WO2023188245A1 - Gate bias control circuit and gate bias control method for communication amplification transistor - Google Patents

Gate bias control circuit and gate bias control method for communication amplification transistor Download PDF

Info

Publication number
WO2023188245A1
WO2023188245A1 PCT/JP2022/016459 JP2022016459W WO2023188245A1 WO 2023188245 A1 WO2023188245 A1 WO 2023188245A1 JP 2022016459 W JP2022016459 W JP 2022016459W WO 2023188245 A1 WO2023188245 A1 WO 2023188245A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
gate bias
node
input signal
input
Prior art date
Application number
PCT/JP2022/016459
Other languages
French (fr)
Japanese (ja)
Inventor
裕太郎 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/016459 priority Critical patent/WO2023188245A1/en
Priority to JP2023563925A priority patent/JPWO2023188245A1/ja
Publication of WO2023188245A1 publication Critical patent/WO2023188245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only

Definitions

  • the present disclosure relates to a gate bias control circuit and a gate bias control method for a communication amplification transistor.
  • Non-Patent Document 1 a high electron mobility transistor (HEMT: hereinafter referred to as GaN-HEMT) using gallium nitride (GaN) is used as shown in Non-Patent Document 1. It is being considered.
  • HEMT high electron mobility transistor
  • GaN-HEMT gallium nitride
  • the gate bias voltage applied to the gate electrode of the GaN-HEMT shown in Non-Patent Document 1 is always constant because the gate electrode is connected to the gate bias voltage via an inductor and a resistor.
  • AM-AM Amplitude to Amplitude
  • AM-PM phase distortion
  • ACPR adjacent channel power ratio
  • distortion occurs in the AM-AM characteristics and AM-PM characteristics because the semiconductor material that makes up the GaN transistor contains crystal defects (hereinafter referred to as traps), and when a modulated wave signal is input as an input signal. This is thought to have occurred due to the memory effect caused by the trap.
  • the present disclosure has been made in view of the above-mentioned points, and when a modulated wave signal is input as an input signal to a communication amplification transistor, a memory effect occurs due to a trap in the semiconductor material constituting the communication amplification transistor.
  • the object of the present invention is to obtain a gate bias control circuit that suppresses deterioration of distortion characteristics.
  • a gate bias control circuit includes a detection unit that detects an input signal of a communication amplification transistor into which a modulated wave signal obtained by modulating a carrier wave to a gate electrode is input as an input signal; and a bias voltage generating section that applies a gate bias voltage corresponding to the input power of the input signal to the gate bias node connected to the gate electrode of the communication amplification transistor.
  • a modulated wave signal is input as an input signal to a communication amplification transistor, a memory effect due to a trap in a semiconductor material constituting the communication amplification transistor is suppressed, and deterioration of distortion characteristics is suppressed.
  • FIG. 3 is a diagram showing the relationship between the gate bias control circuit and the communication amplification transistor according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the power of the input signal of the communication amplification transistor and the gate bias voltage from the gate bias control circuit according to the first embodiment.
  • 1 is a circuit diagram showing a gate bias control circuit according to Embodiment 1.
  • FIG. 5 is a flowchart illustrating an example of control operations performed by the gate bias control circuit according to the first embodiment.
  • 3 is a diagram showing an output spectrum versus frequency in the gate bias control circuit according to the first embodiment.
  • FIG. 5 is a diagram showing changes in gate bias voltage in the gate bias control circuit according to the first embodiment.
  • FIG. 3 is a diagram showing AM-AM characteristics in the gate bias control circuit according to the first embodiment.
  • FIG. 3 is a diagram showing AM-PM characteristics in the gate bias control circuit according to the first embodiment.
  • FIG. FIG. 3 is a diagram showing changes in gain in the gate bias control circuit according to the first embodiment.
  • 5 is a diagram showing a phase shift of an output signal in the gate bias control circuit according to the first embodiment.
  • FIG. 5 is a diagram showing ACPR in the gate bias control circuit according to the first embodiment.
  • FIG. 7 is a diagram showing a relationship between a gate bias control circuit and a communication amplification transistor according to a second embodiment.
  • FIG. FIG. 7 is a diagram showing the relationship between the power of the input signal of the communication amplification transistor and the gate bias voltage from the gate bias control circuit according to the second embodiment.
  • FIG. 3 is a circuit diagram showing a gate bias control circuit according to a second embodiment.
  • FIG. 7 is a flowchart illustrating an example of control operations performed by the gate bias control circuit according to the second embodiment.
  • 7 is a diagram showing an output spectrum versus frequency in a gate bias control circuit according to a second embodiment.
  • FIG. 7 is a diagram showing changes in gate bias voltage in the gate bias control circuit according to the second embodiment.
  • 7 is a diagram showing AM-AM characteristics in the gate bias control circuit according to the second embodiment.
  • FIG. 7 is a diagram showing AM-PM characteristics in the gate bias control circuit according to the second embodiment.
  • FIG. 7 is a diagram illustrating changes in gain in the gate bias control circuit according to the second embodiment.
  • FIG. 7 is a diagram showing a phase shift of an output signal in a gate bias control circuit according to a second embodiment.
  • FIG. 7 is a diagram showing ACPR in the gate bias control circuit according to the second embodiment.
  • FIG. 7 is a diagram showing a relationship between a gate bias control circuit and a communication amplification transistor according to a third embodiment.
  • FIG. 7 is a diagram showing the relationship between the power of the input signal of the communication amplification transistor and the gate bias voltage from the gate bias control circuit according to the third embodiment.
  • FIG. 7 is a circuit diagram showing a gate bias control circuit according to a third embodiment. 7 is a flowchart illustrating an example of control operations performed by the gate bias control circuit according to the third embodiment.
  • FIG. 7 is a diagram showing an output spectrum versus frequency in a gate bias control circuit according to a third embodiment.
  • FIG. 7 is a diagram showing changes in gate bias voltage in the gate bias control circuit according to Embodiment 3.
  • FIG. 7 is a diagram showing AM-AM characteristics in the gate bias control circuit according to the third embodiment.
  • FIG. 7 is a diagram showing AM-PM characteristics in the gate bias control circuit according to the third embodiment.
  • FIG. 7 is a diagram illustrating changes in gain in the gate bias control circuit according to Embodiment 3;
  • FIG. 7 is a diagram showing a phase shift of an output signal in a gate bias control circuit according to a third embodiment.
  • FIG. 7 is a diagram showing ACPR in the gate bias control circuit according to the third embodiment.
  • Embodiment 1 A gate bias control circuit 100 for a communication amplification transistor FET according to a first embodiment will be described with reference to FIGS. 1 to 11.
  • the communication amplification transistor FET (hereinafter simply referred to as FET) is a field effect transistor (FET), and a GaN-HEMT is used as an example.
  • FETs are not limited to GaN-HEMTs, but are used in communication amplifiers such as GaN transistors, and a modulated wave signal obtained by modulating a carrier wave is input to the gate electrode as an input signal, and the amplification function is performed.
  • the gate bias control circuit 100 can be applied to any FET that has the following characteristics.
  • the input signal input to the FET is independent of the relationship between the modulation bandwidth BW and the electron capture time constant Tc of the trap in the semiconductor material, and the input signal input to the FET has an arbitrary modulation bandwidth BW and electron capture time constant Tc.
  • the gate bias control circuit 100 can be applied.
  • a modulated wave signal obtained by modulating a carrier wave is inputted to the gate electrode G as an input signal, and an output signal obtained by amplifying the input signal is outputted from the drain electrode D.
  • the input power in the input signal is Pin
  • the output power in the output signal is Pout. Let Pinave be the average input power in the input signal.
  • the gate electrode G of the FET is connected to a gate bias node via a series body of an inductor L and a resistor Rd. As shown in FIG. 1, the gate bias voltage applied to the gate bias node is Vgt.
  • the drain electrode D of the FET is connected to the drain node. As shown in FIG. 1, the drain bias voltage applied to the drain node is Vd.
  • the source electrode S of the FET is connected to a ground potential node as shown in FIG.
  • the gate bias control circuit 100 detects the input signal input to the FET, controls the gate bias voltage Vgt according to the level of the input power Pin in the input signal, and applies the gate bias voltage Vgt to the gate bias node. As shown in FIG. 2, the gate bias control circuit 100 maintains the gate bias voltage Vgt at the set voltage when the input power Pin is greater than or equal to the average input power Pinave, and maintains the gate bias voltage Vgt at the set voltage when the input power Pin is less than the average input power Pinave. The lower the power Pin is, the higher the gate bias voltage Vgt is applied to the gate bias node than the set voltage.
  • the horizontal axis shows time
  • the vertical axis shows power for input power Pin and average input power Pinave
  • voltage for gate bias voltage Vgt is shown by a solid line
  • the input power Pin is shown by a broken line
  • the average input power Pinave is shown by a chain line.
  • the gate bias control circuit 100 includes a detection section 10 that detects an input signal, a bias voltage generation section 20 that applies a gate bias voltage Vgt to a gate bias node, and a coupler Coup that extracts an input signal. .
  • the detection unit 10 detects the input signal input to the FET taken out by the coupler Coup.
  • the detection unit 10 is a detector including a diode D1, a resistor Ra, and a capacitor C1, as shown in FIG.
  • the anode of the diode D1 is connected to the coupler Coup, and the cathode is connected to the output node of the detection section 10.
  • the resistor R3 and the capacitor C1 are connected between the output node of the detection section 10 and the ground node.
  • the bias voltage generation section 20 controls the gate bias voltage Vgt according to the level of the input power Pin in the input signal detected by the detection section 10, and controls the gate bias voltage Vgt when the input power Pin is equal to or higher than the average input power Pinave.
  • the set voltage is maintained and the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the gate bias voltage Vgt is applied to the gate bias node than the set voltage.
  • the bias voltage generation section 20 includes a voltage generation section 21, a limiter circuit 22, a first adder A1, an inverting amplifier 23, a second adder A2, a resistor R1, and a resistor R6.
  • the voltage generator 21 has a first voltage node that outputs a first voltage and a second voltage node that outputs a second voltage different from the first voltage.
  • the voltage generator 21 includes a DC power supply DC, a resistor Rb, and a resistor Rc.
  • the direct current power supply DC constitutes a first voltage generating section that outputs a first voltage to the + electrode.
  • the connection point of the + electrode of the DC power supply DC is the first voltage node.
  • the resistor Rb and the resistor Rc are connected in series between the first voltage node and the ground potential node, and a second voltage is applied to the connection point between the resistor Rb and the resistor Rc, that is, a second voltage with respect to the first voltage.
  • a second voltage generator is configured to output the voltage.
  • the connection point between resistor Rb and resistor Rc is the second voltage node.
  • the limiter circuit 22 limits the upper limit of the voltage of the input signal appearing at the output node of the detection section 10.
  • the limiter circuit 22 limits the voltage that appears at one end when the input power Pin is less than the average input power Pinave to a constant voltage that is an upper limit value. .
  • One end of the limiter circuit 22 is connected to the output node of the detection section 10 via a resistor R1, and the other end is connected to a ground node.
  • the limiter circuit 22 includes a diode D2 to which an anode electrode is connected at one end, and a resistor R2 connected between the cathode of the diode D2 and a ground node.
  • the first adder A1 has one input terminal connected to the second voltage node of the voltage generating section 21, and the other input terminal connected to one end of the limiter circuit 22.
  • the output voltage from the first adder A1 is the sum of the second voltage at the second voltage node of the voltage generator 21 and the voltage at one end of the limiter circuit 22, and is the sum of the second voltage at the second voltage node of the voltage generator 21 and the voltage at one end of the limiter circuit 22. This voltage ranges up to the voltage plus a constant voltage limited by the limiter circuit 22.
  • the output voltage V O1 is as follows.
  • the output voltage V O1 is a voltage value that changes to V M +V ⁇ in the range from V M to V M +V L.
  • the second voltage VM is a voltage for adjusting the level of the gate bias voltage Vgt.
  • the second voltage V M is adjusted according to the input power Pin.
  • the value (V M +V ⁇ ) obtained by adding the voltage V ⁇ is taken. That is, when the input power Pin is less than the average input power Pinave, the output voltage from the first adder A1 is a voltage (V M +V ⁇ ) increased from the second voltage V M according to the input power Pin. , when the input power Pin is equal to or higher than the average input power Pinave, it is maintained at a constant voltage (V M + V L ) obtained by adding a constant voltage to the second voltage VM.
  • the inverting amplifier 23 inverts the output from the first adder A1 and outputs an amplified voltage.
  • the inverting amplifier 23 includes an operational amplifier AMP and resistors R3 to R5.
  • a resistor R3 is connected between the output terminal of the first adder A1 and the inverting input terminal of the operational amplifier AMP.
  • a resistor R4 is connected between the inverting input terminal and the output terminal of the operational amplifier AMP.
  • Resistor R5 is connected between the non-inverting input terminal of operational amplifier AMP and the ground node.
  • the second adder A2 has one input terminal connected to the first voltage node of the voltage generator 21, that is, the + electrode of the DC power supply DC, and the other input terminal connected to the output of the inverting amplifier 23 via the resistor R6. The output end is connected to the gate bias node.
  • the output terminal of the second adder A2 is the output terminal of the gate bias control circuit 100.
  • the output voltage from the second adder A2 is a value obtained by adding the voltage at the output terminal of the inverting amplifier 23 to the voltage at the first voltage node of the voltage generating section 21, and is a value obtained by adding the voltage at the output terminal of the inverting amplifier 23 to the voltage at the first voltage node of the voltage generating section
  • the voltage at the voltage node of the voltage generator 21 is subtracted from the sum of the second voltage VM at the second voltage node of the voltage generator 21 and the voltage VL at one end of the limiter circuit 22. 21 minus the second voltage V M at the second voltage node of V M . Note that although the voltage at the output terminal of the inverting amplifier 23 is an amplified value, the explanation of the amplification is omitted to avoid complication of explanation. The same applies to the following.
  • the gate bias voltage Vgt is a voltage value that changes from V O -(V M +V L ) to V O -(V M +V ⁇ ) in the range of V O -V M.
  • the voltage [V O ⁇ (V M +V L )] is a set voltage when the input power Pin of the input signal is greater than or equal to the average input power Pinave of the input signal. Further, the voltage [V O -(V M +V ⁇ )] is the voltage when the input power Pin of the input signal is less than the average input power Pinave of the input signal, and the voltage according to the input power Pin of the input signal, that is, , the lower the input power Pin of the input signal, the higher the voltage becomes than the set voltage.
  • a series body of an inductor L and a resistor Rd is connected between the gate electrode of the FET and the gate bias node. Further, a capacitor C2 is connected between the gate bias node and the ground node.
  • step ST1 the coupler Coup extracts an input signal input to the FET, and the detection section 10 detects the extracted input signal.
  • the step in which the detection unit 10 detects the input signal of the FET is a detection step.
  • the bias voltage generating section 20 maintains the gate bias voltage Vgt at the set voltage when the input power Pin in the input signal is equal to or higher than the average input power Pinave (step ST2) (step ST3),
  • the gate bias voltage Vgt is raised higher than the set voltage. Specifically, the lower the input power Pin is, the higher the gate bias voltage Vgt is than the set voltage. (step ST4).
  • Steps ST2 to ST4 are bias voltage generation steps in which a gate bias voltage Vgt corresponding to the input power Pin of the input signal detected in the detection step is applied to the gate bias node to which the gate electrode of the FET is connected. Steps ST2 to ST4 maintain the gate bias voltage Vgt at the set voltage when the input power Pin of the input signal detected in the detection step is equal to or higher than the average input power Pinave, and input when the input power Pin is less than the average input power Pinave. The lower the power Pin is, the higher the gate bias voltage Vgt is than the set voltage in the bias voltage generation step. Thereafter, steps ST1 to ST4 are sequentially repeated.
  • FIGS. 5 to 11 verification results by simulation will be explained based on FIGS. 5 to 11.
  • a model with a large signal as an input signal was used in consideration of the influence of traps in the semiconductor constituting the FET.
  • the modulated wave signal as the input signal was 64QAM
  • the modulation bandwidth BW of the input signal was 20 MHz
  • the frequency of the input signal was 4 GHz
  • the drain voltage Vd was 50 V
  • the idle drain current Idq was 20 mA/mm.
  • the same verification was performed with the gate bias voltage Vgt of the FET set to a constant voltage.
  • dark, light black parts show examples of the first embodiment, and light black parts show comparative examples.
  • FIG. 5 shows an output signal that is a modulated wave signal from the FET, and shows an output spectrum with respect to frequency.
  • the horizontal axis shows the frequency and the vertical axis shows the output spectrum.
  • FIG. 6 shows changes in the gate bias voltage Vgt from the gate bias control circuit 100.
  • the horizontal axis represents time, and the vertical axis represents gate bias voltage.
  • FIG. 7 shows the AM-AM characteristics.
  • the horizontal axis shows the output power of the output signal, and the vertical axis shows the gain of the FET.
  • FIG. 8 shows AM-PM characteristics.
  • the horizontal axis shows the output power of the output signal, and the vertical axis shows the phase.
  • FIG. 9 shows the change in gain of the FET.
  • the horizontal axis represents time, and the vertical axis represents FET gain.
  • FIG. 10 shows the phase shift of the output signal.
  • the horizontal axis shows time and the vertical axis shows phase.
  • FIG. 11 shows ACPR.
  • the power level ratio between the main channel and the adjacent channel (indicated by E1 in FIG. 5) is different from that of the comparative example. This has a large advantage compared to the power level ratio between the main channel and the adjacent channel (shown at S1 in FIG. 5).
  • the dynamic AM-AM characteristic has a wider spread of FET gain with respect to the output power of the output signal than in the comparative example. is suppressed.
  • the spread of the dynamic AM-AM characteristics at low output (shown by E2 in FIG. 7) is different from the dynamic AM-AM characteristic at low output in the comparative example. This has the advantage of being smaller than the spread of AM-AM characteristics (shown at S2 in FIG. 7).
  • the ACPR is approximately -23.4 dBc in the comparative example, whereas it is improved to approximately -28.1 dBc when using the gate bias control circuit 100 according to the first embodiment. has been done. That is, when using the gate bias control circuit 100 according to the first embodiment, there is an advantage that the ratio of the power levels between the main channel and the adjacent channel is larger than the ratio of the power levels between the main channel and the adjacent channel in the comparative example. be.
  • the gate bias control circuit 100 when the gate bias control circuit 100 according to the first embodiment is used, the instantaneous decrease in FET gain due to the influence of the trap explained in the comparative example can be suppressed when the input power Pin is less than the average input power Pinave.
  • the gate bias control circuit 100 By applying a gate bias voltage Vgt higher than the set voltage to the gate electrode of the FET, the gate bias control circuit 100 has the effect of preventing a decrease in the gain of the FET, improving dynamic AM-AM characteristics, and improving distortion characteristics. suppresses deterioration.
  • the detection section 10, the bias voltage generation section 20, and the coupler Coup are configured using analog circuits as shown in FIG.
  • the configuration may be such that the gate bias voltage Vgt is directly generated by software using a digital signal that generates a modulated wave signal according to the level of the input power Pin in the input signal.
  • the generated gate bias voltage Vgt is the set voltage when the input power Pin is equal to or higher than the average input power Pinave, similar to the gate bias voltage Vgt generated by the analog circuit shown in FIG.
  • the power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the voltage is than the set voltage.
  • the voltage to be added to the set voltage when the input power Pin is less than the average input power Pinave may be configured by a differentiating circuit.
  • the bias voltage generation section 20 generates the gate bias voltage Vgt according to the input power Pin of the input signal detected by the detection section 10 for communication. Since the voltage is applied to the gate bias node to which the gate electrode of the amplification transistor FET is connected, it is possible to suppress the influence of the memory effect due to traps in the FET, thereby suppressing deterioration of distortion characteristics.
  • the bias voltage generation unit 20 when the input power Pin of the input signal detected by the detection unit 10 is equal to or higher than the average input power Pinave of the input signal, the bias voltage generation unit 20 generates a gate bias voltage of the set voltage. Vgt is applied to the gate bias node, and if the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the voltage than the set voltage is applied to the gate bias node, so the input power Pin is higher than the average input power Pinave.
  • the input power Pin is less than the average input power Pinave due to the influence of electrons being charged in the traps in the FET when Deterioration of distortion characteristics can be suppressed.
  • Embodiment 2 A gate bias control circuit 200 for a communication amplification transistor FET according to a second embodiment will be described with reference to FIGS. 12 to 22.
  • the gate bias control circuit 200 according to the second embodiment is different from the gate bias control circuit 100 according to the first embodiment in that the set voltage is a voltage that increases with time, and other points are the same.
  • the same reference numerals as those shown in FIGS. 1 to 11 indicate the same or equivalent parts.
  • the gate bias control circuit 200 is more suitable as a gate bias control circuit applied to an FET to which a modulated wave signal transmitted by a time division duplex (TDD) method is input as an input signal.
  • TDD time division duplex
  • the modulated wave signal by the TDD method is a modulated wave signal that repeats on and off, and the gain of the FET tends to decrease transiently due to the effect of electrons being charged in the traps in the FET, so the gate bias control circuit 200 adjusts the set voltage. The voltage is increased over time, and control is performed to transiently increase the average value of the gate bias voltage Vgt for the FET.
  • the gate bias control circuit 200 sets the set voltage to a voltage that increases over time, and when the input power Pin is equal to or higher than the average input power Pinave, the gate bias voltage Vgt is set to the set voltage, and the input power Pin increases.
  • the gate bias voltage Vgt is applied to the gate bias node than the set voltage.
  • the horizontal axis shows time
  • the vertical axis shows power for input power Pin and average input power Pinave
  • voltage for gate bias voltage Vgt is shown by a solid line
  • the input power Pin is shown by a broken line
  • the average input power Pinave is shown by a chain line.
  • the gate bias control circuit 200 includes a detection section 10 that detects an input signal, a bias voltage generation section 20A that applies a gate bias voltage Vgt to a gate bias node, and a coupler Coup that takes out an input signal. . Since the detection section 10 and the coupler Coup are the same as the detection section 10 and the coupler Coup in the first embodiment, their explanation will be omitted.
  • the bias voltage generation section 20A controls the gate bias voltage Vgt according to the level of the input power Pin in the input signal detected by the detection section 10, sets the set voltage to a voltage that increases over time, and sets the input power Pin to the average input voltage.
  • the gate bias voltage Vgt is set to the set voltage
  • the input power Pin is less than the average input power Pinave
  • the lower the input power Pin is, the higher the gate bias voltage Vgt is set to the gate bias node. to be applied.
  • the bias voltage generator 20A includes a voltage generator 21A, a limiter circuit 22, a first adder A1, an inverting amplifier 23, a second adder A2, a resistor R1, and a resistor R6.
  • the other constituent features except for the voltage generation section 21A are the same as the other constituent features except for the voltage generation section 21 in Embodiment 1, so the explanation will be omitted.
  • the voltage generator 21 has a first voltage node that outputs a first voltage that increases with time, and a second voltage node that outputs a second voltage different from the first voltage.
  • the voltage generation section 21 includes a first voltage generation section that outputs a first voltage to a first voltage node, and a second voltage generation section that outputs a second voltage to a second voltage node.
  • the first voltage generating section has a pulsed DC power supply DC1, a resistor Rt, and a capacitor Ct.
  • the output end of the pulsed DC power supply DC1 is connected to the first voltage node via a resistor Rt.
  • Capacitor Ct is connected between the first voltage node and the ground node.
  • the pulsed DC power supply DC1 accumulates charge in the capacitor Ct during the on-cycle, and removes the charge accumulated in the capacitor Ct during the off-cycle, thereby controlling the voltage between the electrodes of the capacitor Ct to a first voltage. A first voltage at the node is increased over time.
  • the product of the resistance Rt and the capacitance Ct is set to be the same as the time constant of the decrease in FET gain due to the influence of traps during TDD operation. Therefore, when a pulse is output from the pulsed DC power supply DC1, the gate bias voltage Vgt increases to compensate for the decrease in the gain of the FET.
  • the difference between the low gate bias voltage Vgt and the high gate bias voltage Vgt set by the pulsed DC power supply DC1 is set to an increase in the gate bias voltage which is the set voltage.
  • the pulsed direct current power supply DC1 sequentially increases the first voltage at the first voltage node from the initial voltage at each pulse period, and adjusts the on/off cycle to periodically initialize the first voltage. Return the voltage to the current state.
  • the second voltage generator has a direct current power supply DC2.
  • V O be the voltage in the initial state at the first voltage node
  • V ⁇ be the voltage raised from the set voltage in the initial state by the pulsed DC power supply DC1
  • V M be the second voltage.
  • the output voltage from the second adder A2, that is, the gate bias voltage Vgt is as follows.
  • the gate bias voltage Vgt is a voltage that changes from [V O to (V O +V ⁇ )]-(V M +V ⁇ ) in the range from V O -(V M +V L ) to (V O +V ⁇ )-V M is the value of
  • the voltage [V O ⁇ (V M +V L )] is the set voltage in the initial state when the input power Pin of the input signal is greater than or equal to the average input power Pinave of the input signal. Also, when the voltage [(V O + V ⁇ ) - (V M + V L )] transiently increases the average value of the gate bias voltage Vgt, the input power Pin of the input signal is the average input power of the input signal. This is the set voltage when it is equal to or higher than Pinave.
  • the input power Pin of the input signal is equal to the average input power of the input signal. This is the voltage when the input power Pin of the input signal is lower than the set voltage [(V O + V ⁇ ) - (V M + V L )]. The voltage will be high.
  • step ST1 the coupler Coup extracts an input signal input to the FET, and the detection section 10 detects the extracted input signal.
  • the step in which the detection unit 10 detects the input signal of the FET is a detection step.
  • the bias voltage generator 20 sets the set voltage to a set voltage that is increased over time (steps ST5 and ST6), and when the input signal of the FET is detected, the bias voltage generator 20 sets the input power Pin of the input signal to the average input voltage. If the input power Pin is greater than or equal to the average input power Pinave (step ST2), the gate bias voltage Vgt is set to an increased set voltage (step ST3A), and if the input power Pin is less than the average input power Pinave (step ST2), the gate bias voltage Vgt is increased.
  • the gate bias voltage Vgt is raised higher than the set voltage, specifically, the lower the input power Pin is, the higher the gate bias voltage Vgt is than the raised set voltage (step ST4A).
  • Steps ST2 to ST5, ST6, ST3A, and ST4A include steps of increasing the set voltage over time, and apply the gate bias voltage Vgt according to the input power Pin of the input signal detected in the detection step to the gate electrode of the FET. This is a step of generating a bias voltage to be applied to the gate bias node connected to the gate bias node.
  • Steps ST2 to ST5, ST6, ST3A, and ST4A include steps of increasing the set voltage over time, and when the input power Pin of the input signal detected in the detection step is equal to or higher than the average input power Pinave, the gate bias voltage Vgt
  • This is a bias voltage generation step in which the gate bias voltage Vgt is set to an increased set voltage, and when the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the gate bias voltage Vgt is set to be a voltage higher than the raised set voltage.
  • steps ST1 to ST4A are sequentially repeated.
  • FIGS. 16 to 22 verification results by simulation will be explained based on FIGS. 16 to 22.
  • a model with a large signal as an input signal was used in consideration of the influence of traps in the semiconductor constituting the FET.
  • the modulated wave signal as the input signal was 64QAM
  • the modulation bandwidth BW of the input signal was 20 MHz
  • the frequency of the input signal was 4 GHz
  • the drain voltage Vd was 50 V
  • the idle drain current Idq was 20 mA/mm.
  • dark, light black parts show examples of the second embodiment
  • light black parts show examples of the first embodiment.
  • FIG. 16 shows an output signal which is a modulated wave signal from the FET, and shows an output spectrum with respect to frequency.
  • the horizontal axis shows the frequency and the vertical axis shows the output spectrum.
  • FIG. 17 shows changes in the gate bias voltage Vgt from the gate bias control circuit 100.
  • the horizontal axis represents time, and the vertical axis represents gate bias voltage.
  • FIG. 18 shows AM-AM characteristics.
  • the horizontal axis shows the output power of the output signal, and the vertical axis shows the gain of the FET.
  • FIG. 19 shows AM-PM characteristics.
  • the horizontal axis shows the output power of the output signal, and the vertical axis shows the phase.
  • FIG. 20 shows the change in FET gain.
  • the horizontal axis represents time, and the vertical axis represents FET gain.
  • FIG. 21 shows the phase shift of the output signal.
  • the horizontal axis shows time and the vertical axis shows phase.
  • FIG. 22 shows ACPR.
  • the power level ratio of the main channel and the adjacent channel is lower when using the gate bias control circuit 100 according to the first embodiment.
  • the ratio of the power levels of the main channel and the adjacent channel is the same as in the case where the power level of the main channel and the adjacent channel are the same, and there is a large advantage over the comparative example.
  • the spread of the dynamic AM-AM characteristics at low output is the gate bias control according to the first embodiment. This is smaller than the spread of dynamic AM-AM characteristics at low output when the circuit 100 is used, and has a small advantage over the comparative example.
  • the transient gain of the FET changes over time. It is suppressed more than when using it.
  • ACPR is approximately -23.4 dBc in the comparative example and -28.1 dBc in the case where the gate bias control circuit 100 according to the first embodiment is used, whereas in the embodiment When the gate bias control circuit 200 according to the second embodiment is used, the improvement is approximately ⁇ 29.1. That is, when using the gate bias control circuit 100 according to the second embodiment, there is an advantage that the ratio of the power levels of the main channel and the adjacent channel is larger than the ratio of the power levels of the main channel and the adjacent channel of the comparative example. be.
  • the gate bias control circuit 200 When the gate bias control circuit 200 according to the second embodiment is applied to an FET into which a modulated wave signal by the TDD method is input as an input signal, the gain of the FET transiently generated due to the effect of electrons being charged in traps in the FET.
  • the gate bias control circuit 100 applies a gate bias voltage Vgt higher than the set voltage to the gate electrode of the FET. It has the effect of preventing a decrease in FET gain and suppresses deterioration of distortion characteristics.
  • the bias voltage generation section 20 increases the set voltage over time, and increases the setting voltage according to the input power Pin of the input signal detected by the detection section 10. Since the gate bias voltage Vgt is applied to the gate bias node to which the gate electrode of the communication amplification transistor FET is connected, it is possible to suppress the influence of the memory effect due to traps in the FET and to suppress deterioration of distortion characteristics.
  • the bias voltage generation section 20 increases the set voltage over time, and the input power Pin of the input signal detected by the detection section 10 is greater than or equal to the average input power Pinave of the input signal. If the input power Pin is less than the average input power Pinave, the gate bias voltage Vgt of the set voltage is applied to the gate bias node, and the lower the input power Pin is, the higher the voltage than the set voltage is applied to the gate bias node. Due to the effect of electrons being charged in the traps in the FET, excessive gain reduction of the FET can be prevented, and deterioration of distortion characteristics can be suppressed.
  • Embodiment 3 A gate bias control circuit 300 for a communication amplification transistor FET according to the third embodiment will be described with reference to FIGS. 23 to 33.
  • the gate bias control circuit 300 according to the third embodiment suppresses an unnecessary increase in the gate bias voltage Vgt for the FET, and the input power Pin of the input signal is adjusted to the average input power.
  • the difference is that the upper limit value of the gate bias voltage Vgt is limited when the power is less than Pinave, and the gain with respect to the output power in the dynamic AM-AM characteristic is made close to flat, but other points are the same.
  • the same reference numerals as those shown in FIGS. 1 to 22 indicate the same or corresponding parts.
  • the gate bias control circuit 300 sets the set voltage to a voltage that increases over time, and when the input power Pin is equal to or higher than the average input power Pinave, the gate bias voltage Vgt is set to the set voltage, and the input power Pin increases. If it is less than the average input power Pinave, the upper limit value of the gate bias voltage Vgt is limited, and the lower the input power Pin is, the higher the gate bias voltage Vgt is applied to the gate bias node than the set voltage.
  • the horizontal axis shows time
  • the vertical axis shows power for input power Pin and average input power Pinave
  • voltage for gate bias voltage Vgt is shown by a solid line
  • the input power Pin is shown by a broken line
  • the average input power Pinave is shown by a dashed-dotted line
  • the upper limit of the gate bias voltage Vgt is shown by a dashed-two dotted line.
  • the second limiter circuit 24 is connected to the output terminal of the inverting amplifier 23 and limits the upper limit value of the voltage at the output terminal of the inverting amplifier 23.
  • the second limiter circuit 24 limits the voltage at the output terminal of the inverting amplifier 23 to a constant voltage that is an upper limit value.
  • the second limiter circuit 24 has one end connected to the output end of the inverting amplifier 23 via a resistor R6, and the other end connected to the ground node.
  • the second limiter circuit 24 includes a diode D3 having an anode electrode connected to one end thereof, and a resistor R7 connected between the cathode of the diode D3 and the ground node.
  • the voltage inputted to the other input terminal of the second adder A2 connected to the output terminal of the inverting amplifier 23 is in the range of -(V M +V L2 ) to -VM ;
  • the output voltage V O1 from the first adder A1 is lower than the voltage V L2 limited by the second limiter circuit 24 .
  • the output voltage V O1 is a voltage value that changes to V M +V ⁇ in the range from V M to V M +V L1 .
  • V M is the second voltage
  • V L1 is the voltage limited by the first limiter circuit 22
  • V ⁇ is the voltage at the output node of the detection section 10.
  • the output voltage from the second adder A2, that is, the gate bias voltage Vgt is as follows.
  • the gate bias voltage Vgt is a voltage that changes from V O - (V O +V ⁇ )] - (V M +V ⁇ ) in the range from V O - (V M +V L2 ) to ( V O +V ⁇ ) - V M is the value of That is, the upper limit value of the gate bias voltage Vgt is limited by the voltage VL2 limited by the second limiter circuit 24.
  • the voltage [V O ⁇ (V M +V L2 )] is the set voltage in the initial state when the input power Pin of the input signal is greater than or equal to the average input power Pinave of the input signal. Also, when the voltage [(V O +V ⁇ )-(V M +V L2 )] transiently increases the average value of the gate bias voltage Vgt, the input power Pin of the input signal is the average input power of the input signal. This is the set voltage when it is equal to or higher than Pinave.
  • the input power Pin of the input signal is equal to the average input power of the input signal.
  • This is the voltage when the input power Pin of the input signal is less than Pinave, and the upper limit value is limited by the voltage according to the input power Pin of the input signal, that is, the voltage VL2 limited by the second limiter circuit 24, and the input power Pin of the input signal.
  • the higher the voltage is than the set voltage [(V O +V ⁇ ) ⁇ (V M +V L2 )].
  • Step ST1, step ST2, step ST3A, step ST5, and step ST6 are the same as step ST1, step ST2, step ST3A, step ST5, and step ST6 in the gate bias control circuit 200 according to the second embodiment. , the difference is that step ST4B is used instead of step ST4A.
  • step ST4B when the input power Pin is less than the average input power Pinave (step ST2), the upper limit value of the gate bias voltage Vgt is limited to raise the gate bias voltage Vgt from the increased set voltage (step ST6). Specifically, the lower the input power Pin is, the higher the gate bias voltage Vgt is made to be than the increased set voltage (step ST4A).
  • Steps ST2 to ST5, ST6, ST3A, and ST4B include steps of increasing the set voltage over time, and limit the upper limit of the gate bias voltage Vgt according to the input power Pin of the input signal detected in the detection step.
  • This is a bias voltage generation step in which the gate bias voltage Vgt applied to the FET is applied to the gate bias node to which the gate electrode of the FET is connected.
  • Steps ST2 to ST5, ST6, ST3A, and ST4B include steps of increasing the set voltage over time, and the upper limit of the gate bias voltage Vgt is limited so that the input power Pin of the input signal detected in the detection step is the average If the input power Pin is higher than the input power Pinave, the gate bias voltage Vgt is set to an increased set voltage, and if the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the gate bias voltage Vgt is set to be higher than the raised set voltage. This is a step of generating a bias voltage. Thereafter, steps ST1 to ST4B are sequentially repeated.
  • FIGS. 27 to 33 verification results by simulation will be explained based on FIGS. 27 to 33.
  • a model with a large signal as an input signal was used in consideration of the influence of traps in the semiconductor constituting the FET.
  • the modulated wave signal as the input signal was 64QAM
  • the modulation bandwidth BW of the input signal was 20 MHz
  • the frequency of the input signal was 4 GHz
  • the drain voltage Vd was 50 V
  • the idle drain current Idq was 20 mA/mm.
  • dark, light black portions represent examples of the third embodiment
  • light black portions represent examples of the second embodiment.
  • FIG. 27 shows an output signal that is a modulated wave signal from the FET, and shows an output spectrum with respect to frequency.
  • the horizontal axis shows the frequency and the vertical axis shows the output spectrum.
  • FIG. 28 shows changes in the gate bias voltage Vgt from the gate bias control circuit 100.
  • the horizontal axis represents time, and the vertical axis represents gate bias voltage.
  • FIG. 29 shows AM-AM characteristics.
  • the horizontal axis shows the output power of the output signal, and the vertical axis shows the gain of the FET.
  • FIG. 30 shows AM-PM characteristics.
  • the horizontal axis shows the output power of the output signal, and the vertical axis shows the phase.
  • FIG. 31 shows the change in FET gain.
  • the horizontal axis represents time, and the vertical axis represents FET gain.
  • FIG. 32 shows the phase shift of the output signal.
  • the horizontal axis shows time and the vertical axis shows phase.
  • Figure 33 shows ACPR.
  • the dynamic AM-AM characteristics are such that the FET gain spreads with respect to the output power of the output signal compared to the comparative example. is suppressed, and the gain with respect to the output power in the dynamic AM-AM characteristic is flat compared to the second embodiment.
  • the gate bias control circuit 300 limits the upper limit value of the gate bias voltage and controls the gate bias voltage Vgt of the communication amplification transistor FET according to the input power of the input signal. Since it is applied to the gate bias node to which the electrode is connected, the gain with respect to the output power in dynamic AM-AM characteristics can be made close to flat, and deterioration of distortion characteristics can be suppressed.
  • the bias voltage generation section 20 increases the set voltage over time, and communicates the gate bias voltage Vgt according to the input power Pin of the input signal detected by the detection section 10. Since the voltage is applied to the gate bias node to which the gate electrode of the amplifier transistor FET is connected, it is possible to suppress the influence of the memory effect due to traps in the FET and suppress the deterioration of the distortion characteristics.
  • the bias voltage generation section 20 increases the set voltage over time, and the input power Pin of the input signal detected by the detection section 10 is greater than or equal to the average input power Pinave of the input signal. If the gate bias voltage Vgt of the set voltage is applied to the gate bias node, and the input power Pin is less than the average input power Pinave, the upper limit value of the gate bias voltage is limited and the lower the input power Pin is, the higher the set voltage is. Since a high voltage is applied to the gate bias node, it is possible to prevent excessive gain reduction of the FET due to the effect of charging electrons to traps in the FET, and to make the gain close to flat with respect to the output power in dynamic AM-AM characteristics. Deterioration of distortion characteristics can be suppressed.
  • a gate bias control circuit uses a high-output amplifier used in a transmitter in a wireless base station system, particularly a gallium nitride transistor (GaN-Tr) or a gallium nitride transistor used as a communication amplification transistor. It is suitable as a high electron mobility transistor (GaN-HEMT) gate bias control circuit.
  • GaN-Tr gallium nitride transistor
  • GaN-HEMT high electron mobility transistor
  • 100, 200, 300 gate bias control circuit 10 detection section, 20, 20A, 20B bias voltage generation section, 21, 21A voltage generation section, 22 limiter, 23 inverting amplifier, 24 second limiter, A1 first adder , A2 second adder, FET communication amplification transistor.

Abstract

A gate bias control circuit (100) comprises: a wave detection unit (10) for detecting an input signal that is of a communication amplification transistor FET, that is a modulation wave signal obtained by modulation of a carrier wave, and that is inputted to a gate electrode as an input signal; and a bias voltage generation unit (20) that applies a gate bias voltage Vgt, according to input electric power of the input signal having been detected by the wave detection unit (10), to a gate bias node to which the gate electrode of the communication amplification transistor is connected.

Description

通信用増幅トランジスタのゲートバイアス制御回路及びゲートバイアス制御方法Gate bias control circuit and gate bias control method for communication amplification transistor
 本開示は、通信用増幅トランジスタのゲートバイアス制御回路及びゲートバイアス制御方法に関する。 The present disclosure relates to a gate bias control circuit and a gate bias control method for a communication amplification transistor.
 近年、無線基地局システムにおける送信機に用いられる増幅器として高出力増幅器が望まれている。
 このような通信用の高出力増幅器として、非特許文献1に示すようにガリウムナイトライド(GaN)を用いた高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor、以下、GaN-HEMTと言う)が検討されている。
In recent years, high-output amplifiers have been desired as amplifiers used in transmitters in wireless base station systems.
As a high-output amplifier for such communication, a high electron mobility transistor (HEMT: hereinafter referred to as GaN-HEMT) using gallium nitride (GaN) is used as shown in Non-Patent Document 1. It is being considered.
 非特許文献1に示されたGaN-HEMTのゲート電極に印加されるゲートバイアス電圧は、ゲート電極がインダクタと抵抗を介してゲートバイアス電圧に接続され、常に一定のゲートバイアス電圧になっている。 The gate bias voltage applied to the gate electrode of the GaN-HEMT shown in Non-Patent Document 1 is always constant because the gate electrode is connected to the gate bias voltage via an inductor and a resistor.
 このように、ゲートバイアス電圧が常に一定に印加されているGaN-HEMTにおいて、ゲート電極に搬送波を変調することにより得られた変調波信号を入力信号として入力したところ、振幅歪み(AM-AM:Amplitude to Amplitude)特性(以下、AM-AM特性と言う)及び位相歪み(AM-PM:Amplitude to Phase)特性(以下、AM-PM特性と言う)が歪み,隣接チャネル電力比(ACPR:Adjacent-Channel Power Ratio、以下、ACPRと言う)等の歪特性が劣化することが分かった。
 このように、AM-AM特性及びAM-PM特性に歪みが生ずるのは、GaNトランジスタを構成する半導体材料に結晶欠陥(以下、トラップという)を含んでおり、変調波信号を入力信号として入力した時、トラップによるメモリ効果の影響で生じたものと考えられる。
In this way, in a GaN-HEMT to which a constant gate bias voltage is always applied, when a modulated wave signal obtained by modulating a carrier wave to the gate electrode is input as an input signal, amplitude distortion (AM-AM: Amplitude to Amplitude) characteristics (hereinafter referred to as AM-AM characteristics) and phase distortion (AM-PM) characteristics (hereinafter referred to as AM-PM characteristics) are distorted, and the adjacent channel power ratio (ACPR) It was found that distortion characteristics such as Channel Power Ratio (hereinafter referred to as ACPR) deteriorate.
As described above, distortion occurs in the AM-AM characteristics and AM-PM characteristics because the semiconductor material that makes up the GaN transistor contains crystal defects (hereinafter referred to as traps), and when a modulated wave signal is input as an input signal. This is thought to have occurred due to the memory effect caused by the trap.
 本開示は上記した点に鑑みてなされたものであり、通信用増幅トランジスタにおいて、変調波信号を入力信号として入力した時に、通信用増幅トランジスタを構成する半導体材料のトラップによるメモリ効果の影響により生じる歪特性の劣化を抑制するゲートバイアス制御回路を得ることを目的とする。 The present disclosure has been made in view of the above-mentioned points, and when a modulated wave signal is input as an input signal to a communication amplification transistor, a memory effect occurs due to a trap in the semiconductor material constituting the communication amplification transistor. The object of the present invention is to obtain a gate bias control circuit that suppresses deterioration of distortion characteristics.
 本開示に係るゲートバイアス制御回路は、ゲート電極に搬送波を変調することにより得られた変調波信号が入力信号として入力される通信用増幅トランジスタの入力信号を検波する検波部と、検波部により検波した入力信号の入力電力に応じたゲートバイアス電圧を、通信用増幅トランジスタのゲート電極が接続されるゲートバイアスノードに印加するバイアス電圧発生部とを備える。 A gate bias control circuit according to the present disclosure includes a detection unit that detects an input signal of a communication amplification transistor into which a modulated wave signal obtained by modulating a carrier wave to a gate electrode is input as an input signal; and a bias voltage generating section that applies a gate bias voltage corresponding to the input power of the input signal to the gate bias node connected to the gate electrode of the communication amplification transistor.
 本開示によれば、通信用増幅トランジスタに変調波信号を入力信号として入力した時に通信用増幅トランジスタを構成する半導体材料のトラップによるメモリ効果を抑制し、歪特性の劣化を抑制する。 According to the present disclosure, when a modulated wave signal is input as an input signal to a communication amplification transistor, a memory effect due to a trap in a semiconductor material constituting the communication amplification transistor is suppressed, and deterioration of distortion characteristics is suppressed.
実施の形態1に係るゲートバイアス制御回路と通信用増幅トランジスタとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the gate bias control circuit and the communication amplification transistor according to the first embodiment. 通信用増幅トランジスタの入力信号の電力に対する実施の形態1に係るゲートバイアス制御回路からのゲートバイアス電圧との関係を示す図である。FIG. 3 is a diagram showing the relationship between the power of the input signal of the communication amplification transistor and the gate bias voltage from the gate bias control circuit according to the first embodiment. 実施の形態1に係るゲートバイアス制御回路を示す回路図である。1 is a circuit diagram showing a gate bias control circuit according to Embodiment 1. FIG. 実施の形態1に係るゲートバイアス制御回路が行う制御の動作の一例を示すフローチャートである。5 is a flowchart illustrating an example of control operations performed by the gate bias control circuit according to the first embodiment. 実施の形態1に係るゲートバイアス制御回路において、周波数に対する出力スペクトラムを示す図である。3 is a diagram showing an output spectrum versus frequency in the gate bias control circuit according to the first embodiment. FIG. 実施の形態1に係るゲートバイアス制御回路において、ゲートバイアス電圧の変移を示す図である。5 is a diagram showing changes in gate bias voltage in the gate bias control circuit according to the first embodiment. FIG. 実施の形態1に係るゲートバイアス制御回路において、AM-AM特性を示す図である。3 is a diagram showing AM-AM characteristics in the gate bias control circuit according to the first embodiment. FIG. 実施の形態1に係るゲートバイアス制御回路において、AM-PM特性を示す図である。3 is a diagram showing AM-PM characteristics in the gate bias control circuit according to the first embodiment. FIG. 実施の形態1に係るゲートバイアス制御回路において、利得の変移を示す図である。FIG. 3 is a diagram showing changes in gain in the gate bias control circuit according to the first embodiment. 実施の形態1に係るゲートバイアス制御回路において、出力信号の位相の変移を示す図である。5 is a diagram showing a phase shift of an output signal in the gate bias control circuit according to the first embodiment. FIG. 実施の形態1に係るゲートバイアス制御回路において、ACPRを示す図である。5 is a diagram showing ACPR in the gate bias control circuit according to the first embodiment. FIG. 実施の形態2に係るゲートバイアス制御回路と通信用増幅トランジスタとの関係を示す図である。7 is a diagram showing a relationship between a gate bias control circuit and a communication amplification transistor according to a second embodiment. FIG. 通信用増幅トランジスタの入力信号の電力に対する実施の形態2に係るゲートバイアス制御回路からのゲートバイアス電圧との関係を示す図である。FIG. 7 is a diagram showing the relationship between the power of the input signal of the communication amplification transistor and the gate bias voltage from the gate bias control circuit according to the second embodiment. 実施の形態2に係るゲートバイアス制御回路を示す回路図である。3 is a circuit diagram showing a gate bias control circuit according to a second embodiment. FIG. 実施の形態2に係るゲートバイアス制御回路が行う制御の動作の一例を示すフローチャートである。7 is a flowchart illustrating an example of control operations performed by the gate bias control circuit according to the second embodiment. 実施の形態2に係るゲートバイアス制御回路において、周波数に対する出力スペクトラムを示す図である。7 is a diagram showing an output spectrum versus frequency in a gate bias control circuit according to a second embodiment. FIG. 実施の形態2に係るゲートバイアス制御回路において、ゲートバイアス電圧の変移を示す図である。FIG. 7 is a diagram showing changes in gate bias voltage in the gate bias control circuit according to the second embodiment. 実施の形態2に係るゲートバイアス制御回路において、AM-AM特性を示す図である。7 is a diagram showing AM-AM characteristics in the gate bias control circuit according to the second embodiment. FIG. 実施の形態2に係るゲートバイアス制御回路において、AM-PM特性を示す図である。7 is a diagram showing AM-PM characteristics in the gate bias control circuit according to the second embodiment. FIG. 実施の形態2に係るゲートバイアス制御回路において、利得の変移を示す図である。7 is a diagram illustrating changes in gain in the gate bias control circuit according to the second embodiment. FIG. 実施の形態2に係るゲートバイアス制御回路において、出力信号の位相の変移を示す図である。7 is a diagram showing a phase shift of an output signal in a gate bias control circuit according to a second embodiment. FIG. 実施の形態2に係るゲートバイアス制御回路において、ACPRを示す図である。7 is a diagram showing ACPR in the gate bias control circuit according to the second embodiment. FIG. 実施の形態3に係るゲートバイアス制御回路と通信用増幅トランジスタとの関係を示す図である。FIG. 7 is a diagram showing a relationship between a gate bias control circuit and a communication amplification transistor according to a third embodiment. 通信用増幅トランジスタの入力信号の電力に対する実施の形態3に係るゲートバイアス制御回路からのゲートバイアス電圧との関係を示す図である。FIG. 7 is a diagram showing the relationship between the power of the input signal of the communication amplification transistor and the gate bias voltage from the gate bias control circuit according to the third embodiment. 実施の形態3に係るゲートバイアス制御回路を示す回路図である。FIG. 7 is a circuit diagram showing a gate bias control circuit according to a third embodiment. 実施の形態3に係るゲートバイアス制御回路が行う制御の動作の一例を示すフローチャートである。7 is a flowchart illustrating an example of control operations performed by the gate bias control circuit according to the third embodiment. 実施の形態3に係るゲートバイアス制御回路において、周波数に対する出力スペクトラムを示す図である。7 is a diagram showing an output spectrum versus frequency in a gate bias control circuit according to a third embodiment. FIG. 実施の形態3に係るゲートバイアス制御回路において、ゲートバイアス電圧の変移を示す図である。7 is a diagram showing changes in gate bias voltage in the gate bias control circuit according to Embodiment 3. FIG. 実施の形態3に係るゲートバイアス制御回路において、AM-AM特性を示す図である。FIG. 7 is a diagram showing AM-AM characteristics in the gate bias control circuit according to the third embodiment. 実施の形態3に係るゲートバイアス制御回路において、AM-PM特性を示す図である。FIG. 7 is a diagram showing AM-PM characteristics in the gate bias control circuit according to the third embodiment. 実施の形態3に係るゲートバイアス制御回路において、利得の変移を示す図である。FIG. 7 is a diagram illustrating changes in gain in the gate bias control circuit according to Embodiment 3; 実施の形態3に係るゲートバイアス制御回路において、出力信号の位相の変移を示す図である。FIG. 7 is a diagram showing a phase shift of an output signal in a gate bias control circuit according to a third embodiment. 実施の形態3に係るゲートバイアス制御回路において、ACPRを示す図である。FIG. 7 is a diagram showing ACPR in the gate bias control circuit according to the third embodiment.
実施の形態1.
 実施の形態1に係る通信用増幅トランジスタFETのゲートバイアス制御回路100を図1から図11に従い説明する。
 通信用増幅トランジスタFET(以下、単にFETと言う)は電解効果型トランジスタ(FET:Field Effect Transistor)であり、GaN-HEMTを一例として用いている。
Embodiment 1.
A gate bias control circuit 100 for a communication amplification transistor FET according to a first embodiment will be described with reference to FIGS. 1 to 11.
The communication amplification transistor FET (hereinafter simply referred to as FET) is a field effect transistor (FET), and a GaN-HEMT is used as an example.
 なお、FETはGaN-HEMTに限られるものではなく、GaNトランジスタなど、通信用増幅器に用いられ、ゲート電極に搬送波を変調することにより得られた変調波信号が入力信号として入力され、増幅機能を有するFETであれば、ゲートバイアス制御回路100は適用できる。
 また、FETに入力される入力信号は、変調帯域幅BWと半導体材料におけるトラップの電子捕獲時定数Tcの関係によらず,任意の変調帯域幅BWと電子捕獲時定数Tcを有する入力信号に対してゲートバイアス制御回路100は適用できる。
Note that FETs are not limited to GaN-HEMTs, but are used in communication amplifiers such as GaN transistors, and a modulated wave signal obtained by modulating a carrier wave is input to the gate electrode as an input signal, and the amplification function is performed. The gate bias control circuit 100 can be applied to any FET that has the following characteristics.
In addition, the input signal input to the FET is independent of the relationship between the modulation bandwidth BW and the electron capture time constant Tc of the trap in the semiconductor material, and the input signal input to the FET has an arbitrary modulation bandwidth BW and electron capture time constant Tc. The gate bias control circuit 100 can be applied.
 通信用増幅トランジスタFETにおいて、ゲート電極Gに搬送波を変調することにより得られた変調波信号が入力信号として入力され、ドレイン電極Dから入力信号を増幅した出力信号を出力する。
 図1に示すように、入力信号における入力電力をPinとし、出力信号における出力電力をPoutとする。入力信号における平均入力電力をPinaveとする。
In the communication amplification transistor FET, a modulated wave signal obtained by modulating a carrier wave is inputted to the gate electrode G as an input signal, and an output signal obtained by amplifying the input signal is outputted from the drain electrode D.
As shown in FIG. 1, the input power in the input signal is Pin, and the output power in the output signal is Pout. Let Pinave be the average input power in the input signal.
 FETのゲート電極GはインダクタLと抵抗Rdの直列体を介してゲートバイアスノードに接続される。図1に示すように、ゲートバイアスノードに印加されるゲートバイアス電圧をVgtとする。
 FETのドレイン電極Dはドレインノードに接続される。図1に示すように、ドレインノードに印加されるドレインバイアス電圧をVdとする。
 FETのソース電極Sは図1に示すように接地電位ノードに接続される。
The gate electrode G of the FET is connected to a gate bias node via a series body of an inductor L and a resistor Rd. As shown in FIG. 1, the gate bias voltage applied to the gate bias node is Vgt.
The drain electrode D of the FET is connected to the drain node. As shown in FIG. 1, the drain bias voltage applied to the drain node is Vd.
The source electrode S of the FET is connected to a ground potential node as shown in FIG.
 ゲートバイアス制御回路100は、FETに入力される入力信号を検波し、入力信号における入力電力Pinのレベルに応じてゲートバイアス電圧Vgtを制御してゲートバイアス電圧Vgtをゲートバイアスノードに印加する。
 ゲートバイアス制御回路100は、図2に示すように、入力電力Pinが平均入力電力Pinave以上であるとゲートバイアス電圧Vgtを設定電圧に維持し、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを設定電圧より高い電圧をゲートバイアスノードに印加する。
The gate bias control circuit 100 detects the input signal input to the FET, controls the gate bias voltage Vgt according to the level of the input power Pin in the input signal, and applies the gate bias voltage Vgt to the gate bias node.
As shown in FIG. 2, the gate bias control circuit 100 maintains the gate bias voltage Vgt at the set voltage when the input power Pin is greater than or equal to the average input power Pinave, and maintains the gate bias voltage Vgt at the set voltage when the input power Pin is less than the average input power Pinave. The lower the power Pin is, the higher the gate bias voltage Vgt is applied to the gate bias node than the set voltage.
 図2において、横軸は時間、縦軸は入力電力Pin及び平均入力電力Pinaveに対しては電力を、ゲートバイアス電圧Vgtに対しては電圧を示している。
 また、ゲートバイアス電圧Vgtを実線、入力電力Pinを破線、平均入力電力Pinaveを一点鎖線で示している。
In FIG. 2, the horizontal axis shows time, the vertical axis shows power for input power Pin and average input power Pinave, and voltage for gate bias voltage Vgt.
Further, the gate bias voltage Vgt is shown by a solid line, the input power Pin is shown by a broken line, and the average input power Pinave is shown by a chain line.
 ゲートバイアス制御回路100は、図3に示すように、入力信号を検波する検波部10と、ゲートバイアス電圧Vgtをゲートバイアスノードに印加するバイアス電圧発生部20と、入力信号を取り出すカップラCoupを備える。 As shown in FIG. 3, the gate bias control circuit 100 includes a detection section 10 that detects an input signal, a bias voltage generation section 20 that applies a gate bias voltage Vgt to a gate bias node, and a coupler Coup that extracts an input signal. .
 検波部10はカップラCoupにより取り出されたFETに入力される入力信号を検波する。
 検波部10は、図3に示すように、ダイオードD1と抵抗Raと容量C1を備える検波器である。
 ダイオードD1のアノードがカップラCoupに接続され、カソードが検波部10の出力ノードに接続される。
 抵抗R3と容量C1は検波部10の出力ノードと接地ノードとの間に接続される。
The detection unit 10 detects the input signal input to the FET taken out by the coupler Coup.
The detection unit 10 is a detector including a diode D1, a resistor Ra, and a capacitor C1, as shown in FIG.
The anode of the diode D1 is connected to the coupler Coup, and the cathode is connected to the output node of the detection section 10.
The resistor R3 and the capacitor C1 are connected between the output node of the detection section 10 and the ground node.
 バイアス電圧発生部20は、検波部10により検波された入力信号における入力電力Pinのレベルに応じてゲートバイアス電圧Vgtを制御し、入力電力Pinが平均入力電力Pinave以上であるとゲートバイアス電圧Vgtを設定電圧に維持し、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを設定電圧より高い電圧をゲートバイアスノードに印加する。 The bias voltage generation section 20 controls the gate bias voltage Vgt according to the level of the input power Pin in the input signal detected by the detection section 10, and controls the gate bias voltage Vgt when the input power Pin is equal to or higher than the average input power Pinave. When the set voltage is maintained and the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the gate bias voltage Vgt is applied to the gate bias node than the set voltage.
 バイアス電圧発生部20は、電圧発生部21とリミッタ回路22と第1の加算器A1と反転増幅器23と第2の加算器A2と抵抗R1と抵抗R6とを備える。
 電圧発生部21は第1の電圧を出力する第1の電圧ノードと第1の電圧と異なる第2の電圧を出力する第2の電圧ノードを有する。
The bias voltage generation section 20 includes a voltage generation section 21, a limiter circuit 22, a first adder A1, an inverting amplifier 23, a second adder A2, a resistor R1, and a resistor R6.
The voltage generator 21 has a first voltage node that outputs a first voltage and a second voltage node that outputs a second voltage different from the first voltage.
 電圧発生部21は直流電源DCと抵抗Rbと抵抗Rcを備える。
 直流電源DCは+電極に第1の電圧を出力する第1の電圧発生部を構成する。直流電源DCの+電極の接続点が第1の電圧ノードである。
 抵抗Rbと抵抗Rcは、第1の電圧ノードと接地電位ノードとの間に直列に接続され、抵抗Rbと抵抗Rcの接続点に第2の電圧、つまり、第1の電圧に対する第2の電圧を出力する第2の電圧発生部を構成する。抵抗Rbと抵抗Rcの接続点が第2の電圧ノードである。
The voltage generator 21 includes a DC power supply DC, a resistor Rb, and a resistor Rc.
The direct current power supply DC constitutes a first voltage generating section that outputs a first voltage to the + electrode. The connection point of the + electrode of the DC power supply DC is the first voltage node.
The resistor Rb and the resistor Rc are connected in series between the first voltage node and the ground potential node, and a second voltage is applied to the connection point between the resistor Rb and the resistor Rc, that is, a second voltage with respect to the first voltage. A second voltage generator is configured to output the voltage. The connection point between resistor Rb and resistor Rc is the second voltage node.
 リミッタ回路22は、検波部10の出力ノードに現れた入力信号における電圧の上限値を制限する。
 リミッタ回路22は、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinに応じた電圧が一端に現れ、平均入力電力Pinave以上になると一端に現れる電圧を上限値である一定電圧に制限する。
 リミッタ回路22は一端が抵抗R1を介して検波部10の出力ノードに接続され、他端が接地ノードに接続される。
 リミッタ回路22は一端にアノード電極が接続されるダイオードD2とダイオードD2のカソードと接地ノードとの間に接続される抵抗R2を備える。
The limiter circuit 22 limits the upper limit of the voltage of the input signal appearing at the output node of the detection section 10.
The limiter circuit 22 limits the voltage that appears at one end when the input power Pin is less than the average input power Pinave to a constant voltage that is an upper limit value. .
One end of the limiter circuit 22 is connected to the output node of the detection section 10 via a resistor R1, and the other end is connected to a ground node.
The limiter circuit 22 includes a diode D2 to which an anode electrode is connected at one end, and a resistor R2 connected between the cathode of the diode D2 and a ground node.
 第1の加算器A1は、一方の入力端が電圧発生部21の第2の電圧ノードに接続され、他方の入力端はリミッタ回路22の一端に接続される。
 第1の加算器A1からの出力電圧は、電圧発生部21の第2の電圧ノードにおける第2の電圧とリミッタ回路22の一端における電圧を加算した値であり、第2の電圧から第2の電圧にリミッタ回路22により制限された一定電圧を加算した電圧までの範囲の電圧である。
The first adder A1 has one input terminal connected to the second voltage node of the voltage generating section 21, and the other input terminal connected to one end of the limiter circuit 22.
The output voltage from the first adder A1 is the sum of the second voltage at the second voltage node of the voltage generator 21 and the voltage at one end of the limiter circuit 22, and is the sum of the second voltage at the second voltage node of the voltage generator 21 and the voltage at one end of the limiter circuit 22. This voltage ranges up to the voltage plus a constant voltage limited by the limiter circuit 22.
 すなわち、第2の電圧ノードにおける第2の電圧をV、リミッタ回路22により制限される電圧をVと、検波部10の出力ノードにおける電圧をVαとすると第1の加算器A1からの出力電圧VO1は次のようになる。
 出力電圧VO1はVからV+Vの範囲でV+Vαに変化する電圧の値である。
 第2の電圧Vは、ゲートバイアス電圧Vgtのレベルを調整するための電圧である。
That is, if the second voltage at the second voltage node is V M , the voltage limited by the limiter circuit 22 is V L , and the voltage at the output node of the detection section 10 is V α , then the voltage from the first adder A1 is The output voltage V O1 is as follows.
The output voltage V O1 is a voltage value that changes to V M +V α in the range from V M to V M +V L.
The second voltage VM is a voltage for adjusting the level of the gate bias voltage Vgt.
 第2の電圧Vから第2の電圧Vにリミッタ回路22により制限された一定電圧Vを加算した電圧(V+V)までは、第2の電圧Vに入力電力Pinに応じた電圧Vαを加算した値(V+Vα)を取る。
 すなわち、第1の加算器A1からの出力電圧は、入力電力Pinが平均入力電力Pinave未満であると第2の電圧Vから入力電力Pinに応じて上昇した電圧(V+Vα)であり、入力電力Pinが平均入力電力Pinave以上であると第2の電圧Vに一定電圧を加算した一定の電圧(V+V)に維持される。
From the second voltage V M to the voltage (V M +V L ) which is the sum of the second voltage V M and the constant voltage V L limited by the limiter circuit 22, the second voltage V M is adjusted according to the input power Pin. The value (V M +V α ) obtained by adding the voltage V α is taken.
That is, when the input power Pin is less than the average input power Pinave, the output voltage from the first adder A1 is a voltage (V M +V α ) increased from the second voltage V M according to the input power Pin. , when the input power Pin is equal to or higher than the average input power Pinave, it is maintained at a constant voltage (V M + V L ) obtained by adding a constant voltage to the second voltage VM.
 反転増幅器23は第1の加算器A1からの出力を反転して増幅した電圧を出力する。
 反転増幅器23はオペアンプAMPと抵抗R3から抵抗R5を備える。
 抵抗R3は第1の加算器A1の出力端とオペアンプAMPの反転入力端との間に接続される。
 抵抗R4はオペアンプAMPの反転入力端と出力端との間に接続される。
 抵抗R5はオペアンプAMPの非反転入力端と接地ノードとの間に接続される。
The inverting amplifier 23 inverts the output from the first adder A1 and outputs an amplified voltage.
The inverting amplifier 23 includes an operational amplifier AMP and resistors R3 to R5.
A resistor R3 is connected between the output terminal of the first adder A1 and the inverting input terminal of the operational amplifier AMP.
A resistor R4 is connected between the inverting input terminal and the output terminal of the operational amplifier AMP.
Resistor R5 is connected between the non-inverting input terminal of operational amplifier AMP and the ground node.
 第2の加算器A2は一方の入力端が電圧発生部21の第1の電圧ノード、つまり、直流電源DCの+電極に接続され、他方の入力端は抵抗R6を介して反転増幅器23の出力端に接続され、出力端はゲートバイアスノードに接続される。
 第2の加算器A2の出力端はゲートバイアス制御回路100の出力端である。
The second adder A2 has one input terminal connected to the first voltage node of the voltage generator 21, that is, the + electrode of the DC power supply DC, and the other input terminal connected to the output of the inverting amplifier 23 via the resistor R6. The output end is connected to the gate bias node.
The output terminal of the second adder A2 is the output terminal of the gate bias control circuit 100.
 第2の加算器A2からの出力電圧は、電圧発生部21の第1の電圧ノードにおける電圧に反転増幅器23の出力端における電圧を加算した値であり、電圧発生部21の電圧ノードにおける電圧から電圧発生部21の第2の電圧ノードにおける第2の電圧Vとリミッタ回路22の一端における電圧Vを加算した値を減算した値から、電圧発生部21の電圧ノードにおける電圧に電圧発生部21の第2の電圧ノードにおける第2の電圧Vを減算した電圧までの範囲の電圧である。
 なお、反転増幅器23の出力端における電圧は増幅された値であるが、説明の煩雑さを避けるため、増幅されている点の説明を省略している。以下についても同じある。
The output voltage from the second adder A2 is a value obtained by adding the voltage at the output terminal of the inverting amplifier 23 to the voltage at the first voltage node of the voltage generating section 21, and is a value obtained by adding the voltage at the output terminal of the inverting amplifier 23 to the voltage at the first voltage node of the voltage generating section The voltage at the voltage node of the voltage generator 21 is subtracted from the sum of the second voltage VM at the second voltage node of the voltage generator 21 and the voltage VL at one end of the limiter circuit 22. 21 minus the second voltage V M at the second voltage node of V M .
Note that although the voltage at the output terminal of the inverting amplifier 23 is an amplified value, the explanation of the amplification is omitted to avoid complication of explanation. The same applies to the following.
 すなわち、電圧発生部21の第1の電圧ノードにおける電圧をVとすると、第2の加算器A2からの出力電圧、つまり、ゲートバイアス電圧Vgtは次のようになる。
 ゲートバイアス電圧VgtはV-(V+V)からV-Vでの範囲でV-(V+Vα)に変化する電圧の値である。
That is, if the voltage at the first voltage node of the voltage generator 21 is V0 , the output voltage from the second adder A2, that is, the gate bias voltage Vgt is as follows.
The gate bias voltage Vgt is a voltage value that changes from V O -(V M +V L ) to V O -(V M +V α ) in the range of V O -V M.
 電圧[V-(V+V)]が入力信号の入力電力Pinが入力信号における平均入力電力Pinave以上であるときの設定電圧である。
 また、電圧[V-(V+Vα)]が入力信号の入力電力Pinが入力信号における平均入力電力Pinave未満であるときの電圧であり、入力信号の入力電力Pinに応じた電圧、つまり、入力信号の入力電力Pinが低いほど設定電圧より高い電圧となる。
The voltage [V O −(V M +V L )] is a set voltage when the input power Pin of the input signal is greater than or equal to the average input power Pinave of the input signal.
Further, the voltage [V O -(V M +V α )] is the voltage when the input power Pin of the input signal is less than the average input power Pinave of the input signal, and the voltage according to the input power Pin of the input signal, that is, , the lower the input power Pin of the input signal, the higher the voltage becomes than the set voltage.
 FETのゲート電極とゲートバイアスノードとの間にインダクタLと抵抗Rdとの直列体が接続され。
 また、ゲートバイアスノードと接地ノードとの間に容量C2が接続される。
A series body of an inductor L and a resistor Rd is connected between the gate electrode of the FET and the gate bias node.
Further, a capacitor C2 is connected between the gate bias node and the ground node.
 次に、実施の形態1に係るゲートバイアス制御回路100が行う動作について図4を用いて説明する。
 まず、ステップST1において、カップラCoupがFETに入力される入力信号を取り出し、取り出した入力信号を検波部10が検波する。
 検波部10がFETの入力信号を検波するステップが検波ステップである。
Next, the operation performed by gate bias control circuit 100 according to the first embodiment will be described using FIG. 4.
First, in step ST1, the coupler Coup extracts an input signal input to the FET, and the detection section 10 detects the extracted input signal.
The step in which the detection unit 10 detects the input signal of the FET is a detection step.
 FETの入力信号が検波されると、バイアス電圧発生部20が入力信号における入力電力Pinが平均入力電力Pinave以上である(ステップST2)とゲートバイアス電圧Vgtを設定電圧に維持し(ステップST3)、入力電力Pinが平均入力電力Pinave未満である(ステップST2)とゲートバイアス電圧Vgtを設定電圧より上昇、具体的には、入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを設定電圧より高い電圧にする(ステップST4)。 When the input signal of the FET is detected, the bias voltage generating section 20 maintains the gate bias voltage Vgt at the set voltage when the input power Pin in the input signal is equal to or higher than the average input power Pinave (step ST2) (step ST3), When the input power Pin is less than the average input power Pinave (step ST2), the gate bias voltage Vgt is raised higher than the set voltage. Specifically, the lower the input power Pin is, the higher the gate bias voltage Vgt is than the set voltage. (step ST4).
 ステップST2からステップST4が検波ステップにより検波した入力信号の入力電力Pinに応じたゲートバイアス電圧Vgtを、FETのゲート電極が接続されるゲートバイアスノードに印加するバイアス電圧発生ステップである。
 ステップST2からステップST4が検波ステップにより検波した入力信号の入力電力Pinが平均入力電力Pinave以上であるとゲートバイアス電圧Vgtを設定電圧に維持し、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを設定電圧より高い電圧にするバイアス電圧発生ステップである。
 以降、順次、ステップST1からステップST4が繰り返される。
Steps ST2 to ST4 are bias voltage generation steps in which a gate bias voltage Vgt corresponding to the input power Pin of the input signal detected in the detection step is applied to the gate bias node to which the gate electrode of the FET is connected.
Steps ST2 to ST4 maintain the gate bias voltage Vgt at the set voltage when the input power Pin of the input signal detected in the detection step is equal to or higher than the average input power Pinave, and input when the input power Pin is less than the average input power Pinave. The lower the power Pin is, the higher the gate bias voltage Vgt is than the set voltage in the bias voltage generation step.
Thereafter, steps ST1 to ST4 are sequentially repeated.
 実施の形態1に係るゲートバイアス制御回路100について、シミュレーションによる検証結果を図5から図11に基づいて説明する。
 検証は、FETを構成する半導体におけるトラップの影響を考慮し、入力信号として大信号であるモデルを用いた。具体的には、入力信号としての変調波信号を64QAM,入力信号の変調帯域幅BWを20MHz、入力信号の周波数を4GHz、ドレイン電圧Vdを50V、アイドルドレイン電流Idqを20mA/mmとした。
 比較のために、FETのゲートバイアス電圧Vgtを一定電圧とし、同じ検証を行った。
 図5から図11において、濃い薄墨部分は実施の形態1の例を、薄墨部分は比較の例を示している。
Regarding the gate bias control circuit 100 according to the first embodiment, verification results by simulation will be explained based on FIGS. 5 to 11.
In the verification, a model with a large signal as an input signal was used in consideration of the influence of traps in the semiconductor constituting the FET. Specifically, the modulated wave signal as the input signal was 64QAM, the modulation bandwidth BW of the input signal was 20 MHz, the frequency of the input signal was 4 GHz, the drain voltage Vd was 50 V, and the idle drain current Idq was 20 mA/mm.
For comparison, the same verification was performed with the gate bias voltage Vgt of the FET set to a constant voltage.
In FIGS. 5 to 11, dark, light black parts show examples of the first embodiment, and light black parts show comparative examples.
 図5はFETからの変調波信号である出力信号を示しており、周波数に対する出力スペクトラムを示している。横軸が周波数、縦軸が出力スペクトラムを示している。
 図6はゲートバイアス制御回路100からのゲートバイアス電圧Vgtの変移を示している。横軸が時間、縦軸がゲートバイアス電圧を示している。
 図7はAM-AM特性を示している。横軸が出力信号の出力電力、縦軸がFETの利得を示している。
 図8はAM-PM特性を示している。横軸が出力信号の出力電力、縦軸が位相を示している。
 図9はFETの利得の変移を示している。横軸が時間、縦軸がFETの利得を示している。
 図10は出力信号の位相の変移を示している。横軸が時間、縦軸が位相を示している。
 図11はACPRを示している。
FIG. 5 shows an output signal that is a modulated wave signal from the FET, and shows an output spectrum with respect to frequency. The horizontal axis shows the frequency and the vertical axis shows the output spectrum.
FIG. 6 shows changes in the gate bias voltage Vgt from the gate bias control circuit 100. The horizontal axis represents time, and the vertical axis represents gate bias voltage.
FIG. 7 shows the AM-AM characteristics. The horizontal axis shows the output power of the output signal, and the vertical axis shows the gain of the FET.
FIG. 8 shows AM-PM characteristics. The horizontal axis shows the output power of the output signal, and the vertical axis shows the phase.
FIG. 9 shows the change in gain of the FET. The horizontal axis represents time, and the vertical axis represents FET gain.
FIG. 10 shows the phase shift of the output signal. The horizontal axis shows time and the vertical axis shows phase.
FIG. 11 shows ACPR.
図5から理解されるように、実施の形態1に係るゲートバイアス制御回路100を用いた場合の、メインチャネルと隣接チャネルのパワーレベルの比(図5図示E1にて示す)が、比較例のメインチャネルと隣接チャネルのパワーレベルの比(図5図示S1にて示す)に比べて大きい利点がある。 As can be understood from FIG. 5, when the gate bias control circuit 100 according to the first embodiment is used, the power level ratio between the main channel and the adjacent channel (indicated by E1 in FIG. 5) is different from that of the comparative example. This has a large advantage compared to the power level ratio between the main channel and the adjacent channel (shown at S1 in FIG. 5).
 図7から理解されるように、実施の形態1に係るゲートバイアス制御回路100を用いた場合、動的AM-AM特性が比較例に比べて出力信号の出力電力に対してFETの利得の広がりが抑制されている。
 特に、実施の形態1に係るゲートバイアス制御回路100を用いた場合の、低出力時の動的AM-AM特性の広がり(図7図示E2にて示す)が比較例の低出力時の動的AM-AM特性の広がり(図7図示S2にて示す)に比べて小さい利点がある。
As can be understood from FIG. 7, when the gate bias control circuit 100 according to the first embodiment is used, the dynamic AM-AM characteristic has a wider spread of FET gain with respect to the output power of the output signal than in the comparative example. is suppressed.
In particular, when using the gate bias control circuit 100 according to the first embodiment, the spread of the dynamic AM-AM characteristics at low output (shown by E2 in FIG. 7) is different from the dynamic AM-AM characteristic at low output in the comparative example. This has the advantage of being smaller than the spread of AM-AM characteristics (shown at S2 in FIG. 7).
 また、図11から理解されるように、ACPRは比較例が略-23.4dBcであるのに対して実施の形態1に係るゲートバイアス制御回路100を用いた場合、略-28.1dBcに改善されている。
 すなわち、実施の形態1に係るゲートバイアス制御回路100を用いた場合の、メインチャネルと隣接チャネルのパワーレベルの比が、比較例のメインチャネルと隣接チャネルのパワーレベルの比に比べて大きい利点がある。
Furthermore, as can be understood from FIG. 11, the ACPR is approximately -23.4 dBc in the comparative example, whereas it is improved to approximately -28.1 dBc when using the gate bias control circuit 100 according to the first embodiment. has been done.
That is, when using the gate bias control circuit 100 according to the first embodiment, there is an advantage that the ratio of the power levels between the main channel and the adjacent channel is larger than the ratio of the power levels between the main channel and the adjacent channel in the comparative example. be.
 これらのことから、次のことが理解される。
 比較例においては、FETに入力される入力信号における入力電力Pinが平均入力電力Pinave以上である時にFETにおけるトラップに電子がチャージされる影響により入力電力Pinが平均入力電力Pinave未満の時に瞬時的なFETの利得が低下して動的なAM-AM特性が劣化し、歪特性が劣化している。
From these things, the following can be understood.
In the comparative example, when the input power Pin of the input signal input to the FET is greater than or equal to the average input power Pinave, electrons are charged to the trap in the FET, and when the input power Pin is less than the average input power Pinave, the instantaneous The gain of the FET has decreased, the dynamic AM-AM characteristics have deteriorated, and the distortion characteristics have deteriorated.
 これに対して実施の形態1に係るゲートバイアス制御回路100を用いた場合、比較例において説明したトラップの影響による瞬時的なFETの利得の低下を、入力電力Pinが平均入力電力Pinave未満の時にゲートバイアス制御回路100がゲートバイアス電圧Vgtを設定電圧より高い電圧をFETのゲート電極に印加することにより、FETの利得低下を防ぐ効果があり,動的なAM-AM特性を改善し,歪特性の劣化を抑制している。 On the other hand, when the gate bias control circuit 100 according to the first embodiment is used, the instantaneous decrease in FET gain due to the influence of the trap explained in the comparative example can be suppressed when the input power Pin is less than the average input power Pinave. By applying a gate bias voltage Vgt higher than the set voltage to the gate electrode of the FET, the gate bias control circuit 100 has the effect of preventing a decrease in the gain of the FET, improving dynamic AM-AM characteristics, and improving distortion characteristics. suppresses deterioration.
 さらに、図8、図9、及び図10から理解されるように、実施の形態1に係るゲートバイアス制御回路100を用いた場合、比較例に比べてAM-PM特性、FETの利得、及び出力信号の位相変異が改善されていることが理解できる。 Furthermore, as can be understood from FIGS. 8, 9, and 10, when using the gate bias control circuit 100 according to the first embodiment, the AM-PM characteristics, FET gain, and output It can be seen that the phase variation of the signal has been improved.
 なお、実施の形態1に係るゲートバイアス制御回路100において、検波部10とバイアス電圧発生部20とカップラCoupを、図3に示すように、アナログ回路を用いて構成したが、FETに入力される入力信号における入力電力Pinのレベルに応じて変調波信号を生成するデジタル信号を用いてソフト的に直接ゲートバイアス電圧Vgtを生成する構成であってもよい。 Note that in the gate bias control circuit 100 according to the first embodiment, the detection section 10, the bias voltage generation section 20, and the coupler Coup are configured using analog circuits as shown in FIG. The configuration may be such that the gate bias voltage Vgt is directly generated by software using a digital signal that generates a modulated wave signal according to the level of the input power Pin in the input signal.
 この場合においても、生成されるゲートバイアス電圧Vgtは、図3に示したアナログ回路により生成したゲートバイアス電圧Vgtと同様に、入力電力Pinが平均入力電力Pinave以上であると設定電圧であり、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低いほど設定電圧より高い電圧である。 In this case as well, the generated gate bias voltage Vgt is the set voltage when the input power Pin is equal to or higher than the average input power Pinave, similar to the gate bias voltage Vgt generated by the analog circuit shown in FIG. When the power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the voltage is than the set voltage.
 また、実施の形態1に係るゲートバイアス制御回路100において、入力電力Pinが平均入力電力Pinave未満である時に設定電圧に加算する電圧を微分回路によって構成してもよい。 Furthermore, in the gate bias control circuit 100 according to the first embodiment, the voltage to be added to the set voltage when the input power Pin is less than the average input power Pinave may be configured by a differentiating circuit.
 以上に述べたように、実施の形態1に係るゲートバイアス制御回路100は、バイアス電圧発生部20が、検波部10により検波した入力信号の入力電力Pinに応じたゲートバイアス電圧Vgtを、通信用増幅トランジスタFETのゲート電極が接続されるゲートバイアスノードに印加するので、FETにおけるトラップによるメモリ効果の影響を抑制して歪特性の劣化を抑制できる。 As described above, in the gate bias control circuit 100 according to the first embodiment, the bias voltage generation section 20 generates the gate bias voltage Vgt according to the input power Pin of the input signal detected by the detection section 10 for communication. Since the voltage is applied to the gate bias node to which the gate electrode of the amplification transistor FET is connected, it is possible to suppress the influence of the memory effect due to traps in the FET, thereby suppressing deterioration of distortion characteristics.
 実施の形態1に係るゲートバイアス制御回路100は、バイアス電圧発生部20が、検波部10により検波した入力信号の入力電力Pinが入力信号における平均入力電力Pinave以上であると設定電圧のゲートバイアス電圧Vgtをゲートバイアスノードに印加し、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低いほど設定電圧よりより高い電圧ゲートバイアスノードに印加するので、入力電力Pinが平均入力電力Pinave以上である時にFETにおけるトラップに電子がチャージされる影響により入力電力Pinが平均入力電力Pinave未満の時に瞬時的なFETの利得が低下して動的なAM-AM特性が劣化するのを抑制して歪特性の劣化を抑制できる。 In the gate bias control circuit 100 according to the first embodiment, when the input power Pin of the input signal detected by the detection unit 10 is equal to or higher than the average input power Pinave of the input signal, the bias voltage generation unit 20 generates a gate bias voltage of the set voltage. Vgt is applied to the gate bias node, and if the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the voltage than the set voltage is applied to the gate bias node, so the input power Pin is higher than the average input power Pinave. When the input power Pin is less than the average input power Pinave due to the influence of electrons being charged in the traps in the FET when Deterioration of distortion characteristics can be suppressed.
実施の形態2.
 実施の形態2に係る通信用増幅トランジスタFETのゲートバイアス制御回路200を図12から図22に従い説明する。
 実施の形態2に係るゲートバイアス制御回路200は、実施の形態1に係るゲートバイアス制御回路100に対して設定電圧を時間とともに上昇される電圧とした点が相違し、その他の点については同じである。
 図12から図22中、図1から図11に付された符号と同一符号は同一又は相当部分を示す。
Embodiment 2.
A gate bias control circuit 200 for a communication amplification transistor FET according to a second embodiment will be described with reference to FIGS. 12 to 22.
The gate bias control circuit 200 according to the second embodiment is different from the gate bias control circuit 100 according to the first embodiment in that the set voltage is a voltage that increases with time, and other points are the same. be.
12 to 22, the same reference numerals as those shown in FIGS. 1 to 11 indicate the same or equivalent parts.
 実施の形態2に係るゲートバイアス制御回路200は、時分割複信(TDD:Time Division Duplex)方式により送信された変調波信号が入力信号として入力されるFETに適用されるゲートバイアス制御回路としてより適している。
 TDD方式による変調波信号はオンとオフを繰り返す変調波信号であり、FETにおけるトラップに電子がチャージされる影響により過渡的にFETの利得が低下しやすいため、ゲートバイアス制御回路200は設定電圧を時間とともに上昇される電圧とし、FETに対するゲートバイアス電圧Vgtの平均値を過渡的に上昇させる制御を行う。
The gate bias control circuit 200 according to the second embodiment is more suitable as a gate bias control circuit applied to an FET to which a modulated wave signal transmitted by a time division duplex (TDD) method is input as an input signal. Are suitable.
The modulated wave signal by the TDD method is a modulated wave signal that repeats on and off, and the gain of the FET tends to decrease transiently due to the effect of electrons being charged in the traps in the FET, so the gate bias control circuit 200 adjusts the set voltage. The voltage is increased over time, and control is performed to transiently increase the average value of the gate bias voltage Vgt for the FET.
 ゲートバイアス制御回路200は、図13に示すように、設定電圧を時間とともに上昇される電圧とし、入力電力Pinが平均入力電力Pinave以上であるとゲートバイアス電圧Vgtを設定電圧にし、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを設定電圧よりより高い電圧としてゲートバイアスノードに印加する。 As shown in FIG. 13, the gate bias control circuit 200 sets the set voltage to a voltage that increases over time, and when the input power Pin is equal to or higher than the average input power Pinave, the gate bias voltage Vgt is set to the set voltage, and the input power Pin increases. When the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the gate bias voltage Vgt is applied to the gate bias node than the set voltage.
 図13において、横軸は時間、縦軸は入力電力Pin及び平均入力電力Pinaveに対しては電力を、ゲートバイアス電圧Vgtに対しては電圧を示している。
 また、ゲートバイアス電圧Vgtを実線、入力電力Pinを破線、平均入力電力Pinaveを一点鎖線で示している。
In FIG. 13, the horizontal axis shows time, the vertical axis shows power for input power Pin and average input power Pinave, and voltage for gate bias voltage Vgt.
Further, the gate bias voltage Vgt is shown by a solid line, the input power Pin is shown by a broken line, and the average input power Pinave is shown by a chain line.
 ゲートバイアス制御回路200は、図14に示すように、入力信号を検波する検波部10と、ゲートバイアス電圧Vgtをゲートバイアスノードに印加するバイアス電圧発生部20Aと、入力信号を取り出すカップラCoupを備える。
 検波部10とカップラCoupは実施の形態1における検波部10とカップラCoupと同じであるので説明は省略する。
As shown in FIG. 14, the gate bias control circuit 200 includes a detection section 10 that detects an input signal, a bias voltage generation section 20A that applies a gate bias voltage Vgt to a gate bias node, and a coupler Coup that takes out an input signal. .
Since the detection section 10 and the coupler Coup are the same as the detection section 10 and the coupler Coup in the first embodiment, their explanation will be omitted.
 バイアス電圧発生部20Aは、検波部10により検波された入力信号における入力電力Pinのレベルに応じてゲートバイアス電圧Vgtを制御し、設定電圧を時間とともに上昇される電圧とし、入力電力Pinが平均入力電力Pinave以上であるとゲートバイアス電圧Vgtを設定電圧にし、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを設定電圧より高い電圧をゲートバイアスノードに印加する。 The bias voltage generation section 20A controls the gate bias voltage Vgt according to the level of the input power Pin in the input signal detected by the detection section 10, sets the set voltage to a voltage that increases over time, and sets the input power Pin to the average input voltage. When the input power Pin is higher than the average input power Pinave, the gate bias voltage Vgt is set to the set voltage, and when the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the gate bias voltage Vgt is set to the gate bias node. to be applied.
 バイアス電圧発生部20Aは、電圧発生部21Aとリミッタ回路22と第1の加算器A1と反転増幅器23と第2の加算器A2と抵抗R1と抵抗R6とを備える。
 電圧発生部21Aを除いた他の構成要件は実施の形態1における電圧発生部21を除いた他の構成要件と同じであるので説明は省略する。
The bias voltage generator 20A includes a voltage generator 21A, a limiter circuit 22, a first adder A1, an inverting amplifier 23, a second adder A2, a resistor R1, and a resistor R6.
The other constituent features except for the voltage generation section 21A are the same as the other constituent features except for the voltage generation section 21 in Embodiment 1, so the explanation will be omitted.
 電圧発生部21は時間とともに上昇される第1の電圧を出力する第1の電圧ノードと、第1の電圧と異なる第2の電圧を出力する第2の電圧ノードを有する。
 電圧発生部21は第1の電圧ノードに第1の電圧を出力する第1の電圧発生部と、第2の電圧ノードに第2の電圧を出力する第2の電圧発生部とを備える。
The voltage generator 21 has a first voltage node that outputs a first voltage that increases with time, and a second voltage node that outputs a second voltage different from the first voltage.
The voltage generation section 21 includes a first voltage generation section that outputs a first voltage to a first voltage node, and a second voltage generation section that outputs a second voltage to a second voltage node.
 第1の電圧発生部はパルス直流電源DC1と抵抗Rtと容量Ctを有する。
 パルス直流電源DC1の出力端が抵抗Rtを介して第1の電圧ノードに接続される。
 容量Ctは第1の電圧ノードと接地ノードとの間に接続される。
 パルス直流電源DC1は、オンサイクルの時、容量Ctに電荷を蓄積し、オフサイクル時、容量Ctに蓄積された電荷を抜くことにより、容量Ctの電極間の電圧を制御して第1の電圧ノードにおける第1の電圧を時間とともに上昇させる。
The first voltage generating section has a pulsed DC power supply DC1, a resistor Rt, and a capacitor Ct.
The output end of the pulsed DC power supply DC1 is connected to the first voltage node via a resistor Rt.
Capacitor Ct is connected between the first voltage node and the ground node.
The pulsed DC power supply DC1 accumulates charge in the capacitor Ct during the on-cycle, and removes the charge accumulated in the capacitor Ct during the off-cycle, thereby controlling the voltage between the electrodes of the capacitor Ct to a first voltage. A first voltage at the node is increased over time.
 抵抗Rtと容量Ctの積が、TDD動作時のトラップの影響によるFETの利得の低下の時定数に対して同じに設定してある。
 従って、パルス直流電源DC1からパルスが出力されるとゲートバイアス電圧Vgtが上昇し、FETの利得の低下を補償する。
 パルス直流電源DC1が設定する低い時のゲートバイアス電圧Vgtと高い時のゲートバイアス電圧Vgtの差は設定電圧であるゲートバイアス電圧の上昇分に設定してある。
The product of the resistance Rt and the capacitance Ct is set to be the same as the time constant of the decrease in FET gain due to the influence of traps during TDD operation.
Therefore, when a pulse is output from the pulsed DC power supply DC1, the gate bias voltage Vgt increases to compensate for the decrease in the gain of the FET.
The difference between the low gate bias voltage Vgt and the high gate bias voltage Vgt set by the pulsed DC power supply DC1 is set to an increase in the gate bias voltage which is the set voltage.
 パルス直流電源DC1は、第1の電圧ノードにおける第1の電圧を初期状態である電圧からパルス周期ごとに順次上昇させ、オン/オフサイクルを調整することにより、周期的に第1の電圧を初期状態である電圧に戻す。
 第2の電圧発生部は直流電源DC2を有する。
The pulsed direct current power supply DC1 sequentially increases the first voltage at the first voltage node from the initial voltage at each pulse period, and adjusts the on/off cycle to periodically initialize the first voltage. Return the voltage to the current state.
The second voltage generator has a direct current power supply DC2.
 第1の電圧ノードにおける初期状態である電圧をV、パルス直流電源DC1により初期状態である設定電圧より上昇される電圧をVβとし、第2の電圧をVとする。
 第2の加算器A2からの出力電圧、つまり、ゲートバイアス電圧Vgtは次のようになる。
 ゲートバイアス電圧VgtはV-(V+V)から(V+Vβ)-Vでの範囲で[V~(V+Vβ)]-(V+Vα)に変化する電圧の値である。
Let V O be the voltage in the initial state at the first voltage node, V β be the voltage raised from the set voltage in the initial state by the pulsed DC power supply DC1, and V M be the second voltage.
The output voltage from the second adder A2, that is, the gate bias voltage Vgt is as follows.
The gate bias voltage Vgt is a voltage that changes from [V O to (V O +V β )]-(V M +V α ) in the range from V O -(V M +V L ) to (V O +V β )-V M is the value of
 電圧[V-(V+V)]が入力信号の入力電力Pinが入力信号における平均入力電力Pinave以上であるときの初期状態での設定電圧である。
 また、電圧[(V+Vβ)-(V+V)]が、ゲートバイアス電圧Vgtの平均値を過渡的に上昇させた時の、入力信号の入力電力Pinが入力信号における平均入力電力Pinave以上であるときの設定電圧である。
The voltage [V O −(V M +V L )] is the set voltage in the initial state when the input power Pin of the input signal is greater than or equal to the average input power Pinave of the input signal.
Also, when the voltage [(V O + V β ) - (V M + V L )] transiently increases the average value of the gate bias voltage Vgt, the input power Pin of the input signal is the average input power of the input signal. This is the set voltage when it is equal to or higher than Pinave.
 さらに、電圧[(V+Vβ)-(V+Vα)]が、ゲートバイアス電圧Vgtの平均値を過渡的に上昇させた時の、入力信号の入力電力Pinが入力信号における平均入力電力Pinave未満であるときの電圧であり、入力信号の入力電力Pinに応じた電圧、つまり、入力信号の入力電力Pinが低いほど設定電圧[(V+Vβ)-(V+V)]より高い電圧となる。 Furthermore, when the voltage [(V O +V β )-(V M +V α )] transiently increases the average value of the gate bias voltage Vgt, the input power Pin of the input signal is equal to the average input power of the input signal. This is the voltage when the input power Pin of the input signal is lower than the set voltage [(V O + V β ) - (V M + V L )]. The voltage will be high.
 次に、実施の形態2に係るゲートバイアス制御回路200が行う動作について図15を用いて説明する。
 まず、ステップST1において、カップラCoupがFETに入力される入力信号を取り出し、取り出した入力信号を検波部10が検波する。
 検波部10がFETの入力信号を検波するステップが検波ステップである。
Next, the operation performed by the gate bias control circuit 200 according to the second embodiment will be described using FIG. 15.
First, in step ST1, the coupler Coup extracts an input signal input to the FET, and the detection section 10 detects the extracted input signal.
The step in which the detection unit 10 detects the input signal of the FET is a detection step.
 バイアス電圧発生部20は設定電圧を時間とともに上昇させた設定電圧とし(ステップST5及びステップST6)、FETの入力信号が検波されると、バイアス電圧発生部20が入力信号における入力電力Pinが平均入力電力Pinave以上である(ステップST2)とゲートバイアス電圧Vgtを上昇された設定電圧にし(ステップST3A)、入力電力Pinが平均入力電力Pinave未満である(ステップST2)とゲートバイアス電圧Vgtを上昇された設定電圧より上昇、具体的には、入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを上昇された設定電圧よりより高い電圧にする(ステップST4A)。 The bias voltage generator 20 sets the set voltage to a set voltage that is increased over time (steps ST5 and ST6), and when the input signal of the FET is detected, the bias voltage generator 20 sets the input power Pin of the input signal to the average input voltage. If the input power Pin is greater than or equal to the average input power Pinave (step ST2), the gate bias voltage Vgt is set to an increased set voltage (step ST3A), and if the input power Pin is less than the average input power Pinave (step ST2), the gate bias voltage Vgt is increased. The gate bias voltage Vgt is raised higher than the set voltage, specifically, the lower the input power Pin is, the higher the gate bias voltage Vgt is than the raised set voltage (step ST4A).
 ステップST2からステップST5及びステップST6とステップST3A及びステップST4Aが設定電圧を時間とともに上昇させるステップを含み、検波ステップにより検波した入力信号の入力電力Pinに応じたゲートバイアス電圧Vgtを、FETのゲート電極が接続されるゲートバイアスノードに印加するバイアス電圧発生ステップである。 Steps ST2 to ST5, ST6, ST3A, and ST4A include steps of increasing the set voltage over time, and apply the gate bias voltage Vgt according to the input power Pin of the input signal detected in the detection step to the gate electrode of the FET. This is a step of generating a bias voltage to be applied to the gate bias node connected to the gate bias node.
 ステップST2からステップST5及びステップST6とステップST3A及びステップST4Aが設定電圧を時間とともに上昇させるステップを含み、検波ステップにより検波した入力信号の入力電力Pinが平均入力電力Pinave以上であるとゲートバイアス電圧Vgtを上昇した設定電圧にし、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを上昇した設定電圧より高い電圧にするバイアス電圧発生ステップである。
 以降、順次、ステップST1からステップST4Aが繰り返される。
Steps ST2 to ST5, ST6, ST3A, and ST4A include steps of increasing the set voltage over time, and when the input power Pin of the input signal detected in the detection step is equal to or higher than the average input power Pinave, the gate bias voltage Vgt This is a bias voltage generation step in which the gate bias voltage Vgt is set to an increased set voltage, and when the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the gate bias voltage Vgt is set to be a voltage higher than the raised set voltage.
Thereafter, steps ST1 to ST4A are sequentially repeated.
 実施の形態2に係るゲートバイアス制御回路200について、シミュレーションによる検証結果を図16から図22に基づいて説明する。
 検証は、FETを構成する半導体におけるトラップの影響を考慮し、入力信号として大信号であるモデルを用いた。具体的には、入力信号としての変調波信号を64QAM,入力信号の変調帯域幅BWを20MHz、入力信号の周波数を4GHz、ドレイン電圧Vdを50V、アイドルドレイン電流Idqを20mA/mmとした。
 図16から図22において、濃い薄墨部分は実施の形態2の例を、薄墨部分は実施の形態1の例を示している。
Regarding the gate bias control circuit 200 according to the second embodiment, verification results by simulation will be explained based on FIGS. 16 to 22.
In the verification, a model with a large signal as an input signal was used in consideration of the influence of traps in the semiconductor constituting the FET. Specifically, the modulated wave signal as the input signal was 64QAM, the modulation bandwidth BW of the input signal was 20 MHz, the frequency of the input signal was 4 GHz, the drain voltage Vd was 50 V, and the idle drain current Idq was 20 mA/mm.
In FIGS. 16 to 22, dark, light black parts show examples of the second embodiment, and light black parts show examples of the first embodiment.
 図16はFETからの変調波信号である出力信号を示しており、周波数に対する出力スペクトラムを示している。横軸が周波数、縦軸が出力スペクトラムを示している。
 図17はゲートバイアス制御回路100からのゲートバイアス電圧Vgtの変移を示している。横軸が時間、縦軸がゲートバイアス電圧を示している。
 図18はAM-AM特性を示している。横軸が出力信号の出力電力、縦軸がFETの利得を示している。
 図19はAM-PM特性を示している。横軸が出力信号の出力電力、縦軸が位相を示している。
 図20はFETの利得の変移を示している。横軸が時間、縦軸がFETの利得を示している。
 図21は出力信号の位相の変移を示している。横軸が時間、縦軸が位相を示している。
 図22はACPRを示している。
FIG. 16 shows an output signal which is a modulated wave signal from the FET, and shows an output spectrum with respect to frequency. The horizontal axis shows the frequency and the vertical axis shows the output spectrum.
FIG. 17 shows changes in the gate bias voltage Vgt from the gate bias control circuit 100. The horizontal axis represents time, and the vertical axis represents gate bias voltage.
FIG. 18 shows AM-AM characteristics. The horizontal axis shows the output power of the output signal, and the vertical axis shows the gain of the FET.
FIG. 19 shows AM-PM characteristics. The horizontal axis shows the output power of the output signal, and the vertical axis shows the phase.
FIG. 20 shows the change in FET gain. The horizontal axis represents time, and the vertical axis represents FET gain.
FIG. 21 shows the phase shift of the output signal. The horizontal axis shows time and the vertical axis shows phase.
FIG. 22 shows ACPR.
 図16から明らかなように、実施の形態2に係るゲートバイアス制御回路100を用いた場合の、メインチャネルと隣接チャネルのパワーレベルの比が、実施の形態1に係るゲートバイアス制御回路100を用いた場合の、メインチャネルと隣接チャネルのパワーレベルの比と同様であり、比較例に比べて大きい利点がある。
 図18から理解されるように、特に、実施の形態2に係るゲートバイアス制御回路100を用いた場合の、低出力時の動的AM-AM特性の広がりが実施の形態1に係るゲートバイアス制御回路100を用いた場合の低出力時の動的AM-AM特性の広がりに比べても小さく、比較例に対して小さい利点がある。
As is clear from FIG. 16, when using the gate bias control circuit 100 according to the second embodiment, the power level ratio of the main channel and the adjacent channel is lower when using the gate bias control circuit 100 according to the first embodiment. The ratio of the power levels of the main channel and the adjacent channel is the same as in the case where the power level of the main channel and the adjacent channel are the same, and there is a large advantage over the comparative example.
As can be understood from FIG. 18, in particular, when using the gate bias control circuit 100 according to the second embodiment, the spread of the dynamic AM-AM characteristics at low output is the gate bias control according to the first embodiment. This is smaller than the spread of dynamic AM-AM characteristics at low output when the circuit 100 is used, and has a small advantage over the comparative example.
 図20から理解されるように、実施の形態2に係るゲートバイアス制御回路200を用いた場合、FETの過度的な利得の時間変動は比較例及び実施の形態1に係るゲートバイアス制御回路200を用いた場合より抑制されている。
 また、図22から理解されるように、ACPRは比較例が略-23.4dBc、実施の形態1に係るゲートバイアス制御回路100を用いた場合が-28.1dBcであるのに対して実施の形態2に係るゲートバイアス制御回路200を用いた場合、略-29.1に改善されている。
 すなわち、実施の形態2に係るゲートバイアス制御回路100を用いた場合の、メインチャネルと隣接チャネルのパワーレベルの比が、比較例のメインチャネルと隣接チャネルのパワーレベルの比に比べて大きい利点がある。
As can be understood from FIG. 20, when the gate bias control circuit 200 according to the second embodiment is used, the transient gain of the FET changes over time. It is suppressed more than when using it.
Furthermore, as can be understood from FIG. 22, ACPR is approximately -23.4 dBc in the comparative example and -28.1 dBc in the case where the gate bias control circuit 100 according to the first embodiment is used, whereas in the embodiment When the gate bias control circuit 200 according to the second embodiment is used, the improvement is approximately −29.1.
That is, when using the gate bias control circuit 100 according to the second embodiment, there is an advantage that the ratio of the power levels of the main channel and the adjacent channel is larger than the ratio of the power levels of the main channel and the adjacent channel of the comparative example. be.
 実施の形態2に係るゲートバイアス制御回路200を、TDD方式による変調波信号が入力信号として入力されるFETに適用した場合、FETにおけるトラップに電子がチャージされる影響により過渡的に生じるFETの利得の低下を、設定電圧を時間とともに上昇させ、入力電力Pinが平均入力電力Pinave未満の時にゲートバイアス制御回路100がゲートバイアス電圧Vgtを設定電圧より高い電圧をFETのゲート電極に印加することにより、FETの利得低下を防ぐ効果があり、歪特性の劣化を抑制している。 When the gate bias control circuit 200 according to the second embodiment is applied to an FET into which a modulated wave signal by the TDD method is input as an input signal, the gain of the FET transiently generated due to the effect of electrons being charged in traps in the FET. By increasing the set voltage over time, and when the input power Pin is less than the average input power Pinave, the gate bias control circuit 100 applies a gate bias voltage Vgt higher than the set voltage to the gate electrode of the FET. It has the effect of preventing a decrease in FET gain and suppresses deterioration of distortion characteristics.
 以上に述べたように、実施の形態2に係るゲートバイアス制御回路200は、バイアス電圧発生部20が、設定電圧を時間とともに上昇させ、検波部10により検波した入力信号の入力電力Pinに応じたゲートバイアス電圧Vgtを、通信用増幅トランジスタFETのゲート電極が接続されるゲートバイアスノードに印加するので、FETにおけるトラップによるメモリ効果の影響を抑制して歪特性の劣化を抑制できる。 As described above, in the gate bias control circuit 200 according to the second embodiment, the bias voltage generation section 20 increases the set voltage over time, and increases the setting voltage according to the input power Pin of the input signal detected by the detection section 10. Since the gate bias voltage Vgt is applied to the gate bias node to which the gate electrode of the communication amplification transistor FET is connected, it is possible to suppress the influence of the memory effect due to traps in the FET and to suppress deterioration of distortion characteristics.
 実施の形態2に係るゲートバイアス制御回路200は、バイアス電圧発生部20が、設定電圧を時間とともに上昇させ、検波部10により検波した入力信号の入力電力Pinが入力信号における平均入力電力Pinave以上であると設定電圧のゲートバイアス電圧Vgtをゲートバイアスノードに印加し、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低いほど設定電圧よりより高い電圧ゲートバイアスノードに印加するので、FETにおけるトラップに電子がチャージされる影響によりFETの過度的な利得低下を防ぎ、歪特性の劣化を抑制できる。 In the gate bias control circuit 200 according to the second embodiment, the bias voltage generation section 20 increases the set voltage over time, and the input power Pin of the input signal detected by the detection section 10 is greater than or equal to the average input power Pinave of the input signal. If the input power Pin is less than the average input power Pinave, the gate bias voltage Vgt of the set voltage is applied to the gate bias node, and the lower the input power Pin is, the higher the voltage than the set voltage is applied to the gate bias node. Due to the effect of electrons being charged in the traps in the FET, excessive gain reduction of the FET can be prevented, and deterioration of distortion characteristics can be suppressed.
実施の形態3.
 実施の形態3に係る通信用増幅トランジスタFETのゲートバイアス制御回路300を図23から図33に従い説明する。
 実施の形態3に係るゲートバイアス制御回路300は、実施の形態2に係るゲートバイアス制御回路200に対してFETに対するゲートバイアス電圧Vgtの不要な上昇分を抑え、入力信号における入力電力Pinが平均入力電力Pinave未満の時にゲートバイアス電圧Vgtの上限値を制限して動的AM-AM特性における出力電力に対する利得をフラットに近づけた点が相違し、その他の点については同じである。
 図23から図33中、図1から図22に付された符号と同一符号は同一又は相当部分を示す。
Embodiment 3.
A gate bias control circuit 300 for a communication amplification transistor FET according to the third embodiment will be described with reference to FIGS. 23 to 33.
Compared to the gate bias control circuit 200 according to the second embodiment, the gate bias control circuit 300 according to the third embodiment suppresses an unnecessary increase in the gate bias voltage Vgt for the FET, and the input power Pin of the input signal is adjusted to the average input power. The difference is that the upper limit value of the gate bias voltage Vgt is limited when the power is less than Pinave, and the gain with respect to the output power in the dynamic AM-AM characteristic is made close to flat, but other points are the same.
In FIGS. 23 to 33, the same reference numerals as those shown in FIGS. 1 to 22 indicate the same or corresponding parts.
 ゲートバイアス制御回路300は、図24に示すように、設定電圧を時間とともに上昇される電圧とし、入力電力Pinが平均入力電力Pinave以上であるとゲートバイアス電圧Vgtを設定電圧にし、入力電力Pinが平均入力電力Pinave未満であるとゲートバイアス電圧Vgtの上限値を制限して入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを設定電圧よりより高い電圧としてゲートバイアスノードに印加する。 As shown in FIG. 24, the gate bias control circuit 300 sets the set voltage to a voltage that increases over time, and when the input power Pin is equal to or higher than the average input power Pinave, the gate bias voltage Vgt is set to the set voltage, and the input power Pin increases. If it is less than the average input power Pinave, the upper limit value of the gate bias voltage Vgt is limited, and the lower the input power Pin is, the higher the gate bias voltage Vgt is applied to the gate bias node than the set voltage.
 図24において、横軸は時間、縦軸は入力電力Pin及び平均入力電力Pinaveに対しては電力を、ゲートバイアス電圧Vgtに対しては電圧を示している。
 また、ゲートバイアス電圧Vgtを実線、入力電力Pinを破線、平均入力電力Pinaveを一点鎖線、ゲートバイアス電圧Vgtの上限値(リミット)を二点鎖線で示している。
In FIG. 24, the horizontal axis shows time, the vertical axis shows power for input power Pin and average input power Pinave, and voltage for gate bias voltage Vgt.
Further, the gate bias voltage Vgt is shown by a solid line, the input power Pin is shown by a broken line, the average input power Pinave is shown by a dashed-dotted line, and the upper limit of the gate bias voltage Vgt is shown by a dashed-two dotted line.
 第2のリミッタ回路24は、反転増幅器23の出力端に接続され、反転増幅器23の出力端における電圧の上限値を制限する。
 第2のリミッタ回路24は、反転増幅器23の出力端における電圧を上限値である一定電圧に制限する。
 第2のリミッタ回路24は一端が抵抗R6を介して反転増幅器23の出力端に接続され、他端が接地ノードに接続される。
 第2のリミッタ回路24は一端にアノード電極が接続されるダイオードD3とダイオードD3のカソードと接地ノードとの間に接続される抵抗R7を備える。
The second limiter circuit 24 is connected to the output terminal of the inverting amplifier 23 and limits the upper limit value of the voltage at the output terminal of the inverting amplifier 23.
The second limiter circuit 24 limits the voltage at the output terminal of the inverting amplifier 23 to a constant voltage that is an upper limit value.
The second limiter circuit 24 has one end connected to the output end of the inverting amplifier 23 via a resistor R6, and the other end connected to the ground node.
The second limiter circuit 24 includes a diode D3 having an anode electrode connected to one end thereof, and a resistor R7 connected between the cathode of the diode D3 and the ground node.
 反転増幅器23の出力端に接続される第2の加算器A2の他方の入力端に入力される電圧は、-(V+VL2)から-Vでの範囲であり、第1の加算器A1からの出力電圧VO1が第2のリミッタ回路24により制限される電圧VL2より低いと第1の加算器A1からの出力電圧VO1である。
 出力電圧VO1はVからV+VL1の範囲でV+Vαに変化する電圧の値である。
 なお、Vは第2の電圧、VL1は第1のリミッタ回路22により制限される電圧、Vαは検波部10の出力ノードにおける電圧である。
The voltage inputted to the other input terminal of the second adder A2 connected to the output terminal of the inverting amplifier 23 is in the range of -(V M +V L2 ) to -VM ; The output voltage V O1 from the first adder A1 is lower than the voltage V L2 limited by the second limiter circuit 24 .
The output voltage V O1 is a voltage value that changes to V M +V α in the range from V M to V M +V L1 .
Note that V M is the second voltage, V L1 is the voltage limited by the first limiter circuit 22, and V α is the voltage at the output node of the detection section 10.
 第2の加算器A2からの出力電圧、つまり、ゲートバイアス電圧Vgtは次のようになる。
 ゲートバイアス電圧VgtはV-(V+VL2)から(V+Vβ)-Vでの範囲で[V~(V+Vβ)]-(V+Vα)に変化する電圧の値である。
 すなわち、ゲートバイアス電圧Vgtは第2のリミッタ回路24により制限される電圧VL2により上限値が制限されている。
The output voltage from the second adder A2, that is, the gate bias voltage Vgt is as follows.
The gate bias voltage Vgt is a voltage that changes from V O - (V O +V β )] - (V M +V α ) in the range from V O - (V M +V L2 ) to ( V O +V β ) - V M is the value of
That is, the upper limit value of the gate bias voltage Vgt is limited by the voltage VL2 limited by the second limiter circuit 24.
 なお、電圧[V-(V+VL2)]が入力信号の入力電力Pinが入力信号における平均入力電力Pinave以上であるときの初期状態での設定電圧である。
 また、電圧[(V+Vβ)-(V+VL2)]が、ゲートバイアス電圧Vgtの平均値を過渡的に上昇させた時の、入力信号の入力電力Pinが入力信号における平均入力電力Pinave以上であるときの設定電圧である。
Note that the voltage [V O −(V M +V L2 )] is the set voltage in the initial state when the input power Pin of the input signal is greater than or equal to the average input power Pinave of the input signal.
Also, when the voltage [(V O +V β )-(V M +V L2 )] transiently increases the average value of the gate bias voltage Vgt, the input power Pin of the input signal is the average input power of the input signal. This is the set voltage when it is equal to or higher than Pinave.
 さらに、電圧[(V+Vβ)-(V+Vα)]が、ゲートバイアス電圧Vgtの平均値を過渡的に上昇させた時の、入力信号の入力電力Pinが入力信号における平均入力電力Pinave未満であるときの電圧であり、入力信号の入力電力Pinに応じた電圧、つまり、第2のリミッタ回路24により制限される電圧VL2により上限値が制限され、入力信号の入力電力Pinが低いほど設定電圧[(V+Vβ)-(V+VL2)]より高い電圧となる。 Furthermore, when the voltage [(V O +V β )-(V M +V α )] transiently increases the average value of the gate bias voltage Vgt, the input power Pin of the input signal is equal to the average input power of the input signal. This is the voltage when the input power Pin of the input signal is less than Pinave, and the upper limit value is limited by the voltage according to the input power Pin of the input signal, that is, the voltage VL2 limited by the second limiter circuit 24, and the input power Pin of the input signal The lower the voltage, the higher the voltage is than the set voltage [(V O +V β )−(V M +V L2 )].
 次に、実施の形態3に係るゲートバイアス制御回路300が行う動作について図26を用いて説明する。
 ステップST1、ステップST2、ステップST3A、ステップST5、及び、ステップST6は、実施の形態2に係るゲートバイアス制御回路200におけるステップST1、ステップST2、ステップST3A、ステップST5、及び、ステップST6と同じであり、ステップST4Aに対してステップST4Bとした点が相違する。
Next, the operation performed by the gate bias control circuit 300 according to the third embodiment will be described using FIG. 26.
Step ST1, step ST2, step ST3A, step ST5, and step ST6 are the same as step ST1, step ST2, step ST3A, step ST5, and step ST6 in the gate bias control circuit 200 according to the second embodiment. , the difference is that step ST4B is used instead of step ST4A.
 すなわち、ステップST4Bは、入力電力Pinが平均入力電力Pinave未満である(ステップST2)と、ゲートバイアス電圧Vgtの上限値を制限してゲートバイアス電圧Vgtを上昇された設定電圧(ステップST6)より上昇、具体的には、入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを上昇された設定電圧よりより高い電圧にする(ステップST4A)。 That is, in step ST4B, when the input power Pin is less than the average input power Pinave (step ST2), the upper limit value of the gate bias voltage Vgt is limited to raise the gate bias voltage Vgt from the increased set voltage (step ST6). Specifically, the lower the input power Pin is, the higher the gate bias voltage Vgt is made to be than the increased set voltage (step ST4A).
 ステップST2からステップST5及びステップST6とステップST3A及びステップST4Bが設定電圧を時間とともに上昇させるステップを含み、ゲートバイアス電圧Vgtの上限値を制限して検波ステップにより検波した入力信号の入力電力Pinに応じたゲートバイアス電圧Vgtを、FETのゲート電極が接続されるゲートバイアスノードに印加するバイアス電圧発生ステップである。 Steps ST2 to ST5, ST6, ST3A, and ST4B include steps of increasing the set voltage over time, and limit the upper limit of the gate bias voltage Vgt according to the input power Pin of the input signal detected in the detection step. This is a bias voltage generation step in which the gate bias voltage Vgt applied to the FET is applied to the gate bias node to which the gate electrode of the FET is connected.
 ステップST2からステップST5及びステップST6とステップST3A及びステップST4Bが設定電圧を時間とともに上昇させるステップを含み、ゲートバイアス電圧Vgtの上限値を制限して検波ステップにより検波した入力信号の入力電力Pinが平均入力電力Pinave以上であるとゲートバイアス電圧Vgtを上昇した設定電圧にし、入力電力Pinが平均入力電力Pinave未満であると入力電力Pinが低くければ低いほどゲートバイアス電圧Vgtを上昇した設定電圧より高い電圧にするバイアス電圧発生ステップである。
 以降、順次、ステップST1からステップST4Bが繰り返される。
Steps ST2 to ST5, ST6, ST3A, and ST4B include steps of increasing the set voltage over time, and the upper limit of the gate bias voltage Vgt is limited so that the input power Pin of the input signal detected in the detection step is the average If the input power Pin is higher than the input power Pinave, the gate bias voltage Vgt is set to an increased set voltage, and if the input power Pin is less than the average input power Pinave, the lower the input power Pin is, the higher the gate bias voltage Vgt is set to be higher than the raised set voltage. This is a step of generating a bias voltage.
Thereafter, steps ST1 to ST4B are sequentially repeated.
 実施の形態3に係るゲートバイアス制御回路300について、シミュレーションによる検証結果を図27から図33に基づいて説明する。
 検証は、FETを構成する半導体におけるトラップの影響を考慮し、入力信号として大信号であるモデルを用いた。具体的には、入力信号としての変調波信号を64QAM,入力信号の変調帯域幅BWを20MHz、入力信号の周波数を4GHz、ドレイン電圧Vdを50V、アイドルドレイン電流Idqを20mA/mmとした。
 図27から図33において、濃い薄墨部分は実施の形態3の例を、薄墨部分は実施の形態2の例を示している。
Regarding the gate bias control circuit 300 according to the third embodiment, verification results by simulation will be explained based on FIGS. 27 to 33.
In the verification, a model with a large signal as an input signal was used in consideration of the influence of traps in the semiconductor constituting the FET. Specifically, the modulated wave signal as the input signal was 64QAM, the modulation bandwidth BW of the input signal was 20 MHz, the frequency of the input signal was 4 GHz, the drain voltage Vd was 50 V, and the idle drain current Idq was 20 mA/mm.
In FIGS. 27 to 33, dark, light black portions represent examples of the third embodiment, and light black portions represent examples of the second embodiment.
 図27はFETからの変調波信号である出力信号を示しており、周波数に対する出力スペクトラムを示している。横軸が周波数、縦軸が出力スペクトラムを示している。
 図28はゲートバイアス制御回路100からのゲートバイアス電圧Vgtの変移を示している。横軸が時間、縦軸がゲートバイアス電圧を示している。
 図29はAM-AM特性を示している。横軸が出力信号の出力電力、縦軸がFETの利得を示している。
 図30はAM-PM特性を示している。横軸が出力信号の出力電力、縦軸が位相を示している。
 図31はFETの利得の変移を示している。横軸が時間、縦軸がFETの利得を示している。
 図32は出力信号の位相の変移を示している。横軸が時間、縦軸が位相を示している。
 図33はACPRを示している。
FIG. 27 shows an output signal that is a modulated wave signal from the FET, and shows an output spectrum with respect to frequency. The horizontal axis shows the frequency and the vertical axis shows the output spectrum.
FIG. 28 shows changes in the gate bias voltage Vgt from the gate bias control circuit 100. The horizontal axis represents time, and the vertical axis represents gate bias voltage.
FIG. 29 shows AM-AM characteristics. The horizontal axis shows the output power of the output signal, and the vertical axis shows the gain of the FET.
FIG. 30 shows AM-PM characteristics. The horizontal axis shows the output power of the output signal, and the vertical axis shows the phase.
FIG. 31 shows the change in FET gain. The horizontal axis represents time, and the vertical axis represents FET gain.
FIG. 32 shows the phase shift of the output signal. The horizontal axis shows time and the vertical axis shows phase.
Figure 33 shows ACPR.
 図29から理解されるように、実施の形態3に係るゲートバイアス制御回路300を用いた場合、動的AM-AM特性が比較例に比べて出力信号の出力電力に対してFETの利得の広がりが抑制されており、実施の形態2にくらべても動的AM-AM特性における出力電力に対する利得がフラットになっている。 As can be understood from FIG. 29, when the gate bias control circuit 300 according to the third embodiment is used, the dynamic AM-AM characteristics are such that the FET gain spreads with respect to the output power of the output signal compared to the comparative example. is suppressed, and the gain with respect to the output power in the dynamic AM-AM characteristic is flat compared to the second embodiment.
 図31から理解されるように、実施の形態3に係るゲートバイアス制御回路300を用いた場合、FETの過度的な利得の時間変動は比較例より抑制されている。
 また、図33から理解されるように、ACPR(Alt)は比較例が略-37.4dBc、実施の形態2に係るゲートバイアス制御回路200を用いた場合が-43.6dBcであるのに対して実施の形態3に係るゲートバイアス制御回路300を用いた場合、略-54.1に改善されている。
As can be understood from FIG. 31, when the gate bias control circuit 300 according to the third embodiment is used, excessive temporal fluctuations in gain of the FET are suppressed compared to the comparative example.
Furthermore, as understood from FIG. 33, ACPR (Alt) is approximately -37.4 dBc in the comparative example, and -43.6 dBc in the case where the gate bias control circuit 200 according to the second embodiment is used. When the gate bias control circuit 300 according to the third embodiment is used, the improvement is approximately -54.1.
 以上に述べたように、実施の形態3に係るゲートバイアス制御回路300は、ゲートバイアス電圧の上限値を制限して入力信号の入力電力に応じたゲートバイアス電圧Vgtを通信用増幅トランジスタFETのゲート電極が接続されるゲートバイアスノードに印加するので、動的AM-AM特性における出力電力に対する利得をフラットに近づけることができ、歪特性の劣化を抑制している。 As described above, the gate bias control circuit 300 according to the third embodiment limits the upper limit value of the gate bias voltage and controls the gate bias voltage Vgt of the communication amplification transistor FET according to the input power of the input signal. Since it is applied to the gate bias node to which the electrode is connected, the gain with respect to the output power in dynamic AM-AM characteristics can be made close to flat, and deterioration of distortion characteristics can be suppressed.
 実施の形態3に係るゲートバイアス制御回路300は、バイアス電圧発生部20が、設定電圧を時間とともに上昇させ、検波部10により検波した入力信号の入力電力Pinに応じたゲートバイアス電圧Vgtを、通信用増幅トランジスタFETのゲート電極が接続されるゲートバイアスノードに印加するので、FETにおけるトラップによるメモリ効果の影響を抑制して歪特性の劣化を抑制できる。 In the gate bias control circuit 300 according to the third embodiment, the bias voltage generation section 20 increases the set voltage over time, and communicates the gate bias voltage Vgt according to the input power Pin of the input signal detected by the detection section 10. Since the voltage is applied to the gate bias node to which the gate electrode of the amplifier transistor FET is connected, it is possible to suppress the influence of the memory effect due to traps in the FET and suppress the deterioration of the distortion characteristics.
 実施の形態3に係るゲートバイアス制御回路300は、バイアス電圧発生部20が、設定電圧を時間とともに上昇させ、検波部10により検波した入力信号の入力電力Pinが入力信号における平均入力電力Pinave以上であると設定電圧のゲートバイアス電圧Vgtをゲートバイアスノードに印加し、入力電力Pinが平均入力電力Pinave未満であると、ゲートバイアス電圧の上限値を制限して入力電力Pinが低いほど設定電圧よりより高い電圧ゲートバイアスノードに印加するので、FETにおけるトラップに電子がチャージされる影響によりFETの過度的な利得低下を防ぎ、動的AM-AM特性における出力電力に対する利得をフラットに近づけることができ、歪特性の劣化を抑制できる。 In the gate bias control circuit 300 according to the third embodiment, the bias voltage generation section 20 increases the set voltage over time, and the input power Pin of the input signal detected by the detection section 10 is greater than or equal to the average input power Pinave of the input signal. If the gate bias voltage Vgt of the set voltage is applied to the gate bias node, and the input power Pin is less than the average input power Pinave, the upper limit value of the gate bias voltage is limited and the lower the input power Pin is, the higher the set voltage is. Since a high voltage is applied to the gate bias node, it is possible to prevent excessive gain reduction of the FET due to the effect of charging electrons to traps in the FET, and to make the gain close to flat with respect to the output power in dynamic AM-AM characteristics. Deterioration of distortion characteristics can be suppressed.
 なお、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 Note that it is possible to freely combine each embodiment, to modify any component of each embodiment, or to omit any component in each embodiment.
 本開示に係るゲートバイアス制御回路は、無線基地局システムにおける送信機に用いられる高出力増幅器、特に、通信用増幅トランジスタとして用いられるガリウムナイトライドトランジスタ(GaN-Tr)もしくはガリウムナイトライドトランジスタを用いた高電子移動度トランジスタ(GaN-HEMT)ゲートバイアス制御回路として好適である。 A gate bias control circuit according to the present disclosure uses a high-output amplifier used in a transmitter in a wireless base station system, particularly a gallium nitride transistor (GaN-Tr) or a gallium nitride transistor used as a communication amplification transistor. It is suitable as a high electron mobility transistor (GaN-HEMT) gate bias control circuit.
 100、200、300 ゲートバイアス制御回路、10 検波部、20、20A、20B バイアス電圧発生部、21、21A 電圧発生部、22 リミッタ、23 反転増幅器、24 第2のリミッタ、A1 第1の加算器、A2 第2の加算器、FET 通信用増幅トランジスタ。 100, 200, 300 gate bias control circuit, 10 detection section, 20, 20A, 20B bias voltage generation section, 21, 21A voltage generation section, 22 limiter, 23 inverting amplifier, 24 second limiter, A1 first adder , A2 second adder, FET communication amplification transistor.

Claims (16)

  1.  ゲート電極に搬送波を変調することにより得られた変調波信号が入力信号として入力される通信用増幅トランジスタの入力信号を検波する検波部と、
     前記検波部により検波した入力信号の入力電力に応じたゲートバイアス電圧を、前記通信用増幅トランジスタのゲート電極が接続されるゲートバイアスノードに印加するバイアス電圧発生部と、
     を備える通信用増幅トランジスタのゲートバイアス制御回路。
    a detection unit that detects an input signal of a communication amplification transistor into which a modulated wave signal obtained by modulating a carrier wave to a gate electrode is input as an input signal;
    a bias voltage generation unit that applies a gate bias voltage corresponding to the input power of the input signal detected by the detection unit to a gate bias node to which the gate electrode of the communication amplification transistor is connected;
    A gate bias control circuit for a communications amplification transistor.
  2.  前記バイアス電圧発生部は、前記ゲートバイアス電圧を、前記入力信号の入力電力が前記入力信号における平均入力電力以上であると設定電圧とし、前記入力信号の入力電力が前記入力信号における平均入力電力未満であると前記入力信号の入力電力が低いほど前記設定電圧より高い電圧とする請求項1に記載のゲートバイアス制御回路。 The bias voltage generation section sets the gate bias voltage to a set voltage when the input power of the input signal is equal to or higher than the average input power in the input signal, and sets the gate bias voltage to a set voltage when the input power of the input signal is less than the average input power in the input signal. The gate bias control circuit according to claim 1, wherein the lower the input power of the input signal, the higher the voltage is set than the set voltage.
  3.  前記バイアス電圧発生部は、
     第1の電圧を出力する第1の電圧ノードと前記第1の電圧と異なる第2の電圧を出力する第2の電圧ノードを有する電圧発生部と、
     前記検波部の出力ノードに接続され、前記検波部の出力ノードに現れる入力信号の電圧の上限値を制限するリミッタ回路と、
     一方の入力端が前記電圧発生部の第2の電圧ノードに接続され、他方の入力端はリミッタの一端に接続され、前記第2の電圧ノードにおける第2の電圧と前記リミッタの一端における電圧を加算して出力する第1の加算器と、
     前記第1の加算器からの出力を反転した電圧を出力する反転増幅器と、
     一方の入力端が前記電圧発生部の第1の電圧ノードに接続され、他方の入力端が前記反転増幅器の出力端に接続され、出力端が前記ゲートバイアスノードに接続され、前記第1の電圧ノードにおける第1の電圧と前記反転増幅器の出力端における電圧を加算して前記ゲートバイアスノードに出力する第2の加算器と、を備える
     請求項1に記載のゲートバイアス制御回路。
    The bias voltage generating section includes:
    a voltage generator having a first voltage node that outputs a first voltage and a second voltage node that outputs a second voltage different from the first voltage;
    a limiter circuit that is connected to the output node of the detection section and limits an upper limit value of the voltage of the input signal appearing at the output node of the detection section;
    One input terminal is connected to a second voltage node of the voltage generator, the other input terminal is connected to one end of a limiter, and the second voltage at the second voltage node and the voltage at one end of the limiter are connected. a first adder that adds and outputs;
    an inverting amplifier that outputs a voltage obtained by inverting the output from the first adder;
    One input terminal is connected to the first voltage node of the voltage generator, the other input terminal is connected to the output terminal of the inverting amplifier, the output terminal is connected to the gate bias node, and the first voltage The gate bias control circuit according to claim 1, further comprising: a second adder that adds the first voltage at the node and the voltage at the output end of the inverting amplifier and outputs the result to the gate bias node.
  4.  前記バイアス電圧発生部は、設定電圧を時間とともに上昇される電圧とし、前記ゲートバイアス電圧を、前記入力信号の入力電力が前記入力信号における平均入力電力以上であると前記設定電圧とし、前記入力信号の入力電力が前記入力信号における平均入力電力未満であると前記入力信号の入力電力が低いほど前記設定電圧より高い電圧とする請求項1に記載のゲートバイアス制御回路。 The bias voltage generating section sets the set voltage to a voltage that increases with time, sets the gate bias voltage to the set voltage when the input power of the input signal is equal to or higher than the average input power of the input signal, and sets the gate bias voltage to the set voltage when the input power of the input signal is equal to or higher than the average input power of the input signal, and 2. The gate bias control circuit according to claim 1, wherein when the input power of the input signal is less than the average input power of the input signal, the lower the input power of the input signal, the higher the voltage is set than the set voltage.
  5.  前記バイアス電圧発生部は、
     時間とともに上昇される第1の電圧を出力する第1の電圧ノードと前記第1の電圧と異なる第2の電圧を出力する第2の電圧ノードを有する電圧発生部と、
     前記検波部の出力ノードに接続され、前記検波部の出力ノードに現れる入力信号の電圧の上限値を制限するリミッタ回路と、
     一方の入力端が前記電圧発生部の第2の電圧ノードに接続され、他方の入力端はリミッタの一端に接続され、前記第2の電圧ノードにおける第2の電圧と前記リミッタの一端における電圧を加算して出力する第1の加算器と、
     前記第1の加算器からの出力を反転した電圧を出力する反転増幅器と、
     一方の入力端が前記電圧発生部の第1の電圧ノードに接続され、他方の入力端が前記反転増幅器の出力端に接続され、出力端が前記ゲートバイアスノードに接続され、前記第1の電圧ノードにおける第1の電圧と前記反転増幅器の出力端における電圧を加算して前記ゲートバイアスノードに出力する第2の加算器と、を備える
     請求項1に記載のゲートバイアス制御回路。
    The bias voltage generating section includes:
    a voltage generator having a first voltage node that outputs a first voltage that increases over time and a second voltage node that outputs a second voltage different from the first voltage;
    a limiter circuit that is connected to the output node of the detection section and limits an upper limit value of the voltage of the input signal appearing at the output node of the detection section;
    One input terminal is connected to a second voltage node of the voltage generator, the other input terminal is connected to one end of a limiter, and the second voltage at the second voltage node and the voltage at one end of the limiter are connected. a first adder that adds and outputs;
    an inverting amplifier that outputs a voltage obtained by inverting the output from the first adder;
    One input terminal is connected to the first voltage node of the voltage generator, the other input terminal is connected to the output terminal of the inverting amplifier, the output terminal is connected to the gate bias node, and the first voltage The gate bias control circuit according to claim 1, further comprising: a second adder that adds the first voltage at the node and the voltage at the output end of the inverting amplifier and outputs the result to the gate bias node.
  6.  前記電圧発生部は、前記第1の電圧ノードに第1の電圧を出力する第1の電圧発生部と、前記第2の電圧ノードに第2の電圧を出力する第2の電圧発生部とを備え、
     前記第1の電圧発生部は前記第1の電圧ノードに出力端が接続されるパルス直流電源と前記第1の電圧ノードと接地ノードとの間に接続される容量とを有し、
     前記第2の電圧発生部は直流電源である、
     請求項5に記載のゲートバイアス制御回路。
    The voltage generation section includes a first voltage generation section that outputs a first voltage to the first voltage node, and a second voltage generation section that outputs a second voltage to the second voltage node. Prepare,
    The first voltage generating section includes a pulsed DC power source whose output end is connected to the first voltage node, and a capacitor connected between the first voltage node and a ground node,
    the second voltage generator is a DC power supply;
    The gate bias control circuit according to claim 5.
  7.  前記バイアス電圧発生部は、設定電圧を時間とともに上昇される電圧とし、前記ゲートバイアス電圧を、前記入力信号の入力電力が前記入力信号における平均入力電力以上であると前記設定電圧とし、前記入力信号の入力電力が前記入力信号における平均入力電力未満であると前記ゲートバイアス電圧の上限値を制限して前記入力信号の入力電力が低いほど前記設定電圧より高い電圧とする請求項1に記載のゲートバイアス制御回路。 The bias voltage generating section sets the set voltage to a voltage that increases with time, sets the gate bias voltage to the set voltage when the input power of the input signal is equal to or higher than the average input power of the input signal, and sets the gate bias voltage to the set voltage when the input power of the input signal is equal to or higher than the average input power of the input signal, and The gate according to claim 1, wherein the upper limit value of the gate bias voltage is limited when the input power of the input signal is less than the average input power of the input signal, and the lower the input power of the input signal, the higher the voltage is than the set voltage. Bias control circuit.
  8.  前記バイアス電圧発生部は、
     時間とともに上昇される第1の電圧を出力する第1の電圧ノードと前記第1の電圧と異なる第2の電圧を出力する第2の電圧ノードを有する電圧発生部と、
     前記検波部の出力ノードに接続され、前記検波部の出力ノードに現れる入力信号の電圧の上限値を制限する第1のリミッタ回路と、
     一方の入力端が前記電圧発生部の第2の電圧ノードに接続され、他方の入力端はリミッタの一端に接続され、前記第2の電圧ノードにおける第2の電圧と前記リミッタの一端における電圧を加算して出力する第1の加算器と、
     前記第1の加算器からの出力を反転した電圧を出力する反転増幅器と、
     前記反転増幅器の出力端に接続され、前記反転増幅器の出力端における電圧の上限値を制限する第2のリミッタ回路と、
     一方の入力端が前記電圧発生部の第1の電圧ノードに接続され、他方の入力端が前記反転増幅器の出力端に接続され、出力端が前記ゲートバイアスノードに接続され、前記第1の電圧ノードにおける第1の電圧と前記反転増幅器の出力端における電圧を加算して前記ゲートバイアスノードに出力する第2の加算器と、を備える
     請求項1に記載のゲートバイアス制御回路。
    The bias voltage generating section includes:
    a voltage generator having a first voltage node that outputs a first voltage that increases over time and a second voltage node that outputs a second voltage different from the first voltage;
    a first limiter circuit that is connected to the output node of the detection section and limits an upper limit value of the voltage of the input signal appearing at the output node of the detection section;
    One input terminal is connected to a second voltage node of the voltage generator, the other input terminal is connected to one end of a limiter, and the second voltage at the second voltage node and the voltage at one end of the limiter are connected. a first adder that adds and outputs;
    an inverting amplifier that outputs a voltage obtained by inverting the output from the first adder;
    a second limiter circuit connected to the output end of the inverting amplifier and limiting an upper limit value of the voltage at the output end of the inverting amplifier;
    One input terminal is connected to the first voltage node of the voltage generator, the other input terminal is connected to the output terminal of the inverting amplifier, the output terminal is connected to the gate bias node, and the first voltage The gate bias control circuit according to claim 1, further comprising: a second adder that adds the first voltage at the node and the voltage at the output end of the inverting amplifier and outputs the result to the gate bias node.
  9.  前記電圧発生部は、前記第1の電圧ノードに第1の電圧を出力する第1の電圧発生部と、前記第2の電圧ノードに第2の電圧を出力する第2の電圧発生部とを備え、
     前記第1の電圧発生部は前記第1の電圧ノードに出力端が接続されるパルス直流電源と前記第1の電圧ノードと接地ノードとの間に接続される容量とを有し、
     前記第2の電圧発生部は直流電源である、
     請求項8に記載のゲートバイアス制御回路。
    The voltage generation section includes a first voltage generation section that outputs a first voltage to the first voltage node, and a second voltage generation section that outputs a second voltage to the second voltage node. Prepare,
    The first voltage generating section includes a pulsed DC power source whose output end is connected to the first voltage node, and a capacitor connected between the first voltage node and a ground node,
    the second voltage generator is a DC power supply;
    The gate bias control circuit according to claim 8.
  10.  前記入力信号としての変調波信号は、時分割複信方式により送信された変調波信号である請求項4から請求項9のいずれか1項に記載のゲートバイアス制御回路。 The gate bias control circuit according to any one of claims 4 to 9, wherein the modulated wave signal as the input signal is a modulated wave signal transmitted by a time division duplex method.
  11.  前記バイアス電圧発生部は、
     第1の電圧を出力する第1の電圧ノードと前記第1の電圧と異なる第2の電圧を出力する第2の電圧ノードを有する電圧発生部と、
     前記検波部の出力ノードに接続され、前記検波部の出力ノードに現れる入力信号の電圧の上限値を制限する第1のリミッタ回路と、
     一方の入力端が前記電圧発生部の第2の電圧ノードに接続され、他方の入力端はリミッタの一端に接続され、前記第2の電圧ノードにおける第2の電圧と前記リミッタの一端における電圧を加算して出力する第1の加算器と、
     前記第1の加算器からの出力を反転した電圧を出力する反転増幅器と、
     前記反転増幅器の出力端に接続され、前記反転増幅器の出力端における電圧の上限値を制限する第2のリミッタ回路と、
     一方の入力端が前記電圧発生部の第1の電圧ノードに接続され、他方の入力端が前記反転増幅器の出力端に接続され、出力端が前記ゲートバイアスノードに接続され、前記第1の電圧ノードにおける第1の電圧と前記反転増幅器の出力端における電圧を加算して前記ゲートバイアスノードに出力する第2の加算器と、を備える
     請求項1に記載のゲートバイアス制御回路。
    The bias voltage generating section includes:
    a voltage generator having a first voltage node that outputs a first voltage and a second voltage node that outputs a second voltage different from the first voltage;
    a first limiter circuit that is connected to the output node of the detection section and limits an upper limit value of the voltage of the input signal appearing at the output node of the detection section;
    One input terminal is connected to a second voltage node of the voltage generator, the other input terminal is connected to one end of a limiter, and the second voltage at the second voltage node and the voltage at one end of the limiter are connected. a first adder that adds and outputs;
    an inverting amplifier that outputs a voltage obtained by inverting the output from the first adder;
    a second limiter circuit connected to the output end of the inverting amplifier and limiting an upper limit value of the voltage at the output end of the inverting amplifier;
    One input terminal is connected to the first voltage node of the voltage generator, the other input terminal is connected to the output terminal of the inverting amplifier, the output terminal is connected to the gate bias node, and the first voltage The gate bias control circuit according to claim 1, further comprising: a second adder that adds the first voltage at the node and the voltage at the output end of the inverting amplifier and outputs the result to the gate bias node.
  12.  ゲート電極に搬送波を変調することにより得られた変調波信号が入力信号として入力される通信用増幅トランジスタのゲートバイアス電圧を制御するゲートバイアス制御方法であって、
     前記通信用増幅トランジスタの入力信号を検波する検波ステップと、
     前記検波ステップにより検波した入力信号の入力電力に応じたゲートバイアス電圧を、前記通信用増幅トランジスタのゲート電極が接続されるゲートバイアスノードに印加するバイアス電圧発生ステップと、
     を備えたゲートバイアス制御方法。
    A gate bias control method for controlling a gate bias voltage of a communication amplification transistor to which a modulated wave signal obtained by modulating a carrier wave to a gate electrode is input as an input signal, the method comprising:
    a detection step of detecting the input signal of the communication amplification transistor;
    a bias voltage generation step of applying a gate bias voltage corresponding to the input power of the input signal detected in the detection step to a gate bias node to which the gate electrode of the communication amplification transistor is connected;
    Gate bias control method with
  13.  前記バイアス電圧発生ステップは、前記ゲートバイアス電圧を、前記入力信号の入力電力が前記入力信号における平均入力電力以上であると設定電圧とし、前記入力信号の入力電力が前記入力信号における平均入力電力未満であると前記入力信号の入力電力が低いほど前記設定電圧より高い電圧とする請求項12に記載のゲートバイアス制御方法。 The bias voltage generating step sets the gate bias voltage to a set voltage when the input power of the input signal is equal to or higher than the average input power in the input signal, and when the input power of the input signal is less than the average input power in the input signal. 13. The gate bias control method according to claim 12, wherein the lower the input power of the input signal, the higher the voltage is set than the set voltage.
  14.  前記バイアス電圧発生ステップは、設定電圧を時間とともに上昇させるステップを含み、前記ゲートバイアス電圧を、前記入力信号の入力電力が前記入力信号における平均入力電力以上であると前記設定電圧とし、前記入力信号の入力電力が前記入力信号における平均入力電力未満であると前記入力信号の入力電力が低いほど前記設定電圧より高い電圧とする請求項12に記載のゲートバイアス制御方法。 The bias voltage generation step includes a step of increasing the set voltage over time, and the gate bias voltage is set to the set voltage when the input power of the input signal is equal to or higher than the average input power of the input signal, and the gate bias voltage is set to the set voltage when the input power of the input signal is equal to or higher than the average input power of the input signal, 13. The gate bias control method according to claim 12, wherein when the input power of the input signal is less than the average input power of the input signal, the lower the input power of the input signal, the higher the voltage is set than the set voltage.
  15.  前記バイアス電圧発生ステップは、設定電圧を時間とともに上昇させるステップを含み、前記ゲートバイアス電圧を、前記入力信号の入力電力が前記入力信号における平均入力電力以上であると前記設定電圧とし、前記入力信号の入力電力が前記入力信号における平均入力電力未満であると前記ゲートバイアス電圧の上限値を制限して前記入力信号の入力電力が低いほど前記設定電圧より高い電圧とする請求項12に記載のゲートバイアス制御方法。 The bias voltage generation step includes a step of increasing the set voltage over time, and the gate bias voltage is set to the set voltage when the input power of the input signal is equal to or higher than the average input power of the input signal, and the gate bias voltage is set to the set voltage when the input power of the input signal is equal to or higher than the average input power of the input signal, 13. The gate according to claim 12, wherein the upper limit value of the gate bias voltage is limited when the input power of the input signal is less than the average input power of the input signal, and the lower the input power of the input signal, the higher the voltage is than the set voltage. Bias control method.
  16.  前記バイアス電圧発生ステップは、前記ゲートバイアス電圧を、前記入力信号の入力電力が前記入力信号における平均入力電力以上であると前記設定電圧とし、前記入力信号の入力電力が前記入力信号における平均入力電力未満であると前記ゲートバイアス電圧の上限値を制限して前記入力信号の入力電力が低いほど前記設定電圧より高い電圧とする請求項12に記載のゲートバイアス制御方法。 The bias voltage generating step sets the gate bias voltage to the set voltage when the input power of the input signal is equal to or higher than the average input power in the input signal, and the input power of the input signal is set to the set voltage when the input power of the input signal is equal to or higher than the average input power in the input signal. 13. The gate bias control method according to claim 12, wherein the upper limit value of the gate bias voltage is limited so that the lower the input power of the input signal is, the higher the voltage is than the set voltage.
PCT/JP2022/016459 2022-03-31 2022-03-31 Gate bias control circuit and gate bias control method for communication amplification transistor WO2023188245A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/016459 WO2023188245A1 (en) 2022-03-31 2022-03-31 Gate bias control circuit and gate bias control method for communication amplification transistor
JP2023563925A JPWO2023188245A1 (en) 2022-03-31 2022-03-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016459 WO2023188245A1 (en) 2022-03-31 2022-03-31 Gate bias control circuit and gate bias control method for communication amplification transistor

Publications (1)

Publication Number Publication Date
WO2023188245A1 true WO2023188245A1 (en) 2023-10-05

Family

ID=88199807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016459 WO2023188245A1 (en) 2022-03-31 2022-03-31 Gate bias control circuit and gate bias control method for communication amplification transistor

Country Status (2)

Country Link
JP (1) JPWO2023188245A1 (en)
WO (1) WO2023188245A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338713A (en) * 2002-05-20 2003-11-28 Sony Corp Power amplifying device and radio communication device using the same
WO2021182067A1 (en) * 2020-03-10 2021-09-16 三菱電機株式会社 Bias circuit and amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338713A (en) * 2002-05-20 2003-11-28 Sony Corp Power amplifying device and radio communication device using the same
WO2021182067A1 (en) * 2020-03-10 2021-09-16 三菱電機株式会社 Bias circuit and amplifier

Also Published As

Publication number Publication date
JPWO2023188245A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US9350300B2 (en) Power amplifier
US9419561B2 (en) Circuits and methods for biasing a power amplifier
US20110204975A1 (en) Calculating apparatus, distortion correcting apparatus, amplifying apparatus, and calculating method
US7940125B2 (en) Power amplifier, power amplifier circuit and power amplifying method
WO2000014868A1 (en) Rf power amplifier with variable bias current
Watkins et al. How not to rely on Moore's Law alone: low-complexity envelope-tracking amplifiers
US11043921B2 (en) Doherty amplifier system
Kusunoki et al. Power-amplifier module with digital adaptive predistortion for cellular phones
EP1964259A1 (en) Method and apparatus for modulation path delay mismatch compensation in a polar modulation transmitter
JP2689011B2 (en) Linear transmitter
WO2023188245A1 (en) Gate bias control circuit and gate bias control method for communication amplification transistor
US9974038B2 (en) Circuits and operating methods thereof for correcting phase errors caused by gallium nitride devices
CN111030605B (en) Gain compression compensation circuit of radio frequency power amplifier
CN109450395B (en) Nonlinear feedback circuit and low noise amplifier using same
Mokhti et al. Investigating the linearity versus efficiency trade-off of different power amplifier modes in an envelope tracking architecture
US11228285B2 (en) Power amplifier
US11791777B2 (en) Wideband amplifier linearization techniques
US6600344B1 (en) Predistortion circuit for RF detector
Sajedin et al. A Doherty power amplifier based on the harmonic generating mechanism
KR101890579B1 (en) Power amplifier capable of reducing phase modulation distortion
US9635626B1 (en) Power amplifying apparatus and method using same
JP3393514B2 (en) Monolithically integrated low phase distortion power amplifier
Ando et al. A high-efficiency class-F GaN HEMT power amplifier with a diode predistortion linearizer
KR100976863B1 (en) Apparatus and method for compensating nonlinear distortion of power amplifier
US20240030879A1 (en) Power amplifier

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023563925

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935390

Country of ref document: EP

Kind code of ref document: A1