WO2023188205A1 - 端末及び通信方法 - Google Patents

端末及び通信方法 Download PDF

Info

Publication number
WO2023188205A1
WO2023188205A1 PCT/JP2022/016345 JP2022016345W WO2023188205A1 WO 2023188205 A1 WO2023188205 A1 WO 2023188205A1 JP 2022016345 W JP2022016345 W JP 2022016345W WO 2023188205 A1 WO2023188205 A1 WO 2023188205A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
resource pool
resource
transmission
communication
Prior art date
Application number
PCT/JP2022/016345
Other languages
English (en)
French (fr)
Inventor
尚哉 芝池
翔平 吉岡
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/016345 priority Critical patent/WO2023188205A1/ja
Publication of WO2023188205A1 publication Critical patent/WO2023188205A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a terminal and a communication method in a wireless communication system.
  • D2D is a system in which terminals communicate directly with each other without going through a base station.
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • 5G 5th Generation
  • Non-Patent Document 1 Non-Patent Document 1
  • D2D reduces traffic between terminals and base stations, and enables communication between terminals even if the base station becomes unable to communicate during a disaster or the like.
  • 3GPP 3rd Generation Partnership Project
  • D2D is referred to as "sidelink,” but in this specification, the more general term D2D is used. However, in the description of the embodiments to be described later, side links will also be used as necessary.
  • D2D communication consists of D2D discovery (also called D2D discovery) for discovering other terminals that can communicate with each other, and D2D communication (D2D direct communication, direct communication between terminals) for direct communication between terminals. (also referred to as communications, etc.).
  • D2D discovery also called D2D discovery
  • D2D communication D2D direct communication, direct communication between terminals
  • communications also referred to as communications, etc.
  • Non-Patent Document 3 For example, in the frequency band from 52.6 GHz to 71 GHz, applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, failures expected in actual wireless communication, etc. are being considered.
  • Unlicensed bands are defined for newly operated frequency bands that use higher frequencies than before.
  • various regulations are defined, for example, LBT (Listen Before Talk) is executed when accessing a channel.
  • LBT Listen Before Talk
  • the present invention has been made in view of the above points, and an object of the present invention is to perform direct communication between terminals that satisfies regulations in an unlicensed band.
  • a control unit that specifies the configuration of a resource pool in an unlicensed band based on a parameter that specifies resources in the frequency domain; and a reception unit that receives signals from other terminals in the resource pool;
  • a terminal In the resource pool, a terminal is provided, the terminal having a transmitting unit that transmits a signal to another terminal, and the control unit setting a time for executing a channel access procedure in the resource pool.
  • FIG. 3 is a diagram showing an example of wireless LAN channels. It is a figure for explaining example (1) of LBT. It is a figure for explaining example (2) of LBT. It is a figure for explaining example (3) of LBT.
  • FIG. 3 is a diagram showing an example (1) of regulations regarding the frequency domain of LBT.
  • FIG. 7 is a diagram showing an example (2) of regulations regarding the frequency domain of LBT.
  • FIG. 7 is a diagram showing an example (3) of regulations regarding the frequency domain of LBT.
  • FIG. 7 is a diagram showing an example (4) of regulations regarding the frequency domain of LBT. It is a figure showing an example of a guard band.
  • FIG. 1 is a diagram showing an example of a functional configuration of a base station 10 in an embodiment of the present invention. It is a diagram showing an example of a functional configuration of a terminal 20 in an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention. It is a figure showing an example of composition of vehicle 2001 in an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR Universal Terrestrial Radio Access
  • LAN Local Area Network
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
  • FIG. 1 is a diagram for explaining V2X.
  • V2X Vehicle to Everything
  • eV2X enhanced V2X
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • V2P Vehicle to Pedestrian
  • V2X using LTE or NR cellular communication and terminal-to-terminal communication is being considered.
  • V2X using cellular communication is also called cellular V2X.
  • studies are underway to realize large capacity, low latency, high reliability, and QoS (Quality of Service) control.
  • the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, the communication device may be a base station, RSU, relay station (relay node), It may also be a terminal or the like that has scheduling capability.
  • SL may be distinguished from UL (Uplink) or DL (Downlink) based on any one or a combination of 1) to 4) below. Moreover, SL may have another name. 1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal)) 4) Reference signal used for path loss measurement for transmission power control
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic-Prefix OFDM
  • DFT-S-OFDM Discrete Fourier Transform-Spread-OFDM
  • OFDM without Transform precoding or Transform rm precoded Any of the following OFDM methods may be applied.
  • Mode 3 and Mode 4 are defined regarding SL resource allocation to the terminal 20.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20.
  • DCI Downlink Control Information
  • SPS Semi Persistent Scheduling
  • the terminal 20 autonomously selects transmission resources from the resource pool.
  • the slot in the embodiment of the present invention may be read as a symbol, minislot, subframe, radio frame, or TTI (Transmission Time Interval).
  • a cell in an embodiment of the present invention may be read as a cell group, a carrier component, a BWP, a resource pool, a resource, a RAT (Radio Access Technology), a system (including a wireless LAN), or the like.
  • the terminal 20 is not limited to a V2X terminal, but may be any type of terminal that performs D2D communication.
  • the terminal 20 may be a terminal owned by a user such as a smartphone, or may be an IoT (Internet of Things) device such as a smart meter.
  • IoT Internet of Things
  • 3GPP Release 16 or Release 17 sidelinks are specified for 1) and 2) shown below.
  • ITS Intelligent Transport Systems
  • UL resources can be used for SL in the FR1 (Frequency range 1) and FR2 (Frequency range 2) license bands defined by NR environment
  • unlicensed bands such as the 5GHz-7GHz band and the 60GHz band.
  • FIG. 2 is a diagram showing an example of a frequency range in an embodiment of the present invention.
  • operation of a frequency band of 52.6 GHz or higher is being considered.
  • FR1 which is currently regulated for operation, is a frequency band from 410 MHz to 7.125 GHz
  • SCS Sub carrier spacing
  • FR2 is a frequency band from 24.25 GHz to 52.6 GHz
  • SCS uses 60, 120 or 240 kHz
  • the bandwidth is 50 MHz to 400 MHz.
  • the newly operated frequency band may range from 52.6 GHz to 71 GHz.
  • examples of unlicensed bands in the 5GHz-7GHz band include 5.15GHz to 5.35GHz, 5.47GHz to 5.725GHz, 5.925GHz and above, etc.
  • examples of unlicensed bands in the 60 GHz band are assumed to be from 59 GHz to 66 GHz, from 57 GHz to 64 GHz or 66 GHz, from 59.4 GHz to 62.9 GHz, etc.
  • LBT Listen before talk
  • the base station 10 or the terminal 20 performs power detection during a predetermined period immediately before transmitting, and stops transmitting when the power exceeds a certain value, that is, when detecting transmission from another device.
  • a maximum channel occupancy time MCOT is defined. MCOT is the maximum time interval during which transmission is allowed to continue when transmission is started after LBT, and is, for example, 4 ms in Japan.
  • Occupied Channel Bandwidth (OCB) requirement when a certain carrier bandwidth is used for transmission, X% or more of the band must be used.
  • NCB Nominal channel bandwidth
  • the OCB requirement aims to ensure that channel access power detection is performed correctly.
  • maximum transmission power and maximum power spectral density it is specified that transmission is performed at a predetermined transmission power or less. For example, in Europe, the maximum transmission power is 23 dBm in the 5150 MHz-5350 MHz band. Further, for example, in Europe, the maximum power spectral density is 10 dBm/MHz in the 5150 MHz-5350 MHz band.
  • LBT is executed when accessing a channel.
  • the base station 10 or the terminal 20 performs power detection during a predetermined period immediately before transmitting, and stops transmitting when the power exceeds a certain value, that is, when detecting transmission from another device.
  • a certain value that is, when detecting transmission from another device.
  • maximum transmission power and maximum power spectral density it is specified that transmission is performed at a predetermined transmission power or less. It is also stipulated that it has the ability to meet OCB requirements.
  • FIG. 3 is a diagram showing an example of wireless LAN channels.
  • the nominal center frequency f c of a wireless LAN channel in the 5 GHz band may be defined by the following equation, as shown in FIG.
  • the nominal channel bandwidth is the maximum bandwidth, including guard bands, that is allocated to a single channel and may be 20 MHz.
  • the bandwidth allocated to a single channel to be operated may be the LBT bandwidth.
  • OCB Olecupied channel bandwidth
  • OCB may be defined as a bandwidth that includes 99% of the signal power.
  • NR In NR, the following four types of channel access procedures are defined based on differences in LBT time reporting behavior (period for sensing).
  • Type 1 Perform variable time sensing before transmission. Also called Category 4 LBT.
  • Type 2A 25 ⁇ s sensing is performed before transmission.
  • Type 2B 16 ⁇ s sensing is performed before transmission.
  • Type 2C Start transmission without LBT. Similar to sending license bands.
  • FIG. 4 is a diagram for explaining example (1) of LBT.
  • FIG. 4 is an example of a type 1 channel access procedure.
  • Type 1 is further classified into four classes indicating channel access priority classes based on differences in sensing length. Sensing is performed in the following two periods.
  • the first period is a prioritization period or defer duration, and has a length of 16+9 ⁇ m p [ ⁇ s].
  • a fixed value is defined for m p for each channel access priority class.
  • the second period is a backoff procedure and has a length of 9 ⁇ N [ ⁇ s].
  • the value of N is randomly determined from a certain range (see Non-Patent Document 4).
  • the 9 ⁇ s sensing period may be referred to as a sensing slot period.
  • m p 3 and the hold period is 43 ⁇ s.
  • the backoff counter is fixed during channel busy.
  • the contention window size is 3 to 13 in NR-U gNB. Expanded.
  • FIG. 5 is a diagram for explaining example (2) of LBT.
  • FIG. 5 is an example of a type 2A or type 2B channel access procedure without random backoff.
  • a gap for power detection of 25 ⁇ s for type 2A and 16 ⁇ s for type 2B is set before transmission.
  • FIG. 6 is a diagram for explaining example (3) of LBT.
  • FIG. 6 is an example of a type 2C channel access procedure. As shown in FIG. 6, no power detection is performed before transmission, and transmission is performed immediately after a gap of no more than 16 ⁇ s. The transmission period may be up to 584 ⁇ s.
  • the sensing period in the backoff procedure during the type 1 channel access procedure is within a certain range ⁇ 0. .. CW ⁇ is randomly determined.
  • One value of CW is determined from the range from CWmin (minimum CW) to CWmax (maximum CW) in Table 1 below, based on the CWS (Contention Window Size) adjustment procedure defined in Non-Patent Document 4.
  • the maximum COT shown in Table 1 is the maximum channel occupancy time.
  • a/b shown in Table 1 indicates the value when a is a gNB, and the value when b is a UE.
  • the initial CW value is the minimum CW.
  • the value of CW is increased based on the decoding result of past PDSCH transmission or PUSCH transmission.
  • the bandwidth of a channel (LBT bandwidth) on which a certain LBT performs sensing may be fixed to 20 MHz. Before transmission using a wide band exceeding 20 MHz, any of the multichannel access procedures specified in Non-Patent Document 4 shown below may be performed.
  • Type A multi-channel access The channel access procedure (LBT) is operated individually for each 20 MHz band.
  • Type A multi-channel access is divided into type A1 and type A2.
  • type A1 the CW is determined independently for each channel.
  • type A2 the maximum number of CWs among the channels that the device intends to use is determined.
  • FIG. 7 is a diagram showing an example (1) of regulations regarding the frequency domain of LBT.
  • FIG. 7 is an example showing a method for determining type A1 CW.
  • CW_P_n of channel n, CW_P_n+1 of channel n+1, and CW_P_n+2 of channel n+2 are determined independently.
  • FIG. 8 is a diagram showing an example (2) of regulations regarding the frequency domain of LBT.
  • FIG. 8 is an example showing a method for determining type A1 CW.
  • the maximum value is determined as CW_P_max, and type 1 LBT is performed on each channel at CW_P_max.
  • Type B Multi-Channel Access Select a certain 1 LBT bandwidth (20 MHz) as the primary channel and operate the Type 1 channel access procedure on the primary channel. Next, type 2A channel access procedures are operated for other channels to be used. Type B multi-channel access is further divided into type B1 and type B2. In type B1, a single CW is maintained on multiple channels that the device intends to use. In type B2, CW is maintained independently in each channel.
  • FIG. 9 is a diagram showing an example (3) of regulations regarding the frequency domain of LBT.
  • FIG. 9 shows the first step of type B multi-channel access.
  • the primary channel is randomly determined or selected at intervals of one second or more.
  • FIG. 9 shows an example in which channel n+1 is determined to be the primary channel.
  • the device performs type 1 LBT with CW_P.
  • FIG. 10 is a diagram showing an example (4) of regulations regarding the frequency domain of LBT.
  • FIG. 10 shows the second step of Type B multi-channel access.
  • FIG. 10 shows an example in which channel n+1 is determined to be the primary channel. On channel n+1, which is the primary channel, the device performs type 1 LBT with CW_P, and then performs type 2A LBT on channel n and channel n+2.
  • CW_P is determined based on the decoding results of PDSCH/PUSCH of all channels.
  • CW_P is determined based on the decoding result of the primary channel.
  • FIG. 11 is a diagram showing an example of a guard band.
  • An intracell guard band may refer to a guard band between LBT bandwidths when one cell defined for 3GPP Release 16 includes multiple LBT bandwidths. RBs included within the guard band cannot be used.
  • Non-Patent Document 5 When the RRC parameter IntraCellGuardBandsPerSCS is set (see Non-Patent Document 5), as shown in FIG. 11, the start position of the guard band inside the BWP is set by the parameter startCRB, and the width is set by the parameter nrofCRB. Furthermore, a guard band may be set based on Non-Patent Document 6. Note that when the RRC parameter IntraCellGuardBandsPerSCS is not set, guard bands may be set based on Non-Patent Document 7.
  • Table 2 shows some of the resource pool settings in sidelinks.
  • the minimum subchannel size, maximum subchannel size, and maximum settable bandwidth are defined for each SCS.
  • the size of the frequency domain of a subchannel is expressed by the number of PRBs, it may be possible to set ⁇ 10, 12, 15, 20, 25, 50, 75, 100 ⁇ .
  • the number of subchannels within a resource pool may be configurable from 1 to 27.
  • a resource pool is composed of only consecutive RBs and only consecutive subchannels.
  • FIG. 12 is a diagram showing an example of the LBT in the embodiment of the present invention.
  • the terminal 20 selects a resource and performs transmission. As shown in FIG. 12, the terminal 20 performs sensing using a sensing window within the resource pool. Through sensing, the terminal 20 receives a resource reservation field or a resource assignment field included in SCI (Sidelink Control Information) transmitted from another terminal 20, and assigns the resource based on the field. Identifying available resource candidates within a resource selection window within the pool. Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
  • SCI Segmentlink Control Information
  • the resource pool setting may have a periodicity.
  • the period may be a period of 10240 milliseconds.
  • FIG. 12 is an example in which slot t 0 SL to slot t Tmax-1 SL are set as a resource pool. Areas of the resource pool within each period may be set using, for example, a bitmap.
  • the transmission trigger in the terminal 20 occurs in slot n, and the priority of the transmission is pTX .
  • the terminal 20 can detect, for example, that another terminal 20 is transmitting priority p RX in the sensing window from slot nT 0 to the slot immediately before slot nT proc,0. . If an SCI is detected within the sensing window and RSRP (Reference Signal Received Power) exceeds a threshold, the resource within the resource selection window corresponding to the SCI is excluded. Further, if an SCI is detected within the sensing window and the RSRP is less than the threshold, the resource within the resource selection window corresponding to the SCI is not excluded.
  • the thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing window based on the priority p TX and the priority p RX.
  • resources within the resource selection window that are candidates for resource reservation information corresponding to resources within the sensing window that are not monitored, for example, for transmission, are excluded.
  • the resource selection window from slot n+T 1 to slot n+T 2 resources occupied by other UEs are identified, and resources from which these resources are excluded become usable resource candidates.
  • the set of usable resource candidates is S A
  • the thresholds Th pTX and pRX set for each resource in the sensing window are increased by 3 dB and the resource selection is performed again. Identification may be performed. That is, by increasing the thresholds Th pTX and pRX and performing resource identification again, the number of resources that are not excluded because their RSRPs are less than the thresholds is increased, and the set of resource candidates S A becomes 20% or more of the resource selection window. You may do so. If S A is less than 20% of the resource selection window, the operation of increasing the thresholds Th pTX and pRX set for each resource in the sensing window by 3 dB and performing resource identification again may be repeated.
  • the lower layer of the terminal 20 may report SA to the upper layer.
  • the upper layer of the terminal 20 may perform random selection on the SA to determine the resources to be used.
  • the terminal 20 may perform sidelink transmission using the determined resources.
  • the upper layer may be a MAC layer
  • the lower layer may be a PHY layer or a physical layer.
  • the receiving terminal 20 detects data transmission from another terminal 20 based on the result of sensing or partial sensing, and transmits data to the other terminal 20. Data may be received from 20.
  • the following two steps may be executed as a procedure from resource allocation on the side link to actual transmission.
  • the terminal 20 performs sensing and resource selection procedures in the 3GPP Release 16/17 sidelink, as shown in FIG. 12.
  • the terminal 20 executes the channel access procedure described above (3GPP Release 16 NR-U/ETSI BRAN (Broadband Radio Access Networks)) for the band corresponding to the resource selected in the first step).
  • 3GPP Release 16 NR-U/ETSI BRAN Broadband Radio Access Networks
  • FIG. 13 is a diagram showing an example of a side link in the embodiment of the present invention.
  • the sidelink control and data signals may be configured as shown in FIG. 13.
  • FIG. 13 is an example in which three subchannels are used for PSCCH and PSSCH transmission.
  • the SCI is separated into a 1st stage SCI and a 2nd stage SCI.
  • the 1st stage SCI is transmitted via the PSCCH
  • the 2nd stage SCI is transmitted via the PSSCH.
  • the PSCCH carrying the 1st stage SCI is composed of ⁇ 10, 12, 15, 20, 25 ⁇ PRBs, 2 or 3 symbols without exceeding one subchannel width.
  • the first symbol is AGC, so the second symbol is copied.
  • the last symbol is used as a gap for transmit/receive switching.
  • the relationship between the subchannel and the LBT bandwidth is assumed to be 1)-3) shown below.
  • Subchannel LBT Bandwidth If based on existing SL frequency domain resource allocation, there is no need to consider OCB requirements. When using multiple subchannels, it is necessary to use a multichannel channel access procedure. Although it is simple, it is difficult to set the subchannel size flexibly.
  • Subchannel ⁇ LBT Bandwidth OCB requirements need to be considered. LBT for one channel can sense multiple subchannels. Although the subchannel size becomes flexible, it becomes difficult to transmit only one subchannel, and the resource pool may be defined in an interlaced manner.
  • Subchannel>LBT Bandwidth Since one subchannel includes multiple LBT bandwidths, it is necessary to use LBT for multichannels even when it is desired to use only one subchannel. Based on existing SL frequency domain resource allocation, there is no need to consider OCB requirements.
  • the subchannels are required to be an integer multiple of the LBT bandwidth. Although the subchannel size becomes flexible, the channel access success rate decreases because multichannel LBT is always used.
  • the bandwidth of subchannels and resource pools that satisfy the above assumption may be guaranteed or set.
  • the bandwidth equal to the LBT bandwidth may mean that the bandwidth is 20 MHz or an integral multiple of 20 MHz, or the bandwidth is 80% of 20 MHz or 80% of an integral multiple of 20 MHz, i.e. It may also mean a bandwidth that satisfies OCB requirements.
  • the terminal 20 may assume that only certain values among a group of settable values are applied to parameters related to the resource pool configuration.
  • the parameters related to the resource pool configuration may be either or both of 1) and 2) shown below.
  • the above-mentioned specific value may be either or both of 1) and 2) shown below.
  • the number of PRBs may be 80% or more of the multiple of 20 MHz or LBT bandwidth, that is, the bandwidth that meets the OCB requirements, or the number of PRBs that is 80% or more of the multiple of 20 MHz or LBT bandwidth, that is, the number of PRBs that meets the OCB requirement.
  • the number of PRBs included in one subchannel may be a value included in the number of PRBs in Table 3.
  • the number of PRBs included in one subchannel may be 100 when SCS is 15 kHz, 50 or 100 when SCS is 30 kHz, and 25, 50, 75, or 100 when SCS is 60 kHz.
  • the maximum number of subchannels constituting one resource pool may be 12 subchannels or 6 subchannels.
  • 1LBT bandwidth may be assumed, and when there are 6 subchannels per resource pool, 2LBT bandwidth may be assumed.
  • the specific condition may be subcarrier spacing.
  • the group of settable values may include some or all of 1) to 3) shown below.
  • new values may be added to parameters related to the resource pool configuration.
  • the parameters related to the resource pool configuration may be either or both of 1) and 2) shown below.
  • the new value may be the value shown below.
  • candidates for the number of PRBs such that one subchannel satisfies the range of 20 ⁇ N ⁇ 0.8 MHz to 20 ⁇ N ⁇ 1 MHz may be added to the number of PRBs (sl-SubchannelSize) constituting a subchannel.
  • sl-SubchannelSize ⁇ 10,12,15,20,25,50,75,100,125,150,175,200,225,250,275,300,350,400,450,500,550,600 , 700, 800, 900, 1000, 1100, 1200 ⁇ .
  • one subchannel may have a bandwidth of the LBT band or an integral multiple of the LBT band.
  • one subchannel may have a bandwidth that satisfies the OCB requirements for the LBT band or a bandwidth that is an integral multiple of the LBT band.
  • the setting or presetting method related to the resource pool configuration for sidelink communication on an unlicensed band may be changed from the method for sidelink communication on a licensed band.
  • options 1-1) to 1-4) shown below may be applied.
  • continuous or discontinuous below may mean resource allocation in the frequency domain.
  • One subchannel may be composed of consecutive or non-contiguous RBs or PRBs.
  • One resource pool may be composed of contiguous or non-contiguous RBs or PRBs.
  • One resource pool may be composed of consecutive or non-contiguous subchannels.
  • One subchannel is composed of consecutive RBs or PRBs, and the subchannels included in the resource pool may or may not be consecutive.
  • the setting or presetting method related to the resource pool configuration for sidelink communication on an unlicensed band may be changed from the method for sidelink communication on a licensed band.
  • options 2-1) and 2-5) shown below may be applied.
  • RB may be replaceable with PRB.
  • a bitmap may be used to indicate for each RB whether or not multiple RBs that can be included in a subchannel can be used for transmission.
  • the bitmap may be set as many times as the number of subchannels included in the resource pool or the maximum number of subchannels.
  • a bitmap may be used to indicate for each RB whether or not multiple RBs included in the resource pool can be used for transmission.
  • a bitmap may be used to indicate whether or not multiple subchannels included in the resource pool can be used for transmission for each subchannel.
  • the number of RBs corresponding to the intra-cell guard band may be set at both ends of each subchannel.
  • the number of RBs corresponding to the intra-cell guard band may be defined for use or may be configured based on configuration or pre-configuration.
  • the setting or pre-setting of the presence or absence of an intra-cell guard band may be performed separately from the number of RBs corresponding to the above-mentioned intra-cell guard band.
  • Option 2-5) If an intra-cell guard band is set, at least a portion of the frequency resources included in the resource pool determined based on the settings or advance settings according to options 1-1) to 1-4) above, It may be assumed that the position is shifted by the frequency resource corresponding to the intracell guard band.
  • the frequency resource of the resource pool is , [n, n+(N ⁇ M-1)] PRB. Note that the description [a, b] corresponds to PRBs from index a to index b.
  • an intracell guard band is further set and the frequency resources of the intracell guard band are PRBs of [n+x1, n+x2]
  • the frequency resources of the resource pool are [n, n+x1-1] and [n+x2+1, n+(N ⁇ M ⁇ 1)] PRB may be used. That is, a resource pool made up of continuous frequency resources may be divided into two frequency resource groups by setting an intracell guard band. However, even if the frequencies are discontinuous, they may be treated as one resource pool.
  • the above option 2-1) and the above option 2-3) may be combined.
  • the RB that is notified as available for transmission in the bitmap in option 2-1) is actually used for transmission. can do.
  • the terminal 20 can perform settings that are compatible with the resource pool in sidelink communication on the unlicensed band.
  • FIG. 14 is a diagram showing an example of a guard band in the embodiment of the present invention. As shown in FIG. 14, it has been unclear how to define and set guard bands between LBT bandwidths in sidelink resources or resource pools. For example, specific values such as the start position of the guard band based on the parameter startCRB and the width of the guard band based on the parameter nrofCRB were not defined.
  • a method for defining and setting guard bands between LBT bandwidths in sidelink resources or resource pools may be defined.
  • the resources in the frequency direction that are set as resource pools may take into account intra-cell guard bands.
  • the intracell guard band may be determined based on the definition and/or setting of either 1) or 2) shown below.
  • the intra-cell guard band may be set using either method 1) or 2) shown below.
  • the terminal 20 may consider the frequency resources set in the resource pool settings, excluding the frequency resources corresponding to the intra cell guard band, as the actually usable resource pool.
  • settings related to intra-cell guard bands may be added.
  • the terminal 20 may determine an actually available resource pool by referring to the resource pool settings.
  • the added parameters may be some or all of the following three parameters.
  • Parameter startCRB The one with the smallest index among the CRBs (Common Resource Blocks) included in each guard band set in the resource pool.
  • Parameter nrofCRB The number of CRBs included in each guard band set in the relevant resource pool.
  • endCRB CRB with the largest index among the CRBs included in each guard band set in the resource pool.
  • the parameter startCRB may be a parameter indicating the start position of the intracell guard band.
  • the parameter nrofCRB may be a parameter indicating the length of the intra cell guard band.
  • the parameter endCRB may be a parameter indicating the end position of the intracell guard band.
  • intracell guard band may mean a band that is included in the resource pool but is not used for actual SL transmission and/or reception, or may be replaced with any of the expressions below.
  • Intra-Resource Pool Guard Band 2) In-Resource Pool Guard Band.
  • a guard band that is set or preset within a certain resource pool may have the following relationship with the subchannel that is set in that resource pool.
  • the terminal 20 does not need to assume that among the subchannels in the resource pool, a subchannel that partially or completely overlaps with the guard band will be used for transmission and/or reception in sidelink communication. .
  • the terminal 20 does not need to assume that among the subchannels in the resource pool, the subchannels that completely overlap with the guard band will be used for transmission and/or reception in sidelink communication.
  • the terminal 20 may assume that among the subchannels in the resource pool, a subchannel that partially overlaps with the guard band is used for transmission and/or reception in sidelink communication.
  • For the subchannel it may be assumed that only a band that does not overlap with the guard band is used for transmission and/or reception in sidelink communication.
  • the terminal 20 can perform settings related to a guard band that matches the resource pool in sidelink communication on an unlicensed band.
  • a method may be defined for applying channel access procedures to sidelink communication for multiple LBT bandwidths.
  • all of the existing type A1, type A2, type B1, and type B2 can be used as channel access procedures for multiple LBT bandwidths (one LBT bandwidth is, for example, 20 MHz). It may be possible to use some of them, or some of them may be usable.
  • the channel access procedure may only be of type A1.
  • only type B1 may be usable for the channel access procedure.
  • the channel access procedure may be usable only for type A1 and type B1.
  • any of 1) to 4) shown below may be applied as the primary channel selection method in type B multi-channel access.
  • the primary channel may be expressed as a primary operating channel.
  • the LBT bandwidth may be randomly selected from the subchannels to be used, and the LBT bandwidth corresponding to the selected subchannel may be used as the primary channel.
  • An LBT bandwidth may be randomly selected from the LBT bandwidths including the subchannels to be used and may be used as the primary channel.
  • the LBT bandwidth including the subchannel for transmitting the PSCCH may be used as the primary channel.
  • the LBT bandwidth including the subchannel with the minimum index or maximum index may be used as the primary channel.
  • the terminal 20 can perform channel access procedures for multiple LBT bandwidths in sidelink communication on an unlicensed band.
  • Table 4 is a table showing the minimum or maximum required sensing period for each priority and each SCS, ie, the above x, in number of symbols during the type 1 channel access procedure.
  • the minimum value of x and the maximum value of x are defined.
  • there is no way to guarantee that the channel used for transmission of x symbols before transmission is not used by other devices in the same RAT.
  • a method may be defined to ensure that the channel used for transmission is not used by other devices in the same RAT.
  • the channel access procedure used in sidelink communication may be limited.
  • the types of channel access procedures may be limited.
  • the channel access priority to be set may be limited regarding type 1 channel access.
  • a time may be defined for performing a channel access procedure, or a time for performing LBT.
  • the terminal 20 uses resources in addition to the resources reserved by other UEs. Then, resource identification and/or resource selection may be performed using resources included in a certain period before the resource as reserved resources.
  • the terminal 20 determines whether transmission is possible in a certain subchannel-slot resource based on at least the expected received power in the slot and/or subchannel including the sensing resource, and the actual received power. The determination may be made based on the difference between the received power and the received power.
  • the channel access procedure used in sidelink communication may be limited. For example, certain types of channel access procedures may be used in sidelink communications on unlicensed bands.
  • the specific channel access type may be type 1 channel access, type 2 channel access, any or more of types 2A, 2B, and 2C, or type 3. It may also be channel access.
  • certain channel access priority classes may be available.
  • the specific channel access priority class may be one or more of 1) to 4) shown below.
  • Channel access priority class 1 2) Channel access priority class 2 3) Channel access priority class 3 4) Channel access priority class 4
  • a value equal to or less than X may be usable as the channel access priority class.
  • X may be 1, 2, 3 or 4.
  • a time for operating a channel access procedure or LBT or a time for not transmitting may be defined.
  • transmission may not be performed at the first X symbols in the slot, but transmission may be started from the (X+1) symbol.
  • the transmission of (X+1) symbols may be the same as the transmission of (X+2) symbols (repetition).
  • X may be a variable value that depends on any of the following.
  • X may be determined based on the SCS.
  • SCS 15 kHz X may be 1, for SCS 30 kHz, X may be 2, and for SCS 60 kHz, X may be 4.
  • a value obtained by subtracting 1 from the above value is newly defined for sidelink communication on the unlicensed band. It's okay.
  • X may be determined based on a channel access priority class, or may be determined based on a configurable channel access priority class.
  • X may be determined based on the type of channel access procedure operated for transmission in the slot.
  • the number of symbols used for SL in one slot (for example, parameter sl-LengthSymbols) is less than or equal to a predetermined value, or The value may be determined based on characteristics of the channel access procedure or LBT that may be performed (eg, minimum sensing period or maximum sensing period).
  • the start position of a symbol used for SL in one slot (for example, parameter sl-StartSymbol) is equal to or greater than a predetermined value
  • the predetermined value may be determined based on characteristics of the channel access procedure or LBT that may be performed (eg, minimum sensing period or maximum sensing period).
  • the terminal 20 uses resources included in a certain period before the resource in addition to the resources reserved by other UEs. Resource identification and/or resource selection may be performed as a reserved resource. For example, the terminal 20 may exclude resources included in a certain period before the resource from the resource selection candidates.
  • the above-mentioned "reserved resource” may be a resource that is not included in the subset of resources defined in Non-Patent Document 6, or a resource that is excluded by any of the procedures defined in Non-Patent Document 6. There may be.
  • the above-mentioned "certain period” may be read as either 1) or 2) below. Note that the channel access procedure or LBT may be limited to a certain type, or all types may be used.
  • the number of slots may vary depending on the SCS.
  • the number of slots may vary depending on the SCS.
  • the above-mentioned "resources included in a certain period of time” may be excluded resources in the resource identification procedure (see Non-Patent Document 6).
  • the immediately preceding X slots of a single slot resource may be excluded.
  • X may be a time or the number of slots corresponding to the above-mentioned "certain period”.
  • the above-mentioned "resources included in a certain period” may be taken into consideration.
  • the terminal 20 determines whether transmission is possible in a certain subchannel-slot resource based on at least the expected received power in the slot and/or subchannel including the sensing resource, and the actual received power. The determination may be made based on the difference between the received power and the received power.
  • FIG. 15 is a diagram for explaining an example of LBT in a side link according to an embodiment of the present invention.
  • the terminal 20 may determine the LBT result based on the difference between the RSRP values measured or calculated in symbol #12 and symbol #13.
  • the terminal 20 may determine that LBT has failed. That is, the terminal 20 may consider that interference has been detected.
  • the terminal 20 may determine that LBT has been successful. In other words, it may be assumed that the terminal 20 is not detecting interference.
  • the above operation may be applied to symbol #14.
  • the terminal 20 applies a predetermined correction to the RSRP value calculated from reception of PSCCH/PSSCH transmitted in other symbols, and the value measured or calculated in symbol #14.
  • the LBT result may be determined based on the difference in RSRP values.
  • the predetermined correction may be a correction corresponding to a transition period after the transmission of symbol #13 in the transmitting UE.
  • the terminal 20 can confirm that the channel used for transmission in sidelink communication on the unlicensed band is not used by other devices located in the same RAT.
  • the above-described embodiment may be applied to an operation in which a certain terminal 20 configures or allocates transmission resources for another terminal 20.
  • the above embodiments are not limited to V2X terminals, but may be applied to terminals that perform D2D communication.
  • Base station 10 and terminal 20 include functionality to implement the embodiments described above. However, the base station 10 and the terminal 20 may each have only some of the functions in the embodiment.
  • FIG. 16 is a diagram showing an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 16 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signal, DL reference signal, etc. to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • control unit 140 performs processing related to settings for the terminal 20 to perform D2D communication. Further, the control unit 140 transmits the scheduling of D2D communication and DL communication to the terminal 20 via the transmitting unit 110. Further, the control unit 140 receives information related to HARQ responses for D2D communication and DL communication from the terminal 20 via the reception unit 120.
  • a functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
  • FIG. 17 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 17 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, reference signals, etc. transmitted from the base station 10.
  • the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) to another terminal 20 as D2D communication.
  • the receiving unit 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 20 .
  • the setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • the control unit 240 controls D2D communication to establish an RRC connection with another terminal 20. Further, the control unit 240 performs processing related to power saving operation. Further, the control unit 240 performs processing related to HARQ for D2D communication and DL communication. Further, the control unit 240 transmits to the base station 10 information related to HARQ responses for D2D communication and DL communication scheduled from the base station 10 to other terminals 20. Further, the control unit 240 may schedule D2D communication for other terminals 20. Further, the control unit 240 may autonomously select a resource to be used for D2D communication from the resource selection window based on the sensing result, or may perform re-evaluation or preemption.
  • control unit 240 performs processing related to power saving in transmission and reception of D2D communication. Further, the control unit 240 performs processing related to cooperation between terminals in D2D communication.
  • a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 18 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • the control unit 140 of the base station 10 shown in FIG. 16 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 17 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • FIG. 19 shows an example of the configuration of the vehicle 2001.
  • a vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal acquired by the sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • a control unit that specifies the configuration of a resource pool in an unlicensed band based on a parameter that specifies resources in the frequency domain;
  • the control unit includes a receiving unit that receives signals from a terminal, and a transmitting unit that transmits signals to other terminals in the resource pool, and the control unit controls the time for executing a channel access procedure in the resource pool. You will be provided with a device to configure.
  • the terminal 20 can confirm that the channel used for transmission in sidelink communication on the unlicensed band is not used by other devices located in the same RAT. That is, it is possible to perform direct communication between terminals that satisfies the regulations in the unlicensed band.
  • the control unit When performing transmission in a certain slot, the control unit does not need to perform transmission in a certain number of symbols at the beginning of the slot.
  • the terminal 20 can confirm that the channel used for transmission in sidelink communication on the unlicensed band is not used by other devices located in the same RAT.
  • the control unit may determine the certain number based on a subcarrier interval or a channel access priority class. With this configuration, the terminal 20 can confirm that the channel used for transmission in sidelink communication on the unlicensed band is not used by other devices located in the same RAT.
  • the control unit may exclude a certain period of time before resources reserved by other terminals from candidates for resource selection.
  • the terminal 20 can confirm that the channel used for transmission in sidelink communication on the unlicensed band is not used by other devices located in the same RAT.
  • the control unit determines whether transmission is possible based on the difference between the received power expected in the symbol to be sensed included in the slot and the received power measured in the symbol to be sensed. You may judge. With this configuration, the terminal 20 can confirm that the channel used for transmission in sidelink communication on the unlicensed band is not used by other devices located in the same RAT.
  • a control procedure for specifying a configuration of a resource pool in an unlicensed band based on parameters specifying resources in the frequency domain and a control procedure for specifying a configuration of a resource pool in an unlicensed band based on a parameter specifying resources in the frequency domain, and receiving a signal from another terminal in the resource pool.
  • a communication method is provided in which a terminal executes a reception procedure to perform a channel access procedure, a transmission procedure to transmit a signal to another terminal in the resource pool, and a procedure to set a time for executing a channel access procedure in the resource pool. be done.
  • the terminal 20 can confirm that the channel used for transmission in sidelink communication on the unlicensed band is not used by other devices located in the same RAT. That is, it is possible to perform direct communication between terminals that satisfies the regulations in the unlicensed band.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station may have the functions that the user terminal described above has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for the terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP.
  • Note that "cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末は周波数領域のリソースを指定するパラメータに基づいてアンライセンスバンドにおけるリソースプールの構成を特定する制御部と、前記リソースプールにおいて、他の端末から信号を受信する受信部と、前記リソースプールにおいて、他の端末に信号を送信する送信部とを有し、前記制御部は、前記リソースプールにおいて、チャネルアクセス手順を実行するための時間を設定する。

Description

端末及び通信方法
 本発明は、無線通信システムにおける端末及び通信方法に関する。
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、NR(New Radio)(5Gともいう。))では、端末同士が基地局を介さずに直接通信を行うD2D(Device to Device)技術が検討されている(例えば非特許文献1)。
 D2Dは、端末と基地局との間のトラフィックを軽減し、災害時等に基地局が通信不能になった場合でも端末間の通信を可能とする。なお、3GPP(3rd Generation Partnership Project)では、D2Dを「サイドリンク(sidelink)」と称しているが、本明細書では、より一般的な用語であるD2Dを使用する。ただし、後述する実施の形態の説明では必要に応じてサイドリンクも使用する。
 D2D通信は、通信可能な他の端末を発見するためのD2Dディスカバリ(D2D discovery、D2D発見ともいう。)と、端末間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信等ともいう。)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリ等を特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。NRにおけるV2X(Vehicle to Everything)に係るサービスの様々なユースケースが検討されている(例えば非特許文献2)。
 また、NRリリース17では、従来のリリース(例えば非特許文献3)よりも高い周波数帯を使用することが検討されている。例えば、52.6GHzから71GHzまでの周波数帯における、サブキャリア間隔、チャネル帯域幅等を含む適用可能なニューメロロジ、物理レイヤのデザイン、実際の無線通信において想定される障害等が検討されている。
3GPP TS 38.211 V16.8.0(2021-12) 3GPP TR 22.886 V15.1.0(2017-03) 3GPP TS 38.306 V16.7.0(2021-12) 3GPP TS 37.213 V16.7.0(2021-12) 3GPP TS 38.331 V16.7.0(2021-12) 3GPP TS 38.214 V16.8.0(2021-12) 3GPP TS 38.101-1 V16.10.0(2021-12) 3GPP TS 38.321 V16.7.0(2021-12)
 新たに運用される従来より高い周波数を使用する周波数帯では、アンライセンスバンドが規定される。アンライセンスバンドでは、種々のレギュレーションが規定され、例えば、チャネルアクセスに際しLBT(Listen before talk)を実行する。当該高い周波数帯において、D2D通信を行う場合、アンライセンスバンドにおけるレギュレーションに適合する動作が要求される。
 本発明は上記の点に鑑みてなされたものであり、アンライセンスバンドにおける規定を満たす端末間直接通信を実行することを目的とする。
 開示の技術によれば、周波数領域のリソースを指定するパラメータに基づいてアンライセンスバンドにおけるリソースプールの構成を特定する制御部と、前記リソースプールにおいて、他の端末から信号を受信する受信部と、前記リソースプールにおいて、他の端末に信号を送信する送信部とを有し、前記制御部は、前記リソースプールにおいて、チャネルアクセス手順を実行するための時間を設定する端末が提供される。
 開示の技術によれば、アンライセンスバンドにおける規定を満たす端末間直接通信を実行することができる。
V2Xを説明するための図である。 本発明の実施の形態における周波数レンジの例を示す図である。 無線LANチャネルの例を示す図である。 LBTの例(1)を説明するための図である。 LBTの例(2)を説明するための図である。 LBTの例(3)を説明するための図である。 LBTの周波数領域に係る規定の例(1)を示す図である。 LBTの周波数領域に係る規定の例(2)を示す図である。 LBTの周波数領域に係る規定の例(3)を示す図である。 LBTの周波数領域に係る規定の例(4)を示す図である。 ガードバンドの例を示す図である。 本発明の実施の形態におけるLBTの例を示す図である。 本発明の実施の形態におけるサイドリンクの例を示す図である。 本発明の実施の形態におけるガードバンドの例を示す図である。 本発明の実施の形態におけるサイドリンクにおけるLBTの例を説明するための図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。 本発明の実施の形態における車両2001の構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)、又は無線LAN(Local Area Network)を含む広い意味を有するものとする。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
 図1は、V2Xを説明するための図である。3GPPでは、D2D機能を拡張することでV2X(Vehicle to Everything)あるいはeV2X(enhanced V2X)を実現することが検討され、仕様化が進められている。図1に示されるように、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、車両間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、車両と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、車両とITSサーバとの間で行われる通信形態を意味するV2N(Vehicle to Network)、及び、車両と歩行者が所持するモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。
 また、3GPPにおいて、LTE又はNRのセルラ通信及び端末間通信を用いたV2Xが検討されている。セルラ通信を用いたV2XをセルラV2Xともいう。NRのV2Xにおいては、大容量化、低遅延、高信頼性、QoS(Quality of Service)制御を実現する検討が進められている。
 LTE又はNRのV2Xについて、今後3GPP仕様に限られない検討も進められることが想定される。例えば、インターオペラビリティの確保、上位レイヤの実装によるコストの低減、複数RAT(Radio Access Technology)の併用又は切替方法、各国におけるレギュレーション対応、LTE又はNRのV2Xプラットフォームのデータ取得、配信、データベース管理及び利用方法が検討されることが想定される。
 本発明の実施の形態において、通信装置が車両に搭載される形態を主に想定するが、本発明の実施の形態は、当該形態に限定されない。例えば、通信装置は人が保持する端末であってもよいし、通信装置がドローンあるいは航空機に搭載される装置であってもよいし、通信装置が基地局、RSU、中継局(リレーノード)、スケジューリング能力を有する端末等であってもよい。
 なお、SL(Sidelink)は、UL(Uplink)又はDL(Downlink)と以下1)-4)のいずれか又は組み合わせに基づいて区別されてもよい。また、SLは、他の名称であってもよい。
1)時間領域のリソース配置
2)周波数領域のリソース配置
3)参照する同期信号(SLSS(Sidelink Synchronization Signal)を含む)
4)送信電力制御のためのパスロス測定に用いる参照信号
 また、SL又はULのOFDM(Orthogonal Frequency Division Multiplexing)に関して、CP-OFDM(Cyclic-Prefix OFDM)、DFT-S-OFDM(Discrete Fourier Transform - Spread - OFDM)、Transform precodingされていないOFDM又はTransform precodingされているOFDMのいずれが適用されてもよい。
 LTEのSLにおいて、端末20へのSLのリソース割り当てに関してMode3とMode4が規定されている。Mode3では、基地局10から端末20に送信されるDCI(Downlink Control Information)によりダイナミックに送信リソースが割り当てられる。また、Mode3ではSPS(Semi Persistent Scheduling)も可能である。Mode4では、端末20はリソースプールから自律的に送信リソースを選択する。
 なお、本発明の実施の形態におけるスロットは、シンボル、ミニスロット、サブフレーム、無線フレーム、TTI(Transmission Time Interval)と読み替えられてもよい。また、本発明の実施の形態におけるセルは、セルグループ、キャリアコンポーネント、BWP、リソースプール、リソース、RAT(Radio Access Technology)、システム(無線LAN含む)等に読み替えられてもよい。
 なお、本発明の実施の形態において、端末20は、V2X端末に限定されず、D2D通信を行うあらゆる種別の端末であってもよい。例えば、端末20は、スマートフォンのようなユーザが所持する端末でもよいし、スマートメータ等のIoT(Internet of Things)機器であってもよい。
 3GPPリリース16又はリリース17サイドリンクは、以下に示される1)及び2)を対象に仕様化されている。
1)ITS(Intelligent Transport Systems)バンドにおいて3GPP端末のみが存在する環境
2)NRで定義されているFR1(Frequency range 1)及びFR2(Frequency range 2)のライセンスバンドにおいてULリソースをSLに利用可能とする環境
 3GPPリリース18以降のサイドリンクとして、アンライセンスバンドを新たに対象とすることが検討されている。例えば、5GHz-7GHz帯、60GHz帯等のアンライセンスバンドである。
 図2は、本発明の実施の形態における周波数レンジの例を示す図である。3GPPリリース17のNR仕様では、例えば52.6GHz以上の周波数帯を運用することが検討されている。なお、図2に示されるように、現状運用が規定されているFR1は410MHzから7.125GHzまでの周波数帯であり、SCS(Sub carrier spacing)は15、30又は60kHzであり、帯域幅は5MHzから100MHzまでである。FR2は24.25GHzから52.6GHzまでの周波数帯であり、SCSは60、120又は240kHzを使用し、帯域幅は50MHzから400MHzである。例えば、新たに運用される周波数帯は、52.6GHzから71GHzまでを想定してもよい。
 例えば、5GHz-7GHz帯におけるアンライセンスバンドの例として、5.15GHzから5.35GHzまで、5.47GHzから5.725GHzまで、5.925GHz以上等が想定される。
 例えば、60GHz帯におけるアンライセンスバンドの例として、59GHzから66GHzまで、57GHzから64GHz又は66GHzまで、59.4GHzから62.9GHzまで等が想定される。
 アンライセンスバンドにおいては、他のシステム又は他の機器に影響を与えないように、種々のレギュレーションが規定されている。
 例えば、5GHz-7GHz帯において、チャネルアクセスに際しLBT(Listen before talk)を実行する。基地局10又は端末20は、送信を行う直前に所定の期間において電力検出を行い、電力が一定値を超えた場合すなわち他の機器の送信を検出した場合は送信を中止する。また、最大チャネル占有時間(Maximum channel occupancy time, MCOT)が規定される。MCOTは、LBT後に送信を開始した場合に送信継続が許容される最大の時間区間であり、例えば日本では4msである。また、占有チャネルバンド幅(Occupied channel bandwidth, OCB)要件(requirement)として、送信はあるキャリアバンド幅を使用する場合、当該帯域のX%以上を使用しなければならない。例えば、欧州では、NCB(Nominal channel bandwidth)における80%から100%を使用することが要求される。OCB要件は、チャネルアクセスの電力検出が正しく行われるようにすることを目的とする。また、最大送信電力、最大パワースペクトル密度(Power spectral density)に関して、送信は所定の送信電力以下で行われることが規定される。例えば欧州では、5150MHz-5350MHz帯において23dBmが最大送信電力となる。また、例えば欧州では、5150MHz-5350MHz帯において10dBm/MHzが最大パワースペクトル密度となる。
 例えば、60GHz帯において、チャネルアクセスに際しLBTを実行する。基地局10又は端末20は、送信を行う直前に所定の期間において電力検出を行い、電力が一定値を超えた場合すなわち他の機器の送信を検出した場合は送信を中止する。また、最大送信電力、最大パワースペクトル密度に関して、送信は所定の送信電力以下で行われることが規定される。また、OCB要件を満たす能力を有することが規定される。
 図3は、無線LANチャネルの例を示す図である。5GHz帯における無線LANチャネルの公称中心周波数(Nominal center frequency)fは、図3に示されるように以下の式で規定されてもよい。
=5160+(g×20)MHz ただし0≦g≦9又は16≦g≦27
 公称チャネルバンド幅は、単一チャネルに割り当てられるガードバンドを含む最大の帯域幅であり、20MHzであってもよい。運用される単一チャネルに割り当てられる帯域幅を、LBTバンド幅としてもよい。
 なお、OCB(Occupied channel bandwidth)は、信号電力の99パーセントを含む帯域幅として定義されてもよい。
 NRでは、LBTの時間報告の挙動(センシングを行う期間)の違いに基づいて、以下に示される4タイプのチャネルアクセス手順が規定される。
タイプ1)可変時間のセンシングを送信前に実行する。カテゴリ4LBTとも呼ばれる。
タイプ2A)25μsのセンシングを送信前に実行する。カテゴリ2LBTとも呼ばれる。
タイプ2B)16μsのセンシングを送信前に実行する。カテゴリ2LBTとも呼ばれる。
タイプ2C)LBTをせずに送信開始する。ライセンスバンドの送信と同様。
 図4は、LBTの例(1)を説明するための図である。図4は、タイプ1のチャネルアクセス手順の例である。タイプ1は、センシング長の違いに基づいてさらにチャネルアクセス優先度クラス(Channel access priority class)を示す4クラスに分類される。以下の二つの期間においてセンシングが実行される。
 第1の期間は、優先順付け期間(Prioritization Period)あるいは保留期間(defer duration)であって、16+9×m[μs]の長さを有する。mは、チャネルアクセス優先度クラスごとに固定値が規定されている。
 第2の期間は、バックオフ手順であって、9×N[μs]の長さを有する。Nの値はある範囲からランダムに決定される(非特許文献4参照)。
 上記において、9μsセンシング期間を、センシングスロット期間と呼んでもよい。
 図4の例では、m=3であり、保留期間は43μsである。図4に示されるように、バックオフカウンタはチャネルビジー中は固定される。また、図4に示されるように、NR-U gNBと、無線LANノード#2の送信が衝突しており、エラーが検出された場合、NR-U gNBでは3から13、コンテンションウィンドウサイズは拡大される。
 図5は、LBTの例(2)を説明するための図である。図5は、ランダムバックオフを伴わないタイプ2A又はタイプ2Bのチャネルアクセス手順の例である。タイプ2Aは25μs、タイプ2Bは16μsの電力検出を行うギャップが送信前に設定される。
 図6は、LBTの例(3)を説明するための図である。図6は、タイプ2Cのチャネルアクセス手順の例である。図6に示されるように、送信前に電力検出は行われず、16μsを超えないギャップの後、送信が即時実行される。送信期間は、最大584μsであってもよい。
 上述のように、タイプ1チャネルアクセス手順時のバックオフ手順におけるセンシング期間は、ある特定のレンジ{0..CW}からランダムに決定される。CWの値は、非特許文献4に定義されるCWS(Contention Window Size)調整手順に基づいて、下記表1のCWmin(最小CW)からCWmax(最大CW)の範囲から一つ決定される。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、最小CW及び最大CWは、チャネルアクセス優先度クラスごとに異なる値が規定される。クラス番号が高いほど、最小CW及び最大CWに大きい値が規定される。したがって、クラス番号が高いほど、他デバイスとの衝突可能性が低下し、チャネルアクセス手順に要する時間が長くなる。一方、クラス番号が低いほど、他デバイスとの衝突可能性は上昇し、チャネルアクセス手順に要する時間が短くなる。
 表1に示される最大COTは、最大チャネル占有時間である。
 なお、表1に示されるa/bなる記載は、aがgNBの場合の値、bがUEの場合の値を示す。
 CWS調整手順において、CW初期値は最小CWとする。過去のPDSCH送信又はPUSCH送信のデコード結果に基づき、CWの値を増加させる。
 あるLBTがセンシングを行うチャネルの帯域幅(LBT bandwidth)は、20MHzに固定されてもよい。20MHzを超える広帯域を使用する送信前においては、以下に示される非特許文献4に規定されるマルチチャネルアクセス手順のいずれかを実行してもよい。
タイプAマルチチャネルアクセス)各20MHz帯域に対してチャネルアクセス手順(LBT)を個別に動作させる。タイプAマルチチャネルアクセスは、タイプA1及びタイプA2に区分される。タイプA1では、CWは各チャネルごとに独立して決定される。タイプA2では、デバイスが使用を意図するチャネル間で最大数のCWが決定される。
 図7は、LBTの周波数領域に係る規定の例(1)を示す図である。図7は、タイプA1のCWの決定方法を示す例である。チャネルnのCW_P_n、チャネルn+1のCW_P_n+1、チャネルn+2のCW_P_n+2はそれぞれ独立に決定される。
 図8は、LBTの周波数領域に係る規定の例(2)を示す図である。図8は、タイプA1のCWの決定方法を示す例である。チャネルnのCW_P_n、チャネルn+1のCW_P_n+1、チャネルn+2のCW_P_n+2のうち、最大値がCW_P_maxとして決定され、CW_P_maxでタイプ1LBTが各チャネルで実行される。
タイプBマルチチャネルアクセス)ある1LBTバンド幅(20MHz)をプライマリチャネルとして選択し、プライマリチャネルにおいてタイプ1チャネルアクセス手順を動作させる。次に、使用する他のチャネルに対してタイプ2Aチャネルアクセス手順を動作させる。タイプBマルチチャネルアクセスは、さらにタイプB1及びタイプB2に区分される。タイプB1では、デバイスが使用を意図する複数のチャネルにおいて単一のCWが維持される。タイプB2では、各チャネルにおいて独立してCWが維持される。
 図9は、LBTの周波数領域に係る規定の例(3)を示す図である。図9は、タイプBマルチチャネルアクセスの第1ステップを示す。プライマリチャネルは、ランダムに決定されるか、1秒以上の周期ごとに選択される。図9では、チャネルn+1がプライマリチャネルに決定される例を示す。プライマリチャネルにおいて、デバイスはタイプ1LBTをCW_Pで実行する。
 図10は、LBTの周波数領域に係る規定の例(4)を示す図である。図10は、タイプBマルチチャネルアクセスの第2ステップを示す。図10では、チャネルn+1がプライマリチャネルに決定される例を示す。プライマリチャネルであるチャネルn+1において、デバイスはタイプ1LBTをCW_Pで実行した後、チャネルn及びチャネルn+2において、タイプ2A LBTを実行する。
 なお、タイプB1では、CW_Pは全チャネルのPDSCH/PUSCHのデコード結果に基づいて決定される。タイプB2では、CW_Pはプライマリチャネルのデコード結果に基づいて決定される。
 図11は、ガードバンドの例を示す図である。イントラセルガードバンドとは、3GPPリリース16向けに定義された1セルが複数のLBTバンド幅を含む場合の、LBTバンド幅間のガードバンドを指してもよい。ガードバンド内に含まれるRBを使用することはできない。
 RRCパラメータIntraCellGuardBandsPerSCSが設定される場合(非特許文献5参照)、図11に示されるように、BWP内部のガードバンドは、パラメータstartCRBにより開始位置が設定され、パラメータnrofCRBにより幅が設定される。さらに非特許文献6に基づいてガードバンドが設定されてもよい。なお、RRCパラメータIntraCellGuardBandsPerSCSが設定されない場合、非特許文献7に基づいてガードバンドが設定されてもよい。
 ここで、サイドリンクにおけるリソースプールについて説明する。表2は、サイドリンクにおけるリソースプールの設定の一部を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、SCSごとに、最小サブチャネルサイズ、最大サブチャネルサイズ、設定可能な最大バンド幅が規定される。サブチャネルの周波数領域の大きさをPRB数で示す場合、{10,12,15,20,25,50,75,100}の設定が可能であってもよい。リソースプール内のサブチャネルの数は、1から27まで設定可能であってもよい。
 リソースプールにおけるサブチャネルの制限として、リソースプールは、連続するRBのみで構成され、連続するサブチャネルのみで構成される。
 図12は、本発明の実施の形態におけるLBTの例を示す図である。リソース割り当てモード2(Resource allocation mode 2)では、端末20がリソースを選択して送信を行う。図12に示されるように、端末20は、リソースプール内のセンシングウィンドウでセンシングを実行する。センシングにより、端末20は、他の端末20から送信されるSCI(Sidelink Control Information)に含まれるリソース予約(resource reservation)フィールド又はリソース割り当て(resource assignment)フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ(resource selection window)内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。
 また、図12に示されるように、リソースプールの設定は周期を有してもよい。例えば、当該周期は、10240ミリ秒の期間であってもよい。図12は、スロットt SLからスロットtTmax-1 SLまでがリソースプールとして設定される例である。各周期内のリソースプールは、例えばビットマップによって領域が設定されてもよい。
 また、図12に示されるように、端末20における送信トリガはスロットnで発生しており、当該送信の優先度はpTXであるとする。端末20は、スロットn-Tからスロットn-Tproc,0の直前のスロットまでのセンシングウィンドウにおいて、例えば他の端末20が優先度pRXの送信を行っていることを検出することができる。センシングウィンドウ内でSCIが検出され、かつRSRP(Reference Signal Received Power)が閾値を上回る場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングウィンドウ内でSCIが検出され、かつRSRPが閾値未満である場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、優先度pTX及び優先度pRXに基づいて、センシングウィンドウ内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。
 また、図12に示されるスロットt SLのように、例えば送信のため、モニタリングしなかったセンシングウィンドウ内のリソースに対応するリソース予約情報の候補となるリソース選択ウィンドウ内のリソースは除外される。
 スロットn+Tからスロットn+T2までのリソース選択ウィンドウは、図12に示されるように、他UEが占有するリソースが識別され、当該リソースが除外されたリソースが、使用可能なリソース候補となる。使用可能なリソース候補の集合をSとすると、Sがリソース選択ウィンドウの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行してもよい。すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させて、リソース候補の集合Sがリソース選択ウィンドウの20%以上となるようにしてもよい。Sがリソース選択ウィンドウの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行する動作は繰り返されてもよい。
 端末20の下位レイヤは、Sを上位レイヤに報告してもよい。端末20の上位レイヤは、Sに対してランダム選択を実行して使用するリソースを決定してもよい。端末20は、決定したリソースを使用してサイドリンク送信を実行してもよい。例えば、上位レイヤはMACレイヤであってもよいし、下位レイヤはPHYレイヤ又は物理レイヤであってもよい。
 上述の図12では、送信側端末20の動作を説明したが、受信側端末20は、センシング又は部分センシングの結果に基づいて、他の端末20からのデータ送信を検知して、当該他の端末20からデータを受信してもよい。
 さらに、サイドリンクにおけるリソース割り当てから実際の送信への手順として、以下に示される2ステップが実行されてもよい。
第1ステップ)端末20は、図12に示されるように、3GPPリリース16/17サイドリンクにおけるセンシング及びリソース選択手順を実行する。
第2ステップ)端末20は、上述したチャネルアクセス手順(3GPPリリース16 NR-U/ETSI BRAN(Broadband Radio Access Networks))を、第1ステップ)で選択したリソースに該当する帯域に対して実行する。
 図13は、本発明の実施の形態におけるサイドリンクの例を示す図である。図13に示されるように、サイドリンクの制御信号とデータ信号は構成されてもよい。図13は、PSCCH及びPSSCHの送信に3サブチャネルが使用される例である。図13に示されるように、SCIは、1stステージSCIと2ndステージSCIに分離される。1stステージSCIはPSCCHを介して送信され、2ndステージSCIはPSSCHを介して送信される。図13に示されるように、1stステージSCIを運ぶPSCCHは、1サブチャネル幅を超えることなく、{10,12,15,20,25}PRB、2又は3シンボルで構成される。
 なお、先頭シンボルはAGCのため2シンボル目がコピーされる。最終シンボルは送受信切り替えのためのギャップとして使用される。
 ここで、サブチャネルとLBTバンド幅の関係性は、以下に示される1)-3)が想定される。
1)サブチャネル=LBTバンド幅
既存のSL周波数領域リソース割り当てに基づく場合、OCB要件を考慮する必要がない。複数サブチャネルを使用する場合、マルチチャネル向けチャネルアクセス手順を用いる必要がある。シンプルであるもののサブチャネルサイズの柔軟な設定が困難である。
2)サブチャネル<LBTバンド幅
OCB要件を考慮する必要がある。1チャネル向けのLBTで複数サブチャネルをセンシングすることができる。サブチャネルサイズは柔軟になるものの1サブチャネルのみの送信が困難となりリソースプールがインタレースで定義される可能性がある。
3)サブチャネル>LBTバンド幅
1サブチャネルが複数LBTバンド幅を含むため、1サブチャネルのみ使用したい場合もマルチチャネル向けLBTを使用する必要がある。既存のSL周波数領域リソース割り当てに基づく場合、OCB要件を考慮する必要がない。サブチャネルは、LBTバンド幅の整数倍であることが要求される。サブチャネルサイズは柔軟になるもののマルチチャネルLBTを常に使用することになるためチャネルアクセス成功率が低下する。
 そこで、上記想定を満たすサブチャネル及びリソースプールの帯域幅を保証又は設定すしてもよい。なお、LBTバンド幅と等しい帯域幅とは、当該帯域幅が20MHz又は20MHzの整数倍であることを意味してもよいし、当該帯域幅が20MHzの80%又は20MHzの整数倍の80%すなわちOCB要件を満たす帯域幅であることを意味してもよい。
 アンライセンスバンド上でのサイドリンク通信において、リソースプール構成に係るパラメータは、設定可能な値の群のうち、ある特定の値のみ適用されることを端末20は想定してもよい。
 例えば、上記リソースプール構成に係るパラメータは、以下に示される1)及び2)のいずれか又は両方であってもよい。
1)サブチャネルを構成するPRB数
2)リソースプールを構成するサブチャネル数
 例えば、上記ある特定の値は、以下に示される1)及び2)のいずれか又は両方であってもよい。
1)20MHz又はLBTのバンド幅の倍数の80%以上、すなわちOCB要件を満たす帯域幅であってもよいし、20MHz又はLBTのバンド幅の倍数の80%以上、すなわちOCB要件を満たすPRB数であってもよい。例えば、1サブチャネルに含まれるPRB数は、表3のPRB数に含まれる値であってもよい。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、1サブチャネルに含まれるPRB数は、SCS15kHz時100、SCS30kHz時50又は100、SCS60kHz時25、50、75又は100であってもよい。
2)BRAN規制により規定される5GHz無線LAN向けの20MHz帯域群に収まる範囲の値。例えば、1リソースプールを構成するサブチャネルの数の最大値は、12サブチャネルであってもよいし、6サブチャネルであってもよい。1リソースプールあたり12サブチャネルである場合1LBTバンド幅を想定してもよいし、1リソースプールあたり6サブチャネルである場合2LBTバンド幅を想定してもよい。
 また、上記ある特定の値は、特定の条件に基づいて異なる値が適用されてもよい。例えば、特定の条件は、サブキャリア間隔であってもよい。
 例えば、上記設定可能な値の群は、以下に示される1)-3)の一部又は全部であってもよい。
1)3GPPリリース16又は17においてサポートされる値、例えばパラメータsl-SubchannelSizeで設定される{10,12,15,20,15,50,75,100}
2)3GPPリリース16又は17においてサポートされる値、例えばパラメータsl-NumSubchannelで設定される{1...27}
3)上記1)及び/又は上記2)に加えて3GPPリリース18で新たにサポートされる値
 また、アンライセンスバンド上でのサイドリンク通信において、リソースプール構成に係るパラメータに新たな値が追加されてもよい。
 例えば、上記リソースプール構成に係るパラメータは、以下に示される1)及び2)のいずれか又は両方であってもよい。
1)サブチャネルを構成するPRB数
2)リソースプールを構成するサブチャネル数
 例えば、上記新たな値は、以下に示される値であってもよい。例えば、サブチャネルを構成するPRB数(sl-SubchannelSize)に、1サブチャネルが20×N×0.8MHz以上20×N×1MHz以下を満たすようなPRB数の候補を追加してもよい。
 例えば、sl-SubchannelSize={10,12,15,20,25,50,75,100,125,150,175,200,225,250,275,300,350,400,450,500,550,600,700,800,900,1000,1100,1200}であってもよい。
 なお、1サブチャネルが、LBT帯域又はLBT帯域の整数倍の帯域幅であってもよい。なお、1サブチャネルが、LBT帯域又はLBT帯域の整数倍の帯域幅に対してOCB要件を満たすような帯域幅であってもよい。
 また、アンライセンスバンド上でのサイドリンク通信向けに、リソースプール構成に係る設定又は事前設定方法を、ライセンスバンド上でのサイドリンク通信向けの方法から変更してもよい。例えば、以下に示されるオプション1-1)-オプション1-4)の一部又は全部が適用されてもよい。なお、以下の連続又は非連続とは、周波数領域上のリソース配置を意味してもよい。
オプション1-1)1サブチャネルは、連続又は非連続のRB又はPRBで構成されてもよい。
オプション1-2)1リソースプールは、連続又は非連続のRB又はPRBで構成されてもよい。
オプション1-3)1リソースプールは、連続又は非連続のサブチャネルで構成されてもよい。
オプション1-4)1サブチャネルは連続するRB又はPRBで構成され、リソースプールに含まれるサブチャネルは連続していてもよいし、連続していなくてもよい。
 また、アンライセンスバンド上でのサイドリンク通信向けに、リソースプール構成に係る設定又は事前設定方法を、ライセンスバンド上でのサイドリンク通信向けの方法から変更してもよい。例えば、以下に示されるオプション2-1)オプション2-5)の一部又は全部の方法が適用されてもよい。なお、以下、RBはPRBと置換可能であってもよい。
オプション2-1)サブチャネルに含まれ得る複数RBの送信への利用可否をRBごとに示すビットマップで設定してもよい。当該ビットマップは、当該リソースプールに含まれるサブチャネル数又はサブチャネルの最大数だけ設定されてもよい。
オプション2-2)リソースプールに含まれる複数RBの送信への利用可否をRBごとに示すビットマップで設定してもよい。
オプション2-3)リソースプールに含まれる複数サブチャネルの送信への利用可否をサブチャネルごとに示すビットマップで設定してもよい。
オプション2-4)イントラセルガードバンドが設定された場合、イントラセルガードバンドに対応するRB数を各サブチャネルの両端に設定してもよい。イントラセルガードバンドに対応するRB数は使用に定義されてもよいし、設定又は事前設定に基づいて設定されてもよい。イントラセルガードバンドの有無の設定又は事前設定を、上記イントラセルガードバンドに対応するRB数とは別途実行してもよい。
オプション2-5)イントラセルガードバンドが設定された場合、上記オプション1-1)-オプション1-4)による設定又は事前設定に基づいて定まるリソースプールに含まれる周波数リソースのうち少なくとも一部を、イントラセルガードバンドに対応する周波数リソースの分だけシフトした位置と想定してもよい。
 例えば、あるリソースプールにおいて、sl-NumSubchannelによりサブチャネル数N、sl-StartRB-SubchannelによりlowestPRBインデックスn、sl-SubchannelSizeにより各サブチャネルのPRB数Mが設定された場合、当該リソースプールの周波数リソースは、[n,n+(N×M-1)]のPRBとなる。なお、[a,b]なる記載は、インデックスaからインデックスbまでのPRBに対応する。
 このとき、さらにイントラセルガードバンドが設定され、イントラセルガードバンドの周波数リソースが[n+x1,n+x2]のPRBである場合、当該リソースプールの周波数リソースは、[n,n+x1-1]及び[n+x2+1,n+(N×M-1)]のPRBとしてもよい。すなわち、連続する周波数リソースで構成されるリソースプールが、イントラセルガードバンドの設定により二つの周波数リソース群に分割されてもよい。ただし、周波数非連続であっても、1リソースプールとして扱われてよい。
 例えば、上記オプション2-1)及び上記オプション2-3)を組み合わせてもよい。すなわち、上記オプション2-3)のビットマップにより送信への利用可能と通知されたサブチャネルにおいて、オプション2-1)のビットマップにより送信への利用可能と通知されたRBを実際に送信に使用することができる。
 上述の実施例により、端末20は、アンライセンスバンド上でのサイドリンク通信におけるリソースプールに適合する設定を実行することができる。
 図14は、本発明の実施の形態におけるガードバンドの例を示す図である。図14に示されるように、サイドリンクリソース又はリソースプールにおけるLBTバンド幅間のガードバンドの定義及び設定方法が不明であった。例えば、パラメータstartCRBによるガードバンドの開始位置、パラメータnrofCRBによるガードバンドの幅等の、具体的な値が規定されていなかった。
 そこで、サイドリンクリソース又はリソースプールにおけるLBTバンド幅間のガードバンドの定義及び設定方法を規定してもよい。
 リソースプールとして設定される周波数方向のリソースは、イントラセルガードバンドを考慮してもよい。
 例えば、イントラセルガードバンドは、下記に示される1)又は2)のいずれかの定義及び/又は設定に基づいて決定されてもよい。
1)仕様上で固定的に定義されたイントラセルガードバンド
2)RRCシグナリングにより設定されるイントラセルガードバンド
 例えば、イントラセルガードバンドは、下記に示される1)又は2)のいずれかの方法で設定されてもよい。
1)既存のリソースプール設定と既存のイントラセルガードバンドの定義及び/又は設定を再利用してもよい。端末20は、リソースプール設定で設定された周波数方向リソースから、イントラセルガードバンドにあたる周波数方向リソースを除外したものを実際に利用可能なリソースプールとみなしてもよい。
2)リソースプール設定において、イントラセルガードバンドに係る設定を追加してもよい。端末20は、リソースプール設定を参照することで、実際に利用可能なリソースプールを決定してもよい。追加されるパラメータは以下3つのパラメータの一部又は全部であってもよい。パラメータstartCRB:当該リソースプールに設定される各ガードバンドに含まれるCRB(Common Resource Block)のうちインデックスが最小のもの。パラメータnrofCRB:当該リソースプールに設定される各ガードバンドに含まれるCRB数。endCRB:当該リソースプールに設定される各ガードバンドに含まれるCRBのうちインデックスが最大のもの。
 なお、パラメータstartCRBは、イントラセルガードバンドの開始位置を示すパラメータであってもよい。パラメータnrofCRBは、イントラセルガードバンドの長さを示すパラメータであってもよい。パラメータendCRBは、イントラセルガードバンドの終了位置を示すパラメータであってもよい。
 なお、イントラセルガードバンドとは、リソースプール中に含まれるが実際のSL送信及び/又は受信に使用されない帯域を意味してもよいし、以下のいずれかの表現に置換されてもよい。1)イントラリソースプールガードバンド(Intra-Resource Pool Guard Band)。2)インリソースプールガードバンド(In-Resource Pool Guard Band)。
 また、あるリソースプール内に設定又は事前設定されるガードバンドは、当該リソースプールにおいて設定されるサブチャネルと以下の関係を有してもよい。
 例えば、端末20は、リソースプール中のサブチャネルのうち、ガードバンドと一部又は全部がオーバラップするサブチャネルを、サイドリンク通信における送信及び/又は受信に利用することを想定しなくてもよい。
 例えば、端末20は、リソースプール中のサブチャネルのうち、ガードバンドと全部がオーバラップするサブチャネルをサイドリンク通信における送信及び/又は受信に利用することを想定しなくてもよい。端末20は、リソースプール中のサブチャネルのうち、ガードバンドと一部がオーバラップするサブチャネルをサイドリンク通信における送信及び/又は受信に利用することを想定してもよい。当該サブチャネルは、ガードバンドとオーバラップしていない帯域のみをサイドリンク通信における送信及び/又は受信に利用することを想定してもよい。
 上述の実施例により、端末20は、アンライセンスバンド上でのサイドリンク通信におけるリソースプールに適合するガードバンドに係る設定を実行することができる。
 また、複数のLBTハンド幅に対するチャネルアクセス手順のサイドリンク通信に適用する方法が不明であった。例えば、既存のタイプA1、タイプA2、タイプB1及びタイプB2のすべてを使用可能とするか否か規定する必要がある。また、タイプB1又はタイプB2を使用するとき、プライマリチャネルをどのように選択するか規定する必要がある。
 そこで、複数のLBTハンド幅に対するチャネルアクセス手順のサイドリンク通信に適用する方法を規定してもよい。
 アンライセンスバンド上でのサイドリンク通信において、複数のLBTバンド幅(1LBTバンド幅は例えば20MHz)に対するチャネルアクセス手順は、既存のタイプA1、タイプA2、タイプB1及びタイプB2の全部が使用可能であってもよいし、一部が使用可能であってもよい。例えば、当該チャネルアクセス手順は、タイプA1のみ使用可能であってもよい。例えば、当該チャネルアクセス手順は、タイプB1のみ使用可能であってもよい。例えば、当該チャネルアクセス手順は、タイプA1及びタイプB1のみ使用可能であってもよい。
 マルチチャネルLBTの設定方法に関して、タイプBマルチチャネルアクセスにおけるプライマリチャネルの選択方法は、以下に示される1)-4)のいずれかを適用してもよい。なお、プライマリチャネルは、プライマリ運用チャネル(Primary operating channel)と表記されてもよい。
1)使用するサブチャネルからランダムに選択し、選択したサブチャネルに該当するLBTバンド幅をプライマリチャネルとしてもよい。
2)使用するサブチャネルを含むLBTバンド幅からランダムにLBTバンド幅を選択しプライマリチャネルとしてもよい。
3)PSCCHを送信するサブチャネルを含むLBTバンド幅をプライマリチャネルとしてもよい。
4)最小インデックス又は最大インデックスのサブチャネルを含むLBTバンド幅をプライマリチャネルとしてもよい。
 なお、既存のタイプA1、タイプA2、タイプB1及びタイプB2のマルチアクセス手順は、非特許文献4に規定されている手順であってもよい。
 上述の実施例により、端末20は、アンライセンスバンド上でのサイドリンク通信における複数のLBTバンド幅に対するチャネルアクセス手順を実行することができる。
 また、LBTの動作後、送信を実行するためには、送信に使用するチャネルが空きであると当該LBTによって判定される必要がある。送信前xシンボルは送信に使用するチャネルが同一RAT中の他デバイスによって使用されない必要がある。表4は、タイプ1チャネルアクセス手順時の、優先度ごと及びSCSごとの最小又は最大で必要なセンシング期間すなわち上記xをシンボル数で示した表である。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、xの最小値と、xの最大値が規定されている。ここで、送信前xシンボルは、送信に使用するチャネルが同一RAT中の他デバイスによって使用されないことを保証する方法が存在しなかった。
 そこで、送信に使用するチャネルが同一RAT中の他デバイスによって使用されないことを保証する方法を規定してもよい。
 サイドリンク通信において使用されるチャネルアクセス手順を限定してもよい。例えば、チャネルアクセス手順のタイプを限定してもよい。例えば、タイプ1チャネルアクセスに関して、設定するチャネルアクセス優先度を限定してもよい。
 また、チャネルアクセス手順を実行するための時間が定義されてもよいし、LBTを実行するための時間が定義されてもよい。
 また、サイドリンク通信において、センシング手順(sensing procedure)、リソース識別手順(resource identification procedure)、リソース選択手順(resource selection procedure)の一部又は全部において、端末20は、他UEが予約したリソースに加えて、当該リソース以前のある一定期間に含まれるリソースを予約されたリソースとして、リソース識別及び/又はリソース選択を実行してもよい。
 また、アンライセンスバンド上でのサイドリンク通信において、端末20は、あるサブチャネル-スロットリソースにおける送信可否判定を、少なくともセンシングするリソースを含むスロット及び/又はサブチャネルにおいて想定される受信電力と、実際の受信電力との差分に基づいて決定してもよい。
 また、サイドリンク通信において使用されるチャネルアクセス手順を限定してもよい。例えば、アンライセンスバンド上でのサイドリンク通信において、ある特定のチャネルアクセス手順のタイプが使用されてもよい。当該特定のチャネルアクセスタイプは、タイプ1チャネルアクセスであってもよいし、タイプ2チャネルアクセスであってもよいし、タイプ2A、2B及び2Cのいずれか又は複数であってもよいし、タイプ3チャネルアクセスであってもよい。
 例えば、アンライセンスバンド上でのサイドリンク通信において、タイプ1チャネルアクセスが使用される場合、ある特定のチャネルアクセス優先度クラスが使用可能であってもよい。例えば当該特定のチャネルアクセス優先度クラスは、以下に示される1)-4)のいずれか又は複数であってもよい。
1)チャネルアクセス優先度クラス1
2)チャネルアクセス優先度クラス2
3)チャネルアクセス優先度クラス3
4)チャネルアクセス優先度クラス4
 例えば、チャネルアクセス優先度クラスとして、X以下の値が使用可能であってもよい。Xは、1、2、3又は4のいずれかであってもよい。
 また、チャネルアクセス手順又はLBTを動作するための時間又は送信をしない時間を定義してもよい。
 例えば、あるスロットで送信をするとき、当該スロット中の先頭Xシンボルにおいて送信しなくてもよい。また、例えば、当該スロット中の先頭Xシンボルにおいて送信せず、(X+1)シンボルから送信を開始してもよい。(X+1)シンボルの送信は、(X+2)シンボルの送信と同一(繰り返し、repetition)であってもよい。
 なお、Xは、下記のいずれかに依存する可変の値であってもよい。例えば、XはSCSに基づいて決定されてもよい。例えば、SCS15kHzの場合X=1としてもよいし、SCS30kHzの場合X=2としてもよいし、SCS60kHzの場合X=4としてもよい。また、例えば、3GPPリリース16において定義されているスロット末尾の1シンボルのガードピリオドを考慮して、上記の値から1を引いた値をアンライセンスバンド上でのサイドリンク通信向けに新規で定義してもよい。また、例えば、Xはチャネルアクセス優先度クラスに基づいて決定されてもよいし、設定可能なチャネルアクセス優先度クラスに基づいて決定されてもよい。また、例えば、Xは、当該スロットにおける送信向けに動作させるチャネルアクセス手順のタイプに基づいて決定されてもよい。
 例えば、アンライセンスバンド上でのサイドリンク通信を実行する場合、1スロットのうちSLに使用するシンボル数(例えばパラメータsl-LengthSymbols)は、所定値以下であると想定してもよいし、当該所定値は実行され得るチャネルアクセス手順又はLBTの特徴(例えば最小センシング期間もしくは最大センシング期間)に基づいて決定されてもよい。
 例えば、アンライセンスバンド上でのサイドリンク通信を実行する場合、1スロットのうちSLに使用するシンボルの開始位置(例えばパラメータsl-StartSymbol)は、所定値以上であると想定してもよいし、当該所定値は実行され得るチャネルアクセス手順又はLBTの特徴(例えば最小センシング期間もしくは最大センシング期間)に基づいて決定されてもよい。
 また、サイドリンク通信において、センシング手順、リソース識別手順、リソース選択手順の一部又は全部において、端末20は、他UEが予約したリソースに加えて、当該リソース以前のある一定期間に含まれるリソースを予約されたリソースとして、リソース識別及び/又はリソース選択を実行してもよい。例えば、端末20は、当該リソース以前のある一定期間に含まれるリソースをリソース選択の候補から除外してもよい。
 上記「予約されたリソース」は、非特許文献6に定義されるリソースのサブセットに含まれないリソースであってもよいし、非特許文献6に定義される手順のいずれかで除外されるリソースであってもよい。
 上記「ある一定期間」は、以下に示される1)及び2)のいずれかに読み替えられてもよい。なお、チャネルアクセス手順又はLBTは、ある特定のタイプに限定されてもよいし、すべてのタイプが使用されてもよい。
1)チャネルアクセス手順又はLBTに必要とされる時間の最小値又は当該時間の最小値に対応するスロット数。スロット数はSCSに応じて異なってもよい。
2)チャネルアクセス手順又はLBTに必要とされる時間の最大値又は当該時間の最大値に対応するスロット数。スロット数はSCSに応じて異なってもよい。
 上記「ある一定期間に含まれるリソース」を、リソース識別手順(非特許文献6参照)において、除外されるリソースとしてもよい。例えば、リソース識別手順において、シングルスロットリソースの直前のXスロットを除外してもよい。Xは、上記「ある一定期間」に対応する時間又はスロット数であってもよい。また、例えば、サイドリンクグラント受信及びSCI送信(非特許文献8参照)の手順において、上記「ある一定期間に含まれるリソース」を考慮してもよい。
 また、アンライセンスバンド上でのサイドリンク通信において、端末20は、あるサブチャネル-スロットリソースにおける送信可否判定を、少なくともセンシングするリソースを含むスロット及び/又はサブチャネルにおいて想定される受信電力と、実際の受信電力との差分に基づいて決定してもよい。
 図15は、本発明の実施の形態におけるサイドリンクにおけるLBTの例を説明するための図である。例えば、図15において、シンボル#12及びシンボル#13でLBTを実行する場合、他シンボル(シンボル#1-シンボル#11のいずれか)で送信されるPSCCH/PSSCH受信から算出されるRSRP値と、シンボル#12及びシンボル#13で測定又は算出されるRSRP値の差分に基づいて、端末20はLBTの結果を決定してもよい。
 シンボル#12及びシンボル#13において、他シンボルよりもXdB以上の又はより高いRSRPが測定された場合、端末20はLBTに失敗したと判定してもよい。すなわち、端末20は干渉を検知したとみなしてもよい。
 一方、シンボル#12及びシンボル#13において、他シンボルにおけるRSRP+XdBよりも低い又は以下のRSRPが測定された場合、端末20はLBTに成功したと判定してもよい。すなわち、端末20は干渉を検知していないとみなしてもよい。
 なお、上記動作は、シンボル#14に適用されてもよい。上記動作をシンボル#14に適用する場合、端末20は、他シンボルで送信されるPSCCH/PSSCH受信から算出されるRSRP値に所定の補正を適用した値と、シンボル#14で測定又は算出されるRSRP値の差分に基づいてLBTの結果を決定してもよい。当該所定の補正は、送信UEにおけるシンボル#13の送信後の遷移期間に対応する補正であってもよい。
 上述の実施例により、端末20は、アンライセンスバンド上でのサイドリンク通信において、送信に使用するチャネルが同一RATに在圏する他デバイスによって使用されないことを確認することができる。
 上述の実施例において、「設定(configuration)」は、「事前設定(pre-configuration)」に置換されてもよい。
 上述の実施例は、ある端末20が他の端末20の送信リソースを設定する又は割り当てる動作に適用されてもよい。
 上述の実施例は、V2X端末に限定されず、D2D通信を行う端末に適用されてもよい。
 上述の実施例により、アンライセンスバンドにおける規定を満たす端末間直接通信を実行することができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
 <基地局10>
 図16は、基地局10の機能構成の一例を示す図である。図16に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図16に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DL参照信号等を送信する機能を有する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、D2D通信の設定に係る情報等である。
 制御部140は、実施例において説明したように、端末20がD2D通信を行うための設定に係る処理を行う。また、制御部140は、D2D通信及びDL通信のスケジューリングを送信部110を介して端末20に送信する。また、制御部140は、D2D通信及びDL通信のHARQ応答に係る情報を受信部120を介して端末20から受信する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
 <端末20>
 図17は、端末20の機能構成の一例を示す図である。図17に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図17に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号又は参照信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
 設定部230は、受信部220により基地局10又は端末20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、D2D通信の設定に係る情報等である。
 制御部240は、実施例において説明したように、他の端末20との間のRRC接続を確立するD2D通信を制御する。また、制御部240は、省電力動作に係る処理を行う。また、制御部240は、D2D通信及びDL通信のHARQに係る処理を行う。また、制御部240は、基地局10からスケジューリングされた他の端末20へのD2D通信及びDL通信のHARQ応答に係る情報を基地局10に送信する。また、制御部240は、他の端末20にD2D通信のスケジューリングを行ってもよい。また、制御部240は、センシングの結果に基づいてD2D通信に使用するリソースをリソース選択ウィンドウから自律的に選択してもよいし、再評価又はプリエンプションを実行してもよい。また、制御部240は、D2D通信の送受信における省電力に係る処理を行う。また、制御部240は、D2D通信における端末間協調に係る処理を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図16及び図17)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図16に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図17に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 図19に車両2001の構成例を示す。図19に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、周波数領域のリソースを指定するパラメータに基づいてアンライセンスバンドにおけるリソースプールの構成を特定する制御部と、前記リソースプールにおいて、他の端末から信号を受信する受信部と、前記リソースプールにおいて、他の端末に信号を送信する送信部とを有し、前記制御部は、前記リソースプールにおいて、チャネルアクセス手順を実行するための時間を設定する端末が提供される。
 上記の構成により、端末20は、アンライセンスバンド上でのサイドリンク通信において、送信に使用するチャネルが同一RATに在圏する他デバイスによって使用されないことを確認することができる。すなわち、アンライセンスバンドにおける規定を満たす端末間直接通信を実行することができる。
 前記制御部は、あるスロットで送信を実行するとき、当該スロットの先頭のある個数のシンボルにおいて送信を行わなくてもよい。当該構成により、端末20は、アンライセンスバンド上でのサイドリンク通信において、送信に使用するチャネルが同一RATに在圏する他デバイスによって使用されないことを確認することができる。
 前記制御部は、前記ある個数を、サブキャリア間隔又はチャネルアクセス優先度クラスに基づいて決定してもよい。当該構成により、端末20は、アンライセンスバンド上でのサイドリンク通信において、送信に使用するチャネルが同一RATに在圏する他デバイスによって使用されないことを確認することができる。
 前記制御部は、前記リソースプールにおいてリソース選択を実行するとき、他の端末が予約したリソースより前の一定期間を、リソース選択の候補から除外してもよい。当該構成により、端末20は、アンライセンスバンド上でのサイドリンク通信において、送信に使用するチャネルが同一RATに在圏する他デバイスによって使用されないことを確認することができる。
 前記制御部は、あるスロットでセンシングを実行するとき、当該スロットに含まれるセンシングするシンボルにおいて想定される受信電力と、前記センシングするシンボルにおいて測定された受信電力との差分に基づいて、送信可否を判定してもよい。当該構成により、端末20は、アンライセンスバンド上でのサイドリンク通信において、送信に使用するチャネルが同一RATに在圏する他デバイスによって使用されないことを確認することができる。
 また、本発明の実施の形態によれば、周波数領域のリソースを指定するパラメータに基づいてアンライセンスバンドにおけるリソースプールの構成を特定する制御手順と、前記リソースプールにおいて、他の端末から信号を受信する受信手順と、前記リソースプールにおいて、他の端末に信号を送信する送信手順と、前記リソースプールにおいて、チャネルアクセス手順を実行するための時間を設定する手順とを端末が実行する通信方法が提供される。
 上記の構成により、端末20は、アンライセンスバンド上でのサイドリンク通信において、送信に使用するチャネルが同一RATに在圏する他デバイスによって使用されないことを確認することができる。すなわち、アンライセンスバンドにおける規定を満たす端末間直接通信を実行することができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)

Claims (6)

  1.  周波数領域のリソースを指定するパラメータに基づいてアンライセンスバンドにおけるリソースプールの構成を特定する制御部と、
     前記リソースプールにおいて、他の端末から信号を受信する受信部と、
     前記リソースプールにおいて、他の端末に信号を送信する送信部とを有し、
     前記制御部は、前記リソースプールにおいて、チャネルアクセス手順を実行するための時間を設定する端末。
  2.  前記制御部は、あるスロットで送信を実行するとき、当該スロットの先頭のある個数のシンボルにおいて送信を行わない請求項1記載の端末。
  3.  前記制御部は、前記ある個数を、サブキャリア間隔又はチャネルアクセス優先度クラスに基づいて決定する請求項2記載の端末。
  4.  前記制御部は、前記リソースプールにおいてリソース選択を実行するとき、他の端末が予約したリソースより前の一定期間を、リソース選択の候補から除外する請求項1記載の端末。
  5.  前記制御部は、あるスロットでセンシングを実行するとき、当該スロットに含まれるセンシングするシンボルにおいて想定される受信電力と、前記センシングするシンボルにおいて測定された受信電力との差分に基づいて、送信可否を判定する請求項1記載の端末。
  6.  周波数領域のリソースを指定するパラメータに基づいてアンライセンスバンドにおけるリソースプールの構成を特定する制御手順と、
     前記リソースプールにおいて、他の端末から信号を受信する受信手順と、
     前記リソースプールにおいて、他の端末に信号を送信する送信手順と、
     前記リソースプールにおいて、チャネルアクセス手順を実行するための時間を設定する手順とを端末が実行する通信方法。
PCT/JP2022/016345 2022-03-30 2022-03-30 端末及び通信方法 WO2023188205A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016345 WO2023188205A1 (ja) 2022-03-30 2022-03-30 端末及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016345 WO2023188205A1 (ja) 2022-03-30 2022-03-30 端末及び通信方法

Publications (1)

Publication Number Publication Date
WO2023188205A1 true WO2023188205A1 (ja) 2023-10-05

Family

ID=88199713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016345 WO2023188205A1 (ja) 2022-03-30 2022-03-30 端末及び通信方法

Country Status (1)

Country Link
WO (1) WO2023188205A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253020A (ja) * 2004-03-08 2005-09-15 National Institute Of Information & Communication Technology 通信方法、通信システム、基地局および移動局
WO2020261578A1 (ja) * 2019-06-28 2020-12-30 株式会社Nttドコモ 基地局、端末、及びコンテンションウィンドウサイズ決定方法
JP2022513276A (ja) * 2018-12-17 2022-02-07 フラウンホーファー-ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 通信ネットワークにおいて輻輳を制御する方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253020A (ja) * 2004-03-08 2005-09-15 National Institute Of Information & Communication Technology 通信方法、通信システム、基地局および移動局
JP2022513276A (ja) * 2018-12-17 2022-02-07 フラウンホーファー-ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 通信ネットワークにおいて輻輳を制御する方法及び装置
WO2020261578A1 (ja) * 2019-06-28 2020-12-30 株式会社Nttドコモ 基地局、端末、及びコンテンションウィンドウサイズ決定方法

Similar Documents

Publication Publication Date Title
WO2023188205A1 (ja) 端末及び通信方法
WO2023188204A1 (ja) 端末及び通信方法
WO2023188203A1 (ja) 端末及び通信方法
WO2023188202A1 (ja) 端末及び通信方法
WO2023243061A1 (ja) 端末及び通信方法
WO2023248401A1 (ja) 端末及び通信方法
WO2023248399A1 (ja) 端末及び通信方法
WO2024062580A1 (ja) 端末及び通信方法
WO2024029053A1 (ja) 端末及び通信方法
WO2023233556A1 (ja) 端末及び通信方法
WO2024029052A1 (ja) 端末及び通信方法
WO2023203656A1 (ja) 端末及び通信方法
WO2024095492A1 (ja) 端末及び通信方法
WO2024029051A1 (ja) 端末及び通信方法
WO2023238209A1 (ja) 端末及び通信方法
WO2024034104A1 (ja) 端末及び通信方法
WO2023203655A1 (ja) 端末及び通信方法
WO2024095493A1 (ja) 端末及び通信方法
WO2024100748A1 (ja) 端末及び通信方法
WO2023248400A1 (ja) 端末及び通信方法
WO2024069826A1 (ja) 端末及び通信方法
WO2023203657A1 (ja) 端末及び通信方法
WO2024069827A1 (ja) 端末及び通信方法
WO2024100747A1 (ja) 端末及び通信方法
WO2024089894A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935350

Country of ref document: EP

Kind code of ref document: A1