WO2023188866A1 - NOx SENSOR - Google Patents

NOx SENSOR Download PDF

Info

Publication number
WO2023188866A1
WO2023188866A1 PCT/JP2023/004592 JP2023004592W WO2023188866A1 WO 2023188866 A1 WO2023188866 A1 WO 2023188866A1 JP 2023004592 W JP2023004592 W JP 2023004592W WO 2023188866 A1 WO2023188866 A1 WO 2023188866A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
nox
sensor
gas
information
Prior art date
Application number
PCT/JP2023/004592
Other languages
French (fr)
Japanese (ja)
Inventor
咲乃 藤田
竜三 加山
勇樹 村山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023188866A1 publication Critical patent/WO2023188866A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present disclosure relates to a NOx sensor for detecting NOx concentration in a gas to be measured.
  • NOx sensors for vehicles are equipped with a sensor element that uses a solid electrolyte body, and exhaust gas, which is the gas to be measured, is introduced into the sensor element, and the solid electrolyte body is dissolved due to the decomposition of nitrogen oxides (NOx).
  • the NOx concentration is detected by measuring the current flowing through the sensor.
  • a sensor element has a plurality of cells in which electrodes are formed on the surface of a solid electrolyte body, and for example, oxygen (O 2 ) in the gas to be measured is pumped by a pump cell provided on the upstream side of the gas flow. After adjusting the oxygen concentration to a predetermined low oxygen concentration, a sensor cell provided on the downstream side detects NOx contained in the gas to be measured.
  • Patent Document 1 describes a method of estimating the amount of moisture in exhaust gas from the excess air ratio or A/F value determined by the engine operating conditions, and correcting the gas concentration detection signal according to the estimated amount of moisture. is proposed.
  • a second cell decomposes NOx by utilizing the correlation between the signal obtained from the first cell that pumps out oxygen and the oxygen concentration and water content in the exhaust gas.
  • a method has been proposed for correcting the signal obtained from a map using a map or on an analog circuit.
  • the gas sensor of Patent Document 1 estimates the amount of moisture in exhaust gas or obtains a value corresponding to the amount of moisture from engine information or sensor information, and uses a correction amount corresponding to the amount of moisture to output NOx gas concentration detection output. is being corrected.
  • the premise is that there is a linear relationship between the NOx gas concentration detection output and the NOx gas concentration, and if no correction is made based on moisture content, the offset will change although the sensitivity will not be affected. There is.
  • the offset based on the moisture content is not necessarily constant depending on the surrounding environment of the sensor, which varies depending on the mounting position and load conditions, and the sensor control state. This is presumed to be because the relationship between moisture content and offset is affected by the surrounding environmental temperature, and as the moisture content increases, the offset error increases, which may reduce the accuracy of NOx gas concentration correction. Ta.
  • An object of the present disclosure is to provide a NOx sensor that can improve the detection accuracy of NOx concentration by suppressing the influence of ambient environmental temperature and performing correction based on the amount of water contained in the gas to be measured with higher accuracy. It is.
  • a sensor element that detects NOx contained in the gas to be measured, a heater that heats the sensor element, and controls the operation of the sensor element and the heater, and calculates the NOx concentration based on the signal from the sensor element.
  • a NOx sensor comprising a sensor control section,
  • the above sensor element is a gas chamber to be measured, into which the gas to be measured is introduced via a gas introduction part, and the chamber wall is a solid electrolyte body;
  • a first cell is disposed upstream of the gas flow to be introduced and outputs a first signal having a correlation with the H 2 O concentration in the gas to be measured; and a second cell that is disposed on the downstream side and outputs a second signal according to the NOx concentration and H 2 O concentration in the gas to be measured
  • the above sensor control section is a NOx concentration reference value calculation unit that calculates a NOx concentration reference value based on the second signal; an H 2 O concentration information detection unit that detects H 2 O concentration or H 2 O concentration
  • the sensor control section controls the operation of the sensor element and the heater, and calculates the NOx concentration based on the signal from the sensor element.
  • the NOx concentration reference value calculation section calculates the NOx concentration reference value based on a previously known relationship between the second signal and the NOx concentration.
  • the H 2 O concentration information detection section detects H 2 O concentration information based on the first signal input from the first cell or external information of the sensor element.
  • the NOx concentration correction section refers to offset correction information stored in advance, calculates an offset value corresponding to the detected H 2 O concentration information, and corrects the NOx concentration reference value.
  • the surrounding environment of the sensor element changes depending on the exhaust environment of the gas to be measured, and the amount of water contained in the gas to be measured also changes.
  • the effect on the sensor output is small in areas where the amount of water is small or the temperature is low.
  • the sensor output will increase significantly in areas with high moisture content or high temperature, and the effect on sensor output cannot be ignored.
  • Become This is because even if the temperature of the sensor element is controlled by a heater, if the temperature of the second cell, which outputs the second signal, increases due to the influence of the high-temperature measured gas, the decomposition of water tends to proceed. It is assumed that this is because
  • the offset correction information acquired in advance at the reference environmental temperature in the NOx concentration correction section it becomes possible to perform correction that takes into account not only the H 2 O concentration information but also the temperature characteristics.
  • the reference environmental temperature at which the offset correction information is acquired is set to the steady temperature range of the gas to be measured that reflects the actual environment in which the sensor element is mounted. A relationship between the concentration information and the second signal is obtained. By performing offset correction based on this relationship, variations in correction due to changes in moisture content and surrounding environmental temperature are alleviated, and under-correction or over-correction can be suppressed, making it possible to calculate NOx concentration with higher accuracy. .
  • a NOx sensor that can improve the detection accuracy of NOx concentration by suppressing the influence of the surrounding environment temperature and performing correction based on the amount of moisture contained in the gas to be measured with higher accuracy. can do.
  • FIG. 1 is an overall schematic diagram showing the configuration of a NOx sensor in Embodiment 1
  • FIG. 2 is a longitudinal cross-sectional view and a cross-sectional view taken along line II of the sensor element, which is the main part of the NOx sensor, in Embodiment 1
  • FIG. 3 is a block diagram showing the main part configuration of the sensor control section of the NOx sensor in Embodiment 1
  • FIG. 4 is an overall configuration diagram and a partially enlarged sectional view showing the installation state of the NOx sensor in Embodiment 1
  • FIG. 1 is an overall schematic diagram showing the configuration of a NOx sensor in Embodiment 1
  • FIG. 2 is a longitudinal cross-sectional view and a cross-sectional view taken along line II of the sensor element, which is the main part of the NOx sensor, in Embodiment 1
  • FIG. 3 is a block diagram showing the main part configuration of the sensor control section of the NOx sensor in Embodiment 1
  • FIG. 4 is an overall configuration diagram and a partially
  • FIG. 5 is a diagram for explaining offset correction information in the first embodiment, and is a diagram showing the relationship between NOx output and H 2 O concentration in a steady temperature range
  • FIG. 6 is a diagram showing the temperature characteristics of the NOx output of the sensor element in Embodiment 1
  • FIG. 7 is a diagram for explaining an offset correction method based on an offset correction value calculation map in the first embodiment
  • FIG. 8 is a diagram for explaining the NOx concentration calculation procedure of the NOx concentration calculation section of the sensor control section in the first embodiment
  • FIG. 9 is an engine map diagram showing the relationship between engine speed and torque obtained from a running test in Embodiment 1
  • FIG. 10 is a diagram comparing and showing NOx output before and after offset correction based on offset correction information in Embodiment 1, FIG.
  • FIG. 11 is a diagram showing the relationship between NOx output error and H 2 O concentration acquired by multiple sensor elements in Embodiment 1
  • FIG. 12 is a schematic configuration diagram of the main parts of the NOx sensor in Embodiment 2
  • FIG. 13 is a diagram showing the relationship between pump cell voltage variation and NOx output error in Embodiment 2
  • FIG. 14 is a schematic configuration diagram when the detection control section of the sensor control section includes a command voltage correction section in Embodiment 2
  • FIG. 15 is a schematic configuration diagram in the second embodiment when the detection control section of the sensor control section does not include the command voltage correction section.
  • the NOx sensor S of this embodiment includes a sensor element 1, a heater H that heats the sensor element 1, and a sensor control section 10.
  • the sensor main body 1A in which the sensor element 1 is housed is installed, for example, in the exhaust gas passage EX of an internal combustion engine such as a vehicle engine, and the sensor element 1 is used to Nitrogen oxides (ie, NOx) contained in exhaust gas G, which is a gas to be measured, is detected.
  • the sensor control unit 10 is installed outside the exhaust gas passage EX, controls the detection operation by the sensor element 1 and the heating operation by the heater H, and calculates the NOx concentration based on the output from the sensor element 1.
  • the sensor element 1 is configured, for example, as a limiting current type sensor using a solid electrolyte body 11, and includes a pump cell 1p as a first cell and a sensor cell 1s as a second cell. It has .
  • a gas chamber 2 to be measured having a solid electrolyte body 11 as a chamber wall is formed inside one end side (for example, the lower end side in the right diagram of FIG. 4) that serves as a gas detection section.
  • Exhaust gas G is introduced from the outside of the element 1 into the gas chamber 2 to be measured via the gas introduction section 3 .
  • the sensor element 1 can also include a monitor cell 1m as a third cell arranged in parallel with the sensor cell 1s.
  • the exhaust gas G is introduced into the gas chamber 2 to be measured from the gas introduction part 3 provided at the tip of the sensor element 1, with the longitudinal direction of the sensor element 1 being the gas flow direction X.
  • the pump cell 1p is arranged on the upstream side of the gas flow, and while adjusting the oxygen concentration in the exhaust gas G, generates a signal corresponding to the oxygen concentration in the exhaust gas G, which is correlated with the H 2 O concentration.
  • the first signal is configured to output a first signal having a first signal.
  • the sensor cell 1s is arranged downstream of the pump cell 1p, and outputs a second signal corresponding to the NOx concentration and H2O concentration in the exhaust gas G whose oxygen concentration has been adjusted.
  • a reference gas chamber 4 is arranged on the opposite side of the gas chamber 2 to be measured with the solid electrolyte body 11 in between.
  • a porous protective layer 5 is formed on the outer surface of the sensor element 1, covering the entire gas detection section.
  • the pump cell 1p has a pump electrode 21, which is a first cell electrode, on the surface of the solid electrolyte body 11 facing the gas chamber 2 to be measured, and performs oxygen pumping. , adjust the oxygen concentration in the exhaust gas G to a predetermined low concentration.
  • oxygen i.e., O 2
  • oxide ions i.e., O 2-
  • the current Ip flowing through the pump cell 1p corresponds to the oxygen concentration in the exhaust gas G before adjustment (hereinafter referred to as O 2 concentration as appropriate), and the H 2 O concentration and It is output to the sensor control unit 10 as a first signal having a correlation.
  • the sensor cell 1s has a sensor electrode 22, which is a second cell electrode, on the surface of the solid electrolyte body 11 facing the gas chamber 2 to be measured, and detects NOx contained in the exhaust gas G whose O 2 concentration has been adjusted.
  • the catalytic action of the sensor electrode 22 decomposes NOx and H 2 O, and oxide ions resulting from NOx and H 2 O are decomposed. , conducts inside the solid electrolyte body 11 and is discharged to the reference gas chamber 4 side.
  • the current Is flowing through the sensor cell 1s (hereinafter referred to as sensor cell current) corresponds to the NOx concentration and H 2 O concentration in the exhaust gas G, and is outputted to the sensor control unit 10 as a second signal.
  • the NOx sensor S is used, for example, in a selective catalytic reduction (SCR) system for purifying NOx, detects the NOx concentration downstream of the catalyst, and directs the reducing agent to the upstream side of the catalyst. Used for supply amount control, etc. In that case, if NOx and moisture (that is, H 2 O) are mixed in the exhaust gas G, the output from the sensor element 1 will be the output based on H 2 O added to the original output based on NOx. .
  • H 2 O in the exhaust gas G is mainly caused by combustion of fuel in the engine, and has a correlation with O 2 in the exhaust gas G.
  • the sensor control section 10 is configured to be able to communicate with the sensor element 1 or an external device, and functionally includes a NOx concentration calculation section 100, a detection control section 200, and a heater.
  • a control unit 300 is provided.
  • the NOx concentration calculation unit 100 corrects an error in NOx output caused by H 2 O (hereinafter referred to as NOx output error) based on the first signal, the second signal output from the sensor element 1, and external information. Then, calculate the NOx concentration.
  • the detection control unit 200 controls the detection operation by the sensor element 1 to be performed appropriately, and the heater control unit 300 controls the heating by the heater H so that the sensor element 1 has a temperature suitable for detection. Control behavior. Details of the control by the detection control section 200 and the heater control section 300 will be described later.
  • the NOx concentration calculation section 100 includes a NOx concentration reference value calculation section 101, an H 2 O concentration information detection section 102, and a NOx concentration correction section 103.
  • the sensor cell current Is which is a second signal, is input to the NOx concentration reference value calculation unit 101, and the NOx concentration reference value C1 is calculated based on the sensor cell current Is.
  • the pump cell current Ip as a first signal or external information is input to the H 2 O concentration information detection unit 102, and the H 2 O concentration or a concentration having a correlation with the H 2 O concentration is detected based on the pump cell current Ip or the external information.
  • H 2 O concentration information Ci containing information is detected.
  • the NOx concentration correction unit 103 offset-corrects the NOx concentration reference value C1 calculated by the NOx concentration reference value calculation unit 101 using the H 2 O concentration information Ci detected by the H 2 O concentration information detection unit 102. Then, the value after offset correction is output as the calculated value of NOx concentration.
  • the NOx concentration correction unit 103 stores offset correction information based on the relationship between the second signal and the H 2 O concentration information Ci obtained at a predetermined reference environmental temperature.
  • This reference environmental temperature is set to be in the steady temperature range of the exhaust gas G in the environment in which the sensor element 1 is mounted.
  • the steady temperature range is the temperature range that the exhaust gas G that reaches the mounting position of the sensor element 1 can be in when the engine is in a steady operating state, and is based on the assumed operating state of the engine and the sensor in the engine and exhaust gas passage EX. It varies depending on the distance to the element 1, etc.
  • the offset correction information used for NOx concentration correction corresponds to the reference environmental temperature that is the steady temperature range of the exhaust gas G, and reflects the surrounding environmental temperature in the actual environment in which the NOx sensor S is installed.
  • offset correction based on the detected H 2 O concentration information Ci can be performed more appropriately, and NOx output errors in NOx detection can be reduced.
  • the temperature characteristics of NOx output and offset correction will be explained next.
  • FIG. 5 shows the relationship between NOx output and H 2 O concentration information Ci in a steady temperature range as an example.
  • H 2 O concentration information Ci which is the H 2 O concentration information Ci.
  • the NOx output known from the sensor cell current Is corresponds to the NOx concentration (unit: ppm).
  • the NOx output includes an offset corresponding to the H 2 O concentration or O 2 concentration, and specifically, the higher the H 2 O concentration or the lower the O 2 concentration, the more the offset increases. The rate of increase increases. Therefore, even if NOx is not substantially included, the NOx output varies depending on the H 2 O concentration or O 2 concentration.
  • the relationship between the NOx output and the H 2 O concentration information Ci has a temperature characteristic, and varies depending on the environmental temperature at the mounting position of the sensor element 1.
  • the temperature range in which the temperature of the exhaust gas G at the mounting position of the sensor element 1 reaches a stable running state after the engine starts is defined as the steady temperature range, and the NOx output characteristics in that range are compared. There is.
  • the NOx output characteristics change greatly between the lower limit temperature T1 (eg, 300° C.) and the upper limit temperature T2 (eg, 700° C.) of the steady temperature range, and the higher the temperature, the more the offset increases.
  • the NOx output gradually increases as the gas temperature of the exhaust gas G changes (for example, from 0° C. to 800° C.), and the higher the temperature, the higher the rate of increase in the offset becomes. Therefore, when performing offset correction using a fixed value according to the H 2 O concentration, as in the past, based on characteristics obtained through general tests that do not take temperature characteristics into account, it is necessary to sufficiently reduce the NOx output error. There is a possibility that it will not be possible to reduce the Therefore, the NOx concentration correction section 103 selects optimal offset correction information from the offset characteristics of the NOx output shown in FIG. 5, for example, and performs correction based on the offset correction information.
  • the steady temperature range is a temperature range that the exhaust gas G reaching around the sensor element 1 can have when the engine is in a steady operating state, and indicates the range of the environmental temperature around the sensor element 1.
  • the steady temperature range is determined by the type of engine, the mounting position of the gas sensor S in the exhaust gas pipe, and other conditions, and is determined appropriately depending on the state of each sensor element 1 or multiple sensor elements 1 of the same type used under the same conditions.
  • a standard environmental temperature T0 can be determined.
  • the reference environmental temperature T0 is set in a temperature range higher than the lower limit temperature T1 in the steady temperature range.
  • the reference environmental temperature T0 is set to be higher than the lower limit temperature T1 of 300°C.
  • the reference environmental temperature T0 is set to be in a temperature range lower than 700° C., which is the upper limit temperature T2 in the steady temperature range.
  • the reference environmental temperature is set so that the offset characteristic in a low temperature range including the lower limit temperature T1 and the offset characteristic in a high temperature range including the upper limit temperature T2 become an intermediate temperature that exhibits an intermediate offset characteristic between them. It is desirable that T0 be set.
  • a predetermined intermediate temperature range including an intermediate temperature (for example, 500°C) between the lower limit temperature T1 and upper limit temperature T2 of the steady temperature range is set as the reference temperature range, and the reference environmental temperature T0 is set within that range. I can do it.
  • the reference environmental temperature T0 may be an intermediate temperature of 500° C., or may be a temperature exhibiting a more intermediate offset characteristic, and can be arbitrarily set.
  • an intermediate temperature range centered around 500°C for example, a range from 400°C to 600°C, can be set as the reference temperature range, so that errors due to the mounting environment can be further reduced according to the offset characteristics.
  • the reference environmental temperature T0 can be set as appropriate.
  • the low temperature range is, for example, a range of 300°C or more and less than 400°C
  • the high temperature range is, for example, a range of 600°C or more and less than 700°C.
  • the steady temperature range is not limited to a temperature range of 300°C or more and 700°C or less, but can be set as appropriate depending on the mounting position of the sensor element 1, such as a temperature range lower than 300°C or higher than 700°C. It may include a temperature range. In that case, the ranges of the low temperature range, reference temperature range, and high temperature range are also changed as appropriate depending on the set steady temperature range.
  • the NOx concentration correction unit 103 includes an offset correction value calculation unit 103A, and can store a correction map or a correction formula based on the output characteristics at the reference environmental temperature T0 as offset correction information.
  • the offset correction value calculation unit 103A uses the H 2 O concentration information Ci detected by the H 2 O concentration information detection unit 102. Calculate offset correction value C2.
  • the NOx concentration correction unit 103 uses this offset correction value C2 to correct the NOx concentration reference value C1 and outputs it as the NOx concentration.
  • the middle diagram in FIG. 7 shows the result of correcting NOx output using a correction map based on offset correction information acquired in a reference temperature range (for example, reference environmental temperature: 500°C), and When the temperature is within the reference temperature range, almost no output error occurs. Further, even in a low temperature range or a high temperature range, when the H 2 O concentration increases, the NOx output shifts to the plus side or the minus side, but the overall magnitude (absolute value) of the output error becomes relatively small. Therefore, as long as the H 2 O concentration is in the normal range, stable NOx output can be obtained in a steady operating state even if the temperature approaches the lower limit temperature T1 or the upper limit temperature T2 of the steady temperature range.
  • a reference temperature range for example, reference environmental temperature: 500°C
  • the NOx concentration correction unit 103 can perform more appropriate correction. That is, the offset correction value calculation unit 103A obtains the offset correction value C2 that reflects the temperature characteristics based on the offset correction information and the H 2 O concentration information Ci from the H 2 O concentration information detection unit 102. , by offset-correcting the NOx concentration reference value C1 using this, it is possible to reduce the influence of the surrounding environment temperature on NO concentration detection.
  • the H 2 O concentration information Ci detected by the H 2 O concentration information detection unit 102 includes the H 2 O concentration or concentration information having a correlation with the H 2 O concentration, for example, information on the O 2 concentration. That's fine.
  • Information on the O 2 concentration can be acquired based on the pump cell current Ip input from the sensor element 1, and can be converted into the O 2 concentration based on the relationship between the pump cell current Ip and the O 2 concentration, which is known in advance. I can do it.
  • the H 2 O concentration information Ci is not limited to information based on internal information of the sensor element 1 such as the pump cell current Ip, but may be external information acquired outside the sensor element 1.
  • the external information includes information such as engine operating information and mounting environment, and the H 2 O concentration may be calculated in the H 2 O concentration information detection unit 102 based on this external information, or the H 2 O concentration may be calculated based on this external information.
  • the H 2 O concentration or the estimated value of the O 2 concentration estimated based on the above may be acquired as external information.
  • the H 2 O concentration information detection unit 102 external information is input to the sensor control unit 10 as, for example, information from a vehicle engine control unit (namely, an Engine Control Unit; hereinafter referred to as ECU), not shown.
  • the sensor control unit 10 is configured as a sensor control unit that includes a communication unit, a microcomputer (hereinafter referred to as a microcomputer), various terminals connected to the sensor element 1 and the ECU, and receives internal information from the sensor element 1 or
  • the NOx concentration is calculated in the NOx concentration calculating section 100 based on external information from the ECU.
  • the ECU receives inputs such as intake air amount detected by an air flow meter (not shown), detection signals from an engine rotation speed sensor, an accelerator opening sensor, etc., and operates the engine E based on these input information. It knows the status and controls the entire vehicle.
  • inputs such as intake air amount detected by an air flow meter (not shown), detection signals from an engine rotation speed sensor, an accelerator opening sensor, etc.
  • a sensor element 1 is inserted and held inside a cylindrical housing S1, and an outer peripheral threaded portion of the housing S1 is fixed to a passage wall EX1 of an exhaust gas passage EX.
  • the sensor main body 1A is housed in an element cover S2 with the distal end of the sensor element 1 protruding into the exhaust gas passage EX, and housed in the element cover S2 with the proximal end of the sensor element 1 protruding outside the exhaust gas passage EX. It is accommodated in S3.
  • the sensor control unit 10 is electrically connected to the sensor element 1 via a lead wire S4 drawn out to the base end side of the sensor main body 1A.
  • the element cover S2 has a double cylinder structure with a bottom surface, and a plurality of gas flow holes (not shown) are provided on the side and bottom surfaces of the outer cover and the inner cover. Thereby, the exhaust gas G flowing through the exhaust gas passage EX is taken into the inside of the element cover S2, and the tip side of the sensor element 1, which serves as the gas detection section, is exposed to the exhaust gas G, which is the gas to be measured. Further, a plurality of gas flow holes (not shown) are provided on the side surface of the cylindrical atmospheric cover S3. Thereby, the atmosphere A, which is the reference gas, is taken into the atmosphere cover S3 and can reach the base end side of the sensor element 1.
  • the exhaust gas G that has reached the distal end side of the sensor element 1 is taken into the gas chamber 2 to be measured from the gas introduction section 3 and moves toward the proximal end side.
  • a pump cell 1p is arranged on the upstream side in the gas flow direction X, and a sensor cell 1s and a monitor cell 1m are arranged on the downstream side. Detect NOx.
  • monitor cell current the current Im flowing through the monitor cell 1m (hereinafter referred to as monitor cell current) is output to the sensor control unit 10 as a third signal.
  • the sensor element 1 is a stacked element with a three-cell structure, and the stacking direction is a direction perpendicular to the gas flow direction X (that is, the vertical direction in FIG. 2).
  • Electrolyte body 11 and heater insulating layer 61 are arranged in this order.
  • a spacer layer 12 and a shielding layer 13 are arranged on one surface side of the solid electrolyte body 11 to form a space that will become the gas chamber 2 to be measured. Further, on the other surface side of the solid electrolyte body 11, a space serving as the reference gas chamber 4 is formed between the solid electrolyte body 11 and the heater insulating layer 61 constituting the heater H.
  • the gas chamber 2 to be measured is connected to the inside of the element cover S2 (see, for example, FIG. 4) where the exhaust gas G exists via the diffusion resistance layer 31 embedded in the front end surface (i.e., the left end surface in FIG. 2) of the spacer layer 12. It communicates with the space of The diffusion resistance layer 31, together with a part of the porous protective layer 5 arranged on the outside thereof, constitutes a gas introduction section 3 into the gas chamber 2 to be measured, so that the exhaust gas G is introduced under a predetermined diffusion resistance. has been adjusted to.
  • the porous protective layer 5 is formed to cover the entire surface of the tip side of the sensor element 1, which is the gas detection section, and protects the sensor element 1 from poisonous substances and the like.
  • the gas detection section of the sensor element 1 is provided with a pump cell 1p, a sensor cell 1s, and a monitor cell 1m, and each cell has a pair of electrodes facing each other with a solid electrolyte body 11 in between.
  • the pump electrode 21 of the pump cell 1p is arranged on the surface of the solid electrolyte body 11 on the upstream side in the gas flow direction X, and the sensor electrode 22 of the sensor cell 1s and the monitor cell 1m are arranged on the downstream side thereof.
  • a monitor electrode 23 is arranged.
  • a reference electrode 41 serving as a common electrode is provided on the surface of the solid electrolyte body 11 at a position facing these electrodes 21, 22, and 23.
  • the reference gas chamber 4 in which the common reference electrode 41 is arranged extends to the base end side (for example, the right end side in FIG. 2) of the sensor element 1, and through a reference gas inlet opening at an end surface (not shown), It communicates with the space within the atmosphere cover S3 (see, for example, FIG. 4) where the atmosphere A exists.
  • a heating element 62 that generates heat when energized is buried inside a heater insulating layer 61 that forms the bottom wall of the reference gas chamber 4, and constitutes a heater H.
  • the heating element 62 is disposed corresponding to the portion where the electrodes of the pump cell 1p, the sensor cell 1s, and the monitor cell 1m are formed, and is capable of heating the entire tip side of the element, which becomes the gas detection section.
  • each cell is exposed to the exhaust gas G introduced into the gas chamber 2 to be measured, and the other electrode 41 is exposed to the exhaust gas G introduced into the reference gas chamber 4. exposed to atmosphere A.
  • oxygen contained in the exhaust gas G is pumped out to the reference gas chamber 4 side via the solid electrolyte body 11 having oxide ion conductivity or the reference gas Oxygen pumping from the chamber 4 side becomes possible.
  • each cell is heated to a temperature higher than the temperature at which it becomes active, and oxygen pumping can be performed stably.
  • the pump electrode 21 of the pump cell 1p is formed on the upstream side in the gas flow direction X with a large area.
  • oxygen is decomposed by its catalytic action and is discharged to the reference electrode 41 side.
  • the exhaust gas G adjusted to have a low oxygen concentration by the pump cell 1p reaches the sensor electrode 22 and monitor electrode 23 on the downstream side, and at the sensor electrode 22, oxygen caused by NOx is discharged together with residual oxygen by oxygen pumping. Further, residual oxygen at the monitor electrode 23 is exhausted by oxygen pumping.
  • the sensor electrode 22 and the monitor electrode 23 are arranged in parallel at the same position in the gas flow direction X, and are formed in the same shape with a smaller area than the pump electrode 21. As a result, the sensor electrode 22 and the monitor electrode 23 have the same conditions with respect to the flow of exhaust gas G, and by comparing the outputs of the sensor cell 1s and the monitor cell 1m, it is possible to remove the influence of residual oxygen contained in the NOx output. .
  • the solid electrolyte body 11 is composed of a zirconia-based solid electrolyte material having oxide ion conductivity.
  • a zirconia-based solid electrolyte material for example, partially stabilized zirconia or stabilized zirconia containing a stabilizer such as yttria can be used.
  • the diffusion resistance layer 31 and the porous protective layer 5 are made of a ceramic material such as alumina, for example.
  • the heater insulating layer 61, the shielding layer 13, and the spacer layer 12 can be constructed using an insulating ceramic material such as alumina.
  • the electrodes of the pump cell 1p, the sensor cell 1s, and the monitor cell 1m can be porous cermet electrodes containing a noble metal or noble metal alloy material and a zirconia-based solid electrolyte.
  • the sensor electrode 22 of the sensor cell 1s is constructed using an electrode material that has decomposition activity for NOx to be detected.
  • an electrode containing platinum and rhodium hereinafter appropriately referred to as a Pt-Rh electrode
  • the pump electrode 21 of the pump cell 1p is constructed using an electrode material that has oxygen decomposition activity and does not have NOx decomposition activity.
  • an electrode for example, an electrode containing platinum and gold (hereinafter appropriately referred to as a Pt-Au electrode) can be used.
  • the monitor electrode 23 of the monitor cell 1m is also constructed using the same electrode material as the pump electrode 21.
  • the reference electrode 41 can be configured as, for example, an electrode containing platinum (hereinafter, appropriately referred to as a Pt electrode).
  • NOx in the exhaust gas G is adjusted to a predetermined low oxygen concentration in the pump cell 1p by heating the sensor element 1 to a predetermined temperature by the heater H and applying a predetermined voltage between the electrodes of each cell. can be detected by the sensor cell 1s. Furthermore, by utilizing the difference in gas adsorption between the Pt-Rh electrode used for the sensor electrode 22 and the Pt-Au electrode used for the monitor electrode 23, the difference value between the currents output from the sensor cell 1s and the monitor cell 1m is calculated. By setting the output to NOx, the influence of oxygen remaining in the exhaust gas G can be canceled.
  • Rh contained in the Pt-Rh electrode constituting the sensor electrode 22 has decomposition activity against H 2 O in addition to NOx and O 2 , H If 2 O is included, an output error will occur due to these decompositions.
  • This output error is corrected by the NOx concentration calculation unit 100 of the sensor control unit 10 using offset correction information acquired in advance. Control of each section and output correction by the sensor control section 10 will be described next.
  • the sensor control unit 10 includes a current detection unit 10A that detects the output current from each cell of the sensor element 1, a pump cell current Ip, a sensor cell current Is, and a monitor cell current Im detected by the current detection unit 10A. and a NOx concentration calculation unit 100 that calculates the NOx concentration based on the NOx concentration.
  • the sensor control unit 10 also includes a detection control unit 200 that controls NOx detection by the sensor element 1, and a heater control unit 300 that controls heating of the sensor element 1 by the heater H.
  • Each cell of the sensor element 1 is connected to the sensor control unit 10 via a detection terminal P- and a detection terminal S-, M-, and both ends of the heating element 62 of the heater H are connected to a pair of heater terminals H+, H-. It is connected to the.
  • the sensor control unit 10 is connected to an ECU (not shown) via a pair of communication terminals CAN+ and CAN-, and is capable of receiving commands from the ECU, performing NOx detection processing, and outputting the detection results. There is. Further, the sensor control unit 10 is connected to a vehicle battery and ground (not shown) via a power supply terminal VB and a ground terminal GND, respectively, and is connected to various circuits of the sensor control unit 10, a heater H of the sensor element 1, etc. power supply is possible.
  • the NOx concentration calculation unit 100 is composed of a microcomputer or the like having a storage unit and a calculation unit, and executes a pre-stored program using internal information of the sensor element 1 input from the current detection unit 10A. A predetermined calculation is performed to calculate the NOx concentration.
  • the current detection unit 10A is connected to the pump electrode 21 of the pump cell 1p via the detection terminal P-, and is connected to the sensor electrode 22 of the sensor cell 1s and the monitor electrode 23 of the monitor cell 1m via detection terminals S- and M-. It is connected to the.
  • the current detection unit 10A includes, for example, a detection circuit using a resistor for current detection, and is configured to be able to detect the output current of each cell from the potential difference between both ends of the resistor. The detected output current is converted into a digital signal in an analog/digital conversion circuit and input to each part of the NOx concentration calculation section 100.
  • the detection control unit 200 controls the detection operations of the pump cell 1p, the monitor cell 1m, and the sensor cell 1s, respectively.
  • the detection control unit 200 includes, for example, a voltage application circuit for applying a voltage between a pair of electrodes of each cell, generates a predetermined voltage signal based on a control command, and generates a predetermined voltage signal via a common terminal COM+. It can be applied to the common reference electrode 41 side. The applied voltage is adjusted within a range in which the current flowing through each cell exhibits a limiting current characteristic so that the O 2 concentration in the gas chamber 2 to be measured becomes a predetermined low concentration by, for example, oxygen pumping in the pump cell 1p.
  • the heater control unit 300 controls energization of the heater H built into the sensor element 1.
  • the heater control unit 300 includes, for example, a switch circuit connected to a power supply terminal VB, and the switch circuit is turned on and off based on a control command, thereby supplying power to the heater H via the heater terminals H+ and H-.
  • the power supply can be controlled. Thereby, each cell of the sensor element 1 heated by the heater H is maintained at a temperature suitable for NOx detection.
  • the NOx concentration calculation unit 100 calculates the NOx concentration reference value C1 (unit: ppm) based on the sensor cell current Is and monitor cell current Im detected by the current detection unit 10A in the NOx concentration reference value calculation unit 101. Calculate. Specifically, as shown in the upper diagram of FIG. 8, the relationship between the difference value [Is-Im] (unit: nA) between the sensor cell current Is and the monitor cell current Im and the corresponding NOx concentration reference value C1 is , it is possible to calculate the NOx concentration reference value C1 based on the outputs from the sensor cell 1s and the monitor cell 1m by mapping and storing the map in advance. At this time, the NOx concentration reference value C1 increases in accordance with the output of the sensor cell 1s, and includes the influence of H 2 O when present.
  • the H 2 O concentration information detection unit 102 detects the O 2 concentration that becomes the H 2 O concentration information Ci based on the input pump cell current Ip (unit: mA). Specifically, as shown in the middle diagram of FIG. 8, the relationship between pump cell current Ip and O 2 concentration is mapped and stored in advance, and based on the detected value of pump cell current Ip, H It is possible to calculate the O 2 concentration (unit: %) that has a correlation with the 2 O concentration. As mentioned above, since the relationship between the H 2 O concentration and O 2 concentration in the exhaust gas G due to combustion etc. is known, the calculated O 2 concentration can be used as the H 2 O concentration information Ci. . At this time, as the pump cell current Ip increases, the O 2 concentration increases while the H 2 O concentration decreases.
  • the NOx concentration correction unit 103 corrects the NOx concentration reference value C1 input from the NOx concentration reference value calculation unit 101 using the offset correction value C2 calculated by the offset correction value calculation unit 103A.
  • the relationship between the O 2 concentration as H 2 O concentration information Ci and the offset correction value C2 is obtained as offset correction information at a predetermined reference environmental temperature T0.
  • T0 a predetermined reference environmental temperature
  • an offset correction value C2 corresponding to the detected O 2 concentration is calculated and subtracted from the NOx concentration reference value C1, thereby making it possible to calculate the offset-corrected NOx concentration.
  • a test to obtain offset correction information can be performed, for example, using a model gas bench and evaluated by varying the H 2 O concentration in the model gas within a predetermined range (for example, 0% to about 13%). can.
  • a model gas simulating exhaust gas was supplied from the gas supply unit at a predetermined flow rate to the gas passage where the gas sensor S was installed, and the H 2 O concentration was changed at a predetermined reference environmental temperature T0.
  • the offset characteristics were evaluated based on the NOx output of the sensor element 1 at that time.
  • the reference environmental temperature T0 is set from the gas temperature range that reaches the mounting position of the sensor element 1 during steady operation in the actual vehicle environment. The temperature was adjusted to T0.
  • FIG. 9 is an engine map showing the results of a driving test in an actual vehicle environment, and shows the engine speed and torque in certified driving patterns (WLTC mode, RDE mode) stipulated by law, and the surrounding environment at the mounting position of sensor element 1. It shows the relationship between temperature.
  • the gas temperature range obtained from this result (for example, 300° C. to 700° C.) was defined as a steady temperature range, and its center value (for example, 500° C.) was defined as the reference environmental temperature T0.
  • FIG. 10 shows the offset characteristic (before correction) obtained in this way and the NOx output after correction based on the offset correction information obtained from this characteristic line.
  • the offset correction information may be information based on output characteristics acquired individually for the sensor elements 1, or may be information obtained by averaging a plurality of output characteristics acquired for a plurality of sensor elements 1. good.
  • the offset correction information can be acquired for each NOx sensor S, for example, at the time of product production, taking into consideration the mounting environment of each NOx sensor, applied vehicle information, etc. In this way, by acquiring the characteristics for each product individually, it is possible to perform correction based on appropriate offset correction information.
  • common offset correction information may be acquired for a plurality of NOx sensors S of the same type at the time of design, etc., and applied to all of the NOx sensors S of the same type.
  • the H 2 O Obtain characteristic data of NOx output error with respect to concentration.
  • the NOx concentration calculation unit 100 includes the NOx concentration correction unit 103, and uses offset correction information that takes temperature characteristics into consideration.
  • the NOx concentration can be calculated by appropriately correcting the NOx output error caused by moisture.
  • the detection control unit 200 includes a voltage application circuit 201 and a voltage application instruction unit 202, and controls the pump cell voltage Vp applied to the pump cell 1p for oxygen pumping.
  • the basic configuration of the sensor element 1 and the basic control of the sensor control unit 10 are the same as those in the first embodiment, and the differences will be mainly described below. Note that among the symbols used in the second embodiment and subsequent embodiments, the same symbols as those used in the previously described embodiments represent the same components as those in the previously described embodiments, unless otherwise specified.
  • the sensor control unit 10 causes the detection control unit 200 to apply a predetermined pump cell voltage Vp between the pump electrode 21 and the reference electrode 41 of the pump cell 1p, and also causes the heater control unit 300 (not shown, for example, 1) controls the power supply to the heater H so that the pump cell 1p reaches a predetermined temperature.
  • the detection control section 200 Based on the instruction voltage V0 from the voltage application instruction section 202, the detection control section 200 generates a voltage signal corresponding to the instruction voltage V0 in the voltage application circuit 201, and applies it to the reference electrode 41 side of the pump cell 1p. The same voltage is also applied to the sensor cell 1s and the monitor cell 1m.
  • oxide ions generated by reductive decomposition of oxygen at the pump electrode 21 move toward the reference electrode 41 side, so that a pump cell current Ip flows.
  • NOx and H 2 O in the exhaust gas G move on the pump electrode 21 and head toward the downstream side.
  • the detection control unit 200 controls the voltage application circuit 201 to output a predetermined instruction voltage V0
  • the product itself has a predetermined variation (for example, about ⁇ 20 mV at 20° C.).
  • the actual applied voltage may vary with respect to the command voltage V0. Therefore, when comparing multiple NOx sensors S, as shown in FIG .
  • offset correction based on values is standardized, it is difficult to ensure correction accuracy.
  • an instruction voltage correction section 203 is provided in the voltage application instruction section 202 of the detection control section 200, and outputs a corrected instruction voltage V2 obtained by correcting the instruction voltage V0 to the voltage application instruction section 202.
  • the command voltage correction unit 203 uses a voltage detection unit 203a that detects the actual voltage V1 actually applied to each cell from the voltage application command unit 202, and a difference value between the actual voltage V1 and the command voltage V0.
  • a correction value calculation unit 203b that calculates and outputs it as a correction value V1-V0 is provided.
  • the command voltage V0 from the voltage application command section 202 is outputted to the voltage application circuit 201 as a corrected corrected command voltage V2 by subtracting the correction value V1-V0 in the command voltage correction section 203.
  • FIG. 15 shows a configuration that does not include the command voltage correction section 203, and the voltage application circuit 201 of the detection control section 200 changes the voltage applied to each cell of the sensor element 1 to the command voltage V0 from the voltage application instruction section 202. It is configured so that it can be generated according to the requirements.
  • the voltage application instruction unit 202 outputs a pulse signal corresponding to a preset instruction voltage V0 so that the oxygen pumping operation in the pump cell 1p is appropriate, and the voltage application circuit 201 outputs a pulse signal corresponding to the pulse signal. Voltage is output.
  • a predetermined voltage is applied to each cell via the common terminal COM+ of the sensor control unit 10 shown in FIG. 1 described above.
  • the actual voltage V1 output from the voltage application circuit 201 varies with respect to the command voltage V0, as described above, there is a risk that the NOx output error due to the increase in voltage will increase.
  • Correction instruction voltage V2 instruction voltage V0 - correction value [actual voltage V1 - instruction voltage V0]
  • the command voltage V0 to the pump cell 1p can be arbitrarily set so that it can be adjusted to a desired low oxygen concentration by oxygen pumping and the decomposition reaction of H 2 O in the pump cell 1p can be suppressed.
  • the instruction voltage V0 without variations between individual voltage application circuits 201, the effect of suppressing variations in the decomposition reaction of H 2 O is increased, and output errors due to variations in applied voltage, etc. Can be suppressed.
  • the present disclosure is not limited to the embodiments described above, and can be applied to various embodiments without departing from the spirit thereof.
  • the NOx sensor S can be applied to NOx detection using not only exhaust gas G from a vehicle engine but also gases discharged from various internal combustion engines as the gas to be measured.
  • the structure of each part of the sensor element 1 of the NOx sensor S, the control procedure of each part in the sensor control section 10, etc. can be changed as appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

A sensor (S) comprises: a sensor element (1) that has a first cell (1p) which outputs a first signal (Ip) correlated to an H2O concentration and a second cell (1s) which outputs a second signal (Is) in accordance with a NOx concentration and a H2O concentration; a heater (H); and a sensor control unit (10). The sensor control unit (10) has a NOx concentration reference value calculation unit (101) that calculates a NOx concentration reference value based on the second signal, a H2O concentration information detection unit (102) that detects H2O concentration information based on the first signal or external information, and a NOx concentration correction unit (103) that performs offset correction of the NOx concentration reference value. Offset correction information is based on the relation between the second signal and the H2O concentration information acquired at a predetermined reference environmental temperature. The reference environmental temperature is set to a steady temperature region of exhaust gas (G) in the environment in which the sensor element (1) is mounted.

Description

NOxセンサNOx sensor 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年3月28日に出願された特許出願番号2022-052419号に基づくもので、ここにその記載内容を援用する。 This application is based on Patent Application No. 2022-052419 filed on March 28, 2022, and the contents thereof are incorporated herein.
 本開示は、被測定ガス中のNOx濃度を検出するためのNOxセンサに関する。 The present disclosure relates to a NOx sensor for detecting NOx concentration in a gas to be measured.
 車両用のNOxセンサは、固体電解質体を用いたセンサ素子を備えており、センサ素子の内部へ被測定ガスとなる排ガスを導入し、窒素酸化物(NOx)の分解に起因して固体電解質体を流れる電流を測定することにより、NOx濃度を検出している。一般に、センサ素子は、固体電解質体の表面に電極が形成された複数のセルを有し、例えば、ガス流れの上流側に設けられるポンプセルにて被測定ガス中の酸素(O2)をポンピングし、所定の低酸素濃度に調整した上で、下流側に設けられるセンサセルにて被測定ガスに含まれるNOxを検出する。 NOx sensors for vehicles are equipped with a sensor element that uses a solid electrolyte body, and exhaust gas, which is the gas to be measured, is introduced into the sensor element, and the solid electrolyte body is dissolved due to the decomposition of nitrogen oxides (NOx). The NOx concentration is detected by measuring the current flowing through the sensor. Generally, a sensor element has a plurality of cells in which electrodes are formed on the surface of a solid electrolyte body, and for example, oxygen (O 2 ) in the gas to be measured is pumped by a pump cell provided on the upstream side of the gas flow. After adjusting the oxygen concentration to a predetermined low oxygen concentration, a sensor cell provided on the downstream side detects NOx contained in the gas to be measured.
 一方、NOx濃度の検出において、被測定ガスに含まれる水分(H2O)が誤差要因となることがある。その対策として、特許文献1には、エンジンの運転条件により定まる空気過剰率あるいはA/F値から排ガス中の水分量を推定し、推定された水分量に応じてガス濃度検出信号を補正する方法が提案されている。また、酸素ポンプ作用を利用する形式のガスセンサにおいては、酸素を汲み出す第1セルから得られる信号と排ガス中の酸素濃度及び水分量との相関関係を利用して、NOxを分解する第2セルから得られる信号を、マップを用いて又はアナログ回路上で補正する方法が提案されている。 On the other hand, in the detection of NOx concentration, moisture (H 2 O) contained in the gas to be measured may cause an error. As a countermeasure, Patent Document 1 describes a method of estimating the amount of moisture in exhaust gas from the excess air ratio or A/F value determined by the engine operating conditions, and correcting the gas concentration detection signal according to the estimated amount of moisture. is proposed. In addition, in a gas sensor that uses oxygen pumping, a second cell decomposes NOx by utilizing the correlation between the signal obtained from the first cell that pumps out oxygen and the oxygen concentration and water content in the exhaust gas. A method has been proposed for correcting the signal obtained from a map using a map or on an analog circuit.
特許第3372186号公報Patent No. 3372186
 特許文献1のガスセンサは、エンジン情報又はセンサ情報から、排ガス中の水分量を推定し又は水分量に相当する値を取得して、水分量に対応する補正量を用いて、NOxガス濃度検出出力を補正している。その前提として、NOxガス濃度検出出力とNOxガス濃度との間に直線関係があることが示され、水分量による補正をしない場合には、感度には影響がないものの、オフセットが変化するとされている。ところが、搭載位置や負荷条件によって異なるセンサ周辺環境や、センサ制御状態によっては、必ずしも水分量に基づくオフセットが一定とならないことが判明した。これは、水分量とオフセットの関係が、周辺環境温度の影響を受けるためと推測され、水分量が増加するほど、オフセット誤差が大きくなるために、NOxガス濃度の補正精度が低下するおそれがあった。 The gas sensor of Patent Document 1 estimates the amount of moisture in exhaust gas or obtains a value corresponding to the amount of moisture from engine information or sensor information, and uses a correction amount corresponding to the amount of moisture to output NOx gas concentration detection output. is being corrected. The premise is that there is a linear relationship between the NOx gas concentration detection output and the NOx gas concentration, and if no correction is made based on moisture content, the offset will change although the sensitivity will not be affected. There is. However, it has been found that the offset based on the moisture content is not necessarily constant depending on the surrounding environment of the sensor, which varies depending on the mounting position and load conditions, and the sensor control state. This is presumed to be because the relationship between moisture content and offset is affected by the surrounding environmental temperature, and as the moisture content increases, the offset error increases, which may reduce the accuracy of NOx gas concentration correction. Ta.
 本開示の目的は、周辺環境温度の影響を抑制し、被測定ガスに含まれる水分量に基づく補正をより精度よく行って、NOx濃度の検出精度を向上可能なNOxセンサを提供しようとするものである。 An object of the present disclosure is to provide a NOx sensor that can improve the detection accuracy of NOx concentration by suppressing the influence of ambient environmental temperature and performing correction based on the amount of water contained in the gas to be measured with higher accuracy. It is.
 本開示の一態様は、
 被測定ガスに含まれるNOxを検出するセンサ素子と、上記センサ素子を加熱するヒータと、上記センサ素子及び上記ヒータの動作を制御すると共に、上記センサ素子からの信号に基づいてNOx濃度を算出するセンサ制御部と、を備えるNOxセンサであって、
 上記センサ素子は、
 ガス導入部を介して上記被測定ガスが導入され、固体電解質体を室壁とする被測定ガス室と、
 上記被測定ガス室において、導入されるガス流れの上流側に配置され、上記被測定ガス中のH2O濃度と相関を有する第1信号を出力する第1セル、及び、上記第1セルよりも下流側に配置され、上記被測定ガス中のNOx濃度及びH2O濃度に応じた第2信号を出力する第2セルと、を有しており、
 上記センサ制御部は、
 上記第2信号に基づくNOx濃度基準値を算出するNOx濃度基準値算出部と、
 上記第1信号又は外部情報に基づいて、H2O濃度又はH2O濃度と相関を有する濃度情報を含むH2O濃度情報を検出するH2O濃度情報検出部と、
 上記NOx濃度基準値を、上記H2O濃度情報に基づいてオフセット補正する、NOx濃度補正部と、を有し、
 上記NOx濃度補正部は、予め定められた基準環境温度にて取得される上記センサ素子の出力特性に基づいて、上記H2O濃度情報に対応する上記第2信号のオフセット補正情報を記憶しており、上記基準環境温度は、上記センサ素子の搭載環境における上記被測定ガスの定常温度域に設定される、NOxセンサにある。
One aspect of the present disclosure is
A sensor element that detects NOx contained in the gas to be measured, a heater that heats the sensor element, and controls the operation of the sensor element and the heater, and calculates the NOx concentration based on the signal from the sensor element. A NOx sensor comprising a sensor control section,
The above sensor element is
a gas chamber to be measured, into which the gas to be measured is introduced via a gas introduction part, and the chamber wall is a solid electrolyte body;
In the gas chamber to be measured, a first cell is disposed upstream of the gas flow to be introduced and outputs a first signal having a correlation with the H 2 O concentration in the gas to be measured; and a second cell that is disposed on the downstream side and outputs a second signal according to the NOx concentration and H 2 O concentration in the gas to be measured,
The above sensor control section is
a NOx concentration reference value calculation unit that calculates a NOx concentration reference value based on the second signal;
an H 2 O concentration information detection unit that detects H 2 O concentration or H 2 O concentration information including concentration information having a correlation with the H 2 O concentration, based on the first signal or external information;
a NOx concentration correction unit that offset-corrects the NOx concentration reference value based on the H 2 O concentration information;
The NOx concentration correction unit stores offset correction information of the second signal corresponding to the H 2 O concentration information based on the output characteristics of the sensor element acquired at a predetermined reference environmental temperature. The reference environmental temperature is set in the NOx sensor in a steady temperature range of the gas to be measured in the environment in which the sensor element is mounted.
 上記構成のNOxセンサにおいて、センサ制御部は、センサ素子の動作とヒータの動作を制御すると共に、センサ素子からの信号に基づいて、NOx濃度を算出する。第2セルから第2信号が入力されると、NOx濃度基準値算出部において、予め知られる第2信号とNOx濃度との関係に基づいて、NOx濃度基準値が算出される。H2O濃度情報検出部は、第1セルから入力される第1信号又はセンサ素子の外部情報に基づくH2O濃度情報を検出する。NOx濃度補正部は、予め記憶しているオフセット補正情報を参照して、検出されたH2O濃度情報に相当するオフセット値を算出し、NOx濃度基準値を補正する。 In the NOx sensor configured as described above, the sensor control section controls the operation of the sensor element and the heater, and calculates the NOx concentration based on the signal from the sensor element. When the second signal is input from the second cell, the NOx concentration reference value calculation section calculates the NOx concentration reference value based on a previously known relationship between the second signal and the NOx concentration. The H 2 O concentration information detection section detects H 2 O concentration information based on the first signal input from the first cell or external information of the sensor element. The NOx concentration correction section refers to offset correction information stored in advance, calculates an offset value corresponding to the detected H 2 O concentration information, and corrects the NOx concentration reference value.
 ここで、センサ素子の周辺環境は、被測定ガスの排出環境によって変動し、被測定ガスに含まれる水分量も変動する。このとき、水分量が少ない領域もしくは温度が低い領域では、センサ出力への影響も小さい。ところが、例えば、負荷条件等によりセンサ素子の搭載位置における温度が大きく変化する場合、水分量が多い領域もしくは温度が高い領域で、センサ出力が大きく増加し、センサ出力への影響が無視できないものとなる。これは、ヒータによるセンサ素子の温度制御が実施されていても、高温の被測定ガスの影響を受けて、第2信号が出力される第2セルの温度が上昇すると、水分の分解が進みやすくなるためと推測される。 Here, the surrounding environment of the sensor element changes depending on the exhaust environment of the gas to be measured, and the amount of water contained in the gas to be measured also changes. At this time, the effect on the sensor output is small in areas where the amount of water is small or the temperature is low. However, for example, if the temperature at the mounting position of the sensor element changes significantly due to load conditions, etc., the sensor output will increase significantly in areas with high moisture content or high temperature, and the effect on sensor output cannot be ignored. Become. This is because even if the temperature of the sensor element is controlled by a heater, if the temperature of the second cell, which outputs the second signal, increases due to the influence of the high-temperature measured gas, the decomposition of water tends to proceed. It is assumed that this is because
 そのような場合でも、NOx濃度補正部において、予め基準環境温度において取得されたオフセット補正情報を用いることにより、H2O濃度情報のみならず、温度特性を考慮した補正が可能になる。オフセット補正情報が取得される基準環境温度は、実際のセンサ素子の搭載環境を反映させた被測定ガスの定常温度域に設定されるので、被測定ガスの温度がより安定した状態におけるH2O濃度情報と第2信号との関係が得られる。この関係に基づくオフセット補正を行うことにより、水分量や周辺環境温度の変化に対する補正ばらつきが緩和され、補正不足又は過補正となることを抑制して、NOx濃度をより精度よく算出することができる。 Even in such a case, by using the offset correction information acquired in advance at the reference environmental temperature in the NOx concentration correction section, it becomes possible to perform correction that takes into account not only the H 2 O concentration information but also the temperature characteristics. The reference environmental temperature at which the offset correction information is acquired is set to the steady temperature range of the gas to be measured that reflects the actual environment in which the sensor element is mounted. A relationship between the concentration information and the second signal is obtained. By performing offset correction based on this relationship, variations in correction due to changes in moisture content and surrounding environmental temperature are alleviated, and under-correction or over-correction can be suppressed, making it possible to calculate NOx concentration with higher accuracy. .
 以上のごとく、上記態様によれば、周辺環境温度の影響を抑制し、被測定ガスに含まれる水分量に基づく補正をより精度よく行って、NOx濃度の検出精度を向上可能なNOxセンサを提供することができる。 As described above, according to the above aspect, there is provided a NOx sensor that can improve the detection accuracy of NOx concentration by suppressing the influence of the surrounding environment temperature and performing correction based on the amount of moisture contained in the gas to be measured with higher accuracy. can do.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、NOxセンサの構成を示す全体概略図であり、 図2は、実施形態1における、NOxセンサの主要部であるセンサ素子の概略構成を示す長手方向断面図とそのI-I線断面図であり、 図3は、実施形態1における、NOxセンサのセンサ制御部の主要部構成を示すブロック図であり、 図4は、実施形態1における、NOxセンサの取り付け状態を示す全体構成図とその一部拡大断面図であり、 図5は、実施形態1における、オフセット補正情報を説明するための図で、定常温度域におけるNOx出力とH2O濃度の関係を示す図であり、 図6は、実施形態1における、センサ素子のNOx出力の温度特性を示す図であり、 図7は、実施形態1における、オフセット補正値算出マップに基づくオフセット補正方法を説明するための図であり、 図8は、実施形態1における、センサ制御部のNOx濃度算出部のNOx濃度算出手順を説明するための図であり、 図9は、実施形態1における、走行試験により得られたエンジン回転数とトルクとの関係を示すエンジンマップ図であり、 図10は、実施形態1における、オフセット補正情報に基づくオフセット補正前後のNOx出力を比較して示す図であり、 図11は、実施形態1における、複数のセンサ素子にて取得されたNOx出力誤差とH2O濃度の関係を示す図であり、 図12は、実施形態2における、NOxセンサの主要部の概略構成図であり、 図13は、実施形態2における、ポンプセル電圧のばらつきとNOx出力誤差の関係を示す図であり、 図14は、実施形態2における、センサ制御部の検出制御部が指示電圧補正部を備える場合の概略構成図であり、 図15は、実施形態2における、センサ制御部の検出制御部が指示電圧補正部を備えない場合の概略構成図である。
The above objects and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an overall schematic diagram showing the configuration of a NOx sensor in Embodiment 1, FIG. 2 is a longitudinal cross-sectional view and a cross-sectional view taken along line II of the sensor element, which is the main part of the NOx sensor, in Embodiment 1; FIG. 3 is a block diagram showing the main part configuration of the sensor control section of the NOx sensor in Embodiment 1, FIG. 4 is an overall configuration diagram and a partially enlarged sectional view showing the installation state of the NOx sensor in Embodiment 1, FIG. 5 is a diagram for explaining offset correction information in the first embodiment, and is a diagram showing the relationship between NOx output and H 2 O concentration in a steady temperature range, FIG. 6 is a diagram showing the temperature characteristics of the NOx output of the sensor element in Embodiment 1, FIG. 7 is a diagram for explaining an offset correction method based on an offset correction value calculation map in the first embodiment, FIG. 8 is a diagram for explaining the NOx concentration calculation procedure of the NOx concentration calculation section of the sensor control section in the first embodiment, FIG. 9 is an engine map diagram showing the relationship between engine speed and torque obtained from a running test in Embodiment 1; FIG. 10 is a diagram comparing and showing NOx output before and after offset correction based on offset correction information in Embodiment 1, FIG. 11 is a diagram showing the relationship between NOx output error and H 2 O concentration acquired by multiple sensor elements in Embodiment 1, FIG. 12 is a schematic configuration diagram of the main parts of the NOx sensor in Embodiment 2, FIG. 13 is a diagram showing the relationship between pump cell voltage variation and NOx output error in Embodiment 2, FIG. 14 is a schematic configuration diagram when the detection control section of the sensor control section includes a command voltage correction section in Embodiment 2, FIG. 15 is a schematic configuration diagram in the second embodiment when the detection control section of the sensor control section does not include the command voltage correction section.
(実施形態1)
 NOxセンサに係る実施形態1について、図面を参照して説明する。
 図1に示すように、本形態のNOxセンサSは、センサ素子1と、センサ素子1を加熱するヒータHと、センサ制御部10とを備える。図4の全体図(右図)に示すように、センサ素子1が収容されるセンサ本体1Aは、例えば、車両用エンジン等の内燃機関の排ガス通路EXに設置され、センサ素子1を用いて、被測定ガスである排ガスG中に含まれる窒素酸化物(すなわち、NOx)を検出する。センサ制御部10は、排ガス通路EXの外部に設置されて、センサ素子1による検出動作及びヒータHによる加熱動作を制御すると共に、センサ素子1からの出力に基づいてNOx濃度を算出する。
(Embodiment 1)
Embodiment 1 of the NOx sensor will be described with reference to the drawings.
As shown in FIG. 1, the NOx sensor S of this embodiment includes a sensor element 1, a heater H that heats the sensor element 1, and a sensor control section 10. As shown in the overall view (right figure) of FIG. 4, the sensor main body 1A in which the sensor element 1 is housed is installed, for example, in the exhaust gas passage EX of an internal combustion engine such as a vehicle engine, and the sensor element 1 is used to Nitrogen oxides (ie, NOx) contained in exhaust gas G, which is a gas to be measured, is detected. The sensor control unit 10 is installed outside the exhaust gas passage EX, controls the detection operation by the sensor element 1 and the heating operation by the heater H, and calculates the NOx concentration based on the output from the sensor element 1.
 図1、図2に示すように、センサ素子1は、例えば、固体電解質体11を用いた限界電流式センサとして構成されており、第1セルであるポンプセル1pと、第2セルであるセンサセル1sと、を有している。センサ素子1には、ガス検出部となる一端側(例えば、図4の右図における下端側)の内部に、固体電解質体11を室壁とする被測定ガス室2が形成されており、センサ素子1の外部から、ガス導入部3を介して、被測定ガス室2へ排ガスGが導入される。センサ素子1は、センサセル1sと並設される第3セルとしてのモニタセル1mを備えることもできる。 As shown in FIGS. 1 and 2, the sensor element 1 is configured, for example, as a limiting current type sensor using a solid electrolyte body 11, and includes a pump cell 1p as a first cell and a sensor cell 1s as a second cell. It has . In the sensor element 1, a gas chamber 2 to be measured having a solid electrolyte body 11 as a chamber wall is formed inside one end side (for example, the lower end side in the right diagram of FIG. 4) that serves as a gas detection section. Exhaust gas G is introduced from the outside of the element 1 into the gas chamber 2 to be measured via the gas introduction section 3 . The sensor element 1 can also include a monitor cell 1m as a third cell arranged in parallel with the sensor cell 1s.
 図4の左図に示すように、排ガスGは、センサ素子1の長手方向をガス流れ方向Xとして、その先端部に設けられるガス導入部3から、被測定ガス室2に導入される。被測定ガス室2において、ポンプセル1pは、ガス流れの上流側に配置され、排ガスG中の酸素濃度を調整しつつ、排ガスG中の酸素濃度に対応する信号であり、H2O濃度と相関を有する第1信号を出力するように構成される。センサセル1sは、ポンプセル1pよりも下流側に配置されて、酸素濃度が調整された排ガスG中のNOx濃度及びH2O濃度に応じた第2信号を出力する。固体電解質体11を挟んで被測定ガス室2と反対側には、基準ガス室4が配置される。センサ素子1の外表面には、ガス検出部の全体を覆って、多孔質保護層5が形成される。 As shown in the left diagram of FIG. 4, the exhaust gas G is introduced into the gas chamber 2 to be measured from the gas introduction part 3 provided at the tip of the sensor element 1, with the longitudinal direction of the sensor element 1 being the gas flow direction X. In the gas chamber 2 to be measured, the pump cell 1p is arranged on the upstream side of the gas flow, and while adjusting the oxygen concentration in the exhaust gas G, generates a signal corresponding to the oxygen concentration in the exhaust gas G, which is correlated with the H 2 O concentration. The first signal is configured to output a first signal having a first signal. The sensor cell 1s is arranged downstream of the pump cell 1p, and outputs a second signal corresponding to the NOx concentration and H2O concentration in the exhaust gas G whose oxygen concentration has been adjusted. A reference gas chamber 4 is arranged on the opposite side of the gas chamber 2 to be measured with the solid electrolyte body 11 in between. A porous protective layer 5 is formed on the outer surface of the sensor element 1, covering the entire gas detection section.
 図2に示すように、具体的には、ポンプセル1pは、被測定ガス室2に面する固体電解質体11の表面に、第1セル電極であるポンプ電極21を有し、酸素ポンピングを行って、排ガスG中の酸素濃度を所定の低濃度に調整する。このとき、ポンプ電極21の触媒作用により、排ガスGに含まれる酸素(すなわち、O2)が還元されて、酸化物イオン(すなわち、O2-)となり、固体電解質体11の内部を伝導して、基準ガス室4側へ排出される。その際にポンプセル1pを流れる電流(以下、ポンプセル電流と称する)Ipは、調整前の排ガスG中の酸素濃度(以下、適宜、O2濃度と称する)に対応するものとなり、H2O濃度と相関を有する第1信号として、センサ制御部10へ出力される。 As shown in FIG. 2, specifically, the pump cell 1p has a pump electrode 21, which is a first cell electrode, on the surface of the solid electrolyte body 11 facing the gas chamber 2 to be measured, and performs oxygen pumping. , adjust the oxygen concentration in the exhaust gas G to a predetermined low concentration. At this time, due to the catalytic action of the pump electrode 21, oxygen (i.e., O 2 ) contained in the exhaust gas G is reduced to become oxide ions (i.e., O 2- ), which are conducted inside the solid electrolyte body 11 . , is discharged to the reference gas chamber 4 side. At this time, the current Ip flowing through the pump cell 1p (hereinafter referred to as pump cell current) corresponds to the oxygen concentration in the exhaust gas G before adjustment (hereinafter referred to as O 2 concentration as appropriate), and the H 2 O concentration and It is output to the sensor control unit 10 as a first signal having a correlation.
 センサセル1sは、被測定ガス室2に面する固体電解質体11の表面に、第2セル電極であるセンサ電極22を有し、O2濃度が調整された排ガスGに含まれるNOxを検出する。このとき、排ガスGにH2Oが含まれる場合には、センサ電極22の触媒作用により、NOxが分解されると共にH2Oが分解されて、NOx及びH2Oに起因する酸化物イオンが、固体電解質体11の内部を伝導して、基準ガス室4側へ排出される。その際にセンサセル1sを流れる電流(以下、センサセル電流と称する)Isは、排ガスG中のNOx濃度及びH2O濃度に応じたものとなり、第2信号としてセンサ制御部10へ出力される。 The sensor cell 1s has a sensor electrode 22, which is a second cell electrode, on the surface of the solid electrolyte body 11 facing the gas chamber 2 to be measured, and detects NOx contained in the exhaust gas G whose O 2 concentration has been adjusted. At this time, if the exhaust gas G contains H 2 O, the catalytic action of the sensor electrode 22 decomposes NOx and H 2 O, and oxide ions resulting from NOx and H 2 O are decomposed. , conducts inside the solid electrolyte body 11 and is discharged to the reference gas chamber 4 side. At this time, the current Is flowing through the sensor cell 1s (hereinafter referred to as sensor cell current) corresponds to the NOx concentration and H 2 O concentration in the exhaust gas G, and is outputted to the sensor control unit 10 as a second signal.
 NOxセンサSは、例えば、NOxを浄化するための選択的触媒還元(以下、SCR:Selective Catalytic Reduction)システムに用いられて、触媒下流側におけるNOx濃度を検出し、触媒上流側への還元剤の供給量制御等に利用される。その場合に、排ガスGにNOxと共に水分(すなわち、H2O)が混在すると、センサ素子1からの出力は、本来のNOxに基づく出力に、H2Oに基づく出力が上乗せされたものとなる。排ガスG中のH2Oは、主にエンジンにおける燃料の燃焼に起因するものであり、排ガスG中のO2と相関を有する。そのため、H2O濃度又はO2濃度を用いて、NOx出力のオフセット量を推定して、NOx濃度の補正を行うことが可能であり、さらに、H2Oに基づく出力の温度特性を考慮することにより、オフセット補正を適切に行うことができる。 The NOx sensor S is used, for example, in a selective catalytic reduction (SCR) system for purifying NOx, detects the NOx concentration downstream of the catalyst, and directs the reducing agent to the upstream side of the catalyst. Used for supply amount control, etc. In that case, if NOx and moisture (that is, H 2 O) are mixed in the exhaust gas G, the output from the sensor element 1 will be the output based on H 2 O added to the original output based on NOx. . H 2 O in the exhaust gas G is mainly caused by combustion of fuel in the engine, and has a correlation with O 2 in the exhaust gas G. Therefore, it is possible to correct the NOx concentration by estimating the offset amount of NOx output using the H 2 O concentration or O 2 concentration, and furthermore, it is possible to correct the NOx concentration by taking into account the temperature characteristics of the output based on H 2 O. By doing so, offset correction can be appropriately performed.
 図1、図3に示すように、センサ制御部10は、センサ素子1又は外部装置等と通信可能に構成されており、機能的に、NOx濃度算出部100と、検出制御部200と、ヒータ制御部300と、を備える。NOx濃度算出部100は、センサ素子1から出力される第1信号、第2信号や外部情報に基づいて、H2Oに起因するNOx出力の誤差(以下、NOx出力誤差と称する)を補正して、NOx濃度を算出する。検出制御部200は、センサ素子1による検出動作が、適切に実施されるように制御し、また、ヒータ制御部300は、センサ素子1が検出に適した温度となるように、ヒータHによる加熱動作を制御する。検出制御部200及びヒータ制御部300による制御の詳細については、後述する。 As shown in FIGS. 1 and 3, the sensor control section 10 is configured to be able to communicate with the sensor element 1 or an external device, and functionally includes a NOx concentration calculation section 100, a detection control section 200, and a heater. A control unit 300 is provided. The NOx concentration calculation unit 100 corrects an error in NOx output caused by H 2 O (hereinafter referred to as NOx output error) based on the first signal, the second signal output from the sensor element 1, and external information. Then, calculate the NOx concentration. The detection control unit 200 controls the detection operation by the sensor element 1 to be performed appropriately, and the heater control unit 300 controls the heating by the heater H so that the sensor element 1 has a temperature suitable for detection. Control behavior. Details of the control by the detection control section 200 and the heater control section 300 will be described later.
 NOx濃度算出部100は、NOx濃度基準値算出部101と、H2O濃度情報検出部102と、NOx濃度補正部103と、を有する。NOx濃度基準値算出部101には、第2信号であるセンサセル電流Isが入力され、センサセル電流Isに基づくNOx濃度基準値C1が算出される。H2O濃度情報検出部102には、第1信号であるポンプセル電流Ip又は外部情報が入力され、ポンプセル電流Ip又は外部情報に基づいて、H2O濃度又はH2O濃度と相関を有する濃度情報を含むH2O濃度情報Ciが検出される。NOx濃度補正部103は、NOx濃度基準値算出部101にて算出されたNOx濃度基準値C1を、H2O濃度情報検出部102にて検出されたH2O濃度情報Ciを用いてオフセット補正し、オフセット補正後の値をNOx濃度の算出値として出力する。 The NOx concentration calculation section 100 includes a NOx concentration reference value calculation section 101, an H 2 O concentration information detection section 102, and a NOx concentration correction section 103. The sensor cell current Is, which is a second signal, is input to the NOx concentration reference value calculation unit 101, and the NOx concentration reference value C1 is calculated based on the sensor cell current Is. The pump cell current Ip as a first signal or external information is input to the H 2 O concentration information detection unit 102, and the H 2 O concentration or a concentration having a correlation with the H 2 O concentration is detected based on the pump cell current Ip or the external information. H 2 O concentration information Ci containing information is detected. The NOx concentration correction unit 103 offset-corrects the NOx concentration reference value C1 calculated by the NOx concentration reference value calculation unit 101 using the H 2 O concentration information Ci detected by the H 2 O concentration information detection unit 102. Then, the value after offset correction is output as the calculated value of NOx concentration.
 具体的には、NOx濃度補正部103は、予め定められた基準環境温度にて取得されるH2O濃度情報Ciと第2信号との関係に基づくオフセット補正情報を記憶している。この基準環境温度は、センサ素子1の搭載環境における排ガスGの定常温度域となるように設定される。定常温度域は、エンジンが定常運転状態にあるときに、センサ素子1の搭載位置に到達する排ガスGが取り得る温度域であり、想定されるエンジンの運転状態や、エンジンと排ガス通路EXにおけるセンサ素子1との距離等によって異なる。 Specifically, the NOx concentration correction unit 103 stores offset correction information based on the relationship between the second signal and the H 2 O concentration information Ci obtained at a predetermined reference environmental temperature. This reference environmental temperature is set to be in the steady temperature range of the exhaust gas G in the environment in which the sensor element 1 is mounted. The steady temperature range is the temperature range that the exhaust gas G that reaches the mounting position of the sensor element 1 can be in when the engine is in a steady operating state, and is based on the assumed operating state of the engine and the sensor in the engine and exhaust gas passage EX. It varies depending on the distance to the element 1, etc.
 このとき、NOx濃度補正に用いられるオフセット補正情報は、排ガスGの定常温度域となる基準環境温度に対応し、実際のNOxセンサSの搭載環境における周辺環境温度を反映させたものとなる。これにより、検出されたH2O濃度情報Ciに基づくオフセット補正がより適切になされ、NOx検出におけるNOx出力誤差を低減することができる。NOx出力の温度特性とオフセット補正について、次に説明する。 At this time, the offset correction information used for NOx concentration correction corresponds to the reference environmental temperature that is the steady temperature range of the exhaust gas G, and reflects the surrounding environmental temperature in the actual environment in which the NOx sensor S is installed. As a result, offset correction based on the detected H 2 O concentration information Ci can be performed more appropriately, and NOx output errors in NOx detection can be reduced. The temperature characteristics of NOx output and offset correction will be explained next.
 図5に一例としての定常温度域における、NOx出力とH2O濃度情報Ciとの関係を示す。図の横軸に示すように、H2O濃度情報CiとなるH2O濃度とO2濃度とは、相関関係にあり、例えば、ポンプセル電流Ipから知られるO2濃度(例えば、0%~約21%)が低くなるほど、H2O濃度(例えば、0%~約13%)は高くなる。また、図の縦軸に示すように、例えば、センサセル電流Isから知られるNOx出力は、NOx濃度(単位:ppm)に対応する。このとき、NOx出力は、H2O濃度又はO2濃度に対応するオフセットを含み、具体的には、H2O濃度が高くなるほど又はO2濃度が低くなるほど、オフセットが増加し、また、その増加率が大きくなる。そのため、NOxが実質的に含まれない場合でも、H2O濃度又はO2濃度に応じて、NOx出力が変動する。 FIG. 5 shows the relationship between NOx output and H 2 O concentration information Ci in a steady temperature range as an example. As shown on the horizontal axis of the figure, there is a correlation between the H 2 O concentration and the O 2 concentration, which is the H 2 O concentration information Ci. The lower the H 2 O concentration (eg, 0% to about 13%), the higher the H 2 O concentration (eg, 0% to about 13%). Further, as shown on the vertical axis of the figure, for example, the NOx output known from the sensor cell current Is corresponds to the NOx concentration (unit: ppm). At this time, the NOx output includes an offset corresponding to the H 2 O concentration or O 2 concentration, and specifically, the higher the H 2 O concentration or the lower the O 2 concentration, the more the offset increases. The rate of increase increases. Therefore, even if NOx is not substantially included, the NOx output varies depending on the H 2 O concentration or O 2 concentration.
 さらに、NOx出力とH2O濃度情報Ciとの関係は、温度特性を有し、センサ素子1の搭載位置における環境温度に応じて変動する。ここでは、センサ素子1の搭載位置における排ガスGの温度が、エンジン始動後の安定した走行状態となったときに取り得る温度域を、定常温度域として、その範囲のNOx出力特性を比較している。このとき、定常温度域の下限温度T1(例えば、300℃)と上限温度T2(例えば、700℃)とでは、NOx出力特性が大きく変化し、温度が高くなるほど、オフセットが増加している。この温度特性によるオフセットの差は、H2O濃度が低い領域では、比較的小さいものの、H2O濃度が高くなると又はO2濃度が低くなると、大きな差となる。 Furthermore, the relationship between the NOx output and the H 2 O concentration information Ci has a temperature characteristic, and varies depending on the environmental temperature at the mounting position of the sensor element 1. Here, the temperature range in which the temperature of the exhaust gas G at the mounting position of the sensor element 1 reaches a stable running state after the engine starts is defined as the steady temperature range, and the NOx output characteristics in that range are compared. There is. At this time, the NOx output characteristics change greatly between the lower limit temperature T1 (eg, 300° C.) and the upper limit temperature T2 (eg, 700° C.) of the steady temperature range, and the higher the temperature, the more the offset increases. Although this difference in offset due to temperature characteristics is relatively small in a region where the H 2 O concentration is low, it becomes a large difference as the H 2 O concentration increases or the O 2 concentration decreases.
 図6に示すように、排ガスGのガス温度の変化(例えば、0℃~800℃)に対して、NOx出力は徐々に増加し、高温側ほど、オフセットの増加率が大きくなっている。そのため、温度特性が考慮されない一般的な試験によって取得された特性に基づいて、従来のように、H2O濃度に応じた固定値を用いてオフセット補正を行う場合には、NOx出力誤差を十分に低減できないおそれがある。そこで、NOx濃度補正部103では、例えば、図5に示したNOx出力のオフセット特性から、最適となるオフセット補正情報を選定し、NOx濃度補正部103にて、オフセット補正情報に基づく補正を行う。 As shown in FIG. 6, the NOx output gradually increases as the gas temperature of the exhaust gas G changes (for example, from 0° C. to 800° C.), and the higher the temperature, the higher the rate of increase in the offset becomes. Therefore, when performing offset correction using a fixed value according to the H 2 O concentration, as in the past, based on characteristics obtained through general tests that do not take temperature characteristics into account, it is necessary to sufficiently reduce the NOx output error. There is a possibility that it will not be possible to reduce the Therefore, the NOx concentration correction section 103 selects optimal offset correction information from the offset characteristics of the NOx output shown in FIG. 5, for example, and performs correction based on the offset correction information.
 図5において、NOx濃度補正部103は、NOx濃度基準値C1を補正するためのオフセット補正情報を、排ガスGの定常温度域における基準環境温度T0にて、予め取得されたものとする。定常温度域は、エンジンが定常運転状態にあるときに、センサ素子1の周辺に到達する排ガスGが取り得る温度域であり、センサ素子1の周辺環境温度の範囲を示す。定常温度域は、エンジンの種類や排ガス管におけるガスセンサSの搭載位置その他の条件によって定まり、個々のセンサ素子1又は同等条件で使用される同種の複数のセンサ素子1の状態に対応させて、適切な基準環境温度T0を定めることができる。 In FIG. 5, it is assumed that the NOx concentration correction unit 103 has acquired offset correction information for correcting the NOx concentration reference value C1 in advance at a reference environmental temperature T0 in the steady temperature range of the exhaust gas G. The steady temperature range is a temperature range that the exhaust gas G reaching around the sensor element 1 can have when the engine is in a steady operating state, and indicates the range of the environmental temperature around the sensor element 1. The steady temperature range is determined by the type of engine, the mounting position of the gas sensor S in the exhaust gas pipe, and other conditions, and is determined appropriately depending on the state of each sensor element 1 or multiple sensor elements 1 of the same type used under the same conditions. A standard environmental temperature T0 can be determined.
 好適には、基準環境温度T0は、定常温度域における下限温度T1よりも高温側の温度域に設定されることが望ましい。例えば、排ガスGの温度が、300℃以上700℃以下の範囲を定常温度域とするとき、下限温度T1である300℃よりも高温側の温度となるように、基準環境温度T0が設定される。また、好適には、定常温度域における上限温度T2である700℃よりも低温側の温度域となるように、基準環境温度T0が設定されるのがよい。より好適には、下限温度T1を含む低温域におけるオフセット特性と、上限温度T2を含む高温域におけるオフセット特性に対して、それらの中間的なオフセット特性を示す中間温度となるように、基準環境温度T0が設定されることが望ましい。 Preferably, the reference environmental temperature T0 is set in a temperature range higher than the lower limit temperature T1 in the steady temperature range. For example, when the temperature of the exhaust gas G is defined as a steady temperature range of 300°C or more and 700°C or less, the reference environmental temperature T0 is set to be higher than the lower limit temperature T1 of 300°C. . Preferably, the reference environmental temperature T0 is set to be in a temperature range lower than 700° C., which is the upper limit temperature T2 in the steady temperature range. More preferably, the reference environmental temperature is set so that the offset characteristic in a low temperature range including the lower limit temperature T1 and the offset characteristic in a high temperature range including the upper limit temperature T2 become an intermediate temperature that exhibits an intermediate offset characteristic between them. It is desirable that T0 be set.
 具体的には、定常温度域の下限温度T1と上限温度T2の中間温度(例えば、500℃)を含む所定の中間温度域を、基準温度域として、その範囲で基準環境温度T0を設定することができる。基準環境温度T0は、中間温度である500℃であってもよいし、より中間的なオフセット特性を示す温度であってもよく、任意に設定することができる。好適には、500℃を中心とする中間温度域、例えば、400℃以上600℃以下の範囲を、基準温度域とすることができ、オフセット特性に応じて、搭載環境による誤差がより小さくなるように、基準環境温度T0を適宜設定することができる。その場合には、低温域は、例えば、300℃以上400℃未満の範囲となり、高温域は、例えば、600℃以上700℃未満の範囲となる。 Specifically, a predetermined intermediate temperature range including an intermediate temperature (for example, 500°C) between the lower limit temperature T1 and upper limit temperature T2 of the steady temperature range is set as the reference temperature range, and the reference environmental temperature T0 is set within that range. I can do it. The reference environmental temperature T0 may be an intermediate temperature of 500° C., or may be a temperature exhibiting a more intermediate offset characteristic, and can be arbitrarily set. Preferably, an intermediate temperature range centered around 500°C, for example, a range from 400°C to 600°C, can be set as the reference temperature range, so that errors due to the mounting environment can be further reduced according to the offset characteristics. The reference environmental temperature T0 can be set as appropriate. In that case, the low temperature range is, for example, a range of 300°C or more and less than 400°C, and the high temperature range is, for example, a range of 600°C or more and less than 700°C.
 また、定常温度域は、300℃以上700℃以下の温度域に限らず、センサ素子1の搭載位置に応じて、適宜設定することができ、300℃よりも低い温度域又は700℃よりも高い温度域を含んでいてもよい。その場合には、設定された定常温度域に応じて、低温域、基準温度域、高温域の範囲も適宜変更される。 Further, the steady temperature range is not limited to a temperature range of 300°C or more and 700°C or less, but can be set as appropriate depending on the mounting position of the sensor element 1, such as a temperature range lower than 300°C or higher than 700°C. It may include a temperature range. In that case, the ranges of the low temperature range, reference temperature range, and high temperature range are also changed as appropriate depending on the set steady temperature range.
 図3において、NOx濃度補正部103は、オフセット補正値算出部103Aを有し、基準環境温度T0における出力特性に基づく補正マップ又は補正式を、オフセット補正情報として記憶しておくことができる。オフセット補正値算出部103Aは、H2O濃度情報検出部102にて検出されるH2O濃度情報Ciを用いて。オフセット補正値C2を算出する。NOx濃度補正部103は、このオフセット補正値C2を用いて、NOx濃度基準値C1を補正し、NOx濃度として出力する。 In FIG. 3, the NOx concentration correction unit 103 includes an offset correction value calculation unit 103A, and can store a correction map or a correction formula based on the output characteristics at the reference environmental temperature T0 as offset correction information. The offset correction value calculation unit 103A uses the H 2 O concentration information Ci detected by the H 2 O concentration information detection unit 102. Calculate offset correction value C2. The NOx concentration correction unit 103 uses this offset correction value C2 to correct the NOx concentration reference value C1 and outputs it as the NOx concentration.
 図7に示すように、このようにして取得されたオフセット補正情報を用いることにより、周辺環境温度の影響を最小限に抑制することができる。図7の中図は、NOx出力を、基準温度域(例えば、基準環境温度:500℃)にて取得されたオフセット補正情報に基づく補正マップを用いて補正した結果を示しており、排ガスGの温度が基準温度域のときには、ほとんど出力誤差は生じない。また、低温域又は高温域においても、H2O濃度が高くなると、NOx出力がプラス側又はマイナス側にずれるが、全体としての出力誤差の大きさ(絶対値)は、比較的小さくなる。そのため、H2O濃度が通常の範囲であれば、定常運転状態で、定常温度域の下限温度T1又は上限温度T2に近くなっても、安定したNOx出力が得られる。 As shown in FIG. 7, by using the offset correction information acquired in this way, the influence of the surrounding environment temperature can be suppressed to a minimum. The middle diagram in FIG. 7 shows the result of correcting NOx output using a correction map based on offset correction information acquired in a reference temperature range (for example, reference environmental temperature: 500°C), and When the temperature is within the reference temperature range, almost no output error occurs. Further, even in a low temperature range or a high temperature range, when the H 2 O concentration increases, the NOx output shifts to the plus side or the minus side, but the overall magnitude (absolute value) of the output error becomes relatively small. Therefore, as long as the H 2 O concentration is in the normal range, stable NOx output can be obtained in a steady operating state even if the temperature approaches the lower limit temperature T1 or the upper limit temperature T2 of the steady temperature range.
 これに対して、図7の上図に示すように、NOx出力を、低温域(例えば、下限温度T1:300℃)にて取得されたオフセット補正情報に基づく補正マップを用いた場合には、低温域より高温側において、H2O濃度の増加と共にNOx出力がプラス側に大きくずれる。一方、図7の下図に示すように、高温域(例えば、上限温度T2:700℃)にて取得されたオフセット補正情報に基づく補正マップを用いた場合には、高温域より低温側において、H2O濃度の増加と共にNOx出力がマイナスに大きくずれる。そのために、低温域の補正マップを用いた場合には、補正不足となり、高温域の補正マップを用いた場合には、過補正となる。 On the other hand, as shown in the upper diagram of FIG. 7, when a correction map is used for NOx output based on offset correction information acquired in a low temperature range (for example, lower limit temperature T1: 300°C), On the high temperature side from the low temperature range, as the H 2 O concentration increases, the NOx output shifts significantly to the positive side. On the other hand, as shown in the lower part of FIG. 2 As the O concentration increases, the NOx output shifts significantly to the negative side. Therefore, if a correction map for a low temperature range is used, there will be insufficient correction, and if a correction map for a high temperature range is used, it will be overcorrected.
 このように、適正な基準環境温度T0を設定してオフセット補正情報を取得することにより、NOx濃度補正部103において、より適正な補正を行うことができる。すなわち、オフセット補正値算出部103Aにおいて、オフセット補正情報と、H2O濃度情報検出部102からのH2O濃度情報Ciとに基づいて、温度特性が反映されたオフセット補正値C2が得られるので、これを用いてNOx濃度基準値C1をオフセット補正することにより、NO濃度の検出における周辺環境温度の影響を低減することができる。 In this way, by setting the appropriate reference environmental temperature T0 and acquiring the offset correction information, the NOx concentration correction unit 103 can perform more appropriate correction. That is, the offset correction value calculation unit 103A obtains the offset correction value C2 that reflects the temperature characteristics based on the offset correction information and the H 2 O concentration information Ci from the H 2 O concentration information detection unit 102. , by offset-correcting the NOx concentration reference value C1 using this, it is possible to reduce the influence of the surrounding environment temperature on NO concentration detection.
 ここで、H2O濃度情報検出部102において検出されるH2O濃度情報Ciは、H2O濃度又はH2O濃度と相関を有する濃度情報、例えば、O2濃度の情報等を含むものであればよい。O2濃度の情報は、センサ素子1から入力されるポンプセル電流Ipに基づいて取得することができ、予め知られるポンプセル電流IpとO2濃度との関係に基づいて、O2濃度に変換することができる。なお、O2濃度の情報は、センサ素子1から入力されるポンプセル電流Ipであってもよいし、排ガスG中のO2濃度(%)と一定の関係にある、空燃比(A/F)、空気過剰率(λ=空燃比/理論空燃比)、当量比(φ=1/λ)等であってもよい。 Here, the H 2 O concentration information Ci detected by the H 2 O concentration information detection unit 102 includes the H 2 O concentration or concentration information having a correlation with the H 2 O concentration, for example, information on the O 2 concentration. That's fine. Information on the O 2 concentration can be acquired based on the pump cell current Ip input from the sensor element 1, and can be converted into the O 2 concentration based on the relationship between the pump cell current Ip and the O 2 concentration, which is known in advance. I can do it. Note that the information on the O 2 concentration may be the pump cell current Ip input from the sensor element 1, or the air-fuel ratio (A/F), which has a certain relationship with the O 2 concentration (%) in the exhaust gas G. , excess air ratio (λ=air-fuel ratio/stoichiometric air-fuel ratio), equivalence ratio (φ=1/λ), etc.
 また、H2O濃度情報Ciは、ポンプセル電流Ipのようなセンサ素子1の内部情報に基づくものに限らず、センサ素子1の外部にて取得される外部情報であってもよい。外部情報は、エンジンの運転情報や搭載環境等の情報を含み、これらの外部情報に基づいて、H2O濃度情報検出部102においてH2O濃度を算出してもよいし、これらの外部情報に基づいて推定されたH2O濃度又はO2濃度の推定値を、外部情報として取得してもよい。 Further, the H 2 O concentration information Ci is not limited to information based on internal information of the sensor element 1 such as the pump cell current Ip, but may be external information acquired outside the sensor element 1. The external information includes information such as engine operating information and mounting environment, and the H 2 O concentration may be calculated in the H 2 O concentration information detection unit 102 based on this external information, or the H 2 O concentration may be calculated based on this external information. The H 2 O concentration or the estimated value of the O 2 concentration estimated based on the above may be acquired as external information.
 H2O濃度情報検出部102において、外部情報は、例えば、図示しない車両用エンジン制御ユニット(すなわち、Engine Control Unit;以下、ECUと称する)からの情報として、センサ制御部10へ入力される。センサ制御部10は、通信部やマイクロコンピュータ(以下、マイコンと称する)、センサ素子1やECUと接続される各種端子等を備えるセンサ制御ユニットとして構成されており、センサ素子1からの内部情報又はECUからの外部情報に基づいて、NOx濃度算出部100において、NOx濃度が算出される。 In the H 2 O concentration information detection unit 102, external information is input to the sensor control unit 10 as, for example, information from a vehicle engine control unit (namely, an Engine Control Unit; hereinafter referred to as ECU), not shown. The sensor control unit 10 is configured as a sensor control unit that includes a communication unit, a microcomputer (hereinafter referred to as a microcomputer), various terminals connected to the sensor element 1 and the ECU, and receives internal information from the sensor element 1 or The NOx concentration is calculated in the NOx concentration calculating section 100 based on external information from the ECU.
 なお、ECUには、図示しないエアフローメータにより検出される吸入空気量や、エンジン回転数センサ、アクセル開度センサ等からの検出信号が入力されており、これら入力情報に基づいて、エンジンEの運転状態を知り、車両全体を制御している。
 以下、NOxセンサSの構成例及びセンサ制御部10による制御の詳細について、説明する。
Note that the ECU receives inputs such as intake air amount detected by an air flow meter (not shown), detection signals from an engine rotation speed sensor, an accelerator opening sensor, etc., and operates the engine E based on these input information. It knows the status and controls the entire vehicle.
Hereinafter, a configuration example of the NOx sensor S and details of control by the sensor control unit 10 will be described.
(NOxセンサSの全体構成)
 図4において、NOxセンサSのセンサ本体1Aは、筒状のハウジングS1の内側にセンサ素子1が挿通保持され、ハウジングS1の外周ねじ部が、排ガス通路EXの通路壁EX1に固定されている。センサ本体1Aは、センサ素子1の先端側が排ガス通路EXの内部に突出位置して、素子カバーS2内に収容され、センサ素子1の基端側が排ガス通路EXの外部に突出位置して、大気カバーS3内に収容される。センサ制御部10は、センサ本体1Aの基端側に引き出されるリード線S4を介して、センサ素子1と電気的に接続される。
(Overall configuration of NOx sensor S)
In FIG. 4, in a sensor body 1A of a NOx sensor S, a sensor element 1 is inserted and held inside a cylindrical housing S1, and an outer peripheral threaded portion of the housing S1 is fixed to a passage wall EX1 of an exhaust gas passage EX. The sensor main body 1A is housed in an element cover S2 with the distal end of the sensor element 1 protruding into the exhaust gas passage EX, and housed in the element cover S2 with the proximal end of the sensor element 1 protruding outside the exhaust gas passage EX. It is accommodated in S3. The sensor control unit 10 is electrically connected to the sensor element 1 via a lead wire S4 drawn out to the base end side of the sensor main body 1A.
 素子カバーS2は、底面を有する二重筒構造となっており、外側カバー及び内側カバーの側面及び底面には、図示しない複数のガス流通孔が設けられる。これにより、排ガス通路EXを流通する排ガスGが、素子カバーS2の内部に取り込まれて、ガス検出部となるセンサ素子1の先端側が、被測定ガスである排ガスGに晒される。また、筒状の大気カバーS3の側面には、図示しない複数のガス流通孔が設けられる。これにより、基準ガスである大気Aが、大気カバーS3の内部に取り込まれ、センサ素子1の基端側に到達可能となっている。 The element cover S2 has a double cylinder structure with a bottom surface, and a plurality of gas flow holes (not shown) are provided on the side and bottom surfaces of the outer cover and the inner cover. Thereby, the exhaust gas G flowing through the exhaust gas passage EX is taken into the inside of the element cover S2, and the tip side of the sensor element 1, which serves as the gas detection section, is exposed to the exhaust gas G, which is the gas to be measured. Further, a plurality of gas flow holes (not shown) are provided on the side surface of the cylindrical atmospheric cover S3. Thereby, the atmosphere A, which is the reference gas, is taken into the atmosphere cover S3 and can reach the base end side of the sensor element 1.
 図4中に拡大して示すように、センサ素子1の先端側に到達した排ガスGは、ガス導入部3から被測定ガス室2の内部へ取り込まれて、基端側へ移動する。被測定ガス室2には、ガス流れ方向Xの上流側にポンプセル1pが、下流側にセンサセル1s及びモニタセル1mが配置され、基準ガス室4に取り込まれる大気Aを基準ガスとして、排ガスG中のNOxを検出する。なお、モニタセル1mを流れる電流(以下、モニタセル電流と称する)Imは、第3信号として、センサ制御部10へ出力される。 As shown in an enlarged view in FIG. 4, the exhaust gas G that has reached the distal end side of the sensor element 1 is taken into the gas chamber 2 to be measured from the gas introduction section 3 and moves toward the proximal end side. In the gas chamber 2 to be measured, a pump cell 1p is arranged on the upstream side in the gas flow direction X, and a sensor cell 1s and a monitor cell 1m are arranged on the downstream side. Detect NOx. Note that the current Im flowing through the monitor cell 1m (hereinafter referred to as monitor cell current) is output to the sensor control unit 10 as a third signal.
(センサ素子1の構成)
 図2において、センサ素子1は、3セル構造の積層型素子であり、ガス流れ方向Xと直交する方向(すなわち、図2の上下方向)を積層方向として、遮蔽層13、スペーサ層12、固体電解質体11、及び、ヒータ絶縁層61が、この順で配置される。固体電解質体11の一方の表面側には、スペーサ層12と、遮蔽層13とが配置されて、被測定ガス室2となる空間が形成される。また、固体電解質体11のもう一方の表面側には、ヒータHを構成するヒータ絶縁層61との間に、基準ガス室4となる空間が形成される。
(Configuration of sensor element 1)
In FIG. 2, the sensor element 1 is a stacked element with a three-cell structure, and the stacking direction is a direction perpendicular to the gas flow direction X (that is, the vertical direction in FIG. 2). Electrolyte body 11 and heater insulating layer 61 are arranged in this order. A spacer layer 12 and a shielding layer 13 are arranged on one surface side of the solid electrolyte body 11 to form a space that will become the gas chamber 2 to be measured. Further, on the other surface side of the solid electrolyte body 11, a space serving as the reference gas chamber 4 is formed between the solid electrolyte body 11 and the heater insulating layer 61 constituting the heater H.
 被測定ガス室2は、スペーサ層12の先端面(すなわち、図2における左端面)に埋設される拡散抵抗層31を介して、排ガスGが存在する素子カバーS2(例えば、図4参照)内の空間と連通している。拡散抵抗層31は、その外側に配置される多孔質保護層5の一部と共に、被測定ガス室2へのガス導入部3を構成し、所定の拡散抵抗下で排ガスGが導入されるように調整されている。多孔質保護層5は、センサ素子1のガス検出部となる先端側の表面全体を覆って形成されており、被毒物質等からセンサ素子1を保護している。 The gas chamber 2 to be measured is connected to the inside of the element cover S2 (see, for example, FIG. 4) where the exhaust gas G exists via the diffusion resistance layer 31 embedded in the front end surface (i.e., the left end surface in FIG. 2) of the spacer layer 12. It communicates with the space of The diffusion resistance layer 31, together with a part of the porous protective layer 5 arranged on the outside thereof, constitutes a gas introduction section 3 into the gas chamber 2 to be measured, so that the exhaust gas G is introduced under a predetermined diffusion resistance. has been adjusted to. The porous protective layer 5 is formed to cover the entire surface of the tip side of the sensor element 1, which is the gas detection section, and protects the sensor element 1 from poisonous substances and the like.
 センサ素子1のガス検出部には、ポンプセル1p、センサセル1s及びモニタセル1mが設けられ、各セルは、それぞれ固体電解質体11を挟んで対向する一対の電極を有する。被測定ガス室2において、固体電解質体11の表面には、ガス流れ方向Xの上流側に、ポンプセル1pのポンプ電極21が配置され、その下流側に、センサセル1sのセンサ電極22及びモニタセル1mのモニタ電極23が配置される。基準ガス室4において、固体電解質体11の表面には、これら電極21、22、23と対向する位置に、共通の電極となる基準電極41が設けられる。 The gas detection section of the sensor element 1 is provided with a pump cell 1p, a sensor cell 1s, and a monitor cell 1m, and each cell has a pair of electrodes facing each other with a solid electrolyte body 11 in between. In the gas chamber 2 to be measured, the pump electrode 21 of the pump cell 1p is arranged on the surface of the solid electrolyte body 11 on the upstream side in the gas flow direction X, and the sensor electrode 22 of the sensor cell 1s and the monitor cell 1m are arranged on the downstream side thereof. A monitor electrode 23 is arranged. In the reference gas chamber 4, a reference electrode 41 serving as a common electrode is provided on the surface of the solid electrolyte body 11 at a position facing these electrodes 21, 22, and 23.
 共通の基準電極41が配置される基準ガス室4は、センサ素子1の基端側(例えば、図2における右端側)まで延びており、図示しない端面に開口する基準ガス導入口を介して、大気Aが存在する大気カバーS3(例えば、図4参照)内の空間と連通している。基準ガス室4の底壁となるヒータ絶縁層61の内部には、通電により発熱する発熱体62が埋設されて、ヒータHを構成している。発熱体62は、ポンプセル1p、センサセル1s及びモニタセル1mの電極が形成される部位に対応して配置され、ガス検出部となる素子先端側の全体を加熱可能となっている。 The reference gas chamber 4 in which the common reference electrode 41 is arranged extends to the base end side (for example, the right end side in FIG. 2) of the sensor element 1, and through a reference gas inlet opening at an end surface (not shown), It communicates with the space within the atmosphere cover S3 (see, for example, FIG. 4) where the atmosphere A exists. A heating element 62 that generates heat when energized is buried inside a heater insulating layer 61 that forms the bottom wall of the reference gas chamber 4, and constitutes a heater H. The heating element 62 is disposed corresponding to the portion where the electrodes of the pump cell 1p, the sensor cell 1s, and the monitor cell 1m are formed, and is capable of heating the entire tip side of the element, which becomes the gas detection section.
 これにより、各セルの一対の電極は、その一方の電極21、22、23が、被測定ガス室2に導入される排ガスGに晒され、もう一方の電極41が、基準ガス室4に導入される大気Aに晒される。このとき、各セルの一対の電極間に電圧を印加することにより、酸化物イオン伝導性を有する固体電解質体11を介して、排ガスGに含まれる酸素を基準ガス室4側へ汲み出し又は基準ガス室4側から汲み入れる酸素ポンピングが可能になる。また、ヒータHを作動させることにより、各セルが活性となる温度以上に加熱して、酸素ポンピングを安定して実施可能になる。 As a result, one electrode 21, 22, 23 of each cell is exposed to the exhaust gas G introduced into the gas chamber 2 to be measured, and the other electrode 41 is exposed to the exhaust gas G introduced into the reference gas chamber 4. exposed to atmosphere A. At this time, by applying a voltage between a pair of electrodes in each cell, oxygen contained in the exhaust gas G is pumped out to the reference gas chamber 4 side via the solid electrolyte body 11 having oxide ion conductivity or the reference gas Oxygen pumping from the chamber 4 side becomes possible. Further, by operating the heater H, each cell is heated to a temperature higher than the temperature at which it becomes active, and oxygen pumping can be performed stably.
 被測定ガス室2において、ポンプセル1pのポンプ電極21は、ガス流れ方向Xの上流側に大面積で形成される。拡散抵抗層31を通過した排ガスGがポンプ電極21と接触すると、その触媒作用により酸素が分解されて、基準電極41側へ排出される。ポンプセル1pにより低酸素濃度に調整された排ガスGは、下流側のセンサ電極22及びモニタ電極23へ到達し、センサ電極22において、NOxに起因する酸素が残存酸素と共に酸素ポンピングにより排出される。また、モニタ電極23において残存酸素が酸素ポンピングにより排出される。 In the gas chamber 2 to be measured, the pump electrode 21 of the pump cell 1p is formed on the upstream side in the gas flow direction X with a large area. When the exhaust gas G that has passed through the diffusion resistance layer 31 comes into contact with the pump electrode 21, oxygen is decomposed by its catalytic action and is discharged to the reference electrode 41 side. The exhaust gas G adjusted to have a low oxygen concentration by the pump cell 1p reaches the sensor electrode 22 and monitor electrode 23 on the downstream side, and at the sensor electrode 22, oxygen caused by NOx is discharged together with residual oxygen by oxygen pumping. Further, residual oxygen at the monitor electrode 23 is exhausted by oxygen pumping.
 センサ電極22及びモニタ電極23は、ガス流れ方向Xにおいて同等となる位置に並設され、ポンプ電極21よりも小面積の同一形状に形成される。これにより、排ガスGの流れに対して、センサ電極22とモニタ電極23が同等条件となり、センサセル1sとモニタセル1mの出力を比較することにより、NOx出力に含まれる残存酸素の影響を取り除くことができる。 The sensor electrode 22 and the monitor electrode 23 are arranged in parallel at the same position in the gas flow direction X, and are formed in the same shape with a smaller area than the pump electrode 21. As a result, the sensor electrode 22 and the monitor electrode 23 have the same conditions with respect to the flow of exhaust gas G, and by comparing the outputs of the sensor cell 1s and the monitor cell 1m, it is possible to remove the influence of residual oxygen contained in the NOx output. .
 固体電解質体11は、酸化物イオン伝導性を有するジルコニア系の固体電解質材料によって構成される。ジルコニア系の固体電解質材料としては、例えば、イットリア等の安定化剤を含有する部分安定化ジルコニア又は安定化ジルコニアを用いることができる。また、拡散抵抗層31、多孔質保護層5は、例えば、アルミナ等のセラミックス材料にて構成される。ヒータ絶縁層61、遮蔽層13、スペーサ層12は、アルミナ等の絶縁性セラミックス材料を用いて構成することができる。 The solid electrolyte body 11 is composed of a zirconia-based solid electrolyte material having oxide ion conductivity. As the zirconia-based solid electrolyte material, for example, partially stabilized zirconia or stabilized zirconia containing a stabilizer such as yttria can be used. Further, the diffusion resistance layer 31 and the porous protective layer 5 are made of a ceramic material such as alumina, for example. The heater insulating layer 61, the shielding layer 13, and the spacer layer 12 can be constructed using an insulating ceramic material such as alumina.
 ポンプセル1p、センサセル1s及びモニタセル1mの電極は、貴金属又は貴金属合金材料とジルコニア系固体電解質とを含む多孔質サーメット電極とすることができる。センサセル1sのセンサ電極22は、検出しようとするNOxに対して分解活性を有する電極材料を用いて構成される。このような電極としては、例えば、白金及びロジウムを含む電極(以下、適宜、Pt-Rh電極と称する)を用いることができる。 The electrodes of the pump cell 1p, the sensor cell 1s, and the monitor cell 1m can be porous cermet electrodes containing a noble metal or noble metal alloy material and a zirconia-based solid electrolyte. The sensor electrode 22 of the sensor cell 1s is constructed using an electrode material that has decomposition activity for NOx to be detected. As such an electrode, for example, an electrode containing platinum and rhodium (hereinafter appropriately referred to as a Pt-Rh electrode) can be used.
 ポンプセル1pのポンプ電極21は、酸素の分解活性を有し、NOx分解活性を有しない電極材料を用いて構成される。このような電極としては、例えば、白金及び金を含む電極(以下、適宜、Pt-Au電極と称する)を用いることができる。モニタセル1mのモニタ電極23も、ポンプ電極21と同様の電極材料を用いて構成される。また、基準電極41は、例えば、白金を含む電極(以下、適宜、Pt電極と称する)として構成することができる。 The pump electrode 21 of the pump cell 1p is constructed using an electrode material that has oxygen decomposition activity and does not have NOx decomposition activity. As such an electrode, for example, an electrode containing platinum and gold (hereinafter appropriately referred to as a Pt-Au electrode) can be used. The monitor electrode 23 of the monitor cell 1m is also constructed using the same electrode material as the pump electrode 21. Further, the reference electrode 41 can be configured as, for example, an electrode containing platinum (hereinafter, appropriately referred to as a Pt electrode).
 これにより、ヒータHによってセンサ素子1を所定の温度に加熱し、各セルの電極間に所定の電圧を印加することにより、ポンプセル1pにて所定の低酸素濃度に調整された排ガスG中のNOxを、センサセル1sにて検出することができる。また、センサ電極22に用いられるPt-Rh電極と、モニタ電極23に用いられるPt-Au電極とのガス吸着性の違いを利用して、センサセル1sとモニタセル1mから出力される電流の差分値をNOx出力とすることで、排ガスGに残留する酸素の影響をキャンセルすることができる。 As a result, NOx in the exhaust gas G is adjusted to a predetermined low oxygen concentration in the pump cell 1p by heating the sensor element 1 to a predetermined temperature by the heater H and applying a predetermined voltage between the electrodes of each cell. can be detected by the sensor cell 1s. Furthermore, by utilizing the difference in gas adsorption between the Pt-Rh electrode used for the sensor electrode 22 and the Pt-Au electrode used for the monitor electrode 23, the difference value between the currents output from the sensor cell 1s and the monitor cell 1m is calculated. By setting the output to NOx, the influence of oxygen remaining in the exhaust gas G can be canceled.
 ただし、センサ電極22を構成するPt-Rh電極に含まれるRhが、NOx及びO2に加えてH2Oに対しても分解活性を有することから、センサ電極22に到達する排ガスG中にH2Oが含まれる場合には、これらの分解に起因する出力誤差が生じることになる。この出力誤差は、センサ制御部10のNOx濃度算出部100にて、予め取得したオフセット補正情報を用いて、出力補正を行う。センサ制御部10による各部の制御と出力補正について、次に説明する。 However, since Rh contained in the Pt-Rh electrode constituting the sensor electrode 22 has decomposition activity against H 2 O in addition to NOx and O 2 , H If 2 O is included, an output error will occur due to these decompositions. This output error is corrected by the NOx concentration calculation unit 100 of the sensor control unit 10 using offset correction information acquired in advance. Control of each section and output correction by the sensor control section 10 will be described next.
(センサ制御部10の構成)
 図1において、センサ制御部10は、センサ素子1の各セルからの出力電流を検出する電流検出部10Aと、電流検出部10Aにて検出されるポンプセル電流Ip、センサセル電流Is及びモニタセル電流Imに基づいて、NOx濃度を算出するNOx濃度算出部100と、を有する。また、センサ制御部10は、センサ素子1によるNOx検出を制御する検出制御部200と、ヒータHによるセンサ素子1の加熱を制御するヒータ制御部300と、を備える。
(Configuration of sensor control unit 10)
In FIG. 1, the sensor control unit 10 includes a current detection unit 10A that detects the output current from each cell of the sensor element 1, a pump cell current Ip, a sensor cell current Is, and a monitor cell current Im detected by the current detection unit 10A. and a NOx concentration calculation unit 100 that calculates the NOx concentration based on the NOx concentration. The sensor control unit 10 also includes a detection control unit 200 that controls NOx detection by the sensor element 1, and a heater control unit 300 that controls heating of the sensor element 1 by the heater H.
 センサ素子1の各セルは、検出端子P-及び検出端子S-、M-を介して、センサ制御部10と接続され、ヒータHの発熱体62の両端は、一対のヒータ端子H+、H-に接続されている。センサ制御部10は、一対の通信用端子CAN+、CAN-を介して、図示しないECUと接続されており、ECUからの指令を受けて、NOx検出処理を行い、検出結果を出力可能となっている。また、センサ制御部10は、電源端子VB及びグランド端子GNDを介して、図示しない車両用バッテリ及びグランドと、それぞれ接続されており、センサ制御部10の各種回路やセンサ素子1のヒータH等への給電が可能となっている。 Each cell of the sensor element 1 is connected to the sensor control unit 10 via a detection terminal P- and a detection terminal S-, M-, and both ends of the heating element 62 of the heater H are connected to a pair of heater terminals H+, H-. It is connected to the. The sensor control unit 10 is connected to an ECU (not shown) via a pair of communication terminals CAN+ and CAN-, and is capable of receiving commands from the ECU, performing NOx detection processing, and outputting the detection results. There is. Further, the sensor control unit 10 is connected to a vehicle battery and ground (not shown) via a power supply terminal VB and a ground terminal GND, respectively, and is connected to various circuits of the sensor control unit 10, a heater H of the sensor element 1, etc. power supply is possible.
 NOx濃度算出部100は、記憶部や演算部を備えるマイコン等にて構成されており、電流検出部10Aから入力されるセンサ素子1の内部情報を用いて、予め記憶されたプログラムを実行すると共に所定の演算を行って、NOx濃度を算出する。電流検出部10Aは、検出端子P-を介して、ポンプセル1pのポンプ電極21に接続されると共に、検出端子S-、M-を介して、センサセル1sのセンサ電極22及びモニタセル1mのモニタ電極23に接続されている。電流検出部10Aは、例えば、電流検出用の抵抗を用いた検出回路を含み、抵抗の両端電位差から各セルの出力電流を検出可能に構成される。検出される出力電流は、アナログ/デジタル変換回路においてデジタル信号に変換されて、NOx濃度算出部100の各部へ入力される。 The NOx concentration calculation unit 100 is composed of a microcomputer or the like having a storage unit and a calculation unit, and executes a pre-stored program using internal information of the sensor element 1 input from the current detection unit 10A. A predetermined calculation is performed to calculate the NOx concentration. The current detection unit 10A is connected to the pump electrode 21 of the pump cell 1p via the detection terminal P-, and is connected to the sensor electrode 22 of the sensor cell 1s and the monitor electrode 23 of the monitor cell 1m via detection terminals S- and M-. It is connected to the. The current detection unit 10A includes, for example, a detection circuit using a resistor for current detection, and is configured to be able to detect the output current of each cell from the potential difference between both ends of the resistor. The detected output current is converted into a digital signal in an analog/digital conversion circuit and input to each part of the NOx concentration calculation section 100.
 検出制御部200は、ポンプセル1p、モニタセル1m及びセンサセル1sによる検出動作を、それぞれ制御する。検出制御部200は、例えば、各セルの一対の電極間に電圧を印加するための電圧印加回路を備えており、制御指令に基づいて所定の電圧信号を生成し、共通端子COM+を介して、共通の基準電極41側に印加することができる。印加電圧は、例えば、ポンプセル1pの酸素ポンピングにより、被測定ガス室2内のO2濃度が所定の低濃度となるように、各セルを流れる電流が限界電流特性を示す範囲で調整される。 The detection control unit 200 controls the detection operations of the pump cell 1p, the monitor cell 1m, and the sensor cell 1s, respectively. The detection control unit 200 includes, for example, a voltage application circuit for applying a voltage between a pair of electrodes of each cell, generates a predetermined voltage signal based on a control command, and generates a predetermined voltage signal via a common terminal COM+. It can be applied to the common reference electrode 41 side. The applied voltage is adjusted within a range in which the current flowing through each cell exhibits a limiting current characteristic so that the O 2 concentration in the gas chamber 2 to be measured becomes a predetermined low concentration by, for example, oxygen pumping in the pump cell 1p.
 ヒータ制御部300は、センサ素子1に内蔵されるヒータHへの通電を制御する。ヒータ制御部300は、例えば、電源端子VBに接続されるスイッチ回路を備えており、制御指令に基づいてスイッチ回路がオンオフ駆動されることにより、ヒータ端子H+、H-を介して、ヒータHへの給電が制御可能となっている。これにより、ヒータHにより加熱されるセンサ素子1の各セルが、NOx検出に適した温度に維持される。 The heater control unit 300 controls energization of the heater H built into the sensor element 1. The heater control unit 300 includes, for example, a switch circuit connected to a power supply terminal VB, and the switch circuit is turned on and off based on a control command, thereby supplying power to the heater H via the heater terminals H+ and H-. The power supply can be controlled. Thereby, each cell of the sensor element 1 heated by the heater H is maintained at a temperature suitable for NOx detection.
 図3において、NOx濃度算出部100は、NOx濃度基準値算出部101において、電流検出部10Aにて検出されるセンサセル電流Is及びモニタセル電流Imに基づいて、NOx濃度基準値C1(単位:ppm)を算出する。具体的には、図8の上図に示されるように、センサセル電流Isとモニタセル電流Imとの差分値[Is-Im](単位:nA)と、対応するNOx濃度基準値C1との関係を、予めマップ化して記憶しておき、センサセル1s及びモニタセル1mからの出力に基づいて、NOx濃度基準値C1を算出することができる。このとき、NOx濃度基準値C1は、センサセル1sの出力に対応して増加し、H2Oが混在する場合にはその影響を含むものとなっている。 In FIG. 3, the NOx concentration calculation unit 100 calculates the NOx concentration reference value C1 (unit: ppm) based on the sensor cell current Is and monitor cell current Im detected by the current detection unit 10A in the NOx concentration reference value calculation unit 101. Calculate. Specifically, as shown in the upper diagram of FIG. 8, the relationship between the difference value [Is-Im] (unit: nA) between the sensor cell current Is and the monitor cell current Im and the corresponding NOx concentration reference value C1 is , it is possible to calculate the NOx concentration reference value C1 based on the outputs from the sensor cell 1s and the monitor cell 1m by mapping and storing the map in advance. At this time, the NOx concentration reference value C1 increases in accordance with the output of the sensor cell 1s, and includes the influence of H 2 O when present.
 H2O濃度情報検出部102は、入力されるポンプセル電流Ip(単位:mA)に基づいて、H2O濃度情報CiとなるO2濃度を検出する。具体的には、図8の中図に示されるように、ポンプセル電流IpとO2濃度との関係を、予めマップ化して記憶しておき、検出されたポンプセル電流Ipの値に基づいて、H2O濃度と相関を有するO2濃度(単位:%)を算出することができる。上述したように、燃焼等に基づく排ガスG中のH2O濃度とO2濃度の関係は知られていることから、算出されたO2濃度を、H2O濃度情報Ciとして用いることができる。このとき、ポンプセル電流Ipが増加するほど、O2濃度は高くなる一方、H2O濃度は低くなる関係にある。 The H 2 O concentration information detection unit 102 detects the O 2 concentration that becomes the H 2 O concentration information Ci based on the input pump cell current Ip (unit: mA). Specifically, as shown in the middle diagram of FIG. 8, the relationship between pump cell current Ip and O 2 concentration is mapped and stored in advance, and based on the detected value of pump cell current Ip, H It is possible to calculate the O 2 concentration (unit: %) that has a correlation with the 2 O concentration. As mentioned above, since the relationship between the H 2 O concentration and O 2 concentration in the exhaust gas G due to combustion etc. is known, the calculated O 2 concentration can be used as the H 2 O concentration information Ci. . At this time, as the pump cell current Ip increases, the O 2 concentration increases while the H 2 O concentration decreases.
 NOx濃度補正部103は、NOx濃度基準値算出部101から入力されるNOx濃度基準値C1を、オフセット補正値算出部103Aにて算出されるオフセット補正値C2を用いて補正する。具体的には、図8の下図に示されるように、H2O濃度情報CiとしてのO2濃度とオフセット補正値C2との関係を、予め定めた基準環境温度T0におけるオフセット補正情報として取得し、オフセット補正マップとして記憶しておくことができる。このマップに基づいて、検出されたO2濃度に対応するオフセット補正値C2を算出し、NOx濃度基準値C1から減算することにより、オフセット補正されたNOx濃度を算出することができる。 The NOx concentration correction unit 103 corrects the NOx concentration reference value C1 input from the NOx concentration reference value calculation unit 101 using the offset correction value C2 calculated by the offset correction value calculation unit 103A. Specifically, as shown in the lower diagram of FIG. 8, the relationship between the O 2 concentration as H 2 O concentration information Ci and the offset correction value C2 is obtained as offset correction information at a predetermined reference environmental temperature T0. , can be stored as an offset correction map. Based on this map, an offset correction value C2 corresponding to the detected O 2 concentration is calculated and subtracted from the NOx concentration reference value C1, thereby making it possible to calculate the offset-corrected NOx concentration.
 オフセット補正情報を取得するための試験は、例えば、モデルガスベンチを用いて行い、モデルガス中のH2O濃度を所定範囲(例えば、0%~約13%)で変化させて評価することができる。具体的には、排ガスを模擬したモデルガスを、ガス供給部から所定の流量で、ガスセンサSが設置されたガス通路へ供給し、所定の基準環境温度T0において、H2O濃度を変化させたときのセンサ素子1のNOx出力に基づいて、オフセット特性を評価した。基準環境温度T0は、実車環境で、定常運転時にセンサ素子1の搭載位置に到達するガス温度範囲から設定し、ガス通路に設けたヒータによって、センサ素子1の搭載位置のガス温度が、基準環境温度T0となるように調整した。 A test to obtain offset correction information can be performed, for example, using a model gas bench and evaluated by varying the H 2 O concentration in the model gas within a predetermined range (for example, 0% to about 13%). can. Specifically, a model gas simulating exhaust gas was supplied from the gas supply unit at a predetermined flow rate to the gas passage where the gas sensor S was installed, and the H 2 O concentration was changed at a predetermined reference environmental temperature T0. The offset characteristics were evaluated based on the NOx output of the sensor element 1 at that time. The reference environmental temperature T0 is set from the gas temperature range that reaches the mounting position of the sensor element 1 during steady operation in the actual vehicle environment. The temperature was adjusted to T0.
 図9は、実車環境での走行試験結果を示すエンジンマップであり、法規で規定された認証走行パターン(WLTCモード、RDEモード)におけるエンジン回転数及びトルクと、センサ素子1の搭載位置における周辺環境温度の関係を示している。この結果から得られるガス温度の範囲(例えば、300℃~700℃)を定常温度域として、その中心値(例えば、500℃)を、基準環境温度T0とした。 FIG. 9 is an engine map showing the results of a driving test in an actual vehicle environment, and shows the engine speed and torque in certified driving patterns (WLTC mode, RDE mode) stipulated by law, and the surrounding environment at the mounting position of sensor element 1. It shows the relationship between temperature. The gas temperature range obtained from this result (for example, 300° C. to 700° C.) was defined as a steady temperature range, and its center value (for example, 500° C.) was defined as the reference environmental temperature T0.
 図10は、このようにして得られたオフセット特性(補正前)と、この特性線から得られるオフセット補正情報に基づく補正後のNOx出力を示している。オフセット補正情報は、補正マップとしてもよいが、例えば、補正前のNOx出力とO2濃度との関係を一次式(y=Ax+b)で近似した補正式で表すこともでき、O2濃度に応じたオフセット補正値C2を算出して、NOx濃度基準値C1から減算することにより、補正されたNOx濃度を算出することができる。このような補正後のNOx出力は、O2濃度又はH2O濃度の変化によるNO出力誤差が低減され、精度よいNOx検出が可能になる。 FIG. 10 shows the offset characteristic (before correction) obtained in this way and the NOx output after correction based on the offset correction information obtained from this characteristic line. The offset correction information may be a correction map, but it can also be expressed as a correction equation that approximates the relationship between the NOx output and O 2 concentration before correction using a linear equation ( y=Ax+b), and By calculating the offset correction value C2 and subtracting it from the NOx concentration reference value C1, the corrected NOx concentration can be calculated. In the NOx output after such correction, NO output errors due to changes in the O 2 concentration or H 2 O concentration are reduced, allowing highly accurate NOx detection.
 なお、オフセット補正情報は、センサ素子1について個別に取得される出力特性に基づく情報であってもよいし、複数のセンサ素子1について取得される複数の出力特性を平均化した情報であってもよい。具体的には、オフセット補正情報は、個々のNOxセンサSについて、例えば、製品生産時に、それぞれの搭載環境や適用される車両情報等を考慮して取得することができる。このように、製品毎に個別に特性を取得することで、適正なオフセット補正情報に基づく補正を行うことができる。 Note that the offset correction information may be information based on output characteristics acquired individually for the sensor elements 1, or may be information obtained by averaging a plurality of output characteristics acquired for a plurality of sensor elements 1. good. Specifically, the offset correction information can be acquired for each NOx sensor S, for example, at the time of product production, taking into consideration the mounting environment of each NOx sensor, applied vehicle information, etc. In this way, by acquiring the characteristics for each product individually, it is possible to perform correction based on appropriate offset correction information.
 あるいは、複数の同種のNOxセンサSについて、設計時等に共通のオフセット補正情報を取得して、同種のNOxセンサSの全体に適用するようにしてもよい。その場合には、図11に示すように、例えば、周辺環境温度に応じた温度域(例えば、200℃、500℃)において、数10~数100の範囲のNOxセンサSについての、H2O濃度に対するNOx出力誤差の特性データを取得する。それらデータから平均値を算出することで、オフセット補正情報を共通化した場合においても、より平均的な特性に基づくオフセット補正を行うことができる。 Alternatively, common offset correction information may be acquired for a plurality of NOx sensors S of the same type at the time of design, etc., and applied to all of the NOx sensors S of the same type. In that case, as shown in FIG. 11, for example, the H 2 O Obtain characteristic data of NOx output error with respect to concentration. By calculating an average value from these data, even when offset correction information is shared, offset correction can be performed based on more average characteristics.
 このように、本形態によれば、NOxセンサSのセンサ制御部10において、NOx濃度算出部100がNOx濃度補正部103を備え、温度特性を考慮したオフセット補正情報を用いることにより、排ガスG中の水分に起因するNOx出力誤差を適切に補正して、NOx濃度を算出することができる。 As described above, according to the present embodiment, in the sensor control unit 10 of the NOx sensor S, the NOx concentration calculation unit 100 includes the NOx concentration correction unit 103, and uses offset correction information that takes temperature characteristics into consideration. The NOx concentration can be calculated by appropriately correcting the NOx output error caused by moisture.
(実施形態2)
 NOxセンサに係る実施形態2について、図面に基づいて説明する。本形態では、上述したセンサ制御部10による検出制御部200にて実施される検出制御について、具体的な手順の一例を示す。図12に示すように、検出制御部200は、電圧印加回路201と、電圧印加指示部202とを有して、酸素ポンピングのためにポンプセル1pへ印加されるポンプセル電圧Vpを制御している。本形態のNOxセンサSにおいて、センサ素子1の基本構成及びセンサ制御部10の基本制御は、上記実施形態1と同様であり、以下、相違点を中心に説明する。
 なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
(Embodiment 2)
A second embodiment of the NOx sensor will be described based on the drawings. In this embodiment, an example of a specific procedure for the detection control performed by the detection control section 200 by the sensor control section 10 described above will be described. As shown in FIG. 12, the detection control unit 200 includes a voltage application circuit 201 and a voltage application instruction unit 202, and controls the pump cell voltage Vp applied to the pump cell 1p for oxygen pumping. In the NOx sensor S of this embodiment, the basic configuration of the sensor element 1 and the basic control of the sensor control unit 10 are the same as those in the first embodiment, and the differences will be mainly described below.
Note that among the symbols used in the second embodiment and subsequent embodiments, the same symbols as those used in the previously described embodiments represent the same components as those in the previously described embodiments, unless otherwise specified.
 図12において、センサ制御部10は、検出制御部200により、ポンプセル1pのポンプ電極21と基準電極41の間に、所定のポンプセル電圧Vpを印加すると共に、図示しないヒータ制御部300(例えば、図1参照)によって、ポンプセル1pが所定の温度となるように、ヒータHへの通電を制御している。検出制御部200は、電圧印加指示部202からの指示電圧V0に基づいて、電圧印加回路201にて、指示電圧V0に対応する電圧信号を生成し、ポンプセル1pの基準電極41側に印加する。センサセル1s及びモニタセル1mにも同等の電圧が印加される。これにより、被測定ガス室2に導入される排ガスGは、ポンプ電極21において酸素の還元分解により生成する酸化物イオンが、基準電極41側へ移動することにより、ポンプセル電流Ipが流れる。排ガスG中のNOxとH2Oは、ポンプ電極21上を移動して下流側へ向かう。 In FIG. 12, the sensor control unit 10 causes the detection control unit 200 to apply a predetermined pump cell voltage Vp between the pump electrode 21 and the reference electrode 41 of the pump cell 1p, and also causes the heater control unit 300 (not shown, for example, 1) controls the power supply to the heater H so that the pump cell 1p reaches a predetermined temperature. Based on the instruction voltage V0 from the voltage application instruction section 202, the detection control section 200 generates a voltage signal corresponding to the instruction voltage V0 in the voltage application circuit 201, and applies it to the reference electrode 41 side of the pump cell 1p. The same voltage is also applied to the sensor cell 1s and the monitor cell 1m. As a result, in the exhaust gas G introduced into the gas chamber 2 to be measured, oxide ions generated by reductive decomposition of oxygen at the pump electrode 21 move toward the reference electrode 41 side, so that a pump cell current Ip flows. NOx and H 2 O in the exhaust gas G move on the pump electrode 21 and head toward the downstream side.
 ここで、例えば、電圧印加回路201への指示電圧V0に対して、実際のポンプセル1pへの印加電圧が大きくなると、ポンプ電極21での触媒反応がより活性化されて、排ガスG中のH2Oの一部が分解される。このとき、印加電圧が大きくなるほど、センサセル1sに到達するH2Oが減少すると考えられる。これらの反応により、センサセル電流Isやモニタセル電流Imにもばらつきが生じ、センサセル電流Isとモニタセル電流Imに基づくNOx出力がばらつくおそれがある。また、ポンプセル電流Ipに基づいてH2O濃度情報Ciを検出する場合には、オフセット補正値C2の算出にも影響する。 Here, for example, when the actual voltage applied to the pump cell 1p becomes larger than the command voltage V0 to the voltage application circuit 201, the catalytic reaction at the pump electrode 21 is further activated, and H 2 in the exhaust gas G is Some of the O is decomposed. At this time, it is considered that as the applied voltage increases, the amount of H 2 O that reaches the sensor cell 1s decreases. These reactions cause variations in the sensor cell current Is and the monitor cell current Im, and there is a possibility that the NOx output based on the sensor cell current Is and the monitor cell current Im may vary. Moreover, when detecting H 2 O concentration information Ci based on the pump cell current Ip, it also affects the calculation of the offset correction value C2.
 一方、検出制御部200において、電圧印加回路201から所定の指示電圧V0が出力されるように制御した場合でも、製品自体が所定のばらつきを有するために(例えば、20℃で±20mV程度)、実際の印加電圧が指示電圧V0に対してばらつくことがある。そのため、図13に示すように、複数のNOxセンサSを比較したときに、電圧印加回路201による印加電圧のばらつきが異なると、H2Oの分解に起因するNOx出力誤差のばらつきも異なり、固定値によるオフセット補正を共通化した場合に、補正精度を確保することが難しい。 On the other hand, even when the detection control unit 200 controls the voltage application circuit 201 to output a predetermined instruction voltage V0, the product itself has a predetermined variation (for example, about ±20 mV at 20° C.). The actual applied voltage may vary with respect to the command voltage V0. Therefore, when comparing multiple NOx sensors S, as shown in FIG . When offset correction based on values is standardized, it is difficult to ensure correction accuracy.
 そこで、図14に示すように、検出制御部200の電圧印加指示部202に、指示電圧補正部203を設けて、指示電圧V0を補正した補正指示電圧V2を、電圧印加指示部202に出力する。具体的には、指示電圧補正部203は、電圧印加指示部202から各セルへ実際に印加される実電圧V1を検出する電圧検出部203aと、実電圧V1と指示電圧V0との差分値を算出して、補正値V1-V0として出力する補正値算出部203bとを備える。電圧印加指示部202からの指示電圧V0は、指示電圧補正部203において、補正値V1-V0が減算されることにより、補正された補正指示電圧V2として、電圧印加回路201へ出力される。 Therefore, as shown in FIG. 14, an instruction voltage correction section 203 is provided in the voltage application instruction section 202 of the detection control section 200, and outputs a corrected instruction voltage V2 obtained by correcting the instruction voltage V0 to the voltage application instruction section 202. . Specifically, the command voltage correction unit 203 uses a voltage detection unit 203a that detects the actual voltage V1 actually applied to each cell from the voltage application command unit 202, and a difference value between the actual voltage V1 and the command voltage V0. A correction value calculation unit 203b that calculates and outputs it as a correction value V1-V0 is provided. The command voltage V0 from the voltage application command section 202 is outputted to the voltage application circuit 201 as a corrected corrected command voltage V2 by subtracting the correction value V1-V0 in the command voltage correction section 203.
 図15は、指示電圧補正部203を備えない構成であり、検出制御部200の電圧印加回路201は、センサ素子1の各セルへの印加電圧を、電圧印加指示部202からの指示電圧V0に応じて生成可能に構成されている。電圧印加指示部202は、例えば、ポンプセル1pにおける酸素ポンピング動作が適切となるように、予め設定された指示電圧V0に対応するパルス信号を出力し、電圧印加回路201において、パルス信号に対応するパルス電圧が出力される。これにより、上述した図1に示されるセンサ制御部10の共通端子COM+を介して、各セルへ所定の電圧が印加される。この構成では、指示電圧V0に対して、電圧印加回路201から出力される実電圧V1がばらつくと、上述したように、電圧が高くなることによるNOx出力誤差が大きくなるおそれがある。 FIG. 15 shows a configuration that does not include the command voltage correction section 203, and the voltage application circuit 201 of the detection control section 200 changes the voltage applied to each cell of the sensor element 1 to the command voltage V0 from the voltage application instruction section 202. It is configured so that it can be generated according to the requirements. For example, the voltage application instruction unit 202 outputs a pulse signal corresponding to a preset instruction voltage V0 so that the oxygen pumping operation in the pump cell 1p is appropriate, and the voltage application circuit 201 outputs a pulse signal corresponding to the pulse signal. Voltage is output. As a result, a predetermined voltage is applied to each cell via the common terminal COM+ of the sensor control unit 10 shown in FIG. 1 described above. In this configuration, if the actual voltage V1 output from the voltage application circuit 201 varies with respect to the command voltage V0, as described above, there is a risk that the NOx output error due to the increase in voltage will increase.
 これに対して、指示電圧補正部203を備える場合には、以下の式により表される補正指示電圧V2が印加されることになる。
補正指示電圧V2=指示電圧V0-補正値[実電圧V1-指示電圧V0]
 このようにして補正された補正指示電圧V2が、電圧印加回路201へ出力されることにより、実際の印加電圧が、本来の指示電圧V0となる。そして、ポンプセル1pにおけるH2Oの分解反応が抑制され、センサセル電流Is、モニタセル電流Imのばらつきが抑制されることにより、NOx出力誤差を低減することができる。
On the other hand, when the instruction voltage correction section 203 is provided, a correction instruction voltage V2 expressed by the following equation is applied.
Correction instruction voltage V2 = instruction voltage V0 - correction value [actual voltage V1 - instruction voltage V0]
By outputting the corrected instruction voltage V2 corrected in this way to the voltage application circuit 201, the actual applied voltage becomes the original instruction voltage V0. Then, the decomposition reaction of H 2 O in the pump cell 1p is suppressed, and variations in the sensor cell current Is and the monitor cell current Im are suppressed, thereby making it possible to reduce the NOx output error.
 なお、ポンプセル1pへの指示電圧V0は、酸素ポンピングにより所望の低酸素濃度に調整可能となり、ポンプセル1pにおけるH2Oの分解反応が抑制可能となるように、任意に設定することができる。好適には、指示電圧V0を、電圧印加回路201の個体間のばらつきなく設定することにより、H2Oの分解反応のばらつきが抑制される効果が高くなり、印加電圧のばらつき等による出力誤差を抑制することができる。 Note that the command voltage V0 to the pump cell 1p can be arbitrarily set so that it can be adjusted to a desired low oxygen concentration by oxygen pumping and the decomposition reaction of H 2 O in the pump cell 1p can be suppressed. Preferably, by setting the instruction voltage V0 without variations between individual voltage application circuits 201, the effect of suppressing variations in the decomposition reaction of H 2 O is increased, and output errors due to variations in applied voltage, etc. Can be suppressed.
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。例えば、NOxセンサSは、車両用エンジンからの排ガスGに限らず、各種内燃機関等から排出されるガスを被測定ガスとするNOx検出に適用することができる。また、NOxセンサSのセンサ素子1の各部の構造やセンサ制御部10における各部の制御手順等は、適宜変更することができる。 The present disclosure is not limited to the embodiments described above, and can be applied to various embodiments without departing from the spirit thereof. For example, the NOx sensor S can be applied to NOx detection using not only exhaust gas G from a vehicle engine but also gases discharged from various internal combustion engines as the gas to be measured. Further, the structure of each part of the sensor element 1 of the NOx sensor S, the control procedure of each part in the sensor control section 10, etc. can be changed as appropriate.
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.

Claims (8)

  1.  被測定ガス(G)に含まれるNOxを検出するセンサ素子(1)と、上記センサ素子を加熱するヒータ(H)と、上記センサ素子及び上記ヒータの動作を制御すると共に、上記センサ素子からの信号に基づいてNOx濃度を算出するセンサ制御部(10)と、を備えるNOxセンサ(S)であって、
     上記センサ素子は、
     ガス導入部(3)を介して上記被測定ガスが導入され、固体電解質体(11)を室壁とする被測定ガス室(2)と、
     上記被測定ガス室において、導入されるガス流れの上流側に配置され、上記被測定ガス中のH2O濃度と相関を有する第1信号(Ip)を出力する第1セル(1p)、及び、上記第1セルよりも下流側に配置され、上記被測定ガス中のNOx濃度及びH2O濃度に応じた第2信号(Is)を出力する第2セル(1s)と、を有しており、
     上記センサ制御部は、
     上記第2信号に基づくNOx濃度基準値(C1)を算出するNOx濃度基準値算出部(101)と、
     上記第1信号又は外部情報に基づいて、H2O濃度又はH2O濃度と相関を有する濃度情報を含むH2O濃度情報(Ci)を検出するH2O濃度情報検出部(102)と、
     上記NOx濃度基準値を、上記H2O濃度情報に基づいてオフセット補正する、NOx濃度補正部(103)と、を有し、
     上記NOx濃度補正部は、予め定められた基準環境温度(T0)にて取得される上記センサ素子の出力特性に基づいて、上記H2O濃度情報に対応する上記第2信号のオフセット補正情報を記憶しており、上記基準環境温度は、上記センサ素子の搭載環境における上記被測定ガスの定常温度域に設定される、NOxセンサ。
    A sensor element (1) that detects NOx contained in the gas to be measured (G), a heater (H) that heats the sensor element, and controls the operation of the sensor element and the heater, and A NOx sensor (S) comprising a sensor control unit (10) that calculates a NOx concentration based on a signal,
    The above sensor element is
    A gas to be measured chamber (2) into which the gas to be measured is introduced via a gas introduction part (3) and has a solid electrolyte body (11) as a chamber wall;
    A first cell (1p) that is arranged in the upstream side of the gas flow to be introduced in the measurement gas chamber and outputs a first signal (Ip) that has a correlation with the H 2 O concentration in the measurement gas; , a second cell (1s) that is disposed downstream of the first cell and outputs a second signal (Is) according to the NOx concentration and H 2 O concentration in the gas to be measured. Ori,
    The above sensor control section is
    a NOx concentration reference value calculation unit (101) that calculates a NOx concentration reference value (C1) based on the second signal;
    an H 2 O concentration information detection unit (102) that detects H 2 O concentration or H 2 O concentration information (Ci ) including concentration information having a correlation with the H 2 O concentration, based on the first signal or external information; ,
    a NOx concentration correction unit (103) that offsets and corrects the NOx concentration reference value based on the H 2 O concentration information;
    The NOx concentration correction unit calculates offset correction information of the second signal corresponding to the H 2 O concentration information based on the output characteristics of the sensor element acquired at a predetermined reference environmental temperature (T0). The NOx sensor stores the reference environmental temperature in a steady temperature range of the gas to be measured in an environment in which the sensor element is mounted.
  2.  上記センサ素子は、上記被測定ガスが排出される内燃機関の排ガス通路(EX)に搭載されており、上記定常温度域は、上記内燃機関が定常運転状態にあるときに、上記センサ素子の搭載位置に到達する上記被測定ガスが取り得る温度域である、請求項1に記載のNOxセンサ。 The sensor element is installed in an exhaust gas passage (EX) of the internal combustion engine through which the gas to be measured is discharged, and the steady temperature range is determined when the sensor element is installed when the internal combustion engine is in a steady operating state. The NOx sensor according to claim 1, wherein the temperature range of the gas to be measured that reaches the position is within a possible temperature range.
  3.  上記基準環境温度は、上記定常温度域の下限温度よりも高温側の温度域に設定される、請求項1又は2に記載のNOxセンサ。 The NOx sensor according to claim 1 or 2, wherein the reference environmental temperature is set in a temperature range higher than the lower limit temperature of the steady temperature range.
  4.  上記基準環境温度は、上記センサ素子が、上記定常温度域の下限温度を含む低温域にて取得される出力特性と、上記定常温度域の上限温度を含む高温域にて取得される出力特性との中間の出力特性を示す基準温度域に設定される、請求項1~3のいずれか1項に記載のNOxセンサ。 The above reference environmental temperature is based on the output characteristics obtained by the sensor element in a low temperature range including the lower limit temperature of the above steady temperature range, and the output characteristic obtained by the above sensor element in a high temperature range including the upper limit temperature of the above steady temperature range. The NOx sensor according to any one of claims 1 to 3, wherein the NOx sensor is set to a reference temperature range exhibiting an intermediate output characteristic.
  5.  上記基準環境温度は、300℃以上700℃以下の範囲に設定される、請求項1~4のいずれか1項に記載のNOxセンサ。 The NOx sensor according to any one of claims 1 to 4, wherein the reference environmental temperature is set in a range of 300°C or more and 700°C or less.
  6.  上記オフセット補正情報は、上記センサ素子について個別に取得される出力特性に基づく情報である、請求項1~4のいずれか1項に記載のNOxセンサ。 The NOx sensor according to any one of claims 1 to 4, wherein the offset correction information is information based on output characteristics individually acquired for the sensor element.
  7.  上記オフセット補正情報は、複数の上記センサ素子について取得される複数の出力特性を平均化した情報である、請求項1~4のいずれか1項に記載のNOxセンサ。 The NOx sensor according to any one of claims 1 to 4, wherein the offset correction information is information obtained by averaging a plurality of output characteristics obtained for a plurality of the sensor elements.
  8.  上記センサ制御部は、上記第1セル及び上記第2セルへの印加電圧を制御する検出制御部(200)を備えており、
     上記検出制御部は、電圧印加指示部(202)から入力される指示電圧(V0)に応じた電圧を生成する電圧印加回路(201)と、指示電圧補正部(203)とを備え、上記指示電圧補正部は、上記電圧印加回路にて生成される実電圧(V1)を検出する電圧検出部(203a)と、上記指示電圧を、上記指示電圧と上記実電圧との差分値に基づいて補正する補正値算出部(203b)とを備える、請求項1~7のいずれか1項に記載のNOxセンサ。
    The sensor control unit includes a detection control unit (200) that controls voltages applied to the first cell and the second cell,
    The detection control section includes a voltage application circuit (201) that generates a voltage according to an instruction voltage (V0) input from a voltage application instruction section (202), and an instruction voltage correction section (203), and includes an instruction voltage correction section (203). The voltage correction section includes a voltage detection section (203a) that detects the actual voltage (V1) generated by the voltage application circuit, and corrects the indicated voltage based on a difference value between the indicated voltage and the actual voltage. The NOx sensor according to any one of claims 1 to 7, further comprising a correction value calculation unit (203b) that performs the correction value calculation section (203b).
PCT/JP2023/004592 2022-03-28 2023-02-10 NOx SENSOR WO2023188866A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052419A JP2023145122A (en) 2022-03-28 2022-03-28 NOx sensor
JP2022-052419 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023188866A1 true WO2023188866A1 (en) 2023-10-05

Family

ID=88200887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004592 WO2023188866A1 (en) 2022-03-28 2023-02-10 NOx SENSOR

Country Status (2)

Country Link
JP (1) JP2023145122A (en)
WO (1) WO2023188866A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267885A (en) * 1997-03-21 1998-10-09 Ngk Spark Plug Co Ltd Correcting method of gas sensor
JPH10318979A (en) * 1997-05-20 1998-12-04 Ngk Insulators Ltd Gas sensor
JPH1172478A (en) * 1997-06-20 1999-03-16 Ngk Spark Plug Co Ltd Oxide gas concentration detecting device and recording medium used therefor
JP2002513934A (en) * 1998-04-30 2002-05-14 シーメンス アクチエンゲゼルシヤフト Measurement method of NOx concentration
JP2004245662A (en) * 2003-02-13 2004-09-02 Denso Corp Gas sensor and gas concentration detecting apparatus of internal combustion engine
JP2011002245A (en) * 2009-06-16 2011-01-06 Toyota Motor Corp Method of correcting nox sensor and nox-sensing device
JP2013250164A (en) * 2012-05-31 2013-12-12 Ngk Spark Plug Co Ltd Gas sensor control device
JP2015125035A (en) * 2013-12-26 2015-07-06 ボルボトラックコーポレーション NOx MEASUREMENT DEVICE AND NOx MEASUREMENT METHOD
JP2017078579A (en) * 2015-10-19 2017-04-27 株式会社デンソー Control device of exhaust gas sensor, and exhaust gas sensor system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267885A (en) * 1997-03-21 1998-10-09 Ngk Spark Plug Co Ltd Correcting method of gas sensor
JPH10318979A (en) * 1997-05-20 1998-12-04 Ngk Insulators Ltd Gas sensor
JPH1172478A (en) * 1997-06-20 1999-03-16 Ngk Spark Plug Co Ltd Oxide gas concentration detecting device and recording medium used therefor
JP2002513934A (en) * 1998-04-30 2002-05-14 シーメンス アクチエンゲゼルシヤフト Measurement method of NOx concentration
JP2004245662A (en) * 2003-02-13 2004-09-02 Denso Corp Gas sensor and gas concentration detecting apparatus of internal combustion engine
JP2011002245A (en) * 2009-06-16 2011-01-06 Toyota Motor Corp Method of correcting nox sensor and nox-sensing device
JP2013250164A (en) * 2012-05-31 2013-12-12 Ngk Spark Plug Co Ltd Gas sensor control device
JP2015125035A (en) * 2013-12-26 2015-07-06 ボルボトラックコーポレーション NOx MEASUREMENT DEVICE AND NOx MEASUREMENT METHOD
JP2017078579A (en) * 2015-10-19 2017-04-27 株式会社デンソー Control device of exhaust gas sensor, and exhaust gas sensor system

Also Published As

Publication number Publication date
JP2023145122A (en) 2023-10-11

Similar Documents

Publication Publication Date Title
US6375828B2 (en) Methods and apparatus for measuring NOx gas concentration, for detecting exhaust gas concentration and for calibrating and controlling gas sensor
JP3871497B2 (en) Gas sensor
JP3537628B2 (en) Method for measuring nitrogen oxides
US6295862B1 (en) Gas concentration measuring apparatus compensating for error component of output signal
JP5209401B2 (en) Multi-gas sensor and gas sensor control device
JP4981075B2 (en) NOx sensor
US20090120161A1 (en) Gas sensor control device
JP5587919B2 (en) Correction coefficient setting method for gas concentration detection device, gas concentration detection device, and gas sensor
JP5186472B2 (en) Hydrogen gas concentration detection system and gas sensor element having the same
US20220113280A1 (en) Gas sensor
JPWO2020004356A1 (en) Gas sensor
WO2023188866A1 (en) NOx SENSOR
JP2002139468A (en) Gas sensor
JP7075818B2 (en) Multi gas sensor
US10830729B2 (en) Sensor control device and gas detection system
JP4893652B2 (en) Gas sensor control device
JP3973851B2 (en) Gas sensor element
JP4625261B2 (en) Sensor element of gas sensor
JPH09297119A (en) Nitrogen oxides detecting device
JP7230211B2 (en) A method of operating a sensor system for detecting at least a portion of a measurement gas component having bound oxygen in the measurement gas
JP2023145123A (en) NOx sensor
JP2006071429A (en) Gas concentration detecting apparatus
US20140014535A1 (en) Sensor control device, sensor control method and computer readable recording medium
US20240044835A1 (en) Gas sensor and method of identifying deviation of reference potential of the same
US20240133840A1 (en) Gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778900

Country of ref document: EP

Kind code of ref document: A1