WO2023188708A1 - ショベルの管理システム、ショベルの管理方法 - Google Patents

ショベルの管理システム、ショベルの管理方法 Download PDF

Info

Publication number
WO2023188708A1
WO2023188708A1 PCT/JP2023/001251 JP2023001251W WO2023188708A1 WO 2023188708 A1 WO2023188708 A1 WO 2023188708A1 JP 2023001251 W JP2023001251 W JP 2023001251W WO 2023188708 A1 WO2023188708 A1 WO 2023188708A1
Authority
WO
WIPO (PCT)
Prior art keywords
excavator
information
tag
shovel
component
Prior art date
Application number
PCT/JP2023/001251
Other languages
English (en)
French (fr)
Inventor
和俊 橋本
宏 猪熊
和博 吉田
Original Assignee
住友建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友建機株式会社 filed Critical 住友建機株式会社
Priority to CN202380016476.1A priority Critical patent/CN118510965A/zh
Publication of WO2023188708A1 publication Critical patent/WO2023188708A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00

Definitions

  • the present invention relates to a shovel management system and a shovel management method.
  • the purpose is to prevent misrecognition of parts.
  • a shovel management system includes a shovel, a tag attached to a part of the shovel, and a management device for the shovel, wherein the shovel has a tag attached to a part of the shovel.
  • the excavator management system includes a writing unit that writes body identification information for identifying the excavator.
  • a shovel management method is a shovel management method using a shovel management system including a shovel, a tag attached to a part of the shovel, and a management device for the shovel, the method comprising: This is an excavator management method in which the excavator writes machine identification information for identifying the excavator in the tag.
  • FIG. 1 is a diagram showing an example of a system configuration of an excavator management system.
  • FIG. 2 is a block diagram showing a configuration example of a drive system of an excavator.
  • FIG. 2 is a sequence diagram illustrating the operation of the management system.
  • FIG. 2 is a first diagram illustrating information stored in a tag.
  • FIG. 3 is a second diagram illustrating information stored in a tag.
  • FIG. 6 is a diagram showing a first display example of maintenance information.
  • FIG. 7 is a diagram showing a second display example of maintenance information.
  • FIG. 1 is a diagram showing an example of the system configuration of an excavator management system.
  • the excavator management system SYS of this embodiment includes an excavator 100, a management device 200 for the excavator 100, and a tag 401 attached to a component 400.
  • the shovel management system SYS will be expressed as a management system SYS.
  • the excavator 100 and the management device 200 are each connected via a network and can communicate with each other.
  • the management device 200 receives operation information from the shovel 100 and manages the state of the shovel 100. Furthermore, the management device 200 of this embodiment is a computer having an arithmetic processing unit (processor) and a storage device. In the management device 200, the storage device may store management information including maintenance information for the shovel 100, for example. Furthermore, the management device 200 realizes various functions by the arithmetic processing device reading and executing programs stored in the storage device. The various functions include, for example, updating management information including maintenance information, displaying maintenance information on a display device, and the like.
  • FIG. 1 shows a case where a part 400 built into the excavator 100 is replaced by a new part 400n by a serviceman P.
  • the parts 400 and 400n are parts manufactured by the manufacturer that manufactures the excavator 100. In other words, the component 400n is a genuine product.
  • tags 401 and 401n storing component identification information for identifying each component are attached to each of the component 400 incorporated in the excavator 100 and the new component 400n that will be replaced with the component 400 from now on. installed.
  • the component identification information stored in the tags 401 and 401n includes information indicating that the components 400 and 400n are genuine products.
  • the tags 401 and 401n of this embodiment are tags that communicate with the excavator 100 by, for example, near field communication (RFID; radio frequency identification).
  • RFID near field communication
  • the excavator 100 of this embodiment has a function of reading information from the tags 401 and 401n and a function of writing information to the tags 401 and 401n.
  • part 400 when part 400 is replaced with part 400n, part 400 is removed from shovel 100. Then, communication between the excavator 100 and the tag 401 is interrupted, and the excavator 100 becomes unable to read the component identification information stored in the tag 401. Thereby, the excavator 100 detects that the component 400 to which the tag 401 is attached has been removed.
  • the shovel 100 resumes communication with the tag 401n of the part 400n and recognizes the part identification information stored in the tag 401n.
  • the excavator 100 of this embodiment recognizes that the part 400 has been replaced with the part 400n when communication with the tag 401n is resumed after communication with the tag 401 is interrupted.
  • the excavator 100 When the excavator 100 detects that the part 400 has been replaced, the excavator 100 manages the machine number (machine serial number, etc.) as identification information of the machine of the excavator 100 and information indicating that the part 400 has been replaced. Send to device 200. Specifically, the excavator 100 transmits to the management device 200 association information that associates the machine number of the excavator 100 with the component identification information of the component 400n.
  • machine number machine serial number, etc.
  • the management device 200 When the management device 200 receives the association information, the management device 200 updates the maintenance information and the like of the shovel 100 managed by the management device 200.
  • the maintenance information for the shovel 100 may be part of management information for managing various states of the shovel 100.
  • the machine number of the own machine and the part 400n attached to the excavator 100 are sent to the tag 401n.
  • information indicating the date on which the date was received In other words, the date on which the part 400n was attached to the shovel 100 is the date on which the part was replaced.
  • the tag 401n that once communicated with the excavator 100 stores the machine number of the excavator 100 and information indicating the date on which the part 400n was replaced as usage history information of the tag 401n. .
  • the tag 401n even if the tag 401n is removed from the part 400n once attached to the excavator 100 and attached to another part, the tag 401n stores past usage history information, so the excavator 100 Other parts are not recognized as genuine products.
  • the excavator 100 of this embodiment cuts off communication with the tag 401n attached to the other part, and indicates that the part has been replaced with a non-genuine part.
  • the management device 200 may also be notified.
  • the excavator 100 does not need to detect that the parts have been replaced.
  • the excavator 100 of this embodiment has a lower traveling body 1, a turning mechanism 2, and an upper rotating body 3.
  • an upper rotating body 3 is rotatably mounted on the lower traveling body 1 via a rotating mechanism 2.
  • a boom 4 is attached to the upper revolving body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
  • the boom 4, arm 5, and bucket 6 constitute a digging attachment as an example of an attachment.
  • the boom 4 is driven by a boom cylinder 7, the arm 5 is driven by an arm cylinder 8, and the bucket 6 is driven by a bucket cylinder 9.
  • a boom angle sensor S1 is attached to the boom 4, an arm angle sensor S2 is attached to the arm 5, and a bucket angle sensor S3 is attached to the bucket 6.
  • the boom angle sensor S1 is configured to detect the rotation angle of the boom 4.
  • the boom angle sensor S1 is an acceleration sensor, and can detect the rotation angle of the boom 4 with respect to the upper rotating structure 3 (hereinafter referred to as "boom angle").
  • boost angle the rotation angle of the boom 4 with respect to the upper rotating structure 3
  • the boom angle becomes the minimum angle when the boom 4 is lowered the most, and increases as the boom 4 is raised.
  • the arm angle sensor S2 is configured to detect the rotation angle of the arm 5.
  • the arm angle sensor S2 is an acceleration sensor, and can detect the rotation angle of the arm 5 with respect to the boom 4 (hereinafter referred to as "arm angle").
  • arm angle becomes the minimum angle when the arm 5 is most closed, and increases as the arm 5 is opened.
  • the bucket angle sensor S3 is configured to detect the rotation angle of the bucket 6.
  • the bucket angle sensor S3 is an acceleration sensor, and can detect the rotation angle of the bucket 6 with respect to the arm 5 (hereinafter referred to as "bucket angle").
  • the bucket angle becomes the minimum angle when the bucket 6 is most closed, and increases as the bucket 6 is opened.
  • the boom angle sensor S1, arm angle sensor S2, and bucket angle sensor S3 are each a potentiometer using a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotation angle around the connecting pin. It may be a rotary encoder, a gyro sensor, or a combination of an acceleration sensor and a gyro sensor.
  • a boom rod pressure sensor S7R and a boom bottom pressure sensor S11B are attached to the boom cylinder 7.
  • An arm rod pressure sensor S8R and an arm bottom pressure sensor S8B are attached to the arm cylinder 8.
  • a bucket rod pressure sensor S9R and a bucket bottom pressure sensor S9B are attached to the bucket cylinder 9.
  • Boom rod pressure sensor S7R, boom bottom pressure sensor S11B, arm rod pressure sensor S8R, arm bottom pressure sensor S8B, bucket rod pressure sensor S9R, and bucket bottom pressure sensor S9B are also collectively referred to as "cylinder pressure sensors.”
  • the boom rod pressure sensor S7R detects the pressure in the rod side oil chamber of the boom cylinder 7 (hereinafter referred to as “boom rod pressure”), and the boom bottom pressure sensor S11B detects the pressure in the bottom side oil chamber of the boom cylinder 7 (hereinafter referred to as “boom rod pressure”). , “boom bottom pressure”).
  • the arm rod pressure sensor S8R detects the pressure in the rod side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”), and the arm bottom pressure sensor S8B detects the pressure in the bottom side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”). , “arm bottom pressure”) is detected.
  • the bucket rod pressure sensor S9R detects the pressure in the rod side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure”), and the bucket bottom pressure sensor S9B detects the pressure in the bottom side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure”). , “bucket bottom pressure”).
  • the upper revolving body 3 is provided with a cabin 10 which is a driver's room, and is equipped with a power source such as an engine 11. Furthermore, a sensor for detecting the amount of CO 2 emissions may be provided near the exhaust mechanism of the engine 11.
  • the upper revolving body 3 includes a controller 30, a display device 40, an input device 42, an audio output device 43, a storage device 47, a positioning device P1, a body tilt sensor S4, a turning angular velocity sensor S5, an imaging device S6, and a communication device T1. is installed.
  • the upper revolving structure 3 may be equipped with a power storage unit that supplies electric power, a motor generator that generates electricity using the rotational driving force of the engine 11, and the like.
  • the power storage unit is, for example, a capacitor, a lithium ion battery, or the like.
  • a motor generator may function as an electric motor to drive a mechanical load, or may function as a generator to supply power to an electrical load.
  • the controller 30 functions as a main control unit that controls the drive of the shovel 100.
  • the controller 30 includes a CPU, RAM, ROM, and the like.
  • the controller 30 may include a CPU, RAM, ROM, etc., and a circuit that handles analog signals, which will be described later.
  • the various functions of the controller 30 are realized, for example, by the CPU executing programs stored in the ROM.
  • the various functions may include, for example, at least one of a machine guidance function that guides the manual operation of the shovel 100 by the operator, and a machine control function that automatically supports the manual operation of the shovel 100 by the operator. good.
  • the display device 40 is configured to display various information.
  • the display device 40 may be connected to the controller 30 via a communication network such as CAN, or may be connected to the controller 30 via a dedicated line.
  • the input device 42 is configured to allow an operator to input various information to the controller 30.
  • the input device 42 includes at least one of a touch panel, a knob switch, a membrane switch, etc. installed in the cabin 10.
  • the audio output device 43 is configured to output audio.
  • the audio output device 43 may be, for example, an in-vehicle speaker connected to the controller 30, or may be an alarm device such as a buzzer.
  • the audio output device 43 is configured to output various information as audio in response to audio output commands from the controller 30.
  • the storage device 47 is configured to store various information.
  • the storage device 47 is, for example, a nonvolatile storage medium such as a semiconductor memory.
  • the storage device 47 may store information output by various devices while the shovel 100 is in operation, or may store information acquired via the various devices before the shovel 100 starts operating.
  • the storage device 47 may, for example, store data regarding the target construction surface acquired via the communication device T1 or the like.
  • the target construction surface may be set by the operator of the excavator 100, or may be set by a construction manager or the like.
  • the positioning device P1 is configured to measure the position of the upper revolving structure 3.
  • the positioning device P1 may be configured to be able to measure the orientation of the upper rotating body 3.
  • the positioning device P1 is, for example, a GNSS compass, detects the position and orientation of the upper rotating body 3, and outputs the detected value to the controller 30. Therefore, the positioning device P1 can also function as a direction detection device that detects the direction of the upper rotating body 3.
  • the orientation detection device may be an orientation sensor attached to the upper revolving body 3.
  • the body tilt sensor S4 is configured to detect the tilt of the upper revolving body 3.
  • the body inclination sensor S4 is an acceleration sensor that detects the longitudinal inclination angle around the longitudinal axis and the lateral inclination angle around the left-right axis of the upper revolving superstructure 3 with respect to the virtual horizontal plane.
  • the longitudinal axis and the lateral axis of the upper revolving body 3 are perpendicular to each other at, for example, the center point of the shovel, which is one point on the swing axis of the shovel 100.
  • the turning angular velocity sensor S5 is configured to detect the turning angular velocity of the upper rotating body 3.
  • the turning angular velocity sensor S5 may be configured to detect or calculate the turning angle of the upper rotating body 3.
  • the turning angular velocity sensor S5 is a gyro sensor.
  • the turning angular velocity sensor S5 may be a resolver, a rotary encoder, or the like.
  • the imaging device S6 is an example of a space recognition device, and is configured to acquire images around the excavator 100.
  • the imaging device S6 includes a front camera S6F that images the space in front of the shovel 100, a left camera S6L that images the space to the left of the shovel 100, and a right camera S6R that images the space to the right of the shovel 100. , and a rear camera S6B that images the space behind the shovel 100.
  • the imaging device S6 is, for example, a monocular camera having an imaging device such as a CCD or CMOS, and outputs the captured image to the display device 40.
  • the imaging device S6 may be a stereo camera, a distance image camera, or the like.
  • the imaging device S6 may be replaced with another spatial recognition device such as a three-dimensional distance image sensor, an ultrasonic sensor, a millimeter wave radar, a LIDAR or an infrared sensor, or a combination of another spatial recognition device and a camera. May be replaced.
  • the front camera S6F is attached to the ceiling of the cabin 10, that is, inside the cabin 10, for example. However, the front camera S6F may be attached to the outside of the cabin 10, such as the roof of the cabin 10 or the side surface of the boom 4.
  • the left camera S6L is attached to the left end of the upper surface of the revolving upper structure 3
  • the right camera S6R is attached to the right end of the upper surface of the upper revolving structure 3
  • the rear camera S6B is attached to the rear end of the upper surface of the revolving upper structure 3. .
  • the communication device T1 is configured to control communication with external equipment outside the excavator 100.
  • the communication device T1 controls communication with an external device via a satellite communication network, a mobile phone communication network, an Internet network, or the like.
  • the external device may be, for example, the management device 200 such as a server installed in an external facility.
  • the excavator 100 may be configured to transmit various information regarding the excavator 100 to the management device 200 at predetermined time intervals via the communication device T1. With this configuration, a worker, a manager, or the like outside the excavator 100 can visually check various information about the excavator 100 through a display device such as a monitor connected to the management device 200.
  • FIG. 2 is a block diagram showing a configuration example of a drive system of an excavator.
  • the mechanical power system, high pressure hydraulic line, pilot line, and electric control system are shown by double lines, thick solid lines, broken lines, and dotted lines, respectively.
  • the drive system of the excavator 100 mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve 17, an operating device 26, a discharge pressure sensor 28, an operating pressure sensor 29, It includes a controller 30, a proportional valve 31, a work mode selection dial 32, and the like.
  • the engine 11 is a driving source for the excavator.
  • the engine 11 is, for example, a diesel engine that operates to maintain a predetermined rotation speed.
  • the output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15.
  • the main pump 14 supplies hydraulic oil to the control valve 17 via a high-pressure hydraulic line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the regulator 13 controls the discharge amount of the main pump 14.
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the tilt angle of the swash plate of the main pump 14 in accordance with a control command from the controller 30 .
  • the pilot pump 15 supplies hydraulic oil to various hydraulic control devices including the operating device 26 and the proportional valve 31 via the pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the control valve 17 is a hydraulic control device that controls the hydraulic system in the excavator.
  • Control valve 17 includes control valves 171 to 176 and bleed valve 177.
  • the control valve 17 can selectively supply the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves 171 to 176.
  • the control valves 171 to 176 control the flow rate of hydraulic oil flowing from the main pump 14 to the hydraulic actuator and the flow rate of hydraulic oil flowing from the hydraulic actuator to the hydraulic oil tank.
  • the hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left travel hydraulic motor 1A, a right travel hydraulic motor 1B, and a swing hydraulic motor 2A.
  • the bleed valve 177 controls the flow rate of the hydraulic oil discharged by the main pump 14, which flows into the hydraulic oil tank without passing through the hydraulic actuator (hereinafter referred to as "bleed flow rate").
  • the bleed valve 177 may be installed outside the control valve 17.
  • the operating device 26 is a device used by an operator to operate the hydraulic actuator.
  • the operating device 26 supplies the hydraulic fluid discharged by the pilot pump 15 to the pilot port of the control valve corresponding to each of the hydraulic actuators via the pilot line.
  • the pressure of the hydraulic oil (pilot pressure) supplied to each of the pilot ports is a pressure that corresponds to the direction and amount of operation of the lever or pedal (not shown) of the operating device 26 corresponding to each of the hydraulic actuators. .
  • the discharge pressure sensor 28 detects the discharge pressure of the main pump 14. In this embodiment, the discharge pressure sensor 28 outputs the detected value to the controller 30.
  • the operating pressure sensor 29 detects the content of the operator's operation using the operating device 26.
  • the operating pressure sensor 29 detects the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators in the form of pressure (operating pressure), and sends the detected value to the controller 30. Output against.
  • the operation content of the operating device 26 may be detected using a sensor other than the operating pressure sensor.
  • the controller 30 is a control unit that controls the entire shovel 100. Details of the functions of the controller 30 of this embodiment will be described later.
  • the proportional valve 31 operates according to a control command output by the controller 30.
  • the proportional valve 31 is an electromagnetic valve that adjusts the secondary pressure introduced from the pilot pump 15 into the pilot port of the bleed valve 177 in the control valve 17 in accordance with the current command output by the controller 30.
  • the proportional valve 31 operates, for example, so that the larger the current command, the larger the secondary pressure introduced into the pilot port of the bleed valve 177.
  • the work mode selection dial 32 is a dial for the operator to select a work mode, and allows switching between a plurality of different work modes. Further, the work mode selection dial 32 constantly sends data to the controller 30 indicating the setting state of the engine speed and the setting state of acceleration/deceleration characteristics according to the work mode.
  • the work mode selection dial 32 allows the work mode to be switched in multiple stages including SP mode, H mode, A mode, and IDLE mode. In other words, the work mode selection dial 32 of this embodiment can switch the setting conditions of the excavator 100.
  • FIG. 2 shows a state in which the SP mode is selected with the work mode selection dial 32.
  • the SP mode is a work mode selected when it is desired to prioritize the amount of work, and utilizes the highest engine speed and the highest acceleration/deceleration characteristics.
  • the H mode is a work mode selected when it is desired to achieve both work volume and fuel efficiency, and uses the second highest engine speed and the second highest acceleration/deceleration characteristic.
  • Mode A is a work mode selected when you want to moderate the acceleration and deceleration characteristics of the hydraulic actuator that corresponds to lever operation, improve accurate operability and safety, and operate the excavator with low noise. It uses the third highest engine speed and the third highest acceleration/deceleration characteristics.
  • the IDLE mode is a work mode selected when it is desired to put the engine 11 in a low idling state, and uses the lowest engine speed and the lowest acceleration/deceleration characteristics.
  • the controller 30 when the operation of each actuator is stopped while the engine is driving in each work mode (high idling state), the controller 30 causes the engine 11 to maintain the rotation speed set for each work mode.
  • the controller 30 may switch the engine speed to a low idling state when the high idling state continues for a predetermined period of time.
  • the idling state includes a high idling state and a low idling state.
  • the names of each stage of the work mode are SP mode, H mode, A mode, and IDLE mode, but the names of each stage are not limited to these.
  • the names of SP mode, H mode, and A mode may be POWER mode, STD mode, ECO mode, and IDLE mode (low idling state).
  • the work mode is not limited to this embodiment, and may be set in five or more stages.
  • the engine 11 is controlled to have a constant rotation speed at the engine speed of the work mode set by the work mode selection dial 32. Further, the opening of the bleed valve 177 is controlled based on the bleed valve opening characteristic of the work mode set by the work mode selection dial 32. The bleed valve opening characteristics will be described later.
  • each of the above-mentioned work modes may be expressed as a setting condition of the shovel 100, and information indicating the setting condition may be expressed as setting condition information.
  • Setting condition information is information in which specified items are associated with item values.
  • the designated item is, for example, an item indicating the state of the engine rotation speed corresponding to each work mode, or an item indicating the state of the acceleration/deceleration characteristic. Therefore, the setting condition information of this embodiment includes items and item values indicating the state of engine rotation speed corresponding to each work mode, and items and item values indicating the state of acceleration/deceleration characteristics.
  • the ECO mode is set as one of the modes selected by the work mode selection dial 32, but an ECO mode switch may be provided separately from the work mode selection dial 32.
  • the engine speed is adjusted according to each mode selected using the work mode selection dial 32, and when the ECO mode switch is turned on, the acceleration/deceleration corresponding to each mode of the work mode selection dial 32 is adjusted. The characteristics may be changed gradually.
  • the work mode may be changed by voice input.
  • the excavator is provided with a voice input device for inputting the voice emitted by the operator to the controller 30.
  • the controller 30 is provided with a voice identification unit that identifies the voice input by the voice input device.
  • the work mode is selected by the mode selection section such as the work mode selection dial 32, the ECO mode switch, and the voice recognition section.
  • the controller 30 of this embodiment includes a read/write section 301, a replacement determination section 302, and a communication control section 303.
  • the read/write unit 301 reads information stored in the memory 403 of the tag 401. That is, the read/write section 301 of this embodiment is an example of a reading section that reads information from a tag.
  • the read/write section 301 converts (demodulates) an analog signal received from the tag 401 via the transceiver 304 into a digital signal, and passes it to the subsequent exchange determination section 302 implemented by the CPU.
  • the analog signals received from the tags 401 and 401n are analog signals transmitted from the antenna 402 of the tag 401 and include component identification information stored in the memory 403.
  • the transceiver 304 of this embodiment will be explained.
  • the transceiver 304 of this embodiment may be attached at a position where the serviceman P can read the tag 401n when attaching the part 400n to the excavator 100, for example.
  • the read/write unit 301 writes the machine number and replacement date information to the memory 403 of the tag 401n in response to an instruction from the replacement determination unit 302. That is, the read/write unit 301 of this embodiment is an example of a writing unit that writes information to a tag.
  • the transceiver 304 may include a read/write section 301 and a replacement determination section 302.
  • the power source for the transceiver 304 includes a battery different from the battery that supplies power to the controller 30 of the excavator 100. Therefore, even when the engine is off or the controller 30 is off, the information written in the tag 401 can be determined by the transceiver 304. Further, when the controller 30 is in the on state, information from the transceiver 304 is transmitted to the controller 30. Further, the power source of the transceiver 304 may also be used as a battery that supplies power to the controller 30 of the excavator 100. In this case, only the controller 30 may be turned on by a signal from outside the excavator 100.
  • the read/write unit 301 converts (modulates) the aircraft number and exchange date information into an analog signal, and transmits it to the tag 401n via the transceiver 304.
  • the tag 401n writes the machine number and replacement date information included in this analog signal into the memory 403.
  • the replacement determination unit 302 determines whether the read/write unit 301 has lost communication with the tag 401. Furthermore, after the communication with the tag 401 is interrupted, the replacement determination unit 302 determines whether the information read by the read/write unit 301 is only the component identification information of the component 400n.
  • the replacement determination unit 302 determines that the replacement of the component 400 with the component 400n is complete when the read information is only the component identification information of the component 400n. When the replacement is completed, the replacement determining unit 302 stores association information that associates the component identification information of the component 400n with the body number of the excavator 100 in the storage device of the excavator 100.
  • the replacement determination unit 302 instructs the read/write unit 301 to write the machine number and replacement date information to the tag 401n.
  • the replacement determination unit 302 determines whether the read/write unit 301 and the tag 401n communication is cut off.
  • the information other than the component identification information of the component 400n is past usage history information of the tag 401n, including the body number of the excavator 100 and replacement date information.
  • the communication control unit 303 communicates with external devices such as the management device 200 via the communication device T1. Specifically, the communication control unit 303 uses association information that associates the component identification information of the component 400n with the machine number of the excavator 100, and information that indicates that a component to which a tag with a usage history has been attached is attached. You may send a notification etc. indicating this to the management device 200.
  • the controller 30 includes the read/write unit 301, but the controller 30 is not limited to this.
  • the read/write section 301 may be provided outside the controller 30.
  • FIG. 3 is a sequence diagram illustrating the operation of the management system.
  • FIG. 3 shows the operation of the management system SYS after the component 400 is removed from the excavator 100 and communication between the tag 401 of the component 400 and the read/write section 301 is interrupted.
  • the excavator 100 of this embodiment reads information from the tag 401n of the new part 400n using the read/write unit 301 (step S301). At this time, the hydraulic actuator is in a non-operating state in which it is not operated due to the shutoff of the hydraulic circuit by the gate lock valve or the like.
  • the replacement determination unit 302 determines whether the part 400n is a genuine product (step S302).
  • the replacement determination unit 302 determines whether the information read in step S301 is only component identification information. Then, when the read information is only component identification information, the replacement determining unit 302 determines that the component 400n is a genuine product. If the read information includes a machine number (machine identification information) written in the past, the replacement determination unit 302 can determine that the part is a non-genuine part. In this way, by reading the aircraft number (aircraft identification information) that has already been written, it is possible to determine which aircraft the tag 401 was used for in the past, where the tag 401 was used, etc. can be judged.
  • the replacement determination unit 302 may previously hold component identification information of the component 400n, and compares the component identification information read by the read/write unit 301 with the previously held component identification information to determine whether both are compatible. If they match, the part 400n may be determined to be a genuine product. Furthermore, if the component identification information read by the read/write unit 301 is of a component other than the component 400n, the replacement determination unit 302 determines that a component different in type from the removed component is about to be installed. You may also output a notification, warning, etc. indicating this.
  • step S303 to step S306 in FIG. 3 is the processing when the component 400n is determined to be a genuine product in step S302. Further, the processes in steps S306 and S307 in FIG. 3 are processes when the part 400n is not a genuine product.
  • step S302 if it is determined that the product is genuine, the replacement determination unit 302 stores association information that associates the machine number of the excavator 100, the component identification information of the component 400n, and the replacement date information (step S303 ).
  • the machine number of the excavator 100 may be stored in advance in a ROM or the like included in the controller 30.
  • the excavator 100 transmits a notification indicating that the part 400 has been replaced with the part 400n to the management device 200 via the communication control unit 303 (step S304).
  • the replacement determination unit 302 transmits the association information to the management device 200 as a notification of completion of replacement of the component 400n.
  • the management device 200 Upon receiving this notification, the management device 200 updates the maintenance information managed by the management device 200 (step S305).
  • the management device 200 may add replacement history information indicating that the component 400 has been replaced with the component 400n to the maintenance information of the shovel 100 included in the management information. Furthermore, the management device 200 may calculate the scheduled replacement date of the component 400n and include the calculated date in the maintenance information.
  • the replacement determination unit 302 of the excavator 100 instructs the read/write unit 301 to write the machine number and replacement date information of the excavator 100, and the read/write unit 301 writes the machine identification information to the tag 401n.
  • the machine number and replacement date information are written (step S306).
  • step S303 to step S306 in FIG. 3 may be performed after the component 400n is attached to the shovel 100. Furthermore, among the processes from step S303 to step S306 in FIG. It may be done later.
  • the body of the excavator 100 may be provided with a mechanism or the like for fixing the component 400n. Further, the excavator 100 may detect that the component 400n is attached to the shovel 100 when the component 400n is fixed by this mechanism.
  • the information written to the tag 401n is the aircraft number and the replacement date information, but the information is not limited thereto. In this embodiment, it is sufficient that the machine number is written to the tag 401n, and the replacement date information does not need to be written.
  • step S302 if the product is not determined to be genuine, the replacement determination unit 302 notifies the management device 200 via the communication control unit 303 that the component 400 has been replaced with a non-genuine component 400n. (step S307).
  • step S302 the case where the product is not determined to be genuine means that the information read from the tag 401n includes information other than component identification information.
  • the management device 200 Upon receiving this notification, the management device 200 updates the maintenance information managed by the management device 200 (step S308).
  • the management device 200 may add information indicating that the non-genuine part 400n is used to the maintenance information of the part corresponding to the part identification information read in step S301. .
  • the management device 200 may maintain a state in which the replacement of the component 400 of the excavator 100 is not completed in the maintenance information. If this is done, the replacement time of the next component 400 will not be updated, and therefore the replacement of the component 400 will be instructed at an earlier timing.
  • the management device 200 does not update the maintenance information and determines whether the component is inappropriate for the excavator 100.
  • a warning or the like may be output to indicate that a is about to be attached.
  • FIG. 4A is a first diagram illustrating information stored in a tag
  • FIG. 4B is a second diagram illustrating information stored in a tag.
  • FIGS. 4A and 4B show changes in information stored in the memory 403 when the component 400n is a genuine product.
  • FIG. 4A shows the memory 403 of the tag 401n in step S301 of FIG. That is, FIG. 4A shows a state before the component 400n is attached to the shovel 100.
  • the memory 403 stores only the component identification information of the component 400n to which the tag 401n is attached.
  • FIG. 4B shows the memory 403 of the tag 401n in step S306 of FIG.
  • FIG. 4B shows a state in which writing of the machine number and replacement date information by the read/write section 301 is completed after the component 400n is attached to the shovel 100.
  • FIG. 4B it can be seen that the aircraft number and replacement date information are stored in the memory 403.
  • FIG. 5 is a diagram showing a first display example of maintenance information.
  • a screen 280 shown in FIG. 5 is an example of a screen when maintenance information for the shovel 100 is displayed on the display of the management device 200, for example.
  • the screen 280 is an example of a screen listing the replacement history for each part of the excavator 100. Further, FIG. 5 shows a list screen of replacement history when the part 400n is a genuine part.
  • the screen 280 has display areas 281, 282, and 283.
  • air filter replacement history information is displayed as an example of the component 400n.
  • fuel filter replacement history information is displayed as an example of the component 400n.
  • the horizontal axes in the display areas 281 and 282 indicate the cumulative operating time of the shovel 100.
  • the machine number of the excavator 100 is displayed in the display area 283.
  • the management device 200 of this embodiment When the management device 200 of this embodiment receives a notification from the support device 300 indicating that the replacement of the part 400n from the excavator 100 has been completed, the management device 200 reflects this notification in the maintenance information.
  • the management device 200 adds the replacement history information of the part corresponding to the part identification information included in this notification to the maintenance information corresponding to the body number of the excavator 100 included in this notification.
  • next air filter replacement date is displayed in the display area 285.
  • the next replacement date will be after the predefined operating time has elapsed.
  • the completion of replacing parts of the excavator 100 is automatically reflected in the maintenance information, so the service engineer does not need to input the details of the work into the management device 200. do not have. Therefore, according to the present embodiment, it is possible to suppress the occurrence of a situation in which maintenance information is not updated due to a human error such as forgetting an input by a service person, and to provide accurate information to the user of the management device 200. Maintenance information can be grasped.
  • FIG. 6 is a diagram showing a second display example of maintenance information.
  • FIG. 5 shows a list screen of replacement history when the part 400n is not a genuine product.
  • a non-genuine part is a part to which a tag 401n, which stores information indicating past usage history in the memory 403, is attached.
  • FIG. 6 shows a case where the air filter whose replacement history information is displayed in the display area 281 is replaced with a non-genuine air filter.
  • the management device 200 of this embodiment receives a notification indicating that the air filter has been replaced with a non-genuine product, the management device 200 specifies that the air filter is a genuine product for a period until the next air filter replacement date. Make it shorter than usual.
  • the manager, service person, etc. of the excavator 100 can be urged to promptly replace it with a genuine product. Can be done.
  • air filter replacement history information is displayed in the display area 284, but the display area 284 is not limited to this.
  • a warning or the like indicating that the air filter is not a genuine product may be displayed in the display area 284.
  • the transceiver 304 is placed in a space where parts that require regular replacement are placed. Specifically, the transceiver 304 is preferably arranged, for example, in a pump chamber where a plurality of filters such as a fuel filter are arranged, an intake chamber where an air filter is arranged, or the like.
  • the management device 200 does not need to display the replacement history information.
  • the display area 284 may not be displayed in the display area 281, but the display area 285A may be displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

ショベルと、前記ショベルの部品に取り付けられたタグと、前記ショベルの管理装置と、を有するショベルの管理システムであって、前記ショベルは、前記タグに対して、前記ショベルを識別する機体識別情報の書き込みを行う書込部を有する。

Description

ショベルの管理システム、ショベルの管理方法
 本発明は、ショベルの管理システム、ショベルの管理方法に関する。
 従来では、交換部品の純正品に取り付けられたICチップと、交換部品等が組み込まれる機器類に取り付けられたセンサとを用いて、交換部品の純正品、模倣品を識別する技術が知られている。この技術では、センサがICチップから必要情報を検知した場合に、純正品に交換されたことを通知し、ICチップから必要情報を検知しない場合に異常検知信号を出力する。
特開2005-273196号公報
 上述した従来の技術では、例えば、純正品に取り付けられたICチップを、模倣品等の他の部品に付け替えた場合には、他の部品が純正品と誤認識される可能性がある。
 そこで、上記課題に鑑み、部品の誤認識を防止することを目的とする。
 本発明の実施形態に係るショベルの管理システムは、ショベルと、前記ショベルの部品に取り付けられたタグと、前記ショベルの管理装置と、を有するショベルの管理システムであって、前記ショベルは、前記タグに対して、前記ショベルを識別する機体識別情報の書き込みを行う書込部を有する、ショベルの管理システムである。
 本発明の実施形態に係るショベルの管理方法は、ショベルと、前記ショベルの部品に取り付けられたタグと、前記ショベルの管理装置と、を有するショベルの管理システムによるショベルの管理方法であって、前記ショベルが、前記タグに対して、前記ショベルを識別する機体識別情報の書き込みを行う、ショベルの管理方法である。
 部品の誤認識を防止できる。
ショベルの管理システムのシステム構成の一例を示す図である。 ショベルの駆動系の構成例を示すブロック図である。 管理システムの動作を説明するシーケンス図である。 タグに格納される情報について説明する第一の図である。 タグに格納される情報について説明する第二の図である。 メンテナンス情報の第一の表示例を示す図である。 メンテナンス情報の第二の表示例を示す図である。
 以下に、図面を参照して、実施形態について説明する。図1は、ショベルの管理システムのシステム構成の一例を示す図である。
 本実施形態のショベルの管理システムSYSは、ショベル100、ショベル100の管理装置200、部品400に取り付けられたタグ401を含む。以下の説明では、ショベルの管理システムSYSを、管理システムSYSと表現する。
 管理システムSYSにおいて、ショベル100と、管理装置200とは、それぞれがネットワークを介して接続されており、通信が可能である。
 管理装置200は、ショベル100から、稼働情報を受信し、ショベル100の状態を管理する。また、本実施形態の管理装置200は、演算処理装置(プロセッサ)と記憶装置とを有するコンピュータである。管理装置200において、記憶装置には、例えば、ショベル100のメンテナンス情報を含む管理情報が格納されていてよい。また、管理装置200は、演算処理装置が、記憶装置に格納されたプログラムを読み出して実行することで、各種の機能が実現される。各種の機能とは、例えば、メンテナンス情報を含む管理情報の更新や、表示装置に対するメンテナンス情報の表示等を含む。
 図1では、ショベル100に組み込まれた部品400が、サービスマンPによって、新たな部品400nに交換される場合を示している。部品400、400nは、ショベル100を製造しているメーカによって製造された部品である。言い換えれば、部品400nは、純正品である。
 本実施形態では、ショベル100に組み込まれた部品400と、これから部品400と交換される新たな部品400nとのそれぞれに、各部品を識別するための部品識別情報が格納されたタグ401、401nが取り付けられている。タグ401、401nに格納された部品識別情報は、部品400、400nが、純正品であることを示す情報を含む。
 本実施形態のタグ401、401nは、例えば、近距離無線通信(RFID;radio frequency identification)により、ショベル100と通信を行うタグである。
 本実施形態のショベル100は、タグ401、401nから情報の読み取る機能と、タグ401、401nへの情報を書き込む機能とを有する。
 図1において、部品400が部品400nに交換される場合、部品400がショベル100から取り外される。すると、ショベル100とタグ401との通信が途絶え、ショベル100は、タグ401に格納された部品識別情報を読み取れなくなる。これにより、ショベル100は、タグ401が取り付けられた部品400が取り外されたことを検出する。
 また、サービスマンPが、ショベル100に新たな部品400nを取り付けると、ショベル100は、部品400nのタグ401nと通信を再開し、タグ401nに格納された部品識別情報を認識する。
 このように、本実施形態のショベル100は、タグ401との間で一度通信が途絶えた後に、タグ401nと通信が再開されると、部品400が部品400nに交換されたことを認識する。
 ショベル100は、部品400が交換されたことを検出すると、ショベル100の機体の識別情報としての機体番号(機体シリアル番号等)と、部品400の交換作業が行われたことを示す情報とを管理装置200へ送信する。具体的には、ショベル100は、自機の機体番号と、部品400nの部品識別情報とを対応付けた対応付け情報を管理装置200へ送信する。
 管理装置200では、対応付け情報を受信すると、管理装置200において管理されている、ショベル100のメンテナンス情報等を更新する。ショベル100のメンテナンス情報は、ショベル100の各種の状態を管理するための管理情報の一部であってよい。
 また、本実施形態のショベル100は、新たな部品400nが取り付けられて、タグ401nとの通信が開始されると、このタグ401nに対し、自機の機体番号と、部品400nがショベル100に取り付けられた日を示す情報とを書き込む。部品400nがショベル100に取り付けられた日とは、言い換えれば、部品が交換された日である。
 したがって、本実施形態では、一度ショベル100と通信を行ったタグ401nには、ショベル100の機体番号と、部品400nが交換された日を示す情報とが、タグ401nの使用履歴情報として格納される。
 このため、本実施形態では、一度ショベル100に取り付けられた部品400nからタグ401nを取り外して他の部品に取り付けとしても、タグ401nに過去の使用履歴情報が格納されているため、ショベル100は、他の部品を純正品として認識しない。
 本実施形態では、このように、純正品に取り付けられていたタグの使い回しを防止することができる。また、本実施形態では、純正品に取り付けられていたタグを、模倣品に取り付けた場合等であっても、模倣品が純正品として誤認識されることを防止できる。
 また、本実施形態のショベル100は、他の部品が純正品として認識されなかった場合、他の部品に取り付けられたタグ401nとの通信を遮断し、純正品ではない部品と交換されたことを管理装置200に通知してもよい。
 また、ショベル100は、取り付けられた他の部品が純正品として認識されなかった場合、部品が交換されたことを検出しなくてもよい。
 本実施形態のショベル100は、下部走行体1、旋回機構2、上部旋回体3を有する。ショベル100において、下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられている。
 ブーム4、アーム5、バケット6は、アタッチメントの一例としての掘削アタッチメントを構成している。そして、ブーム4は、ブームシリンダ7により駆動され、アーム5は、アームシリンダ8により駆動され、バケット6は、バケットシリンダ9により駆動される。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。
 ブーム角度センサS1はブーム4の回動角度を検出するように構成されている。本実施形態では、ブーム角度センサS1は加速度センサであり、上部旋回体3に対するブーム4の回動角度(以下、「ブーム角度」とする。)を検出できる。ブーム角度は、例えば、ブーム4を最も下げたときに最小角度となり、ブーム4を上げるにつれて大きくなる。
 アーム角度センサS2はアーム5の回動角度を検出するように構成されている。本実施形態では、アーム角度センサS2は加速度センサであり、ブーム4に対するアーム5の回動角度(以下、「アーム角度」とする。)を検出できる。アーム角度は、例えば、アーム5を最も閉じたときに最小角度となり、アーム5を開くにつれて大きくなる。
 バケット角度センサS3はバケット6の回動角度を検出するように構成されている。本実施形態では、バケット角度センサS3は加速度センサであり、アーム5に対するバケット6の回動角度(以下、「バケット角度」とする。)を検出できる。バケット角度は、例えば、バケット6を最も閉じたときに最小角度となり、バケット6を開くにつれて大きくなる。
 ブーム角度センサS1、アーム角度センサS2、及び、バケット角度センサS3はそれぞれ、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ、ジャイロセンサ、又は、加速度センサとジャイロセンサの組み合わせ等であってもよい。
 ブームシリンダ7にはブームロッド圧センサS7R及びブームボトム圧センサS11Bが取り付けられている。アームシリンダ8にはアームロッド圧センサS8R及びアームボトム圧センサS8Bが取り付けられている。
 バケットシリンダ9にはバケットロッド圧センサS9R及びバケットボトム圧センサS9Bが取り付けられている。ブームロッド圧センサS7R、ブームボトム圧センサS11B、アームロッド圧センサS8R、アームボトム圧センサS8B、バケットロッド圧センサS9R及びバケットボトム圧センサS9Bは、集合的に「シリンダ圧センサ」とも称される。
 ブームロッド圧センサS7Rはブームシリンダ7のロッド側油室の圧力(以下、「ブームロッド圧」とする。)を検出し、ブームボトム圧センサS11Bはブームシリンダ7のボトム側油室の圧力(以下、「ブームボトム圧」とする。)を検出する。アームロッド圧センサS8Rはアームシリンダ8のロッド側油室の圧力(以下、「アームロッド圧」とする。)を検出し、アームボトム圧センサS8Bはアームシリンダ8のボトム側油室の圧力(以下、「アームボトム圧」とする。)を検出する。
 バケットロッド圧センサS9Rはバケットシリンダ9のロッド側油室の圧力(以下、「バケットロッド圧」とする。)を検出し、バケットボトム圧センサS9Bはバケットシリンダ9のボトム側油室の圧力(以下、「バケットボトム圧」とする。)を検出する。
 上部旋回体3には運転室であるキャビン10が設けられ且つエンジン11等の動力源が搭載されている。また、エンジン11の排出機構の近傍には、CO排出量を検出するためのセンサが設けられていてもよい。
 さらに、上部旋回体3には、コントローラ30、表示装置40、入力装置42、音声出力装置43、記憶装置47、測位装置P1、機体傾斜センサS4、旋回角速度センサS5、撮像装置S6及び通信装置T1が取り付けられている。
 上部旋回体3には、電力を供給する蓄電部、及び、エンジン11の回転駆動力を用いて発電する電動発電機等が搭載されていてもよい。蓄電部は、例えば、キャパシタ、又は、リチウムイオン電池等である。電動発電機は、電動機として機能して機械負荷を駆動してもよく、発電機として機能して電気負荷に電力を供給してもよい。
 コントローラ30は、ショベル100の駆動制御を行う主制御部として機能する。本実施形態では、コントローラ30は、CPU、RAM及びROM等を含む。なお、コントローラ30は、CPU、RAM及びROM等と、後述するアナログ信号を取り扱う回路とを含んでもよい。
 コントローラ30の各種機能は、例えば、ROMに格納されたプログラムをCPUが実行することで実現される。各種機能は、例えば、オペレータによるショベル100の手動操作をガイド(案内)するマシンガイダンス機能、及び、オペレータによるショベル100の手動操作を自動的に支援するマシンコントロール機能の少なくとも1つを含んでいてもよい。
 表示装置40は、各種情報を表示するように構成されている。表示装置40は、CAN等の通信ネットワークを介してコントローラ30に接続されていてもよく、専用線を介してコントローラ30に接続されていてもよい。
 入力装置42は、オペレータが各種情報をコントローラ30に入力できるように構成されている。入力装置42は、キャビン10内に設置されたタッチパネル、ノブスイッチ及びメンブレンスイッチ等の少なくとも1つを含む。
 音声出力装置43は、音声を出力するように構成されている。音声出力装置43は、例えば、コントローラ30に接続される車載スピーカであってもよく、ブザー等の警報器であってもよい。本実施形態では、音声出力装置43は、コントローラ30からの音声出力指令に応じて各種情報を音声出力するように構成されている。
 記憶装置47は、各種情報を記憶するように構成されている。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体である。記憶装置47は、ショベル100の動作中に各種機器が出力する情報を記憶してもよく、ショベル100の動作が開始される前に各種機器を介して取得する情報を記憶してもよい。
 記憶装置47は、例えば、通信装置T1等を介して取得される目標施工面に関するデータを記憶していてもよい。目標施工面は、ショベル100のオペレータが設定したものであってもよく、施工管理者等が設定したものであってもよい。
 測位装置P1は、上部旋回体3の位置を測定するように構成されている。測位装置P1は、上部旋回体3の向きを測定できるように構成されていてもよい。本実施形態では、測位装置P1は、例えばGNSSコンパスであり、上部旋回体3の位置及び向きを検出し、検出値をコントローラ30に対して出力する。そのため、測位装置P1は、上部旋回体3の向きを検出する向き検出装置としても機能し得る。向き検出装置は、上部旋回体3に取り付けられた方位センサであってもよい。
 機体傾斜センサS4は上部旋回体3の傾斜を検出するように構成されている。本実施形態では、機体傾斜センサS4は仮想水平面に対する上部旋回体3の前後軸回りの前後傾斜角及び左右軸回りの左右傾斜角を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、ショベル100の旋回軸上の一点であるショベル中心点で互いに直交する。
 旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。旋回角速度センサS5は、上部旋回体3の旋回角度を検出或いは算出するように構成されていてもよい。本実施形態では、旋回角速度センサS5は、ジャイロセンサである。旋回角速度センサS5は、レゾルバ、ロータリエンコーダ等であってもよい。
 撮像装置S6は、空間認識装置の一例であり、ショベル100の周辺の画像を取得するように構成されている。本実施形態では、撮像装置S6は、ショベル100の前方の空間を撮像する前カメラS6F、ショベル100の左方の空間を撮像する左カメラS6L、ショベル100の右方の空間を撮像する右カメラS6R、及び、ショベル100の後方の空間を撮像する後カメラS6Bを含む。
 撮像装置S6は、例えば、CCD又はCMOS等の撮像素子を有する単眼カメラであり、撮像した画像を表示装置40に出力する。撮像装置S6は、ステレオカメラ、距離画像カメラ等であってもよい。また、撮像装置S6は、3次元距離画像センサ、超音波センサ、ミリ波レーダ、LIDAR又は赤外線センサ等の他の空間認識装置で置き換えられてもよく、他の空間認識装置とカメラとの組み合わせで置き換えられてもよい。
 前カメラS6Fは、例えば、キャビン10の天井、すなわちキャビン10の内部に取り付けられている。但し、前カメラS6Fは、キャビン10の屋根、ブーム4の側面等、キャビン10の外部に取り付けられていてもよい。左カメラS6Lは、上部旋回体3の上面左端に取り付けられ、右カメラS6Rは、上部旋回体3の上面右端に取り付けられ、後カメラS6Bは、上部旋回体3の上面後端に取り付けられている。
 通信装置T1は、ショベル100の外部にある外部機器との通信を制御するように構成されている。本実施形態では、通信装置T1は、衛星通信網、携帯電話通信網又はインターネット網等を介した外部機器との通信を制御する。外部機器は、例えば、外部施設に設置されたサーバ等の管理装置200であってもよい。
 ショベル100は、通信装置T1を介し、所定の時間間隔でショベル100に関する各種の情報を管理装置200に送信するように構成されていてもよい。この構成により、ショベル100の外部にいる作業者又は管理者等は、管理装置200に接続されているモニタ等の表示装置を通じてショベル100各種情報を視認できる。
 次に、図2を参照してショベル100の駆動系の構成について説明する。図2は、ショベルの駆動系の構成例を示すブロック図である。図2中、機械的動力系、高圧油圧ライン、パイロットライン、及び電気制御系をそれぞれ二重線、太実線、破線、及び点線で示している。
 図2に示されるように、ショベル100の駆動系は、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、吐出圧センサ28、操作圧センサ29、コントローラ30、比例弁31、作業モード選択ダイヤル32等を含む。
 エンジン11は、ショベルの駆動源である。本実施形態では、エンジン11は、例えば所定の回転数を維持するように動作するディーゼルエンジンである。また、エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15の入力軸に連結されている。
 メインポンプ14は、高圧油圧ラインを介して作動油をコントロールバルブ17に供給する。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。
 レギュレータ13は、メインポンプ14の吐出量を制御する。本実施形態では、レギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。
 パイロットポンプ15は、パイロットラインを介して操作装置26及び比例弁31を含む各種油圧制御機器に作動油を供給する。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。
 コントロールバルブ17は、ショベルにおける油圧システムを制御する油圧制御装置である。コントロールバルブ17は、制御弁171~176、及びブリード弁177を含む。コントロールバルブ17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できる。
 制御弁171~176は、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左側走行用油圧モータ1A、右側走行用油圧モータ1B、及び旋回用油圧モータ2Aを含む。
 ブリード弁177は、メインポンプ14が吐出する作動油のうち、油圧アクチュエータを経由せずに作動油タンクに流れる作動油の流量(以下、「ブリード流量」とする。)を制御する。ブリード弁177は、コントロールバルブ17の外部に設置されていてもよい。
 操作装置26は、オペレータが油圧アクチュエータの操作のために用いる装置である。本実施形態では、操作装置26は、パイロットラインを介して、パイロットポンプ15が吐出する作動油を油圧アクチュエータのそれぞれに対応する制御弁のパイロットポートに供給する。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダル(図示せず。)の操作方向及び操作量に応じた圧力である。
 吐出圧センサ28は、メインポンプ14の吐出圧を検出する。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。
 操作圧センサ29は、操作装置26を用いたオペレータの操作内容を検出する。本実施形態では、操作圧センサ29は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を圧力(操作圧)の形で検出し、検出した値をコントローラ30に対して出力する。操作装置26の操作内容は、操作圧センサ以外の他のセンサを用いて検出されてもよい。
 コントローラ30は、ショベル100全体を制御する制御部である。本実施形態のコントローラ30の機能の詳細は後述する。
 比例弁31は、コントローラ30が出力する制御指令に応じて動作する。本実施形態では、比例弁31は、コントローラ30が出力する電流指令に応じてパイロットポンプ15からコントロールバルブ17内のブリード弁177のパイロットポートに導入される二次圧を調整する電磁弁である。比例弁31は、例えば、電流指令が大きいほど、ブリード弁177のパイロットポートに導入される二次圧が大きくなるように動作する。
 作業モード選択ダイヤル32は、オペレータが作業モードを選択するためのダイヤルであり、複数の異なる作業モードを切り替えできるようにする。また、作業モード選択ダイヤル32からは、作業モードに応じたエンジン回転数の設定状態や加減速特性の設定状態を示すデータがコントローラ30に常時送信されている。
 作業モード選択ダイヤル32は、SPモード、Hモード、Aモード、及びIDLEモードを含む複数段階で作業モードを切り替えできるようにする。つまり、本実施形態の作業モード選択ダイヤル32は、ショベル100の設定条件を切り替えることができる。
 なお、SPモードは第1のモードの一例であり、Hモードは第2のモードの一例である。また、図2は、作業モード選択ダイヤル32でSPモードが選択された状態を示す。
 SPモードは、作業量を優先したい場合に選択される作業モードであり、最も高いエンジン回転数を利用し、且つ最も高い加減速特性を利用する。Hモードは、作業量と燃費を両立させたい場合に選択される作業モードであり、二番目に高いエンジン回転数を利用し、且つ二番目に高い加減速特性を利用する。
 Aモードは、レバー操作に対応した油圧アクチュエータの加速特性や減速特性を緩やかにし、正確な操作性と安全性を向上させ、低騒音でショベルを稼働させたい場合に選択される作業モードであり、三番目に高いエンジン回転数を利用し、且つ三番目に高い加減速特性を利用する。IDLEモードは、エンジン11をローアイドリング状態にしたい場合に選択される作業モードであり、最も低いエンジン回転数を利用し、且つ最も低い加減速特性を利用する。
 ここで、コントローラ30は、各作業モードにおいてエンジン駆動中に各アクチュエータの動作が停止している場合(ハイアイドリング状態)、エンジン11は作業モード毎に設定された回転数を維持させる。コントローラ30は、エンジン回転数をハイアイドリング状態が所定時間継続すると、ローアイドリング状態へ切り換えてもよい。アイドリン状態には、ハイアイドリング状態とローアイドリング状態が含まれる。
 なお、上述した説明では、作業モードの各段階の名称をSPモード、Hモード、Aモード、及びIDLEモードとしたが、各段階の名称はこれに限定されない。例えば、SPモード、Hモード、Aモードの名称のそれぞれは、POWERモード、STDモード、ECOモード、及びIDLEモード(ローアイドリング状態)とされてもよい。作業モードは本実施の形態に限定されず、5段階以上に設定できるようにしてもよい。
 エンジン11は、作業モード選択ダイヤル32で設定された作業モードのエンジン回転数で一定に回転数制御される。また、ブリード弁177の開口は、作業モード選択ダイヤル32で設定された作業モードのブリード弁開口特性に基づいて開口制御される。ブリード弁開口特性については後述する。
 本実施形態では、上述した各作業モードをショベル100の設定条件と表現し、設定条件を示す情報を設定条件情報と表現する場合がある。設定条件情報とは、指定された項目と、項目の値とが対応付けられた情報である。指定された項目とは、例えば、各作業モードと対応したエンジン回転数の状態を示す項目や、加減速特性の状態を示す項目である。したがって、本実施形態の設定条件情報には、各作業モードと対応したエンジン回転数の状態を示す項目と項目の値、加減速特性の状態を示す項目と項目の値とを含む。
 図2の構成図では作業モード選択ダイヤル32により選択されるモードの一つにECOモードを設定したが、作業モード選択ダイヤル32とは別にECOモードスイッチを設けてもよい。この場合、作業モード選択ダイヤル32を用いて選択された各モードに対応したエンジン回転数の調整を行い、ECOモードスイッチをONされた場合に、作業モード選択ダイヤル32の各モードに対応した加減速特性を緩やかに変更してもよい。
 また、作業モードの変更を音声入力によって実現してもよい。その場合、ショベルにはオペレータが発した音声をコントローラ30に入力する音声入力装置が設けられる。また、コントローラ30には、音声入力装置により入力される音声を識別する音声識別部が設けられる。
 このように作業モードは、作業モード選択ダイヤル32、ECOモードスイッチ、音声識別部等のモード選択部によって選択される。
 次に、本実施形態のコントローラ30の機能について説明する。本実施形態のコントローラ30は、リードライト部301、交換判定部302、通信制御部303を有する。
 リードライト部301は、タグ401のメモリ403に格納された情報を読み取る。つまり、本実施形態のリードライト部301は、タグから情報を読み取る読取部の一例である。
 具体的には、リードライト部301は、送受信機304を介してタグ401から受信したアナログ信号をデジタル信号に変換し(復調)、CPUにより実現される後段の交換判定部302へ渡す。タグ401、401nから受信したアナログ信号とは、タグ401のアンテナ402から送信されるアナログ信号であって、メモリ403に格納された部品識別情報を含む信号である。なお、本実施形態の送受信機304について説明する。本実施形態の送受信機304は、例えば、サービスマンPが、ショベル100に部品400nを取り付ける際に、タグ401nを読み取らせることができる位置に取り付けられてよい。
 また、リードライト部301は、交換判定部302からの指示に応じて、タグ401nのメモリ403に対して、機体番号と交換日情報とを書き込む。つまり、本実施形態のリードライト部301は、タグに対して情報を書き込む書込部の一例である。
 また、送受信機304にリードライト部301、交換判定部302を備えてもよい。この場合、送受信機304への電源は、ショベル100のコントローラ30へ電力を供給するバッテリとはことなるバッテリを備える。このため、エンジンをオフの状態、若しくは、コントローラ30がオフでも送受信機304によりタグ401に書き込まれた情報を判定可能となる。また、コントローラ30がオン状態において、送受信機304の情報がコントローラ30へ送信される。また、送受信機304の電源は、ショベル100のコントローラ30へ電力を供給するバッテリと兼用でもよい。この場合、ショベル100の外部からの信号により、コントローラ30のみをオン状態にしてもよい。
 具体的には、リードライト部301は、機体番号と交換日情報とをアナログ信号に変換し(変調)、送受信機304を介してタグ401nに送信する。タグ401nは、このアナログ信号に含まれる機体番号、交換日情報をメモリ403に書き込む。
 交換判定部302は、リードライト部301によるタグ401との通信が途絶えたか否かを判定する。また、交換判定部302は、タグ401との通信が途絶えた後に、リードライト部301が読み取った情報が、部品400nの部品識別情報のみであるか否かを判定する。
 交換判定部302は、読み取った情報が部品400nの部品識別情報のみであった場合に、部品400の部品400nへの交換が完了したものと判定する。交換判定部302は、交換が完了すると、部品400nの部品識別情報とショベル100の機体番号とを対応付けた対応付け情報を、ショベル100の有する記憶装置に記憶する。
 続いて、交換判定部302は、機体番号と交換日情報のタグ401nへの書き込みを、リードライト部301へ指示する。
 また、交換判定部302は、タグ401との通信が途絶えた後に、リードライト部301が読み取った情報に、部品400nの部品識別情報以外の情報が含まれる場合、リードライト部301とタグ401nとの通信を遮断する。なお、部品400nの部品識別情報以外の情報とは、タグ401nの過去の使用履歴情報であって、ショベル100の機体番号と、交換日情報である。
 通信制御部303は、通信装置T1を介して管理装置200等の外部装置と通信を行う。具体的には、通信制御部303は、部品400nの部品識別情報とショベル100の機体番号とを対応付けた対応付け情報や、使用履歴のあるタグが貼り付けられた部品が取り付けられたことを示す通知等を管理装置200に送信してもよい。
 なお、図2では、コントローラ30にリードライト部301が含まれるものとしたが、これに限定されない。リードライト部301は、コントローラ30の外部に設けられてもよい。
 次に、図3を参照して、本実施形態の管理システムSYSの動作について説明する。図3は、管理システムの動作を説明するシーケンス図である。
 図3では、部品400がショベル100から取り外されて、部品400のタグ401と、リードライト部301との通信が途絶えた後の管理システムSYSの動作を示している。
 本実施形態のショベル100は、リードライト部301により、新たな部品400nのタグ401nから情報を読み取る(ステップS301)。この時、油圧アクチュエータはゲートロック弁による油圧回路の遮断等により油圧アクチュエータが動作されない非作動状態である。
 続いて、ショベル100は、交換判定部302により、部品400nが純正品であるか否かを判定する(ステップS302)。
 具体的には、交換判定部302は、ステップS301において読み取られた情報が、部品識別情報のみであったか否かを判定する。そして、交換判定部302は、読み取られた情報が、部品識別情報のみであった場合、部品400nを純正品と判定する。交換判定部302は、読み取られた情報に過去に書き込まれた機体番号(機体識別情報)が含まれている場合には、純正品以外の部品と判断できる。このように、既に書き込まれた機体番号(機体識別情報)を読み取ることで、タグ401が、どの機体に対して過去に使用されたものであるか、どこで使用されたタグ401であるか等を判断することができる。
 なお、交換判定部302は、部品400nの部品識別情報を予め保持していてもよく、リードライト部301が読み取った部品識別情報と、予め保持された部品識別情報とを比較して、両者が一致する場合に、部品400nを純正品と判定してもよい。また、交換判定部302は、リードライト部301が読み取った部品識別情報が、部品400n以外の部品の部品識別情報であった場合、取り外された部品と種類の異なる部品が取り付けられようとしていることを示す通知や警報等を出力してもよい。
 図3における、ステップS303からステップS306までの処理は、ステップS302において、部品400nが純正品と判定された場合の処理である。また、図3における、ステップS306とステップS307の処理は、部品400nが純正品ではない場合の処理である。
 ステップS302において、純正品と判定された場合、交換判定部302は、ショベル100の機体番号と、部品400nの部品識別情報と、交換日情報とを対応付けた対応付け情報を記憶する(ステップS303)。なお、ショベル100の機体番号は、コントローラ30の有するROM等に予め格納されていてよい。
 続いて、ショベル100は、通信制御部303を介して、管理装置200に対し、部品400が部品400nに交換されたことを示す通知を送信する(ステップS304)。具体的には、交換判定部302は、対応付け情報を、部品400nの交換完了の通知として、管理装置200に送信する。
 管理装置200は、この通知を受けて、管理装置200で管理されているメンテナンス情報を更新する(ステップS305)。
 具体的には、管理装置200は、管理情報に含まれるショベル100のメンテナンス情報において、部品400が部品400nに交換されたことを示す交換履歴情報を追加してもよい。また、管理装置200は、部品400nの交換予定日等を算出し、メンテナンス情報に含めてもよい。
 続いて、ショベル100の交換判定部302は、リードライト部301に対し、ショベル100の機体番号と交換日情報との書き込みを指示し、リードライト部301は、タグ401nに対し、機体識別情報としての機体番号と交換日情報の書き込みを行う(ステップS306)。
 なお、図3のステップS303からステップS306までの処理は、部品400nがショベル100に取り付けられた後に行われてもよい。また、図3のステップS303からステップS306までの処理のうち、ステップS305は、部品400nがショベル100に取り付けられた前に行われてもよく、ステップS306は、部品400nがショベル100に取り付けられた後に行われてもよい。
 具体的には、例えば、ショベル100の機体には、部品400nを固定するための機構等が設けられていてもよい。また、ショベル100は、この機構により、部品400nが固定されると、部品400nがショベル100に取り付けられたことを検出してもよい。
 以上が、部品400nが純正品であった場合の管理システムSYSの処理である。なお、本実施形態では、タグ401nに書き込まれる情報を、機体番号と、交換日情報としたが、これに限定されない。本実施形態では、タグ401nに対して、機体番号が書き込まれればよく、交換日情報は書き込まれなくてもよい。
 次に、部品400nが純正品ではない場合について説明する。ステップS302において、純正品と判定されなかった場合、交換判定部302は、通信制御部303を介して、管理装置200に対し、部品400が純正品ではない部品400nに交換されたことを示す通知を送信する(ステップS307)。
 ステップS302において、純正品と判定されなかった場合とは、タグ401nから読み取った情報に、部品識別情報以外の情報が含まれる場合である。
 管理装置200は、この通知を受けて、管理装置200で管理されているメンテナンス情報を更新する(ステップS308)。
 具体的には、管理装置200は、ステップS301で読み取られた部品識別情報と対応する部品のメンテナンス情報に対し、純正品ではない部品400nが使用されていることを示す情報を追加してもよい。
 また、この場合、部品400は、純正品ではない部品400nに交換されたことになり、部品400が適正に交換されたとは言えない。このため、管理装置200は、メンテナンス情報において、ショベル100の部品400の交換が完了していない状態を維持してよい。このようにすれば、次の部品400の交換時期が更新されないため、早いタイミングで部品400の交換が指示される。
 また、例えば、メンテナンス情報において、ステップS301で読み取られた部品識別情報と対応する情報が存在しない場合には、管理装置200は、メンテナンス情報を更新せずに、ショベル100に対して不適切な部品が取り付けられようとしていることを示す警告等を出力してもよい。
 ここで、図4A、図4Bを参照して、本実施形態のタグ401nのメモリ403内に格納される情報の変化について説明する。図4Aは、タグに格納される情報について説明する第一の図であり、図4Bは、タグに格納される情報について説明する第二の図である。
 図4A、図4Bでは、部品400nが純正品であった場合における、メモリ403内に格納される情報の変化を示す。
 図4Aは、図3のステップS301におけるタグ401nのメモリ403を示す。つまり、図4Aは、部品400nがショベル100に取り付けられる前の状態を示す。
 この場合、メモリ403には、タグ401nが取り付けられている部品400nの部品識別情報のみが格納されている。
 図4Bは、図3のステップS306におけるタグ401nのメモリ403を示す。言い換えれば、図4Bは、部品400nがショベル100に取り付けられた後に、リードライト部301による機体番号と交換日情報の書き込みが完了した状態を示す。図4Bでは、機体番号と交換日情報とがメモリ403に格納されていることがわかる。
 本実施形態では、このように、純正品である部品400nに取り付けられたタグ401nは、一度使用されると、メモリ403に部品識別情報以外の情報が書き込まれる。したがって、本実施形態では、例えば、図4Bに示す状態のタグ401nを部品400nから引き剥がして他の部品に取り付けたとしても、このタグ401nが過去に使用済みであることを検出できる。したがって、本実施形態では、他の部品の純正品と誤認識することがない。
 次に、図5及び図6を参照して、管理装置200におけるメンテナンス情報の管理について説明する。
 図5は、メンテナンス情報の第一の表示例を示す図である。図5に示す画面280は、例えば、管理装置200のディスプレイ等に、ショベル100のメンテナンス情報が表示されたときの画面の一例である。
 画面280は、ショベル100の部品毎の交換履歴の一覧画面の一例である。また、図5では、部品400nが純正品の部品であった場合の交換履歴の一覧画面を示す。
 画面280は、表示領域281、282、283を有する。表示領域281には、部品400nの一例として、エアフィルタの交換履歴情報が表示されている。表示領域282には、部品400nの一例として、燃料フィルタの交換履歴情報が表示されている。表示領域281、282における横軸は、ショベル100の累積の稼働時間を示す。表示領域283には、ショベル100の機番が表示されている。
 なお、管理装置200では、画面280が下方向にスクロールされると、エアフィルタや燃料フィルタ、オイルフィルタ、作動油フィルタ以外の部品についても、交換履歴情報が表示される。
 本実施形態の管理装置200は、支援装置300から、ショベル100から部品400nの交換が完了したことを示す通知を受信すると、この通知をメンテナンス情報に反映させる。
 具体的には、管理装置200は、この通知に含まれるショベル100の機体番号と対応するメンテナンス情報に、この通知に含まれる部品識別情報と対応する部品の交換履歴情報を追加する。
 画面280において、表示領域284には、エアフィルタの交換が完了したことを示す新たな交換履歴情報が表示される。
 また、画面280では、表示領域285において、次のエアフィルタの交換日を示す情報が表示される。図5の例では、新たにショベル100に取り付けられたエアフィルタが純正品であるため、次の交換日は、予め規定された稼働時間が経過した後とされる。
 本実施形態では、このように、ショベル100の部品の交換が完了したことが、自動的にメンテナンス情報に反映されるため、サービスマンは、管理装置200に対して、作業内容を入力する必要がない。したがって、本実施形態によれば、サービスマンによる入力のし忘れ等といった人的なミスにより、メンテナンス情報が更新されない、といった事態の発生を抑制でき、管理装置200の利用者に対して、正確なメンテナンス情報を把握させることができる。
 図6は、メンテナンス情報の第二の表示例を示す図である。図5では、部品400nが純正品ではなかった場合の交換履歴の一覧画面を示している。純正品ではない部品とは、メモリ403に過去の使用履歴を示す情報が格納されているタグ401nが取り付けられた部品である。
 図6では、表示領域281に交換履歴情報が表示されているエアフィルタが、純正品ではないエアフィルタに交換された場合を示す。
 本実施形態の管理装置200は、エアフィルタが、純正品ではないものに交換されたことを示す通知を受信した場合、次のエアフィルタの交換日までの期間を、エアフィルタが純正品である場合よりも短くする。
 図6に示す画面280Aでは、表示領域285Aにおいて、次のエアフィルタの交換日を示す情報が表示されている。ここで、表示領域284から、表示領域285Aまでの期間は、図5における表示領域284から表示領域285までの期間よりも短いことがわかる。
 本実施形態では、このように、次の交換日までの期間が短くなるように、期間を変更することで、速やかな純正品への交換を、ショベル100の管理者やサービスマン等に促すことができる。
 なお、図6の例では、表示領域284に、エアフィルタの交換履歴情報を表示させるものとしたが、これに限定されない。画面280Aにおいて、表示領域284には、エアフィルタが純正品ではないことを示す警告等を表示させてもよい。
 本実施形態は、ショベル100の継続的な稼働により定期的な交換が必要な、エアフィルタや燃料フィルタ、オイルフィルタ、作動油フィルタ等の部品に適用することが有効であるが、本実施形態が適用される部品は、このような定期的な交換が必要な部品には限定されない。なお、送受信機304は、定期的に交換が必要な部品が配置されている空間に配置される。具体的には、送受信機304は、例えば、燃料フィルタ等の複数のフィルタが配置されるポンプ室、エアフィルが配置される吸気室等に配置されることが好ましい。
 また、管理装置200は、純正品ではない部品へ交換された場合には、交換履歴情報を表示させなくてもよい。この場合、表示領域281には、表示領域284は表示されず、表示領域285Aが表示されてもよい。
 本実施形態では、このように、交換された部品が純正品であるか否かに応じて、メンテナンス情報の表示態様を異ならせることで、管理者等に対し、ショベル100に取り付けられた部品が純正品であるか否かを用意に把握させることができる。
 また、本実施形態では、交換された部品が純正品であるか否かに応じて、次のメンテナンス時期を変更させることで、早期の純正品への交換を促すことができる。
 以上、本発明を実施するための形態について説明したが、上記内容は、発明の内容を限定するものではなく、本発明の範囲内で種々の変形及び改良が可能である。
 また、本国際出願は、2022年3月31日に出願された日本国特許出願2022-061039に基づく優先権を主張するものであり、日本国特許出願2022-061039の全内容を本国際出願に援用する。
 1 下部走行体
 2 旋回機構
 3 上部旋回体
 30 コントローラ
 40 表示装置
 100 ショベル
 200 管理装置
 301 リードライト部
 302 交換判定部
 303 通信制御部
 400、400n 部品
 401、401n タグ

Claims (6)

  1.  ショベルと、前記ショベルの部品に取り付けられたタグと、前記ショベルの管理装置と、を有するショベルの管理システムであって、
     前記ショベルは、
     前記タグに対して、前記ショベルを識別する機体識別情報の書き込みを行う書込部を有する、ショベルの管理システム。
  2.  前記ショベルは、
     前記タグに予め格納されている前記部品の部品識別情報を読み取る読取部と、
     前記部品識別情報と、前記機体識別情報とを対応付けて、前記管理装置に送信する通信制御部と、を有する、請求項1記載のショベルの管理システム。
  3.  前記ショベルは、
     前記読取部により前記タグから読み取った情報における機体識別情報の有無を判定する判定部を有し、
     前記書込部は、
     前記タグから読み取った情報に、前記機体識別情報が含まれない場合に、前記タグへの書込を行う、請求項2記載のショベルの管理システム。
  4.  前記読取部は、前記部品が前記ショベルに取り付けられる前に、前記部品の部品識別情報の読み取りを行い、
     前記書込部は、前記部品が前記ショベルに取り付けられた後に、前記機体識別情報の書き込みを行う、請求項2又は3記載のショベルの管理システム。
  5.  前記ショベルの前記通信制御部は、
     前記タグから読み取った情報に、部品識別情報以外の情報が含まれる場合に、その旨を示す通知を前記管理装置に送信し、
     前記管理装置は、
     前記タグが取り付けられた部品のメンテナンス情報に含まれる、前記部品の次回の交換時期を変更する、請求項2乃至4の何れか一項に記載のショベルの管理システム。
  6.  ショベルと、前記ショベルの部品に取り付けられたタグと、前記ショベルの管理装置と、を有するショベルの管理システムによるショベルの管理方法であって、
     前記ショベルが、
     前記タグに対して、前記ショベルを識別する機体識別情報の書き込みを行う、ショベルの管理方法。
PCT/JP2023/001251 2022-03-31 2023-01-18 ショベルの管理システム、ショベルの管理方法 WO2023188708A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380016476.1A CN118510965A (zh) 2022-03-31 2023-01-18 挖土机的管理系统及挖土机的管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022061039 2022-03-31
JP2022-061039 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188708A1 true WO2023188708A1 (ja) 2023-10-05

Family

ID=88200252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001251 WO2023188708A1 (ja) 2022-03-31 2023-01-18 ショベルの管理システム、ショベルの管理方法

Country Status (2)

Country Link
CN (1) CN118510965A (ja)
WO (1) WO2023188708A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141178A (ja) * 2013-01-24 2014-08-07 Toyota Industries Corp 共有車両管理システム
WO2015040719A1 (ja) * 2013-09-19 2015-03-26 株式会社小松製作所 通信装置およびこれを備えた作業車両
JP2017043264A (ja) * 2015-08-28 2017-03-02 株式会社豊田自動織機 共有車両管理システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141178A (ja) * 2013-01-24 2014-08-07 Toyota Industries Corp 共有車両管理システム
WO2015040719A1 (ja) * 2013-09-19 2015-03-26 株式会社小松製作所 通信装置およびこれを備えた作業車両
JP2017043264A (ja) * 2015-08-28 2017-03-02 株式会社豊田自動織機 共有車両管理システム

Also Published As

Publication number Publication date
CN118510965A (zh) 2024-08-16

Similar Documents

Publication Publication Date Title
US11959254B2 (en) Shovel
JP7216549B2 (ja) ショベル
JP6965160B2 (ja) ショベル
US9213331B2 (en) Remote control system for a machine
WO2020196516A1 (ja) ショベル
US20220251806A1 (en) Excavator management system, mobile terminal for excavator, and recording medium
CN111601935A (zh) 挖土机
US11952741B2 (en) Shovel
WO2021054417A1 (ja) ショベル、ショベルの管理装置、ショベルの管理システム、ショベルの支援装置
WO2022210858A1 (ja) ショベル
WO2019181923A1 (ja) 建設機械の支援装置
US20240018749A1 (en) Shovel and display device for shovel
JP7344800B2 (ja) ショベル及びショベルの管理システム
JP7083597B2 (ja) 建設機械及びその管理装置
WO2023188708A1 (ja) ショベルの管理システム、ショベルの管理方法
US20230088608A1 (en) Excavator
JP2022154721A (ja) ショベルの管理装置、管理システム、ショベル
WO2023190120A1 (ja) ショベル
WO2023190112A1 (ja) ショベル
CN114423909B (zh) 挖土机
JP2024087600A (ja) ショベル、ショベルの管理方法
JP2023061194A (ja) ショベル、ショベルの管理システム、ショベルの管理装置
KR102708721B1 (ko) 쇼벨
JP2024089985A (ja) 作業機械の管理システム、作業機械
JP2022146689A (ja) ショベル、ショベルの表示装置、ショベルの管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778747

Country of ref document: EP

Kind code of ref document: A1