WO2023189131A1 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
WO2023189131A1
WO2023189131A1 PCT/JP2023/007524 JP2023007524W WO2023189131A1 WO 2023189131 A1 WO2023189131 A1 WO 2023189131A1 JP 2023007524 W JP2023007524 W JP 2023007524W WO 2023189131 A1 WO2023189131 A1 WO 2023189131A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor light
light emitting
via electrodes
emitting device
main surface
Prior art date
Application number
PCT/JP2023/007524
Other languages
French (fr)
Japanese (ja)
Inventor
智一 岡▲崎▼
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023189131A1 publication Critical patent/WO2023189131A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present disclosure relates to a semiconductor light emitting device.
  • Patent Document 1 discloses a substrate, a plurality of first plated conductive parts, a plurality of second plated conductive parts, a first intermediate conductive part, a second intermediate conductive part, a third plated conductive part, a fourth plated conductive part, and a plurality of plated conductive parts.
  • a semiconductor light emitting device including an LED chip is disclosed.
  • the semiconductor light emitting device of Patent Document 1 further includes a first plated wiring and a second plated wiring.
  • Each of the first plated wiring and the second plated wiring extends from a first edge of the substrate to a second edge of the substrate.
  • the plurality of LED chips are sandwiched between the first plated wiring and the second plated wiring in the first direction.
  • the first plated wiring and the second plated wiring are interposed between the surface of the substrate and the frame of the substrate. When viewed in the thickness direction, the first plated wiring and the second plated wiring are located apart from the recessed portion of the substrate.
  • An embodiment of the present disclosure provides a semiconductor light emitting device that can improve heat dissipation.
  • a semiconductor light emitting device includes a substrate having a first main surface on one side and a second main surface on the other side, and an occupation rate of the first main surface with respect to a surface area of 10% or more in plan view. a plurality of via electrodes buried in the substrate at intervals such that the via electrodes are buried at intervals of 60% or less; an electrode film that collectively covers the plurality of via electrodes on the first main surface; and a semiconductor light emitting chip disposed on the electrode film so as to face the via electrode.
  • FIG. 1 is a schematic plan view of a semiconductor light emitting device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic bottom view of the semiconductor light emitting device.
  • FIG. 3 is a diagram showing a cross section taken along line III-III in FIG.
  • FIG. 4A is a plan view of a semiconductor light emitting device showing a first arrangement pattern of vias.
  • FIG. 4B is a bottom view of the semiconductor light emitting device showing the first array pattern of vias.
  • FIG. 5A is a plan view of a semiconductor light emitting device showing a second arrangement pattern of vias.
  • FIG. 5B is a bottom view of the semiconductor light emitting device showing a second array pattern of vias.
  • FIG. 5A is a plan view of a semiconductor light emitting device showing a second arrangement pattern of vias.
  • FIG. 6A is a plan view of a semiconductor light emitting device showing a third array pattern of vias.
  • FIG. 6B is a bottom view of the semiconductor light emitting device showing the third array pattern of vias.
  • FIG. 7A is a plan view of a semiconductor light emitting device showing a fourth arrangement pattern of vias.
  • FIG. 7B is a bottom view of the semiconductor light emitting device showing a fourth arrangement pattern of vias.
  • FIG. 8A is a plan view of a semiconductor light emitting device showing a fifth array pattern of vias.
  • FIG. 8B is a bottom view of the semiconductor light emitting device showing a fifth array pattern of vias.
  • FIG. 9 is a diagram showing the relationship between via area ratio and heat dissipation.
  • FIG. 10 is a diagram showing the relationship between substrate thickness and heat dissipation.
  • FIG. 11 is a diagram showing the relationship between the thickness of the electrode film and heat dissipation.
  • FIG. 1 is a schematic plan view of a semiconductor light emitting device 1 according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic bottom view of the semiconductor light emitting device 1.
  • FIG. 3 is a diagram showing a cross section taken along line III-III in FIG.
  • the semiconductor light emitting device 1 includes a case 2, a semiconductor light emitting chip 3, a diode chip 4, and a sealing resin 5.
  • the sealing resin 5 is omitted for convenience of understanding.
  • the case 2 is the base of the semiconductor light emitting device 1 and includes a base material 6 as an example of a substrate and wiring 7.
  • the case 2 has a size of about 5 to 10 mm square in plan view, and a thickness T1 (thickness between the first main surface 9 and the second main surface 10) of 50 ⁇ m or more and 500 ⁇ m or less.
  • the base material 6 has a thick plate shape that is substantially rectangular in plan view, and is made of, for example, a resin substrate or a ceramic substrate made of alumina or the like.
  • a resin substrate is used as the base material 6, preferably a resin build-up substrate (multilayer substrate).
  • a resin substrate can reduce costs compared to a ceramic substrate.
  • a housing recess 8 is formed in the center of the base material 6.
  • the accommodation recess 8 accommodates the semiconductor light emitting chip 3 and the diode chip 4, and has a rectangular shape in plan view.
  • the base material 6 has a first main surface 9 and a second main surface 10.
  • the depth of the accommodation recess 8 is, for example, about 500 ⁇ m.
  • the wiring 7 is used as a path for supplying DC power to the semiconductor light emitting chip 3.
  • the wiring 7 has a surface layer 11 as an example of an electrode film, an intermediate layer 12, a back layer 13, and a through wiring 14.
  • the surface layer 11 includes a plurality of anode pads 15 and a plurality of cathode pads 16.
  • the plurality of anode pads 15 and the plurality of cathode pads 16 are arranged as a pair of adjacent anode pads 15 and cathode pads 16, respectively.
  • the plurality of anode pads 15 and the plurality of cathode pads 16 may include a set of a first anode pad 17 and a first cathode pad 18, and a set of a second anode pad 19 and a second cathode pad 20.
  • the first anode pad 17 and the first cathode pad 18 are for mounting the semiconductor light emitting chip 3
  • the second anode pad 19 and the second cathode pad 20 are for mounting the diode chip 4. It may be for.
  • the first cathode pad 18 includes a cathode island portion 21 to which the semiconductor light emitting chip 3 is die-bonded, and a cathode extension portion 22 extending from the cathode island portion 21.
  • the cathode island portion 21 is formed approximately at the center of the first main surface 9 of the base material 6 .
  • the cathode extension part 22 is integrally connected to the cathode island part 21. In FIG. 1, the cathode extension portion 22 is formed into a substantially L-shape when viewed from above.
  • the cathode extension portion 22 has a straight portion 23 extending along the first peripheral edge and the second peripheral edge of the base material 6 .
  • a pair of cathode extension parts 22 are formed that extend from the cathode island part 21 in mutually opposite directions (directions along the third and fourth peripheral edges of the base material 6).
  • a diode region 24 for the second anode pad 19 and the second cathode pad 20 is defined between the pair of cathode extension portions 22 (linear portions 23).
  • the first anode pad 17 includes an anode pad portion 25 to which a wiring 7 member (for example, a wire 44 described below) extending from the semiconductor light emitting chip 3 is bonded, and an anode extension portion 26 extending from the anode pad portion 25.
  • the anode pad section 25 is formed linearly along the third peripheral edge of the base material 6 on the side of the cathode island section 21 .
  • the anode extension portion 26 includes a pair of linear anode extension portions 26 extending from the anode pad portion 25 along the first peripheral edge and the second peripheral edge of the base material 6 .
  • the anode extension part 26 is formed adjacent to the cathode extension part 22 so as to be located on the same straight line as the linear part 23 of the cathode extension part 22 .
  • the second anode pad 19 and the second cathode pad 20 are arranged in the diode region 24.
  • the second anode pad 19 and the second cathode pad 20 are both formed in an island shape, and are spaced apart from each other along the fourth peripheral edge of the base material 6.
  • surface layer 11 may be formed of a plurality of conductive layers.
  • surface layer 11 includes a first conductive layer 27 and a second conductive layer 28 .
  • the first conductive layer 27 is made of Cu, for example, and may be a Cu plating layer.
  • the second conductive layer 28 is made of Au, for example, and may be an Au plating layer.
  • the first conductive layer 27 has a thickness T2 of, for example, 10 ⁇ m or more and 200 ⁇ m or less.
  • the second conductive layer 28 has a thickness T3.
  • intermediate layer 12 is formed between first main surface 9 and second main surface 10 in the thickness direction of base material 6.
  • the intermediate layer 12 is made of Cu, for example.
  • the intermediate layer 12 includes a first relay wiring 29 and a second relay wiring 30.
  • the first relay wiring 29 is electrically connected to the first anode pad 17 and the first cathode pad 18.
  • the second relay wiring 30 is electrically connected to the second anode pad 19 and the second cathode pad 20. Note that in FIG. 3, only the first relay wiring 29 connected to the first cathode pad 18 and the second relay wiring 30 connected to the second cathode pad 20 are shown.
  • the back layer 13 is formed on the second main surface 10 of the base material 6 and includes a plurality of anode mounting electrodes 31 and a plurality of cathode mounting electrodes 32.
  • the plurality of anode mounting electrodes 31 and the plurality of cathode mounting electrodes 32 are used for surface mounting the semiconductor light emitting device 1 on, for example, a circuit board.
  • the plurality of anode mounting electrodes 31 and the plurality of cathode mounting electrodes 32 are made of Au.
  • the plurality of anode mounting electrodes 31 and the plurality of cathode mounting electrodes 32 are arranged as a pair of adjacent anode mounting electrodes 31 and cathode mounting electrodes 32, respectively.
  • the plurality of anode mounted electrodes 31 and the plurality of cathode mounted electrodes 32 include a set of a first anode mounted electrode 33 and a first cathode mounted electrode 34, and a set of a second anode mounted electrode 35 and a second cathode mounted electrode 36. It's okay to stay.
  • first anode mounting electrode 33 and first cathode mounting electrode 34 are electrically connected to first anode pad 17 and first cathode pad 18, respectively.
  • the second anode mounting electrode 35 and the second cathode mounting electrode 36 are electrically connected to the second anode pad 19 and the second cathode pad 20, respectively.
  • the through wiring 14 penetrates the base material 6 in the thickness direction and electrically connects the front layer 11 and the back layer 13.
  • the through wiring 14 is exposed from both the first main surface 9 and the second main surface 10 of the base material 6.
  • the through wiring 14 may electrically connect the front layer 11 and the back layer 13 via the intermediate layer 12.
  • the through wiring 14 is made of Cu.
  • the through wiring 14 may be referred to as a "via electrode”, “through via”, “connecting via”, or “buried via” based on its shape.
  • the through wiring 14 includes a plurality of first through wirings 37 and a plurality of second through wirings 38.
  • Some of the plurality of first through wirings 37 electrically connect between the first anode pad 17 and the first anode mounting electrode 33. The remainder of the plurality of first through wirings 37 may electrically connect between the first cathode pad 18 and the first cathode mounting electrode 34. Some of the plurality of second through wirings 38 electrically connect between the second anode pad 19 and the second anode mounting electrode 35. The remainder of the plurality of second through wirings 38 may electrically connect between the second cathode pad 20 and the second cathode mounting electrode 36.
  • the semiconductor light emitting chip 3 is a vertical cavity surface emitting laser chip.
  • the semiconductor light emitting chip 3 may be a VCSEL (Vertical Cavity Surface Emitting LASER).
  • the semiconductor light emitting chip 3 has a first main surface 39 and a second main surface 40.
  • the first main surface 39 is a laser emission end surface.
  • the semiconductor light emitting chip 3 has an anode electrode 41 on the first main surface 39 and a cathode electrode 42 (omitted in FIG. 3) on the second main surface 40.
  • the semiconductor light emitting chip 3 is die-bonded to the first cathode pad 18 by bonding the cathode electrode 42 to the first cathode pad 18 via a conductive bonding material layer 43 (for example, an Ag adhesive layer).
  • the anode electrode 41 of the semiconductor light emitting chip 3 is connected to the first anode pad 17 via a plurality of wires 44 .
  • the diode chip 4 is a photodiode chip and has a first main surface 45 and a second main surface 46.
  • the first main surface 45 is the light receiving surface of the photodiode.
  • the diode chip 4 has an anode electrode 47 on a first main surface 45 and a cathode electrode 48 (omitted in FIG. 3) on a second main surface 46.
  • the diode chip 4 is mounted on the second cathode pad 20 by bonding the cathode electrode 48 to the second cathode pad 20 via a conductive bonding material layer 49 (for example, an Ag adhesive layer).
  • the anode electrode 47 of the diode chip 4 is connected to the second anode pad 19 via a plurality of wires 50.
  • the sealing resin 5 fills the housing recess 8 of the case 2 and covers the plurality of semiconductor light emitting chips 3.
  • the sealing resin 5 is made of a transparent epoxy resin or silicone resin mixed with a fluorescent material.
  • the through wiring 14 conducts heat generated in the semiconductor light emitting chip 3 and the diode chip 4 from the first main surface 9 of the base material 6 to the first main surface 9 of the base material 6 . 2 to the main surface 10. Heat on the first main surface 9 side is transmitted to the anode mounting electrode 31 and the cathode mounting electrode 32 via the through wiring 14 . Thereby, the heat within the case 2 can be diffused to the mounting board (not shown).
  • FIG. 4A is a plan view of the semiconductor light emitting device 1 showing the first arrangement pattern of the through wiring 14 (via).
  • FIG. 4B is a bottom view of the semiconductor light emitting device 1 showing the first arrangement pattern of the through wiring 14 (via).
  • the arrangement position of the semiconductor light emitting chip 3 is shown by broken lines only in FIG. 4B.
  • the diode chip 4 is not mounted, and pads and electrodes related to the diode chip 4 are omitted.
  • the through wiring 14 includes a plurality of via electrodes 51.
  • Each via electrode 51 is formed into a circular shape in plan view.
  • the width (diameter) of each via electrode 51 in plan view may be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the plurality of via electrodes 51 include a first via electrode 52 and a second via electrode 53.
  • the first via electrode 52 connects the first cathode pad 18 and the first cathode mounting electrode 34, and may also be referred to as a cathode via electrode.
  • the second via electrode 53 connects the first anode pad 17 and the first anode mounting electrode 33, and may be referred to as an anode via electrode.
  • the plurality of first via electrodes 52 are provided over almost the entire area of the first cathode pad 18 and the first cathode mounting electrode 34.
  • the plurality of first via electrodes 52 are arranged in a first direction They are arranged in a staggered pattern with intervals in the direction.
  • the pitch of the plurality of first via electrodes 52 may be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • semiconductor light emitting chip 3 is arranged to face a plurality of first via electrodes 52. As shown in FIG.
  • the plurality of second via electrodes 53 are arranged in a row at intervals along the longitudinal direction of the first anode pad 17 and the first anode mounting electrode 33. More specifically, they are arranged along the longitudinal direction of the anode pad section 25.
  • the pitch of the plurality of second via electrodes 53 may be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the total area occupation rate of the plurality of first via electrodes 52 and the plurality of second via electrodes 53 is 10% or more and 60% or less, preferably 25% or more and 35% or less.
  • the area occupation rate is the ratio of the total planar area of each via electrode 51 to the surface area of the first main surface 9 of the base material 6. If the area occupation rate of the via electrode 51 is within the above range, the heat dissipation of the semiconductor light emitting device 1 can be improved.
  • FIG. 5A is a plan view of the semiconductor light emitting device 1 showing a second arrangement pattern of the through wiring 14 (via).
  • FIG. 5B is a bottom view of the semiconductor light emitting device 1 showing the second arrangement pattern of the through wiring 14 (via). For clarity, the arrangement position of the semiconductor light emitting chip 3 is shown by broken lines only in FIG. 5B.
  • the diode chip 4 is not mounted, and pads and electrodes related to the diode chip 4 are omitted.
  • the through wiring 14 includes a plurality of via electrodes 61.
  • the plurality of via electrodes 61 include a first via electrode 62 and a second via electrode 63.
  • the first via electrode 62 connects the first cathode pad 18 and the first cathode mounting electrode 34, and may also be referred to as a cathode via electrode.
  • the second via electrode 63 connects the first anode pad 17 and the first anode mounting electrode 33, and may be referred to as an anode via electrode.
  • Each first via electrode 62 is formed into an elliptical shape in plan view.
  • the shape of each first via electrode 62 may be expressed as an elliptical shape in a plan view or a band shape in a plan view. That is, each first via electrode 62 has a shape having a long peripheral edge 64 in the longitudinal direction having a relatively long width W1 and a short peripheral edge 65 in the direction orthogonal to the longitudinal direction having a relatively short width W2. .
  • the width W2 of each first via electrode 62 in plan view may be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the plurality of first via electrodes 62 can be further classified into first type via electrodes 66 and second type via electrodes 67 based on the arrangement direction. For clarity, in FIG. 5A, the first type via electrode 66 is hatched and the second type via electrode 67 is shown in outline.
  • the plurality of first type via electrodes 66 are arranged so that the long peripheral edges 64 are parallel to the first direction X. Therefore, each first type via electrode 66 is formed in a band shape extending in the first direction X.
  • the plurality of second type via electrodes 67 are arranged so that the long peripheral edges 64 are parallel to the second direction Y. That is, the second type via electrodes 67 are arranged in such a manner that the first type via electrodes 66 are rotated by 90 degrees.
  • the plurality of first lines L1 are lines parallel to the first direction X
  • the plurality of second lines L2 are lines parallel to the second direction Y.
  • the plurality of first lines L1 and the plurality of second lines L2 are each set at intervals in a stripe shape.
  • At least one first-type via electrode 66 and one second-type via electrode 67 are arranged in a partitioned region 68 corresponding to a window portion of the lattice surrounded by a plurality of lines L1 and L2.
  • the plurality of first type via electrodes 66 are arranged at intervals along each of the first line L1 and the second line L2. ing.
  • the plurality of first type via electrodes 66 along the first line L1 are arranged such that adjacent short peripheral edges 65 face each other.
  • the plurality of first type via electrodes 66 along the second line L2 are arranged such that adjacent long peripheral edges 64 face each other.
  • the plurality of second type via electrodes 67 are arranged at intervals along each of the first line L1 and the second line L2.
  • the plurality of second type via electrodes 67 along the first line L1 are arranged such that adjacent long peripheral edges 64 face each other.
  • the plurality of second type via electrodes 67 along the second line L2 are arranged such that adjacent short peripheral edges 65 face each other.
  • semiconductor light emitting chip 3 is arranged to face a plurality of first type via electrodes 66 and a plurality of second type via electrodes 67.
  • the pitch between the plurality of first type via electrodes 66 and the plurality of second type via electrodes 67 may be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the plurality of second via electrodes 63 are arranged in a row at intervals along the longitudinal direction of the first anode pad 17 and the first anode mounting electrode 33. More specifically, they are arranged along the longitudinal direction of the anode pad section 25. Each second via electrode 63 is formed into a circular shape in plan view. The width (diameter) of each second via electrode 63 in plan view may be, for example, 50 ⁇ m or more and 200 ⁇ m or less. The pitch of the plurality of second via electrodes 63 may be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the total area occupation rate of the plurality of first via electrodes 62 and the plurality of second via electrodes 63 is 10% or more and 60% or less, preferably 40% or more and 50% or less.
  • the area occupation rate is the ratio of the total planar area of each via electrode 61 to the surface area of the first main surface 9 of the base material 6. If the area occupation rate of the via electrode 61 is within the above range, the heat dissipation of the semiconductor light emitting device 1 can be improved.
  • the area occupancy rate of the second via electrodes 63 is smaller.
  • FIG. 6A is a plan view of the semiconductor light emitting device 1 showing the third arrangement pattern of the through wiring 14 (via).
  • FIG. 6B is a bottom view of the semiconductor light emitting device 1 showing the third arrangement pattern of the through wiring 14 (via). For clarity, the arrangement position of the semiconductor light emitting chip 3 is shown by broken lines only in FIG. 6B.
  • the third arrangement pattern is the same as the first arrangement pattern, except that the total area occupation rate of the plurality of first via electrodes 52 and the plurality of second via electrodes 53 is larger than that of the first arrangement pattern.
  • the total area occupation rate of the plurality of first via electrodes 52 and the plurality of second via electrodes 53 may be 10% or more and 60% or less, preferably 30% or more and 40% or less. .
  • FIG. 7A is a plan view of the semiconductor light emitting device 1 showing a fourth arrangement pattern of the through wiring 14 (via).
  • FIG. 7B is a bottom view of the semiconductor light emitting device 1 showing the fourth arrangement pattern of the through wirings 14 (vias). For clarity, the arrangement position of the semiconductor light emitting chip 3 is shown by broken lines only in FIG. 7B.
  • the fourth array pattern is a modification of the second array pattern.
  • the arrangement direction of the first type via electrode 66 and the second type via electrode 67 is not only the direction along the first line L1 and the second line L2 but also the direction intersecting these (45° in FIG. 7A). including the direction along the third line L3 extending in the direction intersecting the third line L3.
  • the plurality of first type via electrodes 66 and the plurality of second type via electrodes 67 are arranged at intervals also in the diagonal direction along the third line L3.
  • the total area occupation rate of the plurality of first via electrodes 62 and the plurality of second via electrodes 63 is larger than that of the second arrangement pattern.
  • the total area occupation rate of the plurality of first via electrodes 62 and the plurality of second via electrodes 63 is 10% or more and 60% or less, preferably 45% or more and 55% or less.
  • FIG. 8A is a plan view of a semiconductor light emitting device showing a fifth arrangement pattern of through interconnections 14 (vias).
  • FIG. 8B is a bottom view of the semiconductor light emitting device showing the fifth arrangement pattern of the through wiring 14 (via).
  • the arrangement positions of the semiconductor light emitting chip 3 and the diode chip 4 are shown by broken lines only in FIG. 8B.
  • the fifth array pattern is a modification of the second array pattern.
  • the arrangement direction of the first type via electrode 66 and the second type via electrode 67 is not only the direction along the first line L1 and the second line L2, but also the direction intersecting these (45° in FIG. 8A). including the direction along the third line L3 extending in the direction intersecting the third line L3.
  • the plurality of first type via electrodes 66 and the plurality of second type via electrodes 67 are arranged at intervals also in the diagonal direction along the third line L3.
  • the plurality of via electrodes 61 include a third via electrode 69 and a fourth via electrode 70.
  • the third via electrode 69 connects the second cathode pad 20 and the second cathode mounting electrode 36, and may also be referred to as a second cathode via electrode.
  • the fourth via electrode 70 connects the second anode pad 19 and the second anode mounting electrode 35, and may be referred to as a second anode via electrode.
  • diode chip 4 is arranged to face a plurality of third via electrodes 69.
  • Each third via electrode 69 and each fourth via electrode 70 are formed into a circular shape in plan view.
  • the width (diameter) of each third via electrode 69 and each fourth via electrode 70 in plan view may be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the pitch of the plurality of third via electrodes 69 and the plurality of fourth via electrodes 70 may be, for example, 50 ⁇ m or more and 200 ⁇ m or less.
  • the total area occupation rate of the plurality of via electrodes 62, 63, 69, and 70 is 10% or more and 60% or less.
  • Heat dissipation simulation results Next, the area occupation rate of the through wiring 14 (via) on the first main surface 9, the thickness T1 of the base material 6 (substrate) (see FIG. 3), and the thickness T2+T3 of the surface layer 11 (see FIG. 3) The relationship between this and the heat dissipation properties of the semiconductor light emitting device 1 was investigated by simulation. In the following simulation, a resin build-up board (multilayer board) was set as the sample base material 6.
  • the relationship between the area occupation rate of the through wiring 14 (via) on the first main surface 9 and the heat dissipation performance will be shown.
  • FIG. 9 an example in which an AlN substrate (without through wiring) is used as the base material 6 is shown as a reference example.
  • the area occupancy rate of the through wiring 14 (via) is set to 8.3%, 9.3%, 12.3%, 26.1%, 33.5%, and 40.2%. . From the results shown in FIG. 9, it was found that by increasing the area occupation rate of the through wiring 14 (via), the temperature of the base material 6 (substrate) can be reduced and the heat dissipation performance can be improved.
  • the relationship between the thickness T1 of the base material 6 (substrate) and heat dissipation is shown.
  • FIG. 10 an example in which an AlN substrate (without through wiring) is used as the base material 6 is shown as a reference example.
  • the area occupation rate of the through wiring 14 (via) was set to 40.2%, and the thickness of the base material 6 was set to 100 ⁇ m and 225 ⁇ m. From the results shown in FIG. 10, it was found that even if the thickness of the base material 6 was increased, the temperature of the base material 6 (substrate) hardly changed.
  • FIG. 11 an example in which an AlN substrate (no through wiring, substrate thickness 225 ⁇ m) is used as the base material 6 is shown as a reference example.
  • the area occupation rate of the through wiring 14 (via) was set to 40.2%, and the thickness of the base material 6 was set to 100 ⁇ m (sample 1) and 225 ⁇ m (sample 2).
  • a single layer structure of Cu was set as the surface layer 11. From the results shown in FIG. 11, it was found that in the resin base material 6, the thicker the surface layer 11 (Cu pattern), the more the heat dissipation can be improved.
  • the AlN substrate of the reference example it was found that even if the surface layer 11 was made thicker, the temperature of the base material 6 (substrate) hardly changed.
  • the area occupation rate of the through wiring 14 (via) on the first main surface 9 is preferably 10% or more and 60% or less, and more preferably 25% or more and 60% or less.
  • the thickness of the surface layer 11 (Cu pattern) is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 60 ⁇ m or more and 200 ⁇ m or less.
  • Appendix 1-2 The semiconductor light emitting device according to appendix 1-1, wherein the semiconductor light emitting chip includes a vertical cavity surface emitting laser chip.
  • the plurality of via electrodes have at least one of a polygonal shape, a circular shape, an elliptical shape, and an elliptical shape when viewed in plan.
  • each of the plurality of via electrodes has a portion formed with a width of 50 ⁇ m or more and 200 ⁇ m or less in plan view.
  • Appendix 1-12 The semiconductor light emitting device according to appendix 1-11, wherein the conductive bonding material layer is an Ag adhesive layer.
  • a semiconductor light emitting device comprising: a semiconductor light emitting chip disposed on the electrode film so as to face the plurality of first type via electrodes and the plurality of second type via electrodes.
  • Appendix 1-18 The semiconductor light emitting device according to appendix 1-17, wherein at least one of the second type via electrodes is arranged in a region surrounded by the plurality of lines.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

This semiconductor light emitting device comprises: a substrate that has a first principal surface on one side and a second principal surface on the other side; a plurality of via electrodes embedded in the substrate at intervals such that the occupying ratio with respect to the surface area of the first principal surface in plan view is 10%-60%; an electrode membrane collectively covering the plurality of via electrodes on the first principal surface; and a semiconductor light emitting chip disposed on the electrode membrane so as to face the plurality of via electrodes.

Description

半導体発光装置semiconductor light emitting device 関連出願Related applications
 本出願は、2022年3月31日に日本国特許庁に提出された特願2022-061325号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2022-061325 filed with the Japan Patent Office on March 31, 2022, and the entire disclosure of this application is hereby incorporated by reference.
 本開示は、半導体発光装置に関する。 The present disclosure relates to a semiconductor light emitting device.
 特許文献1は、基板、複数の第1メッキ導電部、複数の第2メッキ導電部、第1中間導電部、第2中間導電部、第3メッキ導電部、第4メッキ導電部、および複数のLEDチップを備える半導体発光装置を開示している。特許文献1の半導体発光装置は、第1メッキ配線および第2メッキ配線をさらに備える。前記第1メッキ配線および前記第2メッキ配線の各々は、前記基板の第1縁から前記基板の第2縁に至って延びている。厚さ方向に視て、前記複数のLEDチップは、第1方向において前記第1メッキ配線と前記第2メッキ配線とに挟まれている。前記第1メッキ配線および前記第2メッキ配線は、前記基板の表面と前記基板の枠部との間に介在している。前記厚さ方向に視て、前記第1メッキ配線および前記第2メッキ配線は、前記基板の凹部から離れて位置する。 Patent Document 1 discloses a substrate, a plurality of first plated conductive parts, a plurality of second plated conductive parts, a first intermediate conductive part, a second intermediate conductive part, a third plated conductive part, a fourth plated conductive part, and a plurality of plated conductive parts. A semiconductor light emitting device including an LED chip is disclosed. The semiconductor light emitting device of Patent Document 1 further includes a first plated wiring and a second plated wiring. Each of the first plated wiring and the second plated wiring extends from a first edge of the substrate to a second edge of the substrate. When viewed in the thickness direction, the plurality of LED chips are sandwiched between the first plated wiring and the second plated wiring in the first direction. The first plated wiring and the second plated wiring are interposed between the surface of the substrate and the frame of the substrate. When viewed in the thickness direction, the first plated wiring and the second plated wiring are located apart from the recessed portion of the substrate.
特開2022-33187号公報JP2022-33187A
 本開示の一実施形態は、放熱性を向上することができる半導体発光装置を提供する。 An embodiment of the present disclosure provides a semiconductor light emitting device that can improve heat dissipation.
 本開示の一実施形態に係る半導体発光装置は、一方側の第1主面および他方側の第2主面を有する基板と、平面視において前記第1主面の表面積に対する占有率が10%以上60%以下となるように前記基板に間隔を空けて埋設された複数のビア電極と、前記第1主面上で前記複数の前記ビア電極を一括して被覆する電極膜と、前記複数の前記ビア電極に対向するように前記電極膜上に配置された半導体発光チップとを含む。 A semiconductor light emitting device according to an embodiment of the present disclosure includes a substrate having a first main surface on one side and a second main surface on the other side, and an occupation rate of the first main surface with respect to a surface area of 10% or more in plan view. a plurality of via electrodes buried in the substrate at intervals such that the via electrodes are buried at intervals of 60% or less; an electrode film that collectively covers the plurality of via electrodes on the first main surface; and a semiconductor light emitting chip disposed on the electrode film so as to face the via electrode.
図1は、本開示の一実施形態に係る半導体発光装置の模式的な平面図である。FIG. 1 is a schematic plan view of a semiconductor light emitting device according to an embodiment of the present disclosure. 図2は、前記半導体発光装置の模式的な底面図である。FIG. 2 is a schematic bottom view of the semiconductor light emitting device. 図3は、図1のIII-III線に沿う断面を示す図である。FIG. 3 is a diagram showing a cross section taken along line III-III in FIG. 図4Aは、ビアの第1配列パターンを示す半導体発光装置の平面図である。FIG. 4A is a plan view of a semiconductor light emitting device showing a first arrangement pattern of vias. 図4Bは、ビアの第1配列パターンを示す半導体発光装置の底面図である。FIG. 4B is a bottom view of the semiconductor light emitting device showing the first array pattern of vias. 図5Aは、ビアの第2配列パターンを示す半導体発光装置の平面図である。FIG. 5A is a plan view of a semiconductor light emitting device showing a second arrangement pattern of vias. 図5Bは、ビアの第2配列パターンを示す半導体発光装置の底面図である。FIG. 5B is a bottom view of the semiconductor light emitting device showing a second array pattern of vias. 図6Aは、ビアの第3配列パターンを示す半導体発光装置の平面図である。FIG. 6A is a plan view of a semiconductor light emitting device showing a third array pattern of vias. 図6Bは、ビアの第3配列パターンを示す半導体発光装置の底面図である。FIG. 6B is a bottom view of the semiconductor light emitting device showing the third array pattern of vias. 図7Aは、ビアの第4配列パターンを示す半導体発光装置の平面図である。FIG. 7A is a plan view of a semiconductor light emitting device showing a fourth arrangement pattern of vias. 図7Bは、ビアの第4配列パターンを示す半導体発光装置の底面図である。FIG. 7B is a bottom view of the semiconductor light emitting device showing a fourth arrangement pattern of vias. 図8Aは、ビアの第5配列パターンを示す半導体発光装置の平面図である。FIG. 8A is a plan view of a semiconductor light emitting device showing a fifth array pattern of vias. 図8Bは、ビアの第5配列パターンを示す半導体発光装置の底面図である。FIG. 8B is a bottom view of the semiconductor light emitting device showing a fifth array pattern of vias. 図9は、ビア面積比率と放熱性との関係性を示す図である。FIG. 9 is a diagram showing the relationship between via area ratio and heat dissipation. 図10は、基板の厚さと放熱性との関係性を示す図である。FIG. 10 is a diagram showing the relationship between substrate thickness and heat dissipation. 図11は、電極膜の厚さと放熱性との関係性を示す図である。FIG. 11 is a diagram showing the relationship between the thickness of the electrode film and heat dissipation.
 次に、本開示の実施形態を、添付図面を参照して詳細に説明する。
[半導体発光装置1の全体構造]
 図1は、本開示の一実施形態に係る半導体発光装置1の模式的な平面図である。図2は、前記半導体発光装置1の模式的な底面図である。図3は、図1のIII-III線に沿う断面を示す図である。
Next, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
[Overall structure of semiconductor light emitting device 1]
FIG. 1 is a schematic plan view of a semiconductor light emitting device 1 according to an embodiment of the present disclosure. FIG. 2 is a schematic bottom view of the semiconductor light emitting device 1. FIG. 3 is a diagram showing a cross section taken along line III-III in FIG.
 半導体発光装置1は、ケース2と、半導体発光チップ3と、ダイオードチップ4と、封止樹脂5とを含む。なお、図1では、理解の便宜上封止樹脂5を省略している。 The semiconductor light emitting device 1 includes a case 2, a semiconductor light emitting chip 3, a diode chip 4, and a sealing resin 5. In addition, in FIG. 1, the sealing resin 5 is omitted for convenience of understanding.
 ケース2は、半導体発光装置1の土台であり、基板の一例としての基材6と、配線7とを含む。ケース2のサイズは、平面視寸法が5~10mm角程度、厚さT1(第1主面9と第2主面10との間の厚さ)が50μm以上500μm以下である。基材6は、平面視略矩形状の厚板状とされており、たとえば樹脂基板、アルミナ等のセラミック基板からなる。この実施形態では、基材6としては樹脂基板が使用され、好ましくは、樹脂製のビルドアップ基板(多層基板)が使用される。樹脂基板であればセラミック基板に比べてコストを抑えることができる。 The case 2 is the base of the semiconductor light emitting device 1 and includes a base material 6 as an example of a substrate and wiring 7. The case 2 has a size of about 5 to 10 mm square in plan view, and a thickness T1 (thickness between the first main surface 9 and the second main surface 10) of 50 μm or more and 500 μm or less. The base material 6 has a thick plate shape that is substantially rectangular in plan view, and is made of, for example, a resin substrate or a ceramic substrate made of alumina or the like. In this embodiment, a resin substrate is used as the base material 6, preferably a resin build-up substrate (multilayer substrate). A resin substrate can reduce costs compared to a ceramic substrate.
 基材6の中央には、収容凹部8が形成されている。収容凹部8は、半導体発光チップ3およびダイオードチップ4を収容しており、平面視形状が四角形である。基材6は、第1主面9と第2主面10とを有している。この実施形態では、収容凹部8の深さが、たとえば500μm程度とされている。 A housing recess 8 is formed in the center of the base material 6. The accommodation recess 8 accommodates the semiconductor light emitting chip 3 and the diode chip 4, and has a rectangular shape in plan view. The base material 6 has a first main surface 9 and a second main surface 10. In this embodiment, the depth of the accommodation recess 8 is, for example, about 500 μm.
 配線7は、半導体発光チップ3に対して直流電力を供給するための経路として用いられる。配線7は、電極膜の一例としての表面層11、中間層12、裏面層13、および貫通配線14を有している。 The wiring 7 is used as a path for supplying DC power to the semiconductor light emitting chip 3. The wiring 7 has a surface layer 11 as an example of an electrode film, an intermediate layer 12, a back layer 13, and a through wiring 14.
 表面層11は、複数のアノードパッド15および複数のカソードパッド16を含んでいる。図1を参照して、複数のアノードパッド15および複数のカソードパッド16は、それぞれ、隣り合う一対のアノードパッド15およびカソードパッド16の組として配置されている。複数のアノードパッド15および複数のカソードパッド16は、第1アノードパッド17および第1カソードパッド18の組と、第2アノードパッド19および第2カソードパッド20の組とを含んでいてもよい。この実施形態では、第1アノードパッド17および第1カソードパッド18は、半導体発光チップ3を実装するためのものであり、第2アノードパッド19および第2カソードパッド20は、ダイオードチップ4を実装するためのものであってもよい。 The surface layer 11 includes a plurality of anode pads 15 and a plurality of cathode pads 16. Referring to FIG. 1, the plurality of anode pads 15 and the plurality of cathode pads 16 are arranged as a pair of adjacent anode pads 15 and cathode pads 16, respectively. The plurality of anode pads 15 and the plurality of cathode pads 16 may include a set of a first anode pad 17 and a first cathode pad 18, and a set of a second anode pad 19 and a second cathode pad 20. In this embodiment, the first anode pad 17 and the first cathode pad 18 are for mounting the semiconductor light emitting chip 3, and the second anode pad 19 and the second cathode pad 20 are for mounting the diode chip 4. It may be for.
 第1カソードパッド18は、半導体発光チップ3がダイボンディングされるカソードアイランド部21と、カソードアイランド部21から延びるカソード延出部22とを含む。カソードアイランド部21は、基材6の第1主面9の略中央に形成されている。カソード延出部22は、カソードアイランド部21に一体的に接続されている。カソード延出部22は、図1では、平面視において略L字状に形成されている。カソード延出部22は、基材6の第1周縁および第2周縁に沿って延びる直線部23を有している。この実施形態では、カソードアイランド部21から互いに反対方向(基材6の第3周縁および第4周縁に沿う方向)に延びる一対のカソード延出部22が形成されている。一対のカソード延出部22(直線部23)の間には、第2アノードパッド19および第2カソードパッド20用のダイオード領域24が区画されている。 The first cathode pad 18 includes a cathode island portion 21 to which the semiconductor light emitting chip 3 is die-bonded, and a cathode extension portion 22 extending from the cathode island portion 21. The cathode island portion 21 is formed approximately at the center of the first main surface 9 of the base material 6 . The cathode extension part 22 is integrally connected to the cathode island part 21. In FIG. 1, the cathode extension portion 22 is formed into a substantially L-shape when viewed from above. The cathode extension portion 22 has a straight portion 23 extending along the first peripheral edge and the second peripheral edge of the base material 6 . In this embodiment, a pair of cathode extension parts 22 are formed that extend from the cathode island part 21 in mutually opposite directions (directions along the third and fourth peripheral edges of the base material 6). A diode region 24 for the second anode pad 19 and the second cathode pad 20 is defined between the pair of cathode extension portions 22 (linear portions 23).
 第1アノードパッド17は、半導体発光チップ3から延びる配線7部材(たとえば、後述するワイヤ44)が接合されるアノードパッド部25と、アノードパッド部25から延びるアノード延出部26とを含む。アノードパッド部25は、カソードアイランド部21の側方において基材6の第3周縁に沿って直線状に形成されている。アノード延出部26は、アノードパッド部25から基材6の第1周縁および第2周縁に沿って延びる直線状の一対のアノード延出部26を含む。アノード延出部26は、カソード延出部22の直線部23と同一直線上に位置するように、カソード延出部22に隣接して形成されている。 The first anode pad 17 includes an anode pad portion 25 to which a wiring 7 member (for example, a wire 44 described below) extending from the semiconductor light emitting chip 3 is bonded, and an anode extension portion 26 extending from the anode pad portion 25. The anode pad section 25 is formed linearly along the third peripheral edge of the base material 6 on the side of the cathode island section 21 . The anode extension portion 26 includes a pair of linear anode extension portions 26 extending from the anode pad portion 25 along the first peripheral edge and the second peripheral edge of the base material 6 . The anode extension part 26 is formed adjacent to the cathode extension part 22 so as to be located on the same straight line as the linear part 23 of the cathode extension part 22 .
 第2アノードパッド19および第2カソードパッド20は、ダイオード領域24に配置されている。第2アノードパッド19および第2カソードパッド20は、いずれもアイランド状に形成されており、基材6の第4周縁に沿って互いに間隔を空けて形成されている。 The second anode pad 19 and the second cathode pad 20 are arranged in the diode region 24. The second anode pad 19 and the second cathode pad 20 are both formed in an island shape, and are spaced apart from each other along the fourth peripheral edge of the base material 6.
 図3を参照して、表面層11は、複数の導電層により形成されていてもよい。この実施形態では、表面層11は、第1導電層27および第2導電層28を含む。第1導電層27は、たとえばCuからなり、Cuめっき層であってもよい。第2導電層28は、たとえばAuからなり、Auめっき層であってもよい。第1導電層27は、たとえば10μm以上200μm以下の厚さT2を有している。第2導電層28は、厚さT3を有している。 Referring to FIG. 3, surface layer 11 may be formed of a plurality of conductive layers. In this embodiment, surface layer 11 includes a first conductive layer 27 and a second conductive layer 28 . The first conductive layer 27 is made of Cu, for example, and may be a Cu plating layer. The second conductive layer 28 is made of Au, for example, and may be an Au plating layer. The first conductive layer 27 has a thickness T2 of, for example, 10 μm or more and 200 μm or less. The second conductive layer 28 has a thickness T3.
 図3を参照して、中間層12は、基材6の厚さ方向において第1主面9と第2主面10との間に形成されている。中間層12は、たとえばCuからなる。中間層12は、第1中継配線29および第2中継配線30を含んでいる。第1中継配線29は、第1アノードパッド17および第1カソードパッド18に電気的に接続されている。第2中継配線30は、第2アノードパッド19および第2カソードパッド20に電気的に接続されている。なお、図3では、第1カソードパッド18に接続された第1中継配線29、および第2カソードパッド20に接続された第2中継配線30のみが示されている。 Referring to FIG. 3, intermediate layer 12 is formed between first main surface 9 and second main surface 10 in the thickness direction of base material 6. The intermediate layer 12 is made of Cu, for example. The intermediate layer 12 includes a first relay wiring 29 and a second relay wiring 30. The first relay wiring 29 is electrically connected to the first anode pad 17 and the first cathode pad 18. The second relay wiring 30 is electrically connected to the second anode pad 19 and the second cathode pad 20. Note that in FIG. 3, only the first relay wiring 29 connected to the first cathode pad 18 and the second relay wiring 30 connected to the second cathode pad 20 are shown.
 裏面層13は、基材6の第2主面10に形成されており、複数のアノード実装電極31と複数のカソード実装電極32とを含む。複数のアノード実装電極31と複数のカソード実装電極32は、半導体発光装置1をたとえば回路基板などに面実装するために用いられる。この実施形態では、複数のアノード実装電極31と複数のカソード実装電極32は、Auからなる。 The back layer 13 is formed on the second main surface 10 of the base material 6 and includes a plurality of anode mounting electrodes 31 and a plurality of cathode mounting electrodes 32. The plurality of anode mounting electrodes 31 and the plurality of cathode mounting electrodes 32 are used for surface mounting the semiconductor light emitting device 1 on, for example, a circuit board. In this embodiment, the plurality of anode mounting electrodes 31 and the plurality of cathode mounting electrodes 32 are made of Au.
 複数のアノード実装電極31および複数のカソード実装電極32は、それぞれ、隣り合う一対のアノード実装電極31およびカソード実装電極32の組として配置されている。複数のアノード実装電極31および複数のカソード実装電極32は、第1アノード実装電極33および第1カソード実装電極34の組と、第2アノード実装電極35および第2カソード実装電極36の組とを含んでいてもよい。この実施形態では、第1アノード実装電極33および第1カソード実装電極34は、それぞれ、第1アノードパッド17および第1カソードパッド18に電気的に接続される。第2アノード実装電極35および第2カソード実装電極36は、それぞれ、第2アノードパッド19および第2カソードパッド20に電気的に接続される。 The plurality of anode mounting electrodes 31 and the plurality of cathode mounting electrodes 32 are arranged as a pair of adjacent anode mounting electrodes 31 and cathode mounting electrodes 32, respectively. The plurality of anode mounted electrodes 31 and the plurality of cathode mounted electrodes 32 include a set of a first anode mounted electrode 33 and a first cathode mounted electrode 34, and a set of a second anode mounted electrode 35 and a second cathode mounted electrode 36. It's okay to stay. In this embodiment, first anode mounting electrode 33 and first cathode mounting electrode 34 are electrically connected to first anode pad 17 and first cathode pad 18, respectively. The second anode mounting electrode 35 and the second cathode mounting electrode 36 are electrically connected to the second anode pad 19 and the second cathode pad 20, respectively.
 貫通配線14は、基材6を厚さ方向に貫通し、表面層11と裏面層13との間を電気的に接続する。貫通配線14は、基材6の第1主面9および第2主面10の双方から露出している。貫通配線14は、中間層12を介して表面層11と裏面層13との間を電気的に接続していてもよい。この実施形態では、貫通配線14は、Cuからなる。また、貫通配線14は、その形状に基づいて「ビア電極」、「貫通ビア」、「接続ビア」、「埋め込みビア」と称してもよい。貫通配線14は、複数の第1貫通配線37と複数の第2貫通配線38とを含む。 The through wiring 14 penetrates the base material 6 in the thickness direction and electrically connects the front layer 11 and the back layer 13. The through wiring 14 is exposed from both the first main surface 9 and the second main surface 10 of the base material 6. The through wiring 14 may electrically connect the front layer 11 and the back layer 13 via the intermediate layer 12. In this embodiment, the through wiring 14 is made of Cu. Further, the through wiring 14 may be referred to as a "via electrode", "through via", "connecting via", or "buried via" based on its shape. The through wiring 14 includes a plurality of first through wirings 37 and a plurality of second through wirings 38.
 複数の第1貫通配線37のいくつかは、第1アノードパッド17と第1アノード実装電極33との間を電気的に接続している。複数の第1貫通配線37の残りは、第1カソードパッド18と第1カソード実装電極34との間を電気的に接続していてもよい。複数の第2貫通配線38のいくつかは、第2アノードパッド19と第2アノード実装電極35との間を電気的に接続している。複数の第2貫通配線38の残りは、第2カソードパッド20と第2カソード実装電極36との間を電気的に接続していてもよい。 Some of the plurality of first through wirings 37 electrically connect between the first anode pad 17 and the first anode mounting electrode 33. The remainder of the plurality of first through wirings 37 may electrically connect between the first cathode pad 18 and the first cathode mounting electrode 34. Some of the plurality of second through wirings 38 electrically connect between the second anode pad 19 and the second anode mounting electrode 35. The remainder of the plurality of second through wirings 38 may electrically connect between the second cathode pad 20 and the second cathode mounting electrode 36.
 半導体発光チップ3は、この実施形態では、垂直共振器型面発光レーザチップである。半導体発光チップ3は、VCSEL(Vertical Cavity Surface Emitting LASER)であってもよい。半導体発光チップ3は、第1主面39および第2主面40を有している。第1主面39が、レーザの出射端面である。半導体発光チップ3は、第1主面39にアノード電極41を有し、第2主面40にカソード電極42(図3では省略)を有している。半導体発光チップ3は、導電接合材層43(たとえば、Ag接着剤層)を介してカソード電極42が第1カソードパッド18に接合されることによって、第1カソードパッド18にダイボンディングされている。半導体発光チップ3のアノード電極41は、複数のワイヤ44を介して第1アノードパッド17に接続されている。 In this embodiment, the semiconductor light emitting chip 3 is a vertical cavity surface emitting laser chip. The semiconductor light emitting chip 3 may be a VCSEL (Vertical Cavity Surface Emitting LASER). The semiconductor light emitting chip 3 has a first main surface 39 and a second main surface 40. The first main surface 39 is a laser emission end surface. The semiconductor light emitting chip 3 has an anode electrode 41 on the first main surface 39 and a cathode electrode 42 (omitted in FIG. 3) on the second main surface 40. The semiconductor light emitting chip 3 is die-bonded to the first cathode pad 18 by bonding the cathode electrode 42 to the first cathode pad 18 via a conductive bonding material layer 43 (for example, an Ag adhesive layer). The anode electrode 41 of the semiconductor light emitting chip 3 is connected to the first anode pad 17 via a plurality of wires 44 .
 ダイオードチップ4は、この実施形態では、フォトダイオードチップであり、第1主面45および第2主面46を有している。第1主面45が、フォトダイオードの受光面である。ダイオードチップ4は、第1主面45にアノード電極47を有し、第2主面46にカソード電極48(図3では省略)を有している。ダイオードチップ4は、導電接合材層49(たとえば、Ag接着剤層)を介してカソード電極48が第2カソードパッド20に接合されることによって、第2カソードパッド20に実装されている。ダイオードチップ4のアノード電極47は、複数のワイヤ50を介して第2アノードパッド19に接続されている。 In this embodiment, the diode chip 4 is a photodiode chip and has a first main surface 45 and a second main surface 46. The first main surface 45 is the light receiving surface of the photodiode. The diode chip 4 has an anode electrode 47 on a first main surface 45 and a cathode electrode 48 (omitted in FIG. 3) on a second main surface 46. The diode chip 4 is mounted on the second cathode pad 20 by bonding the cathode electrode 48 to the second cathode pad 20 via a conductive bonding material layer 49 (for example, an Ag adhesive layer). The anode electrode 47 of the diode chip 4 is connected to the second anode pad 19 via a plurality of wires 50.
 封止樹脂5は、ケース2の収容凹部8を埋めており、複数の半導体発光チップ3を覆っている。封止樹脂5は、透明なエポキシ樹脂またはシリコーン樹脂に蛍光材料が混入された材質からなる。
[貫通配線14(ビア)の配列パターンの説明]
 貫通配線14は、表面層11と裏面層13との間を電気的に接続することに加え、半導体発光チップ3およびダイオードチップ4で発生する熱を、基材6の第1主面9から第2主面10へ伝達する。第1主面9側の熱が、貫通配線14を介してアノード実装電極31およびカソード実装電極32に伝達される。これにより、ケース2内の熱を実装基板(図示せず)に拡散することができる。つまり、貫通配線14は、半導体発光装置1の放熱性に寄与する。以下では、半導体発光装置1の放熱性に関して、好ましい貫通配線14の配列パターンの詳細な説明を加える。
(1)第1配列パターン
 図4Aは、貫通配線14(ビア)の第1配列パターンを示す半導体発光装置1の平面図である。図4Bは、貫通配線14(ビア)の第1配列パターンを示す半導体発光装置1の底面図である。明瞭化のため、半導体発光チップ3の配置位置は、図4Bのみに破線で示している。
The sealing resin 5 fills the housing recess 8 of the case 2 and covers the plurality of semiconductor light emitting chips 3. The sealing resin 5 is made of a transparent epoxy resin or silicone resin mixed with a fluorescent material.
[Explanation of arrangement pattern of through wiring 14 (via)]
In addition to electrically connecting the front layer 11 and the back layer 13 , the through wiring 14 conducts heat generated in the semiconductor light emitting chip 3 and the diode chip 4 from the first main surface 9 of the base material 6 to the first main surface 9 of the base material 6 . 2 to the main surface 10. Heat on the first main surface 9 side is transmitted to the anode mounting electrode 31 and the cathode mounting electrode 32 via the through wiring 14 . Thereby, the heat within the case 2 can be diffused to the mounting board (not shown). That is, the through wiring 14 contributes to the heat dissipation of the semiconductor light emitting device 1. In the following, a detailed explanation of a preferable arrangement pattern of the through wiring 14 will be added regarding the heat dissipation performance of the semiconductor light emitting device 1.
(1) First Arrangement Pattern FIG. 4A is a plan view of the semiconductor light emitting device 1 showing the first arrangement pattern of the through wiring 14 (via). FIG. 4B is a bottom view of the semiconductor light emitting device 1 showing the first arrangement pattern of the through wiring 14 (via). For clarity, the arrangement position of the semiconductor light emitting chip 3 is shown by broken lines only in FIG. 4B.
 図4Aおよび図4Bを参照して、この例の半導体発光装置1では、ダイオードチップ4が搭載されておらず、ダイオードチップ4に関係するパッドや電極類が省略されている。第1配列パターンでは、貫通配線14は、複数のビア電極51を含む。各ビア電極51は、平面視円形状に形成されている。各ビア電極51の平面視における幅(径)は、たとえば50μm以上200μm以下であってもよい。 Referring to FIGS. 4A and 4B, in the semiconductor light emitting device 1 of this example, the diode chip 4 is not mounted, and pads and electrodes related to the diode chip 4 are omitted. In the first arrangement pattern, the through wiring 14 includes a plurality of via electrodes 51. Each via electrode 51 is formed into a circular shape in plan view. The width (diameter) of each via electrode 51 in plan view may be, for example, 50 μm or more and 200 μm or less.
 複数のビア電極51は、第1ビア電極52および第2ビア電極53を含む。第1ビア電極52は、第1カソードパッド18と第1カソード実装電極34とを接続するものであり、カソードビア電極と称してもよい。第2ビア電極53は、第1アノードパッド17と第1アノード実装電極33とを接続するものであり、アノードビア電極と称してもよい。 The plurality of via electrodes 51 include a first via electrode 52 and a second via electrode 53. The first via electrode 52 connects the first cathode pad 18 and the first cathode mounting electrode 34, and may also be referred to as a cathode via electrode. The second via electrode 53 connects the first anode pad 17 and the first anode mounting electrode 33, and may be referred to as an anode via electrode.
 複数の第1ビア電極52は、第1カソードパッド18および第1カソード実装電極34のほぼ全域にわたって設けられている。複数の第1ビア電極52は、平面視において第1方向X(第1周縁および第2周縁に沿う方向)および第1方向Xに交差する第2方向Y(第3周縁および第4周縁に沿う方向)に間隔を空けて千鳥状に配列されている。複数の第1ビア電極52のピッチは、たとえば50μm以上200μm以下であってもよい。図4Bを参照して、半導体発光チップ3は、複数の第1ビア電極52に対向するように配置されている。 The plurality of first via electrodes 52 are provided over almost the entire area of the first cathode pad 18 and the first cathode mounting electrode 34. The plurality of first via electrodes 52 are arranged in a first direction They are arranged in a staggered pattern with intervals in the direction. The pitch of the plurality of first via electrodes 52 may be, for example, 50 μm or more and 200 μm or less. Referring to FIG. 4B, semiconductor light emitting chip 3 is arranged to face a plurality of first via electrodes 52. As shown in FIG.
 複数の第2ビア電極53は、第1アノードパッド17および第1アノード実装電極33の長手方向に沿って間隔を空けて一列に配列されている。より具体的には、アノードパッド部25の長手方向に沿って配列されている。複数の第2ビア電極53のピッチは、たとえば50μm以上200μm以下であってもよい。 The plurality of second via electrodes 53 are arranged in a row at intervals along the longitudinal direction of the first anode pad 17 and the first anode mounting electrode 33. More specifically, they are arranged along the longitudinal direction of the anode pad section 25. The pitch of the plurality of second via electrodes 53 may be, for example, 50 μm or more and 200 μm or less.
 第1配列パターンにおいて、複数の第1ビア電極52および複数の第2ビア電極53のトータルの面積占有率は、10%以上60%以下、好ましくは、25%以上35%以下である。当該面積占有率は、基材6の第1主面9の表面積に対する、各ビア電極51の平面面積の合計の割合である。ビア電極51の面積占有率が上記の範囲であれば、半導体発光装置1の放熱性を向上することができる。 In the first arrangement pattern, the total area occupation rate of the plurality of first via electrodes 52 and the plurality of second via electrodes 53 is 10% or more and 60% or less, preferably 25% or more and 35% or less. The area occupation rate is the ratio of the total planar area of each via electrode 51 to the surface area of the first main surface 9 of the base material 6. If the area occupation rate of the via electrode 51 is within the above range, the heat dissipation of the semiconductor light emitting device 1 can be improved.
 また、複数の第1ビア電極52の面積占有率と複数の第2ビア電極53の面積占有率とを比較すると、第2ビア電極53の面積占有率の方が小さい。半導体発光チップ3が実装される電極であるカソード側のビアの占有率を大きくすることによって、半導体発光装置1の放熱性を一層向上することができる。
(2)第2配列パターン
 図5Aは、貫通配線14(ビア)の第2配列パターンを示す半導体発光装置1の平面図である。図5Bは、貫通配線14(ビア)の第2配列パターンを示す半導体発光装置1の底面図である。明瞭化のため、半導体発光チップ3の配置位置は、図5Bのみに破線で示している。
Further, when comparing the area occupancy rate of the plurality of first via electrodes 52 and the area occupancy rate of the plurality of second via electrodes 53, the area occupancy rate of the second via electrode 53 is smaller. By increasing the occupancy of the vias on the cathode side, which is the electrode on which the semiconductor light emitting chip 3 is mounted, the heat dissipation performance of the semiconductor light emitting device 1 can be further improved.
(2) Second Arrangement Pattern FIG. 5A is a plan view of the semiconductor light emitting device 1 showing a second arrangement pattern of the through wiring 14 (via). FIG. 5B is a bottom view of the semiconductor light emitting device 1 showing the second arrangement pattern of the through wiring 14 (via). For clarity, the arrangement position of the semiconductor light emitting chip 3 is shown by broken lines only in FIG. 5B.
 図5Aおよび図5Bを参照して、この例の半導体発光装置1では、ダイオードチップ4が搭載されておらず、ダイオードチップ4に関係するパッドや電極類が省略されている。第2配列パターンでは、貫通配線14は、複数のビア電極61を含む。複数のビア電極61は、第1ビア電極62および第2ビア電極63を含む。第1ビア電極62は、第1カソードパッド18と第1カソード実装電極34とを接続するものであり、カソードビア電極と称してもよい。第2ビア電極63は、第1アノードパッド17と第1アノード実装電極33とを接続するものであり、アノードビア電極と称してもよい。 Referring to FIGS. 5A and 5B, in the semiconductor light emitting device 1 of this example, the diode chip 4 is not mounted, and pads and electrodes related to the diode chip 4 are omitted. In the second arrangement pattern, the through wiring 14 includes a plurality of via electrodes 61. The plurality of via electrodes 61 include a first via electrode 62 and a second via electrode 63. The first via electrode 62 connects the first cathode pad 18 and the first cathode mounting electrode 34, and may also be referred to as a cathode via electrode. The second via electrode 63 connects the first anode pad 17 and the first anode mounting electrode 33, and may be referred to as an anode via electrode.
 各第1ビア電極62は、平面視長円形状に形成されている。各第1ビア電極62の形状は、平面視楕円形状、平面視帯状と表現してもよい。つまり、各第1ビア電極62は、相対的に長い幅W1を有する長手方向の長周縁64と、相対的に短い幅W2を有する長手方向に直交する方向の短周縁65とを有する形状である。各第1ビア電極62の平面視における幅W2は、たとえば50μm以上200μm以下であってもよい。 Each first via electrode 62 is formed into an elliptical shape in plan view. The shape of each first via electrode 62 may be expressed as an elliptical shape in a plan view or a band shape in a plan view. That is, each first via electrode 62 has a shape having a long peripheral edge 64 in the longitudinal direction having a relatively long width W1 and a short peripheral edge 65 in the direction orthogonal to the longitudinal direction having a relatively short width W2. . The width W2 of each first via electrode 62 in plan view may be, for example, 50 μm or more and 200 μm or less.
 複数の第1ビア電極62は、さらに、配列方向に基づいて、第1型ビア電極66および第2型ビア電極67に区別することができる。明瞭化のため、図5Aでは、第1型ビア電極66にハッチングを付し、第2型ビア電極67を白抜きで示している。 The plurality of first via electrodes 62 can be further classified into first type via electrodes 66 and second type via electrodes 67 based on the arrangement direction. For clarity, in FIG. 5A, the first type via electrode 66 is hatched and the second type via electrode 67 is shown in outline.
 複数の第1型ビア電極66は、長周縁64が第1方向Xと平行となるように配列されている。したがって、各第1型ビア電極66は、第1方向Xに延びる帯状に形成されている。一方、複数の第2型ビア電極67は、長周縁64が第2方向Yと平行となるように配列されている。つまり、第2型ビア電極67は、第1型ビア電極66を90°回転させた態様で配列されている。 The plurality of first type via electrodes 66 are arranged so that the long peripheral edges 64 are parallel to the first direction X. Therefore, each first type via electrode 66 is formed in a band shape extending in the first direction X. On the other hand, the plurality of second type via electrodes 67 are arranged so that the long peripheral edges 64 are parallel to the second direction Y. That is, the second type via electrodes 67 are arranged in such a manner that the first type via electrodes 66 are rotated by 90 degrees.
 ここで、第1方向Xおよび第2方向Yの双方に交差するように格子状に延びる複数のラインL1,L2を第1主面9に設定した場合を考える。複数の第1ラインL1が第1方向Xに平行なラインであり、複数の第2ラインL2が第2方向Yに平行なラインである。複数の第1ラインL1および複数の第2ラインL2は、それぞれ、間隔を空けてストライプ状に設定される。複数のラインL1,L2で囲まれた格子の窓部分に対応する区画領域68には、少なくとも1つの第1型ビア電極66および第2型ビア電極67が配置されている。 Here, consider a case where a plurality of lines L1 and L2 extending in a grid pattern so as to intersect both the first direction X and the second direction Y are set on the first main surface 9. The plurality of first lines L1 are lines parallel to the first direction X, and the plurality of second lines L2 are lines parallel to the second direction Y. The plurality of first lines L1 and the plurality of second lines L2 are each set at intervals in a stripe shape. At least one first-type via electrode 66 and one second-type via electrode 67 are arranged in a partitioned region 68 corresponding to a window portion of the lattice surrounded by a plurality of lines L1 and L2.
 第1型ビア電極66および第2型ビア電極67を個別に見ると、複数の第1型ビア電極66は、第1ラインL1および第2ラインL2のそれぞれに沿って、間隔を空けて配列されている。第1ラインL1に沿う複数の第1型ビア電極66は、隣り合う短周縁65同士が向かい合うように配列されている。第2ラインL2に沿う複数の第1型ビア電極66は、隣り合う長周縁64同士が向かい合うように配列されている。複数の第2型ビア電極67は、第1ラインL1および第2ラインL2のそれぞれに沿って、間隔を空けて配列されている。第1ラインL1に沿う複数の第2型ビア電極67は、隣り合う長周縁64同士が向かい合うように配列されている。第2ラインL2に沿う複数の第2型ビア電極67は、隣り合う短周縁65同士が向かい合うように配列されている。図5Bを参照して、半導体発光チップ3は、複数の第1型ビア電極66および複数の第2型ビア電極67に対向するように配置されている。また、複数の第1型ビア電極66および複数の第2型ビア電極67のピッチは、たとえば50μm以上200μm以下であってもよい。 When looking at the first type via electrodes 66 and the second type via electrodes 67 individually, the plurality of first type via electrodes 66 are arranged at intervals along each of the first line L1 and the second line L2. ing. The plurality of first type via electrodes 66 along the first line L1 are arranged such that adjacent short peripheral edges 65 face each other. The plurality of first type via electrodes 66 along the second line L2 are arranged such that adjacent long peripheral edges 64 face each other. The plurality of second type via electrodes 67 are arranged at intervals along each of the first line L1 and the second line L2. The plurality of second type via electrodes 67 along the first line L1 are arranged such that adjacent long peripheral edges 64 face each other. The plurality of second type via electrodes 67 along the second line L2 are arranged such that adjacent short peripheral edges 65 face each other. Referring to FIG. 5B, semiconductor light emitting chip 3 is arranged to face a plurality of first type via electrodes 66 and a plurality of second type via electrodes 67. Further, the pitch between the plurality of first type via electrodes 66 and the plurality of second type via electrodes 67 may be, for example, 50 μm or more and 200 μm or less.
 複数の第2ビア電極63は、第1アノードパッド17および第1アノード実装電極33の長手方向に沿って間隔を空けて一列に配列されている。より具体的には、アノードパッド部25の長手方向に沿って配列されている。各第2ビア電極63は、平面視円形状に形成されている。各第2ビア電極63の平面視における幅(径)は、たとえば50μm以上200μm以下であってもよい。複数の第2ビア電極63のピッチは、たとえば50μm以上200μm以下であってもよい。 The plurality of second via electrodes 63 are arranged in a row at intervals along the longitudinal direction of the first anode pad 17 and the first anode mounting electrode 33. More specifically, they are arranged along the longitudinal direction of the anode pad section 25. Each second via electrode 63 is formed into a circular shape in plan view. The width (diameter) of each second via electrode 63 in plan view may be, for example, 50 μm or more and 200 μm or less. The pitch of the plurality of second via electrodes 63 may be, for example, 50 μm or more and 200 μm or less.
 第2配列パターンにおいて、複数の第1ビア電極62および複数の第2ビア電極63のトータルの面積占有率は、10%以上60%以下、好ましくは、40%以上50%以下である。当該面積占有率は、基材6の第1主面9の表面積に対する、各ビア電極61の平面面積の合計の割合である。ビア電極61の面積占有率が上記の範囲であれば、半導体発光装置1の放熱性を向上することができる。 In the second arrangement pattern, the total area occupation rate of the plurality of first via electrodes 62 and the plurality of second via electrodes 63 is 10% or more and 60% or less, preferably 40% or more and 50% or less. The area occupation rate is the ratio of the total planar area of each via electrode 61 to the surface area of the first main surface 9 of the base material 6. If the area occupation rate of the via electrode 61 is within the above range, the heat dissipation of the semiconductor light emitting device 1 can be improved.
 また、複数の第1ビア電極62の面積占有率と複数の第2ビア電極63の面積占有率とを比較すると、第2ビア電極63の面積占有率の方が小さい。半導体発光チップ3が実装される電極であるカソード側のビアの占有率を大きくすることによって、半導体発光装置1の放熱性を一層向上することができる。 Furthermore, when comparing the area occupancy rate of the plurality of first via electrodes 62 and the area occupancy rate of the plurality of second via electrodes 63, the area occupancy rate of the second via electrodes 63 is smaller. By increasing the occupancy of the vias on the cathode side, which is the electrode on which the semiconductor light emitting chip 3 is mounted, the heat dissipation performance of the semiconductor light emitting device 1 can be further improved.
 さらに、第1ビア電極62に関して、互いに異なる方向に延びる第1型ビア電極66および第2型ビア電極67を混在させることによって、基材6に加わる応力を複数の方向に分散させることができる。
(3)第3配列パターン
 図6Aは、貫通配線14(ビア)の第3配列パターンを示す半導体発光装置1の平面図である。図6Bは、貫通配線14(ビア)の第3配列パターンを示す半導体発光装置1の底面図である。明瞭化のため、半導体発光チップ3の配置位置は、図6Bのみに破線で示している。
Furthermore, by mixing the first type via electrode 66 and the second type via electrode 67 that extend in different directions with respect to the first via electrode 62, the stress applied to the base material 6 can be dispersed in a plurality of directions.
(3) Third Arrangement Pattern FIG. 6A is a plan view of the semiconductor light emitting device 1 showing the third arrangement pattern of the through wiring 14 (via). FIG. 6B is a bottom view of the semiconductor light emitting device 1 showing the third arrangement pattern of the through wiring 14 (via). For clarity, the arrangement position of the semiconductor light emitting chip 3 is shown by broken lines only in FIG. 6B.
 第3配列パターンは、複数の第1ビア電極52および複数の第2ビア電極53のトータルの面積占有率が、第1配列パターンよりも大きいことを除き、第1配列パターンと同じである。第3配列パターンでは、複数の第1ビア電極52および複数の第2ビア電極53のトータルの面積占有率は、10%以上60%以下、好ましくは、30%以上40%以下であってもよい。
(4)第4配列パターン
 図7Aは、貫通配線14(ビア)の第4配列パターンを示す半導体発光装置1の平面図である。図7Bは、貫通配線14(ビア)の第4配列パターンを示す半導体発光装置1の底面図である。明瞭化のため、半導体発光チップ3の配置位置は、図7Bのみに破線で示している。
The third arrangement pattern is the same as the first arrangement pattern, except that the total area occupation rate of the plurality of first via electrodes 52 and the plurality of second via electrodes 53 is larger than that of the first arrangement pattern. In the third arrangement pattern, the total area occupation rate of the plurality of first via electrodes 52 and the plurality of second via electrodes 53 may be 10% or more and 60% or less, preferably 30% or more and 40% or less. .
(4) Fourth Arrangement Pattern FIG. 7A is a plan view of the semiconductor light emitting device 1 showing a fourth arrangement pattern of the through wiring 14 (via). FIG. 7B is a bottom view of the semiconductor light emitting device 1 showing the fourth arrangement pattern of the through wirings 14 (vias). For clarity, the arrangement position of the semiconductor light emitting chip 3 is shown by broken lines only in FIG. 7B.
 第4配列パターンは、第2配列パターンの変形例である。具体的には、第1型ビア電極66および第2型ビア電極67の配列方向が、第1ラインL1および第2ラインL2に沿う方向に加え、これらに交差する方向(図7Aでは、45°で交差する方向)に延びる第3ラインL3に沿う方向を含む。これにより、複数の第1型ビア電極66および複数の第2型ビア電極67は、それぞれ、第3ラインL3に沿う斜め方向にも間隔を空けて配列されている。 The fourth array pattern is a modification of the second array pattern. Specifically, the arrangement direction of the first type via electrode 66 and the second type via electrode 67 is not only the direction along the first line L1 and the second line L2 but also the direction intersecting these (45° in FIG. 7A). including the direction along the third line L3 extending in the direction intersecting the third line L3. As a result, the plurality of first type via electrodes 66 and the plurality of second type via electrodes 67 are arranged at intervals also in the diagonal direction along the third line L3.
 さらに、複数の第1ビア電極62および複数の第2ビア電極63のトータルの面積占有率が、第2配列パターンよりも大きい。たとえば、第4配列パターンでは、複数の第1ビア電極62および複数の第2ビア電極63のトータルの面積占有率は、10%以上60%以下、好ましくは、45%以上55%以下であってもよい。
(5)第5配列パターン
 図8Aは、貫通配線14(ビア)の第5配列パターンを示す半導体発光装置の平面図である。図8Bは、貫通配線14(ビア)の第5配列パターンを示す半導体発光装置の底面図である。明瞭化のため、半導体発光チップ3およびダイオードチップ4の配置位置は、図8Bのみに破線で示している。
Furthermore, the total area occupation rate of the plurality of first via electrodes 62 and the plurality of second via electrodes 63 is larger than that of the second arrangement pattern. For example, in the fourth arrangement pattern, the total area occupation rate of the plurality of first via electrodes 62 and the plurality of second via electrodes 63 is 10% or more and 60% or less, preferably 45% or more and 55% or less. Good too.
(5) Fifth Arrangement Pattern FIG. 8A is a plan view of a semiconductor light emitting device showing a fifth arrangement pattern of through interconnections 14 (vias). FIG. 8B is a bottom view of the semiconductor light emitting device showing the fifth arrangement pattern of the through wiring 14 (via). For clarity, the arrangement positions of the semiconductor light emitting chip 3 and the diode chip 4 are shown by broken lines only in FIG. 8B.
 第5配列パターンは、第2配列パターンの変形例である。具体的には、第1型ビア電極66および第2型ビア電極67の配列方向が、第1ラインL1および第2ラインL2に沿う方向に加え、これらに交差する方向(図8Aでは、45°で交差する方向)に延びる第3ラインL3に沿う方向を含む。これにより、複数の第1型ビア電極66および複数の第2型ビア電極67は、それぞれ、第3ラインL3に沿う斜め方向にも間隔を空けて配列されている。 The fifth array pattern is a modification of the second array pattern. Specifically, the arrangement direction of the first type via electrode 66 and the second type via electrode 67 is not only the direction along the first line L1 and the second line L2, but also the direction intersecting these (45° in FIG. 8A). including the direction along the third line L3 extending in the direction intersecting the third line L3. As a result, the plurality of first type via electrodes 66 and the plurality of second type via electrodes 67 are arranged at intervals also in the diagonal direction along the third line L3.
 さらに、複数のビア電極61は、第3ビア電極69および第4ビア電極70を含む。第3ビア電極69は、第2カソードパッド20と第2カソード実装電極36とを接続するものであり、第2カソードビア電極と称してもよい。第4ビア電極70は、第2アノードパッド19と第2アノード実装電極35とを接続するものであり、第2アノードビア電極と称してもよい。図8Bを参照して、ダイオードチップ4は、複数の第3ビア電極69に対向するように配置されている。 Furthermore, the plurality of via electrodes 61 include a third via electrode 69 and a fourth via electrode 70. The third via electrode 69 connects the second cathode pad 20 and the second cathode mounting electrode 36, and may also be referred to as a second cathode via electrode. The fourth via electrode 70 connects the second anode pad 19 and the second anode mounting electrode 35, and may be referred to as a second anode via electrode. Referring to FIG. 8B, diode chip 4 is arranged to face a plurality of third via electrodes 69.
 各第3ビア電極69および各第4ビア電極70は、平面視円形状に形成されている。各第3ビア電極69および各第4ビア電極70の平面視における幅(径)は、たとえば50μm以上200μm以下であってもよい。複数の第3ビア電極69および複数の第4ビア電極70のピッチは、たとえば50μm以上200μm以下であってもよい。 Each third via electrode 69 and each fourth via electrode 70 are formed into a circular shape in plan view. The width (diameter) of each third via electrode 69 and each fourth via electrode 70 in plan view may be, for example, 50 μm or more and 200 μm or less. The pitch of the plurality of third via electrodes 69 and the plurality of fourth via electrodes 70 may be, for example, 50 μm or more and 200 μm or less.
 第5配列パターンにおいて、複数のビア電極62,63,69,70のトータルの面積占有率は、10%以上60%以下である。
[放熱性のシミュレーション結果]
 次に、第1主面9における貫通配線14(ビア)の面積占有率、基材6(基板)の厚さT1(図3参照)、および表面層11の厚さT2+T3(図3参照)と、半導体発光装置1の放熱性との関係をシミュレーションによって調べた。以下のシミュレーションでは、サンプルの基材6として、樹脂製のビルドアップ基板(多層基板)を設定した。
In the fifth array pattern, the total area occupation rate of the plurality of via electrodes 62, 63, 69, and 70 is 10% or more and 60% or less.
[Heat dissipation simulation results]
Next, the area occupation rate of the through wiring 14 (via) on the first main surface 9, the thickness T1 of the base material 6 (substrate) (see FIG. 3), and the thickness T2+T3 of the surface layer 11 (see FIG. 3) The relationship between this and the heat dissipation properties of the semiconductor light emitting device 1 was investigated by simulation. In the following simulation, a resin build-up board (multilayer board) was set as the sample base material 6.
 まず、図9を参照して、第1主面9における貫通配線14(ビア)の面積占有率と放熱性との関係と示す。図9では、基材6としてAlN基板(貫通配線なし)を使用したものを参考例として示す。サンプルは、貫通配線14(ビア)の面積占有率を、8.3%、9.3%、12.3%、26.1%、33.5%および40.2%と設定したものである。図9の結果から、貫通配線14(ビア)の面積占有率を高くすることによって、基材6(基板)の温度を低減でき、放熱性を向上できることが分かった。 First, with reference to FIG. 9, the relationship between the area occupation rate of the through wiring 14 (via) on the first main surface 9 and the heat dissipation performance will be shown. In FIG. 9, an example in which an AlN substrate (without through wiring) is used as the base material 6 is shown as a reference example. In the samples, the area occupancy rate of the through wiring 14 (via) is set to 8.3%, 9.3%, 12.3%, 26.1%, 33.5%, and 40.2%. . From the results shown in FIG. 9, it was found that by increasing the area occupation rate of the through wiring 14 (via), the temperature of the base material 6 (substrate) can be reduced and the heat dissipation performance can be improved.
 次に、図10を参照して、基材6(基板)の厚さT1と放熱性との関係と示す。図10では、基材6としてAlN基板(貫通配線なし)を使用したものを参考例として示す。サンプルは、貫通配線14(ビア)の面積占有率を40.2%と設定し、かつ基材6の厚さを100μmおよび225μmと設定したものである。図10の結果から、基材6の厚さを大きくしても、基材6(基板)の温度はほとんど変化しないことが分かった。 Next, with reference to FIG. 10, the relationship between the thickness T1 of the base material 6 (substrate) and heat dissipation is shown. In FIG. 10, an example in which an AlN substrate (without through wiring) is used as the base material 6 is shown as a reference example. In the sample, the area occupation rate of the through wiring 14 (via) was set to 40.2%, and the thickness of the base material 6 was set to 100 μm and 225 μm. From the results shown in FIG. 10, it was found that even if the thickness of the base material 6 was increased, the temperature of the base material 6 (substrate) hardly changed.
 次に、図11を参照して、表面層11の厚さと放熱性との関係と示す。図11では、基材6としてAlN基板(貫通配線なし、基板厚さ225μm)を使用したものを参考例として示す。サンプル1および2は、貫通配線14(ビア)の面積占有率を40.2%と設定し、かつ基材6の厚さを100μm(サンプル1)および225μm(サンプル2)と設定したものである。また、表面層11として、Cuの単層構造を設定した。図11の結果から、樹脂製の基材6では、表面層11(Cuパターン)を厚くすればするほど放熱性を向上できることが分かった。一方、参考例のAlN基板では、表面層11を厚くしても基材6(基板)の温度はほとんど変化しないことが分かった。 Next, with reference to FIG. 11, the relationship between the thickness of the surface layer 11 and heat dissipation is shown. In FIG. 11, an example in which an AlN substrate (no through wiring, substrate thickness 225 μm) is used as the base material 6 is shown as a reference example. In samples 1 and 2, the area occupation rate of the through wiring 14 (via) was set to 40.2%, and the thickness of the base material 6 was set to 100 μm (sample 1) and 225 μm (sample 2). . Furthermore, a single layer structure of Cu was set as the surface layer 11. From the results shown in FIG. 11, it was found that in the resin base material 6, the thicker the surface layer 11 (Cu pattern), the more the heat dissipation can be improved. On the other hand, in the AlN substrate of the reference example, it was found that even if the surface layer 11 was made thicker, the temperature of the base material 6 (substrate) hardly changed.
 以上、図9~図11の結果から、基材6として、AlN基板よりも熱伝導率がかなり小さい樹脂基板を用いた場合でも、第1主面9における貫通配線14(ビア)の面積占有率を10%以上60%以下に調整することによって、放熱性がAlN基板に近づくことが分かった。また、表面層11(Cuパターン)の厚さを適宜調整することによって、さらなる放熱性の向上を達成できることが分かった。 As described above, from the results shown in FIGS. 9 to 11, even when a resin substrate whose thermal conductivity is considerably lower than that of an AlN substrate is used as the base material 6, the area occupation rate of the through wiring 14 (via) on the first main surface 9 is It has been found that the heat dissipation property approaches that of the AlN substrate by adjusting the value to 10% or more and 60% or less. Furthermore, it was found that further improvement in heat dissipation performance could be achieved by appropriately adjusting the thickness of the surface layer 11 (Cu pattern).
 このシミュレーションから、第1主面9における貫通配線14(ビア)の面積占有率は10%以上60%以下が好ましく、さらに好ましくは、25%以上60%以下である。また、表面層11(Cuパターン)の厚さは、10μm以上200μm以下が好ましく、さらに好ましくは、60μm以上200μm以下である。 From this simulation, the area occupation rate of the through wiring 14 (via) on the first main surface 9 is preferably 10% or more and 60% or less, and more preferably 25% or more and 60% or less. Moreover, the thickness of the surface layer 11 (Cu pattern) is preferably 10 μm or more and 200 μm or less, more preferably 60 μm or more and 200 μm or less.
 本開示の実施形態について説明したが、本開示は他の形態で実施することもできる。 Although embodiments of the present disclosure have been described, the present disclosure may be implemented in other forms.
 以上、本開示の実施形態は、すべての点において例示であり限定的に解釈されるべきではなく、すべての点において変更が含まれることが意図される。 As described above, the embodiments of the present disclosure are illustrative in all respects and should not be construed as limiting, and are intended to include changes in all respects.
 この明細書および図面の記載から以下に付記する特徴が抽出され得る。 The features described below can be extracted from the description of this specification and drawings.
 [付記1-1]
 一方側の第1主面および他方側の第2主面を有する基板と、
 平面視において前記第1主面の表面積に対する占有率が10%以上60%以下となるように前記基板に間隔を空けて埋設された複数のビア電極と、
 前記第1主面上で前記複数の前記ビア電極を一括して被覆する電極膜と、
 前記複数の前記ビア電極に対向するように前記電極膜上に配置された半導体発光チップとを含む、半導体発光装置。
[Appendix 1-1]
a substrate having a first main surface on one side and a second main surface on the other side;
a plurality of via electrodes embedded in the substrate at intervals such that the occupation rate with respect to the surface area of the first principal surface is 10% or more and 60% or less in plan view;
an electrode film that collectively covers the plurality of via electrodes on the first main surface;
and a semiconductor light emitting chip disposed on the electrode film so as to face the plurality of via electrodes.
 [付記1-2]
 前記半導体発光チップは、垂直共振器型面発光レーザチップを含む、付記1-1に記載の半導体発光装置。
[Appendix 1-2]
The semiconductor light emitting device according to appendix 1-1, wherein the semiconductor light emitting chip includes a vertical cavity surface emitting laser chip.
 [付記1-3]
 前記複数の前記ビア電極は、前記第1主面および前記第2主面から露出している、付記1-1または付記1-2に記載の半導体発光装置。
[Appendix 1-3]
The semiconductor light emitting device according to attachment 1-1 or attachment 1-2, wherein the plurality of via electrodes are exposed from the first main surface and the second main surface.
 [付記1-4]
 前記複数の前記ビア電極は、平面視において、多角形状、円形状、楕円形状および長円形状の少なくとも1つの形状を有している、付記1-1~付記1-3のいずれか一項に記載の半導体発光装置。
[Appendix 1-4]
According to any one of Supplementary Notes 1-1 to 1-3, the plurality of via electrodes have at least one of a polygonal shape, a circular shape, an elliptical shape, and an elliptical shape when viewed in plan. The semiconductor light emitting device described above.
 [付記1-5]
 前記複数の前記ビア電極は、平面視において第1方向および前記第1方向に交差する第2方向に間隔を空けて行列状または千鳥状に配列されている、付記1-1~付記1-4のいずれか一項に記載の半導体発光装置。
[Appendix 1-5]
Supplementary notes 1-1 to 1-4, wherein the plurality of via electrodes are arranged in rows and columns or in a staggered manner with intervals in a first direction and a second direction intersecting the first direction when viewed in plan. The semiconductor light emitting device according to any one of the above.
 [付記1-6]
 前記複数の前記ビア電極は、50μm以上200μm以下のピッチで配列されている、付記1-1~付記1-5のいずれか一項に記載の半導体発光装置。
[Appendix 1-6]
The semiconductor light emitting device according to any one of Supplementary notes 1-1 to 1-5, wherein the plurality of via electrodes are arranged at a pitch of 50 μm or more and 200 μm or less.
 [付記1-7]
 前記複数の前記ビア電極は、平面視において50μm以上200μm以下の幅で形成された部分をそれぞれ有している、付記1-1~付記1-6のいずれか一項に記載の半導体発光装置。
[Appendix 1-7]
The semiconductor light emitting device according to any one of Supplementary notes 1-1 to 1-6, wherein each of the plurality of via electrodes has a portion formed with a width of 50 μm or more and 200 μm or less in plan view.
 [付記1-8]
 前記電極膜は、10μm以上200μm以下の厚さを有している、付記1-1~付記1-7のいずれか一項に記載の半導体発光装置。
[Appendix 1-8]
The semiconductor light emitting device according to any one of Supplementary notes 1-1 to 1-7, wherein the electrode film has a thickness of 10 μm or more and 200 μm or less.
 [付記1-9]
 前記複数の前記ビア電極から間隔を空けて前記基板に埋設された複数の第2ビア電極と、
 前記第1主面上で前記電極膜から間隔を空けて前記複数の前記第2ビア電極を被覆する第2電極膜と、
 前記半導体発光チップおよび前記第2電極膜を接続する導線とをさらに含む、付記1-1~付記1-8のいずれか一項に記載の半導体発光装置。
[Appendix 1-9]
a plurality of second via electrodes buried in the substrate at intervals from the plurality of via electrodes;
a second electrode film that covers the plurality of second via electrodes at a distance from the electrode film on the first main surface;
The semiconductor light-emitting device according to any one of Supplementary Notes 1-1 to 1-8, further comprising a conductive wire connecting the semiconductor light-emitting chip and the second electrode film.
 [付記1-10]
 前記複数の前記第2ビア電極は、平面視において前記第1主面の表面積に対する占有率が前記複数の前記ビア電極の占有率よりも小さくなるように、前記基板に埋設されている、付記1-9に記載の半導体発光装置。
[Appendix 1-10]
Supplementary Note 1, wherein the plurality of second via electrodes are embedded in the substrate such that the occupancy of the surface area of the first main surface is smaller than the occupancy of the plurality of via electrodes in plan view. -9. The semiconductor light emitting device according to item 9.
 [付記1-11]
 前記半導体発光チップおよび前記電極膜の間に介在された導電接合材層をさらに含む、付記1-1~付記1-10のいずれか一項に記載の半導体発光装置。
[Appendix 1-11]
The semiconductor light emitting device according to any one of Supplementary Notes 1-1 to 1-10, further comprising a conductive bonding material layer interposed between the semiconductor light emitting chip and the electrode film.
 [付記1-12]
 前記導電接合材層は、Ag接着剤層からなる、付記1-11に記載の半導体発光装置。
[Appendix 1-12]
The semiconductor light emitting device according to appendix 1-11, wherein the conductive bonding material layer is an Ag adhesive layer.
 [付記1-13]
 前記基板は、樹脂基板を含む、付記1-1~付記1-12のいずれか一項に記載の半導体発光装置。
[Appendix 1-13]
The semiconductor light emitting device according to any one of Supplementary notes 1-1 to 1-12, wherein the substrate includes a resin substrate.
 [付記1-14]
 前記複数の前記ビア電極および前記電極膜の少なくとも一方は、Cu系金属を含む、付記1-1~付記1-13のいずれか一項に記載の半導体発光装置。
[Appendix 1-14]
The semiconductor light emitting device according to any one of Supplementary notes 1-1 to 1-13, wherein at least one of the plurality of via electrodes and the electrode film contains a Cu-based metal.
 [付記1-15]
 一方側の第1主面および他方側の第2主面を有する基板と、
 平面視において前記第1主面に沿う第1方向に延びる帯状にそれぞれ形成され、前記基板に埋設された複数の第1型ビア電極と、
 平面視において前記第1主面に沿って前記第1方向に交差する第2方向に延びる帯状にそれぞれ形成され、少なくとも1つの前記第1型ビア電極に前記第1方向に対向するように前記複数の前記第1型ビア電極から間隔を空けて前記基板に埋設された複数の第2型ビア電極と、
 前記第1主面上で前記複数の前記第1型ビア電極および前記複数の前記第2型ビア電極を一括して被覆する電極膜と、
 前記複数の前記第1型ビア電極および前記複数の前記第2型ビア電極に対向するように前記電極膜上に配置された半導体発光チップとを含む、半導体発光装置。
[Appendix 1-15]
a substrate having a first main surface on one side and a second main surface on the other side;
a plurality of first type via electrodes each formed in a band shape extending in a first direction along the first main surface in plan view and embedded in the substrate;
The plurality of electrodes are each formed in a band shape extending in a second direction intersecting the first direction along the first main surface in a plan view, and are arranged so as to face at least one first type via electrode in the first direction. a plurality of second type via electrodes buried in the substrate at intervals from the first type via electrodes;
an electrode film that collectively covers the plurality of first type via electrodes and the plurality of second type via electrodes on the first main surface;
A semiconductor light emitting device, comprising: a semiconductor light emitting chip disposed on the electrode film so as to face the plurality of first type via electrodes and the plurality of second type via electrodes.
 [付記1-16]
 平面視で前記第2方向にストライプ状に延びる複数のラインを前記第1主面に設定したとき、前記複数の前記第1型ビア電極が前記複数の前記ライン上に間隔を空けて配列されている、付記1-15に記載の半導体発光装置。
[Appendix 1-16]
When a plurality of lines extending in a stripe shape in the second direction in plan view are set on the first main surface, the plurality of first type via electrodes are arranged at intervals on the plurality of lines. The semiconductor light emitting device according to Supplementary Note 1-15.
 [付記1-17]
 平面視で前記第1方向および前記第2方向の双方に交差するように格子状に延びる複数のラインを前記第1主面に設定したとき、前記複数の前記第1型ビア電極が前記複数の前記ライン上に間隔を空けて配列されている、付記1-15に記載の半導体発光装置。
[Appendix 1-17]
When a plurality of lines extending in a lattice shape so as to intersect both the first direction and the second direction in a plan view are set on the first main surface, the plurality of first type via electrodes are The semiconductor light emitting devices according to appendix 1-15, which are arranged on the line at intervals.
 [付記1-18]
 少なくとも1つの前記第2型ビア電極が、前記複数の前記ラインによって取り囲まれた領域内に配置されている、付記1-17に記載の半導体発光装置。
[Appendix 1-18]
The semiconductor light emitting device according to appendix 1-17, wherein at least one of the second type via electrodes is arranged in a region surrounded by the plurality of lines.
 [付記1-19]
 少なくとも1つの前記第1型ビア電極が、前記複数の前記ラインによって取り囲まれた領域内に配置されている、付記1-17または付記1-18に記載の半導体発光装置。
[Appendix 1-19]
The semiconductor light emitting device according to attachment 1-17 or attachment 1-18, wherein at least one of the first type via electrodes is arranged in a region surrounded by the plurality of lines.
 [付記1-20]
 平面視において前記第1主面の表面積に対する前記複数の前記第1型ビア電極および前記複数の前記第2型ビア電極の総占有率が、10%以上50%以下である、付記1-15~付記1-19のいずれか一項に記載の半導体発光装置。
[Appendix 1-20]
Supplementary Note 1-15~, wherein the total occupancy of the plurality of first type via electrodes and the plurality of second type via electrodes with respect to the surface area of the first principal surface in plan view is 10% or more and 50% or less. The semiconductor light emitting device according to any one of Supplementary Notes 1-19.
1  :半導体発光装置
2  :ケース
3  :半導体発光チップ
4  :ダイオードチップ
5  :封止樹脂
6  :基材
7  :配線
8  :収容凹部
9  :第1主面
10 :第2主面
11 :表面層
12 :中間層
13 :裏面層
14 :貫通配線
15 :アノードパッド
16 :カソードパッド
17 :第1アノードパッド
18 :第1カソードパッド
19 :第2アノードパッド
20 :第2カソードパッド
21 :カソードアイランド部
22 :カソード延出部
23 :直線部
24 :ダイオード領域
25 :アノードパッド部
26 :アノード延出部
27 :第1導電層
28 :第2導電層
29 :第1中継配線
30 :第2中継配線
31 :アノード実装電極
32 :カソード実装電極
33 :第1アノード実装電極
34 :第1カソード実装電極
35 :第2アノード実装電極
36 :第2カソード実装電極
37 :第1貫通配線
38 :第2貫通配線
39 :第1主面
40 :第2主面
41 :アノード電極
42 :カソード電極
43 :導電接合材層
44 :ワイヤ
45 :第1主面
46 :第2主面
47 :アノード電極
48 :カソード電極
49 :導電接合材層
50 :ワイヤ
51 :ビア電極
52 :第1ビア電極
53 :第2ビア電極
61 :ビア電極
62 :第1ビア電極
63 :第2ビア電極
64 :長周縁
65 :短周縁
66 :第1型ビア電極
67 :第2型ビア電極
68 :区画領域
69 :第3ビア電極
70 :第4ビア電極
L1 :第1ライン
L2 :第2ライン
L3 :第3ライン
T1 :厚さ
T2 :厚さ
T3 :厚さ
W1 :幅
W2 :幅
1: Semiconductor light emitting device 2: Case 3: Semiconductor light emitting chip 4: Diode chip 5: Sealing resin 6: Base material 7: Wiring 8: Accommodating recess 9: First main surface 10: Second main surface 11: Surface layer 12 : Intermediate layer 13 : Back layer 14 : Penetrating wiring 15 : Anode pad 16 : Cathode pad 17 : First anode pad 18 : First cathode pad 19 : Second anode pad 20 : Second cathode pad 21 : Cathode island part 22 : Cathode extension part 23 : Straight part 24 : Diode region 25 : Anode pad part 26 : Anode extension part 27 : First conductive layer 28 : Second conductive layer 29 : First relay wiring 30 : Second relay wiring 31 : Anode Mounted electrode 32 : Cathode mounted electrode 33 : First anode mounted electrode 34 : First cathode mounted electrode 35 : Second anode mounted electrode 36 : Second cathode mounted electrode 37 : First through wiring 38 : Second through wiring 39 : First 1 principal surface 40 : 2nd principal surface 41 : anode electrode 42 : cathode electrode 43 : conductive bonding material layer 44 : wire 45 : 1st principal surface 46 : 2nd principal surface 47 : anode electrode 48 : cathode electrode 49 : conductive bond Material layer 50: Wire 51: Via electrode 52: First via electrode 53: Second via electrode 61: Via electrode 62: First via electrode 63: Second via electrode 64: Long peripheral edge 65: Short peripheral edge 66: First type Via electrode 67 : Second type via electrode 68 : Division area 69 : Third via electrode 70 : Fourth via electrode L1 : First line L2 : Second line L3 : Third line T1 : Thickness T2 : Thickness T3 : Thickness W1: Width W2: Width

Claims (20)

  1.  一方側の第1主面および他方側の第2主面を有する基板と、
     平面視において前記第1主面の表面積に対する占有率が10%以上60%以下となるように前記基板に間隔を空けて埋設された複数のビア電極と、
     前記第1主面上で前記複数の前記ビア電極を一括して被覆する電極膜と、
     前記複数の前記ビア電極に対向するように前記電極膜上に配置された半導体発光チップとを含む、半導体発光装置。
    a substrate having a first main surface on one side and a second main surface on the other side;
    a plurality of via electrodes embedded in the substrate at intervals such that the occupation rate with respect to the surface area of the first principal surface is 10% or more and 60% or less in plan view;
    an electrode film that collectively covers the plurality of via electrodes on the first main surface;
    and a semiconductor light emitting chip disposed on the electrode film so as to face the plurality of via electrodes.
  2.  前記半導体発光チップは、垂直共振器型面発光レーザチップを含む、請求項1に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting chip includes a vertical cavity surface emitting laser chip.
  3.  前記複数の前記ビア電極は、前記第1主面および前記第2主面から露出している、請求項1または2に記載の半導体発光装置。 3. The semiconductor light emitting device according to claim 1, wherein the plurality of via electrodes are exposed from the first main surface and the second main surface.
  4.  前記複数の前記ビア電極は、平面視において、多角形状、円形状、楕円形状および長円形状の少なくとも1つの形状を有している、請求項1~3のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 3, wherein the plurality of via electrodes have at least one of a polygonal shape, a circular shape, an elliptical shape, and an elliptical shape in plan view. Device.
  5.  前記複数の前記ビア電極は、平面視において第1方向および前記第1方向に交差する第2方向に間隔を空けて行列状または千鳥状に配列されている、請求項1~4のいずれか一項に記載の半導体発光装置。 5. The method according to claim 1, wherein the plurality of via electrodes are arranged in a matrix or in a staggered manner at intervals in a first direction and a second direction intersecting the first direction when viewed in plan. The semiconductor light-emitting device described in 2.
  6.  前記複数の前記ビア電極は、50μm以上200μm以下のピッチで配列されている、請求項1~5のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 5, wherein the plurality of via electrodes are arranged at a pitch of 50 μm or more and 200 μm or less.
  7.  前記複数の前記ビア電極は、平面視において50μm以上200μm以下の幅で形成された部分をそれぞれ有している、請求項1~6のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 6, wherein each of the plurality of via electrodes has a portion formed with a width of 50 μm or more and 200 μm or less in plan view.
  8.  前記電極膜は、10μm以上200μm以下の厚さを有している、請求項1~7のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 7, wherein the electrode film has a thickness of 10 μm or more and 200 μm or less.
  9.  前記複数の前記ビア電極から間隔を空けて前記基板に埋設された複数の第2ビア電極と、
     前記第1主面上で前記電極膜から間隔を空けて前記複数の前記第2ビア電極を被覆する第2電極膜と、
     前記半導体発光チップおよび前記第2電極膜を接続する導線とをさらに含む、請求項1~8のいずれか一項に記載の半導体発光装置。
    a plurality of second via electrodes buried in the substrate at intervals from the plurality of via electrodes;
    a second electrode film that covers the plurality of second via electrodes at a distance from the electrode film on the first main surface;
    9. The semiconductor light emitting device according to claim 1, further comprising a conductive wire connecting the semiconductor light emitting chip and the second electrode film.
  10.  前記複数の前記第2ビア電極は、平面視において前記第1主面の表面積に対する占有率が前記複数の前記ビア電極の占有率よりも小さくなるように、前記基板に埋設されている、請求項9に記載の半導体発光装置。 2. The plurality of second via electrodes are embedded in the substrate so that the occupancy of the surface area of the first main surface is smaller than the occupancy of the plurality of via electrodes in plan view. 9. The semiconductor light emitting device according to 9.
  11.  前記半導体発光チップおよび前記電極膜の間に介在された導電接合材層をさらに含む、請求項1~10のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 10, further comprising a conductive bonding material layer interposed between the semiconductor light emitting chip and the electrode film.
  12.  前記導電接合材層は、Ag接着剤層からなる、請求項11に記載の半導体発光装置。 The semiconductor light emitting device according to claim 11, wherein the conductive bonding material layer is made of an Ag adhesive layer.
  13.  前記基板は、樹脂基板を含む、請求項1~12のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 12, wherein the substrate includes a resin substrate.
  14.  前記複数の前記ビア電極および前記電極膜の少なくとも一方は、Cu系金属を含む、請求項1~13のいずれか一項に記載の半導体発光装置。 The semiconductor light emitting device according to any one of claims 1 to 13, wherein at least one of the plurality of via electrodes and the electrode film contains a Cu-based metal.
  15.  一方側の第1主面および他方側の第2主面を有する基板と、
     平面視において前記第1主面に沿う第1方向に延びる帯状にそれぞれ形成され、前記基板に埋設された複数の第1型ビア電極と、
     平面視において前記第1主面に沿って前記第1方向に交差する第2方向に延びる帯状にそれぞれ形成され、少なくとも1つの前記第1型ビア電極に前記第1方向に対向するように前記複数の前記第1型ビア電極から間隔を空けて前記基板に埋設された複数の第2型ビア電極と、
     前記第1主面上で前記複数の前記第1型ビア電極および前記複数の前記第2型ビア電極を一括して被覆する電極膜と、
     前記複数の前記第1型ビア電極および前記複数の前記第2型ビア電極に対向するように前記電極膜上に配置された半導体発光チップとを含む、半導体発光装置。
    a substrate having a first main surface on one side and a second main surface on the other side;
    a plurality of first type via electrodes each formed in a band shape extending in a first direction along the first main surface in plan view and embedded in the substrate;
    The plurality of electrodes are each formed in a band shape extending in a second direction intersecting the first direction along the first main surface in a plan view, and are arranged so as to face at least one first type via electrode in the first direction. a plurality of second type via electrodes buried in the substrate at intervals from the first type via electrodes;
    an electrode film that collectively covers the plurality of first type via electrodes and the plurality of second type via electrodes on the first main surface;
    A semiconductor light emitting device, comprising: a semiconductor light emitting chip disposed on the electrode film so as to face the plurality of first type via electrodes and the plurality of second type via electrodes.
  16.  平面視で前記第2方向にストライプ状に延びる複数のラインを前記第1主面に設定したとき、前記複数の前記第1型ビア電極が前記複数の前記ライン上に間隔を空けて配列されている、請求項15に記載の半導体発光装置。 When a plurality of lines extending in a stripe shape in the second direction in plan view are set on the first main surface, the plurality of first type via electrodes are arranged at intervals on the plurality of lines. The semiconductor light emitting device according to claim 15.
  17.  平面視で前記第1方向および前記第2方向の双方に交差するように格子状に延びる複数のラインを前記第1主面に設定したとき、前記複数の前記第1型ビア電極が前記複数の前記ライン上に間隔を空けて配列されている、請求項15に記載の半導体発光装置。 When a plurality of lines extending in a lattice shape so as to intersect both the first direction and the second direction in a plan view are set on the first main surface, the plurality of first type via electrodes are The semiconductor light emitting device according to claim 15, wherein the semiconductor light emitting devices are arranged on the line at intervals.
  18.  少なくとも1つの前記第2型ビア電極が、前記複数の前記ラインによって取り囲まれた領域内に配置されている、請求項17に記載の半導体発光装置。 The semiconductor light emitting device according to claim 17, wherein at least one of the second type via electrodes is arranged in a region surrounded by the plurality of lines.
  19.  少なくとも1つの前記第1型ビア電極が、前記複数の前記ラインによって取り囲まれた領域内に配置されている、請求項17または18に記載の半導体発光装置。 The semiconductor light emitting device according to claim 17 or 18, wherein at least one of the first type via electrodes is arranged in a region surrounded by the plurality of lines.
  20.  平面視において前記第1主面の表面積に対する前記複数の前記第1型ビア電極および前記複数の前記第2型ビア電極の総占有率が、10%以上50%以下である、請求項15~19のいずれか一項に記載の半導体発光装置。 Claims 15 to 19, wherein the total occupancy rate of the plurality of first type via electrodes and the plurality of second type via electrodes with respect to the surface area of the first principal surface in plan view is 10% or more and 50% or less. The semiconductor light emitting device according to any one of the above.
PCT/JP2023/007524 2022-03-31 2023-03-01 Semiconductor light emitting device WO2023189131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061325 2022-03-31
JP2022061325 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189131A1 true WO2023189131A1 (en) 2023-10-05

Family

ID=88201103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007524 WO2023189131A1 (en) 2022-03-31 2023-03-01 Semiconductor light emitting device

Country Status (1)

Country Link
WO (1) WO2023189131A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124408A (en) * 2001-10-11 2003-04-25 Tokuyama Corp Heat radiative substrate
JP2003197835A (en) * 2001-12-26 2003-07-11 Tdk Corp Power amplification module and element aggregate therefor
JP2004311916A (en) * 2003-02-21 2004-11-04 Kyocera Corp Package for light emitting element and light emitting device
JP2011054736A (en) * 2009-09-01 2011-03-17 Sharp Corp Light-emitting device, plane light source, and liquid crystal display device
JP2017017057A (en) * 2015-06-26 2017-01-19 日立金属株式会社 Multilayer substrate and communication module using the same
US20170287807A1 (en) * 2016-03-30 2017-10-05 Qorvo Us, Inc. Electronics package with improved thermal performance
US20210267043A1 (en) * 2018-06-15 2021-08-26 Lg Innotek Co., Ltd. Printed circuit board and camera device comprising same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124408A (en) * 2001-10-11 2003-04-25 Tokuyama Corp Heat radiative substrate
JP2003197835A (en) * 2001-12-26 2003-07-11 Tdk Corp Power amplification module and element aggregate therefor
JP2004311916A (en) * 2003-02-21 2004-11-04 Kyocera Corp Package for light emitting element and light emitting device
JP2011054736A (en) * 2009-09-01 2011-03-17 Sharp Corp Light-emitting device, plane light source, and liquid crystal display device
JP2017017057A (en) * 2015-06-26 2017-01-19 日立金属株式会社 Multilayer substrate and communication module using the same
US20170287807A1 (en) * 2016-03-30 2017-10-05 Qorvo Us, Inc. Electronics package with improved thermal performance
US20210267043A1 (en) * 2018-06-15 2021-08-26 Lg Innotek Co., Ltd. Printed circuit board and camera device comprising same

Similar Documents

Publication Publication Date Title
US10103130B2 (en) LED module
TWI384641B (en) Light emitting diode package
US8410371B2 (en) Electronic device submounts with thermally conductive vias and light emitting devices including the same
US9312462B2 (en) LED module
US9293663B1 (en) Light-emitting unit and semiconductor light-emitting device
KR20110096601A (en) Aligned multiple emitter package
US11605765B2 (en) LED module
JP6318004B2 (en) LED module, LED module mounting structure
US20130062656A1 (en) Thermally enhanced optical package
US20090242927A1 (en) Semiconductor light emitting module and method for manufacturing the same
KR101253247B1 (en) substrate for light emitting device
KR101051488B1 (en) Method for manufacturing light emitting diode unit, and light emitting diode unit manufactured by this method
JPH1146018A (en) Surface mounted type light-emitting diode
US8841172B2 (en) Method for forming package substrate
WO2023189131A1 (en) Semiconductor light emitting device
US20120001203A1 (en) Led chip package structure
JP2019062172A (en) Light emitting element and light emitting device
JP2009212126A (en) Lighting system
US9763330B2 (en) Circuit board, optoelectronic component and arrangement of optoelectronic components
CN104124322A (en) Electric connection member for light emitting device, light emitting device module, and method for manufacturing light emitting device module
KR20190035527A (en) Light emitting device and light emitting apparatus
US20230133634A1 (en) Semiconductor light emitting device package
JP7381903B2 (en) light emitting device
EP3817041B1 (en) Electronic element mounting substrate, electronic device, and electronic module
US20130228820A1 (en) Optoelectronic Semiconductor Component and Method for Producing it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511520

Country of ref document: JP

Kind code of ref document: A