WO2023188422A1 - Compressor and upper shell - Google Patents

Compressor and upper shell Download PDF

Info

Publication number
WO2023188422A1
WO2023188422A1 PCT/JP2022/016982 JP2022016982W WO2023188422A1 WO 2023188422 A1 WO2023188422 A1 WO 2023188422A1 JP 2022016982 W JP2022016982 W JP 2022016982W WO 2023188422 A1 WO2023188422 A1 WO 2023188422A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper shell
fixed scroll
shell
rotation suppressing
scroll
Prior art date
Application number
PCT/JP2022/016982
Other languages
French (fr)
Japanese (ja)
Inventor
鉄郎 平見
浩平 達脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/016982 priority Critical patent/WO2023188422A1/en
Publication of WO2023188422A1 publication Critical patent/WO2023188422A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present disclosure relates to a compressor that compresses refrigerant, and more specifically relates to a compressor equipped with a fixed scroll and an upper shell.
  • an oscillating scroll is supported by a frame fixed inside a main shell, and a fixed scroll is provided opposite the oscillating scroll.
  • the peripheral wall of the frame extends to the fixed scroll, and the fixed scroll is fixed at the tip of the peripheral wall with bolts or the like.
  • a crankshaft is attached to the orbiting scroll. By rotating the crankshaft, the oscillating scroll oscillates relative to the fixed scroll, and the refrigerant is compressed in a compression chamber formed by the oscillating scroll and the fixed scroll.
  • the peripheral wall of the frame that supports the oscillating scroll extends in the direction of the fixed scroll, and the fixed scroll is fixed with bolts at the tip of the peripheral wall. Since a compression chamber for compressing refrigerant is formed between the fixed scroll and the orbiting scroll, the positional accuracy of the fixed scroll with respect to the orbiting scroll is important. In conventional general scroll compressors, it has been possible to ensure the positional accuracy of the fixed scroll by fixing the fixed scroll to the tip of the peripheral wall of the frame.
  • Patent Document 1 discloses performing shrink fitting and arc spot welding as a fixed scroll fixing method instead of bolt fastening.
  • the gaps between the tips of the spiral bodies of the fixed scroll and the spiral body of the oscillating scroll are on the order of several tens of ⁇ m, and excessive shrink fitting and fixing by welding cause distortion in the fixed scroll.
  • the compression performance of the compressor may deteriorate, or the compressor itself may be damaged due to contact between the tooth tips of the spiral body.
  • the method of fixing the fixed scroll must be a method that does not cause distortion to the fixed scroll by fixing the fixed scroll to the shell.
  • shrink fitting or welding that provides the minimum necessary holding force to prevent the fixed scroll from floating is necessary. It is desirable to do so.
  • Patent Document 1 in addition to shrink fitting, the fixed scroll is sandwiched between an upper shell installed on the upper part of the main shell and a positioning step provided on the main shell, thereby preventing the fixed scroll from lifting up. .
  • This makes it possible to prevent the fixed scroll from lifting even if the pressure inside the compression chamber is abnormally increased due to liquid compression, such as when the refrigerant is started in a state where it is stagnant, such as during startup in winter.
  • the present disclosure has been made in order to solve such problems, and without forming a peripheral wall for fixing the fixed scroll in the frame, the lifting of the fixed scroll and the circumferential direction of the fixed scroll due to abnormal pressure increase during operation can be prevented.
  • the purpose of the present invention is to provide a compressor and an upper shell that can prevent both the rotation of the compressor and the upper shell.
  • a compressor includes a bottomed cylindrical shell constituting an outer shell, a frame housed inside the shell, an oscillating scroll slidably held by the frame, and an oscillating scroll that is slidably held in the frame.
  • a fixed scroll that, together with the scroll, forms a compression chamber for compressing refrigerant;
  • the shell includes a cylindrical main shell that houses the frame, the swinging scroll, and the fixed scroll; an upper shell that seals an opening at one end of the shell, the fixed scroll having a first substrate fixed to a first inner wall surface of the main shell, and a lower end of the upper shell a claw portion inserted into the opening on the one end side of the main shell; the first substrate is held between the claw portion and the first inner wall surface in the axial direction of the compressor;
  • the first substrate has a first locking portion, the claw portion has a second locking portion, and the first locking portion and the second locking portion are engaged with each other.
  • constitutes a rotation suppression mechanism section that suppresses rotation of the fixed scroll in the
  • the upper shell according to the present disclosure is an upper shell having an open lower end, and the lower end of the upper shell has a claw portion formed in a circumferential direction, and the claw portion is An upper shell rotation suppressing convex portion is provided at at least one location in the circumferential direction and protrudes downward from the claw portion, and the upper shell rotation suppressing convex portion is disposed below the upper shell and extends around the circumferential direction. It is inserted into a portion of the object whose rotation in the direction is to be suppressed.
  • the rotation suppressing mechanism prevents rotation of the fixed scroll due to abnormal pressure increase during operation, without forming a peripheral wall for fixing the fixed scroll to the frame. are doing. Therefore, the fixed scroll can be arranged within the shell with high positional accuracy, and the positional accuracy of the fixed scroll can be maintained even when abnormal pressure rise occurs in the compression chamber. Further, since the first substrate of the fixed scroll is sandwiched between the upper shell and the main shell, lifting of the fixed scroll in the axial direction can be prevented.
  • FIG. 1 is a schematic longitudinal cross-sectional view showing the configuration of a compressor 1 according to a first embodiment.
  • FIG. 2 is an exploded perspective view showing the structure of a frame 5, an Oldham ring 7, etc. provided in the compressor 1 according to the first embodiment.
  • FIG. 2 is a partially enlarged sectional view of the compressor 1 shown in FIG. 1.
  • FIG. FIG. 2 is a partially enlarged sectional view showing a region surrounded by a dashed line A in FIG. 1;
  • FIG. 2 is a cross-sectional view showing the configuration of an upper shell 2b provided in the compressor 1 according to the first embodiment.
  • FIG. 2 is a perspective view schematically showing the configuration of an upper shell 2b provided in the compressor 1 according to the first embodiment.
  • FIG. 3 is a plan view showing the configuration of an upper shell 2b provided in the compressor 1 according to the first embodiment from the back side.
  • FIG. 3 is a plan view showing the configuration of a fixed scroll 3 provided in the compressor 1 according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration of a fixed scroll 3 provided in the compressor 1 according to the first embodiment.
  • 1 is a schematic perspective view showing a schematic configuration of a fixed scroll 3 provided in a compressor 1 according to Embodiment 1.
  • FIG. FIG. 3 is a partial perspective view showing a rotation suppressing mechanism section 50 of the upper shell 2b and the fixed scroll 3 in the compressor 1 according to the first embodiment.
  • FIG. 4 is a partially enlarged sectional view showing the configuration of a region surrounded by a dashed line F in FIG. 3;
  • FIG. 4 is a partially enlarged cross-sectional view showing the configuration of a region surrounded by a dashed line G in FIG. 3.
  • FIG. FIG. 4 is a partially enlarged sectional view showing a configuration in which a cutout portion 25c is provided in a region surrounded by a dashed line F in FIG. 3.
  • FIG. FIG. 2 is a plan view schematically showing the configuration of an upper shell 2b provided in the compressor 1 according to the first embodiment.
  • 3 is a diagram showing an example of the shape of an upper shell rotation suppressing convex portion 211 formed on an upper shell 2b provided in the compressor 1 according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration of an upper shell 2b provided in the compressor 1 according to the second embodiment.
  • FIG. 3 is a partial perspective view showing a rotation suppressing mechanism section 50A of an upper shell 2b and a fixed scroll 3 in a compressor 1 according to a second embodiment.
  • 7 is a configuration diagram showing an example of the configuration of a refrigeration cycle device 601 according to Embodiment 3.
  • FIG. 3 is a cross-sectional view showing the configuration of an upper shell 2b provided in the compressor 1 according to the second embodiment.
  • FIG. 3 is a partial perspective view showing a rotation suppressing mechanism section 50A of an upper shell 2b and a fixed scroll 3 in a compressor 1 according to a second embodiment.
  • 7 is a configuration diagram showing an example of the configuration of a refrigeration cycle device 601 according to Embodiment 3.
  • the side where the compression mechanism section 1a is provided (upper side) is oriented as one end side U, and the side where the drive mechanism section 1b is provided (lower side) is oriented as the other end side L. do.
  • the Z direction indicates the axial direction of the main shaft 13 of the compressor 1, and is, for example, the vertical direction.
  • the XY plane is a plane that intersects the Z direction, and is, for example, a horizontal direction.
  • the Z direction is sometimes called the up-down direction
  • the X direction is sometimes called the left-right direction
  • the Y direction is sometimes called the depth direction.
  • FIG. 1 is a schematic vertical sectional view showing the configuration of a compressor 1 according to the first embodiment.
  • FIG. 2 is an exploded perspective view showing the structure of the frame 5, Oldham ring 7, etc. provided in the compressor 1 according to the first embodiment.
  • the compressor 1 shown in FIG. 1 is a so-called vertical scroll compressor that is used with the central axis of the main shaft 13 substantially perpendicular to the ground.
  • the compressor 1 includes a compression mechanism section 1a that compresses refrigerant and a drive mechanism as an electric mechanism that drives the compression mechanism section 1a, inside a bottomed cylindrical shell 2 that is an airtight container. A portion 1b is provided.
  • the compressor 1 is a so-called low-pressure shell type compressor in which the inside of the shell 2 is filled with refrigerant before being compressed by the compression mechanism section 1a.
  • the refrigerant is composed of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture thereof.
  • Halogenated hydrocarbons having carbon double bonds are HFC (Hydrofluorocarbon) refrigerants and fluorocarbon-based low GWP (Global Warming Potential) refrigerants, which have zero ozone depletion potential.
  • Examples of low GWP refrigerants include HFO (hydrofluoroolefin) refrigerants, and examples thereof include tetrafluoropropenes such as HFO1234yf, HFO1234ze, and HFO1243zf, each of which has a chemical formula of C 3 H 2 F 4 .
  • Examples of halogenated hydrocarbons that do not have carbon double bonds include refrigerants in which R32 (difluoromethane), R41, and the like represented by CH 2 F 2 are mixed.
  • Examples of hydrocarbons include natural refrigerants such as propane and propylene.
  • An example of the mixture is a mixed refrigerant in which R32, R41, etc. are mixed with HFO1234yf, HFO1234ze, HFO1243zf, etc.
  • the shell 2 includes a main shell 2a, an upper shell 2b, and a lower shell 2c, and constitutes the outer shell of the compressor 1.
  • the shell 2 is thus composed of three or more parts.
  • the shell 2 also has an oil reservoir 40 at the bottom.
  • the shell 2 has a cylindrical shape with a bottom.
  • the main shell 2a has a cylindrical shape with both upper and lower ends open. The opening at one end U of the main shell 2a is closed and sealed by the dome-shaped upper shell 2b, and the opening at the other end L of the main shell 2a is closed and sealed by the lower shell 2c.
  • the lower shell 2c is supported by a fixing base 2d having a plurality of through holes. By screwing screws into through holes provided in the fixing base 2d, the compressor 1 can be fixed to other members such as the casing of the outdoor unit.
  • the compression mechanism section 1a is arranged toward one end side U from a frame 5 arranged in the main shell 2a, and is composed of a fixed scroll 3, an oscillating scroll 4, an Oldham ring 7, a thrust plate 8, and the like.
  • the frame 5 is housed inside the shell 2.
  • the frame 5 is fixed to the inner peripheral surface of the main shell 2a by shrink fitting, welding, or the like.
  • the frame 5 is disposed within the shell 2 between the compression mechanism section 1a and the drive mechanism section 1b.
  • a cylindrical frame boss portion 5b is formed in the center of the frame 5, and the main shaft 13 is passed through the frame boss portion 5b.
  • the main body portion 5a of the frame 5 is provided above the frame boss portion 5b.
  • the frame 5 holds the swinging scroll 4 slidably relative to the fixed scroll 3 within the shell 2 .
  • the drive mechanism section 1b is arranged at the other end L with respect to the frame 5. Furthermore, as shown in FIG. 1, a subframe 18 is provided below the drive mechanism section 1b.
  • the subframe 18 is fixed to the inner peripheral surface of the shell 2 by shrink fitting, welding, or the like.
  • the drive mechanism section 1b includes a rotor 15 as a rotor and a stator 17 as a stator.
  • the drive mechanism section 1b is installed inside the shell 2 between the frame 5 and the subframe 18, and drives the compression mechanism section 1a via the main shaft 13.
  • the rotor 15 is provided on the inner peripheral side of the stator 17 and attached to the main shaft 13 by shrink fitting or the like.
  • the stator 17 is connected to a glass terminal 26 located between the frame 5 and the stator 17 with a lead wire (not shown) in order to obtain electric power from the outside. Then, the stator 17 rotates the rotor 15 using electric power supplied from the outside. As the rotor 15 rotates, the main shaft 13 is rotated and the compression mechanism section 1a is driven.
  • refrigerating machine oil 21 is stored in an oil reservoir 40 located at the lower part of the compressor 1, that is, the lower shell 2c.
  • Refrigerating machine oil 21 is, for example, oil containing ester-based synthetic oil.
  • An oil pump 20 serving as an oil supply mechanism is fixed to the lower end of the main shaft 13.
  • the oil pump 20 is, for example, a positive displacement pump such as a trochoid pump. As the main shaft 13 rotates, the oil pump 20 pumps up refrigerating machine oil 21 stored in an oil reservoir 40 through an oil supply passage 13c formed inside the main shaft 13.
  • the pumped-up refrigerating machine oil 21 passes through the oil supply passage 13c in the main shaft 13 and constitutes the compression mechanism section 1a, etc., reducing wear between mechanically contacting parts, controlling the temperature of sliding parts, and improving sealing performance.
  • the refrigerating machine oil 21 an oil having excellent lubricating properties, electrical insulation, stability, refrigerant solubility, low-temperature fluidity, etc., and a suitable viscosity is suitable.
  • the main shaft 13 has an eccentric shaft part 13a and a main shaft part 13b arranged below the eccentric shaft part 13a.
  • the eccentric shaft portion 13a is arranged at an eccentric position with respect to the main shaft portion 13b.
  • the main shaft portion 13b is fitted into the main bearing 5c via the sleeve 12, and slides on the main bearing 5c via an oil film formed by the refrigerating machine oil 21.
  • the main bearing 5c is fixed to the frame 5 by press-fitting a bearing material used for sliding bearings, such as a copper-lead alloy.
  • the sleeve 12 is a cylindrical member provided between the main shaft 13 and the main bearing 5c.
  • the sleeve 12 absorbs the inclination of the main shaft 13 with respect to the frame 5.
  • the slider with balancer 11 has a cylindrical slider portion 11a and a balancer portion 11b.
  • the cylindrical slider portion 11a and the balancer portion 11b are joined by shrink fitting or the like.
  • the slider portion 11a is fitted to be movable relative to the eccentric shaft portion 13a provided at the upper end of the main shaft 13, and automatically adjusts the swing radius of the swing scroll 4.
  • the slider portion 11a is provided so that the first spiral body 3b of the fixed scroll 3 and the second spiral body 4b of the orbiting scroll 4 are always in contact with each other when the orbiting scroll 4 swings. .
  • the balancer section 11b is located on the side of the slider section 11a, and is provided to cancel the centrifugal force of the swinging scroll 4 and suppress vibrations of the compression element.
  • the balancer section 11b is arranged along a part of the side surface of the cylindrical slider section 11a.
  • the swinging scroll 4 is connected to the eccentric shaft portion 13a of the main shaft 13 via the slider 11 with a balancer, and the swing radius is automatically adjusted by the slider 11 with a balancer, and the rotation of the main shaft 13 is controlled. It oscillates along with the movement.
  • a cylindrical swing bearing operating space 5e is formed between the swing scroll thrust surface 4f of the second substrate 4a of the swing scroll 4 and the main body portion 5a of the frame 5. ing.
  • the swing bearing 4e rotates together with the balancer-equipped slider 11 within the swing bearing operating space 5e.
  • the first balancer 14 is attached to the main shaft 13, as shown in FIG.
  • the first balancer 14 is located between the frame 5 and the rotor 15.
  • the first balancer 14 cancels out the unbalance caused by the swinging scroll 4 and the slider 11 with a balancer.
  • the second balancer 16 is located between the rotor 15 and the subframe 18, and is attached to the lower surface of the rotor 15.
  • the second balancer 16 cancels out the unbalance caused by the swinging scroll 4 and the slider 11 with a balancer.
  • a subframe 18 is provided below the drive mechanism section 1b.
  • the subframe 18 is fixed to the inner peripheral surface of the main shell 2a by shrink fitting, welding, or the like.
  • a sub-bearing 19 made of a ball bearing is provided at the center of the sub-frame 18.
  • the sub-bearing 19 supports the main shaft 13 in the radial direction below the drive mechanism section 1b.
  • the sub-frame 18 rotatably supports the main shaft 13 via a sub-bearing 19.
  • the secondary bearing 19 may have a bearing configuration other than a ball bearing.
  • a portion below the drive mechanism portion 1b is referred to as a sub-bearing portion 13e.
  • the sub-bearing portion 13e is fitted into the sub-bearing 19 and slides on the sub-bearing 19 via an oil film formed by the refrigerating machine oil 21.
  • the axes of the main shaft portion 13b, the main bearing portion 13d, and the sub-bearing portion 13e coincide with the axis of the main shaft 13.
  • the shell 2 is provided with a suction pipe 22 for sucking refrigerant and a discharge pipe 23 for discharging the refrigerant.
  • the suction pipe 22 is provided on the side wall of the shell 2.
  • the suction pipe 22 is a pipe that sucks gaseous refrigerant into the interior of the shell 2 .
  • a low-pressure suction space 41 filled with suction refrigerant flowing from the suction pipe 22 is formed below the frame 5 in the shell 2 .
  • the discharge pipe 23 is provided at the top of the upper shell 2b.
  • the discharge pipe 23 is a pipe that discharges the refrigerant compressed by the compression mechanism part 1a to the outside of the shell 2.
  • the discharge pipe 23 side located above the first substrate 3a (see FIG. 3) of the fixed scroll 3 of the compression mechanism section 1a is filled with the discharge refrigerant discharged from the compression mechanism section 1a.
  • a high pressure discharge space 42 is formed.
  • an injection pipe 24 of an injection mechanism 1c that injects refrigerant introduced from the outside is connected above the main shell 2a.
  • the injection pipe 24 injects a refrigerant introduced from the outside into a refrigerant intake space 44 located on the outer peripheral side of the second spiral body 4b of the orbiting scroll 4 or into a compression chamber 43, which will be described later.
  • FIG. 3 is a partially enlarged sectional view of the compressor 1 shown in FIG. 1.
  • FIG. 3 shows only the structure of the upper part of the compressor 1 shown in FIG.
  • FIG. 4 is a partially enlarged sectional view showing a region surrounded by a dashed line A in FIG.
  • the compression mechanism section 1a of the compressor 1 is arranged from the frame 5 toward one end side U, and is composed of a fixed scroll 3, an oscillating scroll 4, a thrust plate 8, an Oldham ring 7, and the like.
  • the fixed scroll 3 is made of metal such as cast iron, and includes a first substrate 3a (see, for example, FIG. 10) and a first spiral body 3b (see, for example, FIG. 10).
  • FIG. 10, which will be described later, is a schematic diagram schematically showing the configuration of the fixed scroll 3, and is different from the fixed scroll 3 according to Embodiment 1 in the spiral shape of the first spiral body 3b, the number of turns, etc. .
  • the first substrate 3a has a disk shape, and as shown in FIG. 3, a discharge hole 3c is formed in the center thereof to penetrate in the vertical direction.
  • the first substrate 3a has one surface (hereinafter referred to as a first surface 312) on which the first spiral body 3b is formed, and the other surface located on the opposite side of the first surface 312 (hereinafter referred to as a second surface 313). ) and a side surface 314.
  • the side surface 314 is located at the outermost part of the first substrate 3a in the radial direction, and is a surface that connects the first surface 312 and the second surface 313.
  • the first spiral body 3b formed on the first surface 312 protrudes toward the other end side L of the first substrate 3a, forming a spiral wall.
  • a sealing material for preventing leakage between the first spiral body 3b and the compression chamber 43 is provided at the tip of the first spiral body 3b.
  • a discharge valve 9 is installed at the outlet of the discharge hole 3c of the fixed scroll 3 so as to cover the outlet.
  • the discharge valve 9 is constituted by, for example, a reed valve.
  • the discharge valve 9 opens and closes the discharge hole 3c to prevent backflow of fluid.
  • the discharge valve holder 10 is a long plate-shaped member that is thicker than the discharge valve 9, and supports the discharge valve 9 from the back side (that is, the upper side) when the discharge valve 9 is opened. To protect a discharge valve 9 from deformation while restricting a movable range.
  • the swinging scroll 4 is made of metal such as aluminum, and includes a second substrate 4a, a second spiral body 4b, a cylindrical swinging scroll boss portion 4c, and a second Oldham groove 4d. Further, a sealing material for preventing leakage between the second spiral body 4b and the compression chamber 43 is provided at the tip of the second spiral body 4b.
  • the second substrate 4a has one surface on which the second spiral body 4b is formed (hereinafter referred to as the first surface 412) and the other surface located on the opposite side of the first surface (hereinafter referred to as the second surface 413). ) and a side surface 414.
  • the first surface 412 is arranged to face the first surface 312 of the fixed scroll 3 .
  • the outer peripheral region of the second surface 413 becomes a sliding surface.
  • the side surface 414 is located at the outermost portion of the second substrate 4a in the radial direction, and is a surface that connects the first surface 412 and the second surface 413.
  • the second substrate 4a is supported by the frame 5 such that the sliding surface of the second surface 413 of the second substrate 4a can slide on the thrust plate 8 (see FIG. 1).
  • the second spiral body 4b projects from the first surface 412 toward one end side U, and forms a spiral wall.
  • a cylindrical swing scroll boss portion 4c is formed at the center of the second surface 413.
  • a swing bearing 4e is fixed inside the swing scroll boss portion 4c.
  • the rocking bearing 4e is made of a bearing material used for sliding bearings, such as copper-lead alloy.
  • the swing bearing 4e is formed by press-fitting and fixing a bearing material inside the swing scroll boss portion 4c.
  • the frame 5 is a hollow metal frame with a cavity formed therein, and is provided inside the shell 2. As shown in FIG. 2, the frame 5 has a cylindrical main body part 5a with a step formed therein, and a cylindrical frame boss part 5b arranged below the main body part 5a. As shown in FIG. 1, an oil return pipe 6 for returning oil accumulated inside the frame 5 to the low pressure space is connected to the main body portion 5a.
  • the oil return pipe 6 is a pipe for returning the lubricating oil accumulated in the frame 5 to the oil reservoir part 40 inside the lower shell 2c, and is inserted and fixed into the oil drain hole 5i formed on the side surface of the main body part 5a. ing.
  • the oil drain hole 5i is a through hole that penetrates the side surface of the main body portion 5a. Therefore, the oil drain hole 5i penetrates inside and outside of the frame 5.
  • a main bearing 5c is fixed inside the frame boss portion 5b.
  • the main bearing 5c is made of a bearing material used for sliding bearings, such as copper-lead alloy.
  • the main bearing 5c is formed by press-fitting and fixing a bearing material inside the frame boss portion 5b.
  • the main body portion 5a is fixed to the inner wall surface of one end side U of the shell 2.
  • a frame thrust surface 5f for supporting the swinging scroll 4 is formed on one end side U of the frame 5.
  • the frame thrust surface 5f is arranged parallel to the XY plane. As shown in FIG. 2, the frame thrust surface 5f has a donut shape in plan view.
  • a ring-shaped thrust plate 8 see FIGS.
  • the thrust plate 8 functions as a thrust bearing.
  • a suction port 5d is formed at a position on the outer end side of the frame thrust surface 5f that does not overlap with the thrust plate 8. That is, as shown in FIG. 2, the annular thrust plate 8 has a notch 8a formed at one location on the outer end side.
  • the suction port 5d is arranged at a position corresponding to the notch 8a of the thrust plate 8.
  • the suction port 5d is a space that penetrates the main body portion 5a in the vertical direction, that is, one end side U and the other end side L.
  • the number of suction ports 5d is not limited to one, and a plurality of suction ports may be formed.
  • an Oldham housing portion 5g is formed in a stepped portion of the frame 5 below the frame thrust surface 5f.
  • the Oldham storage portion 5g is arranged parallel to the XY plane and has a donut shape when viewed from above.
  • the Oldham ring 7 is placed in the Oldham housing portion 5g.
  • a first Oldham groove 5h is formed in the Oldham housing portion 5g.
  • two first Oldham grooves 5h are formed.
  • the first Oldham groove 5h is formed from the lower part of the inner wall of the main body portion 5a to the Oldham housing portion 5g.
  • the first Oldham groove 5h is recessed toward the other end L from the Oldham housing portion 5g.
  • the first key portion 7b of the Oldham ring 7 is inserted into the first Oldham groove 5h.
  • the Oldham ring 7 includes a ring portion 7a, a first key portion 7b, and a second key portion 7c.
  • the ring portion 7a has an annular shape.
  • two first key parts 7b are provided on the ring part 7a.
  • the two first key parts 7b are arranged on the surface of the other end side L of the ring part 7a so as to face each other in the radial direction.
  • the two first key parts 7b each have a rectangular parallelepiped shape.
  • the two first key portions 7b are accommodated in a pair of first Oldham grooves 5h of the frame 5, respectively.
  • two second key parts 7c are provided on the ring part 7a.
  • the two second key parts 7c are arranged on the surface of one end side U of the ring part 7a so as to face each other in the radial direction.
  • the two second key parts 7c are arranged with a phase shift of 90 degrees with respect to the two first key parts 7b. That is, the imaginary line extending in the radial direction connecting the two second key parts 7c and the imaginary line extending in the radial direction connecting the two first key parts 7b are orthogonal to each other.
  • the two second key parts 7c each have a rectangular parallelepiped shape.
  • the two second key portions 7c are accommodated in a pair of second Oldham grooves 4d (see FIG. 3) of the swinging scroll 4.
  • the Oldham ring 7 functions to prevent the rotation of the swinging scroll 4 and to enable the swinging motion of the swinging scroll 4.
  • the first surface 312 of the fixed scroll 3 and the first surface 412 of the swinging scroll 4 are arranged to face each other.
  • the compression chamber 43 is formed by meshing the first spiral body 3b of the fixed scroll 3 and the second spiral body 4b of the swinging scroll 4 with each other.
  • the compression chamber 43 has a volume that decreases from the outside toward the inside in the radial direction. Therefore, the refrigerant is gradually compressed by taking in the refrigerant from the outer ends of the first spiral body 3b and the second spiral body 4b and moving it toward the center.
  • the compression chamber 43 communicates with the discharge hole 3c at the center of the fixed scroll 3.
  • a discharge valve 9 is attached to a second surface 313, which is a surface on one end side U of the fixed scroll 3, to prevent backflow of the refrigerant.
  • the discharge valve 9 is attached to open and close the discharge hole 3c provided in the fixed scroll 3 within a preset opening range.
  • the discharge valve holder 10 is provided above the discharge valve 9.
  • the discharge valve holder 10 protects the discharge valve 9 from deformation while restricting the movable range of the discharge valve 9 by supporting the discharge valve 9 from the back side when the discharge valve 9 is opened.
  • a muffler 25 having discharge holes 3c may be further provided.
  • the main shell 2a includes a first inner wall surface 111, a first protrusion 112 that protrudes from the first inner wall surface 111 and positions the fixed scroll 3, and one end of the first protrusion 112. and a first positioning surface 113 facing toward side U. That is, the first positioning surface 113 is the upper end surface portion of the first protrusion 112 . Furthermore, as shown in FIG. 2 or FIG. A second positioning surface 116 facing the one end side U. That is, the second positioning surface 116 is the upper end surface portion of the second protrusion 115. In this way, the inner wall of the main shell 2a is provided with two steps in the Z direction.
  • the inner diameter of the main shell 2a decreases in two steps toward the other end L in the Z direction. This will be explained in detail below.
  • a first step is formed by providing a first protrusion 112 on the first inner wall surface 111 .
  • the inner wall of the main shell 2a below the first protrusion 112 is a second inner wall surface 114.
  • the inner diameter of the second inner wall surface 114 is smaller than the first inner wall surface 111 by the amount of the first protrusion 112 .
  • a second protrusion 115 is provided on the second inner wall surface 114, thereby forming a second step.
  • the fixed scroll 3 is housed in the main shell 2a so that the outermost edge of the first surface 312 in the radial direction is disposed on the first positioning surface 113, as shown in FIG. Thereby, the position of the fixed scroll 3 in the Z direction is determined.
  • the first substrate 3a of the fixed scroll 3 is fixed to the first inner wall surface 111 by shrink fitting or the like while being positioned by the first positioning surface 113.
  • the frame 5 is housed within the main shell 2a such that the lower end surface portion 511 of the main body portion 5a is disposed on the second positioning surface 116. Thereby, the position of the frame 5 in the Z direction is determined.
  • the frame 5 is fixed to the second inner wall surface 114 by shrink fitting or the like while being positioned by the second positioning surface 116 .
  • the upper shell 2b is inserted from one end side U of the main shell 2a and fixed by welding, arc spot welding, or the like.
  • the upper shell positioning surface 213 provided at the lower end of the upper shell 2b presses the fixed scroll 3 against the first positioning surface 113 of the main shell 2a.
  • the fixed scroll 3 is fixed to the main shell 2a by shrink fitting. This suppresses variations in the height of the refrigerant intake space 44 for each product of the compressor 1, improves the positional accuracy of the fixed scroll 3, and prevents the fixed scroll 3 from shifting in the vertical direction when the compressor 1 is driven. suppress. As a result, lifting of the fixed scroll 3 in the axial direction can be prevented.
  • the method for manufacturing the compressor 1 includes, for example, the following steps (a) to (d).
  • the extraction process involves removing the pins used for phase determination.
  • step (a) among the outer circumferential surfaces of the frame 5, the outermost outer circumferential surface in the radial direction is fixed to the inner wall surface of the main shell 2a by shrink fitting or the like.
  • step (b) rod-shaped pins are inserted into the recesses formed in the frame 5 and the fixed scroll 3 to determine the phase between the fixed scroll 3 and the frame 5.
  • the recess formed in the frame 5 is recessed downward in the Z direction.
  • the recess formed in the fixed scroll 3 is recessed upward in the Z direction, or is a through hole penetrating the first substrate 3a.
  • a recess formed in the frame 5 and a recess formed in the fixed scroll 3 are arranged to face each other in the Z direction, and a rod-shaped pin is inserted into these recesses.
  • the fixed scroll 3 and frame 5 are phased.
  • step (c) the outer peripheral surface of the first substrate 3a of the fixed scroll 3 is fixed to the inner wall surface of the main shell 2a by shrink fitting or the like. In this way, the rotational phases of the fixed scroll 3 and the frame 5 are determined.
  • step (d) the pin is extracted from the recess formed in the frame 5 and the recess formed in the fixed scroll 3. By removing the pin, interference between the pin and the swinging scroll 4 can be eliminated. Note that if there is no possibility of interference between the pin and the swinging scroll 4, the pin may remain inserted in the recess formed in the frame 5 and the recess formed in the fixed scroll 3.
  • the rotation suppressing mechanism 50 that prevents deviation in the rotational phase of the fixed scroll 3, which is the main feature of the first embodiment, will be explained using FIGS. 5 to 11.
  • the rotation suppressing mechanism 50 of the fixed scroll 3 includes the fixed scroll 3 and the upper shell 2b.
  • FIG. 5 is a sectional view showing the configuration of the upper shell 2b provided in the compressor 1 according to the first embodiment.
  • FIG. 5 a sectional view taken along line AA in FIG. 7 is shown.
  • FIG. 6 is a perspective view schematically showing the configuration of the upper shell 2b provided in the compressor 1 according to the first embodiment.
  • FIG. 7 is a plan view showing the configuration of the upper shell 2b provided in the compressor 1 according to the first embodiment from the back side. In FIG. 7, the state where the upper shell 2b is viewed from the other end side L is shown.
  • FIG. 8 is a plan view showing the configuration of the fixed scroll 3 provided in the compressor 1 according to the first embodiment.
  • the fixed scroll 3 is shown viewed from one end side U.
  • FIG. 9 is a sectional view showing the configuration of the fixed scroll 3 provided in the compressor 1 according to the first embodiment. In FIG. 9, a cross-sectional view taken along the line DD in FIG. 8 is shown.
  • FIG. 10 is a schematic perspective view showing a schematic configuration of the fixed scroll 3 provided in the compressor 1 according to the first embodiment. In FIG. 10, the fixed scroll 3 is shown viewed from the other end L.
  • FIG. 10 is a schematic diagram schematically showing the configuration of the fixed scroll 3, and the fixed scroll 3 according to the first embodiment is different from the spiral shape and the number of turns of the first spiral body 3b. etc. are different.
  • FIG. 11 is a partial perspective view showing the rotation suppression mechanism 50 of the upper shell 2b and fixed scroll 3 in the compressor 1 according to the first embodiment.
  • FIG. 11 shows a perspective view of the upper shell 2b cut along the two-dot chain line C in FIG. 7, and the fixed scroll 3 cut along the two-dot chain line E in FIG.
  • the upper shell 2b has a dome shape.
  • the upper shell 2b has a cylindrical shape with a bottom.
  • the lower end of the upper shell 2b is open.
  • a claw portion 214 is provided at the lower end of the upper shell 2b.
  • the claw portion 214 is a portion inserted into the opening at one end U of the main shell 2a.
  • the plate thickness T2 of the claw portion 214 is the same as that of the other portions of the upper shell 2b.
  • a step is provided in the upper shell 2b by thinning the lower part of the upper shell 2b corresponding to the claw portion 214, and the step is formed in the main shell 2a of the upper shell 2b. It was a positioning part for the In contrast, in the first embodiment, the upper shell positioning surface 213 is used to position the upper shell 2b, so there is no need to reduce the thickness of the claw portion 214. Therefore, in the manufacturing process, the step of thinning the claw portion 214 is not necessary, so the number of processing steps is reduced accordingly, and the cost can be reduced.
  • the claw portion 214 has an upper shell positioning surface 213 and an upper shell rotation suppressing convex portion 211.
  • the upper shell positioning surface 213 is provided on the lower end surface of the claw portion 214, and has a ring shape in plan view, as shown in FIG.
  • Upper shell positioning surface 213 is arranged parallel to the XY plane. More specifically, the upper shell positioning surface 213 is composed of the "lower end surface of the claw portion 214" other than the upper shell rotation suppressing convex portion 211.
  • the radial size (that is, the thickness) of the upper shell positioning surface 213 is the thickness T 2 of the claw portion 214 . As shown in FIGS.
  • the upper shell rotation suppressing convex portion 211 is provided to protrude from the upper shell positioning surface 213 toward the other end side L.
  • the upper shell rotation suppressing convex portion 211 has a rectangular or substantially rectangular shape when viewed from the side.
  • the thickness of the upper shell rotation suppressing convex portion 211 is the same as the thickness T 2 of the upper shell positioning surface 213 . Therefore, the upper shell rotation suppressing convex portion 211 has a rectangular parallelepiped shape.
  • the tip of the upper shell rotation suppressing convex portion 211 may be chamfered as shown in FIG.
  • the tip of the upper shell positioning surface 213 may also be chamfered, as shown in FIG. Note that in the examples shown in FIGS.
  • upper shell rotation suppressing convex portions 211 are provided, but the present invention is not limited thereto.
  • the number of upper shell rotation suppressing convex portions 211 may be any number greater than or equal to one.
  • the three upper shell rotation suppressing convex portions 211 are arranged at intervals in the circumferential direction. Note that the intervals may or may not be equal intervals.
  • the fixed scroll 3 includes a first substrate 3a and a first spiral body 3b.
  • the first substrate 3a has a disk shape.
  • a fixed scroll rotation suppression recess 311 is provided in the first substrate 3a.
  • the fixed scroll rotation suppression recess 311 is arranged at the outermost part of the second surface 313 in the radial direction, as shown in FIG.
  • the fixed scroll rotation suppression recess 311 is recessed from the second surface 313 toward the other end side L, as shown in FIGS. 9 and 10.
  • the fixed scroll rotation suppression recess 311 is recessed in the thickness direction of the first substrate 3a of the fixed scroll 3.
  • the fixed scroll rotation suppressing recess 311 opens from the second surface 313 of the first substrate 3a toward one end side U, and opens from the side surface 314 toward the outside in the radial direction.
  • the upper shell rotation suppressing convex portion 211 of the upper shell 2 b is inserted into the fixed scroll rotation suppressing recess 311 .
  • the internal shape of the fixed scroll rotation suppression recess 311 is a rectangular parallelepiped, as shown in FIG. 11 .
  • the internal shape of the fixed scroll rotation suppression concave portion 311 is complementary to the upper shell rotation suppression convex portion 211 . Note that in the examples shown in FIGS. 8 to 10, three fixed scroll rotation suppression recesses 311 are provided, but the present invention is not limited thereto.
  • the number of fixed scroll rotation suppressing recesses 311 may be any number greater than or equal to one, but is preferably the same number as the upper shell rotation suppressing protrusions 211.
  • the fixed scroll rotation suppressing recess 311 be provided in the first substrate 3a, avoiding the location where the injection horizontal hole 27 (see FIGS. 1 and 8) is formed.
  • the injection horizontal hole 27 is formed in the first substrate 3a of the fixed scroll 3, as shown in FIG.
  • the injection horizontal hole 27 extends from the injection installation hole in which the injection tube 24 is installed in the first substrate 3a toward the side surface 314 of the first substrate 3a.
  • the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing recess 311 are combined. That is, the upper shell rotation suppressing convex portion 211 is inserted into the fixed scroll rotation suppressing recess 311. As a result, the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing recess 311 are combined.
  • the fixed scroll 3 attempts to rotate in the circumferential direction, the circumferential side surface of the upper shell rotation suppressing convex portion 211 comes into contact with the circumferential side wall inside the fixed scroll rotation suppressing recess 311 .
  • the "thickness H 3 " of the first substrate 3a in the part where the fixed scroll rotation suppressing recess 311 is provided is naturally thinner than the "thickness T 3 " in the other parts. become.
  • the thinned portion will be referred to as a thinned portion 315. If the "plate thickness H3 " of the thin portion 315 is insufficiently secured, there is a concern that the first substrate 3a may be damaged due to the differential pressure between the high pressure space and the low pressure space. Therefore, the depth D3 of the fixed scroll rotation suppressing recess 311 is desirably a value equal to or less than 3/4 of the thickness T3 of the first substrate 3a. That is, it is desirable that the relationship 3/4 ⁇ T 3 ⁇ D 3 holds true.
  • the fixed scroll 3 is sandwiched between the upper shell positioning surface 213 of the upper shell 2b and the first positioning surface 113 of the main shell 2a. Therefore, the height H 2 of the upper shell rotation suppression convex portion 211 must be shorter than the depth D 3 of the fixed scroll rotation suppression recess 311 . That is, the relationship D 3 >H 2 holds true. If the height H2 of the upper shell rotation suppressing convex part 211 is longer than the depth D3 of the fixed scroll rotation suppressing recess 311, the upper shell positioning surface 213 of the upper shell 2b and the second surface 313 of the fixed scroll 3 There will be a gap between the two. Therefore, the height H 2 of the upper shell rotation suppression convex portion 211 is set to be shorter than the depth D 3 of the fixed scroll rotation suppression recess 311 .
  • FIG. 12 is a partially enlarged cross-sectional view showing the configuration of the area surrounded by the dashed line F in FIG.
  • the upper shell rotation suppressing convex portion 211 is inserted into the fixed scroll rotation suppressing recess 311.
  • the upper shell rotation suppressing convex portion 211 is arranged between the side surface of the fixed scroll rotation suppressing recess 311 and the first inner wall surface 111 of the main shell 2a.
  • the upper shell rotation suppressing convex portion 211 when inserting the upper shell 2b into the main shell 2a, the upper shell rotation suppressing convex portion 211 is fitted into the fixed scroll rotation suppressing recess 311. This restricts movement of the fixed scroll 3 in the circumferential direction. Therefore, rotation of the fixed scroll 3 in the circumferential direction can be prevented. In this manner, the upper shell rotation suppressing convex portion 211 is inserted into a portion of the fixed scroll 3, which is the object to be suppressed from rotating in the circumferential direction, and suppresses the circumferential rotation of the object to be suppressed.
  • the fixed scroll rotation suppressing recess 311 formed on the first substrate 3a of the fixed scroll 3, and the upper shell rotation suppressing protrusion 211 formed on the claw portion 214 of the upper shell 2b. constitutes the rotation suppression mechanism section 50.
  • the fixed scroll rotation suppressing recess 311 is sometimes called a "first locking part” or a “first recess”.
  • the upper shell rotation suppressing convex portion 211 is sometimes referred to as a “second locking portion” or a “convex portion”.
  • the circumferential size of the upper shell rotation suppressing convex portion 211 is defined as “distance L 2 ”
  • the circumferential size of the fixed scroll rotation suppressing concave portion 311 is defined as “distance W 3 ”.
  • the clearance may be expressed as a difference in distance as described above, but it may also be expressed as a central angle with respect to the axial center of the main shaft 13 of the compressor 1. However, if the circumferential clearance is made too small, the upper shell 2b may not fit properly when the compressor 1 is assembled, or the processing cost may increase, resulting in a decrease in product productivity.
  • the clearance in the circumferential direction between the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing recess 311 is set at a center with respect to the axial center of the main shaft 13 of the compressor 1. It is desirable to set the angle within 1.5 degrees.
  • the circumferential clearance is within 1.5 degrees, when a rotational phase shift occurs due to the rotation of the second spiral body 4b due to abnormal pressure increase in the compression chamber 43 during operation of the compressor 1, the compressor 1 It is possible to keep the impact on the product within the permissible range for the performance specified by. In this way, it is desirable that the clearance be appropriately set for each model of the compressor 1 so that the performance determined by the compressor 1 has no effect on the product within an allowable range.
  • the number of upper shell rotation suppression protrusions 211 and fixed scroll rotation suppression recesses 311 that constitute the rotation suppression mechanism may be at least one or more.
  • the side surface 314 of the fixed scroll 3 and the first inner wall surface 111 of the main shell 2a are fixed by shrink fitting. Therefore, the rotation of the fixed scroll 3 only occurs with respect to the axial center of the fixed scroll 3, and the effect is the same even if there are two or more upper shell rotation suppressing convex portions 211.
  • a similar effect can be obtained. Therefore, a plurality of upper shell rotation suppressing protrusions 211 and fixed scroll rotation suppressing recesses 311 may be provided as long as they are four or less.
  • the number is 5 or more, the cost increases due to an increase in the machining time of the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing concave portion 311, or the incidence of unassembled products increases due to the accumulation of tolerances of the claw portion 214. Therefore, it is undesirable. Therefore, in the first embodiment, it is desirable that the numbers of upper shell rotation suppressing convex portions 211 and fixed scroll rotation suppressing recesses 311 be 1 or more and 4 or less, respectively.
  • the length L of the entire circumference of the claw portion 214 is the total length in the circumferential direction of the inner circle of the ring-shaped upper shell positioning surface 213 shown in FIG. Therefore, the length L of the entire circumference of the claw portion 214 is a value that can be calculated based on the inner diameter of the upper shell positioning surface 213. Further, the height H of the claw portion 214 is the length of the entire claw portion 214 including the upper shell rotation suppressing convex portion 211 in the Z direction.
  • the length L2 in the circumferential direction of the upper shell rotation suppressing convex part 211 can be set as follows. desirable. That is, the length L2 in the circumferential direction of the upper shell rotation suppressing convex portion 211 is 0.015 times or more the length L of the entire inner circle of the claw portion 214 of the upper shell 2b. is desirable. Further, as the circumferential length W 3 of the fixed scroll rotation suppressing recess 311 becomes longer, the area of the thin portion 315 having the plate thickness H 3 increases, and therefore reliability with respect to strength decreases.
  • the length L2 in the circumferential direction of the upper shell rotation suppressing convex portion 211 should be 0.035 times or less the length L of the entire inner circle of the claw portion 214 of the upper shell 2b. is desirable. Therefore, in the first embodiment, the length L 2 in the circumferential direction of the upper shell rotation suppressing convex portion 211 is 0.015 times or more and 0.035 times or less of the total circumferential length L of the claw portion 214. Preferably long.
  • the peripheral wall of the frame extends to the fixed scroll, and the fixed scroll is fixed at the tip of the peripheral wall with bolts or the like.
  • the rotational phases of the frame, the swinging scroll, and the fixed scroll are ensured by using an Oldham ring and a highly accurate positioning component such as a reamer pin.
  • a reamer pin cannot be used, and maintaining the phase of the fixed scroll 3 is a problem. Therefore, in the first embodiment, by having the following two configurations (A) and (B), the fixed scroll 3 can be installed in the compressor 1 equipped with the frame 5 without a peripheral wall without increasing the number of parts. Lifting up in the axial direction and rotation in the circumferential direction can be prevented.
  • the first substrate 3a of the fixed scroll 3 has a first locking portion
  • the claw portion 214 of the upper shell 2b has a second locking portion.
  • the first locking portion and the second locking portion engage with each other to constitute a rotation suppression mechanism portion 50 that suppresses rotation of the fixed scroll 3 in the circumferential direction due to abnormal pressure increase during operation.
  • the first substrate 3a of the fixed scroll 3 is held between the claw portion 214 and the first inner wall surface 111 of the main shell 2a in the axial direction of the main shaft 13 of the compressor 1. More specifically, the first substrate 3a of the fixed scroll 3 has a first protrusion formed on the upper shell positioning surface 213 and the first inner wall surface 111 of the main shell 2a in the axial direction of the main shaft 13 of the compressor 1. 112.
  • the mechanism that suppresses the fixed scroll 3 on a plane restricts the positional deviation in the height direction (configuration (B)), and the upper shell rotation suppressing convex part 211 and the fixed scroll rotation suppression recess 311 to restrict positional deviation in the circumferential direction (configuration (A)).
  • FIG. 15 is a plan view schematically showing the configuration of the upper shell 2b provided in the compressor 1 according to the first embodiment.
  • illustration of some structures such as the discharge pipe 23 and the injection pipe 24 is omitted for the sake of explanation.
  • the first spiral body 3b of the fixed scroll 3 and the second spiral body 4b of the swinging scroll 4 are shown by broken lines.
  • the direction in which the positional deviation of the fixed scroll 3 in the circumferential direction occurs is in the opposite rotation direction (hereinafter referred to as the deviation direction) with respect to the rotation direction R2 of the oscillating scroll 4. R3). That is, the fixed scroll 3 is shifted in a rotation direction opposite to the rotation direction R2 of the oscillating scroll 4. At this time, the direction of the force by which the upper shell 2b supports the fixed scroll 3 is opposite to the displacement direction R3, and becomes a rotation direction R4 shown in FIG. 15. In this way, in each direction R1 to R4, the rotation directions R1, R2, and R4 are the same direction (for example, counterclockwise in FIG. 15), and only the displacement direction R3 of the fixed scroll 3 is in the opposite direction (for example, 15 clockwise).
  • the clearance in the circumferential direction between the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing recess 311 that prevent the rotation of the fixed scroll 3, which was explained using FIG. 11, is as shown in FIG.
  • the rear clearance S1 is a clearance arranged on the rear side in the displacement direction R3 of the fixed scroll 3.
  • the front clearance S2 is a clearance disposed on the front side in the displacement direction R3 of the fixed scroll 3.
  • FIG. 16 is a diagram showing an example of the shape of the upper shell rotation suppressing convex portion 211 formed on the upper shell 2b provided in the compressor 1 according to the first embodiment.
  • the side surface of the upper shell rotation suppressing convex portion 211 on the rear clearance S1 side is referred to as a side surface portion 211b
  • the side surface of the upper shell rotation suppressing convex portion 211 on the front clearance S2 side is referred to as a side surface portion 211b.
  • 211c the side surface of the upper shell rotation suppressing convex portion 211 on the front clearance S2 side
  • the example shown in FIG. 16(a) shows a shape conforming to the configuration shown in FIG. 11.
  • the shape of the upper shell rotation suppressing convex portion 211 is a rectangular parallelepiped.
  • the shape of the upper shell rotation suppressing convex portion 211 when viewed from the radial direction is a rectangular shape, and the side surface portion 211b on the rear clearance S1 side and the side surface portion 211c on the front clearance S2 side of the upper shell rotation suppressing convex portion 211 are mutually It extends downward in parallel from the upper shell positioning surface 213, which is the lower end surface of the claw portion 214.
  • the force indicated by the arrow P is received by the side surface portion 211b.
  • the example shown in FIG. 16(a) has the best workability among FIGS. 16(a) to 16(c).
  • the fixed scroll rotation suppressing recess 311 has a complementary shape to the upper shell rotation suppressing convex 211, and therefore has a rectangular parallelepiped shape.
  • the shape of the upper shell rotation suppressing convex portion 211 when viewed from the radial direction is as follows: It has a thick trapezoidal shape. This point differs from FIG. 16(a).
  • the side surface portion 211c of the upper shell rotation suppressing convex portion 211 on the front clearance S2 side extends downward in the Z direction from the upper shell positioning surface 213.
  • the side surface portion 211b of the upper shell rotation suppressing convex portion 211 on the rear clearance S1 side is inclined outwardly with respect to the downward direction as it goes downward in the Z direction from the upper shell positioning surface 213. In this way, in the example shown in FIG.
  • the upper shell rotation suppressing convex portion 211 basically has a rectangular parallelepiped shape, but is tapered at the end.
  • the "distance L2 " (see FIG. 11), which is the circumferential size of the upper shell rotation suppressing convex portion 211, gradually increases toward the lower side in the Z direction.
  • the force indicated by the arrow P is received at the upper end of the side surface portion 211b.
  • rotation of the fixed scroll 3 in the circumferential direction is suppressed the most among FIGS. 16(a) to 16(c).
  • the shape of the fixed scroll rotation suppressing recess 311 is complementary to the upper shell rotation suppressing convex 211, and is therefore basically a rectangular parallelepiped, and tapers toward the upper side in the Z direction. There is. That is, the “distance W 3 ” (see FIG. 11), which is the circumferential size of the fixed scroll rotation suppressing recess 311, gradually decreases toward the upper side in the Z direction.
  • the shape of the upper shell rotation suppressing convex portion 211 when viewed from the radial direction is tapered downward from the upper shell positioning surface 213, which is the lower end surface of the claw portion 214. It has a trapezoidal shape. This point differs from FIG. 16(a).
  • the side surface portion 211c of the upper shell rotation suppressing convex portion 211 on the front clearance S2 side extends downward in the Z direction from the upper shell positioning surface 213.
  • the side surface portion 211b of the upper shell rotation suppressing convex portion 211 on the rear clearance S1 side is inclined inwardly with respect to the downward direction as it goes downward in the Z direction from the upper shell positioning surface 213.
  • the upper shell rotation suppressing convex portion 211 basically has a rectangular parallelepiped shape, but is tapered.
  • the "distance L2 " (see FIG. 11), which is the circumferential size of the upper shell rotation suppressing convex portion 211, gradually decreases toward the lower side in the Z direction.
  • the force indicated by the arrow P is received at the lower end of the side surface portion 211b.
  • the amount of upward movement of the fixed scroll 3 is suppressed the most among FIGS. 16(a) to 16(c).
  • the shape of the fixed scroll rotation suppression concave portion 311 is complementary to the upper shell rotation suppression convex portion 211, and is therefore basically a rectangular parallelepiped, and the tip becomes thicker toward the upper side in the Z direction. ing. That is, the “distance W 3 ” (see FIG. 11), which is the circumferential size of the fixed scroll rotation suppressing recess 311, gradually increases toward the upper side in the Z direction.
  • the upper shell rotation suppressing convex portion 211 is formed on the upper shell 2b and the fixed scroll rotation suppressing recess 311 is formed on the fixed scroll 3. Therefore, in any model of the compressor 1, Easy to configure.
  • the positional relationship between the discharge pipe 23 of the upper shell 2b and the upper shell rotation suppressing protrusion 211 is reduced by reducing the clearance between the fixed scroll rotation suppressing recess 311 and the upper shell rotation suppressing protrusion 211. is regulated. This eliminates the need for a positioning jig for the upper shell 2b. This will be explained in more detail.
  • the phases of the piping are determined in advance.
  • the movement of the upper shell 2b in the circumferential direction is restricted by reducing the clearance of the upper shell rotation suppressing convex portion 211, so that the assembly phase of the upper shell 2b can be easily determined without a jig. I can do it. That is, by simply inserting the upper shell rotation suppressing convex portion 211 into the fixed scroll rotation suppressing recess 311, the assembly phase of the upper shell 2b can be automatically determined without a jig. As a result, the positional relationship between the discharge pipe 23 of the upper shell 2b and the upper shell rotation suppressing convex portion 211 is also automatically determined. Therefore, in the first embodiment, a positioning jig for the upper shell 2b is not required in the manufacturing process of the compressor 1.
  • FIG. 13 is a partially enlarged sectional view showing the configuration of the area surrounded by the dashed line G in FIG. As shown in FIG. 3, the muffler 25 has a convex shape that protrudes toward one end side U.
  • the lower end of the muffler 25 is open, and a flange portion 25a disposed outwardly is provided on the outer periphery of the opening.
  • the flange portion 25a is formed around the entire circumference of the opening of the muffler 25, and constitutes a “lower end portion” of the muffler 25.
  • the muffler 25 is fastened to the fixed scroll 3 by a flange portion 25a.
  • the muffler 25 has an outer diameter equivalent to the inner diameter of the main shell 2a. Therefore, the tip 25b of the flange portion 25a is in contact with the first inner wall surface 111 of the main shell 2a, or is located between the upper shell positioning surface 213 and the second surface 313 of the fixed scroll 3. .
  • the flange portion 25a that constitutes the support surface of the muffler 25 is extended to the inner wall surface of the main shell 2a.
  • the flange portion 25a which is the lower end portion of the muffler 25, can be sandwiched and fixed between the upper shell positioning surface 213 of the upper shell 2b and the second surface 313 of the fixed scroll 3. That is, the flange portion 25a is fixed by being sandwiched between the claw portion 214 of the upper shell 2b and the first substrate 3a over its entire circumference.
  • FIG. 14 is a partially enlarged sectional view showing a configuration in which a notch 25c is provided in the area surrounded by the dashed line F in FIG. In the case of FIG.
  • the upper shell rotation suppressing convex portion 211 penetrates the inside of the notch 25c of the muffler 25 and is inserted into the fixed scroll rotation suppressing recess 311.
  • the compressor 1 can be assembled by determining the phase of the muffler 25 as well as the phase of the fixed scroll 3 without using fastening bolts. This makes it possible to reduce costs and assembly time due to the boltless structure, and improve productivity.
  • a convex portion protruding in the Z direction is formed on the muffler 25 similarly to the upper shell rotation suppressing convex portion 211 of the upper shell 2b, and the convex portion is inserted into a concave portion formed on the fixed scroll 3. The rotation may be stopped.
  • the convex portion of the muffler 25 may be accommodated together with the upper shell rotation suppressing convex portion 211 in the same fixed scroll rotation suppressing recess 311 as the upper shell rotation suppressing convex portion 211 of the upper shell 2b.
  • Embodiment 1 by having the above configurations (A) and (B), the floating of the fixed scroll 3 and , rotation of the fixed scroll 3 can be prevented. As a result, even if abnormal pressure rise occurs within the compression chamber 43, the positional accuracy of the fixed scroll 3 can be maintained. Further, as shown in FIG. 3, when the injection pipe 24 is provided and the fixed scroll 3 is largely displaced in the rotational direction, there is a risk that the injection pipe 24 will be damaged. However, in Embodiment 1, by having the above configuration (A), it is possible to suppress the occurrence of positional deviation due to rotation, or to suppress the positional deviation due to rotation to a slight deviation, so that the injection tube 24 can be prevented from being damaged.
  • the fixed scroll 3 can be placed in the shell 2 with high positional accuracy without using a positioning jig for the upper shell 2b.
  • Embodiment 1 an example was described in which a "convex part” is provided in the claw part 214 of the upper shell 2b, and a “first recessed part” is provided in the first substrate 3a of the fixed scroll 3.
  • the invention is not limited to this case, and the claw portion 214 of the upper shell 2b may be provided with a "first recess”, and the first substrate 3a of the fixed scroll 3 may be provided with a "protrusion”.
  • FIG. 17 is a sectional view showing the configuration of an upper shell 2b provided in the compressor 1 according to the second embodiment.
  • FIG. 17 is a diagram corresponding to FIG. 5 of the first embodiment.
  • FIG. 18 is a partial perspective view showing a rotation suppressing mechanism section 50A of the upper shell 2b and fixed scroll 3 in the compressor 1 according to the second embodiment.
  • FIG. 18 is a diagram corresponding to FIG. 11 of the first embodiment.
  • the rotation suppression mechanism 50A includes a fixed scroll rotation suppression recess 311, an upper shell rotation suppression recess 212 formed in the claw portion 214 of the upper shell 2b, and a key 411. This point differs from the first embodiment. Since the other configurations are the same as those in Embodiment 1, their description will be omitted here.
  • a fixed scroll rotation suppressing recess 311 is formed in the first substrate 3a of the fixed scroll 3, as in the first embodiment.
  • the fixed scroll rotation suppression recess 311 is the same as that shown in Embodiment 1, so its description will be omitted here.
  • the “distance W 3 ” of the fixed scroll rotation suppression recess 311 may be the same as or different from the “distance W 3 ” shown in the first embodiment.
  • an upper shell rotation suppressing recess 212 is formed in the claw portion 214 of the upper shell 2b.
  • the upper shell rotation suppressing recess 212 is recessed from the upper shell positioning surface 213 of the claw portion 214 toward the one end side U.
  • the upper shell rotation suppressing recess 212 is formed at a position that is in the same phase as the upper shell rotation suppressing protrusion 211 of the first embodiment. That is, the upper shell rotation suppressing recess 212 is formed at a position facing the fixed scroll rotation suppressing recess 311.
  • the size and shape of the upper shell rotation suppression recess 212 are almost the same as the fixed scroll rotation suppression recess 311.
  • the key 411 is fitted into both the fixed scroll rotation suppression recess 311 and the upper shell rotation suppression recess 212. That is, the upper part of the key 411 is fitted into the upper shell rotation suppression recess 212, and the lower part of the key 411 is fitted into the fixed scroll rotation suppression recess 311. Therefore, the shape of the upper part of the key 411 is complementary to the upper shell rotation suppressing recess 212, and the shape of the lower part of the key 411 is complementary to the shape of the fixed scroll rotation suppressing recess 311.
  • the key 411 has, for example, a prismatic shape.
  • the upper shell positioning surface 213 of the claw portion 214 and the first substrate 3a of the fixed scroll 3 are connected to each other.
  • the second surface 313 is in contact with the second surface 313 .
  • the second embodiment is a method in which rotation suppressing recesses are provided in both the upper shell 2b and the first substrate 3a of the fixed scroll 3, and the rotation suppressing recesses are fixed with the key 411.
  • the fixed scroll rotation suppressing recess 311 formed in the first substrate 3a, the upper shell rotation suppressing recess 212 formed in the claw part 214, and the key 411 suppress the rotation. It constitutes a mechanism section 50A.
  • the fixed scroll rotation suppressing recess 311 is sometimes called a "first locking part” or a "first recess”.
  • the upper shell rotation suppressing convex portion 211 may be referred to as a “second locking portion” or a “second recess”.
  • the claw portion 214 of the upper shell 2b and the first substrate 3a of the fixed scroll 3 are engaged with each other.
  • the rotation suppression mechanism 50A suppresses movement of the fixed scroll 3 in the circumferential direction, so rotation of the fixed scroll 3 can be prevented.
  • the fixed scroll 3 is shrink-fitted to the main shell 2a. Thereby, it is possible to prevent the fixed scroll 3 from rising in the axial direction.
  • a peripheral wall for fixing the fixed scroll 3 is not formed on the frame 5, and the lifting of the fixed scroll 3 and the fixed scroll 3 are prevented. Rotation can be prevented.
  • the upper shell 2b in the second embodiment is provided with the upper shell rotation suppressing recess 212 instead of a convex portion, the proportion of material resulting in cutting loss in the manufacturing stage in the unprocessed upper shell 2b is small. Moreover, since the base material of the upper shell 2b can be the same size as a conventional one without a convex portion, manufacturing costs can be kept low. Incidentally, in order to form the upper shell 2b of Embodiment 1 shown in FIG. Prepare something larger. Then, by cutting between the adjacent upper shell rotation suppressing protrusions 211, the upper shell rotation suppressing protrusions 211 are formed. Therefore, the material ratio resulting in cutting loss is larger than in the second embodiment.
  • the strength of the upper shell rotation suppressing convex part 211 depends on the strength of the upper shell 2b.
  • the distance L 2 (see FIG. 11), which is the circumferential length of the upper shell rotation suppressing convex part 211, or the height H 2 (see FIG. 11) needs to be increased.
  • the key 411 is made of high-strength steel such as SUJ2 (high carbon chromium bearing steel). As a result, the size of the key 411 can be reduced, and the processing time for the upper shell 2b, fixed scroll 3, and key 411 can be expected to be shortened.
  • SUJ2 is a steel material that is often used for bearings and the like among special purpose steel materials. SUJ2 has excellent wear resistance.
  • the key 411 is shown in FIG. 17 as having a prismatic shape, but the key 411 is not limited to this case, and the key 411 may have any shape as long as it is easy to construct, such as a flat plate, a curved plate, or a cylinder. That's fine.
  • the length of the key 411 in the circumferential direction is defined as “distance L4 .”
  • the size of the upper shell rotation suppressing recess 212 in the circumferential direction is defined as “distance W 4 ".
  • the difference between "distance W 4 " and “distance L 4 " is called a circumferential clearance.
  • the circumferential clearance between the upper shell rotation suppressing recess 212 and the key 411 may be set to within 1.5 degrees with respect to the central axis of the main shaft 13 of the compressor 1. desirable. By setting the circumferential clearance within this range, the influence on the product due to the rotation of the fixed scroll 3 can be suppressed within an allowable range with respect to the performance determined by the compressor 1.
  • the difference between "distance W 3 " and “distance L 4 " is called a circumferential clearance.
  • the circumferential clearance between the fixed scroll rotation suppressing recess 311 and the key 411 may be set to within 1.5 degrees in terms of the central angle with respect to the central axis of the main shaft 13 of the compressor 1. desirable. In this case as well, the influence on the product due to the rotation of the fixed scroll 3 can be suppressed within the permissible range with respect to the performance determined by the compressor 1.
  • the circumferential length L 4 of the key 411 in the rotation suppressing mechanism section 50A is 0.015 times or more and 0.035 times or less of the entire circumferential length L of the inner circle of the upper shell 2b. It is desirable that the length be .
  • the length L 4 0.015 times or more the strength of the key 411 can be ensured, and by making the length L 4 0.035 times or less, the plate thickness H 3 of the fixed scroll 3 can be ensured.
  • the strength of the thin wall portion 315 can be ensured.
  • the depth D3 of the fixed scroll rotation suppressing recess 311 in the rotation suppressing mechanism section 50A is desirably 3/4 or less of the thickness T3 of the first substrate 3a of the fixed scroll 3. Thereby, the strength of the thin portion 315 of the fixed scroll 3 having a plate thickness of H 3 can be ensured.
  • the depth D3 of the fixed scroll rotation suppressing recess 311 and the depth D4 of the upper shell rotation suppressing recess 212 may be the same or different.
  • the tensile strength of the material forming the key 411 is at least twice the tensile strength of the material forming the upper shell 2b. Thereby, the strength of the key 411 can be ensured. Note that when the strength of the key 411 is higher than the strength of the upper shell rotation suppressing protrusion 211 shown in Embodiment 1, the length L 4 of the key 411 is greater than the strength of the upper shell rotation suppressing protrusion 211 shown in Embodiment 1. 211 may be smaller than the length L2 .
  • the sign of the length of the fixed scroll rotation suppressing recess 311, that is, W3 is the same as in the first embodiment, but when the length L4 of the key 411 is small, the distance W3 is naturally also In accordance with the length L4 , it is smaller than in the first embodiment.
  • FIG. 19 is a configuration diagram showing an example of the configuration of a refrigeration cycle device 601 according to the third embodiment.
  • the refrigeration cycle device 601 includes a compressor 1, a first heat exchanger 602, a first blower 603, an expansion valve 604, a second heat exchanger 605, and a second blower 606. , and a four-way valve 607.
  • the compressor 1 is the compressor 1 shown in Embodiment 1 or Embodiment 2.
  • Compressor 1 sucks refrigerant flowing through refrigerant pipe 608 .
  • the compressor 1 compresses the sucked refrigerant and discharges it to the refrigerant pipe 608.
  • the refrigerant discharged from the compressor 1 flows into the first heat exchanger 602 or 605.
  • the first heat exchanger 602 and the second heat exchanger 605 exchange heat between the refrigerant flowing therein and air.
  • the first heat exchanger 602 and the second heat exchanger 605 are, for example, fin-and-tube heat exchangers.
  • the first heat exchanger 602 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant.
  • the first heat exchanger 602 functions as an evaporator during heating operation, and evaporates and vaporizes the refrigerant.
  • the second heat exchanger 605 functions as an evaporator during cooling operation, and evaporates and vaporizes the refrigerant.
  • the second heat exchanger 605 functions as a condenser during heating operation, and condenses and liquefies the refrigerant.
  • first blower 603 is attached to the first heat exchanger 602 and blows air toward the first heat exchanger 602.
  • the second blower 606 is attached to the second heat exchanger 605 and blows air toward the second heat exchanger 605.
  • the four-way valve 607 is configured to switch its state between cooling operation and heating operation.
  • the four-way valve 607 is a flow path switching device that switches the flow of refrigerant depending on the cooling operation and the heating operation.
  • the four-way valve 607 In the case of cooling operation, the four-way valve 607 is in the state shown by the solid line, and the refrigerant discharged from the compressor 1 flows into the first heat exchanger 602.
  • the four-way valve 607 is in the state shown by the broken line, and the refrigerant discharged from the compressor 1 flows into the second heat exchanger 605.
  • the expansion valve 604 is a pressure reducing device that reduces the pressure of the refrigerant and expands it, and is composed of, for example, an electronic expansion valve. When the expansion valve is an electronic expansion valve, the opening degree is adjusted based on instructions from a control device (not shown) or the like. Expansion valve 604 is provided between first heat exchanger 602 and second heat exchanger 605.
  • the compressor 1, the four-way valve 607, the first heat exchanger 602, the expansion valve 604, and the second heat exchanger 605 are connected by a refrigerant pipe 608 to form a refrigerant circuit that constitutes the refrigeration cycle device 601. There is.
  • the refrigerant is composed of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture thereof.
  • Halogenated hydrocarbons having carbon double bonds are HFC refrigerants and fluorocarbon-based low GWP refrigerants that have zero ozone depletion potential.
  • low GWP refrigerants include HFO refrigerants, including tetrafluoropropenes such as HFO1234yf, HFO1234ze, and HFO1243zf, which have the chemical formula C 3 H 2 F 4 .
  • halogenated hydrocarbons that do not have carbon double bonds
  • refrigerants in which R32 (difluoromethane), R41, and the like represented by CH 2 F 2 are mixed.
  • hydrocarbons include natural refrigerants such as propane and propylene.
  • An example of the mixture is a mixed refrigerant in which R32, R41, etc. are mixed with HFO1234yf, HFO1234ze, HFO1243zf, etc.
  • the refrigerant thus includes, for example, HFO refrigerant or R32.
  • the fixed scroll 3 can be arranged within the shell 2 with good positional accuracy without forming a peripheral wall for fixing the fixed scroll 3 to the frame 5 of the compressor 1. As a result, even if abnormal pressure rise occurs within the compression chamber 43, the positional accuracy of the fixed scroll 3 can be maintained.

Abstract

A compressor comprising: a bottomed cylindrical shell forming an outer shell; a frame housed inside the shell; an oscillating scroll slidably held by the frame; and a fixed scroll that, together with the oscillating scroll, forms a compression chamber in which to compress a refrigerant, wherein the shell has a cylindrical main shell housing the frame, the oscillating scroll, and the fixed scroll and an upper shell sealing an opening at one end of the main shell, the fixed scroll has a first board fixed to a first inner wall of the main shell, a lower end of the upper shell has a tab to be inserted inside the opening at one end of the main shell, the first board is caught between the tab and the first inner wall in an axial direction of the shell, the first board has a first engaging part, the tab has a second engaging part, and the first and second engaging parts are engaged with each other to form a rotation suppression mechanism that suppresses circumferential rotation of the fixed scroll.

Description

圧縮機およびアッパーシェルCompressor and upper shell
 本開示は、冷媒を圧縮する圧縮機に関し、さらに詳しくは、固定スクロールを備えた圧縮機、および、アッパーシェルに関するものである。 The present disclosure relates to a compressor that compresses refrigerant, and more specifically relates to a compressor equipped with a fixed scroll and an upper shell.
 従来の一般的なスクロール圧縮機においては、メインシェルの内部に固定されたフレームに揺動スクロールが支持され、揺動スクロールに対向して固定スクロールが設けられている。従来のフレームは、フレームの周壁が、固定スクロールまで延びており、その周壁の先端で固定スクロールがボルト等によって固定されている。また、揺動スクロールには、クランクシャフトが取り付けられている。クランクシャフトを回転させることで揺動スクロールが固定スクロールに対して揺動運動し、揺動スクロールと固定スクロールとで形成された圧縮室で冷媒を圧縮する。 In a conventional general scroll compressor, an oscillating scroll is supported by a frame fixed inside a main shell, and a fixed scroll is provided opposite the oscillating scroll. In the conventional frame, the peripheral wall of the frame extends to the fixed scroll, and the fixed scroll is fixed at the tip of the peripheral wall with bolts or the like. Further, a crankshaft is attached to the orbiting scroll. By rotating the crankshaft, the oscillating scroll oscillates relative to the fixed scroll, and the refrigerant is compressed in a compression chamber formed by the oscillating scroll and the fixed scroll.
 また、圧縮機の容量拡大のために、フレームの周壁を無くし、揺動スクロールおよび固定スクロールに設けられた渦巻体の配置空間を拡大する技術がある(例えば、特許文献1参照)。フレームの周壁を無くした場合のスクロール圧縮機においては、固定スクロールの固定方法として、ボルト締結が出来ないため、固定スクロールとメインシェルとの焼嵌め、または、固定スクロールのアークスポット溶接が用いられている。 Furthermore, in order to increase the capacity of the compressor, there is a technique in which the peripheral wall of the frame is eliminated and the space for arranging the spiral bodies provided in the oscillating scroll and the fixed scroll is expanded (see, for example, Patent Document 1). In scroll compressors that do not have a peripheral wall of the frame, bolts cannot be used to fix the fixed scroll, so shrink fitting of the fixed scroll and main shell or arc spot welding of the fixed scroll is used. There is.
特許第6678762号公報Patent No. 6678762
 上述した従来の一般的なスクロール圧縮機では、揺動スクロールを支持するフレームの周壁が、固定スクロールの方向に延びており、その周壁の先端で固定スクロールがボルトによって固定されている。固定スクロールと揺動スクロールとの間には、冷媒を圧縮する圧縮室が形成されるため、揺動スクロールに対する固定スクロールの位置精度が重要である。従来の一般的なスクロール圧縮機においては、フレームの周壁の先端に固定スクロールを固定することによって、固定スクロールの位置精度を確保することが可能であった。 In the conventional general scroll compressor described above, the peripheral wall of the frame that supports the oscillating scroll extends in the direction of the fixed scroll, and the fixed scroll is fixed with bolts at the tip of the peripheral wall. Since a compression chamber for compressing refrigerant is formed between the fixed scroll and the orbiting scroll, the positional accuracy of the fixed scroll with respect to the orbiting scroll is important. In conventional general scroll compressors, it has been possible to ensure the positional accuracy of the fixed scroll by fixing the fixed scroll to the tip of the peripheral wall of the frame.
 しかしながら、特許文献1に記載のスクロール圧縮機では、フレームの周壁が無いため、フレームと固定スクロールとをボルト締結することができない。特許文献1では、ボルト締結に代わる固定スクロールの固定方法として、焼嵌めおよびアークスポット溶接を行うことが開示されている。しかし、固定スクロールの渦巻体および揺動スクロールの渦巻体のそれぞれの歯先隙間は数十μmオーダであり、過度な焼嵌めおよび溶接による固定は固定スクロールに歪を発生させる要因になる。固定スクロールに歪が発生した場合、歯先隙間が拡大する箇所が発生して、冷媒が漏れる隙間が増加する可能性がある。その場合には、圧縮機の圧縮性能の悪化を生じさせるか、もしくは、渦巻体の歯先の接触により圧縮機自体が破損する可能性がある。よって、固定スクロールの固定方法は、固定スクロールとシェルとの固定によって固定スクロールに歪を生じさせない方法にする必要があり、つまり、固定スクロールが浮き上がらない必要最小限の保持力となる焼嵌めまたは溶接を行うことが望ましい。 However, in the scroll compressor described in Patent Document 1, since there is no peripheral wall of the frame, the frame and the fixed scroll cannot be bolted together. Patent Document 1 discloses performing shrink fitting and arc spot welding as a fixed scroll fixing method instead of bolt fastening. However, the gaps between the tips of the spiral bodies of the fixed scroll and the spiral body of the oscillating scroll are on the order of several tens of μm, and excessive shrink fitting and fixing by welding cause distortion in the fixed scroll. When distortion occurs in the fixed scroll, there may be areas where the gap between the tooth tips expands, increasing the gap through which refrigerant leaks. In that case, the compression performance of the compressor may deteriorate, or the compressor itself may be damaged due to contact between the tooth tips of the spiral body. Therefore, the method of fixing the fixed scroll must be a method that does not cause distortion to the fixed scroll by fixing the fixed scroll to the shell. In other words, shrink fitting or welding that provides the minimum necessary holding force to prevent the fixed scroll from floating is necessary. It is desirable to do so.
 そこで、特許文献1では焼嵌めに加え、メインシェル上部に設置されるアッパーシェルと、メインシェルに設けられた位置決め段差と、で、固定スクロールを挟み込むことにより、固定スクロールの浮き上がりを防止している。これにより、例えば、冬期の起動時等に発生する冷媒が寝込んだ状態での起動等、液圧縮によって圧縮室内が異常昇圧した場合でも固定スクロールの浮き上がりを防ぐことができる。 Therefore, in Patent Document 1, in addition to shrink fitting, the fixed scroll is sandwiched between an upper shell installed on the upper part of the main shell and a positioning step provided on the main shell, thereby preventing the fixed scroll from lifting up. . This makes it possible to prevent the fixed scroll from lifting even if the pressure inside the compression chamber is abnormally increased due to liquid compression, such as when the refrigerant is started in a state where it is stagnant, such as during startup in winter.
 しかしながら、圧縮室内で異常昇圧が発生すると、固定スクロールを圧縮機の軸方向へ浮き上がらせる力と、固定スクロールを周方向に回転させる力と、が発生する。浮き上がりを防止する必要最小限の焼嵌めと、メインシェルとアッパーシェルとの挟み込みによる固定と、では、固定スクロールの浮き上がりは防止できても、固定スクロールの周方向の回転を防ぐことはできない。 However, when abnormal pressure rise occurs in the compression chamber, a force that lifts the fixed scroll in the axial direction of the compressor and a force that rotates the fixed scroll in the circumferential direction are generated. Although it is possible to prevent the fixed scroll from lifting by using the minimum necessary shrink fitting to prevent lifting and fixing by sandwiching the main shell and the upper shell, it is not possible to prevent the fixed scroll from rotating in the circumferential direction.
 本開示は、かかる課題を解決するためになされたものであり、固定スクロールを固定するための周壁をフレームに形成することなく、運転時の異常昇圧による、固定スクロールの浮き上がりと固定スクロールの周方向の回転との両方を防止することが可能な、圧縮機、および、アッパーシェルを提供することを目的とする。 The present disclosure has been made in order to solve such problems, and without forming a peripheral wall for fixing the fixed scroll in the frame, the lifting of the fixed scroll and the circumferential direction of the fixed scroll due to abnormal pressure increase during operation can be prevented. The purpose of the present invention is to provide a compressor and an upper shell that can prevent both the rotation of the compressor and the upper shell.
 本開示に係る圧縮機は、外殻を構成する有底筒状のシェルと、前記シェルの内部に収容されたフレームと、前記フレームに摺動可能に保持された揺動スクロールと、前記揺動スクロールと共に、冷媒を圧縮する圧縮室を形成する固定スクロールと、を備え、前記シェルは、前記フレーム、前記揺動スクロール、および、前記固定スクロールを収容した、筒状形状のメインシェルと、前記メインシェルの一端側の開口を密閉するアッパーシェルと、を有し、前記固定スクロールは、前記メインシェルの第1内壁面に固定される第1基板を有し、前記アッパーシェルの下端部は、前記メインシェルの前記一端側の前記開口の内側に挿入される爪部を有し、前記第1基板は、前記圧縮機の軸方向に、前記爪部と前記第1内壁面とで挟持され、前記第1基板は、第1係止部を有し、前記爪部は、第2係止部を有し、前記第1係止部と前記第2係止部とは互いに係合されることで、前記固定スクロールの周方向の回転を抑制する回転抑制機構部を構成しているものである。 A compressor according to the present disclosure includes a bottomed cylindrical shell constituting an outer shell, a frame housed inside the shell, an oscillating scroll slidably held by the frame, and an oscillating scroll that is slidably held in the frame. a fixed scroll that, together with the scroll, forms a compression chamber for compressing refrigerant; the shell includes a cylindrical main shell that houses the frame, the swinging scroll, and the fixed scroll; an upper shell that seals an opening at one end of the shell, the fixed scroll having a first substrate fixed to a first inner wall surface of the main shell, and a lower end of the upper shell a claw portion inserted into the opening on the one end side of the main shell; the first substrate is held between the claw portion and the first inner wall surface in the axial direction of the compressor; The first substrate has a first locking portion, the claw portion has a second locking portion, and the first locking portion and the second locking portion are engaged with each other. , constitutes a rotation suppression mechanism section that suppresses rotation of the fixed scroll in the circumferential direction.
 本開示に係るアッパーシェルは、下端部が開口されたアッパーシェルであって、前記アッパーシェルの前記下端部は、周方向に形成された爪部を有し、前記爪部は、前記爪部の前記周方向の少なくとも一箇所に設けられ、前記爪部から下方向に突出したアッパーシェル回転抑制凸部を有し、前記アッパーシェル回転抑制凸部は、前記アッパーシェルの下方に配置されて前記周方向の回転が抑制される被抑制対象の一部分に挿入されるものである。 The upper shell according to the present disclosure is an upper shell having an open lower end, and the lower end of the upper shell has a claw portion formed in a circumferential direction, and the claw portion is An upper shell rotation suppressing convex portion is provided at at least one location in the circumferential direction and protrudes downward from the claw portion, and the upper shell rotation suppressing convex portion is disposed below the upper shell and extends around the circumferential direction. It is inserted into a portion of the object whose rotation in the direction is to be suppressed.
 本開示に係る圧縮機、および、アッパーシェルによれば、フレームに固定スクロールを固定するための周壁を形成することなく、回転抑制機構部によって、運転時の異常昇圧による、固定スクロールの回転を防止している。そのため、固定スクロールをシェル内に位置精度良く配置することができ、圧縮室内の異常昇圧発生時にも固定スクロールの位置精度を保持することができる。また、固定スクロールの第1基板を、アッパーシェルとメインシェルとで挟持しているため、固定スクロールの軸方向の浮き上がりを防止することができる。 According to the compressor and upper shell according to the present disclosure, the rotation suppressing mechanism prevents rotation of the fixed scroll due to abnormal pressure increase during operation, without forming a peripheral wall for fixing the fixed scroll to the frame. are doing. Therefore, the fixed scroll can be arranged within the shell with high positional accuracy, and the positional accuracy of the fixed scroll can be maintained even when abnormal pressure rise occurs in the compression chamber. Further, since the first substrate of the fixed scroll is sandwiched between the upper shell and the main shell, lifting of the fixed scroll in the axial direction can be prevented.
実施の形態1に係る圧縮機1の構成を示す概略縦断面図である。1 is a schematic longitudinal cross-sectional view showing the configuration of a compressor 1 according to a first embodiment. 実施の形態1に係る圧縮機1に設けられたフレーム5、オルダムリング7等の構成を示す分解斜視図である。FIG. 2 is an exploded perspective view showing the structure of a frame 5, an Oldham ring 7, etc. provided in the compressor 1 according to the first embodiment. 図1に示す圧縮機1の部分拡大断面図である。FIG. 2 is a partially enlarged sectional view of the compressor 1 shown in FIG. 1. FIG. 図1の一点鎖線Aで囲われた領域を示す部分拡大断面図である。FIG. 2 is a partially enlarged sectional view showing a region surrounded by a dashed line A in FIG. 1; 実施の形態1に係る圧縮機1に設けられたアッパーシェル2bの構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of an upper shell 2b provided in the compressor 1 according to the first embodiment. 実施の形態1に係る圧縮機1に設けられたアッパーシェル2bの構成を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the configuration of an upper shell 2b provided in the compressor 1 according to the first embodiment. 実施の形態1に係る圧縮機1に設けられたアッパーシェル2bの構成を裏面から示す平面図である。FIG. 3 is a plan view showing the configuration of an upper shell 2b provided in the compressor 1 according to the first embodiment from the back side. 実施の形態1に係る圧縮機1に設けられた固定スクロール3の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of a fixed scroll 3 provided in the compressor 1 according to the first embodiment. 実施の形態1に係る圧縮機1に設けられた固定スクロール3の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of a fixed scroll 3 provided in the compressor 1 according to the first embodiment. 実施の形態1に係る圧縮機1に設けられた固定スクロール3の概略構成を示す概略斜視図である。1 is a schematic perspective view showing a schematic configuration of a fixed scroll 3 provided in a compressor 1 according to Embodiment 1. FIG. 実施の形態1に係る圧縮機1におけるアッパーシェル2bと固定スクロール3との回転抑制機構部50を示す部分斜視図である。FIG. 3 is a partial perspective view showing a rotation suppressing mechanism section 50 of the upper shell 2b and the fixed scroll 3 in the compressor 1 according to the first embodiment. 図3の一点鎖線Fで囲まれた領域の構成を示す部分拡大断面図である。FIG. 4 is a partially enlarged sectional view showing the configuration of a region surrounded by a dashed line F in FIG. 3; 図3の一点鎖線Gで囲まれた領域の構成を示す部分拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view showing the configuration of a region surrounded by a dashed line G in FIG. 3. FIG. 図3の一点鎖線Fで囲まれた領域で、切欠き部25cが設けられた場合の構成を示す部分拡大断面図である。FIG. 4 is a partially enlarged sectional view showing a configuration in which a cutout portion 25c is provided in a region surrounded by a dashed line F in FIG. 3. FIG. 実施の形態1に係る圧縮機1に設けられたアッパーシェル2bの構成を模式的に示す平面図である。FIG. 2 is a plan view schematically showing the configuration of an upper shell 2b provided in the compressor 1 according to the first embodiment. 実施の形態1に係る圧縮機1に設けられたアッパーシェル2bに形成されたアッパーシェル回転抑制凸部211の形状の例を示す図である。3 is a diagram showing an example of the shape of an upper shell rotation suppressing convex portion 211 formed on an upper shell 2b provided in the compressor 1 according to the first embodiment. FIG. 実施の形態2に係る圧縮機1に設けられたアッパーシェル2bの構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of an upper shell 2b provided in the compressor 1 according to the second embodiment. 実施の形態2に係る圧縮機1におけるアッパーシェル2bと固定スクロール3との回転抑制機構部50Aを示す部分斜視図である。FIG. 3 is a partial perspective view showing a rotation suppressing mechanism section 50A of an upper shell 2b and a fixed scroll 3 in a compressor 1 according to a second embodiment. 実施の形態3に係る冷凍サイクル装置601の構成の一例を示す構成図である。7 is a configuration diagram showing an example of the configuration of a refrigeration cycle device 601 according to Embodiment 3. FIG.
 以下、本開示に係る圧縮機、冷凍サイクル装置および圧縮機のアッパーシェルの実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。また、同一符号を付したものについては、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、本開示の範囲内で適宜変更することができる。以下では、フレーム5を基準として、圧縮機構部1aが設けられている側(上側)を一端側U、駆動機構部1bが設けられている側(下側)を他端側Lと方向づけて説明する。また、各図面において、Z方向は、圧縮機1の主軸13の軸方向を示し、例えば、鉛直方向である。また、XY平面は、Z方向と交差する平面であり、例えば、水平方向である。また、説明のため、Z方向は上下方向、X方向は左右方向、Y方向は奥行き方向と呼ばれることがある。 Hereinafter, embodiments of a compressor, a refrigeration cycle device, and an upper shell of a compressor according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. Furthermore, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments and modifications thereof. Further, in each figure, the same reference numerals are the same or equivalent, and this is common throughout the entire specification. Furthermore, descriptions of items with the same reference numerals will be omitted or simplified as appropriate. Furthermore, the shape, size, arrangement, etc. of the configurations shown in each figure can be changed as appropriate within the scope of the present disclosure. In the following description, with reference to the frame 5, the side where the compression mechanism section 1a is provided (upper side) is oriented as one end side U, and the side where the drive mechanism section 1b is provided (lower side) is oriented as the other end side L. do. Moreover, in each drawing, the Z direction indicates the axial direction of the main shaft 13 of the compressor 1, and is, for example, the vertical direction. Further, the XY plane is a plane that intersects the Z direction, and is, for example, a horizontal direction. Further, for the sake of explanation, the Z direction is sometimes called the up-down direction, the X direction is sometimes called the left-right direction, and the Y direction is sometimes called the depth direction.
 実施の形態1.
 <圧縮機1の構成>
 以下、実施の形態1に係る圧縮機1の構成について、図1~図2を参照しながら説明する。図1は、実施の形態1に係る圧縮機1の構成を示す概略縦断面図である。図2は、実施の形態1に係る圧縮機1に設けられたフレーム5、オルダムリング7等の構成を示す分解斜視図である。なお、図1に示す圧縮機1は、主軸13の中心軸が地面に対して略垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。
Embodiment 1.
<Configuration of compressor 1>
The configuration of the compressor 1 according to the first embodiment will be described below with reference to FIGS. 1 and 2. FIG. 1 is a schematic vertical sectional view showing the configuration of a compressor 1 according to the first embodiment. FIG. 2 is an exploded perspective view showing the structure of the frame 5, Oldham ring 7, etc. provided in the compressor 1 according to the first embodiment. The compressor 1 shown in FIG. 1 is a so-called vertical scroll compressor that is used with the central axis of the main shaft 13 substantially perpendicular to the ground.
 図1に示すように、圧縮機1は、密閉容器である有底筒状のシェル2の内部に、冷媒を圧縮する圧縮機構部1aと、圧縮機構部1aを駆動する電動機構としての駆動機構部1bと、を備えている。実施の形態1の場合、圧縮機1は、シェル2の内部が、圧縮機構部1aで圧縮される前の冷媒で満たされる、いわゆる低圧シェル型の圧縮機である。 As shown in FIG. 1, the compressor 1 includes a compression mechanism section 1a that compresses refrigerant and a drive mechanism as an electric mechanism that drives the compression mechanism section 1a, inside a bottomed cylindrical shell 2 that is an airtight container. A portion 1b is provided. In the case of the first embodiment, the compressor 1 is a so-called low-pressure shell type compressor in which the inside of the shell 2 is filled with refrigerant before being compressed by the compression mechanism section 1a.
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、炭化水素、または、それらを含む混合物からなる。炭素の二重結合を有するハロゲン化炭化水素は、オゾン層破壊係数がゼロであるHFC(Hydrofluorocarbon)冷媒、フロン系低GWP(Global Warming Potential)冷媒である。低GWP冷媒としては、例えばHFO(Hydrofluoroolefin)冷媒があり、化学式がCで表されるHFO1234yf、HFO1234ze、HFO1243zf等のテトラフルオロプロペンが例示される。炭素の二重結合を有しないハロゲン化炭化水素は、CHで表されるR32(ジフルオロメタン)、R41等が混合された冷媒が例示される。炭化水素は、自然冷媒であるプロパンやプロピレン等が例示される。混合物は、HFO1234yf、HFO1234ze、HFO1243zf等に、R32、R41等を混合した混合冷媒が例示される。 The refrigerant is composed of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture thereof. Halogenated hydrocarbons having carbon double bonds are HFC (Hydrofluorocarbon) refrigerants and fluorocarbon-based low GWP (Global Warming Potential) refrigerants, which have zero ozone depletion potential. Examples of low GWP refrigerants include HFO (hydrofluoroolefin) refrigerants, and examples thereof include tetrafluoropropenes such as HFO1234yf, HFO1234ze, and HFO1243zf, each of which has a chemical formula of C 3 H 2 F 4 . Examples of halogenated hydrocarbons that do not have carbon double bonds include refrigerants in which R32 (difluoromethane), R41, and the like represented by CH 2 F 2 are mixed. Examples of hydrocarbons include natural refrigerants such as propane and propylene. An example of the mixture is a mixed refrigerant in which R32, R41, etc. are mixed with HFO1234yf, HFO1234ze, HFO1243zf, etc.
 シェル2は、メインシェル2aと、アッパーシェル2bと、ロアシェル2cと、を有しており、圧縮機1の外殻を構成している。シェル2は、このように、3部品以上で構成されている。また、シェル2は、下部に油溜り部40を有している。シェル2は、有底円筒形状を有している。メインシェル2aは、上端部および下端部が共に開口している円筒形状を有している。メインシェル2aの一端側Uの開口は、ドーム形状のアッパーシェル2bによって塞がれて密閉されており、メインシェル2aの他端側Lの開口は、ロアシェル2cによって塞がれて密閉されている。ロアシェル2cは、複数の貫通穴を備える固定台2dによって支持されている。固定台2dに設けられた貫通穴にネジをねじ込むことによって、圧縮機1を室外機の筐体等の他の部材に固定可能になっている。 The shell 2 includes a main shell 2a, an upper shell 2b, and a lower shell 2c, and constitutes the outer shell of the compressor 1. The shell 2 is thus composed of three or more parts. The shell 2 also has an oil reservoir 40 at the bottom. The shell 2 has a cylindrical shape with a bottom. The main shell 2a has a cylindrical shape with both upper and lower ends open. The opening at one end U of the main shell 2a is closed and sealed by the dome-shaped upper shell 2b, and the opening at the other end L of the main shell 2a is closed and sealed by the lower shell 2c. . The lower shell 2c is supported by a fixing base 2d having a plurality of through holes. By screwing screws into through holes provided in the fixing base 2d, the compressor 1 can be fixed to other members such as the casing of the outdoor unit.
 圧縮機構部1aの詳細な説明は後述するため、ここでは、圧縮機1のおおまかな構成のみを説明する。 Since a detailed description of the compression mechanism section 1a will be given later, only the general configuration of the compressor 1 will be described here.
 圧縮機構部1aは、メインシェル2a内に配置されたフレーム5から一端側Uに向かって配置され、固定スクロール3、揺動スクロール4、オルダムリング7、スラストプレート8等から構成される。 The compression mechanism section 1a is arranged toward one end side U from a frame 5 arranged in the main shell 2a, and is composed of a fixed scroll 3, an oscillating scroll 4, an Oldham ring 7, a thrust plate 8, and the like.
 フレーム5は、シェル2の内部に収容されている。フレーム5は、焼嵌めまたは溶接等によってメインシェル2aの内周面に固着されている。フレーム5は、シェル2内において、圧縮機構部1aと駆動機構部1bとの間に配置されている。フレーム5の中央部には、図2に示すように、円筒状のフレームボス部5bが形成されており、フレームボス部5bに主軸13が通されている。フレームボス部5bの上方には、図2に示すように、フレーム5の本体部5aが設けられている。フレーム5は、シェル2内において、揺動スクロール4を、固定スクロール3に対して摺動可能に保持している。 The frame 5 is housed inside the shell 2. The frame 5 is fixed to the inner peripheral surface of the main shell 2a by shrink fitting, welding, or the like. The frame 5 is disposed within the shell 2 between the compression mechanism section 1a and the drive mechanism section 1b. As shown in FIG. 2, a cylindrical frame boss portion 5b is formed in the center of the frame 5, and the main shaft 13 is passed through the frame boss portion 5b. As shown in FIG. 2, the main body portion 5a of the frame 5 is provided above the frame boss portion 5b. The frame 5 holds the swinging scroll 4 slidably relative to the fixed scroll 3 within the shell 2 .
 シェル2内において、駆動機構部1bは、フレーム5に対して他端側Lに配置されている。また、駆動機構部1bの下方には、図1に示すように、サブフレーム18が設けられている。サブフレーム18は、焼嵌めまたは溶接等によってシェル2の内周面に固着されている。 Inside the shell 2, the drive mechanism section 1b is arranged at the other end L with respect to the frame 5. Furthermore, as shown in FIG. 1, a subframe 18 is provided below the drive mechanism section 1b. The subframe 18 is fixed to the inner peripheral surface of the shell 2 by shrink fitting, welding, or the like.
 駆動機構部1bは、回転子としてのロータ15と、固定子としてのステータ17と、を有している。駆動機構部1bは、シェル2の内部にて、フレーム5とサブフレーム18との間に設置され、主軸13を介して圧縮機構部1aを駆動する。ロータ15は、ステータ17の内周側に設けられ、主軸13に焼嵌め等によって取り付けられる。ステータ17は、外部から電力を得るために、フレーム5とステータ17との間に存在するガラス端子26に、リード線(図示省略)で接続されている。そして、ステータ17は、外部から供給された電力によってロータ15を回転させる。ロータ15が自転することにより、主軸13が回転させられ、圧縮機構部1aを駆動させる。 The drive mechanism section 1b includes a rotor 15 as a rotor and a stator 17 as a stator. The drive mechanism section 1b is installed inside the shell 2 between the frame 5 and the subframe 18, and drives the compression mechanism section 1a via the main shaft 13. The rotor 15 is provided on the inner peripheral side of the stator 17 and attached to the main shaft 13 by shrink fitting or the like. The stator 17 is connected to a glass terminal 26 located between the frame 5 and the stator 17 with a lead wire (not shown) in order to obtain electric power from the outside. Then, the stator 17 rotates the rotor 15 using electric power supplied from the outside. As the rotor 15 rotates, the main shaft 13 is rotated and the compression mechanism section 1a is driven.
 また、圧縮機1の下部、すなわちロアシェル2cに位置する油溜り部40には、冷凍機油21が貯油されている。冷凍機油21は、例えば、エステル系合成油を含む油である。主軸13の下端部には、給油機構としてのオイルポンプ20が固着されている。オイルポンプ20は、例えばトロコイドポンプ等の容積型ポンプである。オイルポンプ20は、主軸13の回転に従い、油溜り部40に溜められている冷凍機油21を、主軸13の内部に形成された給油通路13cを通して汲み上げる。汲み上げられた冷凍機油21は、主軸13内の給油通路13cを通り、圧縮機構部1a等を構成して機械的に接触するパーツ同士の摩耗低減、摺動部の温度調節、シール性を改善する。冷凍機油21としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性、低温流動性等に優れるとともに、適度な粘度を有する油が好適である。 Further, refrigerating machine oil 21 is stored in an oil reservoir 40 located at the lower part of the compressor 1, that is, the lower shell 2c. Refrigerating machine oil 21 is, for example, oil containing ester-based synthetic oil. An oil pump 20 serving as an oil supply mechanism is fixed to the lower end of the main shaft 13. The oil pump 20 is, for example, a positive displacement pump such as a trochoid pump. As the main shaft 13 rotates, the oil pump 20 pumps up refrigerating machine oil 21 stored in an oil reservoir 40 through an oil supply passage 13c formed inside the main shaft 13. The pumped-up refrigerating machine oil 21 passes through the oil supply passage 13c in the main shaft 13 and constitutes the compression mechanism section 1a, etc., reducing wear between mechanically contacting parts, controlling the temperature of sliding parts, and improving sealing performance. . As the refrigerating machine oil 21, an oil having excellent lubricating properties, electrical insulation, stability, refrigerant solubility, low-temperature fluidity, etc., and a suitable viscosity is suitable.
 主軸13は、偏心軸部13aと、その下方に配置された主軸部13bと、を有している。偏心軸部13aは、主軸部13bに対して偏心した位置に配置されている。主軸部13bは、スリーブ12を介して主軸受5cに嵌入されており、冷凍機油21による油膜を介して主軸受5cに対し摺動する。主軸受5cは、銅鉛合金等の滑り軸受に使用される軸受材料を圧入する等してフレーム5に固定されている。 The main shaft 13 has an eccentric shaft part 13a and a main shaft part 13b arranged below the eccentric shaft part 13a. The eccentric shaft portion 13a is arranged at an eccentric position with respect to the main shaft portion 13b. The main shaft portion 13b is fitted into the main bearing 5c via the sleeve 12, and slides on the main bearing 5c via an oil film formed by the refrigerating machine oil 21. The main bearing 5c is fixed to the frame 5 by press-fitting a bearing material used for sliding bearings, such as a copper-lead alloy.
 スリーブ12は、主軸13と主軸受5cとの間に設けられる筒状の部材である。スリーブ12は、フレーム5に対する主軸13の傾斜を吸収する。 The sleeve 12 is a cylindrical member provided between the main shaft 13 and the main bearing 5c. The sleeve 12 absorbs the inclination of the main shaft 13 with respect to the frame 5.
 バランサ付きスライダ11は、図2に示すように、筒状のスライダ部11aと、バランサ部11bと、を有している。筒状のスライダ部11aとバランサ部11bとは、焼嵌め等で接合されている。スライダ部11aは、主軸13の上端部に設けられた偏心軸部13aに対して相対移動可能に嵌め合わされ、揺動スクロール4の揺動半径を自動的に調整する。スライダ部11aは、揺動スクロール4の揺動時に、常に、固定スクロール3の第1渦巻体3bと揺動スクロール4の第2渦巻体4bとが互いに接した状態となるように設けられている。バランサ部11bは、図2に示すように、スライダ部11aの側方に位置し、揺動スクロール4の遠心力を打ち消して圧縮要素の振動を抑えるために設けられている。バランサ部11bは、筒状のスライダ部11aの側面の一部に沿って配置されている。 As shown in FIG. 2, the slider with balancer 11 has a cylindrical slider portion 11a and a balancer portion 11b. The cylindrical slider portion 11a and the balancer portion 11b are joined by shrink fitting or the like. The slider portion 11a is fitted to be movable relative to the eccentric shaft portion 13a provided at the upper end of the main shaft 13, and automatically adjusts the swing radius of the swing scroll 4. The slider portion 11a is provided so that the first spiral body 3b of the fixed scroll 3 and the second spiral body 4b of the orbiting scroll 4 are always in contact with each other when the orbiting scroll 4 swings. . As shown in FIG. 2, the balancer section 11b is located on the side of the slider section 11a, and is provided to cancel the centrifugal force of the swinging scroll 4 and suppress vibrations of the compression element. The balancer section 11b is arranged along a part of the side surface of the cylindrical slider section 11a.
 このように、揺動スクロール4は、主軸13の偏心軸部13aにバランサ付きスライダ11を介して連結されており、バランサ付きスライダ11によって揺動半径が自動的に調整されつつ、主軸13の回転に伴って揺動運動する。後述する図3に示すように、揺動スクロール4の第2基板4aの揺動スクロールスラスト面4fとフレーム5の本体部5aとの間には、筒状の揺動軸受動作空間5eが形成されている。揺動スクロール4の揺動運動中、揺動軸受4eは、バランサ付きスライダ11と共に揺動軸受動作空間5e内を回転するようになっている。 In this way, the swinging scroll 4 is connected to the eccentric shaft portion 13a of the main shaft 13 via the slider 11 with a balancer, and the swing radius is automatically adjusted by the slider 11 with a balancer, and the rotation of the main shaft 13 is controlled. It oscillates along with the movement. As shown in FIG. 3, which will be described later, a cylindrical swing bearing operating space 5e is formed between the swing scroll thrust surface 4f of the second substrate 4a of the swing scroll 4 and the main body portion 5a of the frame 5. ing. During the swing motion of the swing scroll 4, the swing bearing 4e rotates together with the balancer-equipped slider 11 within the swing bearing operating space 5e.
 第一バランサ14は、図1に示すように、主軸13に取り付けられる。第一バランサ14は、フレーム5とロータ15との間に位置する。第一バランサ14は、揺動スクロール4およびバランサ付きスライダ11によって生じるアンバランスを相殺する。 The first balancer 14 is attached to the main shaft 13, as shown in FIG. The first balancer 14 is located between the frame 5 and the rotor 15. The first balancer 14 cancels out the unbalance caused by the swinging scroll 4 and the slider 11 with a balancer.
 第二バランサ16は、図1に示すように、ロータ15とサブフレーム18との間に位置し、ロータ15の下面に取り付けられる。第二バランサ16は、揺動スクロール4およびバランサ付きスライダ11によって生じるアンバランスを相殺する。 As shown in FIG. 1, the second balancer 16 is located between the rotor 15 and the subframe 18, and is attached to the lower surface of the rotor 15. The second balancer 16 cancels out the unbalance caused by the swinging scroll 4 and the slider 11 with a balancer.
 シェル2内において、駆動機構部1bの下方には、サブフレーム18が設けられている。サブフレーム18は、焼嵌めまたは溶接等によってメインシェル2aの内周面に固着されている。サブフレーム18の中央部には、玉軸受からなる副軸受19が設けられている。副軸受19は、駆動機構部1bの下方で、主軸13を半径方向に軸支している。サブフレーム18は、副軸受19を介して、主軸13を回転自在に支持している。なお、副軸受19は、玉軸受以外の別の軸受構成としてもよい。主軸13において、駆動機構部1bよりも下方の部分を、副軸受部13eと呼ぶ。副軸受部13eは、副軸受19と嵌め合わされ、冷凍機油21による油膜を介して副軸受19に対し摺動する。主軸部13b、主軸受部13dおよび副軸受部13eの軸心は、主軸13の軸心と一致している。 Inside the shell 2, a subframe 18 is provided below the drive mechanism section 1b. The subframe 18 is fixed to the inner peripheral surface of the main shell 2a by shrink fitting, welding, or the like. A sub-bearing 19 made of a ball bearing is provided at the center of the sub-frame 18. The sub-bearing 19 supports the main shaft 13 in the radial direction below the drive mechanism section 1b. The sub-frame 18 rotatably supports the main shaft 13 via a sub-bearing 19. Note that the secondary bearing 19 may have a bearing configuration other than a ball bearing. In the main shaft 13, a portion below the drive mechanism portion 1b is referred to as a sub-bearing portion 13e. The sub-bearing portion 13e is fitted into the sub-bearing 19 and slides on the sub-bearing 19 via an oil film formed by the refrigerating machine oil 21. The axes of the main shaft portion 13b, the main bearing portion 13d, and the sub-bearing portion 13e coincide with the axis of the main shaft 13.
 シェル2には、図1に示すように、冷媒を吸入するための吸入管22と、冷媒を吐出するための吐出管23と、が設けられている。吸入管22は、シェル2の側壁部に設けられる。吸入管22は、ガス状態の冷媒をシェル2の内部に吸入する管である。シェル2内において、フレーム5よりも下方には、吸入管22から流入した吸入冷媒で満たされる低圧の吸入空間41が形成されている。 As shown in FIG. 1, the shell 2 is provided with a suction pipe 22 for sucking refrigerant and a discharge pipe 23 for discharging the refrigerant. The suction pipe 22 is provided on the side wall of the shell 2. The suction pipe 22 is a pipe that sucks gaseous refrigerant into the interior of the shell 2 . A low-pressure suction space 41 filled with suction refrigerant flowing from the suction pipe 22 is formed below the frame 5 in the shell 2 .
 吐出管23は、アッパーシェル2bの上部に設けられる。吐出管23は、圧縮機構部1aで圧縮された冷媒をシェル2の外部に吐出する管である。また、シェル2内において、圧縮機構部1aの固定スクロール3における第1基板3a(図3参照)より上方に位置する吐出管23側には、圧縮機構部1aから吐出された吐出冷媒で満たされる高圧の吐出空間42が形成されている。メインシェル2aの上方には、外部から導入される冷媒を噴射するインジェクション機構1cのインジェクション管24が接続されていることが好ましい。インジェクション管24は、揺動スクロール4の第2渦巻体4bの外周側に位置する冷媒取込空間44、または、後述する圧縮室43内に対して、外部から導入される冷媒を噴射する。 The discharge pipe 23 is provided at the top of the upper shell 2b. The discharge pipe 23 is a pipe that discharges the refrigerant compressed by the compression mechanism part 1a to the outside of the shell 2. In addition, in the shell 2, the discharge pipe 23 side located above the first substrate 3a (see FIG. 3) of the fixed scroll 3 of the compression mechanism section 1a is filled with the discharge refrigerant discharged from the compression mechanism section 1a. A high pressure discharge space 42 is formed. It is preferable that an injection pipe 24 of an injection mechanism 1c that injects refrigerant introduced from the outside is connected above the main shell 2a. The injection pipe 24 injects a refrigerant introduced from the outside into a refrigerant intake space 44 located on the outer peripheral side of the second spiral body 4b of the orbiting scroll 4 or into a compression chamber 43, which will be described later.
 <圧縮機構部1a>
 次に、上述した図1~図2に加え、図3~図4を用いて、実施の形態1に係る圧縮機1の圧縮機構部1aの構成と、固定スクロール3および揺動スクロール4の保持形態について説明する。図3は、図1に示す圧縮機1の部分拡大断面図である。図3は、図1に示す圧縮機1の上部の構成のみを示している。図4は、図1の一点鎖線Aで囲われた領域を示す部分拡大断面図である。
<Compression mechanism section 1a>
Next, using FIGS. 3 to 4 in addition to FIGS. 1 to 2 described above, the configuration of the compression mechanism section 1a of the compressor 1 according to the first embodiment and the holding of the fixed scroll 3 and the swinging scroll 4 will be explained. The form will be explained. FIG. 3 is a partially enlarged sectional view of the compressor 1 shown in FIG. 1. FIG. 3 shows only the structure of the upper part of the compressor 1 shown in FIG. FIG. 4 is a partially enlarged sectional view showing a region surrounded by a dashed line A in FIG.
 圧縮機1の圧縮機構部1aは、フレーム5から一端側Uに向かって配置され、固定スクロール3、揺動スクロール4、スラストプレート8、オルダムリング7等から構成される。 The compression mechanism section 1a of the compressor 1 is arranged from the frame 5 toward one end side U, and is composed of a fixed scroll 3, an oscillating scroll 4, a thrust plate 8, an Oldham ring 7, and the like.
 固定スクロール3は、鋳鉄等の金属からなり、第1基板3a(例えば図10参照)と、第1渦巻体3b(例えば図10参照)と、を備えている。後述する図10は、固定スクロール3の構成を概略的に示した概略図であり、実施の形態1に係る固定スクロール3とは、第1渦巻体3bの渦巻形状および巻回数等が異なっている。 The fixed scroll 3 is made of metal such as cast iron, and includes a first substrate 3a (see, for example, FIG. 10) and a first spiral body 3b (see, for example, FIG. 10). FIG. 10, which will be described later, is a schematic diagram schematically showing the configuration of the fixed scroll 3, and is different from the fixed scroll 3 according to Embodiment 1 in the spiral shape of the first spiral body 3b, the number of turns, etc. .
 第1基板3aは、円盤形状を呈しており、その中央部には、図3に示すように、上下方向に貫通する吐出孔3cが形成されている。第1基板3aは、第1渦巻体3bが形成された一方の面(以下、第1面312とする)と、第1面312の反対側に位置する他方の面(以下、第2面313とする)と、側面314と、を備えている。側面314は、第1基板3aの径方向の最外部に位置し、第1面312と第2面313とを接続する面である。第1面312に形成された第1渦巻体3bは、第1基板3aの他端側Lに向かって突出して、渦巻状の壁を形成している。また、第1渦巻体3bの先端には、第1渦巻体3bと圧縮室43との間の漏れを防止するためのシール材が設けられている。固定スクロール3の吐出孔3cの出口部には、当該出口部を覆うように吐出弁9が設置される。吐出弁9は例えばリード弁にて構成される。吐出弁9は、吐出孔3cを開閉し、流体の逆流を防止するものである。吐出弁押え10は、吐出弁9よりも厚みのある長板状の部材であり、吐出弁9の開弁時に吐出弁9を背面側(すなわち、上側)から支持することで、吐出弁9の可動範囲を規制しつつ、吐出弁9が変形しないように保護する。 The first substrate 3a has a disk shape, and as shown in FIG. 3, a discharge hole 3c is formed in the center thereof to penetrate in the vertical direction. The first substrate 3a has one surface (hereinafter referred to as a first surface 312) on which the first spiral body 3b is formed, and the other surface located on the opposite side of the first surface 312 (hereinafter referred to as a second surface 313). ) and a side surface 314. The side surface 314 is located at the outermost part of the first substrate 3a in the radial direction, and is a surface that connects the first surface 312 and the second surface 313. The first spiral body 3b formed on the first surface 312 protrudes toward the other end side L of the first substrate 3a, forming a spiral wall. Furthermore, a sealing material for preventing leakage between the first spiral body 3b and the compression chamber 43 is provided at the tip of the first spiral body 3b. A discharge valve 9 is installed at the outlet of the discharge hole 3c of the fixed scroll 3 so as to cover the outlet. The discharge valve 9 is constituted by, for example, a reed valve. The discharge valve 9 opens and closes the discharge hole 3c to prevent backflow of fluid. The discharge valve holder 10 is a long plate-shaped member that is thicker than the discharge valve 9, and supports the discharge valve 9 from the back side (that is, the upper side) when the discharge valve 9 is opened. To protect a discharge valve 9 from deformation while restricting a movable range.
 揺動スクロール4は、アルミニウム等の金属からなり、第2基板4aと、第2渦巻体4bと、筒状の揺動スクロールボス部4cと、第2オルダム溝4dと、を備えている。また第2渦巻体4bの先端には、第2渦巻体4bと圧縮室43との間の漏れを防止するためのシール材が設けられている。第2基板4aは、第2渦巻体4bが形成された一方の面(以下、第1面412とする)と、第1面の反対側に位置する他方の面(以下、第2面413とする)と、側面414と、を備えた円盤状を呈している。第1面412は、固定スクロール3の第1面312と対向して配置される。第2面413は、外周領域の少なくとも一部が摺動面となる。また、側面414は、第2基板4aの径方向の最外部に位置し、第1面412と第2面413とを接続する面である。第2基板4aは、第2基板4aの第2面413の摺動面がスラストプレート8(図1参照)に摺動可能に、フレーム5に支持されている。第2渦巻体4bは、第1面412から一端側Uに向かって突出して、渦巻状の壁を形成している。揺動スクロール4の第2基板4aにおいて、第2面413の中心部には、円筒形状の揺動スクロールボス部4cが形成されている。揺動スクロールボス部4cの内側には、揺動軸受4eが固定されている。揺動軸受4eは、銅鉛合金等の滑り軸受に使用される軸受材料で構成されている。揺動軸受4eは、軸受材料を揺動スクロールボス部4cの内側に圧入して固定することで、形成されている。 The swinging scroll 4 is made of metal such as aluminum, and includes a second substrate 4a, a second spiral body 4b, a cylindrical swinging scroll boss portion 4c, and a second Oldham groove 4d. Further, a sealing material for preventing leakage between the second spiral body 4b and the compression chamber 43 is provided at the tip of the second spiral body 4b. The second substrate 4a has one surface on which the second spiral body 4b is formed (hereinafter referred to as the first surface 412) and the other surface located on the opposite side of the first surface (hereinafter referred to as the second surface 413). ) and a side surface 414. The first surface 412 is arranged to face the first surface 312 of the fixed scroll 3 . At least a portion of the outer peripheral region of the second surface 413 becomes a sliding surface. Further, the side surface 414 is located at the outermost portion of the second substrate 4a in the radial direction, and is a surface that connects the first surface 412 and the second surface 413. The second substrate 4a is supported by the frame 5 such that the sliding surface of the second surface 413 of the second substrate 4a can slide on the thrust plate 8 (see FIG. 1). The second spiral body 4b projects from the first surface 412 toward one end side U, and forms a spiral wall. In the second substrate 4a of the swing scroll 4, a cylindrical swing scroll boss portion 4c is formed at the center of the second surface 413. A swing bearing 4e is fixed inside the swing scroll boss portion 4c. The rocking bearing 4e is made of a bearing material used for sliding bearings, such as copper-lead alloy. The swing bearing 4e is formed by press-fitting and fixing a bearing material inside the swing scroll boss portion 4c.
 フレーム5は、空洞が形成された中空な金属製のフレームであり、シェル2の内部に設けられている。フレーム5は、図2に示すように、段差が形成された円筒形状の本体部5aと、本体部5aの下方に配置された円筒形状のフレームボス部5bと、を有している。本体部5aには、図1に示すように、フレーム5の内部に溜まった油を低圧空間に戻すための返油管6が接続されている。返油管6は、フレーム5内に溜まった潤滑油をロアシェル2cの内側の油溜り部40に戻すための管であり、本体部5aの側面に形成された排油孔5iに挿入されて固定されている。排油孔5iは、本体部5aの側面を貫通する貫通孔である。従って、排油孔5iは、フレーム5の内外に貫通している。 The frame 5 is a hollow metal frame with a cavity formed therein, and is provided inside the shell 2. As shown in FIG. 2, the frame 5 has a cylindrical main body part 5a with a step formed therein, and a cylindrical frame boss part 5b arranged below the main body part 5a. As shown in FIG. 1, an oil return pipe 6 for returning oil accumulated inside the frame 5 to the low pressure space is connected to the main body portion 5a. The oil return pipe 6 is a pipe for returning the lubricating oil accumulated in the frame 5 to the oil reservoir part 40 inside the lower shell 2c, and is inserted and fixed into the oil drain hole 5i formed on the side surface of the main body part 5a. ing. The oil drain hole 5i is a through hole that penetrates the side surface of the main body portion 5a. Therefore, the oil drain hole 5i penetrates inside and outside of the frame 5.
 また、図1~図3に示すように、フレームボス部5bの内側には主軸受5cが固定されている。主軸受5cは、銅鉛合金等の滑り軸受に使用される軸受材料で構成されている。主軸受5cは、軸受材料をフレームボス部5bの内側に圧入して固定することで、形成されている。本体部5aは、シェル2の一端側Uの内壁面に固定されている。フレーム5の一端側Uには、揺動スクロール4を支持するためのフレームスラスト面5fが形成されている。フレームスラスト面5fは、XY平面に平行に配置されている。フレームスラスト面5fは、図2に示すように、平面視でドーナツ形状を有している。フレームスラスト面5fには、バルブ鋼等の鋼板系材料からなるリング状のスラストプレート8(図1および図2参照)が配置されている。よって、実施の形態1では、スラストプレート8がスラスト軸受として機能する。また、図3に示すように、フレームスラスト面5fの外端側のスラストプレート8と重ならない位置には、吸入ポート5dが形成されている。すなわち、円環形状のスラストプレート8には、図2に示すように、外端側の一箇所に、切り欠き部8aが形成されている。吸入ポート5dは、スラストプレート8の切り欠き部8aに対応する位置に配置されている。吸入ポート5dは、本体部5aの上下方向、すなわち一端側Uと他端側Lとに貫通する空間である。吸入ポート5dは、一つに限らず、複数形成されていても良い。 Furthermore, as shown in FIGS. 1 to 3, a main bearing 5c is fixed inside the frame boss portion 5b. The main bearing 5c is made of a bearing material used for sliding bearings, such as copper-lead alloy. The main bearing 5c is formed by press-fitting and fixing a bearing material inside the frame boss portion 5b. The main body portion 5a is fixed to the inner wall surface of one end side U of the shell 2. A frame thrust surface 5f for supporting the swinging scroll 4 is formed on one end side U of the frame 5. The frame thrust surface 5f is arranged parallel to the XY plane. As shown in FIG. 2, the frame thrust surface 5f has a donut shape in plan view. A ring-shaped thrust plate 8 (see FIGS. 1 and 2) made of a steel sheet material such as valve steel is arranged on the frame thrust surface 5f. Therefore, in the first embodiment, the thrust plate 8 functions as a thrust bearing. Further, as shown in FIG. 3, a suction port 5d is formed at a position on the outer end side of the frame thrust surface 5f that does not overlap with the thrust plate 8. That is, as shown in FIG. 2, the annular thrust plate 8 has a notch 8a formed at one location on the outer end side. The suction port 5d is arranged at a position corresponding to the notch 8a of the thrust plate 8. The suction port 5d is a space that penetrates the main body portion 5a in the vertical direction, that is, one end side U and the other end side L. The number of suction ports 5d is not limited to one, and a plurality of suction ports may be formed.
 フレーム5のフレームスラスト面5fよりも下方の段差部分には、図2に示すように、オルダム収容部5gが形成されている。オルダム収容部5gは、XY平面に平行に配置され、平面視でドーナツ形状を有している。オルダム収容部5gには、オルダムリング7が載置される。オルダム収容部5gには、第1オルダム溝5hが形成されている。図2の例では、2つの第1オルダム溝5hが形成されている。第1オルダム溝5hは、本体部5aの内壁の下方からオルダム収容部5gにかけて形成されている。第1オルダム溝5hは、オルダム収容部5gよりも他端側Lに向かって凹んでいる。第1オルダム溝5hには、オルダムリング7の第1キー部7bが挿入される。 As shown in FIG. 2, an Oldham housing portion 5g is formed in a stepped portion of the frame 5 below the frame thrust surface 5f. The Oldham storage portion 5g is arranged parallel to the XY plane and has a donut shape when viewed from above. The Oldham ring 7 is placed in the Oldham housing portion 5g. A first Oldham groove 5h is formed in the Oldham housing portion 5g. In the example of FIG. 2, two first Oldham grooves 5h are formed. The first Oldham groove 5h is formed from the lower part of the inner wall of the main body portion 5a to the Oldham housing portion 5g. The first Oldham groove 5h is recessed toward the other end L from the Oldham housing portion 5g. The first key portion 7b of the Oldham ring 7 is inserted into the first Oldham groove 5h.
 オルダムリング7は、図2に示すように、リング部7aと、第1キー部7bと、第2キー部7cと、を備えている。リング部7aは、円環形状を有している。図2の例では、2つの第1キー部7bがリング部7aに設けられている。2つの第1キー部7bは、径方向に互いに対向するように、リング部7aの他端側Lの面に配置されている。2つの第1キー部7bは、それぞれ、直方体形状を有している。2つの第1キー部7bは、それぞれ、フレーム5の一対の第1オルダム溝5hに収容される。さらに、図2の例では、2つの第2キー部7cがリング部7aに設けられている。2つの第2キー部7cは、径方向に互いに対向するように、リング部7aの一端側Uの面に配置されている。2つの第2キー部7cは、2つの第1キー部7bに対して、位相が90度ずれて配置されている。すなわち、2つの第2キー部7cを結ぶ径方向に延びる仮想線と、2つの第1キー部7bを結ぶ径方向に延びる仮想線とは、互いに直交している。2つの第2キー部7cは、それぞれ、直方体形状を有している。2つの第2キー部7cは、揺動スクロール4の一対の第2オルダム溝4d(図3参照)に収容される。主軸13の回転によって揺動スクロール4が公転旋回する際に、第1キー部7bは第1オルダム溝5hでスライドし、第2キー部7cは第2オルダム溝4dでスライドすることにより、オルダムリング7は、揺動スクロール4が自転することを防止する。すなわち、オルダムリング7は、揺動スクロール4の自転運動を阻止すると共に、揺動スクロール4の揺動運動を可能とする機能を果たす。 As shown in FIG. 2, the Oldham ring 7 includes a ring portion 7a, a first key portion 7b, and a second key portion 7c. The ring portion 7a has an annular shape. In the example of FIG. 2, two first key parts 7b are provided on the ring part 7a. The two first key parts 7b are arranged on the surface of the other end side L of the ring part 7a so as to face each other in the radial direction. The two first key parts 7b each have a rectangular parallelepiped shape. The two first key portions 7b are accommodated in a pair of first Oldham grooves 5h of the frame 5, respectively. Furthermore, in the example of FIG. 2, two second key parts 7c are provided on the ring part 7a. The two second key parts 7c are arranged on the surface of one end side U of the ring part 7a so as to face each other in the radial direction. The two second key parts 7c are arranged with a phase shift of 90 degrees with respect to the two first key parts 7b. That is, the imaginary line extending in the radial direction connecting the two second key parts 7c and the imaginary line extending in the radial direction connecting the two first key parts 7b are orthogonal to each other. The two second key parts 7c each have a rectangular parallelepiped shape. The two second key portions 7c are accommodated in a pair of second Oldham grooves 4d (see FIG. 3) of the swinging scroll 4. When the oscillating scroll 4 revolves due to the rotation of the main shaft 13, the first key part 7b slides in the first Oldham groove 5h, and the second key part 7c slides in the second Oldham groove 4d. 7 prevents the swinging scroll 4 from rotating. That is, the Oldham ring 7 functions to prevent the rotation of the swinging scroll 4 and to enable the swinging motion of the swinging scroll 4.
 固定スクロール3の第1面312と、揺動スクロール4の第1面412とは、互いに対向して配置される。そして、前述の固定スクロール3の第1渦巻体3bと、揺動スクロール4の第2渦巻体4bと、を互いに噛み合わせることにより圧縮室43が形成される。圧縮室43は、半径方向において、外側から内側へ向かうに従って容積が縮小するものである。そのため、冷媒を第1渦巻体3bおよび第2渦巻体4bの外端側から取り入れて、中央側に移動させることで、冷媒が徐々に圧縮される。圧縮室43は、固定スクロール3の中央部において、吐出孔3cと連通する。固定スクロール3の一端側Uの面である第2面313には、冷媒の逆流を防止する吐出弁9が取り付けられている。吐出弁9は、固定スクロール3に設けられた吐出孔3cを、予め設定された開度の範囲で開閉するよう取り付けられる。吐出弁9の上方には、上述したように、吐出弁押え10が設けられている。吐出弁押え10は、吐出弁9の開弁時に吐出弁9を背面側から支持することで、吐出弁9の可動範囲を規制しつつ、吐出弁9が変形しないように保護する。また、図3に示すように、吐出孔3cを有するマフラ25がさらに設けられていてもよい。 The first surface 312 of the fixed scroll 3 and the first surface 412 of the swinging scroll 4 are arranged to face each other. The compression chamber 43 is formed by meshing the first spiral body 3b of the fixed scroll 3 and the second spiral body 4b of the swinging scroll 4 with each other. The compression chamber 43 has a volume that decreases from the outside toward the inside in the radial direction. Therefore, the refrigerant is gradually compressed by taking in the refrigerant from the outer ends of the first spiral body 3b and the second spiral body 4b and moving it toward the center. The compression chamber 43 communicates with the discharge hole 3c at the center of the fixed scroll 3. A discharge valve 9 is attached to a second surface 313, which is a surface on one end side U of the fixed scroll 3, to prevent backflow of the refrigerant. The discharge valve 9 is attached to open and close the discharge hole 3c provided in the fixed scroll 3 within a preset opening range. As described above, the discharge valve holder 10 is provided above the discharge valve 9. The discharge valve holder 10 protects the discharge valve 9 from deformation while restricting the movable range of the discharge valve 9 by supporting the discharge valve 9 from the back side when the discharge valve 9 is opened. Moreover, as shown in FIG. 3, a muffler 25 having discharge holes 3c may be further provided.
 メインシェル2aは、図2または図4に示すように、第1内壁面111と、第1内壁面111から突出して固定スクロール3を位置決めする第1突出部112と、第1突出部112において一端側Uに向いている第1位置決め面113と、を有している。すなわち、第1位置決め面113は、第1突出部112の上端面部である。さらに、メインシェル2aは、図2または図4に示すように、第2内壁面114と、第2内壁面114から突出してフレーム5を位置決めする第2突出部115と、第2突出部115において一端側Uに向いている第2位置決め面116と、を有している。すなわち、第2位置決め面116は、第2突出部115の上端面部である。このように、メインシェル2aの内壁には、Z方向に2段階にわたって段差が設けられている。そして、Z方向の他端側Lに向かうにつれて、メインシェル2aの内径が2段階にわたって小さくなっている。以下、具体的に説明する。まず、第1内壁面111に、第1突出部112を設けることによって、1つめの段差が形成されている。第1突出部112より下方のメインシェル2aの内壁は、第2内壁面114になっている。第2内壁面114の内径は、第1突出部112の分だけ、第1内壁面111よりも小さくなっている。次に、第2内壁面114に、第2突出部115を設けることで、2つめの段差が形成されている。固定スクロール3は、図4に示すように、第1面312の径方向の最外縁部が、第1位置決め面113上に配置されるように、メインシェル2a内に収容されている。これにより、固定スクロール3のZ方向の位置が位置決めされる。固定スクロール3の第1基板3aは、第1位置決め面113で位置決めされた状態で、第1内壁面111に焼嵌め等により固定される。フレーム5は、本体部5aの下端面部511が第2位置決め面116上に配置されるように、メインシェル2a内に収容されている。これにより、フレーム5のZ方向の位置が位置決めされる。フレーム5は、第2位置決め面116で位置決めされた状態で、第2内壁面114に焼嵌め等により固定されている。 As shown in FIG. 2 or 4, the main shell 2a includes a first inner wall surface 111, a first protrusion 112 that protrudes from the first inner wall surface 111 and positions the fixed scroll 3, and one end of the first protrusion 112. and a first positioning surface 113 facing toward side U. That is, the first positioning surface 113 is the upper end surface portion of the first protrusion 112 . Furthermore, as shown in FIG. 2 or FIG. A second positioning surface 116 facing the one end side U. That is, the second positioning surface 116 is the upper end surface portion of the second protrusion 115. In this way, the inner wall of the main shell 2a is provided with two steps in the Z direction. The inner diameter of the main shell 2a decreases in two steps toward the other end L in the Z direction. This will be explained in detail below. First, a first step is formed by providing a first protrusion 112 on the first inner wall surface 111 . The inner wall of the main shell 2a below the first protrusion 112 is a second inner wall surface 114. The inner diameter of the second inner wall surface 114 is smaller than the first inner wall surface 111 by the amount of the first protrusion 112 . Next, a second protrusion 115 is provided on the second inner wall surface 114, thereby forming a second step. The fixed scroll 3 is housed in the main shell 2a so that the outermost edge of the first surface 312 in the radial direction is disposed on the first positioning surface 113, as shown in FIG. Thereby, the position of the fixed scroll 3 in the Z direction is determined. The first substrate 3a of the fixed scroll 3 is fixed to the first inner wall surface 111 by shrink fitting or the like while being positioned by the first positioning surface 113. The frame 5 is housed within the main shell 2a such that the lower end surface portion 511 of the main body portion 5a is disposed on the second positioning surface 116. Thereby, the position of the frame 5 in the Z direction is determined. The frame 5 is fixed to the second inner wall surface 114 by shrink fitting or the like while being positioned by the second positioning surface 116 .
 アッパーシェル2bは、図1および図3に示すように、メインシェル2aの一端側Uから挿入され、溶接またはアークスポット溶接等により固定される。その際に、図4に示すように、アッパーシェル2bの下端部に設けられたアッパーシェル位置決め面213が、固定スクロール3を、メインシェル2aの第1位置決め面113に押付ける。これにより、固定スクロール3のZ方向の位置が位置決めされる。さらに、押し付けた状態を維持しながら、固定スクロール3をメインシェル2aに焼嵌めにより固定する。これにより、圧縮機1の製品ごとの冷媒取込空間44の高さのばらつきを抑制し、固定スクロール3の位置精度を高めるとともに、圧縮機1の駆動時に固定スクロール3が上下方向にずれることを抑制する。その結果、固定スクロール3の軸方向への浮き上がりが防止できる。 As shown in FIGS. 1 and 3, the upper shell 2b is inserted from one end side U of the main shell 2a and fixed by welding, arc spot welding, or the like. At this time, as shown in FIG. 4, the upper shell positioning surface 213 provided at the lower end of the upper shell 2b presses the fixed scroll 3 against the first positioning surface 113 of the main shell 2a. Thereby, the position of the fixed scroll 3 in the Z direction is determined. Furthermore, while maintaining the pressed state, the fixed scroll 3 is fixed to the main shell 2a by shrink fitting. This suppresses variations in the height of the refrigerant intake space 44 for each product of the compressor 1, improves the positional accuracy of the fixed scroll 3, and prevents the fixed scroll 3 from shifting in the vertical direction when the compressor 1 is driven. suppress. As a result, lifting of the fixed scroll 3 in the axial direction can be prevented.
 <圧縮機1の製造方法>
 次に、実施の形態1に係る圧縮機1の製造方法について説明する。圧縮機1の製造方法は、例えば、以下の工程(a)~(d)を備えている。(a):フレーム5をメインシェル2aの内壁面に固定するフレーム固定工程、(b):フレーム固定工程の後に、フレーム5から突き出たピン(図示せず)を用いて、固定スクロール3とフレーム5との位相決めを行う位相決め工程、(c):位相決め工程の後に、固定スクロール3の第1基板3aをメインシェル2aの内壁面に固定する第1基板固定工程、(d):第1基板固定工程の後に、位相決めで用いたピンを抜き取る抜き取り工程。
<Method for manufacturing compressor 1>
Next, a method for manufacturing the compressor 1 according to the first embodiment will be described. The method for manufacturing the compressor 1 includes, for example, the following steps (a) to (d). (a): Frame fixing step of fixing the frame 5 to the inner wall surface of the main shell 2a; (b): After the frame fixing step, the fixed scroll 3 and the frame are fixed using pins (not shown) protruding from the frame 5. (c): After the phase determining step, a first substrate fixing step of fixing the first substrate 3a of the fixed scroll 3 to the inner wall surface of the main shell 2a, (d): 1 After the board fixing process, the extraction process involves removing the pins used for phase determination.
 具体的には、工程(a)で、フレーム5の外周面のうち、径方向における最外部に位置する外周面を、メインシェル2aの内壁面に焼き嵌め等で固着する。その後、工程(b)で、フレーム5に形成された凹部と、固定スクロール3に形成された凹部とに、棒状のピンを挿入して、固定スクロール3とフレーム5との位相決めを行う。フレーム5に形成された凹部は、Z方向の下方向に向かって凹んでいる。また、固定スクロール3に形成された凹部は、Z方向の上方向に向かって凹んでいるか、あるいは、第1基板3aを貫通する貫通穴である。フレーム5に形成された凹部と固定スクロール3に形成された凹部とはZ方向に対向して配置され、それらの凹部に、棒状のピンが挿入される。これにより、固定スクロール3とフレーム5とが位相決めされる。そして、工程(c)で、固定スクロール3の第1基板3aの外周面をメインシェル2aの内壁面に焼き嵌め等で固定する。このようにして、固定スクロール3とフレーム5との回転位相決めが行われる。次に、工程(d)で、フレーム5に形成された凹部と、固定スクロール3に形成された凹部と、から、ピンを抜き取る。ピンを抜き取ることにより、ピンと揺動スクロール4とが干渉する事態をなくすことができる。なお、ピンと揺動スクロール4とが干渉する可能性がない場合には、ピンは、フレーム5に形成された凹部と固定スクロール3に形成された凹部とに挿入したままにしておいてもよい。 Specifically, in step (a), among the outer circumferential surfaces of the frame 5, the outermost outer circumferential surface in the radial direction is fixed to the inner wall surface of the main shell 2a by shrink fitting or the like. Then, in step (b), rod-shaped pins are inserted into the recesses formed in the frame 5 and the fixed scroll 3 to determine the phase between the fixed scroll 3 and the frame 5. The recess formed in the frame 5 is recessed downward in the Z direction. Further, the recess formed in the fixed scroll 3 is recessed upward in the Z direction, or is a through hole penetrating the first substrate 3a. A recess formed in the frame 5 and a recess formed in the fixed scroll 3 are arranged to face each other in the Z direction, and a rod-shaped pin is inserted into these recesses. Thereby, the fixed scroll 3 and frame 5 are phased. Then, in step (c), the outer peripheral surface of the first substrate 3a of the fixed scroll 3 is fixed to the inner wall surface of the main shell 2a by shrink fitting or the like. In this way, the rotational phases of the fixed scroll 3 and the frame 5 are determined. Next, in step (d), the pin is extracted from the recess formed in the frame 5 and the recess formed in the fixed scroll 3. By removing the pin, interference between the pin and the swinging scroll 4 can be eliminated. Note that if there is no possibility of interference between the pin and the swinging scroll 4, the pin may remain inserted in the recess formed in the frame 5 and the recess formed in the fixed scroll 3.
 <固定スクロール3の回転抑制機構>
 次に、実施の形態1のメインの特徴となる固定スクロール3の回転位相のズレ防止を行う回転抑制機構部50について、図5~図11を用いて説明を行う。固定スクロール3の回転抑制機構部50は、固定スクロール3と、アッパーシェル2bと、から構成されている。
<Rotation suppression mechanism of fixed scroll 3>
Next, the rotation suppressing mechanism 50 that prevents deviation in the rotational phase of the fixed scroll 3, which is the main feature of the first embodiment, will be explained using FIGS. 5 to 11. The rotation suppressing mechanism 50 of the fixed scroll 3 includes the fixed scroll 3 and the upper shell 2b.
 図5は、実施の形態1に係る圧縮機1に設けられたアッパーシェル2bの構成を示す断面図である。図5においては、図7のA-A断面図が示されている。図6は、実施の形態1に係る圧縮機1に設けられたアッパーシェル2bの構成を模式的に示す斜視図である。図7は、実施の形態1に係る圧縮機1に設けられたアッパーシェル2bの構成を裏面から示す平面図である。図7においては、アッパーシェル2bを他端側Lから見た状態が示されている。 FIG. 5 is a sectional view showing the configuration of the upper shell 2b provided in the compressor 1 according to the first embodiment. In FIG. 5, a sectional view taken along line AA in FIG. 7 is shown. FIG. 6 is a perspective view schematically showing the configuration of the upper shell 2b provided in the compressor 1 according to the first embodiment. FIG. 7 is a plan view showing the configuration of the upper shell 2b provided in the compressor 1 according to the first embodiment from the back side. In FIG. 7, the state where the upper shell 2b is viewed from the other end side L is shown.
 一方、図8は、実施の形態1に係る圧縮機1に設けられた固定スクロール3の構成を示す平面図である。図8においては、固定スクロール3を一端側Uから見た状態が示されている。図9は、実施の形態1に係る圧縮機1に設けられた固定スクロール3の構成を示す断面図である。図9においては、図8のD-D断面図が示されている。図10は、実施の形態1に係る圧縮機1に設けられた固定スクロール3の概略構成を示す概略斜視図である。図10においては、固定スクロール3を他端側Lから見た状態が示されている。なお、上述したように、図10は、固定スクロール3の構成を概略的に示した概略図であり、実施の形態1に係る固定スクロール3とは、第1渦巻体3bの渦巻形状および巻回数等が異なっている。 On the other hand, FIG. 8 is a plan view showing the configuration of the fixed scroll 3 provided in the compressor 1 according to the first embodiment. In FIG. 8, the fixed scroll 3 is shown viewed from one end side U. FIG. 9 is a sectional view showing the configuration of the fixed scroll 3 provided in the compressor 1 according to the first embodiment. In FIG. 9, a cross-sectional view taken along the line DD in FIG. 8 is shown. FIG. 10 is a schematic perspective view showing a schematic configuration of the fixed scroll 3 provided in the compressor 1 according to the first embodiment. In FIG. 10, the fixed scroll 3 is shown viewed from the other end L. As mentioned above, FIG. 10 is a schematic diagram schematically showing the configuration of the fixed scroll 3, and the fixed scroll 3 according to the first embodiment is different from the spiral shape and the number of turns of the first spiral body 3b. etc. are different.
 図11は、実施の形態1に係る圧縮機1におけるアッパーシェル2bと固定スクロール3との回転抑制機構部50を示す部分斜視図である。図11は、アッパーシェル2bを図7の二点鎖線Cで切断し、固定スクロール3を図8の二点鎖線Eで切断した状態の斜視図を示している。 FIG. 11 is a partial perspective view showing the rotation suppression mechanism 50 of the upper shell 2b and fixed scroll 3 in the compressor 1 according to the first embodiment. FIG. 11 shows a perspective view of the upper shell 2b cut along the two-dot chain line C in FIG. 7, and the fixed scroll 3 cut along the two-dot chain line E in FIG.
 図5~図7に示すように、アッパーシェル2bは、ドーム形状を有している。あるいは、アッパーシェル2bは、有底筒状形状を有している。アッパーシェル2bの下端部は、開口している。図5および図6に示すように、アッパーシェル2bの下端部には、爪部214が設けられている。爪部214は、図1および図3に示すように、メインシェル2aの一端側Uの開口の内側に挿入される部分である。爪部214の板厚Tは、アッパーシェル2bの他の部分と同じである。従来の一般的な圧縮機においては、爪部214に相当するアッパーシェル2bの下方部分を薄肉化することで、アッパーシェル2bに段差を設けており、当該段差が、アッパーシェル2bのメインシェル2aに対する位置決め部となっていた。これに対して、実施の形態1では、アッパーシェル位置決め面213を用いて、アッパーシェル2bの位置決めを行うため、爪部214を薄肉化する必要がない。そのため、製造工程において、爪部214を薄肉化する工程が不要となるため、その分だけ、加工工程が減り、原価低減を図ることができる。 As shown in FIGS. 5 to 7, the upper shell 2b has a dome shape. Alternatively, the upper shell 2b has a cylindrical shape with a bottom. The lower end of the upper shell 2b is open. As shown in FIGS. 5 and 6, a claw portion 214 is provided at the lower end of the upper shell 2b. As shown in FIGS. 1 and 3, the claw portion 214 is a portion inserted into the opening at one end U of the main shell 2a. The plate thickness T2 of the claw portion 214 is the same as that of the other portions of the upper shell 2b. In a conventional general compressor, a step is provided in the upper shell 2b by thinning the lower part of the upper shell 2b corresponding to the claw portion 214, and the step is formed in the main shell 2a of the upper shell 2b. It was a positioning part for the In contrast, in the first embodiment, the upper shell positioning surface 213 is used to position the upper shell 2b, so there is no need to reduce the thickness of the claw portion 214. Therefore, in the manufacturing process, the step of thinning the claw portion 214 is not necessary, so the number of processing steps is reduced accordingly, and the cost can be reduced.
 爪部214は、アッパーシェル位置決め面213と、アッパーシェル回転抑制凸部211と、を有している。アッパーシェル位置決め面213は、爪部214の下端面に設けられ、図7に示すように、平面視でリング形状を有している。アッパーシェル位置決め面213は、XY平面に平行に配置されている。さらに詳細に言えば、アッパーシェル位置決め面213は、アッパーシェル回転抑制凸部211以外の「爪部214の下端面」から構成されている。アッパーシェル位置決め面213の径方向の大きさ(すなわち、板厚)は、爪部214の板厚Tである。アッパーシェル回転抑制凸部211は、図5および図6に示すように、アッパーシェル位置決め面213から他端側Lに向かって突出して設けられている。アッパーシェル回転抑制凸部211は、図5に示すように、側面から見た場合の形状が、矩形形状または略矩形形状になっている。アッパーシェル回転抑制凸部211の板厚は、アッパーシェル位置決め面213の板厚Tと同じである。従って、アッパーシェル回転抑制凸部211は、直方体形状になっている。但し、アッパーシェル回転抑制凸部211の先端部については、図5に示すように、面取り加工してもよい。同様に、アッパーシェル位置決め面213の先端部も、図5に示すように、面取り加工してもよい。なお、図5~図7に示す例では、3個のアッパーシェル回転抑制凸部211が設けられているが、それに限定されない。アッパーシェル回転抑制凸部211の個数は、1個以上の任意の個数でよい。また、3個のアッパーシェル回転抑制凸部211は、周方向に間隔を空けて配置されている。なお、当該間隔は、等間隔であっても、等間隔でなくてもよい。 The claw portion 214 has an upper shell positioning surface 213 and an upper shell rotation suppressing convex portion 211. The upper shell positioning surface 213 is provided on the lower end surface of the claw portion 214, and has a ring shape in plan view, as shown in FIG. Upper shell positioning surface 213 is arranged parallel to the XY plane. More specifically, the upper shell positioning surface 213 is composed of the "lower end surface of the claw portion 214" other than the upper shell rotation suppressing convex portion 211. The radial size (that is, the thickness) of the upper shell positioning surface 213 is the thickness T 2 of the claw portion 214 . As shown in FIGS. 5 and 6, the upper shell rotation suppressing convex portion 211 is provided to protrude from the upper shell positioning surface 213 toward the other end side L. As shown in FIG. 5, the upper shell rotation suppressing convex portion 211 has a rectangular or substantially rectangular shape when viewed from the side. The thickness of the upper shell rotation suppressing convex portion 211 is the same as the thickness T 2 of the upper shell positioning surface 213 . Therefore, the upper shell rotation suppressing convex portion 211 has a rectangular parallelepiped shape. However, the tip of the upper shell rotation suppressing convex portion 211 may be chamfered as shown in FIG. Similarly, the tip of the upper shell positioning surface 213 may also be chamfered, as shown in FIG. Note that in the examples shown in FIGS. 5 to 7, three upper shell rotation suppressing convex portions 211 are provided, but the present invention is not limited thereto. The number of upper shell rotation suppressing convex portions 211 may be any number greater than or equal to one. Further, the three upper shell rotation suppressing convex portions 211 are arranged at intervals in the circumferential direction. Note that the intervals may or may not be equal intervals.
 図8~図10に示すように、固定スクロール3は、第1基板3aと、第1渦巻体3bと、を有している。第1基板3aは、円盤形状を有している。 As shown in FIGS. 8 to 10, the fixed scroll 3 includes a first substrate 3a and a first spiral body 3b. The first substrate 3a has a disk shape.
 第1基板3aには、固定スクロール回転抑制凹部311が設けられている。固定スクロール回転抑制凹部311は、図8に示すように、第2面313の径方向の最外部に配置されている。固定スクロール回転抑制凹部311は、図9および図10に示すように、第2面313から他端側Lに向かって凹んでいる。固定スクロール回転抑制凹部311は、固定スクロール3の第1基板3aの板厚方向に凹んでいる。固定スクロール回転抑制凹部311は、第1基板3aの第2面313から一端側Uに向かって開口していると共に、側面314から径方向の外側に向かって開口している。固定スクロール回転抑制凹部311には、アッパーシェル2bのアッパーシェル回転抑制凸部211が挿入される。固定スクロール回転抑制凹部311の内部形状は、図11に示すように、直方体形状になっている。固定スクロール回転抑制凹部311の内部形状は、アッパーシェル回転抑制凸部211に対して相補形状になっている。なお、図8~図10に示す例では、3個の固定スクロール回転抑制凹部311が設けられているが、それに限定されない。固定スクロール回転抑制凹部311の個数は、1個以上の任意の個数でよいが、アッパーシェル回転抑制凸部211と同数であることが望ましい。但し、固定スクロール回転抑制凹部311は、インジェクション横穴27(図1および図8参照)の形成箇所を避けて、第1基板3aに設けられることが望ましい。インジェクション横穴27は、図1に示すように、固定スクロール3の第1基板3aに形成されている。インジェクション横穴27は、例えば、図8に示すように、第1基板3aにおいて、インジェクション管24が設置されるインジェクション設置孔から、第1基板3aの側面314に向かって延設されている。 A fixed scroll rotation suppression recess 311 is provided in the first substrate 3a. The fixed scroll rotation suppression recess 311 is arranged at the outermost part of the second surface 313 in the radial direction, as shown in FIG. The fixed scroll rotation suppression recess 311 is recessed from the second surface 313 toward the other end side L, as shown in FIGS. 9 and 10. The fixed scroll rotation suppression recess 311 is recessed in the thickness direction of the first substrate 3a of the fixed scroll 3. The fixed scroll rotation suppressing recess 311 opens from the second surface 313 of the first substrate 3a toward one end side U, and opens from the side surface 314 toward the outside in the radial direction. The upper shell rotation suppressing convex portion 211 of the upper shell 2 b is inserted into the fixed scroll rotation suppressing recess 311 . The internal shape of the fixed scroll rotation suppression recess 311 is a rectangular parallelepiped, as shown in FIG. 11 . The internal shape of the fixed scroll rotation suppression concave portion 311 is complementary to the upper shell rotation suppression convex portion 211 . Note that in the examples shown in FIGS. 8 to 10, three fixed scroll rotation suppression recesses 311 are provided, but the present invention is not limited thereto. The number of fixed scroll rotation suppressing recesses 311 may be any number greater than or equal to one, but is preferably the same number as the upper shell rotation suppressing protrusions 211. However, it is desirable that the fixed scroll rotation suppressing recess 311 be provided in the first substrate 3a, avoiding the location where the injection horizontal hole 27 (see FIGS. 1 and 8) is formed. The injection horizontal hole 27 is formed in the first substrate 3a of the fixed scroll 3, as shown in FIG. For example, as shown in FIG. 8, the injection horizontal hole 27 extends from the injection installation hole in which the injection tube 24 is installed in the first substrate 3a toward the side surface 314 of the first substrate 3a.
 圧縮機1の組立時には、アッパーシェル2bをメインシェル2aに挿入する際に、アッパーシェル回転抑制凸部211と固定スクロール回転抑制凹部311とが組み合わされる。すなわち、アッパーシェル回転抑制凸部211が、固定スクロール回転抑制凹部311内に挿入される。これにより、アッパーシェル回転抑制凸部211と、固定スクロール回転抑制凹部311と、が組み合わさる。固定スクロール3が周方向に回転しようとすると、固定スクロール回転抑制凹部311の内部の周方向の側壁に、アッパーシェル回転抑制凸部211の周方向の側面が当接する。そのため、運転時の異常昇圧による、固定スクロール3の周方向の回転が抑制される。なお、固定スクロール回転抑制凹部311は、圧縮機1の内部の高低圧連通を防ぐため、第1基板3aの板厚を貫通していない。従って、図9に示すように、第1基板3aの板厚を「板厚T」とし、固定スクロール回転抑制凹部311の深さを「深さD」としたとき、T>Dの関係が成り立つ。 When assembling the compressor 1, when inserting the upper shell 2b into the main shell 2a, the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing recess 311 are combined. That is, the upper shell rotation suppressing convex portion 211 is inserted into the fixed scroll rotation suppressing recess 311. As a result, the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing recess 311 are combined. When the fixed scroll 3 attempts to rotate in the circumferential direction, the circumferential side surface of the upper shell rotation suppressing convex portion 211 comes into contact with the circumferential side wall inside the fixed scroll rotation suppressing recess 311 . Therefore, rotation of the fixed scroll 3 in the circumferential direction due to abnormal pressure increase during operation is suppressed. Note that the fixed scroll rotation suppressing recess 311 does not penetrate through the thickness of the first substrate 3a in order to prevent communication between high and low pressures inside the compressor 1. Therefore, as shown in FIG. 9, when the thickness of the first substrate 3a is "thickness T3 " and the depth of the fixed scroll rotation suppressing recess 311 is "depth D3 ", T3 > D3. The relationship holds true.
 この時、図9に示すように、固定スクロール回転抑制凹部311を設けた部分の第1基板3aの「板厚H」は、当然ながら、他の部分の「板厚T」よりも薄肉になる。以下では、薄肉になっている部分を、薄肉部315と呼ぶこととする。薄肉部315の「板厚H」の大きさの確保が不十分な場合、高圧空間と低圧空間との差圧による第1基板3aの破損が懸念される。よって、固定スクロール回転抑制凹部311の深さDは、第1基板3aの板厚Tの3/4以下の値であることが望ましい。すなわち、3/4×T≧Dの関係が成り立つことが望ましい。 At this time, as shown in FIG. 9, the "thickness H 3 " of the first substrate 3a in the part where the fixed scroll rotation suppressing recess 311 is provided is naturally thinner than the "thickness T 3 " in the other parts. become. Hereinafter, the thinned portion will be referred to as a thinned portion 315. If the "plate thickness H3 " of the thin portion 315 is insufficiently secured, there is a concern that the first substrate 3a may be damaged due to the differential pressure between the high pressure space and the low pressure space. Therefore, the depth D3 of the fixed scroll rotation suppressing recess 311 is desirably a value equal to or less than 3/4 of the thickness T3 of the first substrate 3a. That is, it is desirable that the relationship 3/4×T 3 ≧D 3 holds true.
 また、図4を用いて説明したように、アッパーシェル2bのアッパーシェル位置決め面213とメインシェル2aの第1位置決め面113とで、固定スクロール3を挟み込む。そのため、アッパーシェル回転抑制凸部211の高さHは、固定スクロール回転抑制凹部311の深さDより短くなければならない。すなわち、D>Hの関係が成り立つ。仮に、アッパーシェル回転抑制凸部211の高さHが、固定スクロール回転抑制凹部311の深さDより長い場合、アッパーシェル2bのアッパーシェル位置決め面213と、固定スクロール3の第2面313との間に隙間が生じてしまう。そのため、アッパーシェル回転抑制凸部211の高さHは、固定スクロール回転抑制凹部311の深さDより短くなるように設定されている。 Furthermore, as described using FIG. 4, the fixed scroll 3 is sandwiched between the upper shell positioning surface 213 of the upper shell 2b and the first positioning surface 113 of the main shell 2a. Therefore, the height H 2 of the upper shell rotation suppression convex portion 211 must be shorter than the depth D 3 of the fixed scroll rotation suppression recess 311 . That is, the relationship D 3 >H 2 holds true. If the height H2 of the upper shell rotation suppressing convex part 211 is longer than the depth D3 of the fixed scroll rotation suppressing recess 311, the upper shell positioning surface 213 of the upper shell 2b and the second surface 313 of the fixed scroll 3 There will be a gap between the two. Therefore, the height H 2 of the upper shell rotation suppression convex portion 211 is set to be shorter than the depth D 3 of the fixed scroll rotation suppression recess 311 .
 図12は、図3の一点鎖線Fで囲まれた領域の構成を示す部分拡大断面図である。図12においては、アッパーシェル回転抑制凸部211が、固定スクロール回転抑制凹部311内に挿入されている。このとき、X方向において、アッパーシェル回転抑制凸部211は、固定スクロール回転抑制凹部311の側面と、メインシェル2aの第1内壁面111と、の間に配置される。このとき、アッパーシェル回転抑制凸部211と固定スクロール回転抑制凹部311の側面との間、および、アッパーシェル回転抑制凸部211とメインシェル2aの第1内壁面111との間には、それぞれ、微小な隙間が空いている。これは、アッパーシェル回転抑制凸部211を完全に挟み込むと、組立ができないためである。圧縮機1の組立工程では、メインシェル2aに固定スクロール3を焼嵌めた後、アッパーシェル2bをメインシェル2aに挿入して、上部からアッパーシェル2bを押さえつけた状態で、アッパーシェル2bとメインシェル2aとを溶接するという手順で組立を行う。
また、D>Hの関係が成り立つため、固定スクロール3の第1基板3aの板厚Hの薄肉部315の上面部と、アッパーシェル回転抑制凸部211の先端面211aとの間には、微小な隙間が空いている。
FIG. 12 is a partially enlarged cross-sectional view showing the configuration of the area surrounded by the dashed line F in FIG. In FIG. 12, the upper shell rotation suppressing convex portion 211 is inserted into the fixed scroll rotation suppressing recess 311. At this time, in the X direction, the upper shell rotation suppressing convex portion 211 is arranged between the side surface of the fixed scroll rotation suppressing recess 311 and the first inner wall surface 111 of the main shell 2a. At this time, there are spaces between the upper shell rotation suppressing convex part 211 and the side surface of the fixed scroll rotation suppressing recess 311, and between the upper shell rotation suppressing convex part 211 and the first inner wall surface 111 of the main shell 2a, respectively. There is a small gap. This is because if the upper shell rotation suppressing convex portion 211 is completely sandwiched, assembly cannot be performed. In the assembly process of the compressor 1, after the fixed scroll 3 is shrink-fitted to the main shell 2a, the upper shell 2b is inserted into the main shell 2a, and while the upper shell 2b is pressed down from above, the upper shell 2b and the main shell are Assembly is performed by welding 2a.
Furthermore, since the relationship D 3 >H 2 holds true, there is a gap between the top surface of the thin portion 315 of the first substrate 3a of the fixed scroll 3 having a thickness H 3 and the tip surface 211a of the upper shell rotation suppressing convex portion 211. There is a small gap.
 以上のように、実施の形態1では、アッパーシェル2bをメインシェル2aに挿入する際に、アッパーシェル回転抑制凸部211を、固定スクロール回転抑制凹部311内に嵌合させる。これにより、固定スクロール3の周方向の移動が規制される。そのため、固定スクロール3の周方向への回転を防止することができる。このように、アッパーシェル回転抑制凸部211は、周方向の回転を抑止される被抑制対象である固定スクロール3の一部分に挿入されて、被抑制対象の周方向の回転を抑制する。 As described above, in the first embodiment, when inserting the upper shell 2b into the main shell 2a, the upper shell rotation suppressing convex portion 211 is fitted into the fixed scroll rotation suppressing recess 311. This restricts movement of the fixed scroll 3 in the circumferential direction. Therefore, rotation of the fixed scroll 3 in the circumferential direction can be prevented. In this manner, the upper shell rotation suppressing convex portion 211 is inserted into a portion of the fixed scroll 3, which is the object to be suppressed from rotating in the circumferential direction, and suppresses the circumferential rotation of the object to be suppressed.
 実施の形態1においては、このように、固定スクロール3の第1基板3aに形成された固定スクロール回転抑制凹部311と、アッパーシェル2bの爪部214に形成されたアッパーシェル回転抑制凸部211とが、回転抑制機構部50を構成している。固定スクロール回転抑制凹部311は、「第1係止部」または「第1凹部」と呼ばれることがある。また、アッパーシェル回転抑制凸部211は、「第2係止部」または「凸部」と呼ばれることがある。「第1係止部」と「第2係止部」とが係合されることで、すなわち、「凸部」が「第1凹部」に嵌合されることで、アッパーシェル2bの爪部214と固定スクロール3の第1基板3aとが互いに係合される。 In the first embodiment, as described above, the fixed scroll rotation suppressing recess 311 formed on the first substrate 3a of the fixed scroll 3, and the upper shell rotation suppressing protrusion 211 formed on the claw portion 214 of the upper shell 2b. constitutes the rotation suppression mechanism section 50. The fixed scroll rotation suppressing recess 311 is sometimes called a "first locking part" or a "first recess". Further, the upper shell rotation suppressing convex portion 211 is sometimes referred to as a “second locking portion” or a “convex portion”. When the "first locking part" and the "second locking part" are engaged, that is, the "convex part" is fitted into the "first recess", the claw part of the upper shell 2b 214 and the first substrate 3a of the fixed scroll 3 are engaged with each other.
 固定スクロール3と揺動スクロール4とにおいて位相ズレが生じた場合、圧縮室43において対称接触ができず、X方向またはY方向の片側の圧縮室43で漏れ隙間が発生し、性能の低下が生じる。このため、固定スクロール3の回転を防止するアッパーシェル回転抑制凸部211と固定スクロール回転抑制凹部311との間の周方向のクリアランスは、より小さい方が望ましい。以下、周方向のクリアランスについて、図11を用いて説明する。ここで、アッパーシェル回転抑制凸部211の周方向の大きさを「距離L」とし、固定スクロール回転抑制凹部311の周方向の大きさを「距離W」とする。このとき、「距離W」と「距離L」との差分を、周方向のクリアランス(=W-L)と呼ぶ。クリアランスは、このように距離の差として表してもよいが、圧縮機1の主軸13の軸中心を基準とする中心角で表してもよい。但し、周方向のクリアランスを小さくし過ぎると、圧縮機1の組立時のアッパーシェル2bの嵌合不可の発生、あるいは、加工コストの上昇に繋がり、製品生産性が低下する。そこで、実施の形態1の圧縮機1では、アッパーシェル回転抑制凸部211と固定スクロール回転抑制凹部311との間の周方向のクリアランスは、圧縮機1の主軸13の軸中心を基準とする中心角で1.5度以内となるように設定することが望ましい。周方向のクリアランスを1.5度以内とした場合、圧縮機1の運転中の圧縮室43の異常昇圧によって、第2渦巻体4bが回転することによる回転位相ズレが生じた際、圧縮機1の定める性能に対し、製品への影響を許容範囲内にすることができる。このように、クリアランスは、圧縮機1の定める性能に対して、製品への影響が許容範囲内になるように、圧縮機1の機種ごとに、適宜設定することが望ましい。 When a phase shift occurs between the fixed scroll 3 and the oscillating scroll 4, symmetrical contact is not possible in the compression chamber 43, and a leakage gap occurs in the compression chamber 43 on one side in the X direction or the Y direction, resulting in a decrease in performance. . Therefore, it is desirable that the clearance in the circumferential direction between the upper shell rotation suppressing convex portion 211 that prevents rotation of the fixed scroll 3 and the fixed scroll rotation suppressing recess 311 is smaller. The circumferential clearance will be explained below using FIG. 11. Here, the circumferential size of the upper shell rotation suppressing convex portion 211 is defined as “distance L 2 ”, and the circumferential size of the fixed scroll rotation suppressing concave portion 311 is defined as “distance W 3 ”. At this time, the difference between "distance W 3 " and "distance L 2 " is called circumferential clearance (=W 3 -L 2 ). The clearance may be expressed as a difference in distance as described above, but it may also be expressed as a central angle with respect to the axial center of the main shaft 13 of the compressor 1. However, if the circumferential clearance is made too small, the upper shell 2b may not fit properly when the compressor 1 is assembled, or the processing cost may increase, resulting in a decrease in product productivity. Therefore, in the compressor 1 of the first embodiment, the clearance in the circumferential direction between the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing recess 311 is set at a center with respect to the axial center of the main shaft 13 of the compressor 1. It is desirable to set the angle within 1.5 degrees. When the circumferential clearance is within 1.5 degrees, when a rotational phase shift occurs due to the rotation of the second spiral body 4b due to abnormal pressure increase in the compression chamber 43 during operation of the compressor 1, the compressor 1 It is possible to keep the impact on the product within the permissible range for the performance specified by. In this way, it is desirable that the clearance be appropriately set for each model of the compressor 1 so that the performance determined by the compressor 1 has no effect on the product within an allowable range.
 回転抑制機構を構成するアッパーシェル回転抑制凸部211および固定スクロール回転抑制凹部311の個数は、少なくとも1つ以上あればよい。固定スクロール3の側面314とメインシェル2aの第1内壁面111とは、上述したように、焼嵌めにて固定されている。そのため、固定スクロール3の回転は、固定スクロール3の軸中心を基準とした回転しか発生せず、アッパーシェル回転抑制凸部211が2ヵ所以上あっても効果は同じである。但し、爪部214の全周の長さLまたは爪部214の高さH(図5参照)を小さくして、アッパーシェル回転抑制凸部211および固定スクロール回転抑制凹部311の個数を増やすことでも、同様の効果が得られる。そのため、アッパーシェル回転抑制凸部211および固定スクロール回転抑制凹部311は、4個以下であれば、複数個設けるようにしてもよい。5個以上の個数になると、アッパーシェル回転抑制凸部211および固定スクロール回転抑制凹部311の工作時間の増加によるコスト増加、あるいは、爪部214の公差の積み上げによる組立不可品の発生率が増加するため、望ましくない。従って、実施の形態1では、アッパーシェル回転抑制凸部211および固定スクロール回転抑制凹部311の個数は、それぞれ、1個以上、4個以下であることが望ましい。なお、ここで、爪部214の全周の長さLとは、図7に示すリング状のアッパーシェル位置決め面213の内円の周方向の全長である。従って、爪部214の全周の長さLは、アッパーシェル位置決め面213の内径に基づいて算出できる値である。また、爪部214の高さHとは、アッパーシェル回転抑制凸部211を含む爪部214全体のZ方向の長さである。 The number of upper shell rotation suppression protrusions 211 and fixed scroll rotation suppression recesses 311 that constitute the rotation suppression mechanism may be at least one or more. As described above, the side surface 314 of the fixed scroll 3 and the first inner wall surface 111 of the main shell 2a are fixed by shrink fitting. Therefore, the rotation of the fixed scroll 3 only occurs with respect to the axial center of the fixed scroll 3, and the effect is the same even if there are two or more upper shell rotation suppressing convex portions 211. However, it is also possible to reduce the length L of the entire circumference of the claw portion 214 or the height H of the claw portion 214 (see FIG. 5) and increase the number of upper shell rotation suppression convex portions 211 and fixed scroll rotation suppression recesses 311. , a similar effect can be obtained. Therefore, a plurality of upper shell rotation suppressing protrusions 211 and fixed scroll rotation suppressing recesses 311 may be provided as long as they are four or less. When the number is 5 or more, the cost increases due to an increase in the machining time of the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing concave portion 311, or the incidence of unassembled products increases due to the accumulation of tolerances of the claw portion 214. Therefore, it is undesirable. Therefore, in the first embodiment, it is desirable that the numbers of upper shell rotation suppressing convex portions 211 and fixed scroll rotation suppressing recesses 311 be 1 or more and 4 or less, respectively. Here, the length L of the entire circumference of the claw portion 214 is the total length in the circumferential direction of the inner circle of the ring-shaped upper shell positioning surface 213 shown in FIG. Therefore, the length L of the entire circumference of the claw portion 214 is a value that can be calculated based on the inner diameter of the upper shell positioning surface 213. Further, the height H of the claw portion 214 is the length of the entire claw portion 214 including the upper shell rotation suppressing convex portion 211 in the Z direction.
 異常昇圧による固定スクロール3の回転力に対し、アッパーシェル回転抑制凸部211の破壊を防ぐため、アッパーシェル回転抑制凸部211の周方向の長さLは、以下のように設定することが望ましい。すなわち、アッパーシェル回転抑制凸部211の周方向の長さLは、アッパーシェル2bの爪部214の内円の全周の長さLに対し、0.015倍以上の長さであることが望ましい。また、固定スクロール回転抑制凹部311の周方向長さWが長くなると、板厚Hの薄肉部315の面積が増加するため、強度に対し信頼性が低下する。よって、アッパーシェル回転抑制凸部211の周方向の長さLは、アッパーシェル2bの爪部214の内円の全周の長さLに対し、0.035倍以下の長さであることが望ましい。従って、実施の形態1では、アッパーシェル回転抑制凸部211の周方向の長さLは、爪部214の全周の長さLに対し、0.015倍以上、0.035倍以下の長さであることが望ましい。 In order to prevent the upper shell rotation suppressing convex part 211 from being destroyed by the rotational force of the fixed scroll 3 due to abnormal pressure increase, the length L2 in the circumferential direction of the upper shell rotation suppressing convex part 211 can be set as follows. desirable. That is, the length L2 in the circumferential direction of the upper shell rotation suppressing convex portion 211 is 0.015 times or more the length L of the entire inner circle of the claw portion 214 of the upper shell 2b. is desirable. Further, as the circumferential length W 3 of the fixed scroll rotation suppressing recess 311 becomes longer, the area of the thin portion 315 having the plate thickness H 3 increases, and therefore reliability with respect to strength decreases. Therefore, the length L2 in the circumferential direction of the upper shell rotation suppressing convex portion 211 should be 0.035 times or less the length L of the entire inner circle of the claw portion 214 of the upper shell 2b. is desirable. Therefore, in the first embodiment, the length L 2 in the circumferential direction of the upper shell rotation suppressing convex portion 211 is 0.015 times or more and 0.035 times or less of the total circumferential length L of the claw portion 214. Preferably long.
 上述した従来の一般的なスクロール圧縮機では、フレームの周壁が固定スクロールまで延びていて、その周壁の先端で固定スクロールがボルト等によって固定されている。当該フレームにおいては、オルダムリングと、リーマピン等精度の高い位置決め部品と、を使用することで、フレーム、揺動スクロール、および、固定スクロールの回転位相を確保している。しかしながら、実施の形態1のフレーム5のように、周壁の無いフレームでは、リーマピンを使用することができず、固定スクロール3の位相保持が課題である。そこで、実施の形態1では、下記の2つの構成(A)および(B)を有することで、部品の点数を増やすことなく、周壁が無いフレーム5を搭載した圧縮機1において、固定スクロール3の軸方向の浮き上がりと周方向の回転とを防ぐことができる。 In the conventional general scroll compressor described above, the peripheral wall of the frame extends to the fixed scroll, and the fixed scroll is fixed at the tip of the peripheral wall with bolts or the like. In this frame, the rotational phases of the frame, the swinging scroll, and the fixed scroll are ensured by using an Oldham ring and a highly accurate positioning component such as a reamer pin. However, in a frame without a peripheral wall, such as the frame 5 of Embodiment 1, a reamer pin cannot be used, and maintaining the phase of the fixed scroll 3 is a problem. Therefore, in the first embodiment, by having the following two configurations (A) and (B), the fixed scroll 3 can be installed in the compressor 1 equipped with the frame 5 without a peripheral wall without increasing the number of parts. Lifting up in the axial direction and rotation in the circumferential direction can be prevented.
 (A)固定スクロール3の第1基板3aが第1係止部を有し、アッパーシェル2bの爪部214が第2係止部を有している。そして、第1係止部と第2係止部とは、互いに係合することで、運転時の異常昇圧による固定スクロール3の周方向の回転を抑制する回転抑制機構部50を構成している。
 (B)固定スクロール3の第1基板3aは、圧縮機1の主軸13の軸方向に、爪部214とメインシェル2aの第1内壁面111とで挟持されている。さらに詳細に言えば、固定スクロール3の第1基板3aは、圧縮機1の主軸13の軸方向に、アッパーシェル位置決め面213と、メインシェル2aの第1内壁面111に形成された第1突出部112とに挟まれている。
(A) The first substrate 3a of the fixed scroll 3 has a first locking portion, and the claw portion 214 of the upper shell 2b has a second locking portion. The first locking portion and the second locking portion engage with each other to constitute a rotation suppression mechanism portion 50 that suppresses rotation of the fixed scroll 3 in the circumferential direction due to abnormal pressure increase during operation. .
(B) The first substrate 3a of the fixed scroll 3 is held between the claw portion 214 and the first inner wall surface 111 of the main shell 2a in the axial direction of the main shaft 13 of the compressor 1. More specifically, the first substrate 3a of the fixed scroll 3 has a first protrusion formed on the upper shell positioning surface 213 and the first inner wall surface 111 of the main shell 2a in the axial direction of the main shaft 13 of the compressor 1. 112.
 このように、実施の形態1では、圧縮室43の異常昇圧時に備えて、平面で固定スクロール3を抑え込む機構による高さ方向の位置ズレ規制(構成(B))と、アッパーシェル回転抑制凸部211および固定スクロール回転抑制凹部311による周方向位置ズレ規制(構成(A))とを行っている。これらの規制により、圧縮室43の異常昇圧時に対する信頼性が向上した、圧縮機1を提供することができる。 As described above, in the first embodiment, in preparation for an abnormal pressure increase in the compression chamber 43, the mechanism that suppresses the fixed scroll 3 on a plane restricts the positional deviation in the height direction (configuration (B)), and the upper shell rotation suppressing convex part 211 and the fixed scroll rotation suppression recess 311 to restrict positional deviation in the circumferential direction (configuration (A)). By these regulations, it is possible to provide the compressor 1 with improved reliability against abnormal pressure increase in the compression chamber 43.
 図15を用いて、固定スクロール3の周方向の位置ズレについて説明する。図15は、実施の形態1に係る圧縮機1に設けられたアッパーシェル2bの構成を模式的に示す平面図である。図15においては、説明のため、吐出管23およびインジェクション管24などの一部の構成については図示を省略している。また、図15においては、説明のため、固定スクロール3の第1渦巻体3bおよび揺動スクロール4の第2渦巻体4bを破線で示している。図1に示す回転方向R1に向かって主軸13が回転すると、それに伴う揺動スクロール4の自転方向は、回転方向R2となる。このとき、固定スクロール3の周方向の位置ズレが発生するズレ方向は、圧縮機1の揺動運動により、揺動スクロール4の回転方向R2に対して、逆向きの回転方向(以下、ズレ方向R3とする)になる。すなわち、固定スクロール3は、揺動スクロール4の回転方向R2に対して、逆向きの回転方向にずれる。このとき、アッパーシェル2bが固定スクロール3を支える力の方向は、ズレ方向R3の逆向きとなり、図15に示す回転方向R4となる。このように、R1~R4の各方向において、回転方向R1、R2およびR4は同じ方向(例えば、図15の反時計回り)になり、固定スクロール3のズレ方向R3だけが逆向き(例えば、図15の時計回り)となる。 The circumferential positional deviation of the fixed scroll 3 will be explained using FIG. 15. FIG. 15 is a plan view schematically showing the configuration of the upper shell 2b provided in the compressor 1 according to the first embodiment. In FIG. 15, illustration of some structures such as the discharge pipe 23 and the injection pipe 24 is omitted for the sake of explanation. Moreover, in FIG. 15, for explanation, the first spiral body 3b of the fixed scroll 3 and the second spiral body 4b of the swinging scroll 4 are shown by broken lines. When the main shaft 13 rotates in the rotation direction R1 shown in FIG. 1, the rotation direction of the orbiting scroll 4 becomes the rotation direction R2. At this time, due to the oscillating motion of the compressor 1, the direction in which the positional deviation of the fixed scroll 3 in the circumferential direction occurs is in the opposite rotation direction (hereinafter referred to as the deviation direction) with respect to the rotation direction R2 of the oscillating scroll 4. R3). That is, the fixed scroll 3 is shifted in a rotation direction opposite to the rotation direction R2 of the oscillating scroll 4. At this time, the direction of the force by which the upper shell 2b supports the fixed scroll 3 is opposite to the displacement direction R3, and becomes a rotation direction R4 shown in FIG. 15. In this way, in each direction R1 to R4, the rotation directions R1, R2, and R4 are the same direction (for example, counterclockwise in FIG. 15), and only the displacement direction R3 of the fixed scroll 3 is in the opposite direction (for example, 15 clockwise).
 ここで、図11を用いて説明した、固定スクロール3の回転を防止するアッパーシェル回転抑制凸部211と固定スクロール回転抑制凹部311との間の周方向のクリアランスを、図15に示すように、後方クリアランスS1と前方クリアランスS2とに分割して考える。後方クリアランスS1は、固定スクロール3のズレ方向R3において、後方側に配置されたクリアランスである。また、前方クリアランスS2は、固定スクロール3のズレ方向R3において、前方側に配置されたクリアランスである。 Here, the clearance in the circumferential direction between the upper shell rotation suppressing convex portion 211 and the fixed scroll rotation suppressing recess 311 that prevent the rotation of the fixed scroll 3, which was explained using FIG. 11, is as shown in FIG. Consider the rear clearance S1 and the front clearance S2. The rear clearance S1 is a clearance arranged on the rear side in the displacement direction R3 of the fixed scroll 3. Further, the front clearance S2 is a clearance disposed on the front side in the displacement direction R3 of the fixed scroll 3.
 固定スクロール3のズレ方向R3を考慮すると、固定スクロール3のズレ量を減らすためには、後方クリアランスS1を前方クリアランスS2よりも小さくすることが望ましい。すなわち、後方クリアランスS1の周方向の大きさを「距離LS1」とし、前方クリアランスS2の周方向の大きさを「距離LS2」としたとき、LS1<LS2になるように、後方クリアランスS1および前方クリアランスS2を設定する。理想的には、後方クリアランスS1=0となることが望ましい。 Considering the displacement direction R3 of the fixed scroll 3, in order to reduce the amount of displacement of the fixed scroll 3, it is desirable to make the rear clearance S1 smaller than the front clearance S2. That is, when the circumferential size of the rear clearance S1 is "distance L S1 " and the circumferential size of the front clearance S2 is "distance L S2 ", the rear clearance is adjusted so that L S1 < L S2 . S1 and front clearance S2 are set. Ideally, it is desirable that the rear clearance S1=0.
 図16は、実施の形態1に係る圧縮機1に設けられたアッパーシェル2bに形成されたアッパーシェル回転抑制凸部211の形状の例を示す図である。図16(a)~(c)において、アッパーシェル回転抑制凸部211の後方クリアランスS1側の側面を、側面部211bとし、アッパーシェル回転抑制凸部211の前方クリアランスS2側の側面を、側面部211cとしている。 FIG. 16 is a diagram showing an example of the shape of the upper shell rotation suppressing convex portion 211 formed on the upper shell 2b provided in the compressor 1 according to the first embodiment. In FIGS. 16(a) to (c), the side surface of the upper shell rotation suppressing convex portion 211 on the rear clearance S1 side is referred to as a side surface portion 211b, and the side surface of the upper shell rotation suppressing convex portion 211 on the front clearance S2 side is referred to as a side surface portion 211b. 211c.
 図16(a)に示す例では、図11に示す構成に則った形状を示している。アッパーシェル回転抑制凸部211の形状は、直方体形状になっている。アッパーシェル回転抑制凸部211の径方向から見たときの形状は矩形形状であり、アッパーシェル回転抑制凸部211の後方クリアランスS1側の側面部211bおよび前方クリアランスS2側の側面部211cは、互いに平行に、爪部214の下端面であるアッパーシェル位置決め面213から下方向に延びている。図16(a)の例では、側面部211bで、矢印Pで示す力を受ける。図16(a)に示す例が、図16(a)~(c)の中で、工作性が最もよい。なお、固定スクロール回転抑制凹部311の形状は、アッパーシェル回転抑制凸部211の相補形状となっており、従って、直方体形状である。 The example shown in FIG. 16(a) shows a shape conforming to the configuration shown in FIG. 11. The shape of the upper shell rotation suppressing convex portion 211 is a rectangular parallelepiped. The shape of the upper shell rotation suppressing convex portion 211 when viewed from the radial direction is a rectangular shape, and the side surface portion 211b on the rear clearance S1 side and the side surface portion 211c on the front clearance S2 side of the upper shell rotation suppressing convex portion 211 are mutually It extends downward in parallel from the upper shell positioning surface 213, which is the lower end surface of the claw portion 214. In the example of FIG. 16(a), the force indicated by the arrow P is received by the side surface portion 211b. The example shown in FIG. 16(a) has the best workability among FIGS. 16(a) to 16(c). The fixed scroll rotation suppressing recess 311 has a complementary shape to the upper shell rotation suppressing convex 211, and therefore has a rectangular parallelepiped shape.
 図16(b)に示す例では、アッパーシェル回転抑制凸部211の径方向から見たときの形状は、爪部214の下端面であるアッパーシェル位置決め面213から、下方向に向けて、先太りの台形形状である。この点が、図16(a)と異なる。図16(b)では、アッパーシェル回転抑制凸部211の前方クリアランスS2側の側面部211cは、アッパーシェル位置決め面213から、Z方向の下方向に延びている。一方、アッパーシェル回転抑制凸部211の後方クリアランスS1側の側面部211bは、アッパーシェル位置決め面213から、Z方向の下方向に向かうにつれて、下方向に対して外側に傾斜している。このように、図16(b)に示す例では、アッパーシェル回転抑制凸部211は、基本的に、直方体形状であるが、先太りとなっている。図16(b)では、アッパーシェル回転抑制凸部211の周方向の大きさである「距離L」(図11参照)が、Z方向の下側に向かうにつれて漸増している。図16(b)の例では、側面部211bの上端部で、矢印Pで示す力を受ける。図16(b)に示す例が、図16(a)~(c)の中で、固定スクロール3の周方向の回転が最も抑えられる。なお、固定スクロール回転抑制凹部311の形状は、アッパーシェル回転抑制凸部211の相補形状となっており、従って、基本的に直方体形状で、且つ、Z方向の上側に向かうにつれて、先細りになっている。すなわち、固定スクロール回転抑制凹部311の周方向の大きさである「距離W」(図11参照)が、Z方向の上側に向かうにつれて、漸減している。 In the example shown in FIG. 16(b), the shape of the upper shell rotation suppressing convex portion 211 when viewed from the radial direction is as follows: It has a thick trapezoidal shape. This point differs from FIG. 16(a). In FIG. 16(b), the side surface portion 211c of the upper shell rotation suppressing convex portion 211 on the front clearance S2 side extends downward in the Z direction from the upper shell positioning surface 213. On the other hand, the side surface portion 211b of the upper shell rotation suppressing convex portion 211 on the rear clearance S1 side is inclined outwardly with respect to the downward direction as it goes downward in the Z direction from the upper shell positioning surface 213. In this way, in the example shown in FIG. 16(b), the upper shell rotation suppressing convex portion 211 basically has a rectangular parallelepiped shape, but is tapered at the end. In FIG. 16(b), the "distance L2 " (see FIG. 11), which is the circumferential size of the upper shell rotation suppressing convex portion 211, gradually increases toward the lower side in the Z direction. In the example of FIG. 16(b), the force indicated by the arrow P is received at the upper end of the side surface portion 211b. In the example shown in FIG. 16(b), rotation of the fixed scroll 3 in the circumferential direction is suppressed the most among FIGS. 16(a) to 16(c). The shape of the fixed scroll rotation suppressing recess 311 is complementary to the upper shell rotation suppressing convex 211, and is therefore basically a rectangular parallelepiped, and tapers toward the upper side in the Z direction. There is. That is, the “distance W 3 ” (see FIG. 11), which is the circumferential size of the fixed scroll rotation suppressing recess 311, gradually decreases toward the upper side in the Z direction.
 図16(c)に示す例では、アッパーシェル回転抑制凸部211の径方向から見たときの形状は、爪部214の下端面であるアッパーシェル位置決め面213から、下方向に向けて、先細りの台形形状である。この点が、図16(a)と異なる。図16(c)では、アッパーシェル回転抑制凸部211の前方クリアランスS2側の側面部211cは、アッパーシェル位置決め面213から、Z方向の下方向に延びている。一方、アッパーシェル回転抑制凸部211の後方クリアランスS1側の側面部211bは、アッパーシェル位置決め面213から、Z方向の下方向に向かうにつれて、下方向に対して内側に傾斜している。このように、図16(c)に示す例では、アッパーシェル回転抑制凸部211は、基本的に、直方体形状であるが、先細りとなっている。図16(c)では、アッパーシェル回転抑制凸部211の周方向の大きさである「距離L」(図11参照)が、Z方向の下側に向かうにつれて漸減している。図16(c)の例では、側面部211bの下端部で、矢印Pで示す力を受ける。図16(c)に示す例が、図16(a)~(c)の中で、固定スクロール3の上方向の移動量が最も抑えられる。なお、固定スクロール回転抑制凹部311の形状は、アッパーシェル回転抑制凸部211の相補形状となっており、従って、基本的に直方体形状で、且つ、Z方向の上側に向かうにつれて、先太りになっている。すなわち、固定スクロール回転抑制凹部311の周方向の大きさである「距離W」(図11参照)が、Z方向の上側に向かうにつれて、漸増している。 In the example shown in FIG. 16(c), the shape of the upper shell rotation suppressing convex portion 211 when viewed from the radial direction is tapered downward from the upper shell positioning surface 213, which is the lower end surface of the claw portion 214. It has a trapezoidal shape. This point differs from FIG. 16(a). In FIG. 16C, the side surface portion 211c of the upper shell rotation suppressing convex portion 211 on the front clearance S2 side extends downward in the Z direction from the upper shell positioning surface 213. On the other hand, the side surface portion 211b of the upper shell rotation suppressing convex portion 211 on the rear clearance S1 side is inclined inwardly with respect to the downward direction as it goes downward in the Z direction from the upper shell positioning surface 213. In this way, in the example shown in FIG. 16(c), the upper shell rotation suppressing convex portion 211 basically has a rectangular parallelepiped shape, but is tapered. In FIG. 16(c), the "distance L2 " (see FIG. 11), which is the circumferential size of the upper shell rotation suppressing convex portion 211, gradually decreases toward the lower side in the Z direction. In the example of FIG. 16(c), the force indicated by the arrow P is received at the lower end of the side surface portion 211b. In the example shown in FIG. 16(c), the amount of upward movement of the fixed scroll 3 is suppressed the most among FIGS. 16(a) to 16(c). The shape of the fixed scroll rotation suppression concave portion 311 is complementary to the upper shell rotation suppression convex portion 211, and is therefore basically a rectangular parallelepiped, and the tip becomes thicker toward the upper side in the Z direction. ing. That is, the “distance W 3 ” (see FIG. 11), which is the circumferential size of the fixed scroll rotation suppressing recess 311, gradually increases toward the upper side in the Z direction.
 実施の形態1では、アッパーシェル2bにアッパーシェル回転抑制凸部211を形成し、固定スクロール3に固定スクロール回転抑制凹部311を形成するだけであるため、どのような機種の圧縮機1においても、構成が容易である。 In the first embodiment, only the upper shell rotation suppressing convex portion 211 is formed on the upper shell 2b and the fixed scroll rotation suppressing recess 311 is formed on the fixed scroll 3. Therefore, in any model of the compressor 1, Easy to configure.
 圧縮機1の組立を実施する場合、アッパーシェル2bの位置決めには、製造工程において治具を用いる必要がある。実施の形態1では、固定スクロール回転抑制凹部311とアッパーシェル回転抑制凸部211との間のクリアランスを小さくすることで、アッパーシェル2bの吐出管23とアッパーシェル回転抑制凸部211との位置関係を規制している。こうすることで、アッパーシェル2bの位置決め治具が不要になる。このことについて、さらに詳細に説明する。圧縮機1の組立では、配管の位相が予め決まっている。実施の形態1では、アッパーシェル回転抑制凸部211のクリアランスを小さくすることで、アッパーシェル2bの周方向の移動が規制されるので、アッパーシェル2bの組立位相を治具なしで容易に決めることができる。すなわち、アッパーシェル回転抑制凸部211を単に固定スクロール回転抑制凹部311に挿入するだけで、自動的に、アッパーシェル2bの組立位相を治具なしで決めることができる。その結果、アッパーシェル2bの吐出管23とアッパーシェル回転抑制凸部211との位置関係も自動的に決まる。そのため、実施の形態1では、圧縮機1の製造工程において、アッパーシェル2bの位置決め治具が不要になる。 When assembling the compressor 1, it is necessary to use a jig in the manufacturing process to position the upper shell 2b. In the first embodiment, the positional relationship between the discharge pipe 23 of the upper shell 2b and the upper shell rotation suppressing protrusion 211 is reduced by reducing the clearance between the fixed scroll rotation suppressing recess 311 and the upper shell rotation suppressing protrusion 211. is regulated. This eliminates the need for a positioning jig for the upper shell 2b. This will be explained in more detail. When assembling the compressor 1, the phases of the piping are determined in advance. In the first embodiment, the movement of the upper shell 2b in the circumferential direction is restricted by reducing the clearance of the upper shell rotation suppressing convex portion 211, so that the assembly phase of the upper shell 2b can be easily determined without a jig. I can do it. That is, by simply inserting the upper shell rotation suppressing convex portion 211 into the fixed scroll rotation suppressing recess 311, the assembly phase of the upper shell 2b can be automatically determined without a jig. As a result, the positional relationship between the discharge pipe 23 of the upper shell 2b and the upper shell rotation suppressing convex portion 211 is also automatically determined. Therefore, in the first embodiment, a positioning jig for the upper shell 2b is not required in the manufacturing process of the compressor 1.
 図1においてはマフラ25を図示していないが、実施の形態1においては、図3に示すように、マフラ25を設けるようにしてもよい。このように、圧縮機1の機種によって、騒音抑制のために、固定スクロール3の第2面313にマフラ25が取り付けられているものがある。従来、このマフラ25は、ボルトによって固定スクロール3に締結されている。実施の形態1においても、マフラ25をボルトによって固定スクロール3に締結してもよいが、その場合に限定されない。図13は、図3の一点鎖線Gで囲まれた領域の構成を示す部分拡大断面図である。マフラ25は、図3に示すように、一端側Uに向かって突出した凸部形状を有している。マフラ25の下端部は開口されており、当該開口の外周には、外側に向かって吐出したフランジ部25aが設けられている。フランジ部25aは、マフラ25の開口の全周に亘って形成され、マフラ25の「下端部」を構成している。マフラ25は、フランジ部25aによって、固定スクロール3に締結される。図13においては、マフラ25は、メインシェル2aの内径と同等の外径を有している。そのため、フランジ部25aの先端部25bが、メインシェル2aの第1内壁面111に当接しているか、あるいは、アッパーシェル位置決め面213と固定スクロール3の第2面313との間に位置している。つまり、図13では、マフラ25の支持面を構成するフランジ部25aを、メインシェル2aの内壁面まで延設させている。これにより、マフラ25の下端部であるフランジ部25aを、アッパーシェル2bのアッパーシェル位置決め面213と、固定スクロール3の第2面313と、の間に挟んで固定することができる。すなわち、フランジ部25aは、その全周に亘って、アッパーシェル2bの爪部214と、第1基板3aと、の間に挟み込まれることで、固定されている。このように、実施の形態1において、マフラ25を設ける場合に、マフラ25のフランジ部25aを、アッパーシェル2bと固定スクロール3の第1基板3aとでZ方向に挟み込む。これにより、ボルト締結無しに、マフラ25を固定スクロール3の第2面313にマフラ25を取り付けることができる。また、このとき、固定スクロール回転抑制凹部311と同位相になるように、マフラ25に切欠き部25cを設けるようにしてもよい。図14は、図3の一点鎖線Fで囲まれた領域で、切欠き部25cが設けられた場合の構成を示す部分拡大断面図である。図14の場合には、アッパーシェル回転抑制凸部211が、マフラ25に切欠き部25cの内部を貫通して、固定スクロール回転抑制凹部311に挿入される。その結果、締結用のボルトを用いずに、固定スクロール3の位相と共に、マフラ25の位相も決めて、圧縮機1の組立を行うことができる。これによるボルトレス化によるコストダウンと組立時間の削減とができ、生産性の改善ができる。また、マフラ25に、アッパーシェル2bのアッパーシェル回転抑制凸部211と同様に、Z方向に突出する凸部を形成し、固定スクロール3に形成した凹部に当該凸部を挿入して、マフラ25の回転止めにするようにしてもよい。その際、マフラ25の当該凸部を、アッパーシェル2bのアッパーシェル回転抑制凸部211と同一の固定スクロール回転抑制凹部311内に、アッパーシェル回転抑制凸部211と共に収容してもよい。 Although the muffler 25 is not shown in FIG. 1, in the first embodiment, the muffler 25 may be provided as shown in FIG. As described above, depending on the model of the compressor 1, the muffler 25 is attached to the second surface 313 of the fixed scroll 3 in order to suppress noise. Conventionally, this muffler 25 has been fastened to the fixed scroll 3 with bolts. In the first embodiment as well, the muffler 25 may be fastened to the fixed scroll 3 with bolts, but the invention is not limited to that case. FIG. 13 is a partially enlarged sectional view showing the configuration of the area surrounded by the dashed line G in FIG. As shown in FIG. 3, the muffler 25 has a convex shape that protrudes toward one end side U. The lower end of the muffler 25 is open, and a flange portion 25a disposed outwardly is provided on the outer periphery of the opening. The flange portion 25a is formed around the entire circumference of the opening of the muffler 25, and constitutes a “lower end portion” of the muffler 25. The muffler 25 is fastened to the fixed scroll 3 by a flange portion 25a. In FIG. 13, the muffler 25 has an outer diameter equivalent to the inner diameter of the main shell 2a. Therefore, the tip 25b of the flange portion 25a is in contact with the first inner wall surface 111 of the main shell 2a, or is located between the upper shell positioning surface 213 and the second surface 313 of the fixed scroll 3. . That is, in FIG. 13, the flange portion 25a that constitutes the support surface of the muffler 25 is extended to the inner wall surface of the main shell 2a. Thereby, the flange portion 25a, which is the lower end portion of the muffler 25, can be sandwiched and fixed between the upper shell positioning surface 213 of the upper shell 2b and the second surface 313 of the fixed scroll 3. That is, the flange portion 25a is fixed by being sandwiched between the claw portion 214 of the upper shell 2b and the first substrate 3a over its entire circumference. In this manner, in the first embodiment, when the muffler 25 is provided, the flange portion 25a of the muffler 25 is sandwiched between the upper shell 2b and the first substrate 3a of the fixed scroll 3 in the Z direction. Thereby, the muffler 25 can be attached to the second surface 313 of the fixed scroll 3 without fastening bolts. Further, at this time, the muffler 25 may be provided with a notch 25c so as to be in the same phase as the fixed scroll rotation suppressing recess 311. FIG. 14 is a partially enlarged sectional view showing a configuration in which a notch 25c is provided in the area surrounded by the dashed line F in FIG. In the case of FIG. 14, the upper shell rotation suppressing convex portion 211 penetrates the inside of the notch 25c of the muffler 25 and is inserted into the fixed scroll rotation suppressing recess 311. As a result, the compressor 1 can be assembled by determining the phase of the muffler 25 as well as the phase of the fixed scroll 3 without using fastening bolts. This makes it possible to reduce costs and assembly time due to the boltless structure, and improve productivity. Furthermore, a convex portion protruding in the Z direction is formed on the muffler 25 similarly to the upper shell rotation suppressing convex portion 211 of the upper shell 2b, and the convex portion is inserted into a concave portion formed on the fixed scroll 3. The rotation may be stopped. In this case, the convex portion of the muffler 25 may be accommodated together with the upper shell rotation suppressing convex portion 211 in the same fixed scroll rotation suppressing recess 311 as the upper shell rotation suppressing convex portion 211 of the upper shell 2b.
 以上のように、実施の形態1においては、上記構成(A)および(B)を有することで、固定スクロール3を固定するための周壁をフレームに形成することなく、固定スクロール3の浮き上がり、および、固定スクロール3の回転を防止することができる。その結果、圧縮室43内で異常昇圧が発生した場合においても、固定スクロール3の位置精度を保持することができる。また、図3に示すように、インジェクション管24が設けられている場合に、固定スクロール3が回転方向に大きくズレた場合、インジェクション管24が破損するおそれがある。しかしながら、実施の形態1では、上記構成(A)を有することで、回転による位置ズレの発生を抑制、ないしは、回転による位置ズレが発生してもわずかなズレに抑えることができるので、インジェクション管24の破損を防止することが可能である。 As described above, in Embodiment 1, by having the above configurations (A) and (B), the floating of the fixed scroll 3 and , rotation of the fixed scroll 3 can be prevented. As a result, even if abnormal pressure rise occurs within the compression chamber 43, the positional accuracy of the fixed scroll 3 can be maintained. Further, as shown in FIG. 3, when the injection pipe 24 is provided and the fixed scroll 3 is largely displaced in the rotational direction, there is a risk that the injection pipe 24 will be damaged. However, in Embodiment 1, by having the above configuration (A), it is possible to suppress the occurrence of positional deviation due to rotation, or to suppress the positional deviation due to rotation to a slight deviation, so that the injection tube 24 can be prevented from being damaged.
 さらに、実施の形態1では、圧縮機1の組立時に、アッパーシェル回転抑制凸部211を単に固定スクロール回転抑制凹部311に挿入するだけで、自動的に、アッパーシェル2bの組立位相を治具なしで決めることができる。そのため、実施の形態1では、圧縮機1の製造工程において、アッパーシェル2bの位置決め治具を用いることなく、固定スクロール3をシェル2内に位置精度良く配置することができる。 Furthermore, in the first embodiment, when assembling the compressor 1, simply inserting the upper shell rotation suppressing convex portion 211 into the fixed scroll rotation suppressing recess 311 automatically adjusts the assembly phase of the upper shell 2b without using a jig. You can decide. Therefore, in the first embodiment, in the manufacturing process of the compressor 1, the fixed scroll 3 can be placed in the shell 2 with high positional accuracy without using a positioning jig for the upper shell 2b.
 なお、実施の形態1では、アッパーシェル2bの爪部214に「凸部」を設け、固定スクロール3の第1基板3aに「第1凹部」を設ける例について説明した。しかしながら、この場合に限らず、アッパーシェル2bの爪部214に「第1凹部」を設け、固定スクロール3の第1基板3aに「凸部」を設けるようにしてもよい。 In addition, in Embodiment 1, an example was described in which a "convex part" is provided in the claw part 214 of the upper shell 2b, and a "first recessed part" is provided in the first substrate 3a of the fixed scroll 3. However, the invention is not limited to this case, and the claw portion 214 of the upper shell 2b may be provided with a "first recess", and the first substrate 3a of the fixed scroll 3 may be provided with a "protrusion".
 実施の形態2.
 次に、実施の形態2に係る圧縮機1について、図17~図18を参照しながら説明する。図17は、実施の形態2に係る圧縮機1に設けられたアッパーシェル2bの構成を示す断面図である。図17は、実施の形態1の図5に相当する図である。また、図18は、実施の形態2に係る圧縮機1におけるアッパーシェル2bと固定スクロール3との回転抑制機構部50Aを示す部分斜視図である。図18は、実施の形態1の図11に相当する図である。
Embodiment 2.
Next, the compressor 1 according to the second embodiment will be described with reference to FIGS. 17 and 18. FIG. 17 is a sectional view showing the configuration of an upper shell 2b provided in the compressor 1 according to the second embodiment. FIG. 17 is a diagram corresponding to FIG. 5 of the first embodiment. Further, FIG. 18 is a partial perspective view showing a rotation suppressing mechanism section 50A of the upper shell 2b and fixed scroll 3 in the compressor 1 according to the second embodiment. FIG. 18 is a diagram corresponding to FIG. 11 of the first embodiment.
 実施の形態2では、回転抑制機構部50Aが、固定スクロール回転抑制凹部311と、アッパーシェル2bの爪部214に形成されたアッパーシェル回転抑制凹部212と、キー411と、から構成されている。この点が、実施の形態1と異なる。他の構成については、実施の形態1と同じであるため、ここでは、その説明を省略する。 In the second embodiment, the rotation suppression mechanism 50A includes a fixed scroll rotation suppression recess 311, an upper shell rotation suppression recess 212 formed in the claw portion 214 of the upper shell 2b, and a key 411. This point differs from the first embodiment. Since the other configurations are the same as those in Embodiment 1, their description will be omitted here.
 図17に示すように、実施の形態2においても、実施の形態1と同様に、固定スクロール3の第1基板3aに、固定スクロール回転抑制凹部311が形成されている。固定スクロール回転抑制凹部311は、実施の形態1で示したものと同じであるため、ここでは、その説明を省略する。ただし、固定スクロール回転抑制凹部311の「距離W」は、実施の形態1で示した「距離W」と同じであっても、異なっていてもよい。 As shown in FIG. 17, in the second embodiment as well, a fixed scroll rotation suppressing recess 311 is formed in the first substrate 3a of the fixed scroll 3, as in the first embodiment. The fixed scroll rotation suppression recess 311 is the same as that shown in Embodiment 1, so its description will be omitted here. However, the “distance W 3 ” of the fixed scroll rotation suppression recess 311 may be the same as or different from the “distance W 3 ” shown in the first embodiment.
 また、実施の形態2では、図14および図17に示すように、アッパーシェル2bの爪部214に、アッパーシェル回転抑制凹部212が形成されている。アッパーシェル回転抑制凹部212は、爪部214のアッパーシェル位置決め面213から、一端側Uに向かって、凹んでいる。アッパーシェル回転抑制凹部212は、実施の形態1のアッパーシェル回転抑制凸部211と同位相になる位置に形成される。すなわち、アッパーシェル回転抑制凹部212は、固定スクロール回転抑制凹部311に対向する位置に形成されている。アッパーシェル回転抑制凹部212の大きさおよび形状は、固定スクロール回転抑制凹部311とほぼ同じである。 Furthermore, in the second embodiment, as shown in FIGS. 14 and 17, an upper shell rotation suppressing recess 212 is formed in the claw portion 214 of the upper shell 2b. The upper shell rotation suppressing recess 212 is recessed from the upper shell positioning surface 213 of the claw portion 214 toward the one end side U. The upper shell rotation suppressing recess 212 is formed at a position that is in the same phase as the upper shell rotation suppressing protrusion 211 of the first embodiment. That is, the upper shell rotation suppressing recess 212 is formed at a position facing the fixed scroll rotation suppressing recess 311. The size and shape of the upper shell rotation suppression recess 212 are almost the same as the fixed scroll rotation suppression recess 311.
 図18に示すように、キー411は、固定スクロール回転抑制凹部311とアッパーシェル回転抑制凹部212との両方に嵌合される。すなわち、キー411の上部は、アッパーシェル回転抑制凹部212に嵌合され、キー411の下部は、固定スクロール回転抑制凹部311に嵌合される。従って、キー411の上部の形状は、アッパーシェル回転抑制凹部212と相補形状となっており、キー411の下部の形状は、固定スクロール回転抑制凹部311と相補形状になっている。キー411が、固定スクロール回転抑制凹部311とアッパーシェル回転抑制凹部212との両方に嵌合されることで、爪部214と固定スクロール3の第1基板3aとが互いに係合される。キー411は、例えば、角柱形状を有している。 As shown in FIG. 18, the key 411 is fitted into both the fixed scroll rotation suppression recess 311 and the upper shell rotation suppression recess 212. That is, the upper part of the key 411 is fitted into the upper shell rotation suppression recess 212, and the lower part of the key 411 is fitted into the fixed scroll rotation suppression recess 311. Therefore, the shape of the upper part of the key 411 is complementary to the upper shell rotation suppressing recess 212, and the shape of the lower part of the key 411 is complementary to the shape of the fixed scroll rotation suppressing recess 311. By fitting the key 411 into both the fixed scroll rotation suppression recess 311 and the upper shell rotation suppression recess 212, the claw portion 214 and the first substrate 3a of the fixed scroll 3 are engaged with each other. The key 411 has, for example, a prismatic shape.
 なお、キー411が、固定スクロール回転抑制凹部311とアッパーシェル回転抑制凹部212との両方に嵌合された状態のとき、爪部214のアッパーシェル位置決め面213と固定スクロール3の第1基板3aの第2面313とが当接する。 Note that when the key 411 is fitted into both the fixed scroll rotation suppression recess 311 and the upper shell rotation suppression recess 212, the upper shell positioning surface 213 of the claw portion 214 and the first substrate 3a of the fixed scroll 3 are connected to each other. The second surface 313 is in contact with the second surface 313 .
 このように、実施の形態2は、アッパーシェル2bと固定スクロール3の第1基板3aとの両方に回転抑制凹部を設け、キー411で固定する手法である。 As described above, the second embodiment is a method in which rotation suppressing recesses are provided in both the upper shell 2b and the first substrate 3a of the fixed scroll 3, and the rotation suppressing recesses are fixed with the key 411.
 従って、実施の形態2においては、このように、第1基板3aに形成された固定スクロール回転抑制凹部311と、爪部214に形成されたアッパーシェル回転抑制凹部212と、キー411が、回転抑制機構部50Aを構成している。固定スクロール回転抑制凹部311は、「第1係止部」または「第1凹部」と呼ばれることがある。また、アッパーシェル回転抑制凸部211は、「第2係止部」または「第2凹部」と呼ばれることがある。キー411を介して「第1係止部」と「第2係止部」とが互いに係合されることで、すなわち、キー411が、「第1凹部」および「第2凹部」の両方に嵌合されることで、アッパーシェル2bの爪部214と固定スクロール3の第1基板3aとが互いに係合される。回転抑制機構部50Aにより、固定スクロール3の周方向の移動が抑制されるので、固定スクロール3の回転を防止することができる。 Therefore, in the second embodiment, the fixed scroll rotation suppressing recess 311 formed in the first substrate 3a, the upper shell rotation suppressing recess 212 formed in the claw part 214, and the key 411 suppress the rotation. It constitutes a mechanism section 50A. The fixed scroll rotation suppressing recess 311 is sometimes called a "first locking part" or a "first recess". Further, the upper shell rotation suppressing convex portion 211 may be referred to as a “second locking portion” or a “second recess”. By the "first locking part" and the "second locking part" being engaged with each other via the key 411, that is, the key 411 is engaged with both the "first recess" and the "second recess". By being fitted, the claw portion 214 of the upper shell 2b and the first substrate 3a of the fixed scroll 3 are engaged with each other. The rotation suppression mechanism 50A suppresses movement of the fixed scroll 3 in the circumferential direction, so rotation of the fixed scroll 3 can be prevented.
 また、実施の形態2においても、実施の形態1と同様に、図4に示すように、固定スクロール3の第1基板3aが、アッパーシェル位置決め面213と、メインシェル2aの第1位置決め面113と、で、軸方向に挟んでいる。また、固定スクロール3は、メインシェル2aに焼嵌めされている。これにより、固定スクロール3の軸方向の浮く上がりを防止することができる。 Also, in the second embodiment, as in the first embodiment, as shown in FIG. and are sandwiched in the axial direction. Furthermore, the fixed scroll 3 is shrink-fitted to the main shell 2a. Thereby, it is possible to prevent the fixed scroll 3 from rising in the axial direction.
 以上のように、実施の形態2においても、実施の形態1と同様に、固定スクロール3を固定するための周壁をフレーム5に形成することなく、固定スクロール3の浮き上がり、および、固定スクロール3の回転を防止することができる。 As described above, in the second embodiment, as in the first embodiment, a peripheral wall for fixing the fixed scroll 3 is not formed on the frame 5, and the lifting of the fixed scroll 3 and the fixed scroll 3 are prevented. Rotation can be prevented.
 実施の形態2におけるアッパーシェル2bは、凸部ではなく、アッパーシェル回転抑制凹部212を設けているため、加工前のアッパーシェル2bにおいて製造段階で切削ロスとなる材料比率が少ない。また、アッパーシェル2bの母材も、凸部を有さない従来のものと同じ大きさでまかなえるため、製造コストを低く抑えることができる。ちなみに、図6に示す実施の形態1のアッパーシェル2bを形成するためには、アッパーシェル2bの母材として、アッパーシェル回転抑制凸部211を形成する分だけ、Z方向の長さが従来のものより大きいものを用意する。そして、隣り合うアッパーシェル回転抑制凸部211の間を切削することで、アッパーシェル回転抑制凸部211を形成する。そのため、切削ロスとなる材料比率は、実施の形態2より大きい。 Since the upper shell 2b in the second embodiment is provided with the upper shell rotation suppressing recess 212 instead of a convex portion, the proportion of material resulting in cutting loss in the manufacturing stage in the unprocessed upper shell 2b is small. Moreover, since the base material of the upper shell 2b can be the same size as a conventional one without a convex portion, manufacturing costs can be kept low. Incidentally, in order to form the upper shell 2b of Embodiment 1 shown in FIG. Prepare something larger. Then, by cutting between the adjacent upper shell rotation suppressing protrusions 211, the upper shell rotation suppressing protrusions 211 are formed. Therefore, the material ratio resulting in cutting loss is larger than in the second embodiment.
 実施の形態1のように、アッパーシェル2bの一部にアッパーシェル回転抑制凸部211を設ける場合、アッパーシェル回転抑制凸部211の強度は、アッパーシェル2bの強度に依存する。高圧冷媒を使用する圧縮機1では、圧縮室43の異常昇圧時に発生する固定スクロール3を回転させようとする力が大きい。そのため、これに伴って、アッパーシェル回転抑制凸部211の信頼性向上のため、アッパーシェル回転抑制凸部211の周方向の長さである距離L(図11参照)、もしくは、高さH(図11参照)を大きくする必要がある。一方、実施の形態2では、キー411を用いて回転抑制を行うため、キー411の素材および形状を任意に設定することができる。キー411は、例えばSUJ2(高炭素クロム軸受鋼鋼材)等の強度の高い鋼材で構成される。これによりキー411のサイズを小さくすることができ、アッパーシェル2b、固定スクロール3、キー411の加工時間の短縮が見込まれる。なお、SUJ2とは、特殊用途鋼材の中でも、軸受け(ベアリング)等によく使われる鋼材である。SUJ2は、耐摩耗性に優れている。 When the upper shell rotation suppressing convex part 211 is provided in a part of the upper shell 2b as in the first embodiment, the strength of the upper shell rotation suppressing convex part 211 depends on the strength of the upper shell 2b. In the compressor 1 that uses high-pressure refrigerant, a large force is generated to rotate the fixed scroll 3 when the pressure in the compression chamber 43 is abnormally increased. Therefore, in order to improve the reliability of the upper shell rotation suppressing convex part 211, the distance L 2 (see FIG. 11), which is the circumferential length of the upper shell rotation suppressing convex part 211, or the height H 2 (see FIG. 11) needs to be increased. On the other hand, in the second embodiment, since rotation is suppressed using the key 411, the material and shape of the key 411 can be set arbitrarily. The key 411 is made of high-strength steel such as SUJ2 (high carbon chromium bearing steel). As a result, the size of the key 411 can be reduced, and the processing time for the upper shell 2b, fixed scroll 3, and key 411 can be expected to be shortened. Note that SUJ2 is a steel material that is often used for bearings and the like among special purpose steel materials. SUJ2 has excellent wear resistance.
 実施の形態2では、キー411を角柱形状として図17に図示しているが、その場合に限らず、キー411は、平板、湾曲板、円柱等、構成しやすい形状であれば、任意の形状でよい。 In the second embodiment, the key 411 is shown in FIG. 17 as having a prismatic shape, but the key 411 is not limited to this case, and the key 411 may have any shape as long as it is easy to construct, such as a flat plate, a curved plate, or a cylinder. That's fine.
 回転抑制機構部50Aにおいて、図18に示すように、キー411の周方向の長さを「距離L」とする。また、アッパーシェル回転抑制凹部212の周方向の大きさを「距離W」とする。このとき、「距離W」と「距離L」との差分を、周方向のクリアランスと呼ぶ。アッパーシェル回転抑制凹部212と、キー411と、の間の周方向のクリアランスは、圧縮機1の主軸13の中心軸を基準する中心角で1.5度以内となるよう設定されていることが望ましい。周方向のクリアランスを、この範囲に設定しておけば、固定スクロール3の回転による製品への影響を、圧縮機1の定める性能に対し、許容範囲内に抑えることができる。 In the rotation suppressing mechanism 50A, as shown in FIG. 18, the length of the key 411 in the circumferential direction is defined as "distance L4 ." Further, the size of the upper shell rotation suppressing recess 212 in the circumferential direction is defined as "distance W 4 ". At this time, the difference between "distance W 4 " and "distance L 4 " is called a circumferential clearance. The circumferential clearance between the upper shell rotation suppressing recess 212 and the key 411 may be set to within 1.5 degrees with respect to the central axis of the main shaft 13 of the compressor 1. desirable. By setting the circumferential clearance within this range, the influence on the product due to the rotation of the fixed scroll 3 can be suppressed within an allowable range with respect to the performance determined by the compressor 1.
 同様に、回転抑制機構部50Aにおいて、図18に示すように、キー411の周方向の長さを「距離L」とし、固定スクロール回転抑制凹部311の周方向の大きさを「距離W」とする。このとき、「距離W」と「距離L」との差分を、周方向のクリアランスと呼ぶ。固定スクロール回転抑制凹部311と、キー411と、の間の周方向のクリアランスは、圧縮機1の主軸13の中心軸を基準する中心角で1.5度以内となるよう設定されていることが望ましい。この場合も、同様に、固定スクロール3の回転による製品への影響を、圧縮機1の定める性能に対し、許容範囲内に抑えることができる。 Similarly, in the rotation suppression mechanism portion 50A, as shown in FIG . ”. At this time, the difference between "distance W 3 " and "distance L 4 " is called a circumferential clearance. The circumferential clearance between the fixed scroll rotation suppressing recess 311 and the key 411 may be set to within 1.5 degrees in terms of the central angle with respect to the central axis of the main shaft 13 of the compressor 1. desirable. In this case as well, the influence on the product due to the rotation of the fixed scroll 3 can be suppressed within the permissible range with respect to the performance determined by the compressor 1.
 また、回転抑制機構部50Aにおけるキー411の周方向の長さLは、アッパーシェル2bの内円の周方向の全周の長さLに対し、0.015倍以上、0.035倍以下の長さであることが望ましい。長さLを、0.015倍以上の長さにすることで、キー411の強度が確保でき、また、0.035倍以下の長さにすることで、固定スクロール3の板厚Hの薄肉部315の強度を確保することができる。 Further, the circumferential length L 4 of the key 411 in the rotation suppressing mechanism section 50A is 0.015 times or more and 0.035 times or less of the entire circumferential length L of the inner circle of the upper shell 2b. It is desirable that the length be . By making the length L 4 0.015 times or more, the strength of the key 411 can be ensured, and by making the length L 4 0.035 times or less, the plate thickness H 3 of the fixed scroll 3 can be ensured. The strength of the thin wall portion 315 can be ensured.
 さらに、回転抑制機構部50Aにおける固定スクロール回転抑制凹部311の深さDは、固定スクロール3の第1基板3aの板厚Tに対し、3/4以下の値であることが望ましい。これにより、固定スクロール3の板厚Hの薄肉部315の強度を確保することができる。なお、固定スクロール回転抑制凹部311の深さDと、アッパーシェル回転抑制凹部212の深さDと、は、同じであっても、異なっていてもよい。 Further, the depth D3 of the fixed scroll rotation suppressing recess 311 in the rotation suppressing mechanism section 50A is desirably 3/4 or less of the thickness T3 of the first substrate 3a of the fixed scroll 3. Thereby, the strength of the thin portion 315 of the fixed scroll 3 having a plate thickness of H 3 can be ensured. Note that the depth D3 of the fixed scroll rotation suppressing recess 311 and the depth D4 of the upper shell rotation suppressing recess 212 may be the same or different.
 また、キー411を構成する素材の引張強さは、アッパーシェル2bを構成する素材の引張強さに対し、2倍以上であることが望ましい。これにより、キー411の強度が確保できる。なお、キー411の強度が、実施の形態1で示したアッパーシェル回転抑制凸部211の強度より高い場合、キー411の長さLは、実施の形態1で示したアッパーシェル回転抑制凸部211の長さLよりも小さくてもよい。また、固定スクロール回転抑制凹部311の長さの符号、すなわち、Wを、実施の形態1と同じにしているが、キー411の長さLが小さい場合、当然に、距離Wも、長さLに合わせて、実施の形態1の場合よりも小さくなる。 Further, it is desirable that the tensile strength of the material forming the key 411 is at least twice the tensile strength of the material forming the upper shell 2b. Thereby, the strength of the key 411 can be ensured. Note that when the strength of the key 411 is higher than the strength of the upper shell rotation suppressing protrusion 211 shown in Embodiment 1, the length L 4 of the key 411 is greater than the strength of the upper shell rotation suppressing protrusion 211 shown in Embodiment 1. 211 may be smaller than the length L2 . Further, the sign of the length of the fixed scroll rotation suppressing recess 311, that is, W3 , is the same as in the first embodiment, but when the length L4 of the key 411 is small, the distance W3 is naturally also In accordance with the length L4 , it is smaller than in the first embodiment.
 実施の形態3.
 図19は、実施の形態3に係る冷凍サイクル装置601の構成の一例を示す構成図である。図19に示すように、冷凍サイクル装置601は、圧縮機1と、第1熱交換器602と、第1送風機603と、膨張弁604と、第2熱交換器605と、第2送風機606と、四方弁607と、を有している。
Embodiment 3.
FIG. 19 is a configuration diagram showing an example of the configuration of a refrigeration cycle device 601 according to the third embodiment. As shown in FIG. 19, the refrigeration cycle device 601 includes a compressor 1, a first heat exchanger 602, a first blower 603, an expansion valve 604, a second heat exchanger 605, and a second blower 606. , and a four-way valve 607.
 圧縮機1は、実施の形態1または実施の形態2で示した圧縮機1である。圧縮機1は、冷媒配管608の中を流れる冷媒を吸入する。圧縮機1は、吸入した冷媒を圧縮して、冷媒配管608に吐出する。圧縮機1から吐出された冷媒は、第1熱交換器602または605に流入される。 The compressor 1 is the compressor 1 shown in Embodiment 1 or Embodiment 2. Compressor 1 sucks refrigerant flowing through refrigerant pipe 608 . The compressor 1 compresses the sucked refrigerant and discharges it to the refrigerant pipe 608. The refrigerant discharged from the compressor 1 flows into the first heat exchanger 602 or 605.
 第1熱交換器602および第2熱交換器605は、内部を流れる冷媒と、空気との間で、熱交換を行う。第1熱交換器602および第2熱交換器605は、例えば、フィンアンドチューブ型熱交換器である。 The first heat exchanger 602 and the second heat exchanger 605 exchange heat between the refrigerant flowing therein and air. The first heat exchanger 602 and the second heat exchanger 605 are, for example, fin-and-tube heat exchangers.
 第1熱交換器602は、冷房運転時に凝縮器として機能し、冷媒を凝縮して液化させる。第1熱交換器602は、暖房運転時に蒸発器として機能し、冷媒を蒸発させて気化させる。 The first heat exchanger 602 functions as a condenser during cooling operation, and condenses and liquefies the refrigerant. The first heat exchanger 602 functions as an evaporator during heating operation, and evaporates and vaporizes the refrigerant.
 第2熱交換器605は、冷房運転時に蒸発器として機能し、冷媒を蒸発させて気化させる。第2熱交換器605は、暖房運転時に凝縮器として機能し、冷媒を凝縮して液化させる。 The second heat exchanger 605 functions as an evaporator during cooling operation, and evaporates and vaporizes the refrigerant. The second heat exchanger 605 functions as a condenser during heating operation, and condenses and liquefies the refrigerant.
 また、第1送風機603は、第1熱交換器602に付設され、第1熱交換器602に向けて送風を行う。第2送風機606は、第2熱交換器605に付設され、第2熱交換器605に向けて送風を行う。 Further, the first blower 603 is attached to the first heat exchanger 602 and blows air toward the first heat exchanger 602. The second blower 606 is attached to the second heat exchanger 605 and blows air toward the second heat exchanger 605.
 四方弁607は、冷房運転の場合と暖房運転の場合とで状態が切り替わるように構成されている。四方弁607は、冷房運転時と暖房運転時とによって冷媒の流れを切り替える流路切替装置である。冷房運転の場合は、四方弁607は実線で示す状態になり、圧縮機1から吐出された冷媒が、第1熱交換器602に流入する。一方、暖房運転の場合は、四方弁607は破線で示す状態になり、圧縮機1から吐出された冷媒が、第2熱交換器605に流入する。 The four-way valve 607 is configured to switch its state between cooling operation and heating operation. The four-way valve 607 is a flow path switching device that switches the flow of refrigerant depending on the cooling operation and the heating operation. In the case of cooling operation, the four-way valve 607 is in the state shown by the solid line, and the refrigerant discharged from the compressor 1 flows into the first heat exchanger 602. On the other hand, in the case of heating operation, the four-way valve 607 is in the state shown by the broken line, and the refrigerant discharged from the compressor 1 flows into the second heat exchanger 605.
 膨張弁604は、冷媒を減圧して膨張させる減圧装置で、例えば、電子膨張弁で構成されている。膨張弁が電子膨張弁で構成されている場合には、図示しない制御装置等の指示に基づいて開度調整が行われる。膨張弁604は、第1熱交換器602と第2熱交換器605との間に設けられている。 The expansion valve 604 is a pressure reducing device that reduces the pressure of the refrigerant and expands it, and is composed of, for example, an electronic expansion valve. When the expansion valve is an electronic expansion valve, the opening degree is adjusted based on instructions from a control device (not shown) or the like. Expansion valve 604 is provided between first heat exchanger 602 and second heat exchanger 605.
 圧縮機1、四方弁607、第1熱交換器602、膨張弁604、および、第2熱交換器605は、冷媒配管608によって接続されて、冷凍サイクル装置601を構成する冷媒回路を形成している。 The compressor 1, the four-way valve 607, the first heat exchanger 602, the expansion valve 604, and the second heat exchanger 605 are connected by a refrigerant pipe 608 to form a refrigerant circuit that constitutes the refrigeration cycle device 601. There is.
 冷媒は、例えば、組成中に、炭素の二重結合を有するハロゲン化炭化水素、炭素の二重結合を有しないハロゲン化炭化水素、炭化水素、または、それらを含む混合物からなる。炭素の二重結合を有するハロゲン化炭化水素は、オゾン層破壊係数がゼロであるHFC冷媒、フロン系低GWP冷媒である。低GWP冷媒としては、例えばHFO冷媒があり、化学式がCで表されるHFO1234yf、HFO1234ze、HFO1243zf等のテトラフルオロプロペンが例示される。炭素の二重結合を有しないハロゲン化炭化水素は、CHで表されるR32(ジフルオロメタン)、R41等が混合された冷媒が例示される。炭化水素は、自然冷媒であるプロパンやプロピレン等が例示される。混合物は、HFO1234yf、HFO1234ze、HFO1243zf等に、R32、R41等を混合した混合冷媒が例示される。 The refrigerant is composed of, for example, a halogenated hydrocarbon having a carbon double bond, a halogenated hydrocarbon having no carbon double bond, a hydrocarbon, or a mixture thereof. Halogenated hydrocarbons having carbon double bonds are HFC refrigerants and fluorocarbon-based low GWP refrigerants that have zero ozone depletion potential. Examples of low GWP refrigerants include HFO refrigerants, including tetrafluoropropenes such as HFO1234yf, HFO1234ze, and HFO1243zf, which have the chemical formula C 3 H 2 F 4 . Examples of halogenated hydrocarbons that do not have carbon double bonds include refrigerants in which R32 (difluoromethane), R41, and the like represented by CH 2 F 2 are mixed. Examples of hydrocarbons include natural refrigerants such as propane and propylene. An example of the mixture is a mixed refrigerant in which R32, R41, etc. are mixed with HFO1234yf, HFO1234ze, HFO1243zf, etc.
 実施の形態3では、このように、冷媒は、例えば、HFO冷媒、または、R32を含んでいる。 In Embodiment 3, the refrigerant thus includes, for example, HFO refrigerant or R32.
 実施の形態3によれば、圧縮機1のフレーム5に固定スクロール3を固定するための周壁を形成することなく、固定スクロール3をシェル2内に位置精度良く配置することができる。その結果、圧縮室43内で異常昇圧が発生した場合においても、固定スクロール3の位置精度を保持することができる。 According to the third embodiment, the fixed scroll 3 can be arranged within the shell 2 with good positional accuracy without forming a peripheral wall for fixing the fixed scroll 3 to the frame 5 of the compressor 1. As a result, even if abnormal pressure rise occurs within the compression chamber 43, the positional accuracy of the fixed scroll 3 can be maintained.
 1 圧縮機、1a 圧縮機構部、1b 駆動機構部、1c インジェクション機構、2 シェル、2a メインシェル、2b アッパーシェル、2c ロアシェル、2d 固定台、3 固定スクロール、3a 第1基板、3b 第1渦巻体、3c 吐出孔、4 揺動スクロール、4a 第2基板、4b 第2渦巻体、4c 揺動スクロールボス部、4d 第2オルダム溝、4e 揺動軸受、4f 揺動スクロールスラスト面、5 フレーム、5a 本体部、5b フレームボス部、5c 主軸受、5d 吸入ポート、5e 揺動軸受動作空間、5f フレームスラスト面、5g オルダム収容部、5h 第1オルダム溝、5i 排油孔、6 返油管、7 オルダムリング、7a リング部、7b 第1キー部、7c 第2キー部、8 スラストプレート、8a 切り欠き部、9 吐出弁、10 吐出弁押え、11 バランサ付きスライダ、11a スライダ部、11b バランサ部、12 スリーブ、13 主軸、13a 偏心軸部、13b 主軸部、13c 給油通路、13d 主軸受部、13e 副軸受部、14 第一バランサ、15 ロータ、16 第二バランサ、17 ステータ、18 サブフレーム、19 副軸受、20 オイルポンプ、21 冷凍機油、22 吸入管、23 吐出管、24 インジェクション管、25 マフラ、25a フランジ部、25b 先端部、25c 切欠き部、26 ガラス端子、27 インジェクション横穴、40 油溜り部、41 吸入空間、42 吐出空間、43 圧縮室、44 冷媒取込空間、50 回転抑制機構部、50A 回転抑制機構部、111 第1内壁面、112 第1突出部、113 第1位置決め面、114 第2内壁面、115 第2突出部、116 第2位置決め面、211 アッパーシェル回転抑制凸部、211a 先端面、211b 側面部、211c 側面部、212 アッパーシェル回転抑制凹部、213 アッパーシェル位置決め面、214 爪部、311 固定スクロール回転抑制凹部、312 第1面、313 第2面、314 側面、315 薄肉部、411 キー、412 第1面、413 第2面、414 側面、511 下端面部、601 冷凍サイクル装置、602 第1熱交換器、603 第1送風機、604 膨張弁、605 第2熱交換器、606 第2送風機、607 四方弁、608 冷媒配管、S1 後方クリアランス、S2 前方クリアランス。 1 Compressor, 1a Compression mechanism section, 1b Drive mechanism section, 1c Injection mechanism, 2 Shell, 2a Main shell, 2b Upper shell, 2c Lower shell, 2d Fixed base, 3 Fixed scroll, 3a First board, 3b First spiral body , 3c Discharge hole, 4 Oscillating scroll, 4a Second substrate, 4b Second spiral body, 4c Oscillating scroll boss portion, 4d Second Oldham groove, 4e Oscillating bearing, 4f Oscillating scroll thrust surface, 5 Frame, 5a Main body, 5b Frame boss, 5c Main bearing, 5d Suction port, 5e Swing bearing operating space, 5f Frame thrust surface, 5g Oldham housing section, 5h 1st Oldham groove, 5i Oil drain hole, 6 Oil return pipe, 7 Oldham Ring, 7a Ring part, 7b First key part, 7c Second key part, 8 Thrust plate, 8a Notch part, 9 Discharge valve, 10 Discharge valve holder, 11 Slider with balancer, 11a Slider part, 11b Balancer part, 12 Sleeve, 13 main shaft, 13a eccentric shaft part, 13b main shaft part, 13c oil supply passage, 13d main bearing part, 13e sub-bearing part, 14 first balancer, 15 rotor, 16 second balancer, 17 stator, 18 sub-frame, 19 sub- Bearing, 20 oil pump, 21 refrigeration oil, 22 suction pipe, 23 discharge pipe, 24 injection pipe, 25 muffler, 25a flange part, 25b tip part, 25c notch part, 26 glass terminal, 27 injection side hole, 40 oil sump part , 41 suction space, 42 discharge space, 43 compression chamber, 44 refrigerant intake space, 50 rotation suppression mechanism section, 50A rotation suppression mechanism section, 111 first inner wall surface, 112 first protrusion section, 113 first positioning surface, 114 2nd inner wall surface, 115 second protrusion, 116 second positioning surface, 211 upper shell rotation suppressing convex portion, 211a tip surface, 211b side surface, 211c side surface, 212 upper shell rotation suppressing recess, 213 upper shell positioning surface, 214 Claw portion, 311 Fixed scroll rotation suppression recess, 312 First surface, 313 Second surface, 314 Side surface, 315 Thin wall portion, 411 Key, 412 First surface, 413 Second surface, 414 Side surface, 511 Lower end surface portion, 601 Refrigeration Cycle device, 602 first heat exchanger, 603 first blower, 604 expansion valve, 605 second heat exchanger, 606 second blower, 607 four-way valve, 608 refrigerant piping, S1 rear clearance, S2 front clearance.

Claims (15)

  1.  外殻を構成する有底筒状のシェルと、
     前記シェルの内部に収容されたフレームと、
     前記フレームに摺動可能に保持された揺動スクロールと、
     前記揺動スクロールと共に、冷媒を圧縮する圧縮室を形成する固定スクロールと、
     を備え、
     前記シェルは、
     前記フレーム、前記揺動スクロール、および、前記固定スクロールを収容した、筒状形状のメインシェルと、
     前記メインシェルの一端側の開口を密閉するアッパーシェルと、
     を有し、
     前記固定スクロールは、前記メインシェルの第1内壁面に固定される第1基板を有し、
     前記アッパーシェルの下端部は、前記メインシェルの前記一端側の前記開口の内側に挿入される爪部を有し、
     前記第1基板は、前記シェルの軸方向に、前記爪部と前記第1内壁面とで挟持され、
     前記第1基板は、第1係止部を有し、
     前記爪部は、第2係止部を有し、
     前記第1係止部と前記第2係止部とは互いに係合されることで、前記固定スクロールの周方向の回転を抑制する回転抑制機構部を構成している、
     圧縮機。
    A bottomed cylindrical shell forming the outer shell;
    a frame housed inside the shell;
    an oscillating scroll slidably held in the frame;
    a fixed scroll that forms a compression chamber for compressing refrigerant together with the oscillating scroll;
    Equipped with
    The shell is
    a cylindrical main shell that accommodates the frame, the swinging scroll, and the fixed scroll;
    an upper shell that seals an opening on one end side of the main shell;
    has
    The fixed scroll has a first substrate fixed to a first inner wall surface of the main shell,
    The lower end portion of the upper shell has a claw portion that is inserted inside the opening on the one end side of the main shell,
    the first substrate is held between the claw portion and the first inner wall surface in the axial direction of the shell;
    The first substrate has a first locking part,
    The claw portion has a second locking portion,
    The first locking portion and the second locking portion are engaged with each other to constitute a rotation suppression mechanism portion that suppresses circumferential rotation of the fixed scroll.
    compressor.
  2.  前記爪部は、前記爪部の下端面から構成されたアッパーシェル位置決め面を有し、
     前記メインシェルの前記第1内壁面は、前記第1内壁面から前記メインシェルの内部に向かって突出し、前記固定スクロールの位置決めを行う第1突出部を有し、
     前記第1基板は、前記軸方向に、前記アッパーシェル位置決め面と前記第1突出部とで挟持されている、
     請求項1に記載の圧縮機。
    The claw portion has an upper shell positioning surface configured from a lower end surface of the claw portion,
    The first inner wall surface of the main shell has a first protrusion that protrudes toward the inside of the main shell from the first inner wall surface and positions the fixed scroll,
    the first substrate is held between the upper shell positioning surface and the first protrusion in the axial direction;
    A compressor according to claim 1.
  3.  前記回転抑制機構部は、
     前記固定スクロールの前記第1基板に形成され、前記第1係止部を構成する第1凹部と、
     前記アッパーシェルの前記爪部に形成され、前記爪部の下端面から下方に延設され、前記第2係止部を構成する凸部と、
     を有し、
     前記凸部が前記第1凹部に嵌合されることで、前記第1基板の前記第1係止部と前記爪部の前記第2係止部とが互いに係合される、
     請求項1または2に記載の圧縮機。
    The rotation suppression mechanism section is
    a first recess formed in the first substrate of the fixed scroll and forming the first locking part;
    a convex portion formed on the claw portion of the upper shell, extending downward from a lower end surface of the claw portion, and constituting the second locking portion;
    has
    The first locking portion of the first substrate and the second locking portion of the claw portion are engaged with each other by fitting the convex portion into the first recess.
    The compressor according to claim 1 or 2.
  4.  前記回転抑制機構部における前記第1凹部と前記凸部との間の周方向のクリアランスは、前記圧縮機の中心軸を基準とする中心角で1.5度以内となるよう設定されている、
     請求項3に記載の圧縮機。
    A circumferential clearance between the first concave portion and the convex portion in the rotation suppressing mechanism portion is set to be within 1.5 degrees at a central angle with respect to the central axis of the compressor.
    The compressor according to claim 3.
  5.  前記回転抑制機構部における前記凸部の周方向の長さLは、前記アッパーシェルの内円の全周の長さLに対し、0.015倍以上、0.035倍以下である、
     請求項3または4に記載の圧縮機。
    A length L2 in the circumferential direction of the convex portion in the rotation suppressing mechanism portion is 0.015 times or more and 0.035 times or less with respect to the length L of the entire circumference of the inner circle of the upper shell.
    The compressor according to claim 3 or 4.
  6.  前記回転抑制機構部における前記第1凹部は、前記第1基板の板厚方向に凹んでおり、
     前記第1凹部の深さDは、前記第1基板の板厚Tの3/4以下である、
     請求項3~5のいずれか1項に記載の圧縮機。
    The first recess in the rotation suppressing mechanism is recessed in the thickness direction of the first substrate,
    The depth D3 of the first recess is 3/4 or less of the thickness T3 of the first substrate.
    The compressor according to any one of claims 3 to 5.
  7.  前記固定スクロールの周方向の回転のズレ方向は、前記揺動スクロールが自転する回転方向の逆向きの方向であり、
     前記回転抑制機構部における前記第1凹部と前記凸部との間の周方向のクリアランスを、前記ズレ方向の前方側の前方クリアランスと後方側の後方クリアランスとに分割したとき、前記後方クリアランスの周方向の長さLS1は、前記前方クリアランスの周方向の長さLS2より小さい、
     請求項3~6のいずれか1項に記載の圧縮機。
    The circumferential rotational deviation direction of the fixed scroll is a direction opposite to the rotational direction in which the oscillating scroll rotates,
    When the clearance in the circumferential direction between the first concave portion and the convex portion in the rotation suppressing mechanism is divided into a front clearance on the front side in the direction of deviation and a rear clearance on the rear side, the circumference of the rear clearance The length L S1 in the direction is smaller than the length L S2 of the front clearance in the circumferential direction.
    The compressor according to any one of claims 3 to 6.
  8.  前記回転抑制機構部における前記凸部の径方向から見たときの形状は矩形形状であり、
     前記凸部の前記後方クリアランス側の側面部および前記前方クリアランス側の側面部は、互いに平行に、前記爪部の下端面から下方向に延びている、
     請求項7に記載の圧縮機。
    The convex portion of the rotation suppressing mechanism has a rectangular shape when viewed from the radial direction,
    The side surface portion of the rear clearance side and the side surface portion of the front clearance side of the convex portion extend downward from the lower end surface of the claw portion in parallel with each other.
    The compressor according to claim 7.
  9.  前記回転抑制機構部における前記凸部の径方向から見たときの形状は、前記爪部の下端面から下方向に向けて先太りの台形形状であり、
     前記凸部の前記前方クリアランス側の側面部は、前記爪部の下端面から前記下方向に延びており、
     前記凸部の前記後方クリアランス側の側面部は、前記爪部の下端面から前記下方向に向かうにつれて、前記下方向に対して外側に傾斜している、
     請求項7に記載の圧縮機。
    The shape of the convex part in the rotation suppressing mechanism part when viewed from the radial direction is a trapezoidal shape that tapers downward from the lower end surface of the claw part,
    The side surface portion of the protrusion on the front clearance side extends in the downward direction from the lower end surface of the claw portion,
    A side surface portion of the convex portion on the rear clearance side is inclined outwardly with respect to the downward direction from the lower end surface of the claw portion toward the downward direction.
    The compressor according to claim 7.
  10.  前記回転抑制機構部における前記凸部の径方向から見たときの形状は、前記爪部の下端面から下方向に向けて先細りの台形形状であり、
     前記凸部の前記前方クリアランス側の側面部は、前記爪部の下端面から前記下方向に延びており、
     前記凸部の前記後方クリアランス側の側面部は、前記爪部の下端面から前記下方向に向かうにつれて、前記下方向に対して内側に傾斜している、
     請求項7に記載の圧縮機。
    The shape of the convex part in the rotation suppressing mechanism part when viewed from the radial direction is a trapezoidal shape tapering downward from the lower end surface of the claw part,
    The side surface portion of the protrusion on the front clearance side extends in the downward direction from the lower end surface of the claw portion,
    The side surface portion of the convex portion on the rear clearance side is inclined inwardly with respect to the downward direction from the lower end surface of the claw portion toward the downward direction.
    The compressor according to claim 7.
  11.  前記回転抑制機構部は、
     前記固定スクロールの前記第1基板に形成され、前記第1係止部を構成する第1凹部と、
     前記アッパーシェルの前記爪部に形成され、前記第2係止部を構成する第2凹部と、
     前記第1凹部および前記第2凹部の両方に嵌合されるキーと、
     を有し、
     前記キーが前記第1凹部および前記第2凹部の両方に嵌合されることで、前記第1基板の前記第1係止部と前記爪部の前記第2係止部とが互いに係合される、
     請求項1または2に記載の圧縮機。
    The rotation suppression mechanism section is
    a first recess formed in the first substrate of the fixed scroll and forming the first locking part;
    a second recess formed in the claw portion of the upper shell and forming the second locking portion;
    a key fitted into both the first recess and the second recess;
    has
    By fitting the key into both the first recess and the second recess, the first locking portion of the first board and the second locking portion of the claw portion are engaged with each other. Ru,
    The compressor according to claim 1 or 2.
  12.  前記キーを構成する素材の引張強さは、前記アッパーシェルを構成する素材の引張強さに対し、2倍以上である、
     請求項11に記載の圧縮機。
    The tensile strength of the material constituting the key is at least twice the tensile strength of the material constituting the upper shell.
    The compressor according to claim 11.
  13.  前記回転抑制機構部の個数は、1個以上、4個以下であり、
     前記回転抑制機構部は、前記爪部の周方向に沿って、互いに間隔を空けて配置されている、
     請求項1~12のいずれか1項に記載の圧縮機。
    The number of the rotation suppressing mechanisms is 1 or more and 4 or less,
    The rotation suppressing mechanism parts are arranged at intervals from each other along the circumferential direction of the claw part.
    The compressor according to any one of claims 1 to 12.
  14.  騒音抑制を行うマフラを備え、
     前記マフラは、前記メインシェルの内径と同等の外径を有しており、
     前記マフラの下端部は、前記マフラの前記下端部の全周に亘って、前記アッパーシェルの前記爪部と前記第1基板との間に挟み込まれており、
     前記マフラの前記下端部は切り欠き部を有し、前記回転抑制機構部の少なくとも一部は前記切り欠き部の内部を貫通して配置される、
     請求項1~13のいずれか1項に記載の圧縮機。
    Equipped with a muffler to suppress noise,
    The muffler has an outer diameter equivalent to an inner diameter of the main shell,
    The lower end portion of the muffler is sandwiched between the claw portion of the upper shell and the first substrate over the entire circumference of the lower end portion of the muffler,
    The lower end portion of the muffler has a notch, and at least a portion of the rotation suppressing mechanism is disposed to penetrate inside the notch.
    The compressor according to any one of claims 1 to 13.
  15.  下端部が開口されたアッパーシェルであって、
     前記アッパーシェルの前記下端部は、周方向に形成された爪部を有し、
     前記爪部は、前記爪部の前記周方向の少なくとも一箇所に設けられ、前記爪部から下方向に突出したアッパーシェル回転抑制凸部を有し、
     前記アッパーシェル回転抑制凸部は、前記アッパーシェルの下方に配置されて前記周方向の回転が抑制される被抑制対象の一部分に挿入される、
     アッパーシェル。
    An upper shell with an open bottom end,
    The lower end portion of the upper shell has a claw portion formed in a circumferential direction,
    The claw portion has an upper shell rotation suppressing convex portion provided at at least one location in the circumferential direction of the claw portion and protruding downward from the claw portion,
    The upper shell rotation suppressing convex portion is disposed below the upper shell and inserted into a portion of the suppressed object whose rotation in the circumferential direction is suppressed.
    upper shell.
PCT/JP2022/016982 2022-04-01 2022-04-01 Compressor and upper shell WO2023188422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016982 WO2023188422A1 (en) 2022-04-01 2022-04-01 Compressor and upper shell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016982 WO2023188422A1 (en) 2022-04-01 2022-04-01 Compressor and upper shell

Publications (1)

Publication Number Publication Date
WO2023188422A1 true WO2023188422A1 (en) 2023-10-05

Family

ID=88200528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016982 WO2023188422A1 (en) 2022-04-01 2022-04-01 Compressor and upper shell

Country Status (1)

Country Link
WO (1) WO2023188422A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237375A (en) * 1988-03-16 1989-09-21 Hitachi Ltd Scroll compressor
JPH07174079A (en) * 1993-12-20 1995-07-11 Mitsubishi Electric Corp Scroll compressor
WO2018078787A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Scroll compressor, refrigeration cycle device, and shell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237375A (en) * 1988-03-16 1989-09-21 Hitachi Ltd Scroll compressor
JPH07174079A (en) * 1993-12-20 1995-07-11 Mitsubishi Electric Corp Scroll compressor
WO2018078787A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Scroll compressor, refrigeration cycle device, and shell

Similar Documents

Publication Publication Date Title
US11143184B2 (en) Scroll compressor, refrigeration cycle apparatus, and shell
WO2007000854A1 (en) Fluid machine and refrigeration cycle device
JPWO2019087227A1 (en) Scroll compressor
JP6745994B2 (en) Scroll compressor and refrigeration cycle device
US11028848B2 (en) Scroll compressor having a fitted bushing and weight arrangement
WO2023188422A1 (en) Compressor and upper shell
JPWO2020161965A1 (en) Rotary compressor, manufacturing method of rotary compressor and refrigeration cycle equipment
WO2021084607A1 (en) Scroll compressor and refrigeration cycle device
WO2020157792A1 (en) Scroll compressor
JP2021076085A (en) Scroll compressor
JP6762113B2 (en) Scroll compressor and air conditioner
JP7433697B2 (en) Scroll compressor and refrigeration cycle equipment using the scroll compressor
JP6195466B2 (en) Scroll compressor
CN112005013B (en) Scroll compressor and method of manufacturing the same
JP7191246B2 (en) Scroll compressor and refrigeration cycle equipment
WO2023181173A1 (en) Scroll compressor
JP7350101B2 (en) scroll compressor
JP7361585B2 (en) Scroll compressor and method for manufacturing scroll compressor
JP7345550B2 (en) scroll compressor
JPWO2019207785A1 (en) Scroll compressor
JP7174288B1 (en) Scroll compressor and refrigeration system
JP6903228B2 (en) Scroll compressor and refrigeration cycle equipment
JP4733558B2 (en) Fluid machinery and refrigeration cycle equipment
US20200347846A1 (en) Compressor and refrigeration cycle apparatus
JP2007270818A (en) Fluid machinery and refrigerating cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935559

Country of ref document: EP

Kind code of ref document: A1