WO2023188235A1 - Mcf接続システム及びmcf接続方法 - Google Patents

Mcf接続システム及びmcf接続方法 Download PDF

Info

Publication number
WO2023188235A1
WO2023188235A1 PCT/JP2022/016418 JP2022016418W WO2023188235A1 WO 2023188235 A1 WO2023188235 A1 WO 2023188235A1 JP 2022016418 W JP2022016418 W JP 2022016418W WO 2023188235 A1 WO2023188235 A1 WO 2023188235A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcf
fifo
optical
core
optical power
Prior art date
Application number
PCT/JP2022/016418
Other languages
English (en)
French (fr)
Inventor
祐志 松尾
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/016418 priority Critical patent/WO2023188235A1/ja
Publication of WO2023188235A1 publication Critical patent/WO2023188235A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Abstract

MCF接続システムは、N本のコア(11)-(14)を持つMCF伝送路(10)と、第1のFIFO(100)と、互いに特性が異なるN個の検査光を第1のFIFOの一端へ出力する光源(500)と、MCF伝送路の一端を成す第1の端部と第1のFIFOの他端とを光学的に接続する接続装置(800)と、MCF伝送路の他端を成す第2の端部から出力される検査光の特性を識別する識別装置(610)と、第2の端部から出力される検査光の光パワーである第1の光パワーを、特性と対応させてMCF伝送路のコア毎に測定する測定装置(620)と、を備え、光源は、第1のFIFOの一端の複数のコアのそれぞれに検査光を入力し、接続装置(800)は、第1の光パワーのそれぞれの値が所定の範囲内となるように第1のFIFOの他端と第1の端部との間の光軸をコア毎に調整し、第1のFIFOの他端と第1の端部との間の光軸の調整後、第1のFIFOの他端と第1の端部との接続を固定する。

Description

MCF接続システム及びMCF接続方法
 本発明は、光ファイバ伝送システムで用いられるマルチコアファイバ間を接続するための、MCF接続システム等に関する。
 近年、国際的なデータ通信の需要拡大に伴い、大容量かつ高速通信が可能である、海底ケーブルシステムの重要性が高まっている。海底ケーブルの外径を変えずに伝送容量を拡大する手段の一つとして、マルチコアファイバ(Multi-Core Fiber、MCF)の研究開発が進められている。MCFは、1本の光ファイバに複数のコアを持つ光ファイバである。
 1本の光ファイバに1本のコアを持つシングルコアファイバ(Single-Core Fiber、SCF)のインタフェースを持つ一般的な光機器と、MCFを含む光伝送路とを接続するために、ファンイン/ファンアウト(Fan-In/Fan-Out、FIFO)が用いられる。一般的な光機器は、例えば光中継器や光部品である。FIFOは一端が複数のSCFであり他端がMCFである光部品であり、FIFOの内部ではこれらのSCFのコアとMCFの各コアとが接続されている。従って、FIFOは、SCFをインタフェースとする光機器とMCFとを接続できる。
 本発明に関連して、特許文献1には、結合型マルチコア光ファイバの軸合わせ方法が記載されている。また、特許文献2には、コア同士の位置合わせを行うためのマーカを備えるMCFが記載されている。
国際公開第2017/217539号 国際公開第2012/121027号
 FIFOとMCFとを接続する際には、FIFOのそれぞれのコアとMCFのそれぞれのコアとの間が低損失で接続されることが好ましい。さらに、FIFOの各コアとMCF内の各コアとの接続損失のばらつきが小さいことも好ましい。一方、FIFOとMCFとを接続する一般的な手順では、単一の光源から分配された複数の光がFIFOを介してMCFの一端に入力される。そして、MCFの他端の全てのコアから出力される光パワーの総和が最大となるようにFIFOの一端とMCFの一端との間で光軸調整が行われていた。
 しかしながら、このような手順には、MCFのそれぞれのコアが低損失でFIFOと接続できているかどうかを容易に知ることができないという課題がある。その理由は、FIFOの一端とMCFの一端との接続点において、コア毎の接続状態を知ることができないからである。このため、コア毎の接続損失のばらつきを抑制しつつ、MCFとFIFO(以下の「第1のFIFO」)とを接続するためには、以下の(a)から(d)の手順が必要となる。
 (a)MCFの一端にFIFO(第1のFIFO)を接続する(1回目の光軸調整)。
 (b)第1のFIFOの接続の最適化のために、第1のFIFOから検査光を入力してMCFの他端に他のFIFO(第2のFIFO)を接続する。
 (c)第2のFIFOからコア毎に検査光を入力する。
 (d)第1のFIFOとMCFの一端との間の接続を切断し、第1のFIFOとMCFの一端との間で、コア毎の接続損失のばらつきを低減するように2回目の光軸調整を行う。
 すなわち、一般的な手順では、第1のFIFOとMCFとの接続後にその接続を切断して、逆方向の検査光による光軸調整を行う手順(b)-(d)が必要となる。このため、一般的な手順では、MCFとFIFOとを簡単かつ高品質に接続することは困難であった。
 (発明の目的)
 本発明は、MCFとFIFOとを簡単かつ高品質に接続するための技術を提供することを目的とする。
 本発明のMCF接続システムは、
 N本のコアを持つMCF(Multi Core Fiber)伝送路と、
 第1のFIFO(Fan-In/Fan-Out)と、
 互いに特性が異なるN個の検査光を前記第1のFIFOの一端へ出力する光源と、
 前記MCF伝送路の一端を成す第1の端部と前記第1のFIFOの他端とを光学的に接続する接続手段と、
 前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別する識別手段と、
 前記第2の端部から出力される前記検査光のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定する測定手段と、
を備え、
 Nは2以上の整数であり、
 前記光源は、前記第1のFIFOの一端の複数のコアのそれぞれに前記検査光を入力し、
 前記接続手段は、前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸をコア毎に調整し、前記第1のFIFOの他端と前記第1の端部との間の光軸の調整後、前記第1のFIFOの他端と前記第1の端部との接続を固定する。
 本発明のMCF接続方法は、
 N本のコアを持つMCF伝送路と第1のFIFOとを光学的に接続するための第1の手順を含むMCF接続方法であって、
 Nは2以上の整数であり、
 前記第1の手順は、
 前記第1のFIFOの一端の複数のコアのそれぞれに相異なる特性を持つ検査光を入力し、
 前記第1のFIFOの他端と前記MCF伝送路の一端を成す第1の端部とをコア毎に光学的に接続し、
 前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別し、
 前記第2の端部から出力される前記検査光のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
 前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸を調整し、
 前記第1のFIFOの他端と前記第1の端部との接続を固定する、
手順を含む。
 本発明は、FIFOとMCFとを簡単かつ高品質に接続できる。
MCF接続システムを説明する図である。 MCFの光軸調整を説明する図である。 第1の手順のフローチャートの例である。 MCF接続システムを説明する図である。 第2の手順のフローチャートの例である。 MCF接続システムを説明する図である。 MCF接続システムを説明する図である。 光源の構成例を示すブロック図である。
 本発明の実施形態について以下に説明する。各図面内の矢印は実施形態における信号の方向を説明するために例として付したものであり、方向の限定を意味しない。また、線の交点は、特記しない限り、方向の異なる信号等の結合を意味しない。既出の要素には同一の名称及び参照符号を付すとともに、各実施形態において重複する説明は省略する。
 (第1の実施形態)
 本実施形態では、MCF伝送路10の一端にFIFO100を接続するためのMCF接続システム及びMCF接続方法について説明する。図1は、本発明の第1の実施形態のMCF接続システム1を説明する図である。
 MCF伝送路10はMCFで構成された光伝送路である。MCF伝送路10では、複数のコアが1本の光ファイバの内部に形成されている。MCF伝送路10は、それぞれのコアが独立に光を伝送できる非結合型MCFである。FIFO100は、MCF伝送路10を複数のSCFと接続するためのファンイン・ファンアウト(FIFO)である。FIFO100の一端はMCF(MCF101)であり、他端はSCF(SCF111-114)である。FIFO100において、MCF101のそれぞれのコアとSCF111-114のコアとは1対1で接続されている。すなわち、FIFO100は、MCFインタフェースを持つ光機器と複数のSCFインタフェースを持つ光機器とを接続できる。MCF伝送路10の一端にFIFO100を接続することで、MCF伝送路10を光伝送路とする光伝送システムにおいて、SCFをインタフェースとする光機器(例えば、光中継器及び光中継器が備える光部品)とMCF伝送路10とを接続できる。
 本実施形態で説明するMCF接続方法を、以下では第1の手順と称する。第1の手順では、MCF伝送路10にFIFO100が接続される。本実施形態では、MCF伝送路10が4コアMCF(4本のコア11-14を持つMCF)である場合を例に説明する。そして、FIFO100の一端のMCF101も4コアのMCFであり、SCF111-114はSCFである。ただし、以下の手順は、MCF伝送路10がNコアMCFである場合にも適用できる。ここで、Nは2以上の自然数である。
 図1において、MCF接続システム1は、MCF伝送路10、FIFO100、光源500、光スイッチ600、光波長計610、光パワーメータ620、及び、接続装置800を備える。また、MCF接続システム1は、制御装置900を備えてもよい。制御装置900は、第1の手順を実行するために、光源500、光スイッチ600、光波長計610及び光パワーメータ620を制御する。制御装置900は、制御手段の一形態である。
 光源500は、互いに特性が異なる4個の検査光のいずれか1個を出力できる。本実施形態では、当該特性が検査光の波長である場合について説明する。すなわち、光源500は、波長が互いに異なる4個の検査光を出力する。波長の数はMCF伝送路10のコア数である。光源500は、レーザダイオード(Laser Diode、LD)501-504を備える。LD501-504は、例えば半導体レーザダイオードである。LD501が出力した波長λ1の検査光はFIFO100のSCF111に入力される。同様に、LD502、503、504が出力した波長λ2、λ3、λ4の検査光は、それぞれ、SCF112、113、114に入力される。FIFO100のSCF111-114に入力される検査光の波長λ1-λ4は互いに異なるため、FIFO100のMCF101の各コアから出力される検査光の波長もすべて異なる。本実施形態の光源500は、波長λ1-λ4の4個の検査光のうち、同時には1個の検査光のみを出力する。すなわち、光源500は、SCF111-114のいずれか1つに対して検査光を出力する。そして、MCF伝送路10のコア11に波長λ1、コア12に波長λ2、コア13に波長λ3、コア14に波長λ4の検査光が入力されるように、FIFO100とMCF伝送路10とが光学的に接続される。
 接続装置800は、2本のMCFの間の位置関係を調整し、これらの間の接続を融着によって固定する機能を備える。具体的には、接続装置800は、MCF101とMCF伝送路10との間で、両者のコア同士が光学的に結合するように光軸を調整する。MCF101のコアとMCF伝送路10のコアとは、光軸調整中にはバットジョイント(Butt Joint)によって接続され、光軸調整の終了後に融着接続される。接続装置800として、2本のMCFを融着接続するための一般的な融着機が用いられてもよい。
 図1では、LD501のみが発光する場合が例示されている。検査光の波長がλ1である場合にはLD502-504は光軸調整に関与しないため、これらのブロックは破線で示されている。
 本実施形態の手順では、FIFO100のMCF101と、MCF伝送路10の一端を成す第1の端部(端部21)とが、4本のコア11-14毎に光学的に接続される。そして、端部21において、コア11-14のそれぞれに、相異なる波長を持つ検査光が光源500から入力される。これにより、MCF伝送路10のコア11-14は、それぞれ異なる波長の検査光を伝送する。4個の検査光はMCF伝送路10の他端を成す端部22において、コア11-14から出力される。
 端部22においてコア11-14から出力された検査光は、光スイッチ600に入力される。光スイッチ600は、入力された検査光を光波長計610又は光パワーメータ620へ出力する。光スイッチ600は、MCF伝送路10の素線(ベアファイバ)から入力された光を、2本のSCFのいずれかに出力可能な1×2光スイッチである。
 光波長計610は、光スイッチ600から入力された検査光の波長を測定し、測定結果を出力する。光波長計610に代えて、光スペクトルアナライザを用いてもよい。光パワーメータ620は、光スイッチ600から入力された光のパワーを測定し、測定結果を出力する。なお、光スイッチ600に代えて、光カプラが用いられてもよい。光スイッチ600に代わる光カプラは、端部22から出力される検査光を光波長計610及び光パワーメータ620に分配する。このような光カプラを用いることで、入力された検査光の波長と光パワーとを同時に測定できる。
 光源500はSCF111-114のいずれか1個に対して検査光を出力するため、光波長計610及び光パワーメータ620には、同時には1個の波長の検査光のみが入力される。従って、光波長計610及び光パワーメータ620は、光源500が出力する1個の波長の検査光の波長及び光パワーを測定する。波長及び光パワーの測定結果を出力する方法は任意である。これらの測定結果はディスプレイに表示されてもよく、データとして他の装置(例えば、制御装置900)に送信されてもよい。光スイッチ600は、端部22から入力された光を光波長計610又は光パワーメータ620へ出力する。光源500において検査光の波長を切り替えながら光スイッチ600を制御することで、MCF伝送路10を伝搬する検査光の波長及び光パワーを、MCF伝送路10のコア毎に測定できる。
 ここで、光パワーメータ620において測定された、4本のコアの光パワーのそれぞれの値が所定の範囲内となるように、FIFO100とMCF伝送路10との間で、コア毎に光軸が調整される。例えば、光源500においてLD501のみが発光し、MCF伝送路10のコア11に波長λ1の検査光が入力されている場合、光波長計610は、検査光の波長がλ1であることを検出できる。これにより、LD501から出力された検査光は、FIFO100のSCF111及びMCF101を介してMCF伝送路10のコア11を伝搬していることがわかる。すなわち、SCF111とコア11とが対応付けられる。そして、光スイッチ600は、検査光の出力先を光波長計610から光パワーメータ620に切り替える。これによって、光パワーメータ620は、コア11を伝搬した波長λ1の検査光の光パワーを測定することができる。また、光源500が出力する検査光のパワーから、SCF111からコア11を経由した端部22までの経路の損失を求めることもできる。
 光源500において検査光を出力するLDをLD501からLD502、LD503、LD504と変化させると、検査光が伝搬するMCF伝送路10のコアも、それぞれ、コア12、コア13、コア14と変化する。そして、光波長計610において検査光の波長を特定した後に、検査光の出力先を光波長計610から光パワーメータ620に切り替える。その結果、コア12-14から出力された検査光のそれぞれの光パワーやコア12-14を経由する経路の損失を、コア11の場合と同様の手順により光パワーメータ620で測定できる。例えば、検査光の光源をLD501からLD502に切り替えた場合には、端部22の第2のコアから、波長λ2の検査光が出力される。従って、光波長計610において波長λ2の検査光が検出された場合には、光源500が出力する検査光の波長がλ2に切り替えられた結果、SCF112と接続されたコア12を伝搬した検査光の光パワー等が測定可能となったと判断できる。
 図2は、接続装置800におけるMCFの光軸調整を説明する図である。接続装置800は、MCF101とMCF伝送路10とを独立して保持できる。接続装置800は、MCF101の端部とMCF伝送路10の端部21とを近接させる。そして、接続装置800は、X軸、Y軸、Z軸及びMCF101及びMCF伝送路10の中心軸の周りの回転各θの相対的な位置を調整することで、光軸調整を行う。光パワーメータ620において測定される検査光の光パワーに応じてMCF101とMCF伝送路10との間の光軸調整をコア毎に行うことで、FIFO100とMCF伝送路10とを、コア間のばらつきを抑制しつつ、低損失で光学的に接続できる。FIFO100のMCF101から出力される検査光の光パワーが等しいとみなせる場合には、光パワーメータ620における検査光の波長間の光パワーの差は、SCF111-114から端部22までのコア間の損失差を示す。これらの差は、小さいことが好ましい。また、FIFO100とMCF伝送路10との間の接続損失も小さいことが好ましい。すなわち、光パワーメータ620において測定されるそれぞれの波長の検査光の光パワーが大きくなるように光軸調整が行われることが好ましい。また、MCF101から出力されるそれぞれの波長の検査光の光パワー、及び、MCF伝送路10のコア11-14のそれぞれの波長における損失がいずれも既知である場合には、これらの既知の値を用いて、上述の光軸調整が行われてもよい。
 例えば、まず、光源500に、波長λ1の検査光を出力させる。そして、その検査光の光パワーがより大きくなるように、端部21において、MCF101とコア11との間の光軸調整を行う。その後、光源500が出力する検査光の波長を切り替え、波長λ2、λ3、λ4のそれぞれの検査光について、MCF101とコア12-14について光軸調整を行う。光軸調整では、例えば、MCF101の断面と端部21の断面との間で、それぞれのコアの位置関係が調整される。光軸調整では、MCF101とMCF伝送路10の中心軸の周りの回転角度が調整されてもよい。
 光パワーメータ620で測定された波長λ1-λ4の検査光の間の光パワーのばらつきを抑制するように、波長λ1からλ4の検査光について上記の光軸調整が行われる。その結果、MCF101と端部21との間の、コア間の接続損失のばらつきを抑制できる。すなわち、本実施形態で説明した第1の手順は、FIFO100とMCF伝送路10とを簡単かつ高品質に接続できるという効果を奏する。その理由は、本手順では、MCF伝送路10のコア11-14毎に、検査光の光パワーを検査光の特性と対応させて測定するからである。これにより、第1の手順は、一般的な手順とは異なり、FIFO100と端部21との1回目の光軸調整後に、この接続の切断及び2回目の光軸調整を行うことなく(すなわち1回の光軸調整で)完了できる。
 この場合、波長λ1-λ4のそれぞれ(すなわち、各コア)について、検査光の光パワーの下限値(第1の閾値)を規定し、全てのコアについて第1の閾値以上の光パワーが測定された時点でMCF101と端部21との間の光軸調整を終了してもよい。あるいは、さらに、コア毎に光パワーの上限値(第2の閾値)を規定し、全てのコアについて第1の閾値以上かつ第2の閾値以下の光パワーが測定された時点でMCF101と端部21との間の光軸調整を終了してもよい。
 そして、光軸調整の後に、FIFO100とMCF伝送路10との間は、接続装置800を用いて融着接続される。FIFO100とMCF伝送路10との間を融着接続することにより、FIFO100とMCF伝送路10とを一体化できる。これにより、FIFO100とMCF伝送路10とが接続された部分の高信頼化が可能となる。なお、これらの2本のMCF間の接続には、融着以外の方法が適用されてもよい。例えば、MCF101とMCF伝送路10との間は、光軸調整の終了後、紫外線硬化樹脂を用いた接着剤によっても固定できる。
 以上の手順により、FIFO100とMCF伝送路10とを、1回の光軸調整のみで所定の損失の条件を満たすように接続できる。すなわち、本実施形態のMCF接続システム1は、FIFOとMCFとを、簡単かつ高品質に接続できる。また、この接続の際には、FIFO100と接続されるMCFのコア11-14を識別しながら検査光の光パワーを測定し、MCF伝送路10の損失を求めることができる。
 (第1の実施形態の他の表現)
 上述したMCF接続システム1の効果は、以下の構成によっても得られる。図1の参照符号を括弧内に付す。すなわち、MCF接続システム(1)は、N本(Nは2以上の整数)のコアを持つMCF伝送路(10)と、第1のFIFO(100)と、光源(500)と、接続手段(800)と、識別手段(610)と、測定手段(620)と、を備える。
 光源(500)は、互いに特性が異なるN個の検査光を前記第1のFIFO(100)の一端(SCF111-114)へ出力する。接続手段(800)は、MCF伝送路(10)の一端を成す第1の端部(21)と第1のFIFO(100)の他端(101)とを光学的に接続する。識別手段(610)は、第2の端部(22)から出力される検査光の特性(第1の実施形態における波長)を識別する。測定手段(620)は、第2の端部(22)から出力される検査光の光パワーである第1の光パワーを、検査光の特性と対応させてMCF伝送路(10)のコア(11-14)毎に測定する。
 また、光源(500)は、第1のFIFO(100)の一端の複数のコア(SCF111-114)のそれぞれに検査光を入力する。接続手段(800)は、第1の光パワーのそれぞれの値が所定の範囲内となるように第1のFIFOの他端(MCF101)と、第1の端部(21)との間の光軸をコア毎に調整する。
 図3は、上述の表現における第1の手順のフローチャートの例である。第1の手順では、まず、第1のFIFOの一端の複数のコアのそれぞれに検査光が入力される(図3のS01)。それぞれの検査光は、相異なる特性を持つ。そして、第1のFIFOの他端と第1の端部とがコア毎に光学的に接続される(S02)。第2の端部から出力される検査光の特性が識別され(S03)、第1の光パワーが特性と対応させて測定される(S04)。さらに、第1の光パワーのそれぞれの値が所定の範囲内となるように第1のFIFOの一端と第1の端部との間の光軸が調整される(S05)。最後に、第1のFIFOの一端と第1の端部との間が融着接続される(S06)。
 このように記載されたMCF接続システム1及びそれに用いられるMCF接続方法も、FIFOとMCFとを、簡単かつ高品質に接続できるという効果を奏する。
 (第2の実施形態)
 図4は、第2の実施形態のMCF接続システム2を説明する図である。第2の実施形態では、MCF伝送路10の他端(端部22)とFIFO200のMCF201とがコア毎に光学的に接続される。第2の実施形態においても、MCF伝送路10が4コアMCFである場合について説明する。しかし、MCF伝送路10のコア数は4コアに限定されない。
 FIFO200は、MCFと4本のSCFとを接続するためのファンイン・ファンアウトである。FIFO200の一端はMCF201、他端はSCF211-214である。FIFO200において、MCF201のそれぞれのコアとSCF211214のそれぞれのコアとは1対1で接続されている。すなわち、FIFO200は、MCFインタフェースを持つ光機器と複数のSCFインタフェースを持つ光機器とを接続できる。
 図4において、FIFO100とMCF伝送路10との間の光軸調整は終了している。この光軸調整には、第1の実施形態で説明した手順を適用できる。本実施形態で説明するMCF接続方法を、以下では第2の手順と称する。第2の手順では、端部22と、MCF201とが、両者の断面において両者のコア同士が光学的に結合するように、接続装置801によって光軸が調整される。例えば、MCF201の4本のコアとMCF伝送路10の4本のコア11-14は、端部22においてバットジョイントによって光学的に接続される。接続装置801の機能は、図2で説明した接続装置800の機能に準ずる。すなわち、接続装置801は、MCF201とMCF伝送路10との間で、両者のコア同士が光学的に結合するように光軸を調整できるとともに、光軸調整の終了後にこれらの間の接続を融着により固定できる。
 FIFO200のSCF211-214は、それぞれ、光バンドパスフィルタ(Optical Band Pass Filter、OBPF)631-634を介して光パワーメータ(Optical Power Meter、OPM)621-624に入力される。光バンドパスフィルタ631、632、633及び634は、それぞれ、波長λ1、λ2、λ3及びλ4の波長の光のみを透過する光フィルタである。光パワーメータ621-624は、それぞれ、光バンドパスフィルタ631-634を透過した光の光パワーを測定する。このような構成により、MCF接続システム2では、第1の実施形態とは異なり、光スイッチ600を用いることなく、光パワーメータ621-624を用いて波長λ1-λ4のそれぞれの検査光の光パワーを測定できる。
 第1の実施形態と同様に、光源500は波長λ1-λ4のうち1個の波長の検査光を出力する。図4では、LD501のみが発光し、波長λ1の検査光のパワーが光パワーメータ621で測定される場合が例示されている。検査光の波長がλ1である場合にはLD502-504、光バンドパスフィルタ632-634、光パワーメータ622-624は光軸調整に関与しないため、これらのブロックは破線で示されている。そして、光パワーメータ621-624において測定される、コア11-14から出力されるそれぞれの光パワーの値が所定の範囲内となるように、端部22とSCF211-214との間の光軸が調整される。すなわち、光パワーメータ621-624において測定される検査光の光パワーに応じてMCF201と端部22との間のコア毎の光軸が調整される。これにより、MCF201の各コアとMCF伝送路10のコア11-14との間を、コア間の接続損失のばらつきを抑制しつつ、低損失で光学的に接続する。例えば、検査光の波長を変えながら光パワーメータ621-624の測定値を観察し、MCF201と端部22との間の光軸調整をコア毎に繰り返し行うことで、コア11-14とMCF201との間の光軸をコア毎に調整できる。MCF201と端部22との間の光軸調整には、MCF101と端部21との間の光軸調整手順を準用できる。すなわち、光源500に、波長λ1の検査光を出力させる。そして、その検査光の光パワーがより大きくなるように、端部22において、コア11とMCF201との間の光軸調整を行う。その後、光源500が出力する検査光の波長を切り替え、波長λ2、λ3、λ4のそれぞれの検査光について、MCF201とコア12-14について光軸調整を行う。光軸調整では、例えば、MCF201の断面と端部22の断面との間で、それぞれのコアの位置関係が調整される。光軸調整では、MCF201とMCF伝送路10の中心軸の周りの回転角度が調整されてもよい。
 波長λ1-λ4のそれぞれについて、MCF伝送路10とMCF201との間で光軸調整を実施することで、コア毎の接続損失のばらつきを抑制できる。この場合、各コアについて、検査光の光パワーの下限値(第3の閾値)を規定し、全てのコアについて第3の閾値以上の光パワーが測定された時点でMCF201と端部22との間の光軸調整を終了してもよい。あるいは、さらに、コア毎に光パワーの上限値(第4の閾値)を規定し、全てのコアについて第3の閾値以上かつ第4の閾値以下の光パワーが測定された時点でMCF201と端部22との間の光軸調整を終了してもよい。
 以上の手順により、FIFO200の各コアとMCF伝送路10の各コアとを、所定の損失の条件を満たすように接続できる。そして、この接続は、FIFO100及びMCF伝送路10のコアを識別して実施できる。その理由は、端部22とMCF201との光軸調整の際に、検査光の波長に基づいて、接続されるコアを管理できるからである。例えば、SCF211に接続された光バンドパスフィルタ631の透過波長を波長λ1とすることで、SCF111及びコア11を通過する経路とSCF211とを接続できる。
 MCF201とMCF伝送路10との結合の調整の後、接続装置801を用いてこれらの間の接続が固定される。MCF201とMCF伝送路10との間を融着接続することにより、光軸調整時の損失をほぼ維持したままFIFO200とMCF伝送路10とを一体化できる。従って、接続部分の高信頼化が可能となる。さらに、第1の実施形態の手順に続いて第2の実施形態の手順を実行することで、FIFO100、MCF伝送路10及びFIFO200を一体化できる。これにより、MCF伝送路10の両端に、SCFをインタフェースとする光機器を容易に接続できる。なお、これらの2本のMCF間の接続には、融着以外の方法が適用されてもよい。例えば、MCF201とMCF伝送路10との間は、光軸調整の終了後、紫外線硬化樹脂を用いた接着剤によっても固定できる。
 第1の実施形態及び第2の実施形態で説明したMCF接続システム1、2及びそれらに適用可能な第1の手順及び第2の手順は、MCFの両端にFIFOを簡単かつ高品質で接続できるという効果を奏する。その理由は、検査光の波長がコア毎に異なるため、MCF伝送路10の一端(端部21)とFIFO100との接続時、及び、MCF伝送路10の他端(端部22)とFIFO200との接続時に、接続損失をコア毎に確認しながら光軸を調整できるからである。これにより、FIFO100と端部21との接続、及び、端部22とFIFO200との接続を、光軸調整後に接続を切断することなく、それぞれ1回の光軸調整で完了できる。
 なお、MCF同士を融着する際に、コアの位置の基準となるマーカを備えるMCFも知られている(例えば、特許文献2)。マーカは、MCFが備える複数のコアの位置をMCFの両端で識別するために用いられる。しかし、このようなMCFとFIFOとを接続するためには、マーカを視認するためのカメラを備えた特殊な融着機が必要である上に、MCFのコア数が多い場合にはマーカを利用してもコアの識別が難しい場合があるという課題もあった。しかし、第1及び第2の実施形態で説明したMCF接続システム1及び2は、検査光の波長によってMCF伝送路10の両端(端部21及び22)において各コアを識別しながらFIFO100とMCF伝送路10との間の光軸調整を行い、両者を接続する。このため、MCF伝送路10にはマーカが不要である。また、接続装置800及び801にはMCF伝送路のマーカを視認するための特殊な機能も不要である。
 (第2の手順の他の表現)
 図5は、第2の手順のフローチャートの例である。上述した第2の手順は、図5のようにも記載される。図4の参照符号を括弧内に付す。
 第2の手順は、第1の手順の後に実行されるMCF接続方法である。第2の手順では、まず、第1の手順と同様に、第1のFIFO(100)の一端の複数のコア(SCF111-114)のそれぞれに検査光が入力される(図5のS11)。それぞれの検査光は、相異なる特性を持つ。次に、第2のFIFO(200)の一端(MCF201)と第2の端部(22)とがコア毎に光学的に接続される(S12)。そして、第2のFIFO(200)の他端(SCF211-214)から出力される検査光の特性が識別される(S13)。加えて、第2のFIFOの他端(SCF211-214)から出力される検査光の光パワーである第2の光パワーが、検査光の特性と対応させてMCF伝送路(10)のコア毎に測定される(S14)。このようにして、第2の光パワーのそれぞれの値が所定の範囲内となるように第2の端部(22)と第2のFIFOの一端(MCF201)との間の光軸が調整される(S15)。光軸調整の終了後に、第2の端部(22)と第2のFIFOの一端(MCF201)との間が融着接続される(S16)。
 (第2の実施形態の変形例)
 上述したMCF接続システム2の変形例について説明する。図6は、MCF接続システム2Aの構成例を示すブロック図である。MCF接続システム2Aでは、MCF接続システム2の光源500に代えて光源500Aが用いられる。
 光源500Aは、LD510、光カプラ511及び光バンドパスフィルタ512-515を備える。LD510は発振波長が可変である一般的な波長可変レーザダイオードである。LD510は、外部からの制御により、波長λ1-λ4のいずれかの光を検査光として出力する。すなわち、光源500Aは、波長λ1-λ4のうち、いずれか1個の波長の検査光を出力できる。光カプラ511は、LD510が出力した検査光を、FIFO100の各コアに分配する。FIFO100及びMCF伝送路10のコアが4本の場合には、光カプラ511は例えば1×4カプラであり、コアがN本の場合には、光カプラ511は例えば1×Nカプラである。光バンドパスフィルタ512、513、514、515は、それぞれ、波長λ1、λ2、λ3、λ4の光のみを透過する。これにより、FIFO100のSCF111-114にはそれぞれ異なる波長の検査光が入力される。従って、光源500Aを用いた場合も、FIFO100のMCF101の各コアから出力される検査光の波長はすべて異なる。このような構成を備える光源500Aを用いても、図1乃至図5で説明した、FIFO100とMCF伝送路10との接続手順及びMCF伝送路10とFIFO200との接続手順を実行できる。
 図6では、LD510が波長λ1で発光し、波長λ1の検査光のパワーが光パワーメータ631で測定される場合が例示されている。検査光の波長がλ1である場合には光バンドパスフィルタ513-515、光バンドパスフィルタ632-634、光パワーメータ622-624は光軸調整に関与しないため、これらのブロックは破線で示されている。
 (第3の実施形態)
 図7は、本発明の第3の実施形態のMCF接続システム3を説明する図である。本実施形態では、MCF伝送路10の端部21とFIFO100とが接続された後に、MCF伝送路10の端部22とFIFO200とを接続する手順について説明する。本実施形態の手順は、第2の実施形態で説明した手順に代えて実施されてもよい。また、MCF伝送路10とFIFO100との接続には、第1の実施形態の手順が用いられてもよい。
 以下の説明では、これまでの実施形態と同様に、MCF伝送路10が4本のコアを持つ場合について説明する。ただし、以下の手順の及び構成は、MCFがN本のコアを持つ場合にも適用できる。
 図7において、MCF接続システム3は、MCF伝送路10、FIFO100及び200に加えて、光源550、光スイッチ601、光カプラ651、光スペクトルアナライザ(Optical Spectrum Analyzer、OSA)611及び光パワーメータ620を備える。
 光源550は、LD501-504を備える。LD501-504は、例えば、半導体レーザダイオードである。LD501、502、503、504は、それぞれ、波長λ1、λ2、λ3、λ4の検査光を出力する。波長λ1-λ4は互いに異なる。すなわち、光源550は、波長λ1-λ4の検査光を同時に出力できる。ただし、光源550は、波長λ1-λ4のうち3個以下の波長の検査光を出力してもよい。従って、光源550は、第1及び第2の実施形態で説明した光源500及び500Aに代えて用いられてもよい。
 本実施形態の手順に先立って、FIFO100のMCF101と、MCF伝送路10の端部21とは、4本のコア毎に光学的に接続されている。その結果、端部21において、MCF伝送路10の4本のコア11-14のそれぞれには、相異なる波長を持つ検査光が光源500から入力される。これにより、MCF伝送路10のコア11-14では、互いに異なる波長の検査光が同時に伝搬する。4個の検査光はMCF伝送路10の他端を成す端部22において、コア11-14から出力される。
 MCF201のコアとMCF伝送路10のコア11-14とは、バットジョイントによって光学的に接続される。FIFO200の4本のSCF211-214から出力された光は、光スイッチ601及び光カプラ651を介して光スペクトルアナライザ611及び光パワーメータ620に入力される。光スイッチ601は4×1光スイッチであり、SCF211-214から選択された1本のSCFを光カプラ651と接続する。光カプラ651は1×2光カプラであり、光スイッチ601から入力された光を光スペクトルアナライザ611及び光パワーメータ620に分配する。光スペクトルアナライザ611は、光スイッチ601によって選択されたコアの検査光の波長を測定する。すなわち、光スイッチ601は、検査光の波長及び光パワーを測定するコアを選択する。光パワーメータ620は、光スイッチ601によって選択されたコアの検査光の光パワーを測定する。
 このような構成により、FIFO200の4本のSCF211-214から出力された検査光のうち1個が、光スイッチ601及び光カプラ651を介して光スペクトルアナライザ611及び光パワーメータ620に入力される。
 MCF伝送路10の端部22とFIFO200のMCF201との間の光軸調整には、第2の実施形態の手順が適用できる。すなわち、光パワーメータ620において測定された光パワーの値が、波長λ1-λ4のそれぞれにおいて所定の範囲内となるように、端部22とMCF201との間で光軸調整が行われる。波長λ1-λ4の検査光を同時に出力するように光源550を設定することにより、光スペクトルアナライザ611及び光パワーメータ620を用いて、波長λ1-λ4の検査光の波長及び光パワーを、容易に繰り返し測定できる。ここで、検査光の波長の切り替えは光スイッチ601の切り替えのみで行われる。そして、MCF201と端部22との間の光軸調整をコア毎に繰り返し行うことで、コア11-14についてFIFO200とMCF伝送路10とのコア毎の光軸を好適に調整できる。このような本実施形態の手順においても、第2の実施形態と同様に、MCF伝送路10のコア11-14とMCF201の各コアとの間を、コア間の接続損失のばらつきを抑制しつつ、低損失で光学的に接続できる。
 (第3の実施形態の変形例)
 上述したMCF接続システム3の変形例について説明する。図8は、MCF接続システム3の光源550に代えて利用可能な光源550Aの構成例を示すブロック図である。
 光源550Aは、ASE(Amplified Spontaneous Emission)光源520、光カプラ521及び光バンドパスフィルタ522-525を備える。ASE光源520は、スペクトルがほぼ平坦な広帯域の光(ASE光)を出力する。ASE光は、光増幅媒体に励起光を注入することで生成することができる。ASE光の波長帯域には、検査光の波長λ1-λ4が含まれる。
 光カプラ521は、ASE光源520が出力したASE光を、FIFO100の各コアに分配する。FIFO100及びMCF伝送路10のコアが4本の場合には、光カプラ521は1×4カプラであり、コアがN本の場合には、光カプラ521は1×Nカプラである。光バンドパスフィルタ522、523、524、525は、それぞれ、波長λ1、λ2、λ3、λ4の光のみを透過する。これにより、ASE光から、波長λ1、λ2、λ3、λ4の検査光が同時に生成される。光源550AにFIFO100のSCF111-114を接続すると、SCF111-114には、それぞれ、波長λ1-λ4の検査光が入力される。光バンドパスフィルタ522-525と直列に光減衰器が接続されてもよい。光減衰器の減衰量は、光源550から出力されるそれぞれの波長の検査光の光パワーが等しくなるように設定されてもよい。
 光源550Aは、ASE光源520で生成されたASEと光バンドパスフィルタ522-525を用いて検査光を生成する。このため、検査光の波長を変更する際には光バンドパスフィルタ522、523、524、525の透過帯域を変更すればよく、レーザダイオード等の高価な部品を変更する必要がない。
 光源550Aを用いた場合も、FIFO100のMCF101の各コアから出力される検査光の波長はすべて異なる。このような構成を備える光源500Aを用いても、上述の実施形態で説明した第1の手順及び第2の手順を実行できる。
 (第4の実施形態)
 第1乃至第3の実施形態では、検査光の波長の違いによって、検査光が伝搬するMCF伝送路10のコアの識別が可能であった。しかし、コアの識別に用いられる検査光の特性は、波長に限定されない。例えば、FIFO100のSCF111-114に入力される4個の検査光に、それぞれ異なる幅でパルス幅変調を行ってもよい。例えば、MCF伝送路10の4本のコア11-14に入力する検査光を、それぞれ異なるパルス幅W1-W4を持つように変調するとともに、光波長計610及び光スペクトルアナライザ611に代えて光信号のパルス幅を識別可能な光受信器を用いる。そして、光受信器は、受信している検査光のパルス幅がW1-W4のいずれであるかを判別することで、当該検査光が伝搬したコアを特定できる。すなわち、検査光の特性を検査光のパルス幅とした場合においても、検査光の特性を波長とした場合と同様に、コアを特定できる。
 また、検査光をパルス光とし、パルス光の送出間隔をコア毎に変えてもよい。例えば、検査光をパルス列とし、互いに異なるパルス間隔T1-T4の検査光が、それぞれのコアを伝搬するようにする。この場合、光波長計及び光スペクトルアナライザに代えて光パルスの受信間隔を識別可能な光受信器が用いられる。このような光受信器は、受信している検査光のパルスの受信間隔がT1-T4のいずれであるかを判別することで、当該検査光が伝搬したコアを特定できる。すなわち、検査光の特性を検査光のパルス間隔とした場合においても、検査光の特性を波長やパルス幅とした場合と同様に、コアを特定できる。
 検査光の変調方式はパルス幅やパルス間隔に限定されない。例えば、パルス光を10kHz以上1MHz以下の低周波信号で振幅変調してもよい。コア毎に変調周波数を変え、光受信器で低周波信号の周波数を検出することで、当該検査光が伝搬したコアを特定してもよい。
 なお、検査光をパルス光とする場合には、コア11-14を伝搬するそれぞれの検査光のデューティ比が同一となるように検査光を変調することが好ましい。これにより、光パワーの測定時に、コア11-14の間の検査光の光パワーの差がデューティ比の影響を受けることを回避できる。
 なお、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 N本のコアを持つMCF(Multi Core Fiber)伝送路と、
 第1のFIFO(Fan-In/Fan-Out)と、
 互いに特性が異なるN個の検査光を前記第1のFIFOの一端へ出力する光源と、
 前記MCF伝送路の一端を成す第1の端部と前記第1のFIFOの他端とを光学的に接続する接続手段と、
 前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別する識別手段と、
 前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定する測定手段と、
を備えるMCF接続システムであって、
 Nは2以上の整数であり、
 前記光源は、前記第1のFIFOの一端の複数のコアのそれぞれに前記検査光を入力し、
 前記接続手段は、前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸をコア毎に調整し、前記第1のFIFOの他端と前記第1の端部との間の光軸の調整後、前記第1のFIFOの他端と前記第1の端部との接続を固定する、
MCF接続システム。
 (付記2)
 前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
 前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
付記1に記載されたMCF接続システム。
 (付記3)
 第2のFIFOをさらに備え、
 前記接続手段は、前記第2の端部と前記第2のFIFOの一端とを光学的に接続し、
 前記測定手段は、前記第2のFIFOの他端から出力される前記複数の検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
 前記接続手段は、前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整する、
付記2に記載されたMCF接続システム。
 (付記4)
 前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
 前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
付記3に記載されたMCF接続システム。
 (付記5)
 前記光源、前記接続手段、前記識別手段及び前記測定手段を制御する制御手段をさらに備える、付記1乃至4のいずれか1項に記載されたMCF接続システム。
 (付記6)
 前記特性は、前記検査光の波長である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
 (付記7)
 前記特性は、前記検査光のパルス幅である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
 (付記8)
 前記特性は、前記検査光のパルスのデューティ比である、付記1乃至5のいずれか1項に記載されたMCF接続システム。
 (付記9)
 N本のコアを持つMCF伝送路と第1のFIFOとを光学的に接続するための第1の手順を含むMCF接続方法であって、
 Nは2以上の整数であり、
 前記第1の手順は、
 前記第1のFIFOの一端の複数のコアのそれぞれに相異なる特性を持つ検査光を入力し、
 前記第1のFIFOの他端と前記MCF伝送路の一端を成す第1の端部とをコア毎に光学的に接続し、
 前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別し、
 前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
 前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸を調整し、
 前記第1のFIFOの他端と前記第1の端部との接続を固定する、
MCF接続方法。
 (付記10)
 前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
 前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
付記10に記載されたMCF接続方法。
 (付記11)
 前記第1の手順の後に実行される第2の手順を含むMCF接続方法であって、
 前記第2の手順は、
 第2のFIFOの一端と前記第2の端部とをコア毎に光学的に接続し、
 前記第2のFIFOの他端から出力される前記検査光の前記特性を識別し、
 前記第2のFIFOの他端から出力される前記検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
 前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整し、
 前記第2の端部と前記第2のFIFOの一端との接続を固定する、
ことを含む、付記9又は10に記載されたMCF接続方法。
 (付記12)
 前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
 前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
付記11に記載されたMCF接続方法。
 (付記13)
 前記第1の手順及び前記第2の手順の少なくとも一方が制御手段によって制御される、付記11又は12に記載されたMCF接続方法。
 (付記14)
 前記特性は、前記検査光の波長である、付記9乃至13のいずれか1項に記載されたMCF接続方法。
 (付記15)
 前記特性は、前記検査光のパルス幅である、付記9乃至13のいずれか1項に記載されたMCF接続方法。
 (付記16)
 前記特性は、前記検査光のパルスのデューティ比である、付記乃至13のいずれか1項に記載されたMCF接続方法。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 例えば、各実施形態のMCF接続システムの動作の一部または全部はプログラム化されてもよい。そして、各実施形態のMCF接続システムは、このプラグラムを実行するコンピュータを備えてもよい。コンピュータはプログラムを実行することで、各実施形態のMCF接続システムの機能の一部または全部を実現してもよい。コンピュータは、例えば、論理デバイスや中央処理装置、デジタル信号処理装置である。実施形態で説明した制御装置900がコンピュータを備えてもよい。第1の手順及び第2の手順の少なくとも一方が制御部900によって制御されてもよい。また、プログラムは、コンピュータ読取可能な、固定された非一時的な記録媒体に記録されてもよい。記録媒体は、例えば、フレキシブルディスク、固定磁気ディスク、不揮発性半導体メモリである。プログラムは、ネットワークを介して配信されてもよい。
 また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。
 1、2、2A、3 MCF接続システム
 10 MCF伝送路
 11-14 コア
 21、22 端部
 100、200 FIFO
 101、201 MCF
 500、500A、550、550A 光源
 501-504 レーザダイオード(LD)
 511、521 光カプラ
 512-515、522-525 光バンドパスフィルタ(OBPF)
 520 ASE光源
 600、601 光スイッチ
 610 光波長計
 611 光スペクトルアナライザ(OSA)
 620-624 光パワーメータ(OPM)
 631-634 光バンドパスフィルタ
 651 光カプラ
 800、801 接続装置
 900 制御装置

Claims (16)

  1.  N本のコアを持つMCF(Multi Core Fiber)伝送路と、
     第1のFIFO(Fan-In/Fan-Out)と、
     互いに特性が異なるN個の検査光を前記第1のFIFOの一端へ出力する光源と、
     前記MCF伝送路の一端を成す第1の端部と前記第1のFIFOの他端とを光学的に接続する接続手段と、
     前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別する識別手段と、
     前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定する測定手段と、
    を備えるMCF接続システムであって、
     Nは2以上の整数であり、
     前記光源は、前記第1のFIFOの一端の複数のコアのそれぞれに前記検査光を入力し、
     前記接続手段は、前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸をコア毎に調整し、前記第1のFIFOの他端と前記第1の端部との間の光軸の調整後、前記第1のFIFOの他端と前記第1の端部との接続を固定する、
    MCF接続システム。
  2.  前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
     前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
    請求項1に記載されたMCF接続システム。
  3.  第2のFIFOをさらに備え、
     前記接続手段は、前記第2の端部と前記第2のFIFOの一端とを光学的に接続し、
     前記測定手段は、前記第2のFIFOの他端から出力される前記複数の検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
     前記接続手段は、前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整し、前記第2の端部と前記第2のFIFOの一端との間の光軸の調整後、前記第2の端部と前記第2のFIFOの一端との接続を固定する、
    請求項2に記載されたMCF接続システム。
  4.  前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
     前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
    請求項3に記載されたMCF接続システム。
  5.  前記光源、前記接続手段、前記識別手段及び前記測定手段を制御する制御手段をさらに備える、請求項1乃至4のいずれか1項に記載されたMCF接続システム。
  6.  前記特性は、前記検査光の波長である、請求項1乃至5のいずれか1項に記載されたMCF接続システム。
  7.  前記特性は、前記検査光のパルス幅である、請求項1乃至5のいずれか1項に記載されたMCF接続システム。
  8.  前記特性は、前記検査光のパルスのデューティ比である、請求項1乃至5のいずれか1項に記載されたMCF接続システム。
  9.  N本のコアを持つMCF伝送路と第1のFIFOとを光学的に接続するための第1の手順を含むMCF接続方法であって、
     Nは2以上の整数であり、
     前記第1の手順は、
     前記第1のFIFOの一端の複数のコアのそれぞれに相異なる特性を持つ検査光を入力し、
     前記第1のFIFOの他端と前記MCF伝送路の一端を成す第1の端部とをコア毎に光学的に接続し、
     前記MCF伝送路の他端を成す第2の端部から出力される前記検査光の特性を識別し、
     前記第2の端部から出力される前記検査光の前記N本のコア毎の光パワーを示す第1の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
     前記第1の光パワーのそれぞれの値が所定の範囲内となるように前記第1のFIFOの他端と前記第1の端部との間の光軸を調整し、
     前記第1のFIFOの他端と前記第1の端部との接続を固定する、
    MCF接続方法。
  10.  前記第1のFIFOの一端は、前記第1のFIFOが備える複数のSCF(Single Core Fiber)であり、
     前記第1のFIFOの他端は、前記第1のFIFOが備えるMCFである、
    請求項9に記載されたMCF接続方法。
  11.  前記第1の手順の後に実行される第2の手順を含むMCF接続方法であって、
     前記第2の手順は、
     第2のFIFOの一端と前記第2の端部とをコア毎に光学的に接続し、
     前記第2のFIFOの他端から出力される前記検査光の前記特性を識別し、
     前記第2のFIFOの他端から出力される前記検査光の光パワーである第2の光パワーを、前記特性と対応させて前記MCF伝送路のコア毎に測定し、
     前記第2の光パワーのそれぞれの値が所定の範囲内となるように前記第2の端部と前記第2のFIFOの一端との間の光軸を調整し、
     前記第2の端部と前記第2のFIFOの一端との接続を固定する、
    ことを含む、請求項9又は10に記載されたMCF接続方法。
  12.  前記第2のFIFOの一端は、前記第2のFIFOが備えるMCFであり、
     前記第2のFIFOの他端は、前記第2のFIFOが備える複数のSCFである、
    請求項11に記載されたMCF接続方法。
  13.  前記第1の手順及び前記第2の手順の少なくとも一方が制御手段によって制御される、請求項11又は12に記載されたMCF接続方法。
  14.  前記特性は、前記検査光の波長である、請求項9乃至13のいずれか1項に記載されたMCF接続方法。
  15.  前記特性は、前記検査光のパルス幅である、請求項9乃至13のいずれか1項に記載されたMCF接続方法。
  16.  前記特性は、前記検査光のパルスのデューティ比である、請求項9乃至13のいずれか1項に記載されたMCF接続方法。
PCT/JP2022/016418 2022-03-31 2022-03-31 Mcf接続システム及びmcf接続方法 WO2023188235A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016418 WO2023188235A1 (ja) 2022-03-31 2022-03-31 Mcf接続システム及びmcf接続方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016418 WO2023188235A1 (ja) 2022-03-31 2022-03-31 Mcf接続システム及びmcf接続方法

Publications (1)

Publication Number Publication Date
WO2023188235A1 true WO2023188235A1 (ja) 2023-10-05

Family

ID=88199882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016418 WO2023188235A1 (ja) 2022-03-31 2022-03-31 Mcf接続システム及びmcf接続方法

Country Status (1)

Country Link
WO (1) WO2023188235A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157245A1 (ja) * 2012-04-20 2013-10-24 日本電気株式会社 多重光伝送路、光伝送システムおよび光伝送方法
JP2014207539A (ja) * 2013-04-12 2014-10-30 三菱レイヨン株式会社 多重信号伝送システム、送信装置、受信装置、および多重信号伝送方法
JP2018524174A (ja) * 2015-06-09 2018-08-30 コアレイズ オーワイ レーザー加工装置および方法ならびにその光学部品
JP2019012096A (ja) * 2017-06-29 2019-01-24 株式会社フジクラ 光デバイスの製造方法
KR102127897B1 (ko) * 2019-01-21 2020-06-29 한국광기술원 멀티코어 광섬유를 포함하는 전류 센싱 시스템 및 그의 센싱 방법
WO2021145358A1 (ja) * 2020-01-15 2021-07-22 パナソニックIpマネジメント株式会社 レーザ加工装置
JP2021162624A (ja) * 2020-03-30 2021-10-11 古河電気工業株式会社 ファイバの接続構造及び複数の光ファイバ心線とマルチコアファイバとの接続方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157245A1 (ja) * 2012-04-20 2013-10-24 日本電気株式会社 多重光伝送路、光伝送システムおよび光伝送方法
JP2014207539A (ja) * 2013-04-12 2014-10-30 三菱レイヨン株式会社 多重信号伝送システム、送信装置、受信装置、および多重信号伝送方法
JP2018524174A (ja) * 2015-06-09 2018-08-30 コアレイズ オーワイ レーザー加工装置および方法ならびにその光学部品
JP2019012096A (ja) * 2017-06-29 2019-01-24 株式会社フジクラ 光デバイスの製造方法
KR102127897B1 (ko) * 2019-01-21 2020-06-29 한국광기술원 멀티코어 광섬유를 포함하는 전류 센싱 시스템 및 그의 센싱 방법
WO2021145358A1 (ja) * 2020-01-15 2021-07-22 パナソニックIpマネジメント株式会社 レーザ加工装置
JP2021162624A (ja) * 2020-03-30 2021-10-11 古河電気工業株式会社 ファイバの接続構造及び複数の光ファイバ心線とマルチコアファイバとの接続方法

Similar Documents

Publication Publication Date Title
US9479286B2 (en) Optically interconnected chip, method of testing the same, and optical receiver
CN106940247B (zh) 用于对多光纤阵列设备进行otdr测量的多模发射系统
JP4769120B2 (ja) 光通信システムおよびそれを備えたアクセスネットワーク
US20110200324A1 (en) Method and system for optical connection validation
US20160099851A1 (en) Method and system for optical connection validation in a reconfigurable optical add-drop multiplexer (roadm) node
ITMI960467A1 (it) Metodo di compensazione selettiva della dispersione cromatica di segnali ottici
JPH08265272A (ja) 2方向性光増幅器を含む2方向性光通信システム
US11368216B2 (en) Use of band-pass filters in supervisory signal paths of an optical transport system
CA1315341C (en) Optical communication circuit with mode scrambler
EP3404852A1 (en) Supervisory signal paths for an optical transport system
US8619246B2 (en) Optical node apparatus, method for checking connection in node apparatus and program thereof
US8634718B2 (en) Polarization control in a photonic integrated circuit
WO2023188235A1 (ja) Mcf接続システム及びmcf接続方法
CZ279226B6 (cs) Zesilovač pro telekomunikační zařízení
US5382275A (en) Method for fusion-forming an optical signal attenuator
US20230105328A1 (en) Fiber connectors for mode division multiplexing using multimode optical fibers
JP2009509199A (ja) マルチモードファイバによる高ビットレート伝送
Downie et al. Investigation of potential MPI effects on supervisory channel transmission below cable cut-off in G. 654 fibres
JPH03269522A (ja) 波長多重光伝送路増幅装置
US6751375B1 (en) Self-referencing tunable add-drop filters
Wakayama et al. Pure-silica single-core to multi-core fiber coupler with side-polishing approach
CN114200576A (zh) 光子集成电路芯片
JPS63124633A (ja) 特に加入者区域の広帯域光通信システム
US6795610B1 (en) Tunable add-drop filters using two independent optical paths
EP0619657B1 (en) Optical circuit for measuring the reflection sensitivity of an optical transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935380

Country of ref document: EP

Kind code of ref document: A1