiophene derivative, R 1t is a sulfo group, and R 2t is -O[C(R a R b )-C(R c R d )-O] h -R e It contains a repeating unit, or it contains a repeating unit which is -O-Y-O- formed by combining R 1t and R 2t .
More preferably, in the polythiophene derivative, R 1t is a sulfo group, and R 2t is -O-CH 2 CH 2 -O-CH 2 CH 2 -O-CH 3 , -O-CH 2 CH 2 - Contains a repeating unit that is O-CH 2 CH 2 -OH or -O-CH 2 CH 2 -OH, or R 1t and R 2t are bonded to each other and are represented by the following formulas (Y1) and (Y2). Contains repeating units that are groups.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記ポリチオフェン誘導体の好ましい具体例としては、例えば、下記式(T1-1)~(T1-5)で表される繰り返し単位を少なくとも1種含むポリチオフェンが挙げられる。 Preferred specific examples of the polythiophene derivatives include polythiophenes containing at least one type of repeating unit represented by the following formulas (T1-1) to (T1-5).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 また、上記ポリチオフェン誘導体の好適な構造としては、例えば、下記式(T1a)で表される構造を有するポリチオフェン誘導体が挙げられる。なお、下記式において、各単位はランダムに結合していても、ブロック重合体として結合していてもよい。 Further, as a preferable structure of the polythiophene derivative, for example, a polythiophene derivative having a structure represented by the following formula (T1a) can be mentioned. In addition, in the following formula, each unit may be bonded randomly or may be bonded as a block polymer.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 式中、a~dは、各単位のモル比を表し、0≦a≦1、0≦b≦1、0<a+b≦1、0≦c<1、0≦d<1、a+b+c+d=1を満足する。 In the formula, a to d represent the molar ratio of each unit, and 0≦a≦1, 0≦b≦1, 0<a+b≦1, 0≦c<1, 0≦d<1, a+b+c+d=1. be satisfied.
 さらに、上記ポリチオフェン誘導体は、ホモポリマーまたはコポリマー(統計的、ランダム、勾配、およびブロックコポリマーを含む)であってもよい。モノマーAおよびモノマーBを含むポリマーとしては、ブロックコポリマーは、例えば、A-Bジブロックコポリマー、A-B-Aトリブロックコポリマー、および(AB)k-マルチブロックコポリマーを含む。ポリチオフェンは、その他のタイプのモノマー(例えば、チエノチオフェン、セレノフェン、ピロール、フラン、テルロフェン、アニリン、アリールアミン、およびアリーレン(例えば、フェニレン、フェニレンビニレン、およびフルオレン等)等)から誘導される繰り返し単位を含んでいてもよい。 Furthermore, the polythiophene derivatives may be homopolymers or copolymers (including statistical, random, gradient, and block copolymers). For polymers comprising monomer A and monomer B, block copolymers include, for example, AB diblock copolymers, ABA triblock copolymers, and (AB) k -multiblock copolymers. Polythiophenes also contain repeating units derived from other types of monomers, such as thienothiophenes, selenophenes, pyrroles, furans, tellurophenes, anilines, arylamines, and arylenes (such as phenylene, phenylene vinylene, and fluorene). May contain.
 上記ポリチオフェン誘導体における式(T1)で表される繰り返し単位の含有量は、ポリチオフェン誘導体に含まれる全繰り返し単位中、50モル%超が好ましく、80モル%以上がより好ましく、90モル%以上がより一層好ましく、95モル%以上がさらに好ましく、100モル%が最も好ましい。 The content of the repeating unit represented by formula (T1) in the polythiophene derivative is preferably more than 50 mol%, more preferably 80 mol% or more, and more preferably 90 mol% or more, based on all the repeating units contained in the polythiophene derivative. It is more preferably 95 mol% or more, and most preferably 100 mol%.
 上記ポリチオフェン誘導体は、重合に使用される出発モノマーの純度に応じて、不純物から誘導される繰り返し単位を含有してもよい。上記の「ホモポリマー」という用語は、1つのタイプのモノマーから誘導される繰り返し単位を含むポリマーを意味するものであるが、不純物から誘導される繰り返し単位を含んでいてもよい。上記ポリチオフェン誘導体は、基本的に全ての繰り返し単位が、上記式(T1)で表される繰り返し単位であるポリマーであることが好ましく、上記式(T1-1)~(T1-5)で表される繰り返し単位の少なくとも1つを含むポリマーであることがより好ましい。 The above polythiophene derivative may contain repeating units derived from impurities, depending on the purity of the starting monomer used for polymerization. The term "homopolymer" above refers to a polymer containing repeat units derived from one type of monomer, but may also contain repeat units derived from impurities. The polythiophene derivative is preferably a polymer in which basically all of the repeating units are repeating units represented by the above formula (T1), and the polythiophene derivative is preferably a polymer in which basically all repeating units are repeating units represented by the above formula (T1-1) to (T1-5). More preferably, it is a polymer containing at least one repeating unit.
 上記ポリチオフェン誘導体が、スルホ基を有する繰り返し単位を含む場合、有機溶媒に対する溶解性や分散性をより向上させる観点から、当該ポリチオフェン誘導体は、それに含まれるスルホ基の少なくとも一部にアミン化合物が付加したアミン付加体が好ましい。 When the above-mentioned polythiophene derivative contains a repeating unit having a sulfo group, from the viewpoint of further improving solubility and dispersibility in organic solvents, the polythiophene derivative has an amine compound added to at least a part of the sulfo group contained therein. Amine adducts are preferred.
 アミン付加体の形成に使用できるアミン化合物としては、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、s-ブチルアミン、t-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、n-デシルアミン、n-ウンデシルアミン、n-ドデシルアミン、n-トリデシルアミン、n-テトラデシルアミン、n-ペンタデシルアミン、n-ヘキサデシルアミン、n-ヘプタデシルアミン、n-オクタデシルアミン、n-ノナデシルアミン、n-エイコサニルアミン等のモノアルキルアミン化合物;アニリン、トリルアミン、1-ナフチルアミン、2-ナフチルアミン、1-アントリルアミン、2-アントリルアミン、9-アントリルアミン、1-フェナントリルアミン、2-フェナントリルアミン、3-フェナントリルアミン、4-フェナントリルアミン、9-フェナントリルアミン等のモノアリールアミン化合物等の一級アミン化合物;N-エチルメチルアミン、N-メチル-n-プロピルアミン、N-メチルイソプロピルアミン、N-メチル-n-ブチルアミン、N-メチル-s-ブチルアミン、N-メチル-t-ブチルアミン、N-メチルイソブチルアミン、ジエチルアミン、N-エチル-n-プロピルアミン、N-エチルイソプロピルアミン、N-エチル-n-ブチルアミン、N-エチル-s-ブチルアミン、N-エチル-t-ブチルアミン、ジプロピルアミン、N-n-プロピルイソプロピルアミン、N-n-プロピル-n-ブチルアミン、N-n-ブロピル-s-ブチルアミン、ジイソプロピルアミン、N-n-ブチルイソプロピルアミン、N-t-ブチルイソプロピルアミン、ジ(n-ブチル)アミン、ジ(s-ブチル)アミン、ジイソブチルアミン、アジリジン(エチレンイミン)、2-メチルアジリジン(プロピレンイミン)、2,2-ジメチルアジリジン、アゼチジン(トリメチレンイミン)、2-メチルアゼチジン、ピロリジン、2-メチルピロリジン、3-メチルピロリジン、2,5-ジメチルピロリジン、ピペリジン、2,6-ジメチルピペリジン、3,5-ジメチルピペリジン,2,2,6,6-テトラメチルピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、オクタメチレンイミン等のジアルキルアミン化合物;ジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、1,1’-ジナフチルアミン、2,2’-ジナフチルアミン、1,2’-ジナフチルアミン、カルバゾール、7H-ベンゾ[c]カルバゾール、11H-ベンゾ[a]カルバゾール、7H-ジベンゾ[c,g]カルバゾール、13H-ジベンゾ[a,i]カルバゾール等のジアリールアミン化合物;N-メチルアニリン、N-エチルアニリン、N-n-プロピルアニリン、N-イソプロピルアニリン、N-n-ブチルアニリン、N-s-ブチルアニリン、N-イソブチルアニリン、N-メチル-1-ナフチルアミン、N-エチル-1-ナフチルアミン、N-n-プロピル-1-ナフチルアミン、インドリン、イソインドリン、1,2,3,4-テトラヒドロキノリン、1,2,3,4-テトラヒドロイソキノリン等のアルキルアリールアミン化合物等の二級アミン化合物;N,N-ジメチルエチルアミン、N,N-ジメチル-n-プロピルアミン、N,N-ジメチルイソプロピルアミン、N,N-ジメチル-n-ブチルアミン、N,N-ジメチル-s-ブチルアミン、N,N-ジメチル-t-ブチルアミン、N,N-ジメチルイソブチルアミン、N,N-ジエチルメチルアミン、N-メチルジ(n-プロピル)アミン、N-メチルジイソプロピルアミン、N-メチルジ(n-ブチル)アミン、N-メチルジイソブチルアミン、トリエチルアミン、N,N-ジエチル-n-ブチルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジ(n-ブチル)エチルアミン、トリ(n-プロピル)アミン、トリ(i-プロピル)アミン、トリ(n-ブチル)アミン、トリ(i-ブチル)アミン、1-メチルアセチジン、1-メチルピロリジン、1-メチルピペリジン等のトリアルキルアミン化合物;トリフェニルアミン等のトリアリールアミン化合物;N-メチルジフェニルアミン、N-エチルジフェニルアミン、9-メチルカルバゾール、9-エチルカルバゾール等のアルキルジアリールアミン化合物;N,N-ジエチルアニリン、N,N-ジ(n-プロピル)アニリン、N,N-ジ(i-プロピル)アニリン、N,N-ジ(n-ブチル)アニリン等のジアルキルアリールアミン化合物等の三級アミン化合物が挙げられるが、アミン付加体の溶解性、得られる有機機能膜の電荷輸送性等のバランスを考慮すると、三級アミン化合物が好ましく、トリアルキルアミン化合物がより好ましく、トリエチルアミンがより一層好ましい。
 アミン付加体は、アミン自体またはその溶液にポリチオフェン誘導体を投入し、よく撹拌することで得ることができる。
Amine compounds that can be used to form amine adducts include methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, s-butylamine, t-butylamine, n-pentylamine, n-hexylamine. , n-heptylamine, n-octylamine, 2-ethylhexylamine, n-nonylamine, n-decylamine, n-undecylamine, n-dodecylamine, n-tridecylamine, n-tetradecylamine, n-penta Monoalkylamine compounds such as decylamine, n-hexadecylamine, n-heptadecylamine, n-octadecylamine, n-nonadecylamine, n-eicosanylamine; aniline, tolylamine, 1-naphthylamine, 2-naphthylamine, 1- Anthrylamine, 2-anthrylamine, 9-anthrylamine, 1-phenanthrylamine, 2-phenanthrylamine, 3-phenanthrylamine, 4-phenanthrylamine, 9-phenanthrylamine Primary amine compounds such as monoarylamine compounds such as; N-ethylmethylamine, N-methyl-n-propylamine, N-methylisopropylamine, N-methyl-n-butylamine, N-methyl-s-butylamine, -Methyl-t-butylamine, N-methylisobutylamine, diethylamine, N-ethyl-n-propylamine, N-ethylisopropylamine, N-ethyl-n-butylamine, N-ethyl-s-butylamine, N-ethyl- t-Butylamine, dipropylamine, Nn-propylisopropylamine, Nn-propyl-n-butylamine, Nn-bropyl-s-butylamine, diisopropylamine, Nn-butylisopropylamine, Nt -Butylisopropylamine, di(n-butyl)amine, di(s-butyl)amine, diisobutylamine, aziridine (ethyleneimine), 2-methylaziridine (propyleneimine), 2,2-dimethylaziridine, azetidine (trimethylene) imine), 2-methylazetidine, pyrrolidine, 2-methylpyrrolidine, 3-methylpyrrolidine, 2,5-dimethylpyrrolidine, piperidine, 2,6-dimethylpiperidine, 3,5-dimethylpiperidine, 2,2,6, Dialkylamine compounds such as 6-tetramethylpiperidine, hexamethyleneimine, heptamethyleneimine, octamethyleneimine; diphenylamine, N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine, 1,1'-dinaphthylamine, 2 , 2'-dinaphthylamine, 1,2'-dinaphthylamine, carbazole, 7H-benzo[c]carbazole, 11H-benzo[a]carbazole, 7H-dibenzo[c,g]carbazole, 13H-dibenzo[a,i ] Diarylamine compounds such as carbazole; N-methylaniline, N-ethylaniline, Nn-propylaniline, N-isopropylaniline, Nn-butylaniline, Ns-butylaniline, N-isobutylaniline, N- -Methyl-1-naphthylamine, N-ethyl-1-naphthylamine, Nn-propyl-1-naphthylamine, indoline, isoindoline, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydro Secondary amine compounds such as alkylarylamine compounds such as isoquinoline; N,N-dimethylethylamine, N,N-dimethyl-n-propylamine, N,N-dimethylisopropylamine, N,N-dimethyl-n-butylamine, N,N-dimethyl-s-butylamine, N,N-dimethyl-t-butylamine, N,N-dimethylisobutylamine, N,N-diethylmethylamine, N-methyldi(n-propyl)amine, N-methyldiisopropyl Amine, N-methyldi(n-butyl)amine, N-methyldiisobutylamine, triethylamine, N,N-diethyl-n-butylamine, N,N-diisopropylethylamine, N,N-di(n-butyl)ethylamine, triethylamine, Trialkyl such as (n-propyl)amine, tri(i-propyl)amine, tri(n-butyl)amine, tri(i-butyl)amine, 1-methylacetidine, 1-methylpyrrolidine, 1-methylpiperidine, etc. Amine compounds; triarylamine compounds such as triphenylamine; alkyldiarylamine compounds such as N-methyldiphenylamine, N-ethyldiphenylamine, 9-methylcarbazole, 9-ethylcarbazole; N,N-diethylaniline, N,N- Examples include tertiary amine compounds such as dialkylarylamine compounds such as di(n-propyl)aniline, N,N-di(i-propyl)aniline, and N,N-di(n-butyl)aniline; Considering the balance of solubility in the body, charge transportability of the resulting organic functional film, etc., tertiary amine compounds are preferred, trialkylamine compounds are more preferred, and triethylamine is even more preferred.
The amine adduct can be obtained by adding the polythiophene derivative to the amine itself or its solution and stirring well.
 また、上記のポリチオフェン誘導体またはそのアミン付加体は、還元剤で処理したものを用いてもよい。
 ポリチオフェン誘導体またはそのアミン付加体では、それらを構成する繰り返し単位の一部において、その化学構造が「キノイド構造」と呼ばれる酸化型の構造となっている場合がある。用語「キノイド構造」は、用語「ベンゼノイド構造」に対して用いられるもので、芳香環を含む構造である後者に対し、前者は、その芳香環内の二重結合が環外に移動し(その結果、芳香環は消失する)、環内に残る他の二重結合と共役する2つの環外二重結合が形成された構造を意味する。当業者にとって、これらの両構造の関係は、ベンゾキノンとヒドロキノンの構造の関係から容易に理解できるものである。種々の共役ポリマーの繰り返し単位についてのキノイド構造は、当業者にとって周知である。一例として、上記式(T1)で表される繰り返し単位を含むポリチオフェン誘導体の繰り返し単位に対応するキノイド構造を、下記式(T1’)に示す。
Moreover, the above-mentioned polythiophene derivative or its amine adduct may be treated with a reducing agent.
In polythiophene derivatives or their amine adducts, some of their constituent repeating units may have an oxidized chemical structure called a "quinoid structure." The term ``quinoid structure'' is used for the term ``benzenoid structure.'' The latter is a structure containing an aromatic ring, whereas the former is a structure in which the double bond within the aromatic ring moves outside the ring (its (As a result, the aromatic ring disappears), meaning a structure in which two extracyclic double bonds are formed that are conjugated with other double bonds remaining in the ring. For those skilled in the art, the relationship between these two structures can be easily understood from the relationship between the structures of benzoquinone and hydroquinone. Quinoid structures for the repeat units of various conjugated polymers are well known to those skilled in the art. As an example, a quinoid structure corresponding to a repeating unit of a polythiophene derivative containing a repeating unit represented by the above formula (T1) is shown in the following formula (T1').
Figure JPOXMLDOC01-appb-C000035
(式中、R1tおよびR2tは、上記式(T1)において定義されたとおりである。)
Figure JPOXMLDOC01-appb-C000035
(In the formula, R 1t and R 2t are as defined in the above formula (T1).)
 このキノイド構造は、上記式(T1)で表される繰り返し単位を含むポリチオフェン誘導体がドーパントにより酸化反応を受けるプロセス、いわゆるドーピング反応によって生じ、ポリチオフェン誘導体に電荷輸送性を付与する「ポーラロン構造」および「バイポーラロン構造」と称される構造の一部を成すものである。これらの構造は公知である。有機EL素子や量子ドットEL素子の作製において、「ポーラロン構造」および/または「バイポーラロン構造」の導入は必須であり、実際、有機EL素子や量子ドットEL素子の作製時、電荷輸送性ワニスから形成された薄膜を焼成処理するときに、上記のドーピング反応を意図的に起こさせて、これを達成している。このドーピング反応を起こさせる前のポリチオフェン誘導体にキノイド構造が含まれているのは、ポリチオフェン誘導体が、その製造過程(特に、その中のスルホン化工程)において、ドーピング反応と同等の、意図しない酸化反応を起こしたためと考えられる。 This quinoid structure is produced by a process in which a polythiophene derivative containing the repeating unit represented by the above formula (T1) undergoes an oxidation reaction with a dopant, a so-called doping reaction, and a "polaron structure" and " It forms part of a structure called "bipolaron structure". These structures are known. In the production of organic EL devices and quantum dot EL devices, it is essential to introduce a “polaron structure” and/or a “bipolaron structure”. This is achieved by intentionally causing the above doping reaction when the formed thin film is subjected to a firing process. The reason why the polythiophene derivative contains a quinoid structure before undergoing this doping reaction is that the polythiophene derivative undergoes an unintended oxidation reaction equivalent to the doping reaction during its manufacturing process (especially in the sulfonation step). This is thought to be due to the
 上記ポリチオフェン誘導体に含まれるキノイド構造の量と、ポリチオフェン誘導体の有機溶媒に対する溶解性や分散性の間には相関があり、キノイド構造の量が多くなると、その溶解性や分散性は低下する傾向にある。このため、電荷輸送性ワニスから薄膜が形成された後でのキノイド構造の導入は問題を生じないが、上記の意図しない酸化反応により、ポリチオフェン誘導体にキノイド構造が過剰に導入されていると、電荷輸送性ワニスの製造に支障をきたす場合がある。ポリチオフェン誘導体においては、有機溶媒に対する溶解性や分散性にばらつきがあることが知られているが、その原因の1つは、上記の意図しない酸化反応によりポリチオフェンに導入されたキノイド構造の量が、各々のポリチオフェン誘導体の製造条件の差に応じて変動することであると考えられる。
 そこで、上記ポリチオフェン誘導体を、還元剤を用いる還元処理に付すと、ポリチオフェン誘導体にキノイド構造が過剰に導入されていても、還元によりキノイド構造が減少し、ポリチオフェン誘導体の有機溶媒に対する溶解性や分散性が向上するため、均質性に優れた薄膜を与える良好な電荷輸送性ワニスを、安定的に製造することが可能になる。
There is a correlation between the amount of quinoid structure contained in the above polythiophene derivative and the solubility and dispersibility of the polythiophene derivative in organic solvents, and as the amount of quinoid structure increases, the solubility and dispersibility tend to decrease. be. Therefore, the introduction of the quinoid structure after a thin film is formed from the charge-transporting varnish does not cause any problem, but if the quinoid structure is excessively introduced into the polythiophene derivative due to the unintended oxidation reaction described above, the charge It may interfere with the production of transportable varnish. It is known that polythiophene derivatives vary in their solubility and dispersibility in organic solvents, and one of the reasons for this is that the amount of quinoid structure introduced into polythiophene due to the above-mentioned unintended oxidation reaction is This is thought to vary depending on differences in the manufacturing conditions of each polythiophene derivative.
Therefore, when the above polythiophene derivative is subjected to a reduction treatment using a reducing agent, even if an excessive amount of quinoid structure is introduced into the polythiophene derivative, the reduction reduces the quinoid structure, improving the solubility and dispersibility of the polythiophene derivative in organic solvents. As a result, it becomes possible to stably produce a varnish with good charge transport properties that provides a thin film with excellent homogeneity.
 還元処理の条件は、上記キノイド構造を還元して非酸化型の構造、すなわち、上記ベンゼノイド構造に適切に変換する(例えば、上記式(T1)で表される繰り返し単位を含むポリチオフェン誘導体においては、上記式(T1’)で表されるキノイド構造を、上記式(T1)で表される構造に変換する)ことができるものである限り特に制限はないが、例えば、適当な溶媒の存在下または非存在下、単にポリチオフェン誘導体やアミン付加体を還元剤と接触させることにより、この処理を行うことができる。
 このような還元剤も還元が適切にされる限り特に制限はないが、例えば、市販品で入手が容易であるアンモニア水、ヒドラジン等が適当である。
 また、還元剤の量は、用いる還元剤の量に応じて異なるため一概に規定できないが、処理すべきポリチオフェン誘導体やアミン付加体100質量部に対し、通常、還元が適切にされる観点から、0.1質量部以上であり、過剰な還元剤が残存しないようにする観点から、10質量部以下である。
The conditions for the reduction treatment are such that the quinoid structure is reduced and appropriately converted to a non-oxidized structure, that is, the benzenoid structure (for example, in a polythiophene derivative containing a repeating unit represented by the above formula (T1), There is no particular restriction as long as the quinoid structure represented by the above formula (T1') can be converted into the structure represented by the above formula (T1), but for example, in the presence of a suitable solvent or This treatment can be carried out simply by contacting the polythiophene derivative or amine adduct with a reducing agent in the absence of the reducing agent.
Such a reducing agent is not particularly limited as long as the reduction is carried out appropriately, but suitable examples include aqueous ammonia, hydrazine, etc., which are easily available commercially.
Furthermore, the amount of the reducing agent cannot be unconditionally defined as it varies depending on the amount of the reducing agent used, but from the viewpoint that the reduction is usually appropriate for 100 parts by mass of the polythiophene derivative or amine adduct to be treated, The content is 0.1 parts by mass or more, and from the viewpoint of preventing excessive reducing agent from remaining, the content is 10 parts by mass or less.
 還元処理の具体的な方法の一例としては、ポリチオフェン誘導体やアミン付加体を28%アンモニア水中で、室温にて終夜撹拌する。このような比較的温和な条件下での還元処理により、ポリチオフェン誘導体やアミン付加体の有機溶媒に対する溶解性や分散性は十分に向上する。 As a specific example of the reduction treatment method, a polythiophene derivative or an amine adduct is stirred in 28% ammonia water at room temperature overnight. The reduction treatment under such relatively mild conditions sufficiently improves the solubility and dispersibility of the polythiophene derivative and amine adduct in organic solvents.
 本発明の電荷輸送性ワニスにおいて、ポリチオフェン誘導体のアミン付加体を使用する場合、上記還元処理は、アミン付加体を形成する前に行っても、アミン付加体を形成した後に行ってもよい。 When using an amine adduct of a polythiophene derivative in the charge transporting varnish of the present invention, the above reduction treatment may be performed before or after forming the amine adduct.
 なお、この還元処理によりポリチオフェン誘導体またはそのアミン付加体の溶媒に対する溶解性や分散性が変化する結果、処理の開始時には反応系に溶解していなかったポリチオフェン誘導体またはそのアミン付加体が、処理の完了時には溶解している場合がある。そのような場合には、ポリチオフェン誘導体またはそのアミン付加体と非相溶性の有機溶媒(スルホン化ポリチオフェンの場合、アセトン、2-プロパノール等)を反応系に添加して、ポリチオフェン誘導体またはそのアミン付加体の沈殿を生じさせ、ろ過する等の方法により、ポリチオフェン誘導体またはそのアミン付加体を回収することができる。 Note that as a result of this reduction treatment, the solubility and dispersibility of the polythiophene derivative or its amine adduct in the solvent changes, and as a result, the polythiophene derivative or its amine adduct that was not dissolved in the reaction system at the start of the treatment is Sometimes it is dissolved. In such cases, an organic solvent that is incompatible with the polythiophene derivative or its amine adduct (for sulfonated polythiophene, acetone, 2-propanol, etc.) is added to the reaction system to dissolve the polythiophene derivative or its amine adduct. The polythiophene derivative or its amine adduct can be recovered by a method such as precipitation and filtration.
 式(T1)で表される繰り返し単位を含むポリチオフェン誘導体またはそのアミン付加体の重量平均分子量は、約1,000~1,000,000が好ましく、約5,000~100,000がより好ましく、約10,000~約50,000がより一層好ましい。重量平均分子量を下限以上とすることで、良好な導電性が再現性よく得られ、上限以下とすることで、溶媒に対する溶解性が向上する。なお、この重量平均分子量は、GPCによるポリスチレン換算値である。 The weight average molecular weight of the polythiophene derivative containing the repeating unit represented by formula (T1) or its amine adduct is preferably about 1,000 to 1,000,000, more preferably about 5,000 to 100,000, Even more preferred is about 10,000 to about 50,000. By setting the weight average molecular weight to be at least the lower limit, good conductivity can be obtained with good reproducibility, and by setting the weight average molecular weight to be at most the upper limit, solubility in a solvent is improved. Note that this weight average molecular weight is a polystyrene equivalent value determined by GPC.
 本発明で用いる電荷輸送性ワニスに含まれるポリチオフェン誘導体またはそのアミン付加体は、式(T1)で表される繰り返し単位を含むポリチオフェン誘導体またはそのアミン付加体1種のみであってもよく、2種以上であってもよい。
 また、式(T1)で表される繰り返し単位を含むポリチオフェン誘導体は、市販品を用いても、チオフェン誘導体などを出発原料とした公知の方法によって重合したものを用いてもよいが、いずれの場合も再沈殿やイオン交換等の方法により精製されたものを用いることが好ましい。精製したものを用いることで、本発明の電荷輸送性ワニスから得られる薄膜を備えた有機EL素子や量子ドットEL素子の特性をより高めることができる。
The polythiophene derivative or its amine adduct contained in the charge-transporting varnish used in the present invention may be only one type of polythiophene derivative or its amine adduct containing the repeating unit represented by formula (T1), or may be two types. It may be more than that.
Further, the polythiophene derivative containing the repeating unit represented by formula (T1) may be a commercially available product or one polymerized by a known method using a thiophene derivative as a starting material, but in either case, It is also preferable to use one purified by a method such as reprecipitation or ion exchange. By using a purified product, the characteristics of an organic EL device or a quantum dot EL device including a thin film obtained from the charge transporting varnish of the present invention can be further improved.
 なお、共役ポリマーのスルホン化およびスルホン化共役ポリマー(スルホン化ポリチオフェンを含む)は、Seshadriらの米国特許第8,017,241号に記載されている。また、スルホン化ポリチオフェンについては、国際公開第2008/073149号および国際公開第2016/171935号に記載されている。 Sulfonation of conjugated polymers and sulfonated conjugated polymers (including sulfonated polythiophenes) are described in Seshadri et al., US Pat. No. 8,017,241. Moreover, sulfonated polythiophene is described in International Publication No. 2008/073149 and International Publication No. 2016/171935.
 なお、上記式(T1)で表される繰り返し単位を含むポリチオフェン誘導体またはそのアミン付加体の少なくとも一部は、後述の溶媒に溶解している。 Note that at least a portion of the polythiophene derivative containing the repeating unit represented by the above formula (T1) or its amine adduct is dissolved in the below-mentioned solvent.
 本発明では、式(T1)で表される繰り返し単位を含むポリチオフェン誘導体またはそのアミン付加体を用いる場合、電荷輸送性物質として、当該ポリチオフェン誘導体またはそのアミン付加体と、それ以外の電荷輸送性化合物からなる電荷輸送性物質を併用してよいが、式(T1)で表される繰り返し単位を含むポリチオフェン誘導体またはそのアミン付加体のみが含まれることが好ましい。 In the present invention, when a polythiophene derivative or an amine adduct thereof containing a repeating unit represented by formula (T1) is used, the polythiophene derivative or an amine adduct thereof and another charge transporting compound are used as charge transporting substances. Although a charge transporting substance consisting of the following may be used in combination, it is preferable that only a polythiophene derivative containing a repeating unit represented by formula (T1) or an amine adduct thereof is included.
 上記式(T1)で表される繰り返し単位を含むポリチオフェン誘導体またはそのアミン付加体を用いる場合、その含有量は、通常、所望の膜厚やワニスの粘度等を勘案し、固形分中0.05~40質量%が好ましく、より好ましくは0.1~35質量%の範囲で適宜決定される。 When using a polythiophene derivative containing a repeating unit represented by the above formula (T1) or an amine adduct thereof, the content is usually 0.05% in the solid content, taking into consideration the desired film thickness and viscosity of the varnish. It is preferably determined in the range of 0.1 to 35% by weight, more preferably 0.1 to 35% by weight.
 上記その他の電荷輸送性物質の好ましいその他の一態様としては、下記式(T2)および(T3)で示されるものなどが挙げられる。 Other preferable embodiments of the above-mentioned other charge transporting substances include those represented by the following formulas (T2) and (T3).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 なお、式(T2)で表されるアニリン誘導体は、その分子内に下記式で示されるキノンジイミン構造を有する酸化型アニリン誘導体(キノンジイミン誘導体)であってもよい。アニリン誘導体を酸化してキノンジイミン誘導体とする方法としては、国際公開第2008/010474号、国際公開第2014/119782号記載の方法等が挙げられる。 Note that the aniline derivative represented by formula (T2) may be an oxidized aniline derivative (quinone diimine derivative) having a quinone diimine structure represented by the following formula in its molecule. Examples of the method of oxidizing an aniline derivative to obtain a quinone diimine derivative include the methods described in International Publication No. 2008/010474 and International Publication No. 2014/119782.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式(T2)中、R1~R6は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY1、-NY23、-OY4、または-SY5基を表し、Y1~Y5は、それぞれ独立して、Z1で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、またはZ2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ3で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、アミノ基、またはZ3で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、またはアミノ基を表し、kおよびlは、それぞれ独立して、1~5の整数である。 In formula (T2), R 1 to R 6 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, or an alkyl group having 1 to 20 carbon atoms, which may be substituted with Z 1 . group, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 , - NHY 1 , -NY 2 Y 3 , -OY 4 , or -SY 5 group, and Y 1 to Y 5 are each independently an alkyl group having 1 to 20 carbon atoms, which may be substituted with Z 1 group, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 2 . and Z 1 represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with a halogen atom, nitro group, cyano group, amino group, or Z 3 , Z 2 is a halogen atom, a nitro group, a cyano group, an amino group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkenyl group having 2 to 20 carbon atoms, which may be substituted with Z 3 represents an alkynyl group, Z 3 represents a halogen atom, a nitro group, a cyano group, or an amino group, and k and l are each independently an integer of 1 to 5.
 式(T3)中、R7~R10は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホ基、カルボキシ基、Z1で置換されていてもよい、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数7~20のアラルキル基、または炭素数1~20のアシル基を表し、R11~R14は、それぞれ独立して、水素原子、フェニル基、ナフチル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、チエニル基(これらの基は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホ基、カルボキシ基、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基または炭素数1~20のアシル基で置換されていてもよい。)、または式(T3a)で表される基を表す(ただし、R11~R14の少なくとも1つは水素原子である。)、mは、2~5の整数を表す。Z1およびZ2は上記と同じ意味を表す。 In formula (T3), R 7 to R 10 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfo group, a carboxy group, or a Z 1 an alkoxy group having 1 to 20 carbon atoms, a thioalkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms; , represents an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an acyl group having 1 to 20 carbon atoms, which may be substituted with hydrogen atom, phenyl group, naphthyl group, pyridyl group, pyrimidinyl group, pyridazinyl group, pyrazinyl group, furanyl group, pyrrolyl group, pyrazolyl group, imidazolyl group, thienyl group (these groups include halogen atom, nitro group, Cyano group, hydroxyl group, thiol group, phosphoric acid group, sulfo group, carboxy group, alkoxy group having 1 to 20 carbon atoms, thioalkoxy group having 1 to 20 carbon atoms, alkyl group having 1 to 20 carbon atoms, 1 to 20 carbon atoms 20 haloalkyl group, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, aralkyl group having 7 to 20 carbon atoms, or acyl group having 1 to 20 carbon atoms. ) or a group represented by formula (T3a) (however, at least one of R 11 to R 14 is a hydrogen atom), m is an integer of 2 to 5. represent. Z 1 and Z 2 have the same meanings as above.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 式(T3a)中、R15~R18は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホ基、カルボキシ基、Z1で置換されていてもよい、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されていてもよい、炭素数6~20のアリール基もしくは炭素数7~20のアラルキル基、または炭素数1~20のアシル基を表し、R19およびR20は、それぞれ独立して、フェニル基、ナフチル基、アントリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、フラニル基、ピロリル基、ピラゾリル基、イミダゾリル基、チエニル基(これらの基は、互いに結合して環を形成してもよく、また、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホ基、カルボキシ基、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または炭素数1~20のアシル基で置換されていてもよい。)を表す。Z1およびZ2は上記と同じ意味を表す。 In formula (T3a), R 15 to R 18 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfo group, a carboxy group, or a Z 1 an alkoxy group having 1 to 20 carbon atoms, a thioalkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms; , represents an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an acyl group having 1 to 20 carbon atoms, which may be substituted with phenyl group, naphthyl group, anthryl group, pyridyl group, pyrimidinyl group, pyridazinyl group, pyrazinyl group, furanyl group, pyrrolyl group, pyrazolyl group, imidazolyl group, thienyl group (these groups are bonded to each other to form a ring). A halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfo group, a carboxy group, an alkoxy group having 1 to 20 carbon atoms, a thioalkoxy group having 1 to 20 carbon atoms. , alkyl group having 1 to 20 carbon atoms, haloalkyl group having 1 to 20 carbon atoms, alkenyl group having 2 to 20 carbon atoms, alkynyl group having 2 to 20 carbon atoms, aryl group having 6 to 20 carbon atoms, 7 to 20 carbon atoms (Optionally substituted with 20 aralkyl groups or acyl groups having 1 to 20 carbon atoms.) Z 1 and Z 2 have the same meanings as above.
 上記各式において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等の炭素数1~20の直鎖または分岐鎖状アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロブチル、ビシクロペンチル、ビシクロヘキシル、ビシクロヘプチル、ビシクロオクチル、ビシクロノニル、ビシクロデシル基等の炭素数3~20の環状アルキル基などが挙げられる。
In each of the above formulas, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl. , n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl and other linear or branched alkyl groups having 1 to 20 carbon atoms; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl , cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclobutyl, bicyclopentyl, bicyclohexyl, bicycloheptyl, bicyclooctyl, bicyclononyl, bicyclodecyl, and other cyclic alkyl groups having 3 to 20 carbon atoms.
 炭素数2~20のアルケニル基の具体例としては、エテニル、n-1-プロペニル、n-2-プロペニル、1-メチルエテニル、n-1-ブテニル、n-2-ブテニル、n-3-ブテニル、2-メチル-1-プロペニル、2-メチル-2-プロペニル、1-エチルエテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、n-1-ペンテニル、n-1-デセニル、n-1-エイコセニル基等が挙げられる。 Specific examples of alkenyl groups having 2 to 20 carbon atoms include ethenyl, n-1-propenyl, n-2-propenyl, 1-methylethenyl, n-1-butenyl, n-2-butenyl, n-3-butenyl, 2-Methyl-1-propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, n-1-pentenyl, n-1-decenyl, n- Examples include 1-eicosenyl group.
 炭素数2~20のアルキニル基の具体例としては、エチニル、n-1-プロピニル、n-2-プロピニル、n-1-ブチニル、n-2-ブチニル、n-3-ブチニル、1-メチル-2-プロピニル、n-1-ペンチニル、n-2-ペンチニル、n-3-ペンチニル、n-4-ペンチニル、1-メチル-n-ブチニル、2-メチル-n-ブチニル、3-メチル-n-ブチニル、1,1-ジメチル-n-プロピニル、n-1-ヘキシニル、n-1-デシニル、n-1-ペンタデシニル、n-1-エイコシニル基等が挙げられる。 Specific examples of alkynyl groups having 2 to 20 carbon atoms include ethynyl, n-1-propynyl, n-2-propynyl, n-1-butynyl, n-2-butynyl, n-3-butynyl, 1-methyl- 2-propynyl, n-1-pentynyl, n-2-pentynyl, n-3-pentynyl, n-4-pentynyl, 1-methyl-n-butynyl, 2-methyl-n-butynyl, 3-methyl-n- Examples include butynyl, 1,1-dimethyl-n-propynyl, n-1-hexynyl, n-1-decynyl, n-1-pentadecynyl, n-1-eicosynyl and the like.
 炭素数6~20のアリール基の具体例としては、フェニル、1-ナフチル、2-ナフチル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル基等が挙げられる。 Specific examples of aryl groups having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4- Examples include phenanthryl and 9-phenanthryl groups.
 炭素数7~20のアラルキル基の具体例としては、ベンジル、フェニルエチル、フェニルプロピル、ナフチルメチル、ナフチルエチル、ナフチルプロピル基等が挙げられる。 Specific examples of aralkyl groups having 7 to 20 carbon atoms include benzyl, phenylethyl, phenylpropyl, naphthylmethyl, naphthylethyl, naphthylpropyl groups, and the like.
 炭素数2~20のヘテロアリール基の具体例としては、2-チエニル、3-チエニル、2-フラニル、3-フラニル、2-オキサゾリル、4-オキサゾリル、5-オキサゾリル、3-イソオキサゾリル、4-イソオキサゾリル、5-イソオキサゾリル、2-チアゾリル、4-チアゾリル、5-チアゾリル、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル、2-イミダゾリル、4-イミダゾリル、2-ピリジル、3-ピリジル、4-ピリジル基等が挙げられる。 Specific examples of heteroaryl groups having 2 to 20 carbon atoms include 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl. , 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-imidazolyl, 4-imidazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl group, etc. can be mentioned.
 炭素数1~20のハロアルキル基としては、上記炭素数1~20のアルキル基の水素原子の少なくとも1つを、ハロゲン原子で置換したものが挙げられるが、中でも、フルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましい。
 その具体例としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ペンタフルオロエチル、2,2,2-トリフルオロエチル、ヘプタフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、2,2,3,3-テトラフルオロプロピル、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル、ノナフルオロブチル、4,4,4-トリフルオロブチル、ウンデカフルオロペンチル、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル、2,2,3,3,4,4,5,5-オクタフルオロペンチル、トリデカフルオロヘキシル、2,2,3,3,4,4,5,5,6,6,6-ウンデカフロオロヘキシル、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられる。
Examples of the haloalkyl group having 1 to 20 carbon atoms include those in which at least one hydrogen atom of the above alkyl group having 1 to 20 carbon atoms has been replaced with a halogen atom. Among them, a fluoroalkyl group is preferred, and a perfluoro Alkyl groups are more preferred.
Specific examples include fluoromethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, heptafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 2, 2,3,3-tetrafluoropropyl, 2,2,2-trifluoro-1-(trifluoromethyl)ethyl, nonafluorobutyl, 4,4,4-trifluorobutyl, undecafluoropentyl, 2,2 , 3,3,4,4,5,5,5-nonafluoropentyl, 2,2,3,3,4,4,5,5-octafluoropentyl, tridecafluorohexyl, 2,2,3, 3,4,4,5,5,6,6,6-undecafluorohexyl, 2,2,3,3,4,4,5,5,6,6-decafluorohexyl, 3,3, Examples include 4,4,5,5,6,6,6-nonafluorohexyl group.
 炭素数1~20のアルコキシ基の具体例としては、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、c-プロポキシ、n-ブトキシ、i-ブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシ、n-ヘキソキシ、n-ヘプチルオキシ、n-オクチルオキシ、n-ノニルオキシ、n-デシルオキシ、n-ウンデシルオキシ、n-ドデシルオキシ、n-トリデシルオキシ、n-テトラデシルオキシ、n-ペンタデシルオキシ、n-ヘキサデシルオキシ、n-ヘプタデシルオキシ、n-オクタデシルオキシ、n-ノナデシルオキシ、n-エイコサニルオキシ基等が挙げられる。 Specific examples of alkoxy groups having 1 to 20 carbon atoms include methoxy, ethoxy, n-propoxy, i-propoxy, c-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexoxy, n-heptyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, n-undecyloxy, n-dodecyloxy, n-tridecyloxy, n-tetradecyloxy, n-pentadecyloxy , n-hexadecyloxy, n-heptadecyloxy, n-octadecyloxy, n-nonadecyloxy, n-eicosanyloxy and the like.
 炭素数1~20のチオアルコキシ(アルキルチオ)基の具体例としては、メチルチオ、エチルチオ、n-プロピルチオ、イソプロピルチオ、n-ブチルチオ、イソブチルチオ、s-ブチルチオ、t-ブチルチオ、n-ペンチルチオ、n-ヘキシルチオ、n-ヘプチルチオ、n-オクチルチオ、n-ノニルチオ、n-デシルチオ、n-ウンデシルチオ、n-ドデシルチオ、n-トリデシルチオ、n-テトラデシルチオ、n-ペンタデシルチオ、n-ヘキサデシルチオ、n-ヘプタデシルチオ、n-オクタデシルチオ、n-ノナデシルチオ、n-エイコサニルチオ基等が挙げられる。 Specific examples of thioalkoxy (alkylthio) groups having 1 to 20 carbon atoms include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, s-butylthio, t-butylthio, n-pentylthio, n- hexylthio, n-heptylthio, n-octylthio, n-nonylthio, n-decylthio, n-undecylthio, n-dodecylthio, n-tridecylthio, n-tetradecylthio, n-pentadecylthio, n-hexadecylthio, n-heptadecylthio, Examples include n-octadecylthio, n-nonadecylthio, and n-eicosanylthio groups.
 炭素数1~20のアシル基の具体例としては、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ベンゾイル基等が挙げられる。 Specific examples of the acyl group having 1 to 20 carbon atoms include formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, and benzoyl groups.
 式(T2)において、R1~R6は、水素原子、ハロゲン原子、Z1で置換されていてもよい炭素数1~20のアルキル基、Z2で置換されていてもよい炭素数6~20のアリール基、-NHY1、-NY23、-OY4、または-SY5が好ましく、この場合において、Y1~Y5は、Z1で置換されていてもよい炭素数1~10のアルキル基またはZ2で置換されていてもよい炭素数6~10のアリール基が好ましく、Z1で置換されていてもよい炭素数1~6のアルキル基またはZ2で置換されていてもよいフェニル基がより好ましく、炭素数1~6のアルキル基またはフェニル基がより一層好ましい。
 特に、R1~R6は、水素原子、フッ素原子、メチル基、フェニル基またはジフェニルアミノ基(Y2およびY3がフェニル基である-NY23)がより好ましく、R1~R4が水素原子であり、かつ、R5およびR6が同時に水素原子またはジフェニルアミノ基がより一層好ましい。
In formula (T2), R 1 to R 6 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , or an alkyl group having 6 to 20 carbon atoms which may be substituted with Z 2 20 aryl groups, -NHY 1 , -NY 2 Y 3 , -OY 4 , or -SY 5 are preferred, and in this case, Y 1 to Y 5 have 1 to 1 carbon atoms, which may be substituted with Z 1 10 alkyl group or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 2 is preferable, and an alkyl group having 1 to 6 carbon atoms which may be substituted with Z 1 or an aryl group having 6 to 6 carbon atoms which may be substituted with Z 2 is preferable. A phenyl group is more preferred, and an alkyl group having 1 to 6 carbon atoms or a phenyl group is even more preferred.
In particular, R 1 to R 6 are more preferably a hydrogen atom, a fluorine atom, a methyl group, a phenyl group, or a diphenylamino group (-NY 2 Y 3 in which Y 2 and Y 3 are phenyl groups), and R 1 to R 4 is a hydrogen atom, and it is even more preferable that R 5 and R 6 are both hydrogen atoms or diphenylamino groups.
 とりわけ、R1~R6およびY1~Y5においては、Z1は、ハロゲン原子またはZ3で置換されていてもよい炭素数6~10のアリール基が好ましく、フッ素原子またはフェニル基がより好ましく、存在しないこと(すなわち、非置換の基であること)がより一層好ましく、また、Z2は、ハロゲン原子またはZ3で置換されていてもよい炭素数1~10のアルキル基が好ましく、フッ素原子または炭素数1~6のアルキル基がより好ましく、存在しないこと(すなわち、非置換の基であること)がより一層好ましい。
 また、Z3は、ハロゲン原子が好ましく、フッ素原子がより好ましく、存在しないこと(すなわち、非置換の基であること)がより一層好ましい。
 kおよびlとしては、式(H2)で表されるアニリン誘導体の溶解性を高める観点から、好ましくは、k+l≦8であり、より好ましくは、k+l≦5である。
In particular, in R 1 to R 6 and Y 1 to Y 5 , Z 1 is preferably a halogen atom or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 3 , and more preferably a fluorine atom or a phenyl group. Preferably, it is not present (that is, it is an unsubstituted group), and Z 2 is preferably a halogen atom or an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 3 . A fluorine atom or an alkyl group having 1 to 6 carbon atoms is more preferred, and its absence (ie, an unsubstituted group) is even more preferred.
Furthermore, Z 3 is preferably a halogen atom, more preferably a fluorine atom, and even more preferably absent (that is, an unsubstituted group).
From the viewpoint of increasing the solubility of the aniline derivative represented by formula (H2), k and l preferably satisfy k+l≦8, and more preferably k+l≦5.
 式(T3)において、R7~R10は、水素原子、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のパーフルオロアルキル基、炭素数1~4のアルコキシ基が好ましく、水素原子がより好ましい。
 また、式(T3)で表されるアニリン誘導体の溶媒に対する溶解性を高めるとともに、得られる薄膜の均一性を高めることを考慮すると、R11およびR13が共に水素原子であることが好ましい。
 特に、R11およびR13が共に水素原子であり、R12およびR14が、それぞれ独立して、フェニル基(このフェニル基は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、リン酸基、スルホ基、カルボキシ基、炭素数1~20のアルコキシ基、炭素数1~20のチオアルコキシ基、炭素数1~20のアルキル基、炭素数1~20のハロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、または炭素数1~20のアシル基で置換されていてもよい。)、または上記式(T3a)で表される基であることが好ましく、R11およびR13が、共に水素原子であり、R12およびR14が、それぞれ独立して、フェニル基、またはR19’およびR20’が共にフェニル基である下記式(T3a’)で表される基であることがより好ましく、R11およびR13が、共に水素原子であり、R12およびR14が、共にフェニル基であることがより一層好ましい。
 また、mとしては、化合物の入手容易性、製造の容易性、コスト面などを考慮すると、2~4が好ましく、溶媒への溶解性を高めることを考慮すると、2または3がより好ましく、化合物の入手容易性、製造の容易性、製造コスト、溶媒への溶解性、得られる薄膜の透明性等のバランスを考慮すると、2が最適である。
In formula (T3), R 7 to R 10 are preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms; Hydrogen atoms are more preferred.
Further, in consideration of increasing the solubility of the aniline derivative represented by formula (T3) in a solvent and increasing the uniformity of the obtained thin film, it is preferable that R 11 and R 13 are both hydrogen atoms.
In particular, R 11 and R 13 are both hydrogen atoms, and R 12 and R 14 are each independently a phenyl group (this phenyl group can be a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, a phosphoric acid group, group, sulfo group, carboxy group, alkoxy group having 1 to 20 carbon atoms, thioalkoxy group having 1 to 20 carbon atoms, alkyl group having 1 to 20 carbon atoms, haloalkyl group having 1 to 20 carbon atoms, 2 to 20 carbon atoms may be substituted with an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or an acyl group having 1 to 20 carbon atoms.) or a group represented by the above formula (T3a), R 11 and R 13 are both hydrogen atoms, and R 12 and R 14 are each independently a phenyl group, or R 19' and More preferably, it is a group represented by the following formula (T3a') in which both R 20' are phenyl groups, R 11 and R 13 are both hydrogen atoms, and R 12 and R 14 are both phenyl groups. It is even more preferable that
In addition, m is preferably 2 to 4 in consideration of the ease of obtaining the compound, ease of production, cost, etc., and more preferably 2 or 3 in consideration of increasing the solubility in the solvent. Considering the balance of availability, ease of manufacture, manufacturing cost, solubility in solvents, transparency of the obtained thin film, etc., 2 is optimal.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式(T2)および(T3)で表されるアニリン誘導体は、市販品を用いても、上記各公報に記載されている方法等の公知の方法によって製造したものを用いてもよいが、いずれの場合も電荷輸送性ワニスを調製する前に、再結晶や蒸着法などによって精製したものを用いることが好ましい。精製したものを用いることで、当該ワニスから得られた薄膜を備えた電子素子の特性をより高めることができる。再結晶にて精製する場合、溶媒としては、例えば、1,4-ジオキサン、テトラヒドロフランなどを用いることができる。 The aniline derivatives represented by formulas (T2) and (T3) may be commercially available products or those produced by known methods such as those described in the above publications; In this case, it is preferable to use a varnish purified by recrystallization, vapor deposition, etc. before preparing the charge transporting varnish. By using a purified varnish, the characteristics of an electronic device including a thin film obtained from the varnish can be further improved. When purifying by recrystallization, for example, 1,4-dioxane, tetrahydrofuran, etc. can be used as the solvent.
 本発明において、式(T2)および(T3)で表される電荷輸送性物質としては式(T2)および(T3)で表される化合物から選ばれる1種の化合物(すなわち、分子量分布の分散度が1)を単独で用いてもよく、2以上の化合物を組み合わせて用いてもよい。 In the present invention, the charge transport substance represented by formulas (T2) and (T3) is one type of compound selected from the compounds represented by formulas (T2) and (T3) (i.e., the dispersity of molecular weight distribution 1) may be used alone or in combination of two or more compounds.
 本発明で好適に用いることができる式(T2)および(T3)で表される電荷輸送性物質の具体例としては、下記のものが挙げられるが、これらに限定されるものではない。 Specific examples of charge transporting substances represented by formulas (T2) and (T3) that can be suitably used in the present invention include, but are not limited to, the following.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
(式中、DPAは、ジフェニルアミノ基を表す。)
Figure JPOXMLDOC01-appb-C000041
(In the formula, DPA represents a diphenylamino group.)
 上記式(T2)で表されるアニリン誘導体および式(T3)で表されるアニリン誘導体を用いる場合、その含有量は、通常、所望の膜厚やワニスの粘度等を勘案し、固形分中、0.05~90質量%が好ましく、より好ましくは0.1~75質量%の範囲で適宜決定される。 When using the aniline derivative represented by the above formula (T2) and the aniline derivative represented by the formula (T3), the content thereof is usually determined in consideration of the desired film thickness, viscosity of the varnish, etc. in the solid content. It is preferably 0.05 to 90% by mass, more preferably 0.1 to 75% by mass, determined as appropriate.
 なお、本発明の電荷輸送性ワニスには、公知の有機系ドーパント物質や無機系ドーパント物質を含んでいてもよい。 Note that the charge transporting varnish of the present invention may contain a known organic dopant substance or inorganic dopant substance.
 本発明の電荷輸送性ワニスを調製する際に用いられる溶媒としては、使用する電荷輸送性物質やドーパント物質等を良好に溶解し得る高極性溶媒を用いることができる。また、必要に応じて、高極性溶媒よりもプロセス適合性に優れている点で低極性溶媒を用いてもよい。本発明において、低極性溶媒とは周波数100kHzでの比誘電率が7未満のものを、高極性溶媒とは周波数100kHzでの比誘電率が7以上のものと定義する。 As the solvent used in preparing the charge transporting varnish of the present invention, a highly polar solvent that can satisfactorily dissolve the charge transporting substance, dopant substance, etc. to be used can be used. Furthermore, if necessary, a low polarity solvent may be used because it has better process compatibility than a highly polar solvent. In the present invention, a low polar solvent is defined as one having a dielectric constant of less than 7 at a frequency of 100 kHz, and a high polar solvent is defined as one having a dielectric constant of 7 or more at a frequency of 100 kHz.
 低極性溶媒としては、例えば、
クロロホルム、クロロベンゼン等の塩素系溶媒;
トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、デシルベンゼン等の芳香族炭化水素系溶媒;
1-オクタノール、1-ノナノール、1-デカノール等の脂肪族アルコール系溶媒;
テトラヒドロフラン、ジオキサン、アニソール、4-メトキシトルエン、3-フェノキシトルエン、ジベンジルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル等のエーテル系溶媒;
安息香酸メチル、安息香酸エチル、安息香酸ブチル、安息香酸イソアミル、フタル酸ジメチル、フタル酸ビス(2-エチルヘキシル)、マレイン酸ジブチル、シュウ酸ジブチル、酢酸ヘキシル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル系溶媒
等が挙げられる。
Examples of low polar solvents include:
Chlorinated solvents such as chloroform and chlorobenzene;
Aromatic hydrocarbon solvents such as toluene, xylene, tetralin, cyclohexylbenzene, decylbenzene;
Aliphatic alcohol solvents such as 1-octanol, 1-nonanol, 1-decanol;
Ether solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether;
Methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, dimethyl phthalate, bis(2-ethylhexyl) phthalate, dibutyl maleate, dibutyl oxalate, hexyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate Examples include ester solvents such as.
 また、高極性溶媒としては、例えば、
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒;
メチルエチルケトン、イソホロン、シクロヘキサノン等のケトン系溶媒;
アセトニトリル、3-メトキシプロピオニトリル等のシアノ系溶媒;
エチレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール等の多価アルコール系溶媒;
ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ベンジルアルコール、2-フェノキシエタノール、2-ベンジルオキシエタノール、3-フェノキシベンジルアルコール、テトラヒドロフルフリルアルコール等の脂肪族アルコール以外の1価アルコール系溶媒;
ジメチルスルホキシド等のスルホキシド系溶媒
等が挙げられる。
In addition, as highly polar solvents, for example,
Amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethylisobutyramide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone;
Ketone solvents such as methyl ethyl ketone, isophorone, and cyclohexanone;
Cyano solvents such as acetonitrile and 3-methoxypropionitrile;
Polyhydric alcohol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, 2,3-butanediol;
Other than aliphatic alcohols such as diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyloxyethanol, 3-phenoxybenzyl alcohol, and tetrahydrofurfuryl alcohol monohydric alcohol solvent;
Examples include sulfoxide solvents such as dimethyl sulfoxide.
 さらに、本発明の電荷輸送性ワニスは、1種以上の金属酸化物ナノ粒子を含んでいてもよい。ナノ粒子とは、一次粒子についての平均粒子径がナノメートルのオーダー(典型的には500nm以下)である微粒子を意味する。金属酸化物ナノ粒子とは、ナノ粒子に成形された金属酸化物を意味する。
 金属酸化物ナノ粒子の一次粒子径は、ナノサイズであれば特に限定されるものではないが、2~150nmが好ましく、3~100nmがより好ましく、5~50nmがより一層好ましい。なお、粒子径は、BET法による窒素吸着等温線を用いた測定値である。
Furthermore, the charge transporting varnish of the present invention may contain one or more metal oxide nanoparticles. Nanoparticles refer to fine particles whose average primary particle diameter is on the order of nanometers (typically 500 nm or less). Metal oxide nanoparticles refer to metal oxides shaped into nanoparticles.
The primary particle diameter of the metal oxide nanoparticles is not particularly limited as long as it is nanosized, but is preferably from 2 to 150 nm, more preferably from 3 to 100 nm, and even more preferably from 5 to 50 nm. Note that the particle diameter is a value measured using a nitrogen adsorption isotherm according to the BET method.
 上記金属酸化物ナノ粒子を構成する金属は、通常の意味での金属に加え、半金属も包含する。
 通常の意味での金属としては、特に限定されるものではないが、スズ(Sn)、チタン(Ti)、アルミニウム(Al)、ジルコニウム(Zr)、亜鉛(Zn)、ニオブ(Nb)、タンタル(Ta)およびW(タングステン)からなる群より選択される1種または2種以上を用いることが好ましい。
 一方、半金属とは、化学的および/または物理的性質が金属と非金属の中間である元素を意味する。半金属の普遍的な定義は確立されていないが、本発明では、ホウ素(B)、ケイ素(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)およびテルル(Te)の計6元素を半金属とする。これらの半金属は、単独で用いても、2種以上を組み合わせて用いてもよく、また通常の意味での金属と組み合わせて用いてもよい。
The metal constituting the metal oxide nanoparticles includes not only metals in the usual sense but also metalloids.
Metals in the usual sense include, but are not limited to, tin (Sn), titanium (Ti), aluminum (Al), zirconium (Zr), zinc (Zn), niobium (Nb), tantalum ( It is preferable to use one or more selected from the group consisting of Ta) and W (tungsten).
On the other hand, metalloid means an element whose chemical and/or physical properties are intermediate between metals and nonmetals. Although a universal definition of semimetals has not been established, in the present invention, a total of six metalloids are used: boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te). The element is a metalloid. These metalloids may be used alone or in combination of two or more types, or may be used in combination with metals in the usual sense.
 特に、金属酸化物ナノ粒子は、ホウ素(B)、ケイ素(Si)、ゲルマニウム(Ge)、ヒ素(As)、アンチモン(Sb)、テルル(Te)、スズ(Sn)、チタン(Ti)、アルミニウム(Al)、ジルコニウム(Zr)、亜鉛(Zn)、ニオブ(Nb)、タンタル(Ta)およびW(タングステン)から選ばれる1種または2種以上の金属の酸化物を含むことが好ましい。なお、金属が2種以上の組み合わせである場合、金属酸化物は、個々の単独の金属の酸化物の混合物であってもよく、複数の金属を含む複合酸化物であってもよい。 In particular, metal oxide nanoparticles include boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te), tin (Sn), titanium (Ti), aluminum It is preferable that the metal oxide contains one or more metal oxides selected from (Al), zirconium (Zr), zinc (Zn), niobium (Nb), tantalum (Ta), and W (tungsten). Note that when the metals are a combination of two or more types, the metal oxide may be a mixture of oxides of individual metals, or may be a composite oxide containing a plurality of metals.
 金属酸化物の具体例としては、B23、B2O、SiO2、SiO、GeO2、GeO、As24、As23、As25、Sb23、Sb25、TeO2、SnO2、SnO、ZrO2、Al23、ZnO等が挙げられるが、B23、B2O、SiO2、SiO、GeO2、GeO、As24、As23、As25、SnO2、SnO、Sb23、TeO2、およびこれらの混合物が好ましく、SiO2がより好ましい。 Specific examples of metal oxides include B 2 O 3 , B 2 O, SiO 2 , SiO, GeO 2 , GeO, As 2 O 4 , As 2 O 3 , As 2 O 5 , Sb 2 O 3 , Sb 2 Examples include O 5 , TeO 2 , SnO 2 , SnO, ZrO 2 , Al 2 O 3 , ZnO, etc., but B 2 O 3 , B 2 O, SiO 2 , SiO, GeO 2 , GeO, As 2 O 4 , As 2 O 3 , As 2 O 5 , SnO 2 , SnO, Sb 2 O 3 , TeO 2 and mixtures thereof are preferred, and SiO 2 is more preferred.
 金属酸化物ナノ粒子の量は、特に限定されるものではないが、得られる薄膜の透明性を向上させる観点、膜の均一性を高める観点等から、固形分中、その下限値は、通常50質量%、好ましくは60質量%、より好ましくは65質量%であり、その上限値は、通常95質量%、好ましくは90質量%である。 The amount of metal oxide nanoparticles is not particularly limited, but from the viewpoint of improving the transparency of the thin film obtained and the uniformity of the film, the lower limit of the amount of metal oxide nanoparticles in the solid content is usually 50%. It is preferably 60% by mass, more preferably 65% by mass, and its upper limit is usually 95% by mass, preferably 90% by mass.
 特に、本発明においては、金属酸化物ナノ粒子として、SiO2ナノ粒子が分散媒に分散したシリカゾルを用いることが好適である。
 シリカゾルとしては、特に限定されるものではなく、公知のシリカゾルから適宜選択して用いることができる。
 市販のシリカゾルは通常、分散液の形態にある。市販のシリカゾルとしては、SiO2ナノ粒子が種々の溶媒、例えば、水、メタノール、メチルエチルケトン、メチルイソブチルケトン、N,N-ジメチルアセトアミド、エチレングリコール、イソプロパノール、メタノール、エチレングリコールモノプロピルエーテル、シクロヘキサノン、酢酸エチル、トルエン、プロピレングリコールモノメチルエーテルアセタート等に分散したものが挙げられる。
In particular, in the present invention, it is preferable to use silica sol in which SiO 2 nanoparticles are dispersed in a dispersion medium as the metal oxide nanoparticles.
The silica sol is not particularly limited, and can be appropriately selected from known silica sols.
Commercially available silica sols are usually in the form of dispersions. Commercially available silica sols include SiO2 nanoparticles in various solvents, such as water, methanol, methyl ethyl ketone, methyl isobutyl ketone, N,N-dimethylacetamide, ethylene glycol, isopropanol, methanol, ethylene glycol monopropyl ether, cyclohexanone, acetic acid. Examples include those dispersed in ethyl, toluene, propylene glycol monomethyl ether acetate, and the like.
 市販のシリカゾルの具体例としては日産化学(株)製のスノーテックス(登録商標)ST-O、ST-OS、ST-O-40、ST-OL、日本化学工業(株)製のシリカドール20、30、40等の水分散シリカゾル;日産化学(株)製のメタノールシリカゾル、MA-ST-M、MA-ST-L、IPA-ST、IPA-ST-L、IPA-ST-ZL、EG-ST等のオルガノシリカゾルなどが挙げられるが、これらに限定されるものではない。
 また、シリカゾルの固形分濃度も特に限定されるものではないが、5~60質量%が好ましく、10~50質量%がより好ましく、15~30質量%がより一層好ましい。
Specific examples of commercially available silica sols include Snowtex (registered trademark) ST-O, ST-OS, ST-O-40, ST-OL manufactured by Nissan Chemical Co., Ltd., and Silicadol 20 manufactured by Nippon Kagaku Kogyo Co., Ltd. , 30, 40, etc.; methanol silica sol manufactured by Nissan Chemical Co., Ltd., MA-ST-M, MA-ST-L, IPA-ST, IPA-ST-L, IPA-ST-ZL, EG- Examples include, but are not limited to, organosilica sols such as ST.
The solid content concentration of the silica sol is also not particularly limited, but is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and even more preferably 15 to 30% by mass.
 用いるシリカゾルの量は、最終的に電荷輸送性ワニスに含まれるシリカの量が、上述の金属酸化物ナノ粒子の配合量となるように、その濃度を考慮して適宜決定される。 The amount of silica sol used is appropriately determined in consideration of its concentration so that the amount of silica ultimately contained in the charge transporting varnish corresponds to the amount of metal oxide nanoparticles described above.
 また、本発明の電荷輸送性ワニスは、得られる薄膜を有機EL素子や量子ドットEL素子の正孔注入層として用いる場合、正孔輸送層への注入性の向上、素子の寿命特性等の改善を目的として、有機シラン化合物を含んでいてもよい。その含有量は、電荷輸送性物質およびドーパント物質の合計質量に対して、通常1~30質量%程度である。
 有機シラン化合物としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物またはテトラアルコキシシラン化合物が挙げられる。
In addition, when the obtained thin film is used as a hole injection layer of an organic EL device or a quantum dot EL device, the charge transporting varnish of the present invention improves the injection property to the hole transport layer and improves the life characteristics of the device. For this purpose, an organic silane compound may be included. Its content is usually about 1 to 30% by mass based on the total mass of the charge transport material and the dopant material.
Examples of the organic silane compound include dialkoxysilane compounds, trialkoxysilane compounds, and tetraalkoxysilane compounds.
 電荷輸送性ワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜定まるものではあるが、通常、25℃で1~50mPa・sである。なお、本発明において固形分とは、電荷輸送性ワニスに含まれる溶媒以外の成分を意味する。
 また、電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜決定されるものではあるが、通常、0.1~20.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.2~10.0質量%程度、より好ましくは0.5~8.0質量%程度である。
The viscosity of the charge transporting varnish is determined appropriately depending on the thickness of the thin film to be produced and the solid content concentration, but it is usually 1 to 50 mPa·s at 25°C. In the present invention, the solid content refers to components other than the solvent contained in the charge transporting varnish.
In addition, the solid content concentration of the charge transporting varnish is determined as appropriate by taking into account the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but it is usually 0.1 to 20.0% by mass. %, and in consideration of improving the coatability of the varnish, it is preferably about 0.2 to 10.0% by mass, more preferably about 0.5 to 8.0% by mass.
 電荷輸送性ワニスの調製法としては、特に限定されるものではないが、例えば、電荷輸送性物質およびドーパント物質を高極性溶媒に溶解させ、そこへ低極性溶媒および表面処理金属酸化物ナノ粒子等を加える手法や、高極性溶媒と低極性溶媒を混合し、そこへ電荷輸送性物質およびドーパント物質を溶解させ、さらに表面処理金属酸化物ナノ粒子を加える手法などが挙げられる。 The method for preparing the charge-transporting varnish is not particularly limited, but for example, a charge-transporting substance and a dopant substance are dissolved in a highly polar solvent, and a low-polar solvent and surface-treated metal oxide nanoparticles, etc. are added thereto. Examples include a method in which a highly polar solvent and a low polar solvent are mixed, a charge transporting substance and a dopant substance are dissolved therein, and further surface-treated metal oxide nanoparticles are added.
 特に、電荷輸送性ワニスの調製の際、より平坦性の高い薄膜を再現性よく得る観点から、電荷輸送性物質、ドーパント物質等を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いてろ過したから用いることが望ましい。 In particular, when preparing a charge-transporting varnish, from the viewpoint of obtaining a thin film with higher flatness with good reproducibility, after dissolving the charge-transporting substance, dopant substance, etc. in an organic solvent, a submicrometer-order filter, etc. It is desirable to use it after it has been filtered.
 以上説明した電荷輸送性ワニスは、これを用いることで容易に電荷輸送性薄膜を製造できることから、電子素子、特に有機EL素子や量子ドットEL素子を製造する際に好適に用いることができる。
 この場合、電荷輸送性薄膜は、上述した電荷輸送性ワニスを基材上に塗布して焼成して形成することができる。
 ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられ、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
The charge-transporting varnish described above can be used to easily produce a charge-transporting thin film, and therefore can be suitably used in producing electronic devices, particularly organic EL devices and quantum dot EL devices.
In this case, the charge-transporting thin film can be formed by applying the above-described charge-transporting varnish onto a base material and baking it.
The varnish application method is not particularly limited, and examples include dip method, spin coating method, transfer printing method, roll coating method, brush coating, inkjet method, spray method, slit coating method, etc. It is preferable to adjust the viscosity and surface tension of the varnish accordingly.
 また、塗布後の電荷輸送性ワニスの焼成雰囲気も特に限定されるものではなく、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面および高い電荷輸送性を有する薄膜を得ることができるが、用いるドーパント物質の種類によっては、ワニスを大気雰囲気下で焼成することで、電荷輸送性を有する薄膜が再現性よく得られる場合がある。 Furthermore, the firing atmosphere of the charge transporting varnish after application is not particularly limited, and a thin film with a uniform coating surface and high charge transporting properties can be produced not only in the air but also in an inert gas such as nitrogen or in a vacuum. However, depending on the type of dopant material used, a thin film having charge transporting properties may be obtained with good reproducibility by firing the varnish in the atmosphere.
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、100~260℃程度の範囲内で適宜決定され、例えば得られる薄膜を有機EL素子や量子ドットEL素子の正孔注入層として用いる場合、140~250℃程度が好ましく、145~240℃程度がより好ましいが、上述したアリールアミン化合物を電荷輸送性物質として用いる場合、200℃以下という低温焼成でも、良好な電荷輸送性を有する薄膜を得ることができる。
 なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
The firing temperature is determined as appropriate within the range of about 100 to 260°C, taking into account the purpose of the thin film to be obtained, the degree of charge transport property to be imparted to the thin film, the type and boiling point of the solvent, etc. When used as a hole injection layer of an organic EL device or a quantum dot EL device, the temperature is preferably about 140 to 250°C, more preferably about 145 to 240°C, but when the above-mentioned arylamine compound is used as a charge transporting substance, Even when firing at a low temperature of 200° C. or lower, a thin film having good charge transport properties can be obtained.
In addition, during firing, the temperature may be changed in two or more steps in order to develop more uniform film formation or to advance the reaction on the substrate, and the heating may be performed using, for example, a hot plate or This may be done using a suitable device such as an oven.
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子や量子ドットEL素子の正孔注入層、正孔輸送層、正孔注入輸送層等の陽極と発光層との間に設けられる機能層として用いる場合、5~300nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。 The thickness of the charge transporting thin film is not particularly limited, but it may be provided between an anode and a light emitting layer such as a hole injection layer, a hole transport layer, a hole injection transport layer, etc. of an organic EL element or a quantum dot EL element. When used as a functional layer, the thickness is preferably 5 to 300 nm. As a method for changing the film thickness, there are methods such as changing the solid content concentration in the varnish or changing the amount of solution on the substrate during coating.
[3]有機EL素子および量子ドットEL素子
 上記電荷輸送性薄膜を有機EL素子や量子ドットEL素子に適用する場合、有機EL素子や量子ドットEL素子を構成する一対の電極の間に、上述の電荷輸送性薄膜を備える構成とすることができる。
 有機EL素子や量子ドットEL素子の代表的な構成としては、以下(a)~(f)が挙げられるが、これらに限定されるわけではない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。さらに、必要に応じて各層の間に任意の機能層を設けることも可能である。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
[3] Organic EL device and quantum dot EL device When applying the above charge transporting thin film to an organic EL device or a quantum dot EL device, the above-mentioned It can be configured to include a charge transporting thin film.
Typical configurations of organic EL devices and quantum dot EL devices include (a) to (f) below, but are not limited to these. In addition, in the following structure, an electron blocking layer etc. can also be provided between a light emitting layer and an anode, and a hole (hole) blocking layer etc. can also be provided between a light emitting layer and a cathode as needed. Further, the hole injection layer, the hole transport layer, or the hole injection transport layer may also have a function as an electron blocking layer, etc., and the electron injection layer, the electron transport layer, or the electron injection transport layer may block holes. It may also have a function as a block layer or the like. Furthermore, it is also possible to provide an arbitrary functional layer between each layer as necessary.
(a) Anode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer/cathode (b) anode/hole injection layer/hole transport layer/light emitting layer/electron injection transport layer/ Cathode (c) Anode/Hole injection transport layer/Light emitting layer/Electron transport layer/Electron injection layer/Cathode (d) Anode/Hole injection transport layer/Light emitting layer/Electron injection transport layer/Cathode (e) Anode/Positive Hole injection layer/hole transport layer/light emitting layer/cathode (f) anode/hole injection transport layer/light emitting layer/cathode
 「正孔注入層」、「正孔輸送層」および「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものであり、発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。
 「電子注入層」、「電子輸送層」および「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものであり、発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
 「発光層」とは、発光機能を有する有機層であって、有機発光層または量子ドット発光層であってもよい。対応して、前記発光層が有機発光層のEL素子である場合、有機EL素子であり、前記発光層が量子ドット発光層のEL素子である場合、量子ドットEL素子である。ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
"Hole injection layer", "hole transport layer" and "hole injection transport layer" are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. If only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer", and between the light emitting layer and the anode, When two or more layers of hole-transporting materials are provided, the layer close to the anode is the "hole-injection layer" and the other layers are the "hole-transporting layers." In particular, for the hole injection (transport) layer, a thin film is used that is excellent not only in the ability to accept holes from the anode but also in the ability to inject holes into the hole transport (light emitting) layer.
"Electron injection layer", "electron transport layer" and "electron injection transport layer" are layers formed between a light emitting layer and a cathode, and have the function of transporting electrons from the cathode to the light emitting layer. If only one layer of electron transport material is provided between the light emitting layer and the cathode, it is an "electron injection transport layer", and the layer of electron transport material is provided between the light emitting layer and the cathode. When two or more layers are provided, the layer close to the cathode is the "electron injection layer", and the other layers are the "electron transport layers".
The "light-emitting layer" is an organic layer having a light-emitting function, and may be an organic light-emitting layer or a quantum dot light-emitting layer. Correspondingly, when the light emitting layer is an EL device of an organic light emitting layer, it is an organic EL device, and when the light emitting layer is an EL device of a quantum dot light emitting layer, it is a quantum dot EL device. When a doping system is adopted, it includes a host material and a dopant material. At this time, the host material mainly has the function of promoting recombination of electrons and holes and confining excitons within the light emitting layer, and the dopant material makes the excitons obtained by recombination efficiently emit light. Has a function. In the case of a phosphorescent device, the host material mainly has the function of confining excitons generated by the dopant within the light emitting layer.
 本発明の電荷輸送性薄膜は、有機EL素子や量子ドットEL素子において、陽極と発光層との間に設けられる機能層として用い得るが、正孔注入層、正孔輸送層、正孔注入輸送層として好適であり、正孔注入層または正孔輸送層としてより好適であり、正孔注入層としてより一層好適である。 The charge transporting thin film of the present invention can be used as a functional layer provided between an anode and a light emitting layer in an organic EL device or a quantum dot EL device. It is suitable as a layer, more suitable as a hole injection layer or a hole transport layer, and even more suitable as a hole injection layer.
 本発明の電荷輸送性ワニスを用いてEL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
 本発明の電荷輸送性ワニスから得られる薄膜からなる正孔注入層を有する有機EL素子や量子ドットEL素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素-プラズマ処理等による表面処理を予め行うことが好ましい。
 陽極基板上に、上記の方法により、本発明の電荷輸送性薄膜からなる正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層/ホールブロック層、電子注入層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層を形成する代わりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物を用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。以上では、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層/ホールブロック層、電子注入層、陰極の順に積層する例(順構造)を説明したが、これに限定されず、陰極、電子注入層、電子輸送層/ホールブロック層、発光層、正孔輸送層、正孔注入層、陽極の順に積層(逆構造)してもよい。
Examples of the materials used and the manufacturing method for manufacturing an EL device using the charge-transporting varnish of the present invention include, but are not limited to, the following.
An example of a method for producing an organic EL device or a quantum dot EL device having a hole injection layer made of a thin film obtained from the charge transporting varnish of the present invention is as follows. Note that it is preferable that the electrode is previously subjected to surface treatment such as cleaning with alcohol, pure water, etc., UV ozone treatment, oxygen-plasma treatment, etc. within a range that does not adversely affect the electrode.
A hole injection layer made of the charge transporting thin film of the present invention is formed on the anode substrate by the method described above. This is introduced into a vacuum evaporation apparatus, and a hole transport layer, a light emitting layer, an electron transport layer/hole blocking layer, an electron injection layer, and a cathode metal are sequentially deposited. Alternatively, instead of forming the hole transport layer and the light emitting layer by vapor deposition in this method, a composition for forming a hole transport layer containing a hole transporting polymer and a composition for forming a light emitting layer containing a light emitting polymer may be used. These layers are formed using a wet process. Note that, if necessary, an electron blocking layer may be provided between the light emitting layer and the hole transport layer. In the above, an example (sequential structure) in which the anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer/hole blocking layer, electron injection layer, and cathode are laminated in this order has been described, but the present invention is not limited to this. , a cathode, an electron injection layer, an electron transport layer/hole blocking layer, a light emitting layer, a hole transport layer, a hole injection layer, and an anode may be laminated in this order (reverse structure).
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されるわけではない。
Examples of anode materials include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and metal anodes made of metals typified by aluminum and their alloys. Preferably, the material has been subjected to chemical treatment. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used.
Note that other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン(α-NPD)、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5”-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2’:5’,2”-ターチオフェン(BMA-3T)等のオリゴチオフェン類などが挙げられるが、これらに限定されない。 Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimer, N,N'-bis(naphthalen-1-yl)-N,N'-bis (phenyl)-benzidine (α-NPD), 4,4',4"-tris[3-methylphenyl(phenyl)amino]triphenylamine (m-MTDATA), 4,4',4"-tris[1 -Triarylamines such as naphthyl(phenyl)amino]triphenylamine (1-TNATA), 5,5''-bis-{4-[bis(4-methylphenyl)amino]phenyl}-2,2': Examples include, but are not limited to, oligothiophenes such as 5',2''-terthiophene (BMA-3T).
 発光層を形成する材料としては、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2-ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられるが、これらに限定されない。
 また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、発光性ドーパントとしては、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等が挙げられるが、これらに限定されない。
Examples of materials forming the light-emitting layer include metal complexes such as aluminum complexes of 8-hydroxyquinoline, metal complexes of 10-hydroxybenzo[h]quinoline, bisstyrylbenzene derivatives, bisstyrylarylene derivatives, and (2-hydroxyphenyl)benzo Low-molecular luminescent materials such as thiazole metal complexes and silole derivatives; poly(p-phenylene vinylene), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene], poly(3-alkyl) Examples include, but are not limited to, systems in which a light-emitting material and an electron transfer material are mixed with a polymer compound such as thiophene) or polyvinylcarbazole.
In addition, when forming a light-emitting layer by vapor deposition, it may be co-deposited with a light-emitting dopant, and examples of the light-emitting dopant include metal complexes such as tris(2-phenylpyridine)iridium(III) (Ir(ppy) 3 ). Examples include, but are not limited to, naphthacene derivatives such as rubrene, quinacridone derivatives, and fused polycyclic aromatic rings such as perylene.
 電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられるが、これらに限定されない。 Materials for forming the electron transport layer/hole blocking layer include, but are not limited to, oxydiazole derivatives, triazole derivatives, phenanthroline derivatives, phenylquinoxaline derivatives, benzimidazole derivatives, pyrimidine derivatives, and the like.
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)の金属フッ化物が挙げられるが、これらに限定されない。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金等が挙げられるが、これらに限定されない。
 電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられるが、これに限定されない。
Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (MgO), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). metal fluorides, but are not limited to these.
Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
Examples of the material for forming the electron block layer include tris(phenylpyrazole)iridium, but are not limited thereto.
 正孔輸送性高分子としては、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,1’-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1’-ペンテン-5’-イル}フルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルシスキノキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられるが、これに限定されない。 Examples of hole-transporting polymers include poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid), poly[(9,9-dihexylfluorenyl-2,7-diyl)-co-( N,N'-bis{p-butylphenyl}-1,4-diaminophenylene)], poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N'-bis {p-butylphenyl}-1,1'-biphenylene-4,4-diamine)], poly[(9,9-bis{1'-penten-5'-yl}fluorenyl-2,7-diyl)- co-(N,N'-bis{p-butylphenyl}-1,4-diaminophenylene)], poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)- benzidine]-endcapped with polysilcisquinoxane, poly[(9,9-didioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl)) diphenylamine)], but is not limited thereto.
 発光性高分子としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2’-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられるが、これに限定されない。 Examples of luminescent polymers include polyfluorene derivatives such as poly(9,9-dialkylfluorene) (PDAF), poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylenevinylene) (MEH- Examples include, but are not limited to, polyphenylene vinylene derivatives such as PPV), polythiophene derivatives such as poly(3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
 発光層が量子ドットを含む形態(量子ドットEL素子)において、量子ドット材料としては、半導体材料として、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体およびI-II-IV-VI族半導体からなる群より選択される少なくとも1種の半導体材料を含むことができる。上記半導体材料の具体例としては、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe2、CuGaSe2、CuInS2、CuGaS2、CuInSe2、AgInS2、AgGaSe2、AgGaS2、C、SiおよびGe等が挙げられるが、これらに限定されない。 In the form in which the light emitting layer includes quantum dots (quantum dot EL device), the quantum dot material may include a II-VI group semiconductor, a III-V group semiconductor, an I-III-VI group semiconductor, a group IV semiconductor, and a semiconductor material. It can contain at least one semiconductor material selected from the group consisting of Group I-II-IV-VI semiconductors. Specific examples of the semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, CdHgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgST e, HgZnSeS, HgZnSeTe, HgZnSTe; GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb , InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP , GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb; SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, Pb SeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe , SnPbSeTe , SnPbSTe; Si, Ge, SiC, SiGe, AgInSe 2 , CuGaSe 2 , CuInS 2 , CuGaS 2 , CuInSe 2 , AgInS 2 , AgGaSe 2 , AgGaS 2 , C, Si and Ge. , to these Not limited.
 本発明の電荷輸送性ワニスは、上述した通り有機EL素子や量子ドットEL素子(量子ドット発光ダイオード)の正孔注入層、正孔輸送層、正孔注入輸送層等の陽極と発光層との間に設けられる機能層の形成に好適に用いられるが、その他にも有機光電変換素子、有機薄膜太陽電池、有機ペロブスカイト光電変換素子、有機集積回路、有機電界効果トランジスタ、有機薄膜トランジスタ、有機発光トランジスタ、有機光学検査器、有機光受容器、有機電場消光素子、発光電子化学電池、量子レーザー、有機レーザーダイオードおよび有機プラスモン発光素子等の電子素子における電荷輸送性薄膜の形成にも利用することができる。 As described above, the charge transporting varnish of the present invention can be used to connect an anode and a light emitting layer such as a hole injection layer, a hole transport layer, a hole injection transport layer, etc. of an organic EL device or a quantum dot EL device (quantum dot light emitting diode). Although it is suitably used to form a functional layer provided between, it is also used in addition to organic photoelectric conversion elements, organic thin film solar cells, organic perovskite photoelectric conversion elements, organic integrated circuits, organic field effect transistors, organic thin film transistors, organic light emitting transistors, It can also be used to form charge-transporting thin films in electronic devices such as organic optical analyzers, organic photoreceptors, organic field quenchers, light-emitting electrochemical cells, quantum lasers, organic laser diodes, and organic plasmon light-emitting devices. .
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下の通りである。
(1)1H-NMR:Bruker社製 核磁気共鳴分光計AVANCE III HD500MHz
(2)重量平均分子量(Mw)および数平均分子量(Mn)測定:(株)島津製作所製(カラム:SHODEX GPC KF-803L+GPC KF-804L、カラム温度:40℃、検出器:UV検出器(254nm)およびRI検出器、溶離液:THF、カラム流速:1.0mL/min.)、標準試料:ポリスチレン
(3)基板の洗浄:長州産業(株)製、基板洗浄装置(減圧プラズマ方式)
(4)電荷輸送性ワニスの塗布:ミカサ(株)製 スピンコーターMS-A100
(5)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(6)有機EL素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(7)有機EL素子の輝度等の測定:(株)EHC製 多チャンネルIVL測定装置
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The equipment used is as follows.
(1) 1H -NMR: Bruker nuclear magnetic resonance spectrometer AVANCE III HD500MHz
(2) Weight average molecular weight (Mw) and number average molecular weight (Mn) measurement: Shimadzu Corporation (Column: SHODEX GPC KF-803L + GPC KF-804L, Column temperature: 40°C, Detector: UV detector (254 nm) ) and RI detector, eluent: THF, column flow rate: 1.0 mL/min.), standard sample: polystyrene (3) Substrate cleaning: Choshu Sangyo Co., Ltd., substrate cleaning device (low-pressure plasma method)
(4) Application of charge transporting varnish: Spin coater MS-A100 manufactured by Mikasa Co., Ltd.
(5) Film thickness measurement: Fine shape measuring device Surfcoder ET-4000 manufactured by Kosaka Institute Co., Ltd.
(6) Fabrication of organic EL element: Multifunctional vapor deposition system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
(7) Measurement of brightness, etc. of organic EL elements: Multi-channel IVL measuring device manufactured by EHC Co., Ltd.
[1]原料化合物の合成
[合成例1]
Figure JPOXMLDOC01-appb-C000042
[1] Synthesis of raw material compounds [Synthesis Example 1]
Figure JPOXMLDOC01-appb-C000042
 三口フラスコ内に、1-ナフトール-3,6-ジスルホン酸ナトリウム(山田化学工業(株)製)10.0gと2,3,4,5,6-ペンタフルオロスチレン(東京化成工業(株)製)18.4g、炭酸ナトリウム(関東化学(株)製)5.02g、ジメチルスルホキシド(純正化学(株)製、以下同様)100gを加え、窒素雰囲気、80℃で30時間撹拌した。反応液を室温まで冷却した後、ジメチルスルホキシド200gを加え、室温で3時間撹拌することで、析出した生成物を溶解させた。得られた溶液をろ過した後、ろ液を減圧して溶媒を取り除き、粗生成物を得た。得られた粗生成物を2-プロパノール(純正化学(株)製)と酢酸エチル(純正化学(株)製、以下同様)の混合溶媒(1/1(w/w))900gに加え、室温で1時間撹拌した。析出した固体をろ過で回収し、得られた固体を減圧下で乾燥することで化合物1を得た(収量11.3g、収率76%)。化合物1の1H-NMRスペクトルを以下に示す。
1H-NMR(500MHz、DMSO):δ 5.87(d,J=11.5Hz,1H),6.12(d,J=18.0Hz,1H),6.72(dd,J=18.0,11.5Hz,1H),6.99(s,1H),7.88(dd,J=8.5,1.5Hz,1H),7.97(s,1H),8.21(s,1H),8.25(d,J=8.5Hz,1H)
In a three-neck flask, add 10.0 g of sodium 1-naphthol-3,6-disulfonate (manufactured by Yamada Chemical Industries, Ltd.) and 2,3,4,5,6-pentafluorostyrene (manufactured by Tokyo Chemical Industry Co., Ltd.). ), 5.02 g of sodium carbonate (manufactured by Kanto Kagaku Co., Ltd.), and 100 g of dimethyl sulfoxide (manufactured by Junsei Kagaku Co., Ltd., hereinafter the same) were added, and the mixture was stirred at 80° C. in a nitrogen atmosphere for 30 hours. After cooling the reaction solution to room temperature, 200 g of dimethyl sulfoxide was added and stirred at room temperature for 3 hours to dissolve the precipitated product. After filtering the obtained solution, the filtrate was depressurized to remove the solvent to obtain a crude product. The obtained crude product was added to 900 g of a mixed solvent (1/1 (w/w)) of 2-propanol (manufactured by Junsei Kagaku Co., Ltd.) and ethyl acetate (manufactured by Junsei Kagaku Co., Ltd., hereinafter the same), and the mixture was heated at room temperature. The mixture was stirred for 1 hour. The precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure to obtain Compound 1 (yield: 11.3 g, yield: 76%). The 1 H-NMR spectrum of Compound 1 is shown below.
1H -NMR (500MHz, DMSO): δ 5.87 (d, J = 11.5Hz, 1H), 6.12 (d, J = 18.0Hz, 1H), 6.72 (dd, J = 18 .0, 11.5Hz, 1H), 6.99 (s, 1H), 7.88 (dd, J=8.5, 1.5Hz, 1H), 7.97 (s, 1H), 8.21 (s, 1H), 8.25 (d, J=8.5Hz, 1H)
[合成例2]
Figure JPOXMLDOC01-appb-C000043
[Synthesis example 2]
Figure JPOXMLDOC01-appb-C000043
 化合物1(11.3g)を56.5gの水に溶解させ、陽イオン交換樹脂Dowex Monosphere650C(150mL、抽出溶媒:水)を用いたカラムクロマトグラフィーによりイオン交換を行った。pH1付近のフラクションを回収し、減圧下で乾燥することで化合物2を得た(10.24g、収率98.8%)。
 特許文献(国際公開第2020/218316号)記載の方法に順次従って、化合物3および後述の化合物4を合成した。窒素雰囲気下、四口フラスコに、ジメチルホルムアミド(関東化学(株)製)122mg、塩化チオニル(関東化学(株)製)12gを加え、70℃で1時間攪拌した。その後、化合物2(4.0g)、1,2-ジメトキシエタン(東京化成工業(株))12gの混合溶液を、ゆっくり滴下し、70℃で4時間攪拌した。その後、ヘキサン(関東化学(株)、以下同様)200gを加え、室温で2時間攪拌した。析出した固体をろ別し、50gのヘキサンで洗浄した後、減圧下、50℃で3時間乾燥させ、淡黄色の化合物3(2.4g)を得た(収率56%)。
Compound 1 (11.3 g) was dissolved in 56.5 g of water, and ion exchange was performed by column chromatography using a cation exchange resin Dowex Monosphere 650C (150 mL, extraction solvent: water). Fractions around pH 1 were collected and dried under reduced pressure to obtain Compound 2 (10.24 g, yield 98.8%).
Compound 3 and Compound 4 described below were synthesized sequentially according to the method described in patent document (International Publication No. 2020/218316). 122 mg of dimethylformamide (manufactured by Kanto Kagaku Co., Ltd.) and 12 g of thionyl chloride (manufactured by Kanto Kagaku Co., Ltd.) were added to a four-necked flask under a nitrogen atmosphere, and the mixture was stirred at 70° C. for 1 hour. Thereafter, a mixed solution of Compound 2 (4.0 g) and 12 g of 1,2-dimethoxyethane (Tokyo Kasei Kogyo Co., Ltd.) was slowly added dropwise, and the mixture was stirred at 70° C. for 4 hours. Thereafter, 200 g of hexane (manufactured by Kanto Kagaku Co., Ltd., hereinafter the same) was added, and the mixture was stirred at room temperature for 2 hours. The precipitated solid was filtered, washed with 50 g of hexane, and then dried at 50° C. for 3 hours under reduced pressure to obtain pale yellow Compound 3 (2.4 g) (yield: 56%).
 化合物3の1H-NMRスペクトルを以下に示す。
1H-NMR(500MHz、CDCl3):δ 5.84(d,J=11.9Hz,1H),6.22(d,J=18.0Hz,1H),6.75(dd,J=11.9Hz,18.0Hz,1H),7.35(s,1H),8.37(dd,J=9.0Hz,1.9Hz,1H),8.57(s,1H),8.78(d,J=9.0Hz,1H),8.84(d,J=1.8Hz,1H)
The 1 H-NMR spectrum of Compound 3 is shown below.
1 H-NMR (500 MHz, CDCl 3 ): δ 5.84 (d, J = 11.9 Hz, 1H), 6.22 (d, J = 18.0 Hz, 1H), 6.75 (dd, J = 11.9Hz, 18.0Hz, 1H), 7.35 (s, 1H), 8.37 (dd, J=9.0Hz, 1.9Hz, 1H), 8.57 (s, 1H), 8. 78 (d, J=9.0Hz, 1H), 8.84 (d, J=1.8Hz, 1H)
[合成例3]
Figure JPOXMLDOC01-appb-C000044
[Synthesis example 3]
Figure JPOXMLDOC01-appb-C000044
 窒素雰囲気下、20mL二口フラスコに、化合物3(2.4g)と、1-エトキシ-2-プロパノール(純正化学(株)製、以下同様)7.68gを加え、0~5℃で攪拌した。その後、N,N―ジメチルアミノピリジン(東京化成工業(株)製)1.3g、脱水N-メチル-2-ピロリドン(関東化学(株)製)7.2g、1-エトキシ-2―プロパノール(2.4g)の混合溶液を滴下し、0~5℃で1時間攪拌した。その後、酢酸エチル28gを加え、15%塩化アンモニウム水溶液を用いて分液することで有機層を洗浄し、分液後の有機層にジイソプロピルエーテル14gを加えた。その後、酢酸エチル:ジイソプロピルエーテル=2:1(質量比)溶液に懸濁させたシリカゲル9.6gを漏斗に充填し、分液後の溶液をろ過した。その後、酢酸エチル:ジイソプロピルエーテル=2:1(質量比)溶液でシリカゲルを洗浄した。得られた溶液を濃縮し、氷冷下、2-プロパノールに滴下した。析出物をろ別し、減圧下、室温で4時間乾燥させ、白色粉末の化合物4を1.5g得た(収率49.5%)。 Under a nitrogen atmosphere, compound 3 (2.4 g) and 7.68 g of 1-ethoxy-2-propanol (manufactured by Junsei Kagaku Co., Ltd., the same hereinafter) were added to a 20 mL two-necked flask, and stirred at 0 to 5 °C. . Thereafter, 1.3 g of N,N-dimethylaminopyridine (manufactured by Tokyo Chemical Industry Co., Ltd.), 7.2 g of dehydrated N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Ltd.), and 1-ethoxy-2-propanol ( A mixed solution of 2.4 g) was added dropwise, and the mixture was stirred at 0 to 5°C for 1 hour. Thereafter, 28 g of ethyl acetate was added, and the organic layer was washed by separating the layers using a 15% aqueous ammonium chloride solution, and 14 g of diisopropyl ether was added to the organic layer after the separation. Thereafter, the funnel was filled with 9.6 g of silica gel suspended in a solution of ethyl acetate: diisopropyl ether = 2:1 (mass ratio), and the separated solution was filtered. Thereafter, the silica gel was washed with a solution of ethyl acetate:diisopropyl ether=2:1 (mass ratio). The resulting solution was concentrated and added dropwise to 2-propanol under ice cooling. The precipitate was filtered off and dried under reduced pressure at room temperature for 4 hours to obtain 1.5 g of Compound 4 as a white powder (yield 49.5%).
 化合物4の1H-NMRスペクトルを以下に示す。
1H-NMR(500MHz、CDCl3):δ 0.96-0.94(m,6H),1.31(dd,J=6.5Hz,0.8Hz,3H),1.38(d,6.5Hz,3H),3.50-3.27(m,8H),4.78-4.73(m,1H),4.88-4.82(m,1H),5.81(d,J=12.0Hz,1H),6.19(d,18.0Hz,1H),6.73(dd,J=18.0Hz,12.0Hz,1H),7.20(s,1H),8.19(dd,J=8.9Hz,1.7Hz,1H),8.39(s,1H),8.61(d,J=8.9Hz,1H),8.66(d,J=1.4Hz,1H)
The 1 H-NMR spectrum of Compound 4 is shown below.
1 H-NMR (500 MHz, CDCl 3 ): δ 0.96-0.94 (m, 6H), 1.31 (dd, J=6.5Hz, 0.8Hz, 3H), 1.38 (d, 6.5Hz, 3H), 3.50-3.27 (m, 8H), 4.78-4.73 (m, 1H), 4.88-4.82 (m, 1H), 5.81 ( d, J = 12.0Hz, 1H), 6.19 (d, 18.0Hz, 1H), 6.73 (dd, J = 18.0Hz, 12.0Hz, 1H), 7.20 (s, 1H ), 8.19 (dd, J = 8.9Hz, 1.7Hz, 1H), 8.39 (s, 1H), 8.61 (d, J = 8.9Hz, 1H), 8.66 (d , J=1.4Hz, 1H)
[合成例4]
Figure JPOXMLDOC01-appb-C000045
[Synthesis example 4]
Figure JPOXMLDOC01-appb-C000045
 300mL4つ口フラスコに、4-ビニルフェニルボロン酸(東京化成工業(株)製、以下同様)4.44g、2-ブロモ-7-ヨード-9,9-ジメチル-9H-フルオレン(AGLAIA TECH社製)11.97g、テトラキストリフェニルホスフィンパラジウム(東京化成工業(株)製、以下同様)0.90g、炭酸ナトリウム(純正化学(株)製、以下同様)9.54g、トルエン(純正化学(株)、以下同様)、エタノール(純正化学(株)製、以下同様)、水を加え、80℃で4時間反応させた。分液で有機層を水で洗浄し、有機層を濃縮した。得られた固体にメタノールを加え、30分攪拌し、固体をろ過後、乾燥し、化合物5を10.27g得た。300mL4つ口フラスコに、化合物5(9.06g)、2-(4-ビフェニリル)アミノ-9,9-ジメチルフルオレン(東京化成工業(株)製)8.31g、ビス(ジベンジリデンアセトン)パラジウム(東京化成工業(株)製)0.397g、トリ-t-ブチルホスホニウムテトラフルオロホウ酸塩(富士フィルムワコーケミカル(株)製)0.400g、ナトリウムtert-ブトキシド2.43g(東京化成工業(株)製)、テトラヒドロフランを加え、70℃で3時間反応させた。分液で有機層を水で洗浄し、有機層を濃縮した。得られた固体をシリカゲルクロマトグラフィーで精製をおこない、化合物6を11.00g(収率68%)得た。 In a 300 mL four-neck flask, 4.44 g of 4-vinylphenylboronic acid (manufactured by Tokyo Kasei Kogyo Co., Ltd., the same applies hereinafter), and 2-bromo-7-iodo-9,9-dimethyl-9H-fluorene (manufactured by AGLAIA TECH). ) 11.97 g, tetrakistriphenylphosphine palladium (manufactured by Tokyo Kasei Kogyo Co., Ltd., hereinafter the same) 0.90 g, sodium carbonate (manufactured by Junsei Kagaku Co., Ltd., the same hereinafter) 9.54 g, toluene (Junsei Kagaku Co., Ltd.) , hereinafter the same), ethanol (manufactured by Junsei Kagaku Co., Ltd., hereinafter the same), and water were added, and the mixture was reacted at 80° C. for 4 hours. The organic layer was washed with water through liquid separation, and the organic layer was concentrated. Methanol was added to the obtained solid, stirred for 30 minutes, and the solid was filtered and dried to obtain 10.27 g of Compound 5. In a 300 mL four-necked flask, compound 5 (9.06 g), 8.31 g of 2-(4-biphenylyl)amino-9,9-dimethylfluorene (manufactured by Tokyo Chemical Industry Co., Ltd.), and bis(dibenzylideneacetone)palladium ( 0.397 g (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 0.400 g of tri-t-butylphosphonium tetrafluoroborate (manufactured by Fuji Film Wako Chemical Co., Ltd.), 2.43 g of sodium tert-butoxide (manufactured by Tokyo Kasei Kogyo Co., Ltd.) ) and tetrahydrofuran were added, and the mixture was reacted at 70°C for 3 hours. The organic layer was washed with water through liquid separation, and the organic layer was concentrated. The obtained solid was purified by silica gel chromatography to obtain 11.00 g (yield 68%) of Compound 6.
 化合物6の1H-NMRスペクトルを以下に示す。
1H-NMR(500MHz、THF-d8):δ 7.78-7.76(m,2H),7.71-7.63(m,8H),7.61(d,J=9.0Hz,2H),7.54(d,J=8.0Hz,2H),7.45-7.41(m,3H),7.38(t,J=2.0Hz,2H),7.32-7.27(m,5H),7.14(d,J=8.0Hz,2H),6.80(dd,J=17.6,10.9Hz,1H),5.84(d,J=17.7Hz,1H),5.25(d,J=11.1Hz,1H),1.51(s,6H),1.45(s,6H)
The 1 H-NMR spectrum of compound 6 is shown below.
1H -NMR (500MHz, THF-d8): δ 7.78-7.76 (m, 2H), 7.71-7.63 (m, 8H), 7.61 (d, J = 9.0Hz , 2H), 7.54 (d, J = 8.0Hz, 2H), 7.45-7.41 (m, 3H), 7.38 (t, J = 2.0Hz, 2H), 7.32 -7.27 (m, 5H), 7.14 (d, J = 8.0Hz, 2H), 6.80 (dd, J = 17.6, 10.9Hz, 1H), 5.84 (d, J = 17.7Hz, 1H), 5.25 (d, J = 11.1Hz, 1H), 1.51 (s, 6H), 1.45 (s, 6H)
[合成例5]
Figure JPOXMLDOC01-appb-C000046
[Synthesis example 5]
Figure JPOXMLDOC01-appb-C000046
 300mL4つ口フラスコに、4-ビニルフェニルボロン酸4.44g、3-ブロモ-9-フェニルカルバゾール(AGLAIA TECH社製)8.68g、テトラキストリフェニルホスフィンパラジウム0.104g、炭酸ナトリウム11.97g、トルエン、エタノール、水を加え、80℃で4時間反応させた。分液で有機層を水で洗浄し、有機層を濃縮した。得られた固体にメタノールを加え、30分攪拌し、固体をろ過後、乾燥し、化合物7を7.04g(収率76%)得た。 In a 300 mL four-necked flask, 4.44 g of 4-vinylphenylboronic acid, 8.68 g of 3-bromo-9-phenylcarbazole (manufactured by AGLAIA TECH), 0.104 g of tetrakistriphenylphosphine palladium, 11.97 g of sodium carbonate, and toluene. , ethanol, and water were added, and the mixture was reacted at 80° C. for 4 hours. The organic layer was washed with water through liquid separation, and the organic layer was concentrated. Methanol was added to the obtained solid, stirred for 30 minutes, and the solid was filtered and dried to obtain 7.04 g of Compound 7 (76% yield).
 化合物7の1H-NMRスペクトルを以下に示す。
1H-NMR(500MHz、DMSO-d6):δ 8.62(d,J=1.5Hz,1H),8.37(d,J=7.5Hz,1H),7.80-7.76(m,3H),7.72-7.69(m,2H),7.66-7.65(m,2H),7.60-7.54(m,3H),7.47-7.43(m,2H),7.40(d,J=8.0Hz,1H),7.32(t,J=8.0Hz,1H),6.80(dd,J=17.5,10.5Hz,1H),5.89(d,J=18.0Hz,1H),5.25(d,J=11.0Hz,1H)
The 1 H-NMR spectrum of Compound 7 is shown below.
1H -NMR (500MHz, DMSO-d6): δ 8.62 (d, J = 1.5Hz, 1H), 8.37 (d, J = 7.5Hz, 1H), 7.80-7.76 (m, 3H), 7.72-7.69 (m, 2H), 7.66-7.65 (m, 2H), 7.60-7.54 (m, 3H), 7.47-7 .43 (m, 2H), 7.40 (d, J = 8.0Hz, 1H), 7.32 (t, J = 8.0Hz, 1H), 6.80 (dd, J = 17.5, 10.5Hz, 1H), 5.89 (d, J = 18.0Hz, 1H), 5.25 (d, J = 11.0Hz, 1H)
[2]ポリマーの合成
[実施例1-1]
Figure JPOXMLDOC01-appb-C000047
[2] Polymer synthesis [Example 1-1]
Figure JPOXMLDOC01-appb-C000047
 窒素雰囲気下、化合物6 200mg(0.31mmоl)、化合物4 50mg(0.08mmоl)、AIBN(関東化学(株)製、以下同様)6.3mg、脱気したトルエン2.5gを10mL二口フラスコに加え、80℃で24時間攪拌した。反応後の溶液を、2-プロパノール:酢酸エチル=1:3(質量比)の混合溶媒30gに滴下し、室温で攪拌した。析出した固体をろ別し、2-プロパノール:酢酸エチル=1:3(質量比)の混合溶媒で洗浄した。洗浄後の固体を減圧下、40℃で5時間乾燥させ、黄色粉末のポリマーP1 60mgを得た。
GPC:Mw=12,000、Mn=9,100、Mw/Mn=1.32
Under a nitrogen atmosphere, 200 mg (0.31 mmol) of Compound 6, 50 mg (0.08 mmol) of Compound 4, 6.3 mg of AIBN (manufactured by Kanto Kagaku Co., Ltd., the same applies hereinafter), and 2.5 g of degassed toluene were placed in a 10 mL two-necked flask. and stirred at 80°C for 24 hours. The solution after the reaction was added dropwise to 30 g of a mixed solvent of 2-propanol:ethyl acetate=1:3 (mass ratio), and the mixture was stirred at room temperature. The precipitated solid was filtered off and washed with a mixed solvent of 2-propanol:ethyl acetate=1:3 (mass ratio). The washed solid was dried at 40° C. for 5 hours under reduced pressure to obtain 60 mg of yellow powder polymer P1.
GPC: Mw=12,000, Mn=9,100, Mw/Mn=1.32
[実施例1-2]
 窒素雰囲気下、化合物6 200mg(0.31mmоl)、化合物4 100mg(0.15mmоl)、AIBN 7.6mg、脱気したトルエン3.0gを10mL二口フラスコに加え、80℃で25時間攪拌した。反応後の溶液を、2-プロパノール:酢酸エチル=1:1(質量比)の混合溶媒30gに滴下し、室温で攪拌した。析出した固体をろ別し、2-プロパノール:酢酸エチル=1:1(質量比)の混合溶媒で洗浄した。洗浄後の固体を減圧下、40℃で5時間乾燥させ、黄色粉末のポリマーP2 180mgを得た。
GPC:Mw=8,500、Mn=6,000、Mw/Mn=1.42
[Example 1-2]
Under a nitrogen atmosphere, 200 mg (0.31 mmol) of Compound 6, 100 mg (0.15 mmol) of Compound 4, 7.6 mg of AIBN, and 3.0 g of degassed toluene were added to a 10 mL two-necked flask and stirred at 80° C. for 25 hours. The solution after the reaction was added dropwise to 30 g of a mixed solvent of 2-propanol:ethyl acetate=1:1 (mass ratio), and the mixture was stirred at room temperature. The precipitated solid was filtered and washed with a mixed solvent of 2-propanol:ethyl acetate=1:1 (mass ratio). The washed solid was dried at 40° C. for 5 hours under reduced pressure to obtain 180 mg of yellow powder of polymer P2.
GPC: Mw=8,500, Mn=6,000, Mw/Mn=1.42
[比較例1-1]
Figure JPOXMLDOC01-appb-C000048
[Comparative example 1-1]
Figure JPOXMLDOC01-appb-C000048
 窒素雰囲気下、化合物7 1.5g、AIBN 71.3mg、脱気したトルエン12gを30mL二口フラスコに加え、80℃で10時間攪拌した。反応後の溶液を、酢酸エチル120gに滴下し、室温で攪拌した。析出した固体をろ別し、酢酸エチルで洗浄した。洗浄後の固体を減圧下、40℃で5時間乾燥させ、淡黄色粉末のポリマーP3 720mgを得た。
GPC:Mw=8,300、Mn=5,900、Mw/Mn=1.41
Under a nitrogen atmosphere, 1.5 g of Compound 7, 71.3 mg of AIBN, and 12 g of degassed toluene were added to a 30 mL two-necked flask, and the mixture was stirred at 80° C. for 10 hours. The solution after the reaction was added dropwise to 120 g of ethyl acetate, and the mixture was stirred at room temperature. The precipitated solid was filtered off and washed with ethyl acetate. The washed solid was dried under reduced pressure at 40° C. for 5 hours to obtain 720 mg of polymer P3 as a pale yellow powder.
GPC: Mw=8,300, Mn=5,900, Mw/Mn=1.41
[比較例1-2]
 窒素雰囲気下、化合物6 200mg(0.31mmоl)、化合物2 73mg(0.15mmоl)、AIBN 6.3mg、脱気したトルエン2.5gを10mL二口フラスコに加えたところ化合物2が析出して重合反応ができなかった。
[Comparative example 1-2]
When 200 mg (0.31 mmol) of compound 6, 73 mg (0.15 mmol) of compound 2, 6.3 mg of AIBN, and 2.5 g of degassed toluene were added to a 10 mL two-necked flask under a nitrogen atmosphere, compound 2 precipitated and polymerized. I couldn't react.
[比較例1-3]
Figure JPOXMLDOC01-appb-C000049
[Comparative example 1-3]
Figure JPOXMLDOC01-appb-C000049
 窒素雰囲気下、化合物6 1,014mg(1.55mmоl)、化合物2 370mg(0.77mmоl)、AIBN 38mg、脱気したN,N-ジメチルアセトアミド(関東化学(株)製)13.8gを30mLl二口フラスコに加え、80℃で20時間攪拌した。反応後の溶液を、酢酸エチル:メタノール=3:1(質量比)の混合溶媒70gに滴下し、室温で攪拌した。析出した固体を濾別し、酢酸エチル:メタノール=3:1(質量比)の混合溶媒で洗浄した。洗浄後の固体を減圧下、40℃で5時間乾燥させ、黄褐色粉末のポリマーP4 340mgを得た。
GPC:Mw=65,500、Mn=12,400、Mw/Mn=5.28
Under a nitrogen atmosphere, 1,014 mg (1.55 mmol) of Compound 6, 370 mg (0.77 mmol) of Compound 2, 38 mg of AIBN, and 13.8 g of degassed N,N-dimethylacetamide (manufactured by Kanto Kagaku Co., Ltd.) were added in 30 mL. The mixture was added to a neck flask and stirred at 80°C for 20 hours. The solution after the reaction was added dropwise to 70 g of a mixed solvent of ethyl acetate:methanol=3:1 (mass ratio), and the mixture was stirred at room temperature. The precipitated solid was separated by filtration and washed with a mixed solvent of ethyl acetate:methanol=3:1 (mass ratio). The washed solid was dried under reduced pressure at 40° C. for 5 hours to obtain 340 mg of polymer P4 as a yellowish brown powder.
GPC: Mw=65,500, Mn=12,400, Mw/Mn=5.28
[比較例1-4]
Figure JPOXMLDOC01-appb-C000050
[Comparative example 1-4]
Figure JPOXMLDOC01-appb-C000050
 窒素雰囲気下、化合物4 600mg、AIBN 15mg、脱気したトルエン5.4gをフラスコに加え、80℃で10時間攪拌した。その後、AIBN15mgをトルエン1.0gに溶解させた溶液をフラスコに加え、さらに80℃で10時間攪拌した。得られたポリマーの溶解性が高く、再沈殿による精製が困難であったため、反応後の溶液から、エバポレーターにより溶媒を除去し、50℃で5時間乾燥させ、黄白色のポリマーP5を粗物として得た。
GPC:Mw=6,320、Mn=5,090、Mw/Mn=1.24
Under a nitrogen atmosphere, 600 mg of Compound 4, 15 mg of AIBN, and 5.4 g of degassed toluene were added to the flask and stirred at 80° C. for 10 hours. Thereafter, a solution of 15 mg of AIBN dissolved in 1.0 g of toluene was added to the flask, and the mixture was further stirred at 80° C. for 10 hours. Since the resulting polymer had high solubility and purification by reprecipitation was difficult, the solvent was removed from the reaction solution using an evaporator and dried at 50°C for 5 hours to obtain yellow-white polymer P5 as a crude product. Obtained.
GPC: Mw=6,320, Mn=5,090, Mw/Mn=1.24
[3]電荷輸送性ワニス調製用の組成物の調製
[調製例1-1]
 メチルエチルケトン(MEK)分散シリカゾル(日産化学(株)製MEK-EC-2130Y、固形分濃度35.7質量%)100gと、トリエチレングリコールブチルメチルエーテル(東邦化学工業(株)製、以下同様)175gをナスフラスコに入れ、エバポレーターを用いてMEK分散シリカゾル中に含まれるMEKをトリエチレングリコールブチルメチルエーテルに溶媒置換し、トリエチレングリコールブチルメチルエーテル分散のシリカゾル(シリカ濃度20.5質量%)を得た。
[3] Preparation of composition for preparing charge transporting varnish [Preparation Example 1-1]
100 g of methyl ethyl ketone (MEK) dispersed silica sol (MEK-EC-2130Y manufactured by Nissan Chemical Co., Ltd., solid content concentration 35.7% by mass) and 175 g of triethylene glycol butyl methyl ether (manufactured by Toho Chemical Co., Ltd., hereinafter the same) was placed in an eggplant flask, and the MEK contained in the MEK-dispersed silica sol was solvent-substituted with triethylene glycol butyl methyl ether using an evaporator to obtain triethylene glycol butyl methyl ether-dispersed silica sol (silica concentration 20.5% by mass). Ta.
[4]電荷輸送性ワニスの調製
[実施例2-1]
 サンプル管に、実施例1-1で得られたP1 51mg、トリエチレングリコールブチルメチルエーテル1.07g、安息香酸ブチル(東京化成工業(株)製、以下同様)0.64g、フタル酸ジメチル(東京化成工業(株)製、以下同様)0.43gを加え、スターラーを用いて室温で30分間攪拌した。その後、孔径0.2μmのPPシリンジフィルターでろ過し、電荷輸送性ワニス(固形分濃度2.3質量%)を得た。
[4] Preparation of charge transporting varnish [Example 2-1]
In a sample tube, 51 mg of P1 obtained in Example 1-1, 1.07 g of triethylene glycol butyl methyl ether, 0.64 g of butyl benzoate (manufactured by Tokyo Kasei Kogyo Co., Ltd., the same applies hereinafter), and dimethyl phthalate (Tokyo 0.43 g (manufactured by Kasei Kogyo Co., Ltd., hereinafter the same) was added, and the mixture was stirred for 30 minutes at room temperature using a stirrer. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 μm to obtain a charge transporting varnish (solid content concentration: 2.3% by mass).
[実施例2-2]
 サンプル管に、実施例1-2で得られたP2 60mg、トリエチレングリコールブチルメチルエーテル0.97g、安息香酸ブチル0.58g、フタル酸ジメチル0.39gを加え、スターラーを用いて室温で30分間攪拌した。その後、孔径0.2μmのPPシリンジフィルターでろ過し、電荷輸送性ワニス(固形分濃度3.0質量%)を得た。
[Example 2-2]
Add 60 mg of P2 obtained in Example 1-2, 0.97 g of triethylene glycol butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate to a sample tube, and stir at room temperature for 30 minutes using a stirrer. Stirred. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 μm to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
[実施例2-3]
 サンプル管に、実施例1-2で得られたP2 30mg、下記式のアリールスルホン酸エステル化合物A 30mg、トリエチレングリコールブチルメチルエーテル0.97g、安息香酸ブチル0.58g、フタル酸ジメチル0.39gを加え、スターラーを用いて室温で30分間攪拌した。その後、孔径0.2μmのPPシリンジフィルターでろ過し、電荷輸送性ワニス(固形分濃度3.0質量%)を得た。なお、下記のアリールスルホン酸エステル化合物は、国際公開第2017/217457号に記載の方法に従って合成した。
[Example 2-3]
In a sample tube, 30 mg of P2 obtained in Example 1-2, 30 mg of arylsulfonic acid ester compound A of the following formula, 0.97 g of triethylene glycol butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate. was added and stirred for 30 minutes at room temperature using a stirrer. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 μm to obtain a charge transporting varnish (solid content concentration: 3.0% by mass). In addition, the following arylsulfonic acid ester compound was synthesized according to the method described in International Publication No. 2017/217457.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
[実施例2-4]
 サンプル管に、実施例1-2で得られたP2 36mg、調製例1-1で得られたトリエチレングリコールブチルメチルエーテル分散のシリカゾル0.12g、トリエチレングリコールブチルメチルエーテル0.88g、安息香酸ブチル0.58g、フタル酸ジメチル0.39gを加え、スターラーを用いて室温で30分間攪拌した。その後、孔径0.2μmのPPシリンジフィルターでろ過し、電荷輸送性ワニス(固形分濃度3.0質量%)を得た。
[Example 2-4]
In a sample tube, 36 mg of P2 obtained in Example 1-2, 0.12 g of silica sol dispersed in triethylene glycol butyl methyl ether obtained in Preparation Example 1-1, 0.88 g of triethylene glycol butyl methyl ether, and benzoic acid. 0.58 g of butyl and 0.39 g of dimethyl phthalate were added, and the mixture was stirred at room temperature for 30 minutes using a stirrer. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 μm to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
[実施例2-5]
 サンプル管に、実施例1-2で得られたP2 18mg、上記アリールスルホン酸エステル化合物A 18mg、調製例1-1で得られたトリエチレングリコールブチルメチルエーテル分散のシリカゾル0.12g、トリエチレングリコールブチルメチルエーテル0.88g、安息香酸ブチル0.58g、フタル酸ジメチル0.39gを加え、スターラーを用いて室温で30分間攪拌した。その後、孔径0.2μmのPPシリンジフィルターでろ過し、電荷輸送性ワニス(固形分濃度3.0質量%)を得た。
[Example 2-5]
In a sample tube, 18 mg of P2 obtained in Example 1-2, 18 mg of the above arylsulfonic acid ester compound A, 0.12 g of the triethylene glycol butyl methyl ether-dispersed silica sol obtained in Preparation Example 1-1, and triethylene glycol. 0.88 g of butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate were added, and the mixture was stirred at room temperature using a stirrer for 30 minutes. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 μm to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
[比較例2-1]
 サンプル管に、比較例1-1で得られたP3 48mg、化合物4 12mg、トリエチレングリコールブチルメチルエーテル0.97g、安息香酸ブチル0.58g、フタル酸ジメチル0.39gを加え、スターラーを用いて室温で30分間攪拌した。その後、孔径0.2μmのPPシリンジフィルターでろ過し、電荷輸送性ワニス(固形分濃度3.0質量%)を得た。
[Comparative example 2-1]
48 mg of P3 obtained in Comparative Example 1-1, 12 mg of Compound 4, 0.97 g of triethylene glycol butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate were added to a sample tube, and the mixture was stirred using a stirrer. Stirred at room temperature for 30 minutes. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 μm to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
[比較例2-2]
 サンプル管に、比較例1-1で得られたP3 48mg、比較例1-4で得られたP5 12mg、トリエチレングリコールブチルメチルエーテル0.97g、安息香酸ブチル0.58g、フタル酸ジメチル0.39gを加え、スターラーを用いて室温で30分間攪拌した。その後、孔径0.2μmのPPシリンジフィルターでろ過し、電荷輸送性ワニス(固形分濃度3.0質量%)を得た。
[Comparative example 2-2]
In a sample tube, 48 mg of P3 obtained in Comparative Example 1-1, 12 mg of P5 obtained in Comparative Example 1-4, 0.97 g of triethylene glycol butyl methyl ether, 0.58 g of butyl benzoate, and 0.5 g of dimethyl phthalate. 39 g was added and stirred for 30 minutes at room temperature using a stirrer. Thereafter, it was filtered through a PP syringe filter with a pore size of 0.2 μm to obtain a charge transporting varnish (solid content concentration: 3.0% by mass).
[比較例2-3]
 サンプル管に、比較例1-1で得られたP3 48mg、下記式のアリールスルホン酸化合物B 12mg、トリエチレングリコールブチルメチルエーテル0.97g、安息香酸ブチル0.58g、フタル酸ジメチル0.39gを加え、スターラーを用いて室温で30分間攪拌したところ、アリールスルホン酸化合物Bが溶解せず、均一な電荷輸送性ワニスを得ることができなかった。なお、下記のアリールスルホン酸エステル化合物は、国際公開第2006/025342号に記載の方法に従って合成した。
[Comparative example 2-3]
Into a sample tube, 48 mg of P3 obtained in Comparative Example 1-1, 12 mg of arylsulfonic acid compound B of the following formula, 0.97 g of triethylene glycol butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate were added. In addition, when the mixture was stirred for 30 minutes at room temperature using a stirrer, the arylsulfonic acid compound B was not dissolved and a uniform charge-transporting varnish could not be obtained. In addition, the following arylsulfonic acid ester compound was synthesized according to the method described in International Publication No. 2006/025342.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
[比較例2-4]
 サンプル管に、比較例1-3で得られたP4 60mg、トリエチレングリコールブチルメチルエーテル0.97g、安息香酸ブチル0.58g、フタル酸ジメチル0.39gを加え、スターラーを用いて室温で30分間攪拌したところ、P4の溶け残りが生じ、均一な電荷輸送性ワニスを得ることができなかった。
[Comparative example 2-4]
Add 60 mg of P4 obtained in Comparative Example 1-3, 0.97 g of triethylene glycol butyl methyl ether, 0.58 g of butyl benzoate, and 0.39 g of dimethyl phthalate to a sample tube, and stir at room temperature for 30 minutes using a stirrer. When the mixture was stirred, undissolved P4 remained, making it impossible to obtain a uniform charge-transporting varnish.
[6]溶剤耐性試験
 実施例2-1~2-5および比較例2-1~2-2で得られた電荷輸送性ワニスを、スピンコーターを用いてITO基板に塗布した後、大気下、120℃で1分間焼成した。次いで、大気下で180℃、15分間焼成し、ITO基板上に厚さ30~40nm程度の均一な電荷輸送性薄膜を形成した。なお、ITO基板としては、インジウム錫酸化物(ITO)がガラス基板上に膜厚50nmでパターニングされた、25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
[6] Solvent resistance test After applying the charge transporting varnishes obtained in Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-2 to an ITO substrate using a spin coater, It was baked at 120°C for 1 minute. Next, it was baked in the atmosphere at 180° C. for 15 minutes to form a uniform charge-transporting thin film with a thickness of about 30 to 40 nm on the ITO substrate. The ITO substrate used was a 25 mm x 25 mm x 0.7 t glass substrate on which indium tin oxide (ITO) was patterned with a film thickness of 50 nm. , 30 seconds) to remove impurities on the surface.
 上記で作製した電荷輸送性薄膜付きITO基板の、電荷輸送性薄膜の膜厚を触針式薄膜段差計により測定した。その後、膜厚測定後の電荷輸送性薄膜付きITO基板を、トルエン溶媒で満たしたシャーレに完全に浸漬させ、15分間静置した。その後、基板を引き上げ、エアブローにより溶媒を除去した後、100℃で5分間加熱乾燥して溶媒を完全に除去した。その後、各基板の電荷輸送性薄膜の膜厚を再度触針計により測定し、トルエン溶媒浸漬前後の膜厚変化を評価した。溶媒浸漬前後の膜厚変化率(残膜率)の結果を表1に示す。 The thickness of the charge-transporting thin film of the ITO substrate with the charge-transporting thin film prepared above was measured using a stylus-type thin-film profilometer. Thereafter, the ITO substrate with the charge transporting thin film after the film thickness measurement was completely immersed in a petri dish filled with toluene solvent, and left to stand for 15 minutes. Thereafter, the substrate was pulled up, the solvent was removed by air blowing, and then the solvent was completely removed by heating and drying at 100° C. for 5 minutes. Thereafter, the thickness of the charge transporting thin film of each substrate was measured again using a stylus meter, and changes in the film thickness before and after immersion in toluene solvent were evaluated. Table 1 shows the results of the film thickness change rate (remaining film rate) before and after immersion in the solvent.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 表1の結果より、実施例2-1~2-5で作製された電荷輸送性薄膜は、トルエン浸漬前後の膜厚変化率が小さく、トルエンに対して溶剤耐性を有することが確認された。一方、比較例2-1で作製された電荷輸送性薄膜は、浸漬後の膜厚が浸漬前と比較して17%程度厚くなっており、トルエンに対する溶剤耐性が不足していることが示された。トルエンに浸漬したことで、膜が膨潤したためと考えられる。また、比較例2-2で作製された電荷輸送性薄膜はトルエン浸漬後に膜減りが見られた。電荷輸送性ポリマーとドーパントポリマーの相互作用が弱く、溶剤耐性が得られなかったと推察している。実施例2-1~2-5の電荷輸送性ワニスで用いられているP1およびP2は、ポリマーの内部に、アリールスルホン酸エステル部位を有するため、電荷輸送性薄膜を焼成した際に、スルホン酸エステル部位が脱保護し、スルホン酸基となることで、トルエンに対して溶剤耐性が発現したと推察している。一方で、比較例2-1では、高分子内部にアリールスルホン酸エステル部位を有しないことから、焼成後の電荷輸送性薄膜がトルエンに対して溶剤耐性が不足したものと推察している。 From the results in Table 1, it was confirmed that the charge transporting thin films produced in Examples 2-1 to 2-5 had a small rate of change in film thickness before and after immersion in toluene, and had solvent resistance to toluene. On the other hand, the charge transporting thin film prepared in Comparative Example 2-1 was approximately 17% thicker after immersion than before immersion, indicating that it lacked solvent resistance to toluene. Ta. This is thought to be due to the membrane swelling due to immersion in toluene. Further, the charge transporting thin film prepared in Comparative Example 2-2 showed film thinning after being immersed in toluene. It is assumed that the interaction between the charge transporting polymer and the dopant polymer was weak, and that solvent resistance could not be obtained. P1 and P2 used in the charge transporting varnishes of Examples 2-1 to 2-5 have an arylsulfonic acid ester moiety inside the polymer, so when the charge transporting thin film is fired, the sulfonic acid It is speculated that solvent resistance to toluene was developed by deprotecting the ester moiety and forming a sulfonic acid group. On the other hand, since Comparative Example 2-1 does not have an arylsulfonic acid ester moiety inside the polymer, it is presumed that the charge transporting thin film after firing lacked solvent resistance to toluene.
[7]有機EL素子の作製および特性評価
[実施例3-1]
 実施例2-1で得られた電荷輸送性ワニスを、スピンコーターを用いてITO基板に塗布した後、大気下、120℃で1分間乾燥した。次に、乾燥させたITO基板を大気雰囲気下、180℃で15分間焼成し、ITO基板上に50nmの均一な薄膜を形成した。ITO基板としては、パターニングされた厚さ150nmのITO膜が表面に形成された、25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いて、α-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン)を0.2nm/秒にて30nm成膜した。次に、関東化学(株)製の電子ブロック材料HTEB-01を10nm成膜した。次いで、新日鉄住金化学(株)製の発光層ホスト材料NS60と発光層ドーパント材料Ir(ppy)3を共蒸着した。共蒸着は、Ir(ppy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq3、フッ化リチウムおよびアルミニウムの薄膜を順次積層して、有機EL素子を得た。この際、蒸着レートは、Alq3およびアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nmおよび80nmとした。
[7] Fabrication and characteristic evaluation of organic EL device [Example 3-1]
The charge transporting varnish obtained in Example 2-1 was applied to an ITO substrate using a spin coater, and then dried at 120° C. for 1 minute in the atmosphere. Next, the dried ITO substrate was baked at 180° C. for 15 minutes in an air atmosphere to form a uniform thin film of 50 nm on the ITO substrate. The ITO substrate used was a 25 mm x 25 mm x 0.7 t glass substrate with a patterned 150 nm thick ITO film formed on the surface, and the surface was cleaned using an O 2 plasma cleaning device (150 W, 30 seconds) before use. The impurities above were removed. Next, α-NPD (N,N'-di(1- naphthyl )-N,N'- diphenylbenzidine) was formed into a 30 nm film at 0.2 nm/sec. Next, a 10 nm film of electronic block material HTEB-01 manufactured by Kanto Kagaku Co., Ltd. was formed. Next, a light-emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and a light-emitting layer dopant material Ir(ppy) 3 were co-deposited. In co-evaporation, the deposition rate was controlled so that the concentration of Ir(ppy) 3 was 6%, and the layers were stacked to a thickness of 40 nm. Next, thin films of Alq 3 , lithium fluoride and aluminum were sequentially laminated to obtain an organic EL device. At this time, the deposition rate was 0.2 nm/sec for Alq 3 and aluminum, and 0.02 nm/sec for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製、モレスコモイスチャーカットWB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製、HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。 In addition, in order to prevent characteristic deterioration due to the influence of oxygen, water, etc. in the air, the organic EL element was sealed with a sealing substrate, and then its characteristics were evaluated. The sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76°C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is bonded with an adhesive (Moresco Moisture Cut WB90US (P) manufactured by MORESCO Co., Ltd.). It was pasted together. At this time, a water absorbing agent (manufactured by Dynic Co., Ltd., HD-071010W-40) was placed in the sealing substrate together with the organic EL element. The bonded sealing substrates were irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ/cm 2 ) and then annealed at 80° C. for 1 hour to cure the adhesive.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
[実施例3-2]
 実施例2-1で得られた電荷輸送性ワニスに代えて、実施例2-2で得られた電荷輸送性ワニスを用いた以外は、実施例3-1の手順を繰り返し、有機EL素子を得た。
[Example 3-2]
The procedure of Example 3-1 was repeated except that the charge-transporting varnish obtained in Example 2-2 was used instead of the charge-transporting varnish obtained in Example 2-1, and an organic EL element was manufactured. Obtained.
[実施例3-3]
 実施例2-1で得られた電荷輸送性ワニスに代えて、実施例2-3で得られた電荷輸送性ワニスを用いた以外は、実施例3-1の手順を繰り返し、有機EL素子を得た。
[Example 3-3]
The procedure of Example 3-1 was repeated except that the charge-transporting varnish obtained in Example 2-3 was used instead of the charge-transporting varnish obtained in Example 2-1, and an organic EL element was manufactured. Obtained.
[実施例3-4]
 実施例2-1で得られた電荷輸送性ワニスに代えて、実施例2-4得られた電荷輸送性ワニスを用いた以外は、実施例3-1の手順を繰り返し、有機EL素子を得た。
[Example 3-4]
An organic EL element was obtained by repeating the procedure of Example 3-1, except that the charge transporting varnish obtained in Example 2-4 was used instead of the charge transporting varnish obtained in Example 2-1. Ta.
[実施例3-5]
 実施例2-1で得られた電荷輸送性ワニスに代えて、実施例2-5得られた電荷輸送性ワニスを用いた以外は、実施例3-1の手順を繰り返し、有機EL素子を得た。
[Example 3-5]
An organic EL element was obtained by repeating the procedure of Example 3-1, except that the charge transporting varnish obtained in Example 2-5 was used instead of the charge transporting varnish obtained in Example 2-1. Ta.
 実施例3-1~3-5で作製した有機EL素子それぞれについて、輝度10,000cd/m2で駆動した場合における駆動電圧、電流密度および発光効率、ならびに輝度の半減期(初期輝度10,000cd/m2が半分に達するのに要する時間)を測定した。結果を表2に示す。 For each of the organic EL elements produced in Examples 3-1 to 3-5, the driving voltage, current density, luminous efficiency, and luminance half-life (initial luminance of 10,000 cd/m 2 ) when driven at a luminance of 10,000 cd/m 2 /m 2 ) was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 実施例3-1~3-5で作製した有機EL素子は、いずれも良好な有機EL素子特性を示した。実施例3-1および3-2の結果は、ポリマーP1およびP2は、単独でも良好な電荷輸送性を有することを示しており、すなわちポリマーP1およびP2は、高分子内部に有するアリールスルホン酸エステル部位が、ドーパントとして機能していることを示している。高分子内部にドーパント機能を含有することで、アリールアミンからなる電荷輸送部位に円滑にドーピングが起こり、良好な電荷輸送性を示したと推察している。 The organic EL devices produced in Examples 3-1 to 3-5 all exhibited good organic EL device characteristics. The results of Examples 3-1 and 3-2 show that polymers P1 and P2 have good charge transport properties even when used alone, that is, polymers P1 and P2 have aryl sulfonic acid esters inside the polymer. This indicates that the site functions as a dopant. It is inferred that by containing a dopant function inside the polymer, doping occurs smoothly in the charge transporting site made of arylamine, and the polymer exhibits good charge transporting properties.

Claims (20)

  1.  下記式(A1)で表される繰り返し単位および下記式(B1)で表される繰り返し単位を含むことを特徴とするポリマー。
    Figure JPOXMLDOC01-appb-C000001
    〔{式(A1)中、RMは、水素原子またはメチル基である。R1aおよびR2aは、それぞれ独立に、単結合またはフェニレン基であり、該フェニレン基の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。
     X1aは、-N(Ar3a)-、-S-または-O-である。
     Ar1aは、炭素数6~20のアリーレン基、炭素数3~20のヘテロアリーレン基または下記式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を2つ取り除いて得られる2価の基であり、これらの基の芳香環上の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。
     Ar2aおよびAr3aは、それぞれ独立に、炭素数6~20のアリール基または下記式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を1つ取り除いて得られる1価の基であり、これらの基の芳香環上の水素原子の一部または全部が、シアノ基、ニトロ基、ハロゲン原子、ビニル基、トリフルオロビニル基、アクリロイル基、メタクリロイル基、オキセタニル基、エポキシ基、炭素数1~20のアルキル基または炭素数1~20のハロゲン化アルキル基で置換されていてもよい。
     X1aが-N(Ar3a)-のとき、Ar2aとAr3aとが互いに結合してこれらが結合する窒素原子とともに環を形成してもよい。
     R2aがフェニレン基のとき、R2aとAr2aとが互いに結合してこれらが結合する窒素原子、硫黄原子または酸素原子とともに環を形成してもよい。
     ただし、Ar1a~Ar3aの少なくも1つは、下記式(A2)で表されるジアルキルフルオレンの芳香環上の水素原子を取り除いて得られる基である。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3aおよびR4aは、それぞれ独立に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、または少なくとも1つのエーテル構造を含む炭素数2~20のアルキル基である。)}
    (式(B1)中、ArFは、フッ化アリーレン基を表し、X1bは、O、S、NH、CONHまたはNHCOを表し、ArSは、環上に少なくとも1つのSO3123基を有するアリール基を表し、D1は、置換または非置換の二価炭化水素基を示し、D2は、単結合、O、S、または置換もしくは非置換の2価アミノ基を示し、D3は、置換または非置換の一価炭化水素基を示すが、D2が単結合である場合は水素原子であってもよい。)〕
    A polymer characterized by containing a repeating unit represented by the following formula (A1) and a repeating unit represented by the following formula (B1).
    Figure JPOXMLDOC01-appb-C000001
    [{In formula (A1), R M is a hydrogen atom or a methyl group. R 1a and R 2a each independently represent a single bond or a phenylene group, and some or all of the hydrogen atoms of the phenylene group are a cyano group, a nitro group, a halogen atom, a vinyl group, a trifluorovinyl group, or an acryloyl group. may be substituted with a methacryloyl group, an oxetanyl group, an epoxy group, an alkyl group having 1 to 20 carbon atoms, or a halogenated alkyl group having 1 to 20 carbon atoms.
    X 1a is -N(Ar 3a )-, -S- or -O-.
    Ar 1a is a divalent group obtained by removing two hydrogen atoms on the aromatic ring of an arylene group having 6 to 20 carbon atoms, a heteroarylene group having 3 to 20 carbon atoms, or a dialkylfluorene represented by the following formula (A2). A group in which some or all of the hydrogen atoms on the aromatic rings of these groups are a cyano group, nitro group, halogen atom, vinyl group, trifluorovinyl group, acryloyl group, methacryloyl group, oxetanyl group, or epoxy group. , may be substituted with an alkyl group having 1 to 20 carbon atoms or a halogenated alkyl group having 1 to 20 carbon atoms.
    Ar 2a and Ar 3a are each independently an aryl group having 6 to 20 carbon atoms or a monovalent group obtained by removing one hydrogen atom on the aromatic ring of dialkylfluorene represented by the following formula (A2). Some or all of the hydrogen atoms on the aromatic ring of these groups are cyano group, nitro group, halogen atom, vinyl group, trifluorovinyl group, acryloyl group, methacryloyl group, oxetanyl group, epoxy group, carbon number It may be substituted with an alkyl group having 1 to 20 carbon atoms or a halogenated alkyl group having 1 to 20 carbon atoms.
    When X 1a is -N(Ar 3a )-, Ar 2a and Ar 3a may be bonded to each other to form a ring together with the nitrogen atom to which they are bonded.
    When R 2a is a phenylene group, R 2a and Ar 2a may be bonded to each other to form a ring together with the nitrogen atom, sulfur atom or oxygen atom to which they are bonded.
    However, at least one of Ar 1a to Ar 3a is a group obtained by removing the hydrogen atom on the aromatic ring of dialkylfluorene represented by the following formula (A2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3a and R 4a are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 2 to 20 carbon atoms containing at least one ether structure. be.)}
    (In formula (B1), Ar F represents a fluorinated arylene group, X 1b represents O, S, NH, CONH or NHCO, and Ar S represents at least one SO 3 D 1 D 2 on the ring. Represents an aryl group having D 3 group, D 1 represents a substituted or unsubstituted divalent hydrocarbon group, and D 2 represents a single bond, O, S, or a substituted or unsubstituted divalent amino group. , D 3 represents a substituted or unsubstituted monovalent hydrocarbon group, but if D 2 is a single bond, it may be a hydrogen atom.)
  2.  上記式(A1)で表される繰り返し単位が、下記式(A1-1)で表されるものである請求項1記載のポリマー。
    Figure JPOXMLDOC01-appb-C000003
    (式中、RM、R1a、R2aおよびAr1a~Ar3aは、上記と同じ意味を表す。)
    The polymer according to claim 1, wherein the repeating unit represented by the above formula (A1) is one represented by the following formula (A1-1).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R M , R 1a , R 2a and Ar 1a to Ar 3a represent the same meanings as above.)
  3.  上記R1aが、単結合である請求項1記載のポリマー。 The polymer according to claim 1, wherein R 1a is a single bond.
  4.  上記R2aが、フェニレン基である請求項1記載のポリマー。 The polymer according to claim 1, wherein R 2a is a phenylene group.
  5.  上記Ar1aが、9,9-ジメチル-9H-フルオレン-2,7-ジイル基である請求項1記載のポリマー。 The polymer according to claim 1, wherein the Ar 1a is a 9,9-dimethyl-9H-fluorene-2,7-diyl group.
  6.  上記ArFが、パーフルオロアリーレン基である請求項1記載のポリマー。 The polymer according to claim 1, wherein the Ar F is a perfluoroarylene group.
  7.  上記ArFが、テトラフルオロフェニレン基である請求項6記載のポリマー。 7. The polymer according to claim 6, wherein the Ar F is a tetrafluorophenylene group.
  8.  上記ArSが、環上に2つ以上の上記SO3123基を有するアリール基である請求項1記載のポリマー。 The polymer according to claim 1, wherein the Ar S is an aryl group having two or more of the SO 3 D 1 D 2 D 3 groups on the ring.
  9.  上記アリール基が、ナフチル基である請求項8記載のポリマー。 The polymer according to claim 8, wherein the aryl group is a naphthyl group.
  10.  上記X1bが、Oである請求項1記載のポリマー。 The polymer according to claim 1, wherein the X 1b is O.
  11.  請求項1~10のいずれか1項記載のポリマーからなる電荷輸送性物質。 A charge transporting substance comprising the polymer according to any one of claims 1 to 10.
  12.  請求項1記載のポリマーと、溶媒とを含む電荷輸送性ワニス。 A charge transporting varnish comprising the polymer according to claim 1 and a solvent.
  13.  さらに、請求項1記載のポリマー以外のその他の電荷輸送性物質を含む請求項12記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 12, further comprising a charge transporting substance other than the polymer according to claim 1.
  14.  上記その他の電荷輸送性物質が、アリールアミン誘導体(ただし、上記ポリマーを除く)またはチオフェン誘導体である請求項13記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 13, wherein the other charge transporting substance is an arylamine derivative (excluding the polymer) or a thiophene derivative.
  15.  請求項12~14のいずれか1項記載の電荷輸送性ワニスから得られた電荷輸送性薄膜。 A charge transporting thin film obtained from the charge transporting varnish according to any one of claims 12 to 14.
  16.  請求項15記載の電荷輸送性薄膜を備える電子素子。 An electronic device comprising the charge transporting thin film according to claim 15.
  17.  請求項15記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。 An organic electroluminescent device comprising the charge transporting thin film according to claim 15.
  18.  上記電荷輸送性薄膜が、正孔注入層または正孔輸送層である請求項17記載の有機エレクトロルミネッセンス素子。 The organic electroluminescent device according to claim 17, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
  19.  請求項15記載の電荷輸送性薄膜を備える量子ドットエレクトロルミネッセンス素子。 A quantum dot electroluminescent device comprising the charge transporting thin film according to claim 15.
  20.  上記電荷輸送性薄膜が、正孔注入層または正孔輸送層である請求項19記載の量子ドットエレクトロルミネッセンス素子。 The quantum dot electroluminescent device according to claim 19, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
PCT/JP2023/009226 2022-03-28 2023-03-10 Polymer and use thereof WO2023189399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-051148 2022-03-28
JP2022051148 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189399A1 true WO2023189399A1 (en) 2023-10-05

Family

ID=88200709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009226 WO2023189399A1 (en) 2022-03-28 2023-03-10 Polymer and use thereof

Country Status (2)

Country Link
TW (1) TW202346396A (en)
WO (1) WO2023189399A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217455A1 (en) * 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor
JP2020500417A (en) * 2016-11-04 2020-01-09 ダウ グローバル テクノロジーズ エルエルシー Organic light emitting diodes containing aminium radical cations
WO2020067288A1 (en) * 2018-09-28 2020-04-02 日産化学株式会社 Polymer and use thereof
WO2022209891A1 (en) * 2021-03-29 2022-10-06 日産化学株式会社 Polymer and use thereof
WO2023008176A1 (en) * 2021-07-26 2023-02-02 日産化学株式会社 Fluorinated arylsulfonate polymer compound and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217455A1 (en) * 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor
JP2020500417A (en) * 2016-11-04 2020-01-09 ダウ グローバル テクノロジーズ エルエルシー Organic light emitting diodes containing aminium radical cations
WO2020067288A1 (en) * 2018-09-28 2020-04-02 日産化学株式会社 Polymer and use thereof
WO2022209891A1 (en) * 2021-03-29 2022-10-06 日産化学株式会社 Polymer and use thereof
WO2023008176A1 (en) * 2021-07-26 2023-02-02 日産化学株式会社 Fluorinated arylsulfonate polymer compound and use thereof

Also Published As

Publication number Publication date
TW202346396A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP2010528426A (en) Method for forming organic light-emitting diode and device manufactured by the method
JP2010515260A (en) Method for forming organic light emitting diode and device manufactured by this method
JP2022169503A (en) charge transport varnish
EP3101002B1 (en) Aryl sulfonic acid compound and use of same
TWI816825B (en) charge transport composition
JP2023171836A (en) Charge-transporting composition
TW202319408A (en) Fluorinated arylsulfonate polymer compound and use thereof
EP3101003B1 (en) Aryl sulfonic acid compound and use thereof
WO2023189399A1 (en) Polymer and use thereof
WO2019069780A1 (en) Ink and light-emitting element
KR20230161502A (en) Polymers and their uses
KR20220025814A (en) charge transport varnish
KR20210144750A (en) Fluorene derivatives and their use
KR20220027970A (en) charge transport varnish
WO2022181587A1 (en) Charge transport ink composition
KR102683952B1 (en) Charge transport composition
CN116157473B (en) Method for manufacturing substrate with organic functional film
WO2020009184A1 (en) Composition for forming charge-transporting thin film
JP7517337B2 (en) Charge Transporting Varnish
KR20210151082A (en) charge transport varnish
KR20230164092A (en) Charge-transporting varnish

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779423

Country of ref document: EP

Kind code of ref document: A1