WO2023188924A1 - 通風型消音器 - Google Patents

通風型消音器 Download PDF

Info

Publication number
WO2023188924A1
WO2023188924A1 PCT/JP2023/005114 JP2023005114W WO2023188924A1 WO 2023188924 A1 WO2023188924 A1 WO 2023188924A1 JP 2023005114 W JP2023005114 W JP 2023005114W WO 2023188924 A1 WO2023188924 A1 WO 2023188924A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition member
absorbing material
ventilation pipe
porous sound
silencer
Prior art date
Application number
PCT/JP2023/005114
Other languages
English (en)
French (fr)
Inventor
真也 白田
昇吾 山添
雄一郎 板井
美博 菅原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023188924A1 publication Critical patent/WO2023188924A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the open pipe part on one side and the open pipe part on the other side are arranged at different positions in the longitudinal direction of the sound-absorbing material, and the covering material is A sound-dampening ventilation structure is described that has a portion exposed and configures the exposed portion as at least one contact surface in contact with a space within the sound-dampening enclosure.
  • Patent Document 1 discloses that by covering a part of the porous sound-absorbing material, the sound pressure at the contact surface with the ventilation path can be increased, and the particle velocity can be increased, so the sound-absorbing effect of the porous sound-absorbing material can be improved. It is stated that it can be made higher.
  • a configuration for increasing the sound absorption effect with a small amount of porous sound-absorbing material a configuration in which a space (hereinafter referred to as back space) is provided on the opposite side of the porous sound-absorbing material from the ventilation path side (hereinafter also referred to as back side) can be considered.
  • back space a space
  • back side the opposite side of the porous sound-absorbing material from the ventilation path side
  • the present invention has the following configuration.
  • An inlet-side ventilation pipe an expanded part that communicates with the inlet-side ventilation pipe and has a larger cross-sectional area than the inlet-side ventilation pipe, and an outlet-side ventilation pipe that communicates with the expanded part and has a smaller cross-sectional area than the expanded part;
  • a ventilated silencer having a porous sound absorbing material disposed in at least a portion of the extension;
  • a back space which is a space within the expanded portion of the porous sound-absorbing material, on the opposite side of the flow path connecting the inlet-side ventilation pipe and the outlet-side ventilation pipe, and It has a partition member that partitions the back space,
  • the area partitioned by the partition member constitutes an acoustic resonance part,
  • the acoustic resonator is a ventilated silencer that is acoustically connected to the flow path.
  • the end surface of the plate-like member 34b on the opposite side from the plate-like member 34a is not in contact with the wall of the extended portion 14 (the upper wall in FIG. 3), and an opening is formed therein.
  • the opening of the acoustic resonance section 36b is narrowed by the plate member 34b compared to the example shown in FIG. In this way, by narrowing the opening of the acoustic resonance section 36b, the resonance in the acoustic resonance section 36b can be made into Helmholtz resonance.
  • the second opening structure 24 is arranged in contact with the connection part with the outlet side ventilation pipe 16 in the expansion part 14, and the opening area gradually decreases from the inlet side ventilation pipe 12 side to the outlet side ventilation pipe 16 side. It is a cylindrical member with a tapered shape.
  • the first opening structure 20d and the second opening structure 24d are configured to have regions where the wall thickness gradually becomes thinner, so that the change in cross-sectional area is gradual, and the wind Sound can be reduced.
  • the outer shape of the expanded portion 14 be kept constant and the inner side gradually widened, it may be configured that the distal end portion is made thin and pointed.
  • the first opening structure 20d and the second opening structure 24d have a region with a constant thickness over a certain length, and the thickness gradually becomes thinner toward the tip side. It may have a region, or it may be composed only of a region whose wall thickness gradually becomes thinner. Further, it is also possible to adopt a structure in which the thickness of the end portion of the opening structure having an expanding cross-sectional shape (outer shape) is gradually thinned, as in the examples shown in FIGS. 4 to 6.
  • the change in cross-sectional area due to the opening structure may be a monotonous change, a change rate may change, or a stepwise change may be made.
  • the average roughness Ra of the inner surface (the surface on the central axis side) of the opening structure is preferably 1 mm or less, more preferably 0.5 mm or less, and even more preferably 0.1 mm or less. preferable.
  • the inlet side ventilation pipe 12 and the outlet side ventilation pipe 16 are configured such that their central axes are arranged on the same straight line, but the invention is not limited to this.
  • the inlet-side ventilation pipe 12 and the outlet-side ventilation pipe 16 may have a configuration in which their central axes are not on the same straight line.
  • the back space 14a is formed on the back side of the porous sound absorbing material 30 disposed in the expanded portion 14, and the partition member 34 that partitions the back space 14a is provided in the back space 14a. It is possible to have a configuration in which
  • the two plate-like members are curved so as to bend the flow path in the direction, and the cross-sectional area changes on the tip side (inlet side ventilation pipe 12 side) of one of the plate-like members (curved structure). ).
  • the first opening structure 20e and the second opening structure 24e have a configuration in which one plate member has a wide structure in which the cross-sectional area changes, but both plate members It may also be configured to have a wide structure (curved structure) in which the cross-sectional area changes.
  • the opening structure can be configured such that the cross-sectional area gradually changes by making the two plate-like members have different radii of curvature or by changing the length.
  • One of the two spaces in the back space 14a partitioned by the partition member 34 functions as an acoustic resonance section 36.
  • the upper space functions as the acoustic resonance section 36.
  • the acoustic resonance section 36 is open on the side of the porous sound absorbing material 30 and is acoustically connected to the flow path via the porous sound absorbing material 30.
  • This acoustic resonator 36 acts, for example, as an air column resonator.
  • the partition member 34 is a flat plate-shaped member, and the acoustic resonator 36 acts as an air column resonator, but this is not limiting.
  • the partition member 34 may have a portion protruding toward the acoustic resonance portion 36b at the end thereof on the porous sound absorbing material 30 side.
  • the partition member 34 in the illustrated example has an acoustic resonant portion at the end of the largest surface of the plate member 34a on the side of the porous sound absorbing material 30, which has the same width as the plate member 34a in the direction perpendicular to the plane of the paper in FIG.
  • the porous sound absorbing material does not have punching metal on the surface opposite to the flow path. That is, it is preferable that there is no punching metal between the porous sound absorbing material and the back space and the acoustic resonance part. If a punching metal is provided between the porous sound absorbing material and the back space, there is a risk that the above-mentioned effect of improving sound deadening performance due to having the back space on the back side of the porous sound absorbing material may not be obtained.
  • the internal size of the expanded portion 114 was 105 mm in width x 37 mm in height x 140 mm in length. Further, the inner diameter of the connected vent pipes (the inlet vent pipe 112 and the outlet vent pipe 116) was 24 mm.
  • a first opening structure 120 was arranged at the connection part with the inlet side ventilation pipe 112 in the expansion part 14, and a second opening structure 124 was arranged at the connection part with the outlet side ventilation pipe 116.
  • the first opening structure 120 and the second opening structure 124 extend two-dimensionally in the width direction, have a proximal width of 24 mm, a distal width of 30 mm, and a maximum length in the longitudinal direction. It is 25mm.
  • Example 1 A ventilated silencer (see FIGS. 1 and 2) having the same structure as Comparative Example 2 was manufactured except that the partition member 34 was disposed in the back space.
  • the partition member 34 is a flat plate-shaped member with a thickness of 3 mm, a width of 50 mm, and a height of 35 mm.
  • a ventilated silencer of Example 1 was produced in the same manner as Comparative Example 1 except that it was integrally molded with the main body part and the porous sound absorbing material 130b was not disposed. There is a gap of 2 mm between the wall parts and the partition member 34.
  • Comparative Example 1 the transmission loss increases monotonically toward the high frequency side except around 315 Hz.
  • Comparative Example 2 exhibited a silencing performance much higher than Comparative Example 1 near 1500 Hz, it can be seen that there are bands where the transmission loss is lower near 1000 Hz and 2000 Hz. In particular, around 1000 Hz, the value of transmission loss in Comparative Example 1 was also hypothetically smaller than the high frequency, so the sound deadening performance was low.
  • Example 4 The structure is the same as that of the embodiment except that the partition member 34 has a portion (plate-like member 34b) that protrudes toward the acoustic resonance section 36b at the end thereof on the porous sound-absorbing material 30 side, and the acoustic resonance section 36b is a Helmholtz resonator.
  • a ventilated silencer (see FIG. 10) was produced in the same manner as in Example 3.
  • the width of the opening of the acoustic resonance section 36b (the distance between the plate member 34b and the upper wall of the expansion section 14 in FIG. 10) was 10 mm.
  • Example 5 A ventilated silencer (see FIG. 9) having the same structure as in Example 3 was manufactured except that partition members 34 were disposed in each of the two back spaces 14a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Exhaust Silencers (AREA)

Abstract

多孔質吸音材を用いる通風型の消音器であって、低周波域での消音性能が高い通風型消音器を提供する。入口側通気管と、入口側通気管と連通し入口側通気管よりも断面積が大きい拡張部と、拡張部と連通し、拡張部よりも断面積が小さい出口側通気管と、を有する通風型消音器であって、拡張部の少なくとも一部に配置される多孔質吸音材、多孔質吸音材の、入口側通気管と出口側通気管とを結ぶ流路とは反対側の拡張部内の空間である背面空間、および、背面空間を仕切る仕切部材、を有し、仕切部材によって仕切られた領域が音響共鳴部を構成し、音響共鳴部は、流路と音響的に接続されている。

Description

通風型消音器
 本発明は、通風型消音器に関する。
 気体を輸送する通気管において、気体の供給源等からの騒音を通気管の途中で消音する消音器として、通気管の途中に設置され、通気管より断面積が大きい拡張部を有する通風型消音器が知られている。また、拡張部の内部には、消音性能をより向上するため、多孔質吸音材を配置することも行われている。通風型消音器においては、多孔質吸音材は、中心部に通風路となる空間を設けるように流路に沿って配置される。
 多孔質吸音材の吸音性能は、多孔質吸音材の体積に依存するため、吸音性能を高くするためには、多孔質吸音材を多く配置する必要があった。しかしながら、多孔質吸音材が多くなると、水等に濡れた時に奥に浸透して乾かなくなりカビが発生する等の問題が生じやすくなったり、燃えやすくなったり、材料費および詰める工数によるコストアップ、最終的にごみが増える等の問題が生じる。
 そのため、少ない多孔質吸音材で吸音性能を高くすることが考えられている。
 例えば、特許文献1には、2つの空間を隔てる化粧板と壁とを連通するように設けられるクランクボックス型の消音換気構造であって、化粧板と壁との間の空間に配置される中空の消音容器と、消音容器の対向する2つの側面にそれぞれ接続され、それぞれ消音容器内の空間と連通する少なくとも2つの開口管部と、消音容器の内部に備えられた吸音材と、吸音材の表面の一部を被覆する被覆材と、を有し、消音容器の一方の側面の開口管部は、化粧板を連通するように配置され、消音容器の他方の側面の開口管部は、壁を連通するように配置され、一方の側面の開口管部と、他方の側面の開口管部とは、消音容器の長手方向に異なる位置に配置され、被覆材は、吸音材の表面の他の一部を露出させて、露出部分を消音容器内の空間と接触する少なくとも1つの接触面として構成する消音換気構造が記載されている。
特開2019-132576号公報
 特許文献1は、多孔質吸音材の一部を被覆することにより、通風路との接触面での音圧を高くすることができ、粒子速度を大きくできるため、多孔質吸音材による吸音効果を高くできることが記載されている。
 また、少ない多孔質吸音材で吸音効果を高くする構成として、多孔質吸音材の通風路側とは反対側(以下、裏面側ともいう)に空間(以下、背面空間という)を設ける構成が考えられる。多孔質吸音材の裏面側が直接壁と接していると、通風路から多孔質吸音材に入った音波が壁によって反射されて通風路に戻ってしまうため、多孔質吸音材による吸音効果を十分に得られない可能性がある。これに対して、多孔質吸音材の裏面側に背面空間を有する構成とすることで、通風路から多孔質吸音材に入った音波が反射されて通風路に戻ってしまうことを抑制できるため、多孔質吸音材による吸音効果をより高くすることができる。
 しかしながら、本発明者らの検討によれば、多孔質吸音材の裏面側に背面空間を有する構成とした場合に、低周波域での消音性能が低いという問題があることがわかった。
 本発明の課題は、上記従来技術の問題点を解消し、多孔質吸音材を用いる通風型の消音器であって、低周波域での消音性能が高い通風型消音器を提供することを課題とする。
 この課題を解決するために、本発明は、以下の構成を有する。
 [1] 入口側通気管と、入口側通気管と連通し入口側通気管よりも断面積が大きい拡張部と、拡張部と連通し、拡張部よりも断面積が小さい出口側通気管と、を有する通風型消音器であって、
 拡張部の少なくとも一部に配置される多孔質吸音材、
 多孔質吸音材の、入口側通気管と出口側通気管とを結ぶ流路とは反対側の拡張部内の空間である背面空間、および、
 背面空間を仕切る仕切部材、を有し、
 仕切部材によって仕切られた領域が音響共鳴部を構成し、
 音響共鳴部は、流路と音響的に接続されている、通風型消音器。
 [2] 音響共鳴部における共鳴が気柱共鳴である、[1]に記載の通風型消音器。
 [3] 仕切部材が、多孔質吸音材側の端部で、音響共鳴部側に突出する部位を有し、
 音響共鳴部における共鳴がヘルムホルツ共鳴である、[1]に記載の通風型消音器。
 [4] 仕切部材は、拡張部の壁のうち、音響共鳴部を囲み対面する2つの壁の少なくとも一方に対して未接着である、[1]~[3]のいずれかに記載の通風型消音器。
 [5] 仕切部材と、仕切部材と未接着である壁との距離が5mm以下である、[4]に記載の通風型消音器。
 [6] 仕切部材が、多孔質吸音材と接している、[1]~[5]のいずれかに記載の通風型消音器。
 [7] 拡張部の少なくとも一面が平坦面である、[1]~[6]のいずれかに記載の通風型消音器。
 [8] 仕切部材を含めて構築した後の、平坦面部の最も低い固有振動数が2000Hz以下である、[7]に記載の通風型消音器。
 [9] 仕切部材が、拡張部と一体的に形成されている、[1]~[8]のいずれかに記載の通風型消音器。
 [10] 仕切部材が拡張部の壁と接合されている位置から壁と離間する方向の少なくとも一方向において、仕切部材の厚みが一定または単調減少している、[9]に記載の通風型消音器。
 [11] 仕切部材の全ての辺が直線である、[1]~[10]のいずれかに記載の通風型消音器。
 [12] 拡張部の入口側通気管との接続部および出口側通気管との接続部の少なくとも一方に、接続部から拡張部内に向かって、断面積が漸次、拡大する開口部構造を有する、[1]~[11]のいずれかに記載の通風型消音器。
 本発明によれば、多孔質吸音材を用いる通風型の消音器であって、低周波域での消音性能が高い通風型消音器を提供することができる。
本発明の通風型消音器の一例を概念的に示す断面図である。 図1のB-B線断面図である。 本発明の通風型消音器の他の一例を概念的に示す断面図である。 図1に示す通風型消音器が有する開口部構造の斜視図である。 開口部構造の他の一例を概念的に示す斜視図である。 開口部構造の他の一例を概念的に示す斜視図である。 本発明の通風型消音器の他の一例を概念的に示す断面図である。 本発明の通風型消音器の他の一例を概念的に示す断面図である。 本発明の通風型消音器の他の一例を概念的に示す断面図である。 本発明の通風型消音器の他の一例を概念的に示す断面図である。 比較例の通風型消音器を概念的に示す断面図である。 図11のC-C線断面図である。 周波数と透過損失との関係を表すグラフである。 周波数と透過損失との関係を表すグラフである。 周波数と透過損失との関係を表すグラフである。 比較例の通風型消音器の概念的に示す断面図である。 周波数と透過損失との関係を表すグラフである。 周波数と透過損失との関係を表すグラフである。
 以下、本発明の通風型消音器について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、「垂直」および「平行」とは、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、「垂直」および「平行」とは、厳密な垂直あるいは平行に対して±10°未満の範囲内であることなどを意味し、厳密な垂直あるいは平行に対しての誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 本明細書において、「同一」、「同じ」等の用語は、技術分野で一般的に許容される誤差範囲を含むものとする。
[通風型消音器]
 本発明の通風型消音器は、
 入口側通気管と、入口側通気管と連通し入口側通気管よりも断面積が大きい拡張部と、拡張部と連通し、拡張部よりも断面積が小さい出口側通気管と、を有する通風型消音器であって、
 拡張部の少なくとも一部に配置される多孔質吸音材、
 多孔質吸音材の、入口側通気管と出口側通気管とを結ぶ流路とは反対側の拡張部内の空間である背面空間、および、
 背面空間を仕切る仕切部材、を有し、
 仕切部材によって仕切られた領域が音響共鳴部を構成し、
 音響共鳴部は、流路と音響的に接続されている、通風型消音器である。
 本発明の通風型消音器の構成について、図面を用いて説明する。
 図1は、本発明の通風型消音器の実施態様の一例を示す模式的な断面図である。図2は図1のB-B線断面図である。
 図1に示す通風型消音器10は、筒状の入口側通気管12と、入口側通気管12の一方の開口端面に接続された拡張部14と、拡張部14の入口側通気管12とは反対側の端面に接続された、筒状の出口側通気管16と、拡張部14内の一部の領域に配置される多孔質吸音材30と、拡張部14の多孔質吸音材30が配置されない空間であって、通気管とは反対側にある背面空間14aと、背面空間14aを仕切る仕切部材34と、を有する。
 また、好ましい態様として、図1に示す通風型消音器10は、拡張部14内の入口側通気管12との接続部に配置される第1開口部構造20、および、拡張部14内の出口側通気管16との接続部に配置される第2開口部構造24を有する。以下、第1開口部構造20および第2開口部構造24をまとめて開口部構造ともいう。
 入口側通気管12は、筒状の部材で、一方の開口端面から流入した気体を他方の開口端面に接続された拡張部14に輸送する。
 出口側通気管16は、筒状の部材で、拡張部14に接続された一方の開口端面から流入した気体を他方の開口端面に輸送する。
 入口側通気管12および出口側通気管16(以下、まとめて、通気管ともいう)の断面形状は円形状、矩形状、三角形状等の種々の形状であってもよい。また、通気管の中心軸の軸方向において、通気管の断面形状は一定でなくてもよい。例えば、軸方向において、通気管の直径が変化していてもよい。
 入口側通気管12および出口側通気管16は、同一の断面形状、断面積であってもよいし、形状および/または断面積が異なっていてもよい。また、図1に示す例では、入口側通気管12および出口側通気管16は、中心軸が一致するように配置されているが、これに限定はされず、後述する図8に示す例のように、入口側通気管12の中心軸と出口側通気管16の中心軸とがズレていてもよい。
 入口側通気管12および出口側通気管16のサイズ(断面積等)は、通風型消音器が用いられる機器のサイズ、求められる通風性能等に応じて適宜設定すればよい。
 拡張部14は、入口側通気管12と出口側通気管16との間に配置され、入口側通気管12から流入した気体を出口側通気管16に輸送する。
 拡張部14は、流路方向に垂直な断面積が入口側通気管12の断面積よりも大きく、また、出口側通気管16の断面積よりも大きい。すなわち、例えば、入口側通気管12、出口側通気管16、および、拡張部14の断面形状が円形状である場合には、拡張部14の断面の直径は、入口側通気管12および出口側通気管16の直径よりも大きい。
 拡張部14の断面形状は円形状、矩形状、三角形状等の種々の形状であってもよい。また、拡張部14の中心軸の軸方向において、拡張部14の断面形状は一定でなくてもよい。例えば、軸方向において、拡張部14の直径が変化していてもよい。
 拡張部14のサイズ(長さ、断面積等)は、通風型消音器が用いられる機器のサイズ、求められる消音性能等に応じて適宜設定すればよい。
 図1および図2に示す例では、拡張部14は、中空の直方体形状であり、面積が最小の対面する2つの面の一方に入口側通気管12が接続され、他方に出口側通気管16が接続されている。また、図2に示すように、各通気管は、接続される面の中心からズレた位置に接続されている。具体的には、図2中、通気管は、左右方向には、左側の面に近い位置であって、上下方向には、下側の面に近い位置に接続されている。
 拡張部14の内部には、多孔質吸音材30が配置されている。多孔質吸音材30は、内部を通過する音波の音エネルギーを熱エネルギーに変換することで吸音するものである。
 図1に示すように、多孔質吸音材30は、拡張部14内の、入口側通気管12と出口側通気管16とを結ぶ流路となる領域に沿って配置されている。図示例においては、好ましい態様として、拡張部14内の入口側通気管12との接続部には第1開口部構造20を有し、拡張部14内の出口側通気管16との接続部には第2開口部構造24を有するため、第1開口部構造20の、出口側通気管16側の端面と、第2開口部構造24の、入口側通気管12側の端面とを直線的に結ぶ領域を流路として、この流路を囲むように、多孔質吸音材30が配置されている。より具体的には、図2に示すように、多孔質吸音材30は、図2中、拡張部14の上側の最大面と第1開口部構造20および第2開口部構造24、すなわち、流路との間の全域、図1中、拡張部14の右側の面と第1開口部構造20および第2開口部構造24(流路)との間の全域、ならびに、図1中、拡張部14の左側の面と第1開口部構造20および第2開口部構造24(流路)との間の第1開口部構造20および第2開口部構造24側の、流路に沿った領域に配置されている。これにより、流路方向から見た際に、多孔質吸音材30は、通気管を塞がないように配置されている。従って、多孔質吸音材30に囲まれた領域は、流路(通風路)として作用する。
 多孔質吸音材30としては、特に限定はなく、従来公知の吸音材が適宜利用可能である。例えば、発泡体、発泡材料(発泡ウレタンフォーム(例えば、イノアック社「カームフレックスFシリーズ」、光社製ウレタンフォーム、東海ゴム工業社製「MIF」等)、軟質ウレタンフォーム、セラミックス粒子焼結材、フェノールフォーム、メラミンフォーム(BASF社製「Basotect」(日本名「バソテクト」)、ポリアミド製フォーム等)、および、不織布系吸音材(マイクロファイバー不織布(例えば、3M社「シンサレート」、ENEOSテクノマテリアル社製「ミライフMF」、太平フェルト工業社製「ミクロマット」等)、ポリエステル製不織布(例えば、東京防音社「ホワイトキューオン」、ブリヂストンケービージー社「QonPET」、東レ社「シンセファイバー」)、および、アクリル繊維不織布等のプラスチック製不織布、ウールおよびフェルト等の天然繊維不織布、金属製不織布、ならびに、ガラス製不織布、セルロース製不織布等)、その他、微小な空気を含む材料(グラスウール、ロックウール、ナノファイバー系繊維吸音材(シリカナノファイバー、アクリルナノファイバー(例えば、三菱ケミカル社製「XAI」)など種々の公知の吸音材が利用可能である。
 また、密度の大きな薄い表面不織布と、密度の小さい背面不織布の二層構成を有する吸音材を用いてもよい。
 多孔質吸音材のサイズおよび種類等は、通風型消音器に求められる消音性能(消音周波数、消音量)、通風量等に応じて適宜設定すればよい。
 多孔質吸音材30の、流路とは反対側(以下、裏面側ともいう)には、拡張部14内の空間である背面空間14aが形成されている。具体的には、図1中、拡張部14の左側の面と第1開口部構造20および第2開口部構造24(流路)との間の第1開口部構造20および第2開口部構造24側の、流路に沿った領域に配置される多孔質吸音材30と、拡張部14の左側の面との間には多孔質吸音材30が配置されていない、背面空間14aが形成されている。
 前述のとおり、多孔質吸音材の裏面側が直接壁と接していると、通風路から多孔質吸音材に入った音波が壁によって反射されて流路に戻ってしまうため、多孔質吸音材による吸音効果を十分に得られない可能性がある。これに対して、多孔質吸音材30の裏面側に背面空間14aを有する構成とすることで、流路から多孔質吸音材30に入った音波が反射されて流路に戻ってしまうことを抑制できるため、多孔質吸音材30による消音効果をより高くすることができる。
 また、多孔質吸音材30の量を減らしても吸音効果を高くすることができるため、多孔質吸音材の量が多い場合に生じる、水等に濡れた際のカビの発生、燃えやすさ、材料費等によるコストアップ、ゴミの増加等の問題も低減できる。
 ここで、本発明においては、背面空間14a内には、背面空間14aを仕切る仕切部材34が配置されている。図示例においては、仕切部材34は、平坦な板状の部材であり、背面空間14aを流路方向(図1中上下方向)において2つに仕切る。仕切部材34は、その最大面が拡張部14の最大面に対して垂直、かつ、流路方向に垂直に配置されている。
 また、仕切部材34は、仕切った2つの空間の体積が異なるものとなる位置に配置される。
 背面空間14aの、仕切部材34によって仕切られた2つの空間のうち一方は、音響共鳴部36として機能する。図1に示す例においては、背面空間14aの、仕切部材34によって仕切られた2つの空間のうち、上側の体積が小さい方の空間が音響共鳴部36として機能する。図に示すとおり、音響共鳴部36は、多孔質吸音材30側が開口しており、多孔質吸音材30を介して、流路と音響的に接続されている。
 なお、仕切部材によって仕切られた2つの空間のうち、体積が大きい方の空間が音響共鳴部として機能し、体積が小さい方の空間が背面空間として機能する構成であってもよい。
 一例として、音響共鳴部36は、開口を有する空間内に定在波が生じることで気柱共鳴器として作用する。気柱共鳴器は、その共鳴周波数を消音したい音の周波数に合わせることで、その周波数の音を消音することができる。
 前述のとおり、多孔質吸音材の裏面側に背面空間を有する構成とした場合に、低周波域での消音性能が低いという問題があった。具体的には、多孔質吸音材の裏面側に背面空間を有する構成とした場合には、背面空間の影響によって、ある周波数帯域で、低周波域にかけて透過損失(吸音性能)が下がってしまうことがわかった。
 これに対して、本発明の通風型消音器10は、背面空間14a内に背面空間14aを仕切る仕切部材34を配置して、仕切部材34によって仕切られた領域を音響共鳴部36として作用させる。音響共鳴部36の共鳴周波数を消音したい音の周波数、すなわち、背面空間の影響によって透過損失が低下する周波数に合わせることで、その周波数の音を消音することができ、消音性能を向上できる。
 また、仕切部材34(音響共鳴部36)と流路との間には、多孔質吸音材30が配置されているため、流路を流れる風が仕切部材34(音響共鳴部36の開口部)と直接接していないため、圧力損失および風切り音の発生を抑制できる。
 また、一般に共鳴器による消音の周波数帯域は狭いが、音響共鳴部36の開口部を覆うように多孔質吸音材30が配置されているため、音響共鳴部36による消音の帯域を広げる(ブロード化する)ことができる。
 また、拡張部14内に仕切部材34を設けて拡張部14の筐体(壁)と仕切部材34とを接着あるいは一体化することで、広い空間を有する拡張部14の強度を高くすることができる。これにより、拡張部14を樹脂で形成した場合でも、十分な強度を確保することができる。
 流路方向と直交する方向における多孔質吸音材30の厚さは、多孔質吸音材30の流れ抵抗、多孔度、迷路度等に応じて、所望の消音性能を得られる厚さを適宜設定すればよい。消音性能の観点から、流路方向と直交する方向における多孔質吸音材30の厚さは、3mm~50mmが好ましく、10mm~30mmがより好ましく、9mm~20mmが最も好ましい。
 また、消音性能の観点から、流路方向と直交する方向における背面空間14aの深さは、30mm~400mmが好ましく、50mm~200mmがより好ましい。また、消音性能の観点から、背面空間14aの深さは、多孔質吸音材30の厚さに対して、2倍~20倍が好ましく、3倍~10倍がより好ましい。
 ここで、図1および図2に示す例では、仕切部材34は、平坦な板状の部材としたが、これに限定はされず、所望の周波数帯域に消音効果を有する音響共鳴部36を形成することができればよく、例えば、少なくとも一部が湾曲する形状であっても、屈曲部を有する形状であってもよく、ジグザグ形状、迷路状の複雑な形状等であってもよい。
 また、図1に示す例では、音響共鳴部36における共鳴は、気柱共鳴としたが、これに限定はされず、音響共鳴部における共鳴がヘルムホルツ共鳴であってもよい。
 ヘルムホルツ共鳴は、熱力学的な膨張圧縮によって、内部空間にある空気がバネとしての役割を果たし、開口部内の空気が質量(マス)としての役割を果たし、マスバネの共鳴をし、開口部の壁近傍部での熱粘性摩擦により吸音する構造である。開口部の形状は円形、矩形、スリット状など様々な形状であっても共鳴を生じさせることができる。また、開口部が複数個あってもよい。
 音響共鳴部における共鳴がヘルムホルツ共鳴である場合には、図3に示す例のように、仕切部材34は、多孔質吸音材30側の端部で、音響共鳴部36b側に突出する部位を有することが好ましい。図示例の仕切部材34は、板状部材34aの最大面の多孔質吸音材30側の端部に、図3中、紙面に垂直な方向の幅が板状部材34aと同じで、音響共鳴部36b側に立設する板状部材34bを有する。板状部材34bの、板状部材34aとは反対側の端面は、拡張部14の壁(図3中、上側の壁)とは接しておらず、開口部が形成されている。図3に示す例は、図1の例と比較して、板状部材34bによって音響共鳴部36bの開口部が狭められている。このように、音響共鳴部36bの開口部を狭めることによって、音響共鳴部36bにおける共鳴をヘルムホルツ共鳴とすることができる。
 気柱共鳴における共鳴周波数は、共鳴管の長さに依存し、低周波化する場合には、共鳴管の長さをより長くする必要があり大型化してしまう。一方、ヘルムホルツ共鳴における共鳴周波数は、内部空間の体積、開口部の面積および長さに依存する。そのため、ヘルムホルツ共鳴は、内部空間の体積、開口部の面積および長さを適宜設定することで、大型化することなく共鳴周波数を低周波化することができる点で好ましい。
 仕切部材34によって仕切られて形成される音響共鳴部36のサイズ(深さ、幅、体積等)、および、開口部のサイズは、拡張部14のサイズ、形状、音響共鳴部36による共鳴の種類、共鳴周波数等に応じて適宜設定すればよい。すなわち、音響共鳴部36のサイズおよび開口部のサイズが、所望のサイズとなるように、仕切部材34を配置すればよい。
 音響共鳴部における共鳴周波数は、2000Hz以下が好ましく、100Hz~1800Hzがより好ましく、200Hz~1500Hzがさらに好ましい。
 また、図1および図3に示す例では、好ましい態様として、仕切部材34は、多孔質吸音材30と接している。これにより、仕切部材34が多孔質吸音材30を支持するため、背面空間14aを有する構成であっても、多孔質吸音材30の位置を適切な位置に保持することができる。
 また、本発明の通風型消音器は、拡張部14を構成する壁の少なくとも1つが振動して、この振動の固有振動数の音を消音する構成とすることが好ましい。
 拡張部14を構成する壁の少なくとも1つが振動して、特に壁の固有振動数において大きく振動する。この周波数の音を消音する構成として、壁の固有振動数を消音したい音の周波数に合わせることで、その周波数の音を消音することができ、消音性能を向上できる。
 壁の固有振動数は、壁の厚み、硬さ、大きさ、固定方法等を適宜設定することで調整することができる。また、壁に錘を取り付けて固有振動数を調整することもできる。
 壁の最も低い固有振動数は、2000Hz以下の低周波数が好ましく、100Hz~1500Hzがより好ましく、200Hz~1000Hzがさらに好ましい。これにより、多孔質吸音材30では消音しにくい低周波数域での消音性能を向上できる。
 振動する壁は、拡張部14を構成する壁のうち、最大の面積を有する壁であることが好ましい。これにより、壁の振動による消音周波数をより低周波化することができる。図1および図2に示す例では、図2中、上側または下側の壁が振動することが好ましい。
 また、振動する壁は、容易に振動可能となる観点から、平坦面であることが好ましい。前述のとおり、拡張部14の断面形状は円形状、矩形状、三角形状等の種々の形状が利用可能であり、拡張部14の壁は、湾曲していてもよいが、湾曲した壁は振動しにくいため、平坦な形状の壁を有することが好ましい。
 また、壁の振動を拘束せず、また、固有振動数を低周波化する観点から、仕切部材34は、拡張部14の壁のうち、音響共鳴部36を囲み対面する2つの壁の少なくとも一方に対して未接着であることが好ましい。
 図2に示す例では、好ましい態様として、図2中、上側の壁と仕切部材34との間には、間隙35が設けられており、未接着である。図2中、上側の壁は、音響共鳴部36を囲む壁であって、同じく音響共鳴部36を囲む下側の壁と対面している。この下側の壁と仕切部材34と接着あるいは一体的に形成されている。図2に示す例の場合には、図中、上側の壁と下側の壁は、拡張部14を構成する壁の最大面である。仕切部材34と上側の壁が未接着であるため、この上側の壁の振動が拘束されることを抑制して、振動しやすくなる。また、上側の壁の固有振動数を低周波化することができ、この上側の壁の振動によって、低周波の音(壁の固有振動数の音)を消音することができる。また、図示例のように、最大面積を有する面に対して未接着であることが好ましい。
 仕切部材34と未接着である壁との距離(図2中、間隙35の上下方向の幅)は、5mm以下が好ましく、1mm~3mmがより好ましい。これにより、隙間が小さいと、熱粘性音響(振動による熱摩擦)によって、音が通りにくくなる。よって音響的な共鳴を保つことができる。よって5mm以下が望ましい。また、隙間が小さくなりすぎると、筐体の振動およびがたつき等によって衝突し、音が鳴ったり破損が生じるおそれがある。よって、1mm以上が好ましい。
 なお、仕切部材34と未接着である壁との距離が一定でない場合には、等間隔に5点以上でその距離を測定し、その平均値が上記範囲であればよい。
 また、仕切部材34は、拡張部14の壁のうち、音響共鳴部36を囲み対面する2つの壁の両方に対して接着(一体化)されていてもよい。この場合、仕切部材を含めて構築した後の、平坦面部(壁)の最も低い固有振動数が2000Hz以下であることが好ましい。
 また、図1および図3に示す例では、好ましい態様として、音響共鳴部36は、流路方向における拡張部14の一方の端部側に形成されるものとしたが、これに限定はされない。音響共鳴部36は、流路方向における拡張部14のいずれの位置に形成されていてもよい。言い換えると、図1および図3に示す例では、1つの仕切部材34を有し、仕切部材34と拡張部14の4つの方向を囲む壁とにより形成される空間を音響共鳴部36としたが、これに限定はされず、例えば、図1において、拡張部14内に、仕切部材34と平行で、流路方向にズレた位置に配置されるもう1つの仕切部材を有し、2つの仕切部材と拡張部14の3つの方向を囲む壁とにより形成される空間を音響共鳴部36としてもよい。
 音響共鳴部36は、流路方向における拡張部14の一方の端部側に形成される構成とすることで、仕切部材34が接着あるいは一体化される壁の振動を拘束しにくくなり、また、実質的に振動可能な面のサイズを大きくでき、壁の固有振動数を低周波化することができる。
 拡張部14は、例えば、複数(図1に示す例では6個)の板材を箱型に配置し、互いに隣接する板材同士を、接着剤、粘着剤、ハンダ、融着等によって接合することで構成されてもよく、あるいは、拡張部14を二分割して断片化した場合に、各断片を射出成形、および、3Dプリンター等によって作製し、断片同士を組み合わせることで拡張部14を構成してもよい。また、仕切部材34と拡張部14の壁とは、接着剤、粘着剤、ハンダ、融着等によって接合されていてもよく、一体的に形成されていてもよい。例えば、拡張部14の断片を射出成形、および、3Dプリンター等によって作製する場合には、仕切部材34を拡張部14の断片と一体化して、一体化した断片を射出成形、および、3Dプリンター等で作製してもよい。
 例えば、図1および図2に示す通風型消音器10の拡張部14および仕切部材34を一体化する場合には、図2中、拡張部14の上側の壁となる板材とそれ以外の部位とを二分割して断片化し、拡張部14の上側の壁を除いた部位と仕切部材34とを一体化した断片を射出成形、および、3Dプリンター等で作製し、上側の壁となる板材を、この断片に接合することで、仕切部材34が配置された拡張部14を作製することができる。
 仕切部材34と拡張部14とを一体化する場合には、仕切部材34が拡張部14の壁と接合されている位置から壁と離間する方向の少なくとも一方向において、仕切部材34の厚みが一定または単調減少していることが好ましい。
 例えば、図2に示す例において、拡張部14の上側の壁を除いた部位と仕切部材34とを一体化して形成する場合には、仕切部材34と接合されている下側の壁から離間する方向、すなわち、図2中上方向に向かって、仕切部材34の厚みは一定、または単調減少していることが好ましい。
 これにより、例えば、拡張部14の上側の壁を除いた部位と仕切部材34とを一体化した断片を射出成形で作製する場合に、金型から断片を抜くことが可能となり、また、抜きやすくなる。また、例えば、拡張部14の上側の壁を除いた部位と仕切部材34とを一体化した断片を3Dプリンターで作製する場合には、層を重ねやすくなるため、作製が容易になる。
 また、射出成形または3Dプリンターで作製が容易になる観点から、拡張部14のすくなくとも一面は平坦面であることが好ましい。
 また、射出成形または3Dプリンターで作製が容易になる観点から、仕切部材34は、全ての辺が直線であることが好ましい。
 なお、仕切部材34は、拡張部14とは別部材として作製されて、拡張部14の壁に接着されてもよいし、拡張部14の壁に爪部あるいは溝等を設けて、爪部あるいは溝等に仕切部材34を嵌合する構成であってもよい。
 通気管、拡張部、および、仕切部材の形成材料としては、金属材料、樹脂材料、強化プラスチック材料、および、カーボンファイバ等を挙げることができる。金属材料としては、例えば、アルミニウム、チタン、マグネシウム、タングステン、鉄、スチール、クロム、クロムモリブデン、ニクロムモリブデン、および、これらの合金等の金属材料を挙げることができる。また、樹脂材料としては、例えば、アクリル樹脂(PMMA)、ポリメタクリル酸メチル、ポリカーボネート、ポリアミドイド、ポリアリレート、ポリエーテルイミド、ポリアセタール、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリサルフォン、ポリエチレンテレフタラート、ポリブチレンテレフタラート(PET)、ポリイミド、トリアセチルセルロース(TAC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ABS樹脂(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂)、難燃ABS樹脂、ASA樹脂(アクリロニトリル、スチレン、アクリレート共重合合成樹脂)、PVC(ポリ塩化ビニル)樹脂、およびPLA(ポリ乳酸)樹脂等の樹脂材料を挙げることができる。また、強化プラスチック材料としては、炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)、および、ガラス繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)を挙げることができる。
 軽量化および成型の容易さ等の観点から、通風型消音器の形成材料としては樹脂材料を用いることが好ましい。
 これらの素材は不燃性、難燃性、自己消火性を有することが望ましい。また、通風型消音器全体が不燃性、難燃性、自己消火性を有することも望ましい。
 ここで、図1および図2に示す通風型消音器10は、好ましい態様として、拡張部14の入口側通気管12との接続部および出口側通気管16との接続部に、接続部から拡張部14内に向かって、断面積が漸次拡大する開口部構造を有する。図4に開口部構造(20、24)の斜視図を示す。
 第1開口部構造20は、拡張部14内の入口側通気管12との接続部に接して配置され、入口側通気管12側から出口側通気管16側に向かって、開口面積が漸次拡大するテーパ形状の筒状の部材である。
 図示例においては、第1開口部構造20の入口側通気管12側(以下、基端側ともいう)の開口の形状および面積は、入口側通気管12の断面形状および断面積と略一致している。また、第1開口部構造20の出口側通気管16側(以下、先端側ともいう)の端面の開口の形状および面積は、多孔質吸音材30および拡張部14の壁に囲まれる略矩形状の流路の断面形状および断面積と略一致している。すなわち、第1開口部構造20は、出口側通気管16側の端面において、多孔質吸音材30および拡張部14の壁に略接している。
 図4に示すように、第1開口部構造20は、基端側から先端側に向かって断面積が漸次拡大するラッパ形状の筒状の部材である。
 第2開口部構造24は、拡張部14内の出口側通気管16との接続部に接して配置され、入口側通気管12側から出口側通気管16側に向かって、開口面積が漸次縮小するテーパ形状の筒状の部材である。
 図示例においては、第2開口部構造24の出口側通気管16側(以下、基端側ともいう)の開口の形状および面積は、出口側通気管16の断面形状および断面積と略一致している。また、第2開口部構造24の入口側通気管12側(以下、先端側ともいう)の端面の開口の形状および面積は、多孔質吸音材30および拡張部14の壁に囲まれる略矩形状の流路の断面形状および断面積と略一致している。すなわち、第2開口部構造24は、入口側通気管12側の端面において、多孔質吸音材30および拡張部14の壁に略接している。
 図4に示すように、第2開口部構造24は、基端側から先端側に向かって断面積が漸次拡大するラッパ形状の筒状の部材である。
 拡張部14を有する通風型消音器10は、拡張部14への出入口に、拡張部14内に向かって断面積が漸次拡大するホーン状の部材(開口部構造)を配置することで、拡張部14内に流入する、あるいは、排出される風の流れが乱れることを抑制して消音効果を高めることができる。
 ここで、図4に示す例では、第1開口部構造20および第2開口部構造24は、基端側から先端側に向かって断面積が漸次、拡大するラッパ形状の筒状の部材としたがこれに限定はされない。開口部構造は、断面積が漸次、変化する構成であれば、その形状は特に限定はされない。以下、第1開口部構造20および第2開口部構造24の他の例を説明する。
 図5に示す開口部構造20bは、2枚の湾曲した板状部材を有し、2枚の板状部材の間の幅が一方の端部から他方の端部に向かって漸次、大きくなっている。また、開口部構造20bにおいては、図中上下方向には開放されており、例えば、拡張部14の壁あるいは多孔質吸音材30と接する構成とすればよい。
 また、開口部構造は、図5に示したもののうち1枚のみでもよい。側が壁、片側が湾曲した板状部材という構成によって、断面積が漸次変化する開口部構造が実現できる。
 このように、開口部構造は、他方の通気管側の端部における断面において、閉塞していない構成としてもよい。すなわち、第1開口部構造は、出口側通気管側の端部における断面において、閉塞していない構成としてもよく、また、第2開口部構造は、入口側通気管側の端部における断面において、閉塞していない構成としてもよい。
 図6に示す開口部構造20cは、断面形状が矩形状であり、中心軸に沿って、相似形状のまま断面積が拡大する形状を有する。すなわち、開口部構造20cは、四角錐台形状で、上底から下底に貫通する開口を有する。
 また、開口部構造としては、上述した各例のように断面形状が拡張する形状に限定されず、図7に示す通風型消音器のように、開口部構造(20d、24d)の端部における肉厚が徐々に薄くなる構成であってもよい。すなわち、第1開口部構造20dは、入口側通気管12と同じ断面形状を有するものであり、出口側通気管16側の端部における肉厚が、出口側通気管16側に向かって、漸次、薄くなっている。また、第2開口部構造24dは、出口側通気管16と同じ断面形状を有するものであり、入口側通気管12側の端部における肉厚が、入口側通気管12側に向かって、漸次、薄くなっている。第1開口部構造20dと入口側通気管12とは一体的に形成されていてもよい。また、第2開口部構造24dと出口側通気管16とは一体的に形成されていてもよい。
 例えば、図7に示す例において、入口側通気管12および出口側通気管16の内径が30mm、肉厚が2mmのときに、第1開口部構造20dおよび第2開口部構造24dの基端部(接続される通気管側)の内径の面積に対して、先端部(他方の通気管側)の内径(直径34mm)の面積の比は、1.28倍となり、肉厚が3mmの場合は基端部の内径の面積に対して、先端部の内径の面積の比は、1.44倍となり、第1開口部構造20dおよび第2開口部構造24dは、それぞれ、断面積が十分に変化する構造となる。図7に示す例のように、第1開口部構造20dおよび第2開口部構造24dが、徐々に肉厚が薄くなる領域を有する構成とすることで、断面積の変化を緩やかにし、また風切り音を低減させることができる。また、拡張部14の外側形状を一定に保ち内側を徐々に広げる構成が望ましいが、先端部を細く尖らせた構成でもよい。
 また、図7に示す例のように、第1開口部構造20dおよび第2開口部構造24dは、肉厚が一定の領域をある長さ有して、先端側に肉厚が徐々に薄くなる領域を有していてもよいし、肉厚が徐々に薄くなる領域のみで構成されていてもよい。
 また、図4~図6に示す例のような断面形状(外形)が拡張する形状の開口部構造の端部の肉厚を徐々に細くした構成としてもよい。
 このように、開口部構造は、断面積が漸次、変化する構成であれば、その形状は種々の構造とすることができる。
 開口部構造の基端側の断面形状は、通気管の断面形状に合わせた形状とすればよく、また、先端側の断面形状は、拡張部14の壁および/または多孔質吸音材30に囲まれた流路の断面形状に合わせた形状とすればよい。
 開口部構造の中心軸に垂直な断面形状は、二回対称以上であることが好ましく、四回対称以上であることがより好ましい。
 また、開口部構造による断面積の変化は、単調変化であってもよいし、変化率が変化するものであってもよいし、段階的に変化するものであってもよい。
 また、開口部構造の内側の表面(中心軸側の表面)の平均粗さRaは1mm以下であることが好ましく、0.5mm以下であることがより好ましく、0.1mm以下であることがさらに好ましい。開口部構造の内側の表面の平均粗さRaを小さくすることで、開口部構造の表面を流れる風が剥離して渦が生じて、風切り音が発生することを抑制できる。
 また、図1等に示す例では、入口側通気管12と出口側通気管16とは、中心軸が同一直線状に配置される構成としたが、これに限定はされない。例えば、図8および図9に示す例のように、入口側通気管12と出口側通気管16とは、中心軸が同一直線状にない構成としてもよい。このような構成の場合にも、拡張部14内に配置される多孔質吸音材30の裏面側に背面空間14aが形成される構成として、背面空間14a内に、背面空間14aを仕切る仕切部材34が配置される構成とすることができる。
 また、図8および図9に示す例においても、好ましい態様として、第1開口部構造および第2開口部構造を有する。図8および図9に示す例では、第1開口部構造および第2開口部構造は、断面積が変化する構造であり、かつ、流路を曲げる機能を有している。
 図8に示す例において、第1開口部構造20eは、2枚の板状部材が対面して配置された構成であり、入口側通気管12と出口側通気管16とを結ぶ方向に流路を曲げるように、2枚の板状部材が湾曲しており、一方の板状部材の先端側(出口側通気管16側)に断面積が変化する広がりのある構造(湾曲構造)を有する。また、第2開口部構造24eは、2枚の板状部材が対面して配置された構成であり、入口側通気管12と出口側通気管16とを結ぶ方向から出口側通気管16の流れ方向に流路を曲げるように、2枚の板状部材が湾曲しており、一方の板状部材の先端側(入口側通気管12側)に断面積が変化する広がりのある構造(湾曲構造)を有する。図8に示す例では、第1開口部構造20eおよび第2開口部構造24eは、一方の板状部材が断面積が変化する広がりのある構造を有する構成としたが、両方の板状部材が断面積が変化する広がりのある構造(湾曲構造)を有する構成としてもよい。
 また、開口部構造は、2枚の板状部材の曲率半径が異なるものとしたり、長さを変えることで、断面積が漸次、変化する構成とすることができる。
 このように、図8に示す通風型消音器は、入口側通気管12と出口側通気管16とが、中心軸が同一直線状にない構成であり、開口部構造によって流路が曲げられた構成を有している。
 図8に示す通風型消音器は、拡張部14内に、第1開口部構造20eの先端側から第2開口部構造24eの先端まで、流路に沿って配置される多孔質吸音材30を有している。また、多孔質吸音材30の裏面側には背面空間14aが形成されている。図8に示す例では、図中、拡張部14内の左上側および右下側に背面空間14aが形成されている。
 背面空間14a内には、背面空間14aを仕切る仕切部材34が配置されている。図示例においては、仕切部材34は、図中、拡張部14内の左上側の背面空間14a内に配置されている。仕切部材34は、平坦な板状の部材であり、図中左右方向に延在しており、一方の端部が拡張部14の壁に接し、他方の端部が多孔質吸音材30に接するように配置されている。
 背面空間14aの、仕切部材34によって仕切られた2つの空間のうち一方は、音響共鳴部36として機能する。図8に示す例においては、背面空間14aの、仕切部材34によって仕切られた2つの空間のうち、上側の空間が音響共鳴部36として機能する。図に示すとおり、音響共鳴部36は、多孔質吸音材30側が開口しており、多孔質吸音材30を介して、流路と音響的に接続されている。この音響共鳴部36は、例えば、気柱共鳴器として作用する。
 なお、図8に示す例では、2つの背面空間14aのうち、一方の背面空間14a内に背面空間14aを仕切る仕切部材34が配置される構成としたが、これに限定はされず、図9に示す例のように、2つの背面空間14aそれぞれに仕切部材34が配置される構成とし、通風型消音器が2つの音響共鳴部36を有する構成としてもよい。
 また、図8および図9に示す例では、仕切部材34は、平坦な板状の部材であり、音響共鳴部36が、気柱共鳴器として作用するものとしたがこれに限定はされず、図10に示す例のように、仕切部材34は、多孔質吸音材30側の端部で、音響共鳴部36b側に突出する部位を有する構成としてもよい。図示例の仕切部材34は、板状部材34aの最大面の多孔質吸音材30側の端部に、図10中、紙面に垂直な方向の幅が板状部材34aと同じで、音響共鳴部36b側に立設する板状部材34bを有する。板状部材34bの、板状部材34aとは反対側の端面は、拡張部14の壁(図10中、上側の壁)とは接しておらず、開口部が形成されている。図10に示す例は、図1の例と比較して、板状部材34bによって音響共鳴部36の開口部が狭められている。このように、音響共鳴部36の開口部を狭めることによって、音響共鳴部36bにおける共鳴をヘルムホルツ共鳴とすることができる。
 また、入口側通気管12と出口側通気管16とが、中心軸が同一直線状にない構成においても、開口部構造が肉厚が徐々に薄くなる領域を有することで、断面積が漸次、変化する構成としていてもよい。
 また、本発明の通風型消音器は、多孔質吸音材と流路との間にパンチングメタルを有さないことが好ましい。多孔質吸音材と流路との間にパンチングメタルを有すると、流路を流れる風が、パンチングメタルの孔の段差に直接接するため、圧損が生じたり、風切り音が生じるおそれがある。また、多孔質吸音材と音の接する面積が減少するため、多孔質吸音材による消音効果が低下する恐れがある。
 また、本発明の通風型消音器は、多孔質吸音材の、流路は反対側の面にもパンチングメタルを有さないことが好ましい。すなわち、多孔質吸音材と背面空間および音響共鳴部との間にパンチングメタルを有さないことが好ましい。多孔質吸音材と背面空間との間にパンチングメタルを有すると、上述した、多孔質吸音材の裏面側に背面空間を有することによる消音性能の向上効果が得られなくなってしまうおそれがある。
 また、本発明の通風型消音器を、ホースと接続して使うことを想定した場合に、通風型消音器の入口側通気管および出口側通気管には外周面に凹凸形状、および/または、蛇腹状形状を有することが望ましい。ホースと接続した場合にしっかりと締まるため、風漏れ、音漏れ、および、音の反射等を防ぐことができる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 [比較例1]
 図11および図12に示すように、拡張部114内に多孔質吸音材130、130bが充填された通風型消音器100を作製した。図11は、比較例の通風型消音器を概念的に示す断面図である。図12は図11のC-C線断面図である。図11および図12に示す通風型消音器100は、図1および図2に示す本発明の通風型消音器10において、仕切部材34を有さず、背面空間14a内に多孔質吸音材130bが充填されている以外は同様の構成を有するものである。
 拡張部114の内部サイズは、幅105mm×高さ37mm×長さ140mmとした。また、接続される通気管(入口側通気管112および出口側通気管116)の内径は24mmとした。拡張部14内の入口側通気管112との接続部には、第1開口部構造120を配置し、出口側通気管116との接続部には、第2開口部構造124を配置した。第1開口部構造120および第2開口部構造124は、二次元的に幅方向に広がり、基端側の幅が24mmで先端側の幅が30mmであり、長さ方向の長さは最大で25mmである。
 拡張部114は、高さ方向の一方の壁を別パーツ(断片)として、壁パーツと本体パーツの2つのパーツに分けてそれぞれ射出成形で作製した。また、2つの開口部構造、および、2つの通気管もそれぞれ射出成形で作製した。各部材の素材はABS樹脂とした。壁パーツの厚みは2mmとし、他の部材の厚みは5mmとした。拡張部114となる本体パーツの長さ方向の2つの壁それぞれに通気管と接続する直径24mmの貫通孔を形成した。拡張部114となる本体パーツの貫通孔の位置に、開口部構造および通気管を接着した。
 拡張部114となる本体パーツの内部には、多孔質吸音材130、130b(ブリヂストンケービージー社製 QonPET)を流路となる領域(2つの開口部構造の先端をつないだ領域)を除く空間に詰めた状態とした。QonPETは密度が大きく薄い不織布層と密度が小さく厚みのある不織布層が接合された構造であって、流路側には密度の濃い不織布層を向けて配置した。
 拡張部114内に多孔質吸音材を詰めた後に、本体パーツの開口面に壁パーツを接着することで、通風型消音器100を作製した。接着剤としては、セメダイン社ABS用接着剤CA-243を用いた。
 [比較例2]
 比較例1において、多孔質吸音材130bを除いて、背面空間を形成した以外は比較例1と同様にして通風型消音器を作製した。
 多孔質吸音材130bは、多孔質吸音材130の裏面側に配置されている、幅50mm×高さ37mm×長さ140mmの部分である。従って、比較例2の通風型消音器は、幅50mm×高さ37mm×長さ140mmの背面空間を有するものである。
 [実施例1]
 背面空間内に仕切部材34を配置した以外は比較例2と同様の構造の通風型消音器(図1および図2参照)を作製した。
 仕切部材34は、厚み3mm、幅50mm、高さ35mmの平坦な板状の部材とし、拡張部14となる本体パーツの長さ方向に壁から30mmの位置に配置し、射出成形によって拡張部14となる本体パーツと一体成形し、多孔質吸音材130bを配置しない以外は比較例1と同様にして実施例1の通風型消音器を作製した。壁パーツと仕切部材34との間には2mmの間隙を有する。
 [実施例2]
 仕切部材34の高さを37mmに変更して本体パーツと一体成形し、壁パーツと仕切部材34との間には間隙を有さない構成として、接着剤で壁パーツと仕切部材を接着した以外は、実施例1と同様の構造の通風型消音器を作製した。
 [評価]
 作製した実施例1~2および比較例1~2の通風型消音器について、透過損失を測定した。
 透過損失は、伝達マトリクス測定法(ASTM E2611)に従って、直径24mmの音響管を用いて、スピーカーとマイク4端子を使って測定した。測定は、自作装置で測定を行ったが、例えば、日本音響エンジニアリング社製 WinZacMTX、B&K社製 4206-T型透過損失管キットなどの市販の4端子法測定セットで測定を再現することができる。
 比較例1と比較例2の測定結果のグラフを図13に示す。比較例1と実施例1の測定結果のグラフを図14に示す。比較例1と実施例2の測定結果のグラフを図15に示す。
 図13~図15のグラフの各実施例および比較例において、315Hz付近で透過損失が大きく変化しているのは、拡張部14の厚み2mmの壁の固有振動に依るものである。
 図13から、比較例1では、315Hz付近以外は、高周波側に向かって単調に透過損失が増加することがわかる。一方、比較例2は、1500Hz付近では比較例1を大きく上回る消音性能を示したが、1000Hzおよび2000Hz付近などで透過損失が下回る帯域があることがわかる。特に1000Hz付近においては、比較例1での透過損失の値も想定的に高周波より小さかったために消音性能が小さくなっていた。
 図14から、実施例1は、比較例1に対して、1000Hz付近の透過損失が大きく上回る結果を示した。実施例1では、仕切部材によって、多孔質吸音材の背面側に幅30mm、高さ37mm、長さ50mmの気柱共鳴器構造を有する音響共鳴部が形成される。音響共鳴部の長さは、開口端補正(開口面積を求め、円相当半径を求めて算出する)を考慮すると67mmであり、対応する共鳴周波数は1280Hzとして算出できる。これは実施例1の1000Hz付近の透過損失の極大値とほぼ一致するため、多孔質吸音材の背面側に形成される音響共鳴部によって比較例2で下がっていた1000Hz付近の透過損失を、多孔質吸音材を詰めた比較例1よりも大きくすることができることがわかる。また、仕切部材で残りの空間を大きく残したことに依って、高周波にかけて高い透過損失を維持することができることがわかる。
 図15から、実施例2は、800Hz以上の特性は実施例1とほぼ一致することがわかる。一方で、特に500Hz以下で差があった。仕切部材と拡張部の壁との間に隙間がなく接着されたことで、壁の共振に基づく低周波での振動周波数が高周波化し、それより低周波側では比較例1および実施例1と比べて透過損失が小さくなっていた。一方で、仕切部材の高さ方向の両端部を拡張部の壁に接着したことでH字型の構造となり、構造強度は高くなった。
 [比較例3]
 図16に示すように、入口側通気管112の中心軸と出口側通気管116の中心軸とが同一直線状になく、拡張部114内の流路に沿った領域に多孔質吸音材130が配置され、背面空間114aが形成された構造を有する通風型消音器を作製した。図16に示す通風型消音器は、図8に示す本発明の通風型消音器において、仕切部材34を有さない以外は同様の構成を有するものである。
 拡張部114の内部サイズは、幅110mm(図中上下方向)×高さ47mm(紙面に垂直な方向)×長さ170mm(図中左右方向)とした。また、接続される通気管(入口側通気管112および出口側通気管116)の24mm×24mmの矩形状とした。拡張部14内の入口側通気管112との接続部には、第1開口部構造120を配置し、出口側通気管116との接続部には、第2開口部構造124を配置した。第1開口部構造120および第2開口部構造124は、流路方向を20°曲げるように湾曲した2枚の板状部材からなり、先端側で流路の断面積が変化するよう湾曲した構造とした。また、第1開口部構造120および第2開口部構造124は、紙面に垂直な方向の高さは24mmとし、拡張部114の紙面に垂直な方向にある壁の一方に接して配置するものとした。
 拡張部114は、高さ方向の一方の壁を別パーツ(断片)として、壁パーツと本体パーツの2つのパーツに分けてそれぞれ射出成形で作製した。また、2つの開口部構造は本体パーツと一体成形とした。2つの通気管もそれぞれ射出成形で作製した。各部材の素材はABS樹脂とした。壁パーツの厚みは2mmとし、他の部材の厚みは5mmとした。拡張部114となる本体パーツの長さ方向の2つの壁それぞれに通気管と接続する24mm×24mmの矩形状の貫通孔を形成した。拡張部114となる本体パーツの貫通孔の位置に、通気管を接着した。
 拡張部114となる本体パーツの内部には、図に示すように、多孔質吸音材130(ブリヂストンケービージー社製 QonPET)を流路となる領域(2つの開口部構造の先端をつないだ領域)に沿って、背面空間が形成されるように配置した。多孔質吸音材130の流路方向と直交する方向の幅は15mmとした。また、本体パーツの、開口部構造の上(紙面に垂直な方向)および多孔質吸音材130の上には、厚さ23mmの多孔質吸音材130を配置した。QonPETは密度が大きく薄い不織布層と密度が小さく厚みのある不織布層が接合された構造であって、流路側には密度の濃い不織布層を向けて配置した。
 拡張部114内に多孔質吸音材を配置した後に、本体パーツの開口面に壁パーツを接着することで、通風型消音器を作製した。接着剤としては、セメダイン社ABS用接着剤CA-243を用いた。
 [実施例3]
 一方の背面空間内に仕切部材34を配置した以外は比較例3と同様の構造の通風型消音器(図8参照)を作製した。
 仕切部材34は、厚み2mm、高さ45mmの平坦な板状の部材とし、拡張部14となる本体パーツの幅方向(図中上下方向)に壁から20mmの位置に、一方の端部が拡張部14の長さ方向の一方の壁(図中左側の壁)に接し、他方の端部が多孔質吸音材30に接する位置に配置した。仕切部材34は、本体パーツと一体成形した。壁パーツと仕切部材34との間には2mmの間隙を有する。
 [実施例4]
 仕切部材34が多孔質吸音材30側の端部で、音響共鳴部36b側に突出する部位(板状部材34b)を有する構成とし、音響共鳴部36bをヘルムホルツ共鳴器とした以外は、実施例3と同様にして通風型消音器(図10参照)を作製した。音響共鳴部36bの開口部の幅(図10中、板状部材34bと拡張部14の上側の壁との距離)は、10mmとした。
 [実施例5]
 2つのの背面空間14a内それぞれに仕切部材34を配置した以外は実施例3と同様の構造の通風型消音器(図9参照)を作製した。
 [評価]
 作製した実施例3~5および比較例3の通風型消音器について、上記と同様の方法で透過損失を測定した。
 比較例3と実施例3および4の測定結果のグラフを図17に示す。比較例3と実施例5の測定結果のグラフを図18に示す。
 図17から、比較例3では1000Hz付近で透過損失が極小値となっていることがわかる。これに対して、実施例3および4は、多孔質吸音材の裏面側に音響共鳴部を設けたことによって、700Hz~2000Hzの透過損失を大きくして消音量を大きくすることができることがわかる。また、実施例4は、実施例3よりも低周波側にピークシフトしていることがわかる。これは、入り口を小さく絞ることで、スリットヘルムホルツ共鳴器の効果によって、実施例3と同体積の音響共鳴部でも、より低周波側の透過損失を大きくできることを示す。
 図18から、実施例5では、音響共鳴部による透過損失の増大効果が大きくなり、実施例3では1000Hz付近の極大値が16dBであったところ、実施例4の構造では21dBと大きく向上することがわかる。
 以上の結果より本発明の効果は明らかである。
 10、100 通風型消音器
 12、112 入口側通気管
 14、114 拡張部
 14a、114a 背面空間
 16、116 出口側通気管
 20、20b~20e、120 第1開口部構造
 24、24d、24e、124 第2開口部構造
 30、130、130b 多孔質吸音材
 34 仕切部材
 34a、34b 板状部材
 35 間隙
 36 音響共鳴部
 

Claims (12)

  1.  入口側通気管と、前記入口側通気管と連通し前記入口側通気管よりも断面積が大きい拡張部と、前記拡張部と連通し、前記拡張部よりも断面積が小さい出口側通気管と、を有する通風型消音器であって、
     前記拡張部の少なくとも一部に配置される多孔質吸音材、
     前記多孔質吸音材の、前記入口側通気管と前記出口側通気管とを結ぶ流路とは反対側の前記拡張部内の空間である背面空間、および、
     前記背面空間を仕切る仕切部材、を有し、
     前記仕切部材によって仕切られた領域が音響共鳴部を構成し、
     前記音響共鳴部は、前記流路と音響的に接続されている、通風型消音器。
  2.  前記音響共鳴部における共鳴が気柱共鳴である、請求項1に記載の通風型消音器。
  3.  前記仕切部材が、前記多孔質吸音材側の端部で、前記音響共鳴部側に突出する部位を有し、
     前記音響共鳴部における共鳴がヘルムホルツ共鳴である、請求項1に記載の通風型消音器。
  4.  前記仕切部材は、前記拡張部の壁のうち、前記音響共鳴部を囲み対面する2つの壁の少なくとも一方に対して未接着である、請求項1~3のいずれか一項に記載の通風型消音器。
  5.  前記仕切部材と、前記仕切部材と未接着である前記壁との距離が5mm以下である、請求項4に記載の通風型消音器。
  6.  前記仕切部材が、前記多孔質吸音材と接している、請求項1~3のいずれか一項に記載の通風型消音器。
  7.  前記拡張部の少なくとも一面が平坦面である、請求項1~3のいずれか一項に記載の通風型消音器。
  8.  仕切部材を含めて構築した後の、平坦面部の最も低い固有振動数が2000Hz以下である、請求項7に記載の通風型消音器。
  9.  前記仕切部材が、前記拡張部と一体的に形成されている、請求項1~3のいずれか一項に記載の通風型消音器。
  10.  前記仕切部材が前記拡張部の壁と接合されている位置から前記壁と離間する方向の少なくとも一方向において、前記仕切部材の厚みが一定または単調減少している、請求項9に記載の通風型消音器。
  11.  前記仕切部材の全ての辺が直線である、請求項1~3のいずれか一項に記載の通風型消音器。
  12.  前記拡張部の前記入口側通気管との接続部および前記出口側通気管との接続部の少なくとも一方に、前記接続部から前記拡張部内に向かって、断面積が漸次、拡大する開口部構造を有する、請求項1~3のいずれか一項に記載の通風型消音器。
     
PCT/JP2023/005114 2022-03-28 2023-02-15 通風型消音器 WO2023188924A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022051373 2022-03-28
JP2022-051373 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023188924A1 true WO2023188924A1 (ja) 2023-10-05

Family

ID=88200302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005114 WO2023188924A1 (ja) 2022-03-28 2023-02-15 通風型消音器

Country Status (1)

Country Link
WO (1) WO2023188924A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186907A (ja) * 1987-01-29 1988-08-02 Toru Morimoto マフラ−
KR20190074716A (ko) * 2017-12-20 2019-06-28 비앤알(주) 인플레이터용 소음기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63186907A (ja) * 1987-01-29 1988-08-02 Toru Morimoto マフラ−
KR20190074716A (ko) * 2017-12-20 2019-06-28 비앤알(주) 인플레이터용 소음기

Similar Documents

Publication Publication Date Title
US8061476B2 (en) Sound dampening flow channel device
JP5866751B2 (ja) 音響共鳴体及び音響室
US11493232B2 (en) Silencing system
US11841163B2 (en) Silencing system
CN112912953A (zh) 隔音系统
WO2019069908A1 (ja) 消音管状構造体
JP5332495B2 (ja) 吸音構造
JP6672390B2 (ja) 消音システム
US20240003275A1 (en) Acoustic impedance change structure and air passage type silencer
JP2020024354A (ja) 防音システム
WO2023188924A1 (ja) 通風型消音器
JP2019056516A (ja) 消音システム
WO2023026788A1 (ja) 通風型消音器
CN209944712U (zh) 消声件、消声器以及通风系统
JP6851404B2 (ja) 消音換気構造
WO2023032618A1 (ja) 通気路用消音器
US20240183576A1 (en) Silencer for ventilation passage
WO2022201692A1 (ja) 防音構造付き通気路
WO2024090085A1 (ja) 消音構造体
WO2024070160A1 (ja) 通風型消音器
US20240183569A1 (en) Air passage type silencer
WO2023062965A1 (ja) 通気システム
CN117859171A (zh) 通风型消音器
CN116806352A (zh) 消音结构体及消音系统
CN117859172A (zh) 通气路用消声器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23776811

Country of ref document: EP

Kind code of ref document: A1