WO2023188321A1 - 霧化ユニット及びその製造方法、並びに吸引具 - Google Patents

霧化ユニット及びその製造方法、並びに吸引具 Download PDF

Info

Publication number
WO2023188321A1
WO2023188321A1 PCT/JP2022/016685 JP2022016685W WO2023188321A1 WO 2023188321 A1 WO2023188321 A1 WO 2023188321A1 JP 2022016685 W JP2022016685 W JP 2022016685W WO 2023188321 A1 WO2023188321 A1 WO 2023188321A1
Authority
WO
WIPO (PCT)
Prior art keywords
flavor
liquid
tobacco
nicotine
molded body
Prior art date
Application number
PCT/JP2022/016685
Other languages
English (en)
French (fr)
Inventor
光史 松本
学 山田
拓也 岡田
亮祐 長瀬
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/016685 priority Critical patent/WO2023188321A1/ja
Publication of WO2023188321A1 publication Critical patent/WO2023188321A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture

Definitions

  • the present invention relates to an atomization unit, a method for manufacturing the same, and a suction tool.
  • an atomizing unit used in a suction tool includes a liquid storage part that stores a predetermined liquid, and an electrical unit that atomizes the introduced liquid and generates an aerosol.
  • An atomizing unit which is characterized in that it has a load, stores powder of tobacco material such as tobacco leaves in the liquid of this liquid storage part, and disperses the powder of tobacco material. (For example, see Patent Document 1).
  • Patent Document 2 discloses a configuration of an atomization unit included in a suction tool having a basic configuration.
  • Patent Document 3 discloses information regarding tobacco leaf extract.
  • Non-Patent Document 1 discloses a technology related to nicotine.
  • the present invention has been made in view of the above, and one of its objects is to provide a technique that can suppress deterioration of the load on the atomization unit.
  • an atomization unit of a suction device includes a liquid storage section that stores an aerosol generation liquid containing nicotine, and the aerosol generation liquid in the liquid storage section is introduced. It also includes an electrical load that atomizes the introduced aerosol-generating liquid to generate an aerosol, and a flavor molded body that is disposed inside the liquid storage part and includes a non-tobacco base material and a flavor material. , the flavor material contains a tobacco material, and the content of the tobacco material in the flavor molded body is 10% by weight or less.
  • the flavor molded body molded into a predetermined shape is arranged inside the liquid storage section, and the flavor molded body and the electrical load of the atomization unit are physically separated. Therefore, substances such as tobacco materials that can become deposits can be prevented from adhering to the load of the atomization unit. Thereby, it is possible to suppress deterioration of the load on the atomization unit.
  • the amount of the carbonized component contained in 1 g of the aerosol generating liquid in a state where the flavor molded body is disposed inside the liquid storage section is 6 mg or less, and the carbonized component is heated at 250°C. It may also be a component that becomes a carbide when heated.
  • a suction tool includes a power supply unit and an atomization unit according to aspect 1 or 2 above.
  • a method for manufacturing an atomization unit for a suction device is a method for manufacturing an atomization unit for a suction device having a liquid storage section, the method comprising: producing an atomization unit for a suction device that includes a liquid containing part. a liquid preparation step, a molding step of molding a flavor molded object containing a non-tobacco base material and a flavor material, and an assembly step of storing the aerosol generating liquid containing nicotine and the flavor molded object in the liquid storage section. and, the flavor material contains a tobacco material, and the content of the tobacco material in the flavor molded object is 10% by weight when the flavor molded object is accommodated inside the liquid storage section. It is as follows.
  • a method for manufacturing an atomization unit for a suction device is a method for manufacturing an atomization unit for a suction device having a liquid storage portion, the method comprising: preparing a nicotine-containing liquid; a liquid-containing preparation step, a molding step of molding a flavor molded body containing a non-tobacco base material and a flavor material, an addition step of adding the nicotine-containing liquid to the flavor molded body, and a flavor to which the nicotine-containing liquid is added.
  • the content of the tobacco material in the flavor molded article in the flavored state is 10% by weight or less.
  • FIG. 2 is a schematic cross-sectional view showing the main parts of the atomization unit of the suction tool according to Embodiment 1.
  • 2 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 1.
  • FIG. 1 is a schematic perspective view of a flavor molded article according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a flavor molded article according to Embodiment 1.
  • FIG. 3 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized components contained in 1 g of an aerosol generating liquid containing nicotine.
  • FIG. 3 is a flow diagram for explaining a method for manufacturing an atomization unit according to a second embodiment.
  • 7 is a flow diagram for explaining a method for manufacturing an atomization unit according to Modification 1 of Embodiment 2.
  • FIG. FIG. 7 is a perspective view schematically showing the appearance of a suction tool according to Embodiment 3.
  • the atomization unit (hereinafter also simply referred to as "atomization unit") of the suction tool according to Embodiment 1 of the present invention includes a liquid storage section that stores an aerosol-generating liquid containing nicotine; an electrical load that causes the aerosol generation liquid in the liquid storage section to be introduced and atomizes the introduced aerosol generation liquid to generate an aerosol; a flavor molded article disposed inside the liquid storage section and containing a non-tobacco base material and a flavor material; Equipped with The flavor material contains a tobacco material, and the content of the tobacco material in the flavor molded body is 10% by weight or less, This is the atomization unit of the suction tool.
  • the nicotine supply source is a solid such as a powder that can become a deposit as disclosed in Patent Document 1. Otherwise, the effect of the present invention can be obtained, and each condition can be arbitrarily combined within the range where this effect can be obtained.
  • an aerosol generating liquid containing nicotine and a flavor molded body containing a tobacco material are used as a nicotine supply source instead of a powdered tobacco material that can cause deposits as disclosed in Patent Document 1. Therefore, it is possible to suppress adhesion of the nicotine supply source to the load of the atomization unit, and further suppress deterioration of the load. Furthermore, the tobacco material contained in the flavor molded article plays the role of a spice in terms of aroma and taste. On the other hand, since the tobacco material contains components that can cause charring of the load when heated, it is advantageous not to exceed the above upper limit in order to suppress the occurrence of charring.
  • FIG. 1 shows an example of the atomization unit according to this embodiment.
  • the atomization unit will be explained with reference to FIG. 1.
  • FIG. 1 is a schematic cross-sectional view showing the main parts of the atomization unit 12. Specifically, FIG. 1 schematically shows a cross section of the main part of the atomization unit 12 taken along a plane including the central axis CL.
  • FIG. 2 is a diagram schematically showing a cross section taken along the line A1-A1 in FIG. 2 (that is, a cross section taken along a plane normal to the central axis CL).
  • the atomization unit 12 will be explained with reference to FIGS. 1 and 2.
  • the atomization unit 12 extends in the direction of the central axis CL of the atomization unit 12, for example.
  • the atomization unit 12 is configured, for example, in a "major axis direction (direction of the center axis CL)", a "width direction” perpendicular to the major axis direction, and a “width direction” perpendicular to the major axis direction and the width direction. It exhibits an external shape having a thickness direction.
  • the dimensions of the atomization unit 12 in the long axis direction, width direction, and thickness direction become smaller in this order.
  • the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction
  • the X-axis direction (X direction or -X direction) corresponds to the width direction
  • the Y-axis direction (Y direction or -Y direction) corresponds to the thickness direction.
  • the atomization unit 12 includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL), and a plurality of walls (walls 70a to 70g) extending in the width direction. 71a to wall portion 71c). Further, the atomization unit 12 includes an air passage 20, a wick 30, an electrical load 40, a liquid storage section 50, and a flavor molded body 60.
  • the air passage 20 is a passage through which air passes when the user suctions air (that is, when suctioning an aerosol).
  • the air passage 20 according to this embodiment includes an upstream passage section, a load passage section 22, and a downstream passage section 23.
  • the upstream passage section according to the present embodiment includes a plurality of upstream passage sections, specifically, an upstream passage section 21a ("first upstream passage section") and an upstream passage section 21b. (“second upstream passage section").
  • the upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the air flow direction).
  • the downstream ends of the upstream passages 21a and 21b communicate with the load passage 22.
  • the load passage section 22 is a passage section in which a load 40 is disposed.
  • the downstream passage section 23 is a passage section disposed downstream of the load passage section 22 (downstream side in the air flow direction). An upstream end of the downstream passage section 23 communicates with the load passage section 22 . Further, the downstream end of the downstream passage section 23 communicates with the discharge port 13 described above. The air that has passed through the downstream passage section 23 is discharged from the discharge port 13.
  • the upstream passage section 21a is provided in an area surrounded by a wall 70a, a wall 70b, a wall 70e, a wall 70f, a wall 71a, and a wall 71b.
  • the upstream passage portion 21b is provided in an area surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
  • the load passage section 22 is provided in an area surrounded by a wall 70a, a wall 70d, a wall 70e, a wall 70f, a wall 71b, and a wall 71c.
  • the downstream passage section 23 is provided in an area surrounded by the cylindrical wall section 70g.
  • a hole 72a and a hole 72b are provided in the wall portion 71a. Air flows into the upstream passage section 21a through the hole 72a, and flows into the upstream passage section 21b through the hole 72b. Further, the wall portion 71b is provided with a hole 72c and a hole 72d. Air that has passed through the upstream passage section 21a flows into the load passage section 22 through the hole 72c, and air that has passed through the upstream passage section 21b flows into the load passage section 22 through the hole 72d.
  • the direction of air flow in the upstream passage sections 21a and 21b is opposite to the direction of air flow in the downstream passage section 23.
  • the direction of air flow in the upstream passage sections 21a and 21b is the -Z direction
  • the direction of air flow in the downstream passage section 23 is the Z direction.
  • the upstream passage section 21a and the upstream passage section 21b according to the present embodiment sandwich the liquid storage section 50 between the upstream passage section 21a and the upstream passage section 21b. As such, it is arranged adjacent to the liquid storage section 50.
  • the upstream passage section 21a has one side with the liquid storage section 50 in between, in a cross-sectional view taken along a section normal to the central axis CL. side (-X direction side).
  • the upstream passage section 21b is arranged on the other side (the side in the X direction) with the liquid storage section 50 in between in this cross-sectional view.
  • the upstream passage section 21a is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10
  • the upstream passage section 21b is arranged on one side of the liquid storage section 50 in the width direction of the suction tool 10. placed on the other side.
  • the wick 30 is a member for introducing the aerosol-generating liquid (hereinafter also simply referred to as "aerosol-generating liquid") containing nicotine in the liquid storage section 50 into the load 40 of the load passage section 22.
  • aerosol-generating liquid hereinafter also simply referred to as "aerosol-generating liquid"
  • the specific configuration of the wick 30 is not particularly limited as long as it has such a function, but the wick 30 according to the present embodiment uses capillarity (capillary phenomenon) as an example.
  • the aerosol generating liquid in the liquid storage section 50 is introduced into the load 40.
  • the capillary force (capillary force) of the wick 30 is larger than the capillary force of the flavor molded body 60 from the viewpoint of being able to use the surrounding liquid without wasting it.
  • the load 40 is an electrical load for introducing the aerosol generation liquid in the liquid storage section 50 and atomizing the introduced aerosol generation liquid to generate an aerosol.
  • the specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator may be used.
  • a heater is used as an example of the load 40.
  • a heating resistor that is, a heating wire
  • a ceramic heater a ceramic heater, a dielectric heater, or the like
  • a heating resistor is used as an example of this heater.
  • the heater serving as the load 40 may have a coil shape. That is, the load 40 according to this embodiment may be a so-called coil heater. This coil heater may be wound around the wick 30.
  • the load 40 is arranged in the wick 30 inside the load passage section 22, for example.
  • the load 40 is electrically connected to the power source and control device of the power supply unit 11 described above, and generates heat when electricity from the power source is supplied to the load 40 (that is, generates heat when energized). Further, the operation of the load 40 is controlled by a control device.
  • the load 40 heats and atomizes the aerosol-generating liquid in the liquid storage section 50 introduced into the load 40 via the wick 30 to generate an aerosol.
  • the liquid storage section 50 is a part for storing the aerosol generation liquid (Le).
  • the liquid storage section 50 according to the present embodiment is provided in an area surrounded by a wall 70b, a wall 70c, a wall 70e, a wall 70f, a wall 71a, and a wall 71b. Further, in this embodiment, the aforementioned downstream passage section 23 is provided so as to penetrate the liquid storage section 50 in the direction of the central axis CL.
  • the liquid may be provided to the user with the liquid contained in the liquid storage part 50, or the liquid may be provided to the user with no liquid contained in the liquid storage part 50, and the user may introduce the liquid. It is also possible to use a configuration.
  • the aerosol generation liquid Le stored in the liquid storage section 50 is not particularly limited as long as it contains nicotine.
  • the form of nicotine contained in the aerosol generation liquid Le is not particularly limited, and examples include one or more types of nicotine selected from synthetic nicotine and natural nicotine. Note that these synthetic nicotine and natural nicotine may exist as nicotine or as nicotine-containing compounds such as nicotine salts.
  • the form of the aerosol generation liquid Le is not particularly limited, and for example, one in which a predetermined solvent contains one or more types of nicotine selected from synthetic nicotine and natural nicotine can be used.
  • the specific type of the predetermined solvent is not particularly limited, but for example, one or more types selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • a liquid containing a substance can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the purity of natural nicotine when using natural nicotine as the nicotine contained in the aerosol generation liquid Le, by purifying the extract of tobacco materials such as tobacco leaves and removing as much as possible components other than natural nicotine from the extract of tobacco materials, The purity of natural nicotine may be increased, and natural nicotine with increased purity may be used.
  • the purity of the natural nicotine contained in the predetermined solvent of the aerosol generation liquid Le may be 99.9% by weight or more (that is, in this case, the purity of the natural nicotine contained in the natural nicotine ( (components other than natural nicotine) are less than 0.1% by weight).
  • components obtained by extracting tobacco materials are referred to as tobacco extract components (containing at least nicotine).
  • the synthetic nicotine when synthetic nicotine is used as the nicotine contained in the aerosol generation liquid Le, nicotine produced by chemical synthesis using a chemical substance can be used as the synthetic nicotine.
  • the purity of this synthetic nicotine may also be 99.9% by weight or more, similar to natural nicotine.
  • the method for producing synthetic nicotine is not particularly limited, and it can be carried out by chemical synthesis using chemical substances, and known production methods can be used.
  • the type of nicotine-containing compound is not particularly limited, and examples thereof include nicotine salts such as nicotine pyruvate, nicotine citrate, nicotine lactate, nicotine salicylate, nicotine fumarate, nicotine levulinic acid salt, nicotine benzoic acid salt, or nicotine tartrate. Can be mentioned.
  • the production method is not particularly limited, and any known production method can be used.
  • This tobacco extract component is a substance generally contained in tobacco plants, and examples of substances other than nicotine include neophytadiene, solanone, or solanesol, and even if these components other than nicotine are contained, they are not included. It does not have to be present, but if it is present, it can function as a fragrance.
  • nicotine there are two types of nicotine: (S)-nicotine and (R)-nicotine, and most naturally occurring nicotine is usually in the S form, with the R form accounting for less than 1 mol%.
  • synthetic nicotine the ratio of S-form and R-form is usually close to 1:1, although it depends on the synthesis method and purification method.
  • the amount of R-isomer relative to the total amount of nicotine in the oral composition is 5 mol% or more (may be 1 mol% or more, 10 mol% or more, or 40 to 60 mol%).
  • the nicotine in the oral composition is synthetic nicotine.
  • the target to be extracted may be, for example, tissues of tobacco plants themselves such as leaves, stems, flowers, roots, reproductive organs, or embryos, or processed products using these tobacco plant tissues (for example, known Tobacco powder, shredded tobacco, tobacco sheets, tobacco granules, etc. used in tobacco products) may be used, but from the viewpoint of ensuring a sufficient amount of use and avoiding the inclusion of unnecessary ingredients, tobacco leaves may be used. It is preferable.
  • the embodiment using tobacco extract components obtained by extraction of tobacco materials can lower the raw material cost and manufacturing cost of the aerosol generation liquid Le compared to the embodiment using nicotine obtained by synthesis or the like.
  • the method of incorporating nicotine into the aerosol generation liquid Le is not particularly limited, and examples include methods of dissolving nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis or extraction of tobacco materials in the aerosol generation liquid Le; Examples include a method in which nicotine or a nicotine-containing compound is dissolved in a solvent and then mixed with the aerosol generation liquid Le.
  • the tobacco extract can be used as it is as the aerosol generation liquid Le. Examples of such substances include, for example.
  • liquid aerosol generation liquid Le containing nicotine described above as a nicotine supply source
  • powdered tobacco material that can become a deposit as disclosed in Patent Document 1 is used as a nicotine supply source. It is possible to suppress deterioration of the load 40 of the atomization unit 12 that occurs when the atomization unit 12 is used as a fuel cell.
  • the content of nicotine in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of enabling a sufficient supply of nicotine, it may be, for example, 0.1% by weight or more and 10% by weight or less, and 0.5% by weight. % or more and 7.5% by weight or less, and 1% or more and 5% by weight or less.
  • the tobacco extract can be used as the source of the tobacco extract component, but in this case, the content of the tobacco extract in the aerosol generation liquid Le is not particularly limited.
  • nicotine may be, for example, 0.1% by weight or more and 10% by weight or less, or 0.5% by weight or more and 7.5% by weight or less, It may be 1% by weight or more and 5% by weight or less.
  • the predetermined solvent that can be included in the aerosol generation liquid Le is not particularly limited, and for example, an aerosol base material (a base material for generating an aerosol) can be used.
  • the type of aerosol base material is not particularly limited, and for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • the content of the aerosol base material in the aerosol generation liquid Le is not particularly limited, but from the viewpoint of achieving desired aerosol generation, it may be, for example, 40% by weight or more and 95% by weight or less, 50% by weight or more, It may be 90% by weight or less, and may be 60% by weight or more and 80% by weight or less.
  • the type of solvent used in the extraction to obtain the above tobacco extract component is not particularly limited as long as it can dissolve nicotine, and examples include glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • One or more substances selected from the group or a liquid containing this substance can be used.
  • glycerin and/or propylene glycol is used as an example of the predetermined solvent.
  • the tobacco extract can be used as is as the aerosol generation liquid Le, but the tobacco extract does not contain components that can cause scorching by heating (for example, lipids, etc.).
  • the tobacco extract contains flavor components in the tobacco material other than nicotine, and specific examples thereof include neophytadiene and the like.
  • the aerosol generation liquid Le may contain components other than nicotine and the aerosol base material (other components), such as flavor components other than nicotine (including the above-mentioned tobacco extract components other than nicotine).
  • Flavor components other than nicotine and flavor components derived from tobacco materials include, for example, menthol, natural vegetable flavorings (for example, cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil) , chamomile oil, labdanum, vetiver oil, rose oil, lovage oil), esters (e.g.
  • menthyl acetate isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.
  • ketones e.g. menthone, ionone
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -penta decalactone, etc.
  • neophytadiene solanone, or solanesol.
  • FIG. 3 is a schematic perspective view of the flavor molded body 60.
  • the flavor molded body 60 is formed by solidifying materials such as a non-tobacco base material and a flavor material into a predetermined shape.
  • Two flavor molded bodies 60 according to this embodiment are each arranged inside the aerosol generation liquid Le in the liquid storage section 50.
  • the number of molded bodies 60 is not limited to this, and may be one, or three or more.
  • the flavor molded body 60 contains a flavor material, and by eluting the flavor component from this substance into the aerosol generation liquid Le, it is possible to impart further flavor.
  • the flavor material is contained in the flavor molded body 60, it is possible to avoid adhesion to the load of the atomization unit 12, which occurs due to the use of powdery solids that can become deposits as disclosed in Patent Document 1. Since no problem occurs, deterioration of the load can be suppressed. Further, when capillary action is generated by the flavor molded body 60 in the atomization unit 12, the aerosol-generating liquid Le is retained by this capillary action, so that the effect of preventing liquid leakage can be obtained.
  • the type of material for the non-tobacco base material is not particularly limited as long as it is derived from tobacco materials (specifically, tobacco plants), such as ceramics, synthetic polymers, or pulp derived from plants other than tobacco plants. It may be.
  • tobacco materials specifically, tobacco plants
  • ceramics include alumina, zirconia, aluminum nitride, and silicon carbide.
  • synthetic polymer include polyolefin resin, polyester, polycarbonate, PAN, and EVOH.
  • plants other than tobacco plants include softwood pulp, hardwood pulp, cotton, fruit pulp, and tea leaves.
  • the non-tobacco base material may be the main material of the flavor molded body 60, particularly the main material that ensures the molding of the flavor molded body 60.
  • the content of the non-tobacco base material in the flavor molded body 60 is not particularly limited, and may be, for example, 10% by weight or more and 100% by weight or less, 30% by weight or more and 90% by weight or less, 50% by weight or more and 100% by weight or less, It may be more than 80% by weight and less than 80% by weight.
  • the shape of the flavor molded body 60 according to the present embodiment is not particularly limited, and is, for example, a rod shape (a shape whose length is longer than its width).
  • the rod-shaped flavor molded body 60 according to the present embodiment has a rod-shaped polyhedral shape, for example, and has a cylindrical shape with a circular cross section.
  • the cross-sectional shape of the flavor molded body 60 is not limited to a circle, and other examples include polygons (triangles, quadrilaterals, pentagons, or polygons with six or more corners), etc. There may be.
  • the rod shape having a hollow portion include a cylindrical shape having a through hole extending in the longitudinal direction, a concave shape having a non-through hole (recess) extending in the longitudinal direction, and the like.
  • the cross-sectional shape may be any shape other than a circle or a polygon, and may be a complicated shape as shown in FIG. 4(c), which will be described later, or may be a concave shape.
  • the flavor molded body 60 has a rod shape with grooves formed on the side surface.
  • the flavor molded product 60 may be a sheet made of a mixture of a non-tobacco base material and a flavor material, or a sheet made of a mixture of a non-tobacco base material and a flavor material.
  • a cast sheet of , a rolled sheet of a mixture of a non-tobacco base material and a flavor material, or a sheet with a flavor material applied to the surface of the non-tobacco base sheet by coating or spraying, etc. can be used.
  • the sheet shape may be a shape in which a plurality of sheets are stacked (the plurality of sheets only need to be stacked together, and may or may not be integrated with each other).
  • the sheet may have a bellows shape in which the sheet has a repeated structure of mountain folds and valley folds, or it may have a spiral shape in which the sheet has a spiral structure.
  • the shape of the flavor molded body 60 may be a shape other than the above-mentioned rod shape or sheet shape, for example, it may be a cubic shape (a shape having sides of the same length), or it may be a porous shape. Alternatively, it may have other shapes.
  • the shape of the flavor molded body 60 is cylindrical, a shape in which a plurality of rods are bundled, and a cross section of the rod in an arbitrary shape (a circular shape with a plurality of circular holes).
  • a typical cross-sectional shape of each flavor molded body 60 in the case of a rod shape, a bellows shape, and a spiral shape (shape in which a space portion) is provided is shown.
  • the capillary force generated by the flavor molded body 60 itself allows the surrounding liquid to be used without wasting it. From the standpoint of being able to maintain a desired level of capillary force, it is preferable that the capillary force be smaller than the capillary force of the wick 30 while maintaining a capillary force greater than or equal to a desired level. From the perspective of this capillary force relationship, the flavor molded body 60 has a space extending from the end area (including the end and end surface) on the side where the wick 30 exists to the side opposite to the side where the wick 30 exists.
  • a shape having the following is preferable.
  • the shape of this space is not particularly limited, and preferred shapes of the flavor molded body 60 include, for example, a cylindrical shape, a concave shape, a shape in which a plurality of rods are bundled, a bellows shape, a spiral shape, or a porous shape ( In particular, it is preferable to have one or more shapes selected from porous bodies having continuous pores.
  • the specific values of the width (i.e., outer diameter) (W), which is the length of the flavor molded body 60 in the lateral direction, and the total length (L), which is the length of the flavor molded body 60 in the longitudinal direction are as follows: Although not particularly limited, an example of numerical values is as follows. That is, as the width (W) of the flavor molded body 60, a value selected from a range of, for example, 2 mm or more and 20 mm or less can be used. As the total length (L) of the flavor molded body 60, a value selected from a range of, for example, 5 mm or more and 50 mm or less can be used.
  • these values are only examples of the width (W) and overall length (L) of the flavor molded body 60, and the width (W) and total length (L) of the flavor molded body 60 may vary depending on the size of the suction tool 10. Just set a suitable value. When a plurality of flavor molded bodies 60 are present, these parameters are the average value of the numerical values calculated for each flavor molded body 60.
  • the flavor molded body 60 is preferably covered with a coating material in order to suppress expansion due to liquid absorption, and because the liquid in the liquid storage part 50 can be used without wasting the liquid by suppressing the expansion.
  • a coating material such as a resin, or a nicotine-containing coating material.
  • Non-woven fabric refers to fibers that are processed into cloth without being woven.
  • a nonwoven fabric is, for example, a fabric formed by adhering or intertwining fibers by thermal, mechanical, or chemical action.
  • the fibers constituting the "nonwoven fabric” are not particularly limited, and may be plant fibers, animal fibers, synthetic fibers, or a mixture of two or more of these.In particular, it is preferable to contain plant fibers, and more preferably to contain paper. preferable. It is preferable for the nonwoven fabric to cover the entirety of the flavor molded body 60 in order to enhance the effect of preventing the flavor molded body 60 from swelling. It is preferable that the nonwoven fabric is paper that wraps the entire flavor molded body 60.
  • the shape of the nonwoven fabric is not particularly limited as long as it can cover at least a portion of the flavor molded body 60.
  • the nonwoven fabric may have a cylindrical shape and be arranged to cover the center of the flavor molded body 60 and the like.
  • the nonwoven fabric may have a cylindrical shape with one opening closed, and may be placed at the end of the flavor molded body 60.
  • a covering step of covering the flavor molded body 60 with the nonwoven fabric may be provided after the molding process of molding the flavor molded body 60.
  • the method of covering the flavor molded body 60 with the nonwoven fabric is not particularly limited, and for example, the flavor molded body 60 can be wrapped with the nonwoven fabric by a machine or by a person, and the sides of the nonwoven fabric can be adhered as necessary.
  • Examples of the coating material (coating) when coating with resin include polyethylene, polyethylene wax, microcrystalline wax, beeswax, and zein.
  • the coating material such as resin suppresses swelling of the flavor molded body 60. It is preferable that the coating covers 50% or more of the surface of the flavor molded body 60 in order to increase the effect of preventing swelling of materials such as non-tobacco base materials contained in the flavor molded body 60, and 90% or more is preferable. preferable.
  • the shape of the coating is not particularly limited as long as it can cover at least a portion of the flavor molded body 60.
  • the nicotine-containing coating material is not particularly limited as long as it contains nicotine, and may be, for example, the above-mentioned resin material containing nicotine.
  • a covering step of covering the flavor molded object 60 with the covering material is provided after the molding step of molding the flavor molded object 60.
  • the coating step the surface of the flavor molded body 60 is coated with a coating agent containing sodium silicate, such as water glass, or a resin, to form a coating.
  • the method of forming the coating material is not particularly limited, and for example, after forming a film of a liquid coating agent containing sodium silicate or a resin on the surface of the flavor molded body 60, it may be solidified or gelled by heating or addition of acid or salt. processing can be performed. Note that the flavor molded body 60 may be coated without performing the coating process, by solidifying a material such as a non-tobacco base material to which an appropriate flavor component has been added using a solution containing sodium silicate or resin such as water glass in the molding process. You may.
  • the form of the flavor material contained in the flavor molded body 60 is not particularly limited, and for example, it may be a flavor component itself, or it may be a material that imparts a flavor component ("flavor component imparting material"), and may be a flavor component imparting material.
  • component-imparting materials include tobacco materials that provide nicotine.
  • the tobacco component can be used as a spice to impart flavor.
  • the flavor molded body 60 contains a flavor component imparting material
  • the flavor component imparting material is treated as the flavor material, not the flavor component contained in the flavor component imparting material.
  • the flavor material is not nicotine contained in the tobacco material, but the tobacco material.
  • the flavoring material may include tobacco material, but the form of the tobacco material is not particularly limited, and may include, for example, tobacco plant leaves, stems, flowers, roots, reproductive organs, or tissues themselves such as embryos; , processed products using the tissues of these tobacco plants (for example, tobacco powder, shredded tobacco, or tobacco sheets used in known tobacco products) may be included, but it is necessary to ensure a sufficient amount of use and processing. From the viewpoint of ease of processing, tobacco leaves or processed products using tobacco leaves are preferred. Further, the tobacco material may be tobacco residue obtained after extracting these materials, or unextracted tobacco material and tobacco residue may be used together, or a mixture may be used. The tobacco material contained in the flavor molded body 60 plays the role of a spice in terms of aroma and taste.
  • the flavor material contains tobacco material does not mean that the flavor material contains tobacco material, but rather that tobacco material is included as one of the types of flavor material.
  • the expression "the flavoring material contains a tobacco material and the content of the tobacco material in the flavor molded body 60 is 10% by weight or less” means “the flavor material contains at least a tobacco material and the content of the tobacco material in the flavor molded body 60 is 10% by weight or less”. The tobacco material is 10% by weight or less.”
  • Flavor ingredients that serve as flavor materials are not particularly limited, and include, for example, nicotine, menthol, natural vegetable flavorings (e.g., cognac oil, orange oil, jasmine oil, spearmint oil, peppermint oil, anise oil, coriander oil, lemon oil, chamomile).
  • esters e.g. menthyl acetate, isoamyl acetate, linalyl acetate, isoamyl propionate, butyl butyrate, methyl salicylate, etc.
  • ketones e.g.
  • menthone, ionone, ethyl maltol, etc. menthone, ionone, ethyl maltol, etc.
  • alcohols e.g., phenylethyl alcohol, anethole, cis-6-nonen-1-ol, eucalyptol, etc.
  • aldehydes e.g., benzaldehyde, etc.
  • lactones e.g., ⁇ -pentadeca
  • the flavor component in the flavor material (the flavor component itself may be a flavor material) is eluted into the aerosol generation liquid Le stored in the liquid storage section 50, and finally the aerosol generated by using the atomization unit 12. delivered to the user as
  • the method of applying the flavoring material to the non-tobacco base material is not particularly limited; for example, the flavoring material may be added by mixing it into the raw material of the non-tobacco base material during the production of the non-tobacco base material; The flavor material may be applied to the surface of the non-tobacco substrate by coating, spraying, etc., or a combination of these may be used.
  • the flavor molded body 60 has the flavor material on its surface, sufficient contact between the aerosol generation liquid Le in the liquid storage section 50 and the flavor material can be ensured, so that the flavor component is sufficiently eluted into the liquid. and can ensure excellent flavor.
  • the content of the flavor material in the flavor molded body 60 is not particularly limited, and may be, for example, 0.1% by weight or more and 70% by weight or less, 1% by weight or more and 60% by weight or less, 3 It may be more than 50% by weight and less than 50% by weight.
  • the flavor molded body 60 contains at least tobacco material as a flavoring material, but the content of the tobacco material in the flavor molded body 60 should be 1% by weight or more in order to fulfill its role as a flavor spice. It is preferable that the amount is 3% by weight or more, and even more preferably 7% by weight or more. Also, if the amount of tobacco material is too large, the tobacco material will separate from the flavor molded body 60 and cause deposits. From the viewpoint of reducing the amount of components contained in the tobacco material that may cause scorching of the load 40 due to heating, the amount is 10% by weight or less, preferably 7% by weight or less, More preferably, it is 3% by weight or less.
  • the flavor molded body 60 may contain a binder to bond materials included in the flavor molded body 60 such as non-tobacco base materials, especially when the flavor molded body 60 contains a substance that can be turned into powder. It is preferable that a binder is included in order to prevent the binder from becoming a deposit and promoting deterioration of the load 40.
  • the type of binder is not particularly limited, and for example, starch, hydroxyalkylcellulose, vinyl acetate resin, alkylhydroxyalkylcellulose, etc. can be used, and in particular, the binder does not dissolve or is difficult to dissolve in the aerosol generation liquid Le.
  • the binder component itself does not become a scorching factor and can maintain the shape of the molded product, one type selected from the group consisting of starch, hydroxyalkyl cellulose, and vinyl acetate resin.
  • the above substances are preferable.
  • the vinyl acetate resin include polyvinyl acetate and vinyl acetate.
  • the content of the binder in the flavor molded body 60 may be 1% by weight or more and 20% by weight or less, and 3% by weight or more and 15% by weight or less, from the viewpoint of the balance between adhesiveness and suppression of elution of burnt components. It may be 5% by weight or more and 10% by weight or less.
  • the flavor molded body 60 may contain components other than the above-mentioned various components, such as a gelling agent such as calcium lactate, or a humectant such as glycerin or propylene glycol. By using a gelling agent, binder strength can be improved.
  • a gelling agent such as calcium lactate
  • a humectant such as glycerin or propylene glycol
  • the density (mass per unit volume) of the flavor molded body 60 may be, for example, 1000 mg/cm 3 or more and 1450 mg/cm 3 or less, or 1100 mg/cm 3 or more and 1450 mg /cm 3 or less.
  • the density of the flavor molded body 60 is not limited to this, and may be less than 1000 mg/cm 3 , or greater than 1450 mg/cm 3 , or less than 1100 mg/cm 3 . Alternatively, it may be greater than 1450 mg/cm 3 . When a plurality of flavor molded bodies 60 are present, this density is determined as the total mass relative to the total volume of the flavor molded bodies 60.
  • the wet tensile strength of the flavor molded body 60 is not particularly limited, but in order to suppress collapse in a humid environment, it is preferably 5 N or more per 15 mm, and preferably 10 N or more per 15 mm. More preferred.
  • This wet tensile strength can be measured according to the method described in JP-A-2019-187451. The specimen to be measured in this measurement is adjusted at 22 ⁇ 2°C and relative humidity 60 ⁇ 5% for at least 24 hours, and then the test sample is adjusted to a length of 250 ⁇ 0.1 mm and a width of 15 ⁇ 0.1 mm. Cut and prepare.
  • the atomization unit 12 is arranged so that the liquid storage part 50 is in contact with both the wick 30 that holds the load 40 and the aerosol generation liquid Le is supplied from inside the liquid storage part 50, and the flavor molded body 60 and the wick 30. It is preferable that the capillary force of at least the liquid retaining member is larger than the capillary force of the flavor molded body 60. According to this aspect, the aerosol generation liquid Le in the liquid storage section 50 can be used without wasting it.
  • Suction using the atomization unit 12 is performed as follows. First, when the user starts suctioning air, the air passes through the upstream passage sections 21 a and 21 b of the air passage 20 and flows into the load passage section 22 . Aerosol generated in the load 40 is added to the air that has flowed into the load passage section 22 . This aerosol contains nicotine contained in the aerosol generation liquid Le in the liquid storage section 50 and flavor components (including nicotine) that can be eluted from the flavor molded body 60. The air to which this aerosol has been added passes through the downstream passage section 23, is discharged from the discharge port 13, and is sucked into the user.
  • the aerosol generated by the load 40 contains nicotine contained in the flavor molded body 60 in addition to the nicotine contained in the aerosol generation liquid Le in the liquid storage part 50. Flavor components derived from flavor materials that can be added can be added. This allows you to fully enjoy the flavor.
  • the flavor molded body 60 is disposed inside the aerosol generation liquid Le in the liquid storage section 50, and the flavor molded body 60 and the electrical load 40 are connected to each other. Since they are physically separated, it is possible to prevent tobacco material from adhering to the load 40 of the atomization unit 12. Thereby, deterioration of the load 40 of the atomization unit 12 can be suppressed.
  • the amount (mg) of carbonized components contained in the aerosol generation liquid Le1g with the flavor molded body 60 disposed inside the liquid storage section 50 is preferably 6 mg or less, and preferably 3 mg or less. is more preferable.
  • the amount of carbonized components adhering to the electrical load 40 can be suppressed as much as possible while enjoying the flavor of nicotine and the like. Thereby, it is possible to enjoy the flavor of nicotine and the like while suppressing the occurrence of burnt on the load 40 as much as possible.
  • the carbonized component contained in the aerosol generation liquid Le in a state where the flavor molded body 60 is placed inside the liquid storage section 50 specifically refers to the state before the flavor molded body 60 is placed. This value corresponds to the sum of the amount of carbonized components contained in the aerosol generation liquid Le and the amount of carbonized components eluted from the flavor molded body 60 into the aerosol generation liquid Le.
  • the term "carbonized component” refers to a component that becomes carbide when heated to 250°C. Specifically, the “carbonized component” refers to a component that does not become a carbide at a temperature below 250°C, but becomes a carbide when maintained at a temperature of 250°C for a predetermined period of time.
  • this "amount (mg) of carbonized components contained in the aerosol-generating liquid Le1g with the flavor molded body 60 disposed inside the liquid storage section 50" can be measured, for example, by the following method. can. First, a predetermined amount (g) of the aerosol generation liquid Le with the flavor molded body 60 disposed inside the liquid storage section 50 is prepared. Next, this aerosol generation liquid Le is heated to 180° C. to volatilize the solvent (liquid component) contained in the aerosol generation liquid Le, thereby obtaining a “residue consisting of non-volatile components”. Next, the residue is carbonized by heating it to 250° C. to obtain a carbide. Next, the amount (mg) of this carbide is measured.
  • the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le it is possible to measure the amount (mg) of carbide contained in a predetermined amount (g) of aerosol generation liquid Le, and based on this measurement value, the amount (mg) of carbide contained in 1 g of aerosol generation liquid Le is determined. That is, the amount (mg) of carbonized components can be calculated.
  • Figure 5 shows the measurement of TPM reduction rate with respect to the amount of carbonized components contained in 1 g of extract when tobacco extract (hereinafter also simply referred to as "extract") is used as the aerosol generating liquid Le containing nicotine. It is a figure showing the result.
  • the horizontal axis of FIG. 5 indicates the amount of carbonized components contained in 1 g of the extract, and the vertical axis indicates the TPM reduction rate ( RTPM ) (%).
  • the TPM reduction rate (R TPM :%) in FIG. 5 was measured by the following method. First, samples of a plurality of atomization units 12 having different amounts of carbonized components contained in 1 g of extract liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples of the plurality of atomization units 12. These five samples were prepared by the following steps.
  • Step 1 To a tobacco material made of tobacco leaves, 20 (wt%) of potassium carbonate was added in terms of dry weight, and then heated and distilled. The distillation residue after this heating distillation treatment is immersed for 10 minutes in water that is 15 times the weight of the tobacco raw material before the heating distillation treatment, dehydrated in a dehydrator, and then dried in a drier to produce tobacco. A residue was obtained.
  • Step 2 Next, a portion of the tobacco residue obtained in Step 1 was washed with water to prepare tobacco residue containing a small amount of char.
  • Step 3 25 g of dipping liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extraction liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the dipping liquid was raised to 60%. It was left to stand at °C. By varying the standing time (that is, the immersion time in the immersion liquid), the amount of carbonized components eluted into the immersion liquid (extract liquid) was varied.
  • the standing time that is, the immersion time in the immersion liquid
  • the amount of total particulate matter captured by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate ( RTPM ) was calculated using the following formula (1).
  • the TPM reduction rate (R TPM ) shown in FIG. 5 was measured by the above method.
  • R TPM (%) (1-TPM (201puff ⁇ 250puff) / TPM (1puff ⁇ 50puff)) x 100... (1)
  • TPM Total Particle Molecule
  • TPM (1puff to 50puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine.
  • TPM (201puff to 250puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
  • the TPM reduction rate ( RTPM ) in equation (1) is calculated as follows: "The amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine It is calculated by subtracting the value divided by the total amount of particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff from 1 and multiplying it by 100.
  • Embodiment 2 A method for manufacturing the atomization unit 12 of the suction tool 10 according to Embodiment 2 of the present invention (hereinafter also simply referred to as "method for manufacturing the atomization unit 12") will be described.
  • This embodiment is an embodiment of a method for manufacturing the atomization unit 12. As shown in FIG.
  • the manufacturing method according to the present embodiment is a method for manufacturing the atomization unit 12 of the suction tool 10 having the liquid storage section 50, a liquid preparation step of preparing an aerosol generation liquid Le containing nicotine; a molding step of molding a flavor molded body 60 containing a non-tobacco base material and a flavor material; an assembly step of accommodating the aerosol generating liquid Le containing nicotine and the flavor molded body 60 in the liquid storage section 50; has
  • the flavor material includes a tobacco material, and the content of the tobacco material in the flavor molded body 60 in a state where the flavor molded body 60 is accommodated inside the liquid storage section 50 is 10% by weight or less.
  • This is a method for manufacturing the atomization unit 12 of the suction tool 10.
  • the manufacturing method according to this embodiment may include steps other than the liquid preparation step, molding step, and assembly step described above.
  • an aerosol containing nicotine is used as a nicotine supply source instead of a powdered tobacco material that can become a deposit as disclosed in Patent Document 1. Since the flavor molded body 60 containing the product liquid Le and the tobacco material is used, it is possible to suppress the nicotine supply source from adhering to the load of the atomization unit 12, and thereby suppress the deterioration of the load. Further, the tobacco material contained in the flavor molded body 60 plays the role of spice in terms of flavor. On the other hand, since the tobacco material contains components that can cause charring of the load when heated, it is advantageous not to exceed the above upper limit in order to suppress the occurrence of charring.
  • an aerosol liquid containing nicotine is prepared.
  • a specific method for preparing an aerosol liquid (hereinafter also simply referred to as "liquid") containing nicotine is not particularly limited, and any known method can be employed.
  • a method in which nicotine or a nicotine-containing compound such as a nicotine salt obtained by synthesis etc. is dissolved in the aerosol generation liquid Le, or a component obtained by extraction of tobacco material (which may be only nicotine) is dissolved in the aerosol generation liquid Le.
  • the method of The method for obtaining nicotine-containing compounds such as nicotine or nicotine salts obtained by synthesis etc. is not particularly limited, and can be produced by known methods, but commercially available products may also be used.
  • the above aerosol generating liquid Le may be a liquid containing an aerosol base material, or may be the aerosol base material itself.
  • an alkaline substance is applied to tobacco leaves (referred to as alkali treatment).
  • alkali treatment a basic substance such as an aqueous potassium carbonate solution can be used.
  • the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80° C. or higher and lower than 150° C.) (referred to as heat treatment).
  • a predetermined temperature for example, a temperature of 80° C. or higher and lower than 150° C.
  • the tobacco leaves are brought into contact with one or more substances selected from the group consisting of, for example, glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • released components (which include flavor components such as nicotine) released from the tobacco leaves into the gas phase are collected in a predetermined collection solvent.
  • a collection solvent for example, one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water can be used.
  • flavor components such as nicotine (hereinafter also simply referred to as “flavor components”) can be obtained (that is, flavor components can be extracted from tobacco leaves).
  • step S10 may be configured without using the collection solvent as described above.
  • the alkali-treated tobacco leaves are subjected to the above heat treatment and then cooled using a condenser or the like, thereby reducing the released components released from the tobacco leaves into the gas phase. It is also possible to condense and extract flavor components.
  • step S10 may be configured without performing the alkali treatment as described above.
  • tobacco leaves tobacco leaves that have not been subjected to alkali treatment
  • Add one or more selected substances are selected.
  • the tobacco leaves to which this has been added are heated, and the components released during heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
  • step S10 one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water are aerosolized, or from this group.
  • An aerosol obtained by aerosolizing two or more selected substances is passed through tobacco leaves (tobacco leaves that have not been subjected to alkali treatment), and the aerosol that has passed through the tobacco leaves is collected in a collection solvent. Flavor components can also be extracted by such a process.
  • step S10 liquid preparation step calculates the amount of carbonized components that become carbonized when heated to 250° C., which may be contained in the flavor components extracted by the method described above. It may further include reducing processing (hereinafter also simply referred to as "reducing processing"). By reducing "the amount of carbonized components that become carbide when heated to 250° C.”, adhesion of carbonized components to the load 40 can be effectively suppressed. As a result, occurrence of burnt on the load 40 can be effectively suppressed. Furthermore, since the carbonized components that become carbonized when heated to 250°C are mainly derived from tobacco materials such as tobacco leaves, the effects of the reduction treatment are particularly low in methods that use tobacco extract as a source of nicotine. is large.
  • the specific method for reducing the amount of carbonized components contained in the extracted flavor components is not particularly limited, but for example, by cooling the extracted flavor components, the precipitated components can be reduced.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by filtering with filter paper or the like.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by centrifuging the extracted flavor components with a centrifuge.
  • the amount of carbonized components contained in the extracted flavor components may be reduced by using a reverse osmosis membrane (RO filter).
  • RO filter reverse osmosis membrane
  • Tobacco extract contains components that can cause charring when heated (e.g., lipids, metal ions, sugars, or proteins), so tobacco extract components are subjected to distillation treatment or vacuum distillation treatment, which can cause charring.
  • the substance is removed. Note that even when tobacco extract is not used, it is preferable to subject the tobacco extract to distillation treatment or vacuum distillation treatment if it contains a substance that causes charring.
  • step S20 the flavor molded body 60 containing a material such as a non-tobacco base material is molded into a predetermined shape, specifically, it is solidified into a predetermined shape (in this embodiment, as an example, a rod shape).
  • a predetermined shape in this embodiment, as an example, a rod shape.
  • non-tobacco base materials there are no particular restrictions on the method for molding materials such as non-tobacco base materials. Examples include a method of forming the mixture into a predetermined shape by a method such as press pressure molding, extrusion molding, injection molding, transfer molding, compression molding, or cast molding. It will be done.
  • the non-tobacco base material is a polymer
  • a flavor molded article of a predetermined shape can be obtained by dissolving the polymer in a solvent and evaporating the solvent by heating, etc., or by polymerizing a monomer, etc.
  • a method of obtaining 60 can also be adopted.
  • Another method is to obtain a composite material in any solid shape containing a non-tobacco base material and then process the composite material into a predetermined shape by cutting, grinding, or the like.
  • a method for imparting flavor materials such as tobacco materials to non-tobacco base materials There are no particular restrictions on the method for imparting flavor materials such as tobacco materials to non-tobacco base materials.
  • step 20 may include a process of coating the surface of the flavor molded body 60 with a coating material.
  • wax can be used as this coating material.
  • this wax include Microcrystan WAX (model number: Hi-Mic-1080 or Hi-Mic-1090) manufactured by Nippon Seiro Co., Ltd., and water-dispersed ionomer (model number: Chemipearl S120) manufactured by Mitsui Chemicals. ), Hiwax (model number: 110P) manufactured by Mitsui Chemicals, etc. can be used.
  • corn protein can also be used as a coating material.
  • Zein model number: Kobayashi Zein DP-N manufactured by Kobayashi Perfume Co., Ltd.
  • polyvinyl acetate can also be used as a coating material.
  • the coating material covering the surface of the flavor molded body 60 has pores (fine pores) that allow the flavor components in the non-tobacco base material to pass through while suppressing the passage of the non-tobacco base material. It is preferable that a plurality of them be provided. That is, the pores of this coating material need only have a size larger than the size of the flavor component and smaller than the size of the non-tobacco base material. According to this configuration, the flavor components in the non-tobacco base material can be eluted into the aerosol generation liquid Le while suppressing the non-tobacco base material from eluting into the aerosol generation liquid Le.
  • the specific size (diameter) of the pores provided in this coating material is not particularly limited, but to give a specific example, a value selected from the range of 10 ⁇ m or more and 3 mm or less may be used. can.
  • a net-like mesh member can also be used as the coating material.
  • the flavor components in the non-tobacco base material can be eluted into the aerosol generation liquid Le while suppressing the non-tobacco base material from eluting into the aerosol generation liquid Le.
  • tobacco residue may be included in the non-tobacco base material.
  • the flavor components remaining in the tobacco residue can be eluted into the aerosol generation liquid Le while suppressing the tobacco residue from eluting into the extract liquid.
  • the flavor molded body 60 can also be manufactured by washing tobacco residue and the like with a cleaning liquid in the molding process related to step S20, and incorporating the washed tobacco residue and the like into the non-tobacco base material.
  • the amount of carbonized components contained in the tobacco residue or the like can be reduced as much as possible by washing, and the flavor molded body 60 can be manufactured using the tobacco residue or the like with the reduced amount of carbonized components.
  • adhesion of carbonized components to the load 40 can be effectively suppressed.
  • occurrence of burnt on the load 40 can be effectively suppressed.
  • step S30 an assembly process related to step S30 is executed. Specifically, in step S30, the atomization unit 12 in which the flavor molded object 60 is not accommodated is prepared, and the flavor molded object 60 after step S20 is placed in the liquid storage section 50 of this atomization unit 12. and the aerosol generating liquid Le containing nicotine obtained in step 10. In this case, apart from the flavor component added to the flavor molded body 60 in step S20 described above, a flavor component may be further added to the aerosol generation liquid Le stored in the liquid storage section 50. . Through the above steps, the atomization unit 12 of the suction tool 10 according to the present embodiment is manufactured.
  • a modification of the present embodiment is a manufacturing method that does not include the step of storing the aerosol generation liquid Le containing nicotine in step 30.
  • the user of the atomization unit 12 can replenish the liquid into the liquid storage section 50 by himself/herself.
  • FIG. 7 is a flow diagram for explaining a method for manufacturing the atomization unit 12 according to the first modification of the second embodiment.
  • the method of manufacturing the atomization unit 12 shown in FIG. 7 is a method of manufacturing the atomization unit 12 of the suction tool 10 having the liquid storage section 50, a nicotine-containing liquid preparation step of preparing a nicotine-containing liquid; a molding step of molding a flavor molded body 60 containing a non-tobacco base material and a flavor material; an addition step of adding the nicotine-containing liquid to the flavor molded body 60; an assembly step of accommodating the flavor molded body 60 to which the nicotine-containing liquid has been added and the aerosol base material in the liquid storage section 50; has
  • the flavor material includes a tobacco material, and the content of the tobacco material in the flavor molded body 60 in a state where the flavor molded body 60 is accommodated inside the liquid storage section 50 is 10% by weight or less.
  • the manufacturing method according to this modification may include steps other than the above nicotine-containing liquid preparation step, molding step, addition step, and assembly step.
  • the flavor molded body 60 obtained by the manufacturing method according to the present embodiment provides the same effects as the manufacturing method described above.
  • Step S10A is an embodiment in which an arbitrary liquid is used instead of the aerosol generation liquid Le in step S10 described with reference to FIG.
  • a method for obtaining a nicotine-containing liquid for example, a method of dissolving synthetic nicotine obtained by synthesis etc. in an arbitrary solvent, a method of dissolving natural nicotine obtained by extraction of tobacco materials in an arbitrary solvent, etc. can be mentioned.
  • a method for obtaining synthetic nicotine and natural nicotine the method described in the description of the atomization unit 12 above can be applied.
  • Any solvent is not particularly limited as long as it can dissolve the substance to be dissolved, and may be an aerosol base material, such as glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • an aerosol base material such as glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • Step S20 In the method for manufacturing the atomization unit 12 according to the first modification, the flavor molded body 60 is manufactured in the molding process according to step S20.
  • Step S20 according to this modification is similar to step S20 described with reference to FIG. 6, so detailed explanation will be omitted.
  • the nicotine-containing liquid obtained in the nicotine-containing liquid preparation step is added to the flavor molded body 60 obtained in the above-described molding step.
  • the method of addition is not particularly limited, and a desired amount of the nicotine-containing liquid may be added to the flavor molded body 60 all at once, or the nicotine-containing liquid may be added by coating or spraying on the surface of the flavor molded body 60. Alternatively, the flavor molded body 60 may be added by immersing it in a nicotine-containing liquid.
  • Step S30A In the manufacturing method of the atomization unit 12 according to the first modification, in the assembly process according to step S30A, the flavor molded body 60 to which the nicotine-containing liquid obtained in the above-mentioned addition process has been added and the aerosol base material are added to the aerosol base material. It is stored in the liquid storage section 50.
  • Step S30A according to this modification is an embodiment in which the nicotine-containing aerosol generating liquid Le in step S30 described in FIG. 6 is replaced with an aerosol base material.
  • the aerosol base material is not particularly limited, and examples include one or more substances selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water.
  • nicotine is eluted from the flavor molded body 60 housed in the liquid storage section 50 into the aerosol base material, so that the flavor molded body 60 and the aerosol generation liquid Le containing nicotine are finally stored in the liquid storage section 50. will be accommodated.
  • a further modification 1A of modification 1 is an embodiment in which, instead of the above-described addition step, an adhesion step is provided in which the nicotine-containing liquid obtained in the nicotine-containing liquid preparation step is adhered to the inner surface of the wall defining the liquid storage section 50. It is.
  • this modification 1A in the assembly process, nicotine is eluted from the nicotine-containing liquid attached to the wall of the liquid storage section 50 to the aerosol base material, so that the liquid storage section 50 finally has the following properties: The flavor molded body 60 and the aerosol generation liquid Le containing nicotine will be accommodated.
  • FIG. 8 is a perspective view schematically showing the appearance of the suction tool 10 according to this embodiment.
  • the suction device 10 according to the present embodiment is a non-combustion heating type suction device, and specifically, is a non-combustion heating type electronic cigarette.
  • the suction tool 10 extends in the direction of the central axis CL of the suction tool 10.
  • the suction tool 10 has, for example, a "long axis direction (direction of the central axis CL)", a "width direction” perpendicular to the long axis direction, and a “thickness” perpendicular to the long axis direction and the width direction. It has an external shape having a direction. The dimensions of the suction tool 10 in the long axis direction, width direction, and thickness direction decrease in this order.
  • the Z-axis direction (Z direction or -Z direction) corresponds to the major axis direction
  • the X-axis direction (X direction or -X direction) corresponds to the width direction
  • the Y-axis direction (Y direction or -Y direction) corresponds to the thickness direction.
  • the suction tool 10 includes a power supply unit 11 and the atomization unit 12 described above.
  • the power supply unit 11 is detachably connected to the atomization unit 12. Inside the power supply unit 11, a battery as a power source, a control device, etc. are arranged.
  • the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
  • the atomization unit 12 is provided with an outlet 13 for discharging air (that is, air). Air containing aerosol is discharged from this discharge port 13.
  • air that is, air
  • the user of the suction tool 10 can inhale the air discharged from the outlet 13.
  • a sensor is arranged in the power supply unit 11 to output the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13.
  • a sensor detects the start of suctioning air and notifies the control device, and the control device starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes suctioning the air, the sensor detects the end of the suction of air, notifies the control device, and the control device ends the energization of the load 40.
  • the power supply unit 11 may be provided with an operation switch for transmitting a request to start air suction and a request to end air suction to the control device by a user's operation.
  • the user can transmit a request to start air suction or a request to end suction to the control device by operating the operation switch.
  • the control device that receives the air suction start request or suction end request starts or ends energization to the load 40.

Landscapes

  • Manufacture Of Tobacco Products (AREA)

Abstract

ニコチンを含むエアロゾル生成液を収容する液体収容部と、前記液体収容部中の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、前記液体収容部の内部に配置され、非たばこ基材及び香味材料を含む、香味成形体と、を備え、前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下である、吸引具の霧化ユニット。

Description

霧化ユニット及びその製造方法、並びに吸引具
 本発明は、霧化ユニット及びその製造方法、並びに吸引具に関する。
 従来、吸引具に用いられる霧化ユニットとして、所定の液体を収容する液体収容部と、この液体収容部の液体が導入されるとともに、導入された液体を霧化してエアロゾルを発生させる電気的な負荷と、を有し、この液体収容部の液体の内部にたばこ葉等のたばこ材料の粉体を収容し、該たばこ材料の粉体が分散されることを特徴とする霧化ユニットが知られている(例えば、特許文献1参照)。
 なお、他の先行技術文献として、特許文献2、特許文献3、及び特非許文献1が挙げられる。特許文献2には、基本的な構成態様を有する吸引具に備わる霧化ユニットの構成態様が開示されている。特許文献3には、たばこ葉の抽出液に関する情報が開示されている。非特許文献1には、ニコチンに関する技術が開示されている。
国際公開第2019/211332号 特開2020-141705号公報 国際公開第2015/129679号
Florence F. Wagner and Daniel L. Comins, "Tetrahedron report number 807 Recent advances in the synthesis of nicotine and its derivatives", Science Direct, Tetrahedron 63 (2007) p.8065-8082
 上述の特許文献1に例示されるような従来の吸引具の霧化ユニットの場合、液体収容部の液体の内部に分散されている粉体状のたばこ材料が、霧化ユニットの電気的な負荷に付着するおそれがある。この場合、霧化ユニットの負荷が劣化するおそれがある。この点において、従来技術は改善の余地があった。
 本発明は、上記のことを鑑みてなされたものであり、霧化ユニットの負荷が劣化することを抑制することができる技術を提供することを目的の一つとする。
 本発明者らは、鋭意検討の結果、特定の成形体を内部に配置する液体収容部を用いることにより、上記課題を解決できることを見出し、本発明に到達した。
(態様1)
 上記目的を達成するため、本発明の一態様に係る吸引具の霧化ユニットは、ニコチンを含むエアロゾル生成液を収容する液体収容部と、前記液体収容部中の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、前記液体収容部の内部に配置され、非たばこ基材及び香味材料を含む、香味成形体と、を備え、前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下である。
 この態様によれば、液体収容部の内部に、所定の形状に成形された香味成形体が配置されており、香味成形体と霧化ユニットの電気的な負荷とが物理的に分離されているので、堆積物となり得るたばこ材料等の物質が霧化ユニットの負荷に付着することを抑制することができる。これにより、霧化ユニットの負荷が劣化することを抑制することができる。
(態様2)
 上記の態様1において、前記香味成形体が前記液体収容部の内部に配置された状態の前記エアロゾル生成液1g中に含まれる炭化成分の量は、6mg以下であり、前記炭化成分は、250℃に加熱された場合に炭化物になる成分であってもよい。
 この態様によれば、電気的な負荷に付着する炭化成分の量をできるだけ抑制しつつ、香味成分の香味を味わうことができる。
(態様3)
 本発明の一態様に係るに係る吸引具は、電源ユニットと、上記の態様1又は2に係る霧化ユニットと、を有する。
 この態様によれば、霧化ユニットの負荷が劣化することを抑制することができる吸引具を提供することができる。
(態様4)
 上記目的を達成するため、本発明の一態様に係る吸引具の霧化ユニットの製造方法は、液体収容部を有する吸引具の霧化ユニットの製造方法であって、ニコチンを含むエアロゾル生成液を準備する液体準備工程と、非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、前記ニコチンを含むエアロゾル生成液、及び前記香味成形体を、前記液体収容部に収容する組立工程と、を有し、前記香味材料はたばこ材料を含み、かつ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量が10重量%以下である。
 この態様によれば、霧化ユニットの負荷が劣化することを抑制することができる霧化ユニットを製造することができる。
(態様5)
 上記目的を達成するため、本発明の一態様に係る吸引具の霧化ユニットの製造方法は、液体収容部を有する吸引具の霧化ユニットの製造方法であって、ニコチン含有液を準備するニコチン含有液準備工程と、非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、前記香味成形体に前記ニコチン含有液を添加する添加工程と、前記ニコチン含有液が添加された香味成形体と、エアロゾル基材とを、前記液体収容部に収容する組立工程と、を有し、前記香味材料はたばこ材料を含み、かつ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量が10重量%以下である。
 この態様によれば、霧化ユニットの負荷が劣化することを抑制することができる霧化ユニットを製造することができる。
 本発明の態様によれば、霧化ユニットの負荷が劣化することを抑制することができる。
実施形態1に係る吸引具の霧化ユニットの主要部を示す模式的断面図である。 図1のA1-A1線断面を模式的に示す図である。 実施形態1に係る香味成形体の模式的な斜視図である。 実施形態1に係る香味成形体の模式的な断面図である。 ニコチンを含むエアロゾル生成液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。 実施形態2に係る霧化ユニットの製造方法を説明するためのフロー図である。 実施形態2の変形例1に係る霧化ユニットの製造方法を説明するためのフロー図である。 実施形態3に係る吸引具の外観を模式的に示す斜視図である。
 以下に本発明の実施の形態を詳細に説明するが、これらの説明は本発明の実施形態の一例(代表例)であり、本発明はその要旨を超えない限りこれらの内容に限定されない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
 また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。
 また、本願明細書では、各実施形態について必要に応じて図面を参照して説明する。なお、本願の図面は、実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。
 また、本実施形態に記載されている構成要素の寸法、材質、形状、対応その相対配置等は一例である。
 また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。
<実施形態1>
 本発明の実施形態1に係る吸引具の霧化ユニット(以下、単に「霧化ユニット」とも称する。)は、ニコチンを含むエアロゾル生成液を収容する液体収容部と、
 前記液体収容部中の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
 前記液体収容部の内部に配置され、非たばこ基材及び香味材料を含む、香味成形体と、
を備え、
 前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下である、
吸引具の霧化ユニットである。
 以下、本実施形態1に係る具体的態様を説明するが、説明する具体的態様に限定されず、ニコチンの供給源が特許文献1に開示されるような堆積物となり得る粉体等の固形物でなければ本発明の効果を得ることができ、この効果が得られる範囲内で任意に各条件を組み合わせることができる。
 本実施形態では、ニコチンの供給源として、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料の代わりに、ニコチンを含むエアロゾル生成液及びたばこ材料を含む香味成形体を用いているため、ニコチンの供給源が霧化ユニットの負荷に付着することを抑制し、ひいては該負荷の劣化を抑制することができる。また、香味成形体に含まれるたばこ材料は、香喫味の観点上、スパイスの役割を担う。一方で、たばこ材料には、加熱により負荷に焦げを発生させる原因となり得る成分が含まれているため、この焦げ発生を抑制するため上記上限を超えないことが有利である。
 本実施形態に係る霧化ユニットの一例を図1に示す。以下、該図1を参照しながら霧化ユニットの説明を行う。
 図1は、霧化ユニット12の主要部を示す模式的断面図である。具体的に図1は、霧化ユニット12の主要部を、中心軸線CLを含む平面で切断した断面を模式的に図示している。図2は、図2のA1-A1線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)を模式的に示す図である。図1及び図2を参照しつつ、霧化ユニット12について説明する。
 本実施形態に係る霧化ユニット12は、一例として、霧化ユニット12の中心軸線CLの方向に延在している。具体的には、霧化ユニット12は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。霧化ユニット12の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。
 霧化ユニット12は、長軸方向(中心軸線CLの方向)に延在する複数の壁部(壁部70a~壁部70g)を備えるとともに、幅方向に延在する複数の壁部(壁部71a~壁部71c)を備えている。また、霧化ユニット12は、エア通路20と、ウィック30と、電気的な負荷40と、液体収容部50と、香味成形体60とを備えている。
 エア通路20は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。本実施形態に係るエア通路20は、上流通路部と、負荷通路部22と、下流通路部23とを備えている。本実施形態に係る上流通路部は、一例として、複数の上流通路部、具体的には、上流通路部21a(「第1の上流通路部」)、及び、上流通路部21b(「第2の上流通路部」)を備えている。
 上流通路部21a及び21bは、負荷通路部22よりも上流側(エア流動方向で上流側)に配置されている。上流通路部21a及び21bの下流側端部は、負荷通路部22に連通している。負荷通路部22は、負荷40が内部に配置された通路部である。下流通路部23は、負荷通路部22よりも下流側(エア流動方向で下流側)に配置された通路部である。下流通路部23の上流側端部は負荷通路部22に連通している。また、下流通路部23の下流側端部は、前述した排出口13に連通している。下流通路部23を通過したエアは、排出口13から排出される。
 具体的には、本実施形態に係る上流通路部21aは、壁部70aと壁部70bと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、上流通路部21bは、壁部70cと壁部70dと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。負荷通路部22は、壁部70aと壁部70dと壁部70eと壁部70fと壁部71bと壁部71cとによって囲まれた領域に設けられている。下流通路部23は、筒状の壁部70gによって囲まれた領域に設けられている。
 壁部71aには、孔72a及び孔72bが設けられている。エアは、孔72aから上流通路部21aに流入し、孔72bから上流通路部21bに流入する。また、壁部71bには、孔72c及び孔72dが設けられている。上流通路部21aを通過したエアは、孔72cから負荷通路部22に流入し、上流通路部21bを通過したエアは、孔72dから負荷通路部22に流入する。
 本実施形態において、上流通路部21a及び21bにおけるエアの流動方向は、下流通路部23におけるエアの流動方向の反対方向である。具体的には、本実施形態において、上流通路部21a及び21bにおけるエアの流動方向は、-Z方向であり、下流通路部23におけるエアの流動方向は、Z方向である。
 また、図1及び図2を参照して、本実施形態に係る上流通路部21a及び上流通路部21bは、上流通路部21aと上流通路部21bとによって液体収容部50を挟持するように、液体収容部50に隣接して配置されている。
 具体的には、本実施形態に係る上流通路部21aは、図2に示すように、中心軸線CLを法線とする切断面で切断した断面視で、液体収容部50を挟んで一方の側(-X方向の側)に配置されている。一方、上流通路部21bは、この断面視で、液体収容部50を挟んで他方の側(X方向の側)に配置されている。換言すると、上流通路部21aは、吸引具10の幅方向で、液体収容部50の一方の側に配置され、上流通路部21bは、吸引具10の幅方向で、液体収容部50の他方の側に配置されている。
 ウィック30は、液体収容部50中のニコチンを含むエアロゾル生成液(以下、単に「エアロゾル生成液」とも称する。)を負荷通路部22の負荷40に導入するための部材である。このような機能を有するものであれば、ウィック30の具体的な構成は特に限定されるものではないが、本実施形態に係るウィック30は、一例として、毛管現象(毛細管現象)を利用して、液体収容部50のエアロゾル生成液を負荷40に導入している。本実施形態に係る態様では、周囲の液体を無駄なく使用することができる観点から、ウィック30の毛管力(毛細管力)が香味成形体60の毛管力よりも大きいことが好ましい。
 負荷40は、液体収容部50中のエアロゾル生成液が導入されるとともに、この導入されたエアロゾル生成液を霧化してエアロゾルを発生させるための電気的な負荷である。負荷40の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷40の一例として、ヒータが用いられる。このヒータとしては、発熱抵抗体(すなわち、電熱線)、セラミックヒータ、又は誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体が用いられる。また、本実施形態において、負荷40としてのヒータは、コイル形状を有していてもよい。すなわち、本実施形態に係る負荷40は、いわゆるコイルヒータであってよい。このコイルヒータは、ウィック30に巻き付けられていてよい。
 また、本実施形態に係る負荷40は、一例として、負荷通路部22の内部において、ウィック30の部分に配置されている。負荷40は、前述した電源ユニット11の電源や制御装置と電気的に接続されており、電源からの電気が負荷40に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷40の動作は、制御装置によって制御されている。負荷40は、ウィック30を介して負荷40に導入された液体収容部50中のエアロゾル生成液を加熱することで霧化して、エアロゾルを発生させる。
 なお、このウィック30や負荷40の構成は、例えば特許文献2等に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。
 液体収容部50は、エアロゾル生成液(Le)を収容するための部位である。本実施形態に係る液体収容部50は、壁部70bと壁部70cと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、本実施形態において、前述した下流通路部23は、液体収容部50を、中心軸線CLの方向に貫通するように設けられている。液体収容部50に液体が収容されている状態で使用者に提供されてもよいし、液体収容部50に液体が収容されていない状態で使用者に提供され、使用者が液体を導入して使用する構成としてもよい。
[エアロゾル生成液]
 液体収容部50に収容されるエアロゾル生成液Leはニコチンを含んでいれば特段制限されない。エアロゾル生成液Leに含まれるニコチンの態様は特段制限されず、例えば、合成ニコチン及び天然ニコチンから選択される1種以上のニコチンが挙げられる。なお、これらの合成ニコチン及び天然ニコチンは、ニコチンとして存在してもよく、ニコチン塩等のニコチン含有化合物として存在していてもよい。
 エアロゾル生成液Leの態様は特段制限されず、例えば、所定の溶媒に、合成ニコチン及び天然ニコチンから選択される1種以上のニコチンが含有されたものを用いることができる。
 所定の溶媒の具体的な種類は特に限定されるものではないが、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。
 エアロゾル生成液Leに含有されるニコチンとして天然ニコチンを用いる場合、この天然ニコチンは、具体的には、たばこ葉から抽出されて精製された天然ニコチンを用いることができる。このような天然ニコチンの生成方法は、例えば、非特許文献1に例示されるような公知技術を適用できるため、詳細な説明は省略する。
 また、エアロゾル生成液Leに含有されるニコチンとして天然ニコチンを用いる場合、たばこ葉等のたばこ材料の抽出液を精製して、たばこ材料の抽出液から天然ニコチン以外の成分をできるだけ除去することで、天然ニコチンの純度を高め、この純度が高められた天然ニコチンを用いてもよい。具体的な数値例を挙げると、エアロゾル生成液Leの所定の溶媒に含有される天然ニコチンの純度は99.9重量%以上であってもよい(すなわち、この場合、天然ニコチンに含まれる不純物(天然ニコチン以外の成分)の量は0.1重量%よりも少ない)。また、本明細書では、たばこ材料を抽出することにより得られる成分をたばこ抽出成分(少なくともニコチンを含む)と称する。
 一方、エアロゾル生成液Leに含有されるニコチンとして合成ニコチンを用いる場合、この合成ニコチンとして、化学物質を用いた化学合成によって生成されたニコチンを用いることができる。この合成ニコチンの純度も、天然ニコチンと同様に、99.9重量%以上であってもよい。
 合成ニコチンの生成方法は、特に限定されるものではなく、化学物質を用いた化学合成を行うことにより行うことができ、公知の生成方法を用いることができる。
 ニコチン含有化合物の種類は特段制限されず、例えば、ピルビン酸ニコチン、クエン酸ニコチン、乳酸ニコチン、サリチル酸ニコチン、フマル酸ニコチン、ニコチンレブリン酸塩、ニコチン安息香酸塩、又はニコチン酒石酸塩等のニコチン塩が挙げられる。ニコチン塩等のニコチン含有化合物を合成により得る場合、その生成方法は、特に限定されるものではなく、公知の生成方法を用いることができる。
 このたばこ抽出成分は、一般的にたばこ植物に含まれる物質であり、ニコチン以外の物質としては例えば、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられ、これらのニコチン以外の成分は含まれていても含まれていなくともよく、含まれる場合には香料として機能し得る。なお、ニコチンには、(S)-ニコチンと(R)-ニコチンが存在し、通常、天然に存在するニコチンのほとんどがS体であり、R体は1モル%未満である。一方で、合成ニコチンでは、合成方法や精製方法によるが、通常、S体とR体との比率が1:1に近いものとなる。よって、口腔用組成物中のニコチンの全量に対するR体の量が5モル%以上(1モル%以上としてもよく、10モル%以上としてもよく、40~60モル%としてもよい。)であれば、口腔用組成物中のニコチンが合成ニコチンであると推測することができる。
 抽出する対象は、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものであってもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、たばこシート、又はたばこ顆粒等)であってもよいが、十分な使用量の確保や不要な成分の含有を回避する観点から、たばこ葉を用いることが好ましい。たばこ材料の抽出により得られるたばこ抽出成分を用いる態様は、合成等により得られるニコチンを用いる態様と比較して、エアロゾル生成液Leの原料コストや製造コストを低くすることができる。
 エアロゾル生成液Leにニコチンを含有させる方法は特段制限されず、例えば、合成等によりもしくはたばこ材料の抽出により得られるニコチンもしくはニコチン塩等のニコチン含有化合物をエアロゾル生成液Leに溶解させる方法、又はこれらのニコチンもしくはニコチン含有化合物を溶媒に溶解させた後にエアロゾル生成液Leと混合する方法等が挙げられる。また、たばこ材料の抽出に用いられる溶媒として、エアロゾル基材にもなり得る物質を用いた場合には、たばこ抽出液をそのままエアロゾル生成液Leとして用いることもでき、このような物質としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。
 本実施形態では、ニコチンの供給源として上記のニコチンを含む液体状のエアロゾル生成液Leを用いることにより、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料をニコチン供給源として用いる場合に生じる霧化ユニット12の負荷40の劣化を抑制することができる。
 エアロゾル生成液Le中のニコチンの含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。
 たばこ抽出成分を含むエアロゾル生成液Leを用いる態様では、たばこ抽出成分の供給源としてたばこ抽出液を用いることができるが、この場合、エアロゾル生成液Le中のたばこ抽出液の含有量は特段制限されないが、ニコチンの十分な供給を可能とする観点から、例えば、0.1重量%以上、10重量%以下であってよく、0.5重量%以上、7.5重量%以下であってよく、1重量%以上、5重量%以下であってよい。
 エアロゾル生成液Leに含まれ得る所定の溶媒は特段制限されず、例えば、エアロゾル基材(エアロゾルを生成するための基材)を用いることができる。エアロゾル基材の種類は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。
 エアロゾル生成液Le中のエアロゾル基材の含有量は特段制限されないが、所望のエアロゾルの発生を達成する観点から、例えば、40重量%以上、95重量%以下であってよく、50重量%以上、90重量%以下であってよく、60重量%以上、80重量%以下であってよい。
 上記のたばこ抽出成分を得るための抽出に用いられる溶媒の種類はニコチンを溶解させることができれば特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質、又はこの物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及び/又はプロピレングリコールを用いている。なお、溶媒がエアロゾル基材としても作用する場合には、たばこ抽出液をそのままエアロゾル生成液Leとして利用することができるが、たばこ抽出液には加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、減圧蒸留等の手段を用いて焦げの原因となる物質を除去することが好ましい。
 なお、たばこ抽出液は、ニコチン以外のたばこ材料中の香味成分を含み、その具体例としては、例えばネオフィタジエン等が挙げられる。
 エアロゾル生成液Leは、ニコチン及びエアロゾル基材以外の成分を(その他の成分)有してよく、例えば、ニコチン以外の香味成分(上述したニコチン以外のたばこ抽出成分を含む)等が挙げられる。
 ニコチン及びたばこ材料由来の香味成分以外の香味成分しては、例えば、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、ラクトン類(例えば、ω-ペンタデカラクトン等)、ネオフィタジエン、ソラノン、又はソラネソール等が挙げられる。
[香味成形体]
 図3は、香味成形体60の模式的な斜視図である。図1、図2、及び図3を参照して、香味成形体60は、非たばこ基材及び香味材料等の材料が固められて所定形状に成形されたものである。本実施形態に係る香味成形体60は、液体収容部50中のエアロゾル生成液Leの内部にそれぞれ2個配置されている。但し、成形体60の個数は、これに限定されるものではなく、1個でもよく、3個以上であってもよい。香味成形体60は、香味材料を含んでおり、この物質から香味成分をエアロゾル生成液Leに溶出させることにより、更なる香味の付与を達成することができる。また、香味材料は香味成形体60中に含まれるため、特許文献1に開示されるような堆積物となり得る粉体状の固形物の使用により生じていた霧化ユニット12の負荷への付着の問題が生じないため、該負荷の劣化を抑制することができる。
 また、霧化ユニット12内の香味成形体60により毛管作用が発生する場合には、この毛管作用によりエアロゾル生成液Leが保持されるため、液漏れ防止の効果を得ることができる。
 非たばこ基材の材料の種類は、たばこ材料(具体的には、たばこ植物)に由来する物質でなければ特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等であってよい。セラミックとしては、例えば、アルミナ、ジルコニア、窒化アルミ、又は炭化ケイ素等が挙げられる。また、合成ポリマーとしては、例えば、ポリオレフィン系樹脂、ポリエステル、ポリカーボネート、PAN、又はEVOH等が挙げられる。また、たばこ植物以外の植物としては、例えば、針葉樹パルプ、広葉樹パルプ、コットン、果実パルプ、又は茶葉等が挙げられる。また、非たばこ基材は、香味成形体60の主たる材料、特に、香味成形体60の成形を担保する主たる材料であってよい。
 香味成形体60中の非たばこ基材の含有量は特段制限されず、例えば、10重量%以上、100重量%以下であってよく、30重量%以上、90重量%以下であってよく、50重量%以上、80重量%以下であってよい。
 本実施形態に係る香味成形体60の形状は特段制限されず、一例として、棒形状(長さが幅よりも長い形状)である。具体的には、本実施形態に係る棒形状の香味成形体60は、一例として、棒形状の多面体形状を有しており、この一例として、円形の断面を有する円柱形状を有している。なお、香味成形体60の断面形状は円形に限定されるものではなく、他の例を挙げると、例えば、多角形(三角形、四角形、五角形、または、角の数が6以上の角形)等であってもよい。また、中空部を有する棒状であってもよく、複数の棒が束になった形状(複数の棒は、集合して束となっていればよく、互いに一体化していても、一体化していなくともよい。)であってもよく、断面の形状が円形や多角形以外の任意の形状であってもよい。
 中空部を有する棒形状としては、例えば、長手方向に貫通する貫通孔を有する筒形状、又は長手方向に伸びて形成される非貫通孔(凹部)を有する凹形状等が挙げられる。香味成形体60が液体収容部50に配置される前に、これらの貫通孔や凹部にあらかじめニコチン等の香味成分を含む液体を保持させておくことにより、エアロゾル生成液Leに更なる香味成分を付与することができる。
 断面の形状が円形や多角形以外の任意の形状は、後述する図4(c)に示すような複雑な形状であってもよく、凹形状であってもよい。断面が凹形状である場合、香味成形体60は側面に溝が形成された棒形状となる。
 香味成形体60としてシート形状のものを用いる場合には、具体的には、香味成形体60として、非たばこ基材と香味材料との混合物の抄造シート、非たばこ基材と香味材料との混合物のキャストシート、又は非たばこ基材と香味材料との混合物の圧延シート等、又は、非たばこ基材のシートの表面に塗布又は噴霧等により香味材料を付与したシート等を用いることができる。また、シート形状は、複数のシートが積層された形状(複数のシートは、集合して積層されていればよく、互いに一体化していても、一体化していなくともよい。)であってもよく、シートを山折りと谷折りの繰り返し構造とした蛇腹形状であってもよく、シートを渦が巻くような構造として渦巻形状であってもよい。
 香味成形体60の形状は、上記の棒形状及びシート形状以外の形状であってもよく、例えば、立方体形状(同じ長さの辺を有する形状)であってもよく、多孔質形状であってもよく、あるいは、その他の形状であってもよい。
 図4(a)~(e)に、香味成形体60の形状が、筒形状、複数の棒が束になった形状、棒の断面が任意の形状(円形状に複数の円形状の穴(空間部)が設けられた形状)である棒形状、蛇腹形状、及び渦巻形状である場合のそれぞれの香味成形体60の模式的な断面の形状の一例を示す。
 香味成形体60自体により生じる毛管力(例えば、中空部を有する棒形状の中空部により生じる毛管力、又はシートを蛇腹にした形状におけるシート間で生じる毛管力)は、周囲の液体を無駄なく使用することができる観点から、所望の大きさ以上の毛管力を維持しつつ、ウィック30の毛管力よりも小さいことが好ましい。この毛管力の関係の観点から、香味成形体60は、ウィック30が存在する側の端部領域(端部及び端面を含む。)から、ウィック30が存在する側とは反対側に伸びる空間部を有する形状が好ましい。この空間部の形状は特段制限されず、好ましい香味成形体60の形状としては、例えば、筒形状、凹形状、複数の棒が束になった形状、蛇腹形状、渦巻形状、又は多孔質形状(特に連続気孔を有する多孔質体)から選択された1種以上の形状であることが好ましい。
 また、香味成形体60の短手方向の長さである幅(すなわち外径)(W)、及び、香味成形体60の長手方向の長さである全長(L)の具体的な値は、特に限定されるものではないが、数値の一例を挙げると、以下のとおりである。すなわち、香味成形体60の幅(W)として、例えば2mm以上20mm以下の範囲から選択された値を用いることができる。香味成形体60の全長(L)として、例えば5mm以上50mm以下の範囲から選択された値を用いることができる。但し、これらの値は香味成形体60の幅(W)及び全長(L)の一例に過ぎず、香味成形体60の幅(W)及び全長(L)は、吸引具10のサイズに応じて好適な値を設定すればよい。香味成形体60が複数個で存在する場合におけるこれらのパラメータは、それぞれの香味成形体60で算出した数値の平均値とする。
 また、香味成形体60は、吸液による膨張を抑制するため、また、膨張抑制により液体収容部50内の液体を無駄なく使用できるため、被覆材で被覆されていることが好ましく、具体的には、不織布で被覆されていること、樹脂等の被覆材(コーティング材)で被覆されていること、又はニコチン含有被覆材で被覆されていることが好ましい。
 不織布とは、繊維を織らずに布状に加工したものを指す。不織布は、例えば、繊維を熱的、機械的または化学的な作用によって接着しまたは絡み合わせることで形成した布である。「不織布」を構成する繊維は特に限定されず、植物繊維、動物繊維、合成繊維またはこれらの2以上の混合とすることができ、特に、植物繊維を含むことが好ましく、紙を含むことがより好ましい。不織布は、香味成形体60の全体を被覆することが、香味成形体60の膨潤を防止する効果を高めるうえで好ましい。不織布は、香味成形体60の全体を包む紙であることが好ましい。しかし、不織布は、香味成形体60の少なくとも一部を被覆することができればその形状は特に限定されない。例えば、不織布は、筒状であり、香味成形体60の中央部等を被覆するように配置してもよい。あるいは、不織布は、開口部の一方が閉じた筒状であり、香味成形体60の端部に配置してもよい。
 不織布を用いる場合には、後述する実施形態2に係る霧化ユニット12の製造方法において、香味成形体60を成形する成形工程の後に、不織布により香味成形体60を被覆する被覆工程を設けることができる。不織布により香味成形体60を被覆する方法は特に限定されず、例えば、機械または人間により香味成形体60を不織布で包み、必要に応じて不織布の側部を接着することができる。
 樹脂により被覆を行う場合の被覆材(コーティング)は、ポリエチレン、ポリエチレンワックス、マイクロクリスタリンワックス、みつろう、又はツェイン等が挙げられる。
 樹脂等の被覆材は、香味成形体60の膨潤を抑制する。コーティングは、香味成形体60の表面の50%以上を被覆することが、香味成形体60に含まれる非たばこ基材等の材料の膨潤を防止する効果を高めるうえで好ましく、90%以上がより好ましい。しかしコーティングは、香味成形体60の少なくとも一部を被覆することができればその形状は特に限定されない。
 ニコチン含有被覆材は、ニコチンを含む被覆材であれば特段制限されず、例えば、上述した樹脂の材料にニコチンを含有させたものであってよい。
 被覆材を用いる場合には、後述する実施形態2に係る霧化ユニット12の製造方法において、香味成形体60を成形する成形工程の後に、被覆材により香味成形体60を被覆する被覆工程を設けることができる。被覆工程においては、香味成形体60の表面を、水ガラス等の珪酸ナトリウム、又は樹脂を含むコーティング剤を用いて被覆し、コーティングを形成する。これにより、香味成形体60として、所定形状に固められたたばこ残渣の表面が被覆材で覆われた構造の香味成形体60を製造することができる。被覆材の形成方法は特に限定されず、例えば、珪酸ナトリウム又は樹脂を含む液状のコーティング剤の膜を香味成形体60の表面に形成した後、加熱または酸若しくは塩の添加等により固化処理またはゲル化処理を行うことができる。なお、被覆工程を行わず、成形工程において、水ガラス等の珪酸ナトリウム又は樹脂を含む溶液を用い、適宜香味成分が添加された非たばこ基材等の材料を固めることで香味成形体60を被覆してもよい。
 香味成形体60に含まれる香味材料の態様は特段制限されず、例えば、香味成分自体であってよく、また、香味成分を付与する材料(「香味成分付与材料」)であってもよく、香味成分付与材料としては、例えば、ニコチンを付与するたばこ材料が挙げられる。例えば、香味材料としてたばこ材料を用いた場合、スパイスとしてたばこ成分による香味を付与することができる。なお、本明細書において、香味成形体60に香味成分付与材料が含まれる場合には、香味成分付与材料に含まれる香味成分でなく、香味成分付与材料を香味材料として扱う。例えば、香味成形体60がたばこ材料を含む場合、香味材料は、たばこ材料に含まれるニコチンでなく、たばこ材料である。
 香味材料はたばこ材料を含み得るが、たばこ材料の態様は特段制限されず、例えば、たばこ植物の葉、茎、花、根、生殖器官、又は胚等の組織そのものを含ませてもよく、また、これらのたばこ植物の組織を用いた加工物(例えば、公知のたばこ製品に使用されるたばこ粉、たばこ刻、又はたばこシート等)を含ませてもよいが、十分な使用量の確保や加工の容易性の観点から、たばこ葉又はたばこ葉を用いた加工物が好ましい。また、たばこ材料は、これらの材料を抽出した後に得られるたばこ残渣であってもよく、抽出していないたばこ材料とたばこ残渣を併用してもよく、混合した混合物として用いてもよい。香味成形体60が含むたばこ材料は、香喫味の観点上、スパイスの役割を担う。本明細書において、「香味材料はたばこ材料を含む」とは、香味材料の内部にたばこ材料が含まれるということでなく、香味材料の種類の一つとしてたばこ材料が含まれるということを意味し、「香味材料はたばこ材料を含むとともに香味成形体60中のたばこ材料の含有量が10重量%以下である」の表現は、「香味材料として少なくともたばこ材料を含むとともに前記香味成形体60中の前記たばこ材料は10重量%以下である」の表現に換言することができる。
 香味材料となる香味成分は特段制限されず、例えば、ニコチン、メントール、天然植物性香料(例えば、コニャック油、オレンジ油、ジャスミン油、スペアミント油、ペパーミント油、アニス油、コリアンダー油、レモン油、カモミール油、ラブダナム、ベチバー油、ローズ油、ロベージ油)、エステル類(例えば、酢酸メンチル、酢酸イソアミル、酢酸リナリル、プロピオン酸イソアミル、酪酸ブチル、サリチル酸メチル等)、ケトン類(例えば、メントン、イオノン、エチルマルトール等)、アルコール類(例えば、フェニルエチルアルコール、アネトール、シス-6-ノネン-1-オール、ユーカリプトール等)、アルデヒド類(例えば、ベンズアルデヒド等)、又はラクトン類(例えば、ω-ペンタデカラクトン等)等が挙げられる。
 香味材料中の香味成分(香味成分自体が香味材料であってよい。)は、液体収容部50に収容されるエアロゾル生成液Leに溶出し、最終的に霧化ユニット12の使用により発生するエアロゾルとして使用者にデリバリーされる。
 香味材料を非たばこ基材に付与する方法は特段制限されず、例えば、非たばこ基材の製造の際に香味材料を非たばこ基材の原料中に混合させることにより付与してもよく、また、塗布や噴霧等により香味材料を非たばこ基材の表面に付与してもよく、また、これらを組み合わせてもよい。
 香味成形体60がその表面に香味材料を有する態様では、液体収容部50中のエアロゾル生成液Leと香味材料との接触を十分に確保することができるため、液体への香味成分が十分に溶出し、優れた香味を確保することができる。
 香味成形体60中の香味材料の含有量は特段制限されず、例えば、0.1重量%以上、70重量%以下であってよく、1重量%以上、60重量%以下であってよく、3重量%以上、50重量%以下であってよい。
 特に、香味成形体60には香味材料として少なくともたばこ材料が含まれるが、香味成形体60中のたばこ材料の含有量は、香味のスパイスとしての役割を発揮する観点からは、1重量%以上であることが好ましく、3重量%以上であることがより好ましく、7重量%以上であることがさらに好ましく、また、たばこ材料の量が多すぎるとたばこ材料が香味成形体60から分離して堆積物となるおそれがある観点、及びたばこ材料に含まれる加熱により負荷40の焦げの原因となり得る成分の量の抑制の観点からは、10重量%以下であり、7重量%以下であることが好ましく、3重量%以下であることがより好ましい。
 香味成形体60は、非たばこ基材等の香味成形体60に含まれる材料を接着するため、バインダーを含んでいてもよく、特に、香味成形体60中に粉体となり得る物質が含まれるときは、それが堆積物となって負荷40の劣化を促進してしまうことを抑制できる点からバインダーが含まれることが好ましい。
 バインダーの種類は特段制限されず、例えば、澱粉、ヒドロキシアルキルセルロース、酢酸ビニル樹脂、又はアルキルヒドロキシアルキルセルロース等を用いることができ、特に、バインダーがエアロゾル生成液Leに溶解しない、あるいは、溶解しにくい観点から、また、バインダー成分自体が焦げ因子にならず、かつ成型体の形状を維持することができる観点から、澱粉、ヒドロキシアルキルセルロース、及び酢酸ビニル樹脂からなる群の中から選択される1種以上の物質であることが好ましい。酢酸ビニル樹脂としては、例えば、ポリ酢酸ビニル、又は酢酸ビニル等が挙げられる。
 香味成形体60中のバインダーの含有量は、接着性と焦げ成分溶出抑制のバランスの観点から、1重量%以上、20重量%以下であってよく、3重量%以上、15重量%以下であってよく、5重量%以上、10重量%以下であってよい。
 香味成形体60は、上記の各種成分以外の成分を含んでいてもよく、例えば、乳酸カルシウム等のゲル化剤、又はグリセリンもしくはプロピレングリコール等の保湿剤等が挙げられる。ゲル化剤を用いることで、バインダー強度を向上させることができる。
 また、本実施形態において、香味成形体60の密度(単位体積当たりの質量)は、一例として、1000mg/cm以上、1450mg/cm以下であってよく、また、1100mg/cm以上、1450mg/cm以下であってもよい。但し、香味成形体60の密度は、これに限定されるものではなく、1000mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよく、また、1100mg/cm未満であってもよく、あるいは、1450mg/cmより大きくてもよい。香味成形体60が複数個で存在する場合には、この密度は、香味成形体60の総体積に対する総質量として求める。
 また、本実施形態において、香味成形体60の湿潤引張強度は特段制限されないが、湿潤環境下での崩壊を抑制するため、15mm当たり5N以上であることが好ましく、15mm当たり10N以上であることがより好ましい。この湿潤引張強度は、特開2019-187451号公報に記載の方法に準拠して測定することができる。この測定において測定対象となる標本は、22±2℃、相対湿度60±5%で、少なくとも24時間調整した後、試験試料を縦250±0.1mm、横15±0.1mmとなるように切断して準備する。
 また、霧化ユニット12は、負荷40を保持すると共に液体収容部50内からエアロゾル生成液Leが供給されるウィック30と、香味成形体60及びウィック30の双方に当接するように液体収容部50内に配置された液保持部材(コットンなど)と、を備え、少なくとも液保持部材の毛管力が香味成形体60の毛管力よりも大きいことが好ましい。この態様によれば、液体収容部50中のエアロゾル生成液Leを無駄なく使用することができる。
 霧化ユニット12を用いた吸引は以下のように行われる。まず、ユーザがエアの吸引を開始した場合、エアはエア通路20の上流通路部21a及び21bを通過して、負荷通路部22に流入する。負荷通路部22に流入したエアには、負荷40において発生したエアロゾルが付加される。このエアロゾルには、液体収容部50中のエアロゾル生成液Leに含まれるニコチンと、香味成形体60から溶出し得る香味成分(ニコチンを含む)と、が含まれている。このエアロゾルが付加されたエアは、下流通路部23を通過して排出口13から排出されて、ユーザに吸引される。
 以上説明したような本実施形態に係る霧化ユニット12によれば、負荷40が発生するエアロゾルに、液体収容部50中のエアロゾル生成液Leに含まれるニコチンに加えて、香味成形体60に含まれ得る香味材料由来の香味成分を付加することができる。これにより、香味を十分に味わうことができる。
 また、本実施形態に係る霧化ユニット12によれば、液体収容部50中のエアロゾル生成液Leの内部に香味成形体60が配置されており、香味成形体60と電気的な負荷40とが物理的に分離されているので、たばこ材料が霧化ユニット12の負荷40に付着することを抑制することができる。これにより、霧化ユニット12の負荷40が劣化することを抑制することができる。
 また、香味成形体60が前記液体収容部50の内部に配置された状態のエアロゾル生成液Le1g中に含まれる炭化成分の量(mg)は、6mg以下であることが好ましく、3mg以下であることがより好ましい。
 この構成によれば、電気的な負荷40に付着する炭化成分の量をできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。これにより、負荷40に焦げが発生することをできるだけ抑制しつつ、ニコチン等の香味を味わうことができる。
 なお、「香味成形体60が前記液体収容部50の内部に配置された状態のエアロゾル生成液Le中に含まれる炭化成分」は、具体的には、香味成形体60が配置される前の状態のエアロゾル生成液Leに含まれる炭化成分の量と、香味成形体60からエアロゾル生成液Leに溶出した炭化成分の量とを合計した値に相当する。
 また、本実施形態において、「炭化成分」とは、250℃に加熱された場合に炭化物になる成分をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。
 なお、この「香味成形体60が前記液体収容部50の内部に配置された状態のエアロゾル生成液Le1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、香味成形体60が前記液体収容部50の内部に配置された状態のエアロゾル生成液Leを所定量(g)、準備する。次いで、このエアロゾル生成液Leを180℃に加熱して、エアロゾル生成液Leに含まれる溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)のエアロゾル生成液Leに含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、エアロゾル生成液Le1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。
 続いて、ニコチンを含むエアロゾル生成液Le1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図5は、ニコチンを含むエアロゾル生成液Leとしてたばこ抽出液(以下、単に「抽出液」とも称する。)を用いた場合において、抽出液1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図5の横軸は、抽出液1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。
 図5のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、抽出液1g中に含まれる炭化成分の量が互いに異なる複数の霧化ユニット12のサンプルを準備した。具体的には、この複数の霧化ユニット12のサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。
(工程1)
 たばこ葉からなるたばこ材料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(工程2)
 次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(工程3)
 次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(抽出液)に溶出する炭化成分の量を異ならせた。
 以上の工程によって、浸漬リキッド(抽出液)1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。
 次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。
 次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図5のTPM減少率(RTPM)は測定された。
 RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1)
 ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。
 すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。
 図5から分かるように、抽出液1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図5の特にサンプルSA1~サンプルSA4から分かるように、抽出液1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。
<実施形態2>
 本発明の実施形態2に係る吸引具10の霧化ユニット12の製造方法(以下、単に「霧化ユニット12の製造方法」とも称する。)について説明する。本実施形態は、霧化ユニット12の製造方法の実施形態である。
 本実施形態に係る製造方法は、図6に示すように、液体収容部50を有する吸引具10の霧化ユニット12の製造方法であって、
 ニコチンを含むエアロゾル生成液Leを準備する液体準備工程と、
 非たばこ基材及び香味材料を含む香味成形体60を成形する成形工程と、
 前記ニコチンを含むエアロゾル生成液Le、及び前記香味成形体60を、前記液体収容部50に収容する組立工程と、
を有し、
 前記香味材料はたばこ材料を含み、かつ、前記香味成形体60が前記液体収容部50の内部に収容された状態の前記香味成形体60中の前記たばこ材料の含有量が10重量%以下である、
吸引具10の霧化ユニット12の製造方法である。
 本実施形態に係る製造方法は、上記の液体準備工程、成形工程、及び組立工程以外の工程を有していてもよい。
本実施形態に係る製造方法により得られた香味成形体60では、ニコチンの供給源として、特許文献1に開示されるような堆積物となり得る粉体状のたばこ材料の代わりに、ニコチンを含むエアロゾル生成液Le及びたばこ材料を含む香味成形体60を用いているため、ニコチンの供給源が霧化ユニット12の負荷に付着することを抑制し、ひいては該負荷の劣化を抑制することができる。また、香味成形体60に含まれるたばこ材料は、香喫味の観点上、スパイスの役割を担う。一方で、たばこ材料には、加熱により負荷に焦げを発生させる原因となり得る成分が含まれているため、この焦げ発生を抑制するため上記上限を超えないことが有利である。
[液体準備工程]
 霧化ユニット12の製造方法は、ステップS10に係る液体準備工程においては、ニコチンを含むエアロゾル液を準備する。ニコチンを含むエアロゾル液(以下、単に「液体」とも称する。)を準備する具体的な手法は、特に限定されず、公知の方法を採用することができる。例えば、合成等により得られるニコチンもしくはニコチン塩等のニコチン含有化合物をエアロゾル生成液Leに溶解させる方法、又はたばこ材料の抽出により得られる成分(ニコチンのみであってよい)をエアロゾル生成液Leに溶解させる方法等が挙げられる。合成等により得られるニコチン又はニコチン塩等のニコチン含有化合物の入手方法は特段制限されず、公知の方法により製造することができるが、市販品を用いてもよい。
 上記のエアロゾル生成液Leは、エアロゾル基材を含む液体であってよく、また、エアロゾル基材自体であってもよい。
 液体を得る方法のうち、一例として、たばこ葉を溶媒に溶解させて得られた抽出液をエアロゾル基材と混合して液体を得る方法について具体的に説明する。
 まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。
 次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質をたばこ葉に接触させる。
 この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここにはニコチン等の香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を用いることができる。これにより、ニコチン等の香味成分(以下、単に「香味成分」とも称する。)を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。
 あるいは、ステップS10は、上述したような捕集溶媒を使用しない構成とすることもできる。具体的には、この場合、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後に、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出することもできる。
 あるいは、ステップS10は、上述したようなアルカリ処理を行わない構成とすることもできる。具体的には、この場合、ステップS10において、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質を添加する。次いで、これが添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させる、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。
 あるいは、ステップS10において、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させる。このような工程によっても、香味成分を抽出することができる。
 また、本実施形態に係るステップS10(液体準備工程)は、上述したような手法で抽出された香味成分に含まれ得る、「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させる処理(以下、単に「低減処理」とも称する。)をさらに含んでいてもよい。「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。
 なお、250℃に加熱された場合に炭化物になる炭化成分は、主としてたばこ葉等のたばこ材料に由来するため、ニコチンの供給源としてたばこ抽出物を用いる方法では、特に低減処理を設けることの効果が大きい。
 この抽出された香味成分等に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。
 たばこ抽出液は、加熱により焦げを発生させ得る成分(例えば、脂質、金属イオン、糖、又はタンパク質等)が含まれるため、たばこ抽出成分を蒸留処理又は減圧蒸留処理に供し、焦げの原因となる物質を除去することが好ましい。なお、たばこ抽出液を用いない場合でも、焦げの原因となる物質が含まれる場合には、たばこ抽出液を蒸留処理又は減圧蒸留処理に供することが好ましい。
[成形工程]
 ステップS20に係る成形工程においては、非たばこ基材等の材料を含む香味成形体60を所定形状に成形すること、具体的には、固めて所定形状(本実施形態では、一例として棒状)に成形することで、香味成形体60を製造する。このステップS20の具体例は以下のとおりである。
 非たばこ基材等の材料を成形する方法は特段制限されず、例えば、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)を混合して混合物を得た後に、プレス加圧成形、押出成形、射出成形、転写成形、圧縮成形、又は鋳込成形等の方法により該混合物を所定の形状に成形する方法が挙げられる。また、非たばこ基材がポリマーである場合には、ポリマーを溶媒に溶解させて得られた溶液から加熱等により溶媒を揮発させる方法、又はモノマーを重合させる方法等により所定の形状の香味成形体60を得る方法を採用することもできる。また、非たばこ基材を含む任意の固体形状の複合材料を得た後に、切削又は研削等により該複合材料を所定の形状となるように加工する方法が挙げられる。
 非たばこ基材にたばこ材料等の香味材料を付与する方法は特段制限されず、例えば、上記の非たばこ基材の香味成形体60の製造における原料として、セラミック、合成ポリマー、又はたばこ植物以外の植物由来のパルプ等の非たばこ基材(非たばこ基材の溶融物であってもよい)及び香味材料の混合物を用いる方法、また、上記の方法により得られる非たばこ基材の香味成形体60の表面に塗布又は噴霧等により香味材料を付与する方法等が挙げられる。
 さらに、上述の霧化ユニット12の説明で述べたように、香味成形体60はその表面が被覆材(コーティング材)で被覆(コーティング)されていてもよい。この場合には、ステップ20は、香味成形体60の表面を、コーティング材でコーティングする処理を含んでよい。これにより、香味成形体60として、所定形状に固められた非たばこ基材の表面がコーティング材で覆われた構造の香味成形体60を製造することができる。
 このコーティング材としては、例えば、ワックスを用いることができる。このワックスとしては、例えば、日本精蝋社製のマイクロクリスタンWAX(型番:Hi-Mic-1080、又は、型番:Hi-Mic-1090)や、三井化学社製の水分散アイオノマー(型番:ケミパールS120)や、三井化学社製のハイワックス(型番:110P)等を用いることができる。
 あるいは、コーティング材として、トウモロコシのタンパク質を用いることもできる。この具体例を挙げると、小林香料社製のツェイン(型番:小林ツェインDP-N)が挙げられる。
 あるいは、コーティング材として、ポリ酢酸ビニルを用いることもできる。
 香味成形体60の表面を覆っているコーティング材には、非たばこ基材が通過することを抑制しつつ、非たばこ基材中の香味成分が通過することが可能な孔(微細な孔)が複数設けられていることが好ましい。すなわち、このコーティング材の孔は、香味成分の大きさよりも大きく且つ非たばこ基材の大きさよりも小さいサイズの孔であればよい。この構成によれば、非たばこ基材がエアロゾル生成液Leに溶出することを抑制しつつ、非たばこ基材中の香味成分をエアロゾル生成液Leに溶出させることができる。
 このコーティング材に設けられた孔の具体的なサイズ(直径)は、特に限定されるものではないが、具体例を挙げると、例えば、10μm以上3mm以下の範囲から選択された値を用いることができる。
 なお、コーティング材として、網状のメッシュ部材を用いることもできる。この場合においても、非たばこ基材がエアロゾル生成液Leに溶出することを抑制しつつ、非たばこ基材中の香味成分をエアロゾル生成液Leに溶出させることができる。
 また、ステップS20に係る成形工程において、非たばこ基材にたばこ残渣を含ませてもよい。この場合においても、たばこ残渣が抽出液に溶出することを抑制しつつ、たばこ残渣に残存した香味成分をエアロゾル生成液Leに溶出させることができる。また、ニコチンを含むエアロゾル液の製造においてたばこ抽出液を得る場合には、該たばこ抽出物を得る際の抽出で得られたたばこ残渣を用いることが好ましい。このたばこ残渣は、上述した実施形態1におけるたばこ材料として扱う。
 あるいは、ステップS20に係る成形工程において、たばこ残渣等を洗浄液で洗浄し、この洗浄後のたばこ残渣等を非たばこ基材に含ませるようにして香味成形体60を製造することもできる。この構成によれば、洗浄によって、たばこ残渣等に含まれる炭化成分の量をできるだけ低減させ、この炭化成分の量が低減されたたばこ残渣等を用いて香味成形体60を製造することができる。これにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。
[組立工程]
 ステップS20の後に、ステップS30に係る組立工程を実行する。具体的には、ステップS30においては、香味成形体60が収容されていない状態の霧化ユニット12を準備し、この霧化ユニット12の液体収容部50に、ステップS20の後の香味成形体60を収容するとともに、ステップ10で得られたニコチンを含むエアロゾル生成液Leを収容する。なお、この場合において、前述したステップS20で香味成形体60に添加された香味成分とは別に、液体収容部50に収容された上記のエアロゾル生成液Leに、香味成分をさらに添加してもよい。以上の工程で、本実施形態に係る吸引具10の霧化ユニット12が製造される。
 また、本実施形態の変形例は、ステップ30においてニコチンを含むエアロゾル生成液Leを収容する工程を含まない製造方法である。この場合、霧化ユニット12のユーザは自ら液体収容部50に液体を補充することができる。
 以上説明したような本実施形態に係る製造方法によれば、負荷40の劣化が抑制された霧化ユニット12を製造することができる。
[実施形態2の変形例1]
 図7は、実施形態2の変形例1に係る霧化ユニット12の製造方法を説明するためのフロー図である。図7に示す霧化ユニット12の製造方法は、液体収容部50を有する吸引具10の霧化ユニット12の製造方法であって、
 ニコチン含有液を準備するニコチン含有液準備工程と、
 非たばこ基材及び香味材料を含む香味成形体60を成形する成形工程と、
 前記香味成形体60に前記ニコチン含有液を添加する添加工程と、
 前記ニコチン含有液が添加された香味成形体60と、エアロゾル基材とを、前記液体収容部50に収容する組立工程と、
を有し、
 前記香味材料はたばこ材料を含み、かつ、前記香味成形体60が前記液体収容部50の内部に収容された状態の前記香味成形体60中の前記たばこ材料の含有量が10重量%以下である、
吸引具10の霧化ユニット12の製造方法である。
 本変形例に係る製造方法は、上記のニコチン含有液準備工程、成形工程、添加工程、及び組立工程以外の工程を有していてもよい。
 本実施形態に係る製造方法により得られた香味成形体60では、上述した製造方法と同様の効果が得られる。
[ニコチン含有液準備工程]
 変形例1に係る霧化ユニット12の製造方法は、ステップS10Aに係るニコチン含有液準備工程において、ニコチンを含む液体を準備する。本変形例に係るステップS10Aは、図6で説明したステップS10において、エアロゾル生成液Leの代わりに任意の液体を用いる態様である。具体的には、ニコチン含有液を得る方法として、例えば、合成等により得られる合成ニコチンを任意の溶媒に溶解させる方法、又はたばこ材料の抽出により得られる天然ニコチンを任意の溶媒に溶解させる方法等が挙げられる。合成ニコチン及び天然ニコチンを得る方法は、上述の霧化ユニット12の説明で述べた方法を適用することができる。
 任意の溶媒は、溶解させる対象の物質を溶解させることができれば特段制限されず、エアロゾル基材であってもよく、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。
[成形工程]
 変形例1に係る霧化ユニット12の製造方法は、ステップS20に係る成形工程において、香味成形体60を製造する。本変形例に係るステップS20は、図6で説明したステップS20と同様であるので、詳細な説明は省略する。
[添加工程]
 変形例1に係る霧化ユニット12の製造方法は、ステップS25に係る添加工程において、上記の成形工程で得られた香味成形体60に、上記のニコチン含有液準備工程で得られたニコチン含有液を添加する。
 添加する方法は特段制限されず、香味成形体60に所望の量のニコチン含有液をまとめて添加してもよく、香味成形体60の表面に塗布又は噴霧等によりニコチン含有液を添加してもよく、また、香味成形体60をニコチン含有液に浸漬させることにより添加してもよい。
[組立工程]
 変形例1に係る霧化ユニット12の製造方法は、ステップS30Aに係る組立工程において、上記の添加工程で得られたニコチン含有液が添加された香味成形体60と、エアロゾル基材とを、前記液体収容部50に収容する。本変形例に係るステップS30Aは、図6で説明したステップS30におけるニコチンを含むエアロゾル生成液Leをエアロゾル基材に置き換えた態様である。
 エアロゾル基材は特段制限されず、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種以上の物質が挙げられる。
 組立工程において液体収容部50に収容された香味成形体60からエアロゾル基材にニコチンが溶出することにより、最終的に、液体収容部50には、香味成形体60及びニコチンを含むエアロゾル生成液Leが収容されることとなる。
 変形例1のさらなる変形例1Aは、上記の添加工程の代わりに、ニコチン含有液準備工程で得られたニコチン含有液を、液体収容部50を画定する壁の内面に付着させる付着工程を設ける態様である。
 本変形1Aの態様とすることにより、組立工程において、液体収容部50の壁に付着されたニコチン含有液からエアロゾル基材にニコチンが溶出することにより、最終的に、液体収容部50には、香味成形体60及びニコチンを含むエアロゾル生成液Leが収容されることとなる。
<実施形態3>
 本発明の実施形態3に係る吸引具(以下、単に「吸引具」とも称する。)10について説明する。図8は、本実施形態に係る吸引具10の外観を模式的に示す斜視図である。本実施形態に係る吸引具10は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の電子たばこである。
 本実施形態に係る吸引具10は、一例として、吸引具10の中心軸線CLの方向に延在している。具体的には、吸引具10は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具10の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。
 吸引具10は、電源ユニット11と、上述した霧化ユニット12とを有している。電源ユニット11は、霧化ユニット12に着脱自在に接続されている。電源ユニット11の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット12が電源ユニット11に接続されると、電源ユニット11の電源と、霧化ユニット12の後述する負荷40とが電気的に接続される。
 霧化ユニット12には、エア(すなわち、空気)を排出するための排出口13が設けられている。エアロゾルを含むエアは、この排出口13から排出される。吸引具10の使用時において、吸引具10のユーザは、この排出口13から排出されたエアを吸い込むことができる。
 電源ユニット11には、排出口13を通じたユーザの吸引により生じた吸引具10の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、制御装置に伝え、制御装置が後述する霧化ユニット12の負荷40への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、制御装置に伝え、制御装置が負荷40への通電を終了させる。
 なお、電源ユニット11には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、このエアの吸引開始要求や吸引終了要求を受けた制御装置は、負荷40への通電開始や通電終了を行う。
 なお、上述したような電源ユニット11の構成は、例えば、特許文献2に例示されるような公知の吸引具の電源ユニットと同様であるので、これ以上詳細な説明は省略する。
 以上、本発明の実施形態や変形例について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形及び変更が可能である。
10  吸引具
12  霧化ユニット
20  エア通路
40  負荷
50  液体収容部
60  香味成形体
CL 中心軸線
L 香味成形体の全長
Le  エアロゾル生成液
W  香味成形体の外径

Claims (5)

  1.  ニコチンを含むエアロゾル生成液を収容する液体収容部と、
     前記液体収容部中の前記エアロゾル生成液が導入されるとともに、導入された前記エアロゾル生成液を霧化してエアロゾルを発生させる電気的な負荷と、
     前記液体収容部の内部に配置され、非たばこ基材及び香味材料を含む、香味成形体と、
    を備え、
     前記香味材料はたばこ材料を含むとともに前記香味成形体中の前記たばこ材料の含有量が10重量%以下である、
    吸引具の霧化ユニット。
  2.  前記香味成形体が前記液体収容部の内部に配置された状態の前記エアロゾル生成液1g中に含まれる炭化成分の量は、6mg以下であり、
     前記炭化成分は、250℃に加熱された場合に炭化物になる成分である、
    請求項1に記載の吸引具の霧化ユニット。
  3.  電源ユニットと、請求項1又は2に記載の吸引具の霧化ユニットとを有する吸引具。
  4.  液体収容部を有する吸引具の霧化ユニットの製造方法であって、
     ニコチンを含むエアロゾル生成液を準備する液体準備工程と、
     非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、
     前記ニコチンを含むエアロゾル生成液、及び前記香味成形体を、前記液体収容部に収容する組立工程と、
    を有し、
     前記香味材料はたばこ材料を含み、かつ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量が10重量%以下である、
    吸引具の霧化ユニットの製造方法。
  5.  液体収容部を有する吸引具の霧化ユニットの製造方法であって、
     ニコチン含有液を準備するニコチン含有液準備工程と、
     非たばこ基材及び香味材料を含む香味成形体を成形する成形工程と、
     前記香味成形体に前記ニコチン含有液を添加する添加工程と、
     前記ニコチン含有液が添加された香味成形体と、エアロゾル基材とを、前記液体収容部に収容する組立工程と、
    を有し、
     前記香味材料はたばこ材料を含み、かつ、前記香味成形体が前記液体収容部の内部に収容された状態の前記香味成形体中の前記たばこ材料の含有量が10重量%以下である、
    吸引具の霧化ユニットの製造方法。
PCT/JP2022/016685 2022-03-31 2022-03-31 霧化ユニット及びその製造方法、並びに吸引具 WO2023188321A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016685 WO2023188321A1 (ja) 2022-03-31 2022-03-31 霧化ユニット及びその製造方法、並びに吸引具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016685 WO2023188321A1 (ja) 2022-03-31 2022-03-31 霧化ユニット及びその製造方法、並びに吸引具

Publications (1)

Publication Number Publication Date
WO2023188321A1 true WO2023188321A1 (ja) 2023-10-05

Family

ID=88200327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016685 WO2023188321A1 (ja) 2022-03-31 2022-03-31 霧化ユニット及びその製造方法、並びに吸引具

Country Status (1)

Country Link
WO (1) WO2023188321A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523985A (ja) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生システムのためのカートリッジおよび装置
WO2020182585A1 (en) * 2019-03-08 2020-09-17 Philip Morris Products S.A. Aerosol-generating system and article for use therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523985A (ja) * 2015-06-29 2018-08-30 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム エアロゾル発生システムのためのカートリッジおよび装置
WO2020182585A1 (en) * 2019-03-08 2020-09-17 Philip Morris Products S.A. Aerosol-generating system and article for use therewith

Similar Documents

Publication Publication Date Title
WO2016184978A1 (en) Aerosol generating material and devices including the same
RU2765178C1 (ru) Устройство генерирования вдыхаемой среды, его использование для стабильной доставки никотина, картридж и капсула с табачной смесью для такого устройства
CA3211580A1 (en) Aerosol generating article and aerosol generating device comprising same
JP7474320B2 (ja) 非燃焼加熱式たばこ製品のカートリッジ及び非燃焼加熱式たばこ製品
WO2023188321A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188325A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188326A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188322A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188323A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188324A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188436A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188435A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188327A1 (ja) 香味成形体及びその製造方法、霧化ユニット、並びに吸引具
WO2023188328A1 (ja) 香味成形体及びその製造方法、霧化ユニット、並びに吸引具
WO2023248475A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023248476A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188377A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188376A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188375A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188374A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188372A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188373A1 (ja) 霧化ユニット及びその製造方法、並びに吸引具
WO2023188329A1 (ja) 霧化ユニット、吸引具、及び霧化ユニットの製造方法
WO2023162197A1 (ja) 吸引具用霧化ユニット、吸引具、及び、吸引具用霧化ユニットの製造方法
WO2023105746A1 (ja) 吸引具、及び、吸引具の霧化ユニットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935463

Country of ref document: EP

Kind code of ref document: A1