WO2023188102A1 - Aerosol generating device, control method, and program - Google Patents

Aerosol generating device, control method, and program Download PDF

Info

Publication number
WO2023188102A1
WO2023188102A1 PCT/JP2022/015963 JP2022015963W WO2023188102A1 WO 2023188102 A1 WO2023188102 A1 WO 2023188102A1 JP 2022015963 W JP2022015963 W JP 2022015963W WO 2023188102 A1 WO2023188102 A1 WO 2023188102A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
suction
aerosol
time
aerosol source
Prior art date
Application number
PCT/JP2022/015963
Other languages
French (fr)
Japanese (ja)
Inventor
啓司 丸橋
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2022/015963 priority Critical patent/WO2023188102A1/en
Publication of WO2023188102A1 publication Critical patent/WO2023188102A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection

Definitions

  • the present invention relates to an aerosol generation device, a control method, and a program.
  • An aerosol generating device (hereinafter referred to as an "aerosol generating device") generates an aerosol by heating an aerosol source containing a fragrance or the like.
  • the aerosol source is a liquid
  • the aerosol is generated by heating the aerosol source guided within a glass fiber called a wick with a heater.
  • the consumption amount of the aerosol source by multiplying the standard consumption amount by the number of inhalations by the user detected by a sensor, for example.
  • the actual consumption amount does not necessarily match the standard consumption amount.
  • the calculated consumption amount will be higher than the actual consumption amount.
  • the aerosol source will need to be replaced, even though there is still enough available aerosol source to generate aerosol.
  • a solid aerosol source is One possibility is to calculate the consumption amount.
  • the way users inhale varies, and the actual consumption amount does not necessarily match the standard consumption amount.
  • the calculated consumption amount will be higher than the actual consumption amount.
  • the solid aerosol source will need to be replaced, even though there is still enough aerosol source available for aerosol generation.
  • the present invention provides a technique that can improve the accuracy of calculating the consumption amount of an aerosol source in an aerosol generation device.
  • a sensor that detects suction by a user, a first heating section that heats a first aerosol source, and a control section that controls supply of power to the first heating section;
  • the control unit supplies power to the first heating unit in conjunction with the detection of suction by the sensor, and the control unit supplies power to the first heating unit based on the heating time length of the first aerosol source by the first heating unit.
  • an aerosol generation device is provided that calculates consumption of a second aerosol source.
  • the control unit sets a monitoring period of a predetermined length based on the detection of suction by the user, obtains the heating time length within the monitoring period for each monitoring period, and calculates the heating time length that has been obtained.
  • the amount of consumption of the second aerosol source consumed within the monitoring period may be calculated based on.
  • control unit may set the total time of the plurality of suctions as the heating time length.
  • the control unit may calculate the remaining amount of the second aerosol source based on the cumulative value of the consumption amount calculated for each suction time when one monitoring period is one suction time. good.
  • the control unit may classify the heating time length within the monitoring period into a plurality of ranges according to the size, and calculate the consumption amount using a calculation method prepared for each range.
  • the control unit further includes a second heating unit that heats the second aerosol source, and the control unit controls the first heating using only the first heating unit and the first heating unit and the second heating unit. If it is possible to switch to a second heating that uses both of the heating parts, the method for calculating the consumption of the second aerosol source is switched in conjunction with switching between the first heating and the second heating. You can.
  • the control unit may change the amount of consumption of the second aerosol source during the second heating to the amount consumed in the first heating. It may be calculated as a value larger than the consumption amount of the second aerosol source at the time.
  • the second aerosol source may be an aerosol source held in the mechanical part.
  • a method for controlling an aerosol generating device that generates an aerosol including the steps of a sensor detecting suction by a user, and a first heating unit heating a first aerosol source. and a step of supplying electric power to the first heating unit in conjunction with detection of suction by the sensor, and a second heating unit based on the heating time length of the first aerosol source by the first heating unit.
  • a control method comprising: calculating a consumption amount of an aerosol source.
  • the computer is provided with a step in which a sensor detects inhalation by a user, a first heating unit heats a first aerosol source, and a step in conjunction with the detection of inhalation by the sensor. and calculating the consumption amount of the second aerosol source based on the heating time length of the first aerosol source by the first heating unit.
  • a program is provided to run it.
  • FIG. 1 is a diagram illustrating an example of the appearance of an aerosol generation device assumed in Embodiment 1.
  • FIG. FIG. 3 is a diagram illustrating how to attach an aerosol source and the like to the main body of the apparatus, which is assumed in the first embodiment.
  • 1 is a diagram schematically showing the internal configuration of an aerosol generation device assumed in Embodiment 1.
  • FIG. It is a figure explaining normal mode and high mode.
  • (A) is a diagram illustrating an example of heating timing in normal mode
  • (B) is a diagram illustrating an example of heating timing in high mode.
  • FIG. 3 is a diagram illustrating an example of heating timing of a cartridge and a capsule in Embodiment 1.
  • FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge and capsule in the first embodiment.
  • (A) shows the period of suction
  • (B) shows an example of the timing of heating the cartridge
  • (C) shows an example of the timing of heating the capsule.
  • FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge and capsule in the first embodiment.
  • (A) shows the period of suction
  • (B) shows an example of the timing of heating the cartridge
  • (C) shows an example of the timing of heating the capsule. It is a figure explaining the example of the heating timing of a cartridge and a capsule in high mode.
  • FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge and capsule in the high mode.
  • A) shows the period of suction
  • B) shows an example of the timing of heating the cartridge
  • C shows an example of the timing of heating the capsule.
  • FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge and capsule in the high mode.
  • A) shows the period of suction
  • B) shows an example of the timing of heating the cartridge
  • (C) shows an example of the timing of heating the capsule.
  • FIG. 3 is a flowchart illustrating a part of a method for controlling heating of a cartridge and calculating a consumption amount of capsules in the first embodiment.
  • 7 is a flowchart illustrating the remaining part of the cartridge heating control and capsule consumption calculation method in the first embodiment. It is a figure explaining the example of the table which matches the consumption amount of the capsule according to the combination of the length of heating on time and heating mode.
  • FIG. 3 is a diagram illustrating suction patterns 1 and 2.
  • (A) shows an example of suction pattern 1
  • (B) shows an example of suction pattern 2.
  • FIG. 4 is a diagram illustrating suction patterns 3 and 4.
  • A) shows an example of suction pattern 3, and
  • (B) shows an example of suction pattern 4.
  • 6 is a diagram illustrating suction patterns 5 and 6.
  • FIG. 7 is a diagram illustrating suction patterns 7 and 8.
  • FIG. (A) shows an example of suction pattern 7, and (B) shows an example of suction pattern 8.
  • FIG. 6 is a diagram illustrating a method of calculating the consumption amount of capsules according to the length of heating-on time.
  • FIG. 7 is a diagram illustrating an example of heating timing of a cartridge and a capsule in Embodiment 3; (A) shows the period of suction, (B) shows an example of the heating timing of the cartridge, and (C) shows an example of the heating timing of the capsule.
  • FIG. 7 is a diagram illustrating an example of the appearance of an aerosol generation device assumed in Embodiment 4.
  • FIG. 7 is a diagram illustrating how to attach an aerosol source, etc., assumed in Embodiment 4.
  • FIG. 7 is a diagram schematically showing the internal configuration of an aerosol generation device assumed in Embodiment 4.
  • 12 is a flowchart illustrating a portion of cartridge heating control in Embodiment 4.
  • FIG. 13 is a flowchart illustrating an example of cartridge heating control and capsule consumption calculation method in Embodiment 5.
  • the aerosol generating device assumed in Embodiment 1 is a form of electronic cigarette.
  • the substance generated by the aerosol generation device will be referred to as an aerosol.
  • Aerosol refers to a mixture of minute liquid or solid particles suspended in a gas and air or other gas.
  • the aerosol generation device assumed in the first embodiment is capable of generating aerosol without combustion.
  • the user's suction of the aerosol generated by the aerosol generation device is simply referred to as "suction" or "puff.”
  • the aerosol generating device is assumed to be a device to which both a liquid aerosol source and a solid aerosol source can be attached.
  • aerosol sources are not limited to liquids and solids, but also include jelly-like or gel-like aerosol sources, and aerosol sources in which solids such as cigarettes are impregnated with glycerin or the like.
  • a container containing a liquid aerosol source will be referred to as a "cartridge”
  • a container containing a solid aerosol source will be referred to as a "capsule”. Both cartridges and capsules are consumable items. For this reason, replacement standards are set for each cartridge and capsule. The standard for replacement varies depending on the heating mode described below.
  • the aerosol generation device assumed in the first embodiment includes a heater for heating a liquid aerosol source to generate an aerosol, and a heater for heating a solid aerosol source to generate an aerosol.
  • the heater is an example of a heating section that will be described later.
  • a liquid aerosol source is an example of a first aerosol source
  • a solid aerosol source is an example of a second aerosol source.
  • the first aerosol source is not limited to a liquid aerosol source, but also includes a solid aerosol source, a jelly-like or gel-like aerosol source, an aerosol source in which a solid substance such as a cigarette is impregnated with glycerin, etc. You can leave it there.
  • the second aerosol source is not limited to a solid aerosol source, but also includes a liquid aerosol source, a jelly or gel aerosol source, an aerosol source in which a solid substance such as a cigarette is impregnated with glycerin, etc. You can leave it there.
  • FIG. 1 is a diagram illustrating an example of the appearance of an aerosol generation device 10 assumed in the first embodiment.
  • the external appearance example shown in FIG. 1 is obtained by observing the front of the aerosol generation device 10 from diagonally above.
  • the aerosol generation device 10 assumed in the embodiment has a size that can be held by a user with one hand.
  • the aerosol generating device 10 has a width of about 32 mm, a height of about 60 mm, and a depth of about 23 mm. These sizes are examples. The width, height, and depth also vary depending on the design of the aerosol generating device 10.
  • the aerosol generation device 10 shown in FIG. 1 shows a state in which a capsule holder 12 is attached to the device main body 11. As will be described later, the capsule holder 12 can be attached to and detached from the device main body 11.
  • a display 11A and operation buttons 11B are arranged on the top surface of the device main body 11.
  • a liquid crystal display or an organic EL (Electro Luminescence) display is used as the display 11A.
  • the operation button 11B is used for, for example, turning the power on or off, checking the remaining amount of the solid aerosol source, checking the remaining battery amount, and other operations.
  • the display 11A is an example of a display section.
  • FIG. 2 is a diagram illustrating how to attach an aerosol source and the like to the device main body 11, which is assumed in the first embodiment.
  • An opening (not shown) is provided in the upper part of the device main body 11.
  • the opening here constitutes an end portion of a cylindrical body (not shown) provided inside the device main body 11.
  • the cartridge 20 is first inserted into the opening of the device main body 11, and then the capsule holder 12 is attached.
  • the user rotates the capsule holder 12 by, for example, 120 degrees with respect to the opening.
  • the capsule holder 12 attached to the device main body 11 functions as a holder to prevent the cartridge 20 inserted into the device main body 11 from jumping out.
  • the capsule holder 12 is also provided with an opening.
  • the opening constitutes an end of a cylindrical body (not shown) provided inside the capsule holder 12.
  • the capsule 30 is attached to this opening.
  • the capsule 30 can be attached by being pushed into the opening of the capsule holder 12, and can be removed by being pulled out from the opening of the capsule holder 12.
  • the cartridge 20 is installed from the opening provided on the top surface of the device main body 11, but a configuration in which the cartridge 20 is installed from the bottom surface of the device main body 11 may also be adopted.
  • FIG. 3 is a diagram schematically showing the internal configuration of the aerosol generation device 10 assumed in the first embodiment.
  • the internal configuration here includes a cartridge 20 (see FIG. 2) and a capsule 30 (see FIG. 2) mounted on the device main body 11.
  • the purpose of the internal configuration shown in FIG. 3 is to explain the components provided inside the device main body 11 and their positional relationships. Therefore, the external appearance of the parts shown in FIG. 3 does not necessarily match the external appearance diagram described above.
  • the aerosol generation device 10 shown in FIG. 3 includes a power supply section 111L, a sensor section 112L, a notification section 113L, a storage section 114L, a communication section 115L, a control section 116L, a liquid guide section 122L, a liquid storage section 123L, a heating section 121L-1, It has a heating section 121L-2, a holding section 140L, and a heat insulating section 144L.
  • An air flow path 180L is formed inside the device main body 11.
  • the air flow path 180L functions as a passageway for transporting aerosol generated from a liquid aerosol source stored in the liquid storage section 123L to a capsule-shaped container 130L filled with a solid aerosol source.
  • the liquid storage section 123L corresponds to the cartridge 20 described above, and the capsule-shaped container 130L corresponds to the capsule 30 described above.
  • the user performs suction while the capsule-shaped container 130L is attached to the holding portion 140L.
  • the holding portion 140L corresponds to the aforementioned capsule holder 12 (see FIG. 2) and a cylindrical body on the device main body 11 side to which the capsule holder 12 is attached.
  • the power supply section 111L is a device that stores electric power, and supplies electric power to each section constituting the apparatus main body 11.
  • a rechargeable battery such as a lithium ion secondary battery is used for the power supply unit 111L. If the power supply unit 111L is a rechargeable battery, it can be charged any number of times through an external power supply connected via a USB (Universal Serial Bus) cable or the like.
  • the device main body 11 supports wireless power transmission, it is possible to charge the power supply unit 111L without contacting the external device that is the power transmitting side. If the power supply section 111L is removable from the apparatus main body 11, it is possible to replace the consumed power supply section 111L with a new power supply section 111L.
  • the sensor unit 112L is a device that detects information regarding each part of the apparatus main body 11.
  • the sensor section 112L outputs detected information to the control section 116L.
  • the sensor section 112L provided in the device main body 11 includes, for example, a pressure sensor such as a microphone capacitor, a flow rate sensor, and a temperature sensor. This type of sensor unit 112L is used, for example, to detect a user's suction.
  • the sensor unit 112L in this sense is an example of a sensor that detects the user's suction.
  • the sensor unit 112L provided in the device main body 11 includes an input device that receives user operations on buttons, switches, etc., for example.
  • the buttons here include the aforementioned operation button 11B (see FIG. 1).
  • This type of sensor unit 112L is used, for example, to receive user operations.
  • the sensor section 112L provided in the device main body 11 includes, for example, a thermistor. In the case of this embodiment, the thermistor is used, for example, to measure the temperature of the heating section 121L-2 used to heat the capsule 30.
  • the notification unit 113L is a device that notifies the user of information.
  • the notification unit 113L is a light emitting device
  • the light emitting device is controlled to emit light in a pattern according to the content of the information to be notified. For example, when notifying the user that the power supply unit 111L needs to be charged, when notifying the user that the power supply unit 111L is being charged, and when notifying the user that an abnormality has occurred, the light emitting device Each light emission is controlled using a different pattern.
  • the concept of different light emission patterns includes differences in color, differences in timing between turning on and off, and differences in brightness when turning on.
  • the notification section 113L provided in the device main body 11 includes, for example, a display device that displays an image, a sound output device that outputs sound, and a vibration device that vibrates. These devices may be used alone or in combination, and may be used together with the light emitting device described above or in place of the light emitting device.
  • An example of a display device here is a display 11A (see FIG. 1).
  • the storage unit 114L stores various information regarding the operation of the device main body 11.
  • the storage unit 114L is composed of a nonvolatile storage medium such as a flash memory, for example.
  • the information stored in the storage unit 114L includes, for example, a program executed by the control unit 116L.
  • Programs include an OS (Operating System), firmware, and application programs.
  • the information stored in the storage section 114L includes, for example, information required by the control section 116L to control each section.
  • the information here also includes information on each section detected by the sensor section 112L described above.
  • information regarding suction by the user and remaining battery power are also included.
  • the information regarding suction by the user includes, for example, the number of suctions, the time when the start of suction or the end of suction is detected, the cumulative time of suction, and the heating mode in progress.
  • the information here also includes a table used to calculate the amount of capsule 30 consumed as the cartridge 20 is sucked.
  • the communication unit 115L is a communication interface used for transmitting and receiving information with other devices.
  • the communication interface complies with wired and wireless communication standards.
  • Communication standards include, for example, wireless LAN (Local Area Network), wired LAN, and mobile communication systems such as 4G and 5G.
  • Wi-Fi registered trademark
  • Bluetooth registered trademark
  • the communication unit 115L is used, for example, to display information regarding the user's suction on a smartphone, tablet type terminal, or the like.
  • the communication unit 115L is used, for example, to receive update data for programs stored in the storage unit 114L from the server.
  • the control unit 116L functions as an arithmetic processing unit and a control unit, and controls the operation of each unit constituting the device main body 11 through execution of a program.
  • the control unit 116L supplies power to each unit from the power supply unit 111L, charges the power supply unit 111L, detects information by the sensor unit 112L, reports information by the notification unit 113L, stores and reads information from the storage unit 114L, and communicates with the communication unit 115L. control the sending and receiving of information by The control unit 116L also executes processing for accepting information based on user operations, processing based on information output from each unit, and the like.
  • the liquid storage section 123L is a container that stores a liquid aerosol source.
  • Liquid aerosol sources include polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water.
  • the liquid aerosol source may include tobacco raw materials or extracts derived from tobacco raw materials that release flavor components upon heating.
  • the liquid aerosol source may also include a nicotine component.
  • the liquid guide section 122L is a component that guides and holds the liquid aerosol source stored in the liquid storage section 123L from the liquid storage section 123L.
  • the liquid guide portion 122L has a structure in which, for example, a fiber material such as glass fiber or a porous material such as porous ceramic is twisted. This type of component is also called a wick. Both ends of the liquid guide section 122L are connected to the inside of the liquid storage section 123L. Therefore, the aerosol source stored in the liquid storage section 123L spreads throughout the liquid guide section 122L due to the capillary effect.
  • the heating unit 121L-1 is a component that heats and atomizes the aerosol source held in the liquid guide unit 122L to generate aerosol.
  • the heating section 121L-1 is an example of a first heating section.
  • the heating section 121L-1 is not limited to the coil shape shown in FIG. 3, but may be a film shape, a blade shape, or other shapes. The shape of the heating section 121L-1 varies depending on the heating method and the like.
  • the heating section 121L-1 is made of any material such as metal or polyimide.
  • the heating section 121L-1 is arranged close to the liquid guiding section 122L.
  • the heating section 121L-1 is a metal coil wound around the outer peripheral surface of the liquid guiding section 122L.
  • the heating unit 121L-1 generates heat by receiving power from the power supply unit 111L, and heats the aerosol source held in the liquid guiding unit 122L to the vaporization temperature.
  • the aerosol source that has reached the vaporization temperature is released into the air from the liquid guide portion 122L as a gas, but is cooled by the surrounding air and atomized to become an aerosol.
  • the power supply to the heating unit 121L-1 that heats the liquid aerosol source is basically linked to the user's suction. That is, power is supplied to the heating unit 121L-1 from the start of suction by the user to the end of suction, and when the suction by the user ends, the supply of power to the heating unit 121L-1 is stopped.
  • a period may be provided in which the supply of power to the heating unit 121L-1 is stopped even if suction by the user is detected. This period will be described later.
  • power supply to the heating unit 121L-1 that heats the liquid aerosol source starts, for example, when a specific button is pressed in a state where no aerosol is generated, and when a specific button is pressed in a state where an aerosol is generated. It may stop when the button is pressed.
  • the button for instructing to start generating aerosol and the button for instructing to stop generating aerosol may be physically the same button, or may be different buttons.
  • the capsule type container 130L is a container filled with a solid aerosol source.
  • the solid aerosol source may include a processed product formed by forming shredded tobacco or tobacco raw material into granules, sheets, or powder, which releases flavor components when heated. That is, the solid aerosol source may include tobacco-derived materials.
  • the solid aerosol source may also include, for example, a nicotine component.
  • the solid aerosol source may also include non-tobacco-derived substances extracted from plants other than tobacco (eg, mint, herbs, etc.).
  • the solid aerosol source may also contain a fragrance ingredient such as menthol.
  • the holding portion 140L corresponds to, for example, the capsule holder 12 (see FIG. 2), and has an internal space 141L into which the capsule-shaped container 130L is mounted.
  • the holding portion 140L is a cylindrical body having a bottom portion 143L, and defines a columnar internal space 141L.
  • the holding section 140L is an example of a mechanical section that holds the capsule 30.
  • a part of the capsule-shaped container 130L is held by the holding part 140L, and the rest is exposed outside the holding part 140L.
  • a portion of the capsule-shaped container 130L exposed from the holding portion 140L is used as a mouthpiece 124L. Mouthpiece 124L is held in the mouth by a user who inhales the aerosol.
  • An air inlet (that is, an air inflow hole) for the holding portion 140L is provided, for example, at the bottom portion 143L.
  • a hole through which air can flow is formed at the bottom of the capsule-shaped container 130L. Therefore, the air flowing in from the bottom 143L passes through the inside of the capsule-shaped container 130L and reaches the mouthpiece 124L. That is, the mouthpiece 124L serves as an air outlet (that is, an air outflow hole).
  • the bottom portion 143L communicates with an air outlet hole 182L of an air flow path 180L formed inside the device main body 11.
  • the internal space 141L of the holding portion 140L and the air flow path 180L communicate with each other through the air outflow hole 182L.
  • the heating unit 121L-2 heats the solid aerosol source filled in the capsule type container 130L.
  • the heating section 121L-2 is an example of a second heating section.
  • the heating section 121L-2 is made of metal, polyimide, or the like.
  • the heating part 121L-2 is provided at a position in contact with the outer peripheral surface of the metal portion of the holding part 140L.
  • the heating unit 121L-2 generates heat by receiving power from the power supply unit 111L, and heats the outer peripheral surface of the capsule-shaped container 130L that is in contact with the metal portion of the holding unit 140L.
  • the heat insulating section 144L is a member that prevents heat from propagating from the heating section 121L-2 to other components of the apparatus main body 11.
  • the heat insulating section 144L covers at least the outer peripheral surface of the heating section 121L-2.
  • the heat insulating section 144L is made of, for example, a vacuum heat insulating material or an airgel heat insulating material.
  • Vacuum insulation materials are insulation materials that reduce heat conduction through gas to as close to zero as possible by wrapping glass wool, silica (silicon powder), etc. in a resin film and creating a high vacuum state.
  • the air flow path 180L is an air flow path provided inside the device main body 11, as described above.
  • the air flow path 180L has a tubular structure with both ends having an air inflow hole 181L, which is an inlet of air to the air flow path 180L, and an air outflow hole 182L, which is an outlet of air from the air flow path 180L. There is. With suction by the user, air flows into the air flow path 180L from the air inflow hole 181L, and air flows out from the air outflow hole 182L to the bottom 143L of the holding portion 140L.
  • a liquid guide section 122L is arranged in the middle of the air flow path 180L.
  • the liquid-derived aerosol generated by the heating of the heating section 121L-1 is mixed with the air flowing in from the air inflow hole 181L. Thereafter, the mixed gas of the liquid-derived aerosol and air passes through the inside of the capsule-shaped container 130L and is output from the mouthpiece 124L into the user's oral cavity. In FIG. 3, this flow path is indicated by an arrow 190L.
  • a solid-derived aerosol is added to the gas mixture of a liquid-derived aerosol and air when passing through the capsule-shaped container 130L.
  • the concentration of aerosol derived from solid matter is increased by combining the heating control of the heating section 121L-2.
  • a heating mode that is not combined with the heating control of the heating section 121L-2 is also provided.
  • the heating control of the heating unit 121L-2 When the heating control of the heating unit 121L-2 is not combined, when the liquid-derived aerosol passes through the capsule-shaped container 130L, the solid aerosol source is heated to generate solid-derived aerosol. . However, the amount of solid matter-derived aerosol generated by heating the liquid-derived aerosol is smaller than when heating control of the heating section 121L-2 is combined.
  • the aerosol generation device 10 assumed in the first embodiment has two types of heating modes.
  • the first heating mode is a first mode in which only the heating unit 121L-1 is used to heat the aerosol source stored in the cartridge 20 (see FIG. 2). That is, this is a heating mode in which only the cartridge 20 is heated.
  • this heating mode will be referred to as "normal mode.”
  • the heating unit 121L-2 that heats the solid aerosol source is always turned off. Note that in the normal mode, the heating unit 121L-2 that heats the solid aerosol source may be turned off at all times, but the power supplied may be reduced.
  • the normal mode is an example of first heating.
  • the second heating mode is a heating section 121L-1 that heats the aerosol source stored in the cartridge 20 and a heating section 121L-2 that heats the aerosol source filled in the capsule 30 (see FIG. 2).
  • the second mode uses both. That is, it is a heating mode in which both the cartridge 20 and the capsule 30 are heated.
  • this heating mode will be referred to as "high mode.”
  • heating of the cartridge 20 by the heating unit 121L-1 and heating of the capsule 30 by the heating unit 121L-2 are performed alternately, or while the heating unit 121L-1 is being heated, the heating unit 121L is heated. -2 is reduced.
  • High mode is an example of second heating.
  • Switching of the heating mode is performed, for example, by pressing and holding the operation button 11B (see FIG. 1) for 2 seconds or more. For example, if the operation button 11B is pressed for 2 seconds or more during the high mode, the operation mode is switched to the normal mode. On the other hand, if the operation button 11B is pressed for 2 seconds or more during the normal mode, the operation mode is switched to the high mode.
  • heating of the cartridge 20 by the heating unit 121L-1 is prioritized over heating of the capsule 30 by the heating unit 121L-2. That is, during heating by heating unit 121L-1, heating by heating unit 121L-2 is controlled to be stopped or reduced. Further, when an event that starts heating the cartridge 20 occurs while the heating unit 121L-2 is heating the capsule 30, the heating by the heating unit 121L-2 is controlled to stop or reduce.
  • heating of the heating section 121L-1 and heating of the heating section 121L-2 is performed so as not to exceed the upper limit of the output current of the battery used as the power supply section 111L. are controlled so that they are not executed at the same time.
  • the heating period of the heating section 121L-1 and the heating period of the heating section 121L-2 are separated, or while the heating section 121L-1 is being heated, the heating section 121L-2 is supplied with the heating period. Power is reduced. Simultaneous here does not mean that the heating timings do not overlap at all. Therefore, overlaps caused, for example, by errors in operational timing are tolerated.
  • the heating unit 121L-2 that heats the solid aerosol source may be turned off at all times, but the power supplied may be reduced.
  • a part or all of the heating period by the heating section 121L-1 and the heating period by the heating section 121L-2 may be allowed to overlap.
  • the maximum value of power supplied to heating parts 121L-1 and 121L-2 during simultaneous heating should be set to It is desirable to set the value to be smaller than the maximum value of the power supplied at the time. For example, when the heating unit 121L-1 starts heating the cartridge 20, the heating of the capsule 30 by the heating unit 121L-2 is reduced so as not to exceed the upper limit of the output current of the battery.
  • FIG. 4 is a diagram illustrating normal mode and high mode.
  • (A) is a diagram illustrating an example of heating timing in normal mode
  • (B) is a diagram illustrating an example of heating timing in high mode.
  • FIG. 4 (A1) shows the heating timing of the cartridge 20 in the normal mode
  • FIG. 4 (A2) shows the heating timing of the capsule 30 in the normal mode.
  • the horizontal axis of FIGS. 4A1 and 4A2 represents time, and the vertical axis represents the presence or absence of heating.
  • power is supplied to the corresponding heating section, and during the non-heating period, no power is supplied to the corresponding heating section.
  • Heating control in normal mode is started when the locked state is released.
  • the locked state is a state in which control by the control unit 116L is stopped. Therefore, even if the user applies the mouthpiece 124L (see FIG. 3) and inhales, no aerosol is generated.
  • the locked state is released, for example, by pressing the operation button 11B (see FIG. 1) three times in succession within two seconds. The number of presses, the button to be operated, and the time required for the operation are all examples.
  • the normal mode heating control starts, the cartridge 20 is heated in conjunction with the suction period, as shown in FIG. 4 (A1). "Linked to the period of suction" means linked to the detection of suction by the sensor unit 112L.
  • the heating of the cartridge 20 is controlled in units of a monitoring period of a predetermined length that is started upon detection of suction.
  • this monitoring period may be referred to as "heating-on monitoring time.”
  • the heating-on monitoring time is the longest time during which the cartridge 20 can be heated continuously. Note that the heating of the cartridge may be controlled in units of "suction times.”
  • An aspiration cycle is a monitoring period that begins with the detection of the first aspiration after the previous aspiration cycle ends. One monitoring period is one aspiration session. Therefore, even if suction is detected at the end of the monitoring period, heating of the cartridge 20 is ended.
  • a new monitoring period is set upon detection of new suction.
  • heating control similar to the heating of the cartridge 20 during the monitoring period is performed. If the time between the monitoring period and the new monitoring period is less than a predetermined value, the heating of the cartridge 20 during the new monitoring period may be reduced compared to the heating of the cartridge 20 during the monitoring period. In this case, the degree of reduction in heating of the cartridge 20 in the new monitoring period may be determined based on the length of time between the monitoring period and the new monitoring period.
  • the predetermined value is, for example, 10 seconds, but is not limited to 10 seconds and can be set arbitrarily.
  • the heating of the cartridge 20 during the new monitoring period is reduced compared to the heating of the cartridge 20 during the monitoring period, so that short interval aspiration Even if this is repeated, the amount of aerosol produced can be reduced, and the liquid aerosol source in the liquid guide section will not be depleted. In other words, liquid depletion is suppressed, and the user is able to continue suctioning the aerosol.
  • a period (hereinafter referred to as "heating prohibition time") during which heating of the cartridge 20 is prohibited regardless of suction detection may be provided after the monitoring period.
  • the liquid will be removed before heating of the cartridge 20 begins. It becomes possible to secure time for supplying the aerosol source to the wick. Note that specific examples of suction times and the like will be described later.
  • heating of the capsule 30 is not performed regardless of the presence or absence of suction.
  • the control unit 116L shifts to the locked state. Even in the locked state, the heating mode will not change. There is no change in the heating mode even when returning from the locked state.
  • 6 minutes ie, 360 seconds
  • 6 minutes ie, 360 seconds
  • the device main body 11 shifts to the locked state for the purpose of suppressing the power consumed.
  • the high mode That is, when 6 minutes have passed since the last suction, the aerosol generating device 10 is controlled to be in a locked state.
  • the device also transitions to the locked state when the user instructs the transition to the locked state.
  • the manual transition to the locked state by the user is performed by, for example, pressing the operation button 11B (see FIG. 1) three times in succession within 2 seconds before 6 minutes have passed since the last suction.
  • the number of presses, the button to be operated, and the time required for the operation are all examples.
  • FIG. 4 (B1) shows the heating timing of the cartridge 20 in the high mode
  • FIG. 4 (B2) shows the heating timing of the capsule 30 in the high mode
  • the horizontal axis of FIGS. 4 (B1) and (B2) represents time, and the vertical axis represents the presence or absence of heating.
  • simultaneous heating of cartridge 20 and capsule 30 may be prohibited. Therefore, the heating timing of the cartridge 20 and the heating timing of the capsule 30 do not have to overlap.
  • the power supplied to the capsule 30 may be reduced while the cartridge 20 is being heated. In this case, the heating timing of the cartridge 20 and the heating timing of the capsule 30 may partially overlap. Note that during the period when heating is indicated, power is supplied to the corresponding heating section, and during the period when there is no heating, no power is supplied to the corresponding heating section, or the power supplied to the corresponding heating section is reduced. Ru.
  • Heating control in the high mode is started when the lock state is released or when the normal mode is switched to the high mode.
  • heating of the capsule 30 starts as shown in FIG. 4 (B2). This heating essentially continues until suction is detected, and heating of the capsule 30 is stopped or reduced during the period when suction is detected.
  • heating of the capsule 30 is stopped or reduced at the timing when heating of the cartridge 20 is started.
  • the initial temperature of the capsule 30 is, for example, the temperature of the environment in which the aerosol generating device 10 is used, for example, room temperature.
  • heating of the capsule 30 is stopped or reduced when 30 seconds have elapsed since suction was last detected. and reduce power consumption. In other words, it goes into a sleep state. In the sleep state, the temperature of the capsule 30 gradually decreases.
  • the user is not notified of the transition to the sleep state, but the user may be notified. Note that when another 5 minutes and 30 seconds elapse in the sleep state, the device shifts to the lock state described above.
  • Heating of capsule 30 may be stopped or reduced during the monitoring period.
  • 5 to 7 show examples of controlling heating timing when heating of capsule 30 is stopped or reduced during the monitoring period. Note that the heating control example described below can be applied to heating the cartridge 20 (see FIG. 2) in the normal mode, except for heating the capsule 30 (see FIG. 2). 5 to 7 correspond to different suction patterns.
  • FIG. 5 is a diagram illustrating an example of heating timing of the cartridge 20 and capsule 30 in the first embodiment.
  • A shows the suction period
  • B shows an example of the heating timing of the cartridge 20
  • C shows an example of the heating timing of the capsule 30.
  • the monitoring period may be referred to as "heat-on monitoring time.”
  • the monitoring period will be described as a “heating-on monitoring time.”
  • the heating-on monitoring time is 2.4 seconds. Note that the heating-on monitoring time is not limited to 2.4 seconds, and may be 2 seconds or 3 seconds.
  • FIG. 5A two suctions are detected during the heating-on monitoring time, and the second suction ends before the heating-on monitoring time elapses.
  • the heating timing of the cartridge 20 coincides with the detected suction period, as shown in FIG. 5(B).
  • a new heating-on monitoring time is set by detecting new suction.
  • the new heating-on monitoring time is set by the detection of new suction after the heating-on monitoring time ends, so even if the second suction is detected during the heating-on monitoring time, the new heating-on monitoring time will not be set. is not set.
  • the heating of the cartridge may be controlled in units of "suction times."
  • the suction cycle is a heating-on monitoring time that starts when the first suction is detected after the previous suction cycle ends.
  • One heat-on monitoring time is one suction cycle.
  • the heating of the capsule 30 is stopped (off control) or reduced during the entire period of the heating-on monitoring time, as shown in FIG. 5(C).
  • heating of the capsule 30 is started or increased during a period that is not the heating-on monitoring time.
  • the time between the heating-on monitoring time and the new heating-on monitoring time may be referred to as the "heating-off time.”
  • the time from the end time of the heating-on monitoring time to the start time of a new heating-on monitoring time is referred to as the “heating off time.”
  • the time from the end of the heating-on monitoring time until new suction is detected is referred to as the “heating-off time.”
  • the heating off time is 1.8 seconds.
  • the capsule 30 should be replaced approximately 50 times in normal mode and approximately 30 times in high mode, for example.
  • high mode since the capsule 30 is preheated, more aerosol source is consumed during the passage of the liquid-derived aerosol than in normal mode, so the number of times is lower than in normal mode. .
  • this standard number of times is an example, and is not limited to these numbers. Moreover, this standard number of times varies depending on the type and type of cartridge. Further, this standard number of times can be set arbitrarily.
  • the method of suction varies depending on the user. Therefore, the aerosol source of the capsule 30 is not necessarily consumed as expected. Therefore, in this embodiment, the "heating time length" is measured every suction or every heating-on monitoring time. Then, using the measured heating time length or the total time of the heating time lengths, the consumption amount of the solid material aerosol source is calculated. Note that the heating time length may also be referred to as "heating on time”. In the following, explanation will be made using heating on time.
  • the heating on time is the time during which the cartridge 20 is heated.
  • the heating on time may be the time during which power is supplied to the heating section 121L-1.
  • the heating-on time may be the length of time during which the user's suction is detected during the heating-on monitoring time.
  • the heating-on time may be calculated for each suction, or may be calculated as the total time of suction that occurred within the heating-on monitoring time. Calculating the consumption of the solid aerosol source in units of heating-on monitoring time is because heating in normal mode and heating in high mode may be mixed during use of one capsule 30, This is because even if the time is the same, the amount consumed is not necessarily the same.
  • FIG. 6 is a diagram illustrating another example of the heating timing of the cartridge 20 and capsule 30 in the first embodiment.
  • (A) shows the suction period
  • (B) shows an example of the timing of heating the cartridge 20
  • (C) shows an example of the timing of heating the capsule 30.
  • parts corresponding to those in FIG. 5 are shown with corresponding symbols.
  • the difference between FIG. 6 and FIG. 5 is that in the case of FIG. 9A, the second suction during the heating monitoring on time continues beyond the heating on monitoring time.
  • the heating off time is 1.2 seconds.
  • FIG. 6(B) even if suction continues beyond the heating-on monitoring time, heating of the cartridge 20 is stopped after the heating-on monitoring time has elapsed.
  • FIG. 6(C) heating of the capsule 30 is started or increased.
  • the total time of the heating-on time corresponding to the two suctions that occurred during the heating-on monitoring time is 2.0 seconds.
  • FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge 20 and capsule 30 in the first embodiment.
  • (A) shows the suction period
  • (B) shows an example of the timing of heating the cartridge 20
  • (C) shows an example of the timing of heating the capsule 30.
  • parts corresponding to those in FIG. 5 are shown with corresponding symbols.
  • the difference between FIG. 7 and FIG. 5 is that the non-suction state continues even after the heating-on monitoring time has elapsed, and the device shifts to the sleep state.
  • the start of the period of transition to the sleep state is the time when the heating-on monitoring time ends, and the transition to the sleep state occurs when the non-suction state continues for 30 seconds.
  • the device may enter a sleep state when 30 seconds have elapsed from the end time of suction within the heating-on monitoring time, which is the time when the second suction ended in FIG. 7(A).
  • the heating off time is 10 seconds or more.
  • the number of suctions detected during the heating-on monitoring time is two, but the number of suctions detected during the heating-on monitoring time is The number of times may be one or three or more times. In the case of FIG. 6, the total heating-on time corresponding to one suction occurring during the heating-on monitoring time is 1.2 seconds.
  • the number of suctions detected during the heating-on monitoring time is two times, but The number of suctions during the on-monitoring time (one suction time) may be one or three or more times.
  • a heating prohibition time may be provided in addition to the heating period (heating-on monitoring time).
  • a heating prohibition time may be provided in addition to the heating period (heating-on monitoring time).
  • FIGS. 8 to 10. 8 to 10 show examples of heating timing control in the high mode. However, the heating control example described below can be applied to heating the cartridge 20 (see FIG. 2) in the normal mode, except for heating the capsule 30 (see FIG. 2). 8 to 10 correspond to different suction patterns.
  • FIG. 8 is a diagram illustrating an example of heating timing of the cartridge 20 and capsule 30 in the high mode.
  • A shows the suction period
  • B shows an example of the heating timing of the cartridge 20
  • C shows an example of the heating timing of the capsule 30.
  • the suction round ie, the heating-on monitoring time
  • the heating-on monitoring time is 2.4 seconds.
  • the heating-on monitoring time is not limited to 2.4 seconds, and may be 2 seconds or 3 seconds.
  • FIG. 8A In the case of FIG. 8A, two suctions are detected in one suction cycle, and the second suction ends before the heating-on monitoring time elapses.
  • the heating timing of the cartridge 20 coincides with the detected period of suction, as shown in FIG. 8(B).
  • the total time of the "heating on time" corresponding to the two suctions that occurred during the heating on monitoring time is 1.2 seconds. Aerosol derived from a solid substance is generated when a high temperature aerosol derived from a liquid passes through the capsule 30 in both normal mode and high mode.
  • the suction cycle i.e. heating-on monitoring time
  • the suction cycle starts with the detection of the first suction after the end of the previous suction cycle, so even if the second suction is detected in the same suction cycle, the suction cycle (i.e. (heat-on monitoring time) will not be reset.
  • the heating of the capsule 30 is stopped (off control) or reduced during the entire period of the heating-on monitoring time, as shown in FIG. 8(C).
  • a heating inhibition time of, for example, 1.2 seconds is provided.
  • the heating prohibition time is a time during which heating of the cartridge 20 is prohibited. Therefore, even if suction is detected within the heating prohibition time as shown in FIG. 8(A), heating of the cartridge 20 is not performed as shown in FIG. 8(B). On the other hand, when the heating prohibition time starts, heating of the capsule 30 is started or increased as shown in FIG. 8(C).
  • suction is not detected even after the heating prohibition time has elapsed. Therefore, even after the heating prohibition time ends, the heating state of the capsule 30 continues until the next suction is detected.
  • a new heating-on monitoring time is set, and the heating of the cartridge 20 is started and the heating of the capsule 30 is stopped or reduced.
  • the time from the end time of the heating-on monitoring time (or the starting time of the heating prohibition time) to the start time of the first suction detected after the end of the heating prohibition time is referred to as the "heating off time.”
  • the heating off time is 1.8 seconds.
  • FIG. 9 is a diagram illustrating another example of the heating timing of the cartridge 20 and capsule 30 in the high mode.
  • (A) shows the suction period
  • (B) shows an example of the timing of heating the cartridge 20
  • (C) shows an example of the timing of heating the capsule 30.
  • parts corresponding to those in FIG. 8 are shown with corresponding symbols.
  • the difference between FIG. 9 and FIG. 8 is that in the case of FIG. 9(A), the second suction in one suction cycle continues beyond the heating-on monitoring time, and the next suction is the heating prohibition time. The point is that it starts within.
  • the heating prohibition time starts after the heating-on monitoring time elapses, so heating of the cartridge 20 is stopped as shown in FIG. 9(B). Furthermore, even if suction starts before the heating prohibition time has elapsed, heating of the cartridge 20 is prohibited. Therefore, the next suction cycle, that is, the heating-on monitoring time, starts after the heating prohibition time has elapsed.
  • the total time of the heating-on time corresponding to the two suctions that occurred during the heating-on monitoring time is 2.0 seconds.
  • FIG. 10 is a diagram illustrating another example of the heating timing of the cartridge 20 and capsule 30 in the high mode.
  • A shows the suction period
  • B shows an example of the timing of heating the cartridge 20
  • C shows an example of the timing of heating the capsule 30.
  • parts corresponding to those in FIG. 8 are shown with corresponding symbols. The difference between FIG. 10 and FIG. 8 is that the non-suction state continues even after the heating prohibition time has elapsed, and the device shifts to the sleep state.
  • the start of the period for transitioning to the sleep state is the time when the heating-on monitoring time ends, that is, the time when the heating prohibition time starts, and even after the heating prohibition time ends, the non-suction state continues for 28.8 seconds. It has gone to sleep at this point. However, when 30 seconds have elapsed from the end time of suction within the heating-on monitoring time, which is the time when the second suction ended in FIG. 10(A), the device may enter the sleep state. In the case of FIG. 10, the total heating-on time corresponding to one suction occurring during the heating-on monitoring time is 1.2 seconds.
  • the number of suctions detected during the heating-on monitoring time is two times.
  • the number of suctions during the heating-on monitoring time may be one or three or more times.
  • FIG. 11 is a flowchart illustrating a part of a method for controlling the heating of the cartridge 20 and calculating the consumption amount of the capsule 30 in the first embodiment.
  • FIG. 12 is a flowchart illustrating the remaining part of the method for controlling the heating of the cartridge 20 and calculating the consumption amount of the capsule 30 in the first embodiment.
  • the symbol S shown in the figure means a step.
  • the processes shown in FIGS. 11 and 12 are realized through program execution.
  • the program here is stored in the storage unit 114L (see FIG. 3) and executed by the control unit 116L (see FIG. 3). Note that the control shown in FIGS. 11 and 12 is executed in both normal mode and high mode.
  • the control unit 116L determines whether or not the start of suction as the start event of the heating-on monitoring time is detected (step 1). For example, if the start of suction is detected after the heating-on monitoring time has elapsed, the control unit 116L obtains an affirmative result in step 1 (“YES” in step 1). In addition, when setting the heating prohibition time, for example, if the start of suction is detected after the heating prohibition time of the cartridge 20 has elapsed, the control unit 116L returns an affirmative result in step 1 (“YES” in step 1). It may be configured to obtain. After the heating prohibition time has elapsed, the period before going to sleep and the period during sleep are included.
  • the control unit 116L obtains a negative result in step 1 (“NO” in step 1).
  • the control unit 116L may be configured to obtain a negative result in step 1 (“NO” in step 1).
  • the pressure sensor used to detect suction requires approximately 60 ms to detect the start of suction. At the shortest, the start of suction can be detected in approximately 20 ms. However, in this embodiment, the accuracy of detecting the start of suction is increased by repeating the 20 ms determination three times. The same applies to the detection of the end of suction, which will be described later. That is, the control unit 116L increases the accuracy of detecting the end of suction by repeating the determination three times for approximately 20 ms. While a negative result (“NO” in step 1) is obtained in step 1, the control unit 116L repeats the determination in step 1.
  • step 1 If a positive result is obtained in step 1 (“YES” in step 1), the control unit 116L sets a heating-on monitoring time (step 2). The length of the heating-on monitoring time is predetermined. Next, the control unit 116L instructs the heating unit 121L-1 that heats the cartridge 20 to supply power (step 3). Subsequently, the control unit 116L determines whether the heating-on monitoring time has ended (step 4). In the case of the present embodiment, it is necessary to stop heating the cartridge 20 even if the end of suction, which is the start event of the heating-on monitoring time, is not detected within the heating-on monitoring time. Therefore, the control unit 116L determines whether or not the heating-on monitoring time has ended.
  • step 5 determines whether or not the end of suction has been detected.
  • the end of suction that is the object of detection is not limited to the end of the suction that became the start event of the heating-on monitoring time, but also the end of the second and subsequent suctions within the same heating-on monitoring time. If the ongoing suction continues or the second and subsequent suctions have not been started, the control unit 116L obtains a negative result in step 5 (“NO” in step 5). In this case, the control unit 116L determines whether or not the start of suction has been detected (step 6). The start of suction to be detected is the start of second and subsequent suctions.
  • step 6 the control unit 116L obtains a negative result in step 6 (“NO” in step 6) and returns to step 4. That is, if neither the end of the suction in progress nor the start of a new suction is detected within the heating-on monitoring time, the loop process of step 4-step 5-step 6-step 4 is repeated. Note that if the end of the suction in progress is detected during this loop process, the control unit 116L obtains a positive result in step 5 ("YES" in step 5). In this case, the control unit 116L stops supplying power to the heating unit 121L-1 that heats the cartridge 20 (step 7). Subsequently, the control unit 116L obtains the heating on time regarding the current suction (step 8), and returns to step 4. Obtaining the heating on time in step 8 is performed every time the end of suction is detected within the heating on time.
  • step 4 determines whether or not suction is continuing (step 9). If a positive result is obtained in step 9 (“YES” in step 9), the control unit 116L stops the power supply to the heating unit 121L-1 that heats the cartridge 20 (step 10), and Obtain heating on time (step 11).
  • the control unit 116L obtains a negative result in step 9 (“NO” in step 9). If a negative result is obtained in step 9 (“NO” in step 9), or after executing step 11, the control unit 116L calculates the total heating-on time within the current heating-on monitoring time ( Step 12). After that, the control unit 116L acquires the heating mode (step 13), and further calculates the amount of capsules 30 consumed during the current heating-on monitoring time based on the calculated total time and heating mode ( Step 14). In the case of the present embodiment, the control unit 116L calculates the consumption amount of the capsule 30 regarding the current heating-on monitoring time using a table stored in the storage unit 114L (see FIG. 13, which will be described later).
  • FIG. 13 is a diagram illustrating an example of a table in which the consumption amount of the capsule 30 is associated with the length of the heating on time and the combination of the heating mode.
  • the first column from the left is "Length of heating on time”
  • the second column from the left is the amount of consumption in "Normal mode”
  • the third column from the left is “Length of heating on time”. This is the amount of consumption in "high mode”.
  • the unit of "length of heating on time” is "second”
  • the unit of amount of consumption in each heating mode is "%”.
  • the length of the heating on time here is the total time corresponding to suction detected within the heating on monitoring time.
  • the remaining amount of aerosol in the solid aerosol source filled in an unused capsule 30 is set to 100%, and the consumption amount calculated according to the length of the heating-on time is recorded. .
  • the rate of change in the consumption amount in the range from 0.5 seconds to 1.5 seconds is larger than the rate of change in the consumption amount in the range from 0.5 seconds to 1.5 seconds than the rate of change in the consumption amount in the range from 0.5 seconds to 1.5 seconds.
  • the rate of change in consumption in the range from 1.5 seconds to 2.4 seconds is greater than the rate of change in consumption in the range up to 5 seconds. This tendency is common to normal mode and high mode.
  • the number of points of change in the rate of change is not limited to two, and the values of the points of change may differ between the normal mode and the high mode.
  • the numerical value of the consumption amount reflecting this rate of change is recorded in association with the length of the heating-on time.
  • the table shown in FIG. 13 is in increments of 0.1 seconds, the increments may be smaller.
  • the interval may be 0.05 seconds or 0.01 seconds.
  • the control unit 116L updates the cumulative consumption amount with the newly calculated consumption amount (step 15).
  • the heating mode may be switched while one capsule 30 is in use, and the consumption amount differs depending on the heating mode even for the same heating-on time, but the consumption amount calculated per heating-on monitoring time is Since the cumulative value is calculated, the accuracy of consumption calculation is improved.
  • the remaining amount R may be calculated and displayed using the following equation.
  • Remaining amount R (%) 100 (%) - Cumulative consumption amount (%)
  • the control unit 116L displays a notification requesting the user to replace the capsule on the display 11A (see FIG. 1).
  • the cumulative consumption of the solid aerosol source filled in the capsule 30 is calculated every time the heating-on monitoring time ends.
  • the cumulative consumption amount of the solid aerosol source and the cumulative consumption amount of the capsule 30 in the high mode are calculated separately and stored in the storage unit 114L, and when it is required to calculate the cumulative consumption amount of the solid aerosol source or display the remaining amount.
  • the total value of the two cumulative consumption amounts may be calculated, or the remaining amount may be calculated using the total value.
  • the storage unit 114L may also store the number of capsules 30 whose cumulative consumption has reached 100%, the number of suctions in normal mode, and the number of suctions in high mode. By storing these numerical values as a log, it becomes possible to analyze when a malfunction occurs. However, these numerical values may be displayed on the display 11A (see FIG. 1).
  • FIG. 14 is a diagram illustrating suction patterns 1 and 2.
  • A shows an example of suction pattern 1
  • B shows an example of suction pattern 2.
  • parts corresponding to those in FIG. 8 are shown with corresponding symbols.
  • the consumption amount is set to 100% when the heating on time of 2.4 seconds is repeated 50 times
  • the high mode for example, An example will be explained in which the consumption amount is set to 100% when the heating on time of 2.4 seconds is repeated 30 times.
  • Suction pattern 1 includes two heating-on monitoring times.
  • the first heating-on monitoring period includes two suctions, and the second suction continues until the end of the heating-on monitoring period.
  • the total heating on time in suction pattern 1 is 2.0 seconds. Therefore, in the example of FIG. 13, 1.6% of the aerosol source is consumed in the normal mode, and 2.5% of the aerosol source is consumed in the high mode.
  • Suction pattern 2 also includes two heat-on monitoring times. Further, the first heating-on monitoring time includes two suctions. However, the second suction during the first heating-on monitoring time is different from suction pattern 1 in that it ends before the end of the heating-on monitoring time.
  • the total heating on time in suction pattern 2 is 1.2 seconds. Therefore, in the example of FIG. 13, 0.86% of the aerosol source is consumed in the normal mode, and 1.2% of the aerosol source is consumed in the high mode.
  • FIG. 15 is a diagram illustrating suction patterns 3 and 4.
  • (A) shows an example of suction pattern 3, and (B) shows an example of suction pattern 4.
  • Suction pattern 3 also includes two heat-on monitoring times.
  • the first heating-on monitoring time includes two suctions.
  • the second suction during the first heating-on monitoring time is different from suction pattern 1 in that it continues even after the heating-on monitoring time ends.
  • the total heating-on time in suction pattern 3 is 2.0 seconds. Therefore, the total amount of consumption within the heating-on monitoring time is the same as in suction pattern 1.
  • Suction pattern 4 also includes two heat-on monitoring times. However, the suction during the first heating-on monitoring time is one time. In this case, the total heating-on time within the heating-on monitoring time matches the heating-on time for one suction. In the case of FIG. 15(B), the heating on time is 0.8 seconds. Therefore, in the example of FIG. 13, 0.54% of the aerosol source is consumed in the normal mode, and 0.8% of the aerosol source is consumed in the high mode.
  • FIG. 16 is a diagram illustrating suction patterns 5 and 6.
  • (A) shows an example of suction pattern 5, and (B) shows an example of suction pattern 6.
  • Suction pattern 5 also includes two heat-on monitoring times. Further, the first heating-on monitoring time includes one suction. The difference between suction pattern 5 and suction pattern 4 is the length of the heating on time. The heating on time in suction pattern 5 is 2.0 seconds. Therefore, the amount of capsule 30 consumed within the heating-on monitoring time is the same as in pattern 1.
  • Suction pattern 6 also includes two heat-on monitoring times. Further, the first heating-on monitoring time includes one suction. However, in the case of pattern 6, one suction within the first heating-on monitoring time continues beyond the heating-on monitoring time, and is different from suction patterns 4 and 5 in this point. Even if the suction continues, the power supply to the heating unit 121L-1 that heats the cartridge 20 is stopped when the heating-on monitoring time has elapsed, so the heating-on time is 2.4 seconds. Therefore, in the example of FIG. 13, 2.0% of the aerosol source is consumed in the normal mode, and 3.3% of the aerosol source is consumed in the high mode. For users who repeat this suction pattern, it is possible to use one capsule 30 approximately 50 times (suction times) in normal mode, and approximately 30 times (suction times) in high mode. Become.
  • FIG. 17 is a diagram illustrating suction patterns 7 and 8.
  • A shows an example of suction pattern 7
  • B shows an example of suction pattern 8.
  • FIG. 17 parts corresponding to those in FIG. 14 are shown with corresponding symbols.
  • Suction pattern 7 includes two heating-on monitoring times.
  • the first heating-on monitoring period includes two suctions, and the second suction continues until the end of the heating-on monitoring period.
  • a heating inhibition time of 1.2 seconds is set after the first heating-on monitoring time has elapsed.
  • a new puff is detected within the heating prohibition time after the first heating-on monitoring time has elapsed.
  • a new puff is detected again 1.2 seconds after the first heating-on monitoring time elapses. Note that in suction pattern 7, since suction is detected at the timing of the end of the heating prohibition period, the length of the heating prohibition period and the heating off period are the same, 1.2 seconds.
  • the heating off time is 2.2 seconds (after the first heating on monitoring time elapses, heating is prohibited) 2.2 seconds after the end of the period until the time of the first detected aspiration).
  • the total heating on time in the suction pattern 7 is 2.0 seconds. Therefore, in the example of FIG. 13, 1.6% of the aerosol source is consumed in the normal mode, and 2.5% of the aerosol source is consumed in the high mode.
  • Suction pattern 8 also includes two heat-on monitoring times. However, the second suction in the first heating-on monitoring time in suction pattern 8 ends before the heating-on monitoring time ends. Note that the first suction during the second heating-on monitoring time is the same as suction pattern 7. In the case of suction pattern 8, the length of the heating off time immediately before the first heating on monitoring time starts and the length of the heating off time immediately before the second heating on monitoring time starts are determined by the suction pattern. Same as 7.
  • a heating inhibition time of 1.2 seconds is set after the first heating-on monitoring time elapses. Furthermore, in suction pattern 8, a new puff is detected within the heating prohibition time after the first heating-on monitoring time has elapsed. Furthermore, in suction pattern 8, a new puff is detected again 1.2 seconds after the first heating-on monitoring time elapses. Therefore, in suction pattern 8, the heating off period is 1.2 seconds, which is the time from the elapse of the first heating on monitoring time to the first suction start time detected after the end of the heating inhibition period. becomes. That is, even if suction is detected within the heating prohibition time, heating of the cartridge 20 is not executed, so it is not included in the calculation of the heating off period.
  • the total heating on time in the suction pattern 8 is 1.2 seconds. Therefore, in the example of FIG. 13, 0.86% of the aerosol source is consumed in the normal mode, and 1.2% of the aerosol source is consumed in the high mode.
  • FIG. 18 is a diagram illustrating a method of calculating the consumption amount of the capsule 30 according to the length of the heating-on time.
  • the horizontal axis in FIG. 18 is the length of the heating on time, and the unit is seconds.
  • the vertical axis in FIG. 18 is the consumption amount of the capsule 30, and the unit is %. Note that when multiple suctions are included in one heating-on monitoring time, as in suction patterns 1 to 3 (see Figures 14 and 15) described above, the heating-on time shown on the horizontal axis corresponds to each suction. This is the total value of the heating on time.
  • FIG. 18 the relationship between the length of the heating on time and the consumption amount of the capsule 30 in the normal mode is shown by a solid line, and the relationship between the length of the heating on time and the consumption amount of the capsule 30 in the high mode is shown by a broken line.
  • the consumption amount in the high mode is larger than the consumption amount in the normal mode. Note that the changes in the graph shown in FIG. 18 are also used to calculate the table shown in FIG. 13.
  • the consumption amount in each operation mode is calculated using the following formula, for example.
  • calculation formula shown in FIG. 18 is an example, and different values may be used for the angle of inclination and the length of the heating on time during which the inclination is switched.
  • the calculation formula shown in FIG. 18 is a linear equation
  • the consumption amount calculated according to the length of the heating on time may be expressed by a nonlinear equation. Note that linear equations and nonlinear equations may coexist for each range to which each calculation formula corresponds. If a calculation formula is prepared in advance as in the case of this embodiment, it is necessary to calculate the consumption amount every time the heating-on monitoring time ends, but if the heating-on monitoring time is not prepared in the table, It is also possible to improve the accuracy of calculation of consumption amount regarding length.
  • FIG. 19 is a diagram illustrating an example of heating timing for the cartridge 20 and capsule 30 in the third embodiment.
  • (A) shows the suction period
  • (B) shows an example of the heating timing of the cartridge 20
  • (C) shows an example of the heating timing of the capsule 30.
  • parts corresponding to those in FIG. 8 are shown with corresponding symbols.
  • the suction pattern shown in FIG. 19(A) is the same as the suction pattern shown in FIG. 8(A). That is, two suctions are detected within the first heating-on monitoring time, and the second suction ends before the heating-on monitoring time elapses. Therefore, during the heating-on monitoring time, as shown in FIG. 19(B), heating of the cartridge 20 is performed twice in conjunction with the detected suction period.
  • the heating control of the capsule 30 is executed during the period in which the heating of the cartridge 20 is controlled to be turned off. Further, when the heating of the cartridge 20 is controlled to be on, the heating of the capsule 30 is stopped (controlled off) or reduced. That is, the heating control of the cartridge 20 takes priority over the heating control of the capsule 30.
  • the second suction ends before the heating-on monitoring time elapses, so heating of the capsule 30 starts before the heating-on monitoring time ends.
  • heating of the capsule 30 may be continued during the heating prohibition time.
  • this heating control is adopted, the temperature of the capsule 30 becomes difficult to fall, so it is possible to increase the concentration of aerosol derived from solids contained in the aerosol inhaled by the user.
  • FIG. 20 is a diagram illustrating an example of the appearance of an aerosol generation device 1000 assumed in the fourth embodiment.
  • the aerosol generation device 1000 shown in FIG. 20 is also one form of electronic cigarette.
  • the aerosol generation device 1000 has a generally cylindrical shape and generates a liquid-derived aerosol without combustion.
  • Aerosol generation device 1000 is composed of a plurality of units.
  • the plurality of units includes a power supply unit 1010, a cartridge cover 1020 to which the cartridge 20 (see FIG. 2) is attached, and a capsule holder 1030 to which the capsule 30 (see FIG. 2) is attached.
  • the cartridge cover 1020 is removable from the power supply unit 1010, and the capsule holder 1030 is removable from the cartridge cover 1020. In other words, both the cartridge cover 1020 and the capsule holder 1030 are replaceable.
  • the power supply unit 1010 has a built-in electronic circuit and the like.
  • An operation button 1011 is provided on the side surface of the power supply unit 1010.
  • the operation button 1011 is an example of an operation unit used to input user instructions to the power supply unit 1010.
  • the operation button 1011 corresponds to the aforementioned operation button 11B (see FIG. 1).
  • An air inflow hole (hereinafter referred to as "air inflow hole") 1021 is provided on the side surface of the cartridge cover 1020. Air flowing in through the air inflow hole 1021 passes through the inside of the cartridge cover 1020 and is discharged from the capsule holder 1030. The user applies the mouthpiece 1031 of the capsule holder 1030 to inhale the aerosol.
  • FIG. 21 is a diagram illustrating how to attach an aerosol source, etc., assumed in the fourth embodiment.
  • the cartridge cover 1020 is attached to the top of the power supply unit 1010. Note that the cartridge cover 1020 is attached to and removed from the power supply unit 1010 by rotating the cartridge cover 1020 by, for example, 120 degrees with respect to the power supply unit 1010.
  • the cartridge cover 1020 is a cylindrical body, and the cartridge 20 is attached and detached through its upper end. After the cartridge 20 is attached to the cartridge cover 1020, the lower end of the capsule holder 1030 is attached to the cartridge cover 1020.
  • the capsule holder 1030 can also be attached to and removed from the cartridge cover 1020 by rotating, for example, 120 degrees.
  • the capsule holder 1030 attached to the cartridge cover 1020 functions as a holder to prevent the cartridge 20 inserted into the cartridge cover 1020 from jumping out.
  • An opening is provided at the upper end of the capsule holder 1030.
  • the opening constitutes an end of a cylindrical body (not shown) provided inside the capsule holder 1030.
  • the capsule 30 is attached to this opening.
  • the capsule 30 can be attached by being pushed into the opening of the capsule holder 1030, and can be removed by being pulled out from the opening of the capsule holder 1030.
  • the upper end of the capsule 30 is used as a mouthpiece 1031.
  • FIG. 22 is a diagram schematically showing the internal configuration of an aerosol generation device 1000 assumed in the fourth embodiment.
  • the internal configuration shown in FIG. 22 also includes a cartridge 20 (see FIG. 2) attached to a cartridge cover 1020 and a capsule 30 (see FIG. 2) attached to a capsule holder 1030.
  • the internal configuration shown in FIG. 22 is also intended to explain the components provided inside the power supply unit 1010, cartridge cover 1020, and capsule holder 1030 and their positional relationships. Therefore, the external appearance of the parts etc. shown in FIG. 21 does not necessarily match the external appearance diagram described above.
  • the capsule holder 1030 is not provided with the heating section 121L-1, the holding section 140L, the heat insulating section 144L, etc., but the basic configuration is the same as that of the aerosol generation device 10 (see FIG. 3). It's the same.
  • FIG. 23 is a flowchart illustrating a portion of the heating control of the cartridge 20 in the fourth embodiment.
  • the aerosol generation device 1000 assumed in this embodiment does not have the heating section 121L-2 that heats the capsule 30, and therefore is not provided with a high mode in the sense of the first embodiment. Therefore, there is no need to switch the power depending on the heating mode. Therefore, step 13 (see FIG. 12) is not provided.
  • step 21 Since the heating mode is not acquired, the control unit 116L that executed step 12 calculates the amount of capsules consumed during the current heating-on monitoring time based on the added total time (step 21). The difference from the flowchart shown in FIG. 12 is that step 21 replaces step 14 (see FIG. 12).
  • Aerosol generating device 1000 in this embodiment has only the normal mode described in Embodiment 1 as a heating mode, but similarly to Embodiment 1, it accurately calculates the consumption amount of capsule 30 due to aerosol suction. It becomes possible to do so. This also makes it possible to increase the accuracy of the remaining amount of the aerosol source. Note that even in the case of the aerosol generating device 1000 having only the heating section 121L-1 that heats the cartridge 20, a plurality of types of heating modes for the cartridge 20 may be prepared.
  • a standard mode in which the amount of aerosol produced is standard, and an increase mode in which the amount of aerosol produced is greater than in the standard mode may be provided.
  • the increase mode the amount of heat generated by the heating section 121L-1 is increased by making the power supplied to the heating section 121L-1 larger than the power supplied to the heating section 121L-1 when using the standard mode. may be increased. If switching between the standard mode and the increased amount mode is possible, the consumption amount of the capsules 30 is calculated for each heating mode, as in the first embodiment.
  • Embodiment 5 a case will be described in which a heating mode in which the heating-on monitoring time is not set is adopted.
  • This embodiment is based on the aerosol generation device 1000 (see FIG. 20) described in Embodiment 4.
  • the aerosol generation device 10 (see FIG. 1) described in Embodiment 1 may be used as a premise.
  • the external appearance, internal configuration, etc. of the aerosol generation device 1000 etc. assumed in this embodiment are the same as the aerosol generation device 1000 etc. described in Embodiment 4.
  • FIG. 24 is a flowchart illustrating an example of a method for controlling the heating of the cartridge 20 and calculating the consumption amount of the capsule 30 in the fifth embodiment. In FIG. 24, parts corresponding to those in FIGS. 11 and 12 are shown with corresponding symbols.
  • control unit 116L that starts control when the locked state is released or the like determines whether or not the start of suction has been detected (step 31). While the start of suction is not detected, the control unit 116L obtains a negative result in step 31 (“NO” in step 31) and repeats the determination in step 31. When the start of suction is detected, the control unit 116L obtains a positive result in step 31 (“YES” in step 31), and instructs the heating unit 121L-1 that heats the cartridge 20 to supply power (step 3). Next, the control unit 116L determines whether or not the end of suction is detected (step 5). The control unit 116L obtains a negative result in step 5 (“NO” in step 5) and repeats the determination in step 5 until the end of suction is detected.
  • the control unit 116L obtains a positive result in step 5 (“YES” in step 5), and stops supplying power to the heating unit 121L-1 that heats the cartridge 20 (step 7).
  • the control unit 116L obtains the heating on time regarding the current suction (step 8).
  • the control unit 116L calculates the consumption amount of the capsule 30 consumed by the current suction (step 32). For example, when only normal mode is used, the consumption amount is calculated using a table or calculation formula for normal mode.
  • the consumption is calculated using tables and calculation formulas prepared for each heating mode, as in the first embodiment. Calculate quantity.
  • the control unit 116L updates the cumulative consumption amount with the newly calculated consumption amount (step 15), and returns to step 31. The loop process shown in FIG. 24 is repeated until the lock state is reached.
  • the aerosol generating devices 10 are electronic cigarettes, but they may also be medical inhalers such as nebulizers.
  • the aerosol generating device 10 or the like is a nebulizer
  • the liquid aerosol source or the solid aerosol source may include a drug for inhalation by the patient.
  • the aerosol is generated by heating the liquid aerosol source with the heating unit 121L-1, but the aerosol may also be generated by vibrating the liquid aerosol source with a vibrator. good.
  • the heating unit 121L-1 may be configured as a susceptor made of a conductive material such as metal, and the susceptor may be heated by induction using an electromagnetic induction source to generate the aerosol.
  • simultaneous heating of the heating section 121L-1 and the heating section 121L-2 in the high mode is prohibited, but simultaneous heating may be allowed. In other words, a part or all of the heating period by the heating section 121L-1 and the heating period by the heating section 121L-2 may be allowed to overlap.
  • the maximum value of power supplied to heating parts 121L-1 and 121L-2 during simultaneous heating should be set to It is desirable to set the value to be smaller than the maximum value of the power supplied at the time. Note that when the cartridge 20 and the capsule 30 are allowed to be heated simultaneously, the consumption amount of the capsule 30 may be different from that when the cartridge 20 and the capsule 30 are heated individually. In that case, it is desirable to prepare a dedicated table or calculation formula for the simultaneous heating mode.
  • the heating-on monitoring time is fixed at the initial value, but multiple values are prepared as the heating-on monitoring time, and the user can select one of the values. It may be made selectable.
  • the maximum time that the cartridge 20 can be heated continuously will change, but if you have prepared a table or calculation formula that includes the largest value among the multiple selectable values, you can For the calculation of , it is possible to apply the methods of each of the embodiments described above.
  • SYMBOLS 10 1000...Aerosol generation device, 11...Device main body, 11A...Display, 11B...Operation button, 12,1030...Capsule holder, 20...Cartridge, 30...Capsule, 121L-1, 121L-2...Heating part, 1010... Power supply unit, 1020...Cartridge cover

Abstract

This aerosol generating device comprises: a sensor for detecting inhalation performed by a user; a first heating unit for heating a first aerosol source; and a control unit for controlling supply of electric power to the first heating unit. Here, the control unit supplies electric power to the first heating unit in conjunction with detection, of inhalation, by the sensor, and calculates a consumed amount of a second aerosol source on the basis of the duration of heating performed on the first aerosol source by the first heating unit.

Description

エアロゾル生成装置、制御方法、及びプログラムAerosol generation device, control method, and program
 本発明は、エアロゾル生成装置、制御方法、及びプログラムに関する。 The present invention relates to an aerosol generation device, a control method, and a program.
 エアロゾルを生成する装置(以下「エアロゾル生成装置」という)は、香料等を含むエアロゾル源の加熱によりエアロゾルを生成する。
 エアロゾル源が液体の場合、ウィックと呼ばれるガラス繊維内に誘導されたエアロゾル源をヒータで加熱することでエアロゾルを生成する。
An aerosol generating device (hereinafter referred to as an "aerosol generating device") generates an aerosol by heating an aerosol source containing a fragrance or the like.
When the aerosol source is a liquid, the aerosol is generated by heating the aerosol source guided within a glass fiber called a wick with a heater.
特表2013-516159号公報Special Publication No. 2013-516159
 あるエアロゾル生成装置では、例えばセンサにより検知されたユーザの吸引回数を標準的な消費量に乗算することにより、エアロゾル源の消費量を計算することが考えられる。この場合において、ユーザによる吸引の仕方は様々であり、実際の消費量が標準的な消費量と一致するとは限らない。例えば平均的な吸引時間が標準時間よりも短いユーザの場合、計算上の消費量が実際の消費量よりも多くなる。その結果、エアロゾルの発生が可能な量のエアロゾル源が残っているにも関わらず、エアロゾル源の交換が必要になる。 In some aerosol generation devices, it is conceivable to calculate the consumption amount of the aerosol source by multiplying the standard consumption amount by the number of inhalations by the user detected by a sensor, for example. In this case, there are various ways of sucking by users, and the actual consumption amount does not necessarily match the standard consumption amount. For example, in the case of a user whose average suction time is shorter than the standard time, the calculated consumption amount will be higher than the actual consumption amount. As a result, the aerosol source will need to be replaced, even though there is still enough available aerosol source to generate aerosol.
 例えば、液体のエアロゾル源と固形物のエアロゾル源を取り付けが可能なエアロゾル生成装置では、例えばセンサにより検知されたユーザの吸引回数を標準的な消費量に乗算することにより、固形物のエアロゾル源の消費量を計算することが考えられる。ただし、ユーザによる吸引の仕方は様々であり、実際の消費量が標準的な消費量と一致するとは限らない。例えば平均的な吸引時間が標準時間よりも短いユーザの場合、計算上の消費量が実際の消費量よりも多くなる。その結果、エアロゾルの発生が可能な量のエアロゾル源が残っているにも関わらず、固形物のエアロゾル源の交換が必要になる。 For example, in an aerosol generation device that can attach a liquid aerosol source and a solid aerosol source, a solid aerosol source is One possibility is to calculate the consumption amount. However, the way users inhale varies, and the actual consumption amount does not necessarily match the standard consumption amount. For example, in the case of a user whose average suction time is shorter than the standard time, the calculated consumption amount will be higher than the actual consumption amount. As a result, the solid aerosol source will need to be replaced, even though there is still enough aerosol source available for aerosol generation.
 本発明は、エアロゾル生成装置におけるエアロゾル源の消費量の計算の正確性を向上できる技術を提供する。 The present invention provides a technique that can improve the accuracy of calculating the consumption amount of an aerosol source in an aerosol generation device.
 本発明のある観点によれば、ユーザの吸引を検知するセンサと、第1のエアロゾル源を加熱する第1の加熱部と、前記第1の加熱部に対する電力の供給を制御する制御部と、を有し、前記制御部は、前記センサによる吸引の検知に連動して前記第1の加熱部に電力を供給し、前記第1の加熱部による前記第1のエアロゾル源の加熱時間長に基づいて、第2のエアロゾル源の消費量を計算する、エアロゾル生成装置が提供される。 According to one aspect of the present invention, a sensor that detects suction by a user, a first heating section that heats a first aerosol source, and a control section that controls supply of power to the first heating section; The control unit supplies power to the first heating unit in conjunction with the detection of suction by the sensor, and the control unit supplies power to the first heating unit based on the heating time length of the first aerosol source by the first heating unit. Accordingly, an aerosol generation device is provided that calculates consumption of a second aerosol source.
 前記制御部は、前記ユーザの吸引の検知により予め定めた長さの監視期間を設定し、前記監視期間毎に、当該監視期間内における前記加熱時間長を取得し、取得された前記加熱時間長に基づいて、前記監視期間内に消費された前記第2のエアロゾル源の消費量を計算してもよい。 The control unit sets a monitoring period of a predetermined length based on the detection of suction by the user, obtains the heating time length within the monitoring period for each monitoring period, and calculates the heating time length that has been obtained. The amount of consumption of the second aerosol source consumed within the monitoring period may be calculated based on.
 前記制御部は、前記監視期間内に複数の吸引が検知される場合、当該複数の吸引の合計時間を前記加熱時間長としてもよい。 If a plurality of suctions are detected within the monitoring period, the control unit may set the total time of the plurality of suctions as the heating time length.
 前記制御部は、1つの前記監視期間を1吸引回とする場合に、吸引回毎に計算された前記消費量の累積値に基づいて、前記第2のエアロゾル源の残量を計算してもよい。 The control unit may calculate the remaining amount of the second aerosol source based on the cumulative value of the consumption amount calculated for each suction time when one monitoring period is one suction time. good.
 前記制御部は、前記監視期間内における前記加熱時間長を大きさに応じて複数の範囲に分類し、範囲別に用意された計算手法により前記消費量を計算してもよい。 The control unit may classify the heating time length within the monitoring period into a plurality of ranges according to the size, and calculate the consumption amount using a calculation method prepared for each range.
 前記第2のエアロゾル源を加熱する第2の加熱部を更に有し、前記制御部は、前記第1の加熱部のみを使用する第1の加熱と、当該第1の加熱部と前記第2の加熱部の両方を使用する第2の加熱との切り替えが可能な場合、当該第1の加熱と当該第2の加熱の切り替えに伴い、前記第2のエアロゾル源の消費量の計算方法を切り替えてもよい。 The control unit further includes a second heating unit that heats the second aerosol source, and the control unit controls the first heating using only the first heating unit and the first heating unit and the second heating unit. If it is possible to switch to a second heating that uses both of the heating parts, the method for calculating the consumption of the second aerosol source is switched in conjunction with switching between the first heating and the second heating. You can.
 前記制御部は、前記第1の加熱と前記第2の加熱における前記加熱時間長が同じである場合、当該第2の加熱時における前記第2のエアロゾル源の消費量を、当該第1の加熱時における当該第2のエアロゾル源の消費量よりも大きな値として計算してもよい。 When the heating time lengths in the first heating and the second heating are the same, the control unit may change the amount of consumption of the second aerosol source during the second heating to the amount consumed in the first heating. It may be calculated as a value larger than the consumption amount of the second aerosol source at the time.
 前記第2のエアロゾル源は、機構部に保持されたエアロゾル源であってもよい。 The second aerosol source may be an aerosol source held in the mechanical part.
 本発明の別の観点によれば、エアロゾルを生成するエアロゾル生成装置の制御方法であって、センサがユーザの吸引を検知するステップと、第1の加熱部が第1のエアロゾル源を加熱するステップと、前記センサによる吸引の検知に連動して前記第1の加熱部に電力を供給するステップと、前記第1の加熱部による前記第1のエアロゾル源の加熱時間長に基づいて、第2のエアロゾル源の消費量を計算するステップと、を含むことを特徴とする制御方法が提供される。 According to another aspect of the present invention, there is provided a method for controlling an aerosol generating device that generates an aerosol, including the steps of a sensor detecting suction by a user, and a first heating unit heating a first aerosol source. and a step of supplying electric power to the first heating unit in conjunction with detection of suction by the sensor, and a second heating unit based on the heating time length of the first aerosol source by the first heating unit. A control method is provided, comprising: calculating a consumption amount of an aerosol source.
 本発明の別の観点によれば、コンピュータに、センサがユーザの吸引を検知する工程と、第1の加熱部が第1のエアロゾル源を加熱する工程と、前記センサによる吸引の検知に連動して前記第1の加熱部に電力を供給する工程と、前記第1の加熱部による前記第1のエアロゾル源の加熱時間長に基づいて、第2のエアロゾル源の消費量を計算する工程と、を実行させるためのプログラムが提供される。 According to another aspect of the invention, the computer is provided with a step in which a sensor detects inhalation by a user, a first heating unit heats a first aerosol source, and a step in conjunction with the detection of inhalation by the sensor. and calculating the consumption amount of the second aerosol source based on the heating time length of the first aerosol source by the first heating unit. A program is provided to run it.
 本発明によれば、エアロゾル生成装置におけるエアロゾル源の消費量の計算の正確性を向上できる。 According to the present invention, it is possible to improve the accuracy of calculating the consumption amount of an aerosol source in an aerosol generation device.
実施の形態1で想定するエアロゾル生成装置の外観例を説明する図である。1 is a diagram illustrating an example of the appearance of an aerosol generation device assumed in Embodiment 1. FIG. 実施の形態1で想定するエアロゾル源等の装置本体への装着の仕方を説明する図である。FIG. 3 is a diagram illustrating how to attach an aerosol source and the like to the main body of the apparatus, which is assumed in the first embodiment. 実施の形態1で想定するエアロゾル生成装置の内部構成を模式的に示す図である。1 is a diagram schematically showing the internal configuration of an aerosol generation device assumed in Embodiment 1. FIG. ノーマルモードとハイモードを説明する図である。(A)はノーマルモードにおける加熱のタイミング例を説明する図であり、(B)はハイモードにおける加熱のタイミング例を説明する図である。It is a figure explaining normal mode and high mode. (A) is a diagram illustrating an example of heating timing in normal mode, and (B) is a diagram illustrating an example of heating timing in high mode. 実施の形態1におけるカートリッジとカプセルの加熱タイミングの例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジの加熱タイミングの例を示し、(C)はカプセルの加熱タイミングの例を示す。FIG. 3 is a diagram illustrating an example of heating timing of a cartridge and a capsule in Embodiment 1. FIG. (A) shows the period of suction, (B) shows an example of the heating timing of the cartridge, and (C) shows an example of the heating timing of the capsule. 実施の形態1におけるカートリッジとカプセルの加熱タイミングの他の例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジの加熱のタイミング例を示し、(C)はカプセルの加熱のタイミング例を示す。FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge and capsule in the first embodiment. (A) shows the period of suction, (B) shows an example of the timing of heating the cartridge, and (C) shows an example of the timing of heating the capsule. 実施の形態1におけるカートリッジとカプセルの加熱タイミングの他の例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジの加熱のタイミング例を示し、(C)はカプセルの加熱のタイミング例を示す。FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge and capsule in the first embodiment. (A) shows the period of suction, (B) shows an example of the timing of heating the cartridge, and (C) shows an example of the timing of heating the capsule. ハイモードにおけるカートリッジとカプセルの加熱タイミングの例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジの加熱タイミングの例を示し、(C)はカプセルの加熱タイミングの例を示す。It is a figure explaining the example of the heating timing of a cartridge and a capsule in high mode. (A) shows the period of suction, (B) shows an example of the heating timing of the cartridge, and (C) shows an example of the heating timing of the capsule. ハイモードにおけるカートリッジとカプセルの加熱タイミングの他の例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジの加熱のタイミング例を示し、(C)はカプセルの加熱のタイミング例を示す。FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge and capsule in the high mode. (A) shows the period of suction, (B) shows an example of the timing of heating the cartridge, and (C) shows an example of the timing of heating the capsule. ハイモードにおけるカートリッジとカプセルの加熱タイミングの他の例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジの加熱のタイミング例を示し、(C)はカプセルの加熱のタイミング例を示す。FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge and capsule in the high mode. (A) shows the period of suction, (B) shows an example of the timing of heating the cartridge, and (C) shows an example of the timing of heating the capsule. 実施の形態1におけるカートリッジの加熱制御とカプセルの消費量の計算手法の一部分を説明するフローチャートである。3 is a flowchart illustrating a part of a method for controlling heating of a cartridge and calculating a consumption amount of capsules in the first embodiment. 実施の形態1におけるカートリッジの加熱制御とカプセルの消費量の計算手法の残りの部分を説明するフローチャートである。7 is a flowchart illustrating the remaining part of the cartridge heating control and capsule consumption calculation method in the first embodiment. 加熱オン時間の長さと加熱モードの組み合わせに応じたカプセルの消費量を対応付けたテーブル例を説明する図である。It is a figure explaining the example of the table which matches the consumption amount of the capsule according to the combination of the length of heating on time and heating mode. 吸引パターン1及び2を説明する図である。(A)は吸引パターン1の例を示し、(B)は吸引パターン2の例を示す。FIG. 3 is a diagram illustrating suction patterns 1 and 2. (A) shows an example of suction pattern 1, and (B) shows an example of suction pattern 2. 吸引パターン3及び4を説明する図である。(A)は吸引パターン3の例を示し、(B)は吸引パターン4の例を示す。FIG. 4 is a diagram illustrating suction patterns 3 and 4. (A) shows an example of suction pattern 3, and (B) shows an example of suction pattern 4. 吸引パターン5及び6を説明する図である。(A)は吸引パターン5の例を示し、(B)は吸引パターン6の例を示す。6 is a diagram illustrating suction patterns 5 and 6. FIG. (A) shows an example of suction pattern 5, and (B) shows an example of suction pattern 6. 吸引パターン7及び8を説明する図である。(A)は吸引パターン7の例を示し、(B)は吸引パターン8の例を示す。7 is a diagram illustrating suction patterns 7 and 8. FIG. (A) shows an example of suction pattern 7, and (B) shows an example of suction pattern 8. 加熱オン時間の長さに応じたカプセルの消費量の計算方法を説明する図である。FIG. 6 is a diagram illustrating a method of calculating the consumption amount of capsules according to the length of heating-on time. 実施の形態3におけるカートリッジとカプセルの加熱タイミングの例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジの加熱タイミングの例を示し、(C)はカプセルの加熱タイミングの例を示す。FIG. 7 is a diagram illustrating an example of heating timing of a cartridge and a capsule in Embodiment 3; (A) shows the period of suction, (B) shows an example of the heating timing of the cartridge, and (C) shows an example of the heating timing of the capsule. 実施の形態4で想定するエアロゾル生成装置の外観例を説明する図である。FIG. 7 is a diagram illustrating an example of the appearance of an aerosol generation device assumed in Embodiment 4. 実施の形態4で想定するエアロゾル源等の装着の仕方を説明する図である。FIG. 7 is a diagram illustrating how to attach an aerosol source, etc., assumed in Embodiment 4. 実施の形態4で想定するエアロゾル生成装置の内部構成を模式的に示す図である。FIG. 7 is a diagram schematically showing the internal configuration of an aerosol generation device assumed in Embodiment 4. 実施の形態4におけるカートリッジの加熱制御の一部分を説明するフローチャートである。12 is a flowchart illustrating a portion of cartridge heating control in Embodiment 4. FIG. 実施の形態5におけるカートリッジの加熱制御とカプセルの消費量の計算手法の一例を説明するフローチャートである。13 is a flowchart illustrating an example of cartridge heating control and capsule consumption calculation method in Embodiment 5. FIG.
 以下、図面を参照して、本発明の実施の形態を説明する。各図面には、同一の部分に同一の符号を付して示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same parts are denoted by the same reference numerals.
<実施の形態1>
<特徴>
 実施の形態1で想定するエアロゾル生成装置は、電子たばこの一形態である。以下の説明では、エアロゾル生成装置が生成する物質をエアロゾルという。エアロゾルは、気体中に浮遊する微小な液体または固体の粒子と、空気その他の気体との混合体をいう。
 実施の形態1で想定するエアロゾル生成装置は、燃焼を伴わずに、エアロゾルを生成することが可能である。
 実施の形態1では、エアロゾル生成装置が生成したエアロゾルをユーザが吸引することを、単に「吸引」又は「パフ」という。
<Embodiment 1>
<Features>
The aerosol generating device assumed in Embodiment 1 is a form of electronic cigarette. In the following explanation, the substance generated by the aerosol generation device will be referred to as an aerosol. Aerosol refers to a mixture of minute liquid or solid particles suspended in a gas and air or other gas.
The aerosol generation device assumed in the first embodiment is capable of generating aerosol without combustion.
In the first embodiment, the user's suction of the aerosol generated by the aerosol generation device is simply referred to as "suction" or "puff."
 実施の形態1では、エアロゾル生成装置として、液体のエアロゾル源と固形物のエアロゾル源の両方の取り付けが可能な装置を想定する。ただし、エアロゾル源は、液体及び固形物に限られず、ゼリー状又はゲル状のエアロゾル源や、たばこなどの固形物にグリセリンなどを含ませたエアロゾル源なども含まれる。
 以下では、液体のエアロゾル源を収納する容器を「カートリッジ」といい、固形物のエアロゾル源を収納する容器を「カプセル」という。カートリッジとカプセルは、いずれも消耗品である。このため、カートリッジとカプセルには、それぞれ交換の目安が定められている。交換の目安は、後述する加熱モードの違いにより異なる。
In Embodiment 1, the aerosol generating device is assumed to be a device to which both a liquid aerosol source and a solid aerosol source can be attached. However, aerosol sources are not limited to liquids and solids, but also include jelly-like or gel-like aerosol sources, and aerosol sources in which solids such as cigarettes are impregnated with glycerin or the like.
Hereinafter, a container containing a liquid aerosol source will be referred to as a "cartridge", and a container containing a solid aerosol source will be referred to as a "capsule". Both cartridges and capsules are consumable items. For this reason, replacement standards are set for each cartridge and capsule. The standard for replacement varies depending on the heating mode described below.
 実施の形態1で想定するエアロゾル生成装置は、液体のエアロゾル源を加熱してエアロゾルを生成するためのヒータと、固形物のエアロゾル源を加熱してエアロゾルを生成するためのヒータとを有する。ヒータは、後述する加熱部の一例である。
 液体のエアロゾル源は、第1のエアロゾル源の一例であり、固形物のエアロゾル源は、第2のエアロゾル源の一例である。ただし、第1のエアロゾル源は、液体のエアロゾル源に限られず、固形物のエアロゾル源やゼリー状又はゲル状のエアロゾル源、たばこなどの固形物にグリセリンなどを含ませたエアロゾル源なども含まれていてもよい。また、第2のエアロゾル源は、固形物のエアロゾル源に限られず、液体のエアロゾル源やゼリー状又はゲル状のエアロゾル源、たばこなどの固形物にグリセリンなどを含ませたエアロゾル源なども含まれていてもよい。
The aerosol generation device assumed in the first embodiment includes a heater for heating a liquid aerosol source to generate an aerosol, and a heater for heating a solid aerosol source to generate an aerosol. The heater is an example of a heating section that will be described later.
A liquid aerosol source is an example of a first aerosol source, and a solid aerosol source is an example of a second aerosol source. However, the first aerosol source is not limited to a liquid aerosol source, but also includes a solid aerosol source, a jelly-like or gel-like aerosol source, an aerosol source in which a solid substance such as a cigarette is impregnated with glycerin, etc. You can leave it there. In addition, the second aerosol source is not limited to a solid aerosol source, but also includes a liquid aerosol source, a jelly or gel aerosol source, an aerosol source in which a solid substance such as a cigarette is impregnated with glycerin, etc. You can leave it there.
<外観例>
 図1は、実施の形態1で想定するエアロゾル生成装置10の外観例を説明する図である。
 図1に示す外観例は、エアロゾル生成装置10の正面を斜め上方から観察することで得られる。実施の形態で想定するエアロゾル生成装置10は、ユーザが片手で保持可能なサイズを有している。例えばエアロゾル生成装置10の幅は約32mm、高さは約60mm、奥行きは約23mmである。これらのサイズは一例である。また、エアロゾル生成装置10のデザインによっても、幅、高さ、奥行きのサイズは異なる。
<Example of appearance>
FIG. 1 is a diagram illustrating an example of the appearance of an aerosol generation device 10 assumed in the first embodiment.
The external appearance example shown in FIG. 1 is obtained by observing the front of the aerosol generation device 10 from diagonally above. The aerosol generation device 10 assumed in the embodiment has a size that can be held by a user with one hand. For example, the aerosol generating device 10 has a width of about 32 mm, a height of about 60 mm, and a depth of about 23 mm. These sizes are examples. The width, height, and depth also vary depending on the design of the aerosol generating device 10.
 図1に示すエアロゾル生成装置10は、装置本体11にカプセルホルダ12を取り付けた状態を表している。後述するように、カプセルホルダ12は、装置本体11に対して着脱が可能である。
 装置本体11の上面には、ディスプレイ11Aと、操作ボタン11Bが配置されている。ディスプレイ11Aには、例えば液晶ディスプレイや有機EL(=Electro Luminescence)ディスプレイが用いられる。操作ボタン11Bは、例えば電源のオン又はオフ、固形物のエアロゾル源の残量の確認、電池残量の確認その他の操作に使用される。ディスプレイ11Aは、表示部の一例である。
The aerosol generation device 10 shown in FIG. 1 shows a state in which a capsule holder 12 is attached to the device main body 11. As will be described later, the capsule holder 12 can be attached to and detached from the device main body 11.
A display 11A and operation buttons 11B are arranged on the top surface of the device main body 11. For example, a liquid crystal display or an organic EL (Electro Luminescence) display is used as the display 11A. The operation button 11B is used for, for example, turning the power on or off, checking the remaining amount of the solid aerosol source, checking the remaining battery amount, and other operations. The display 11A is an example of a display section.
<エアロゾル源等の装着例>
 図2は、実施の形態1で想定するエアロゾル源等の装置本体11への装着の仕方を説明する図である。
 装置本体11の上部には、不図示の開口が設けられている。ここでの開口は、装置本体11の内部に設けられている不図示の筒状体の端部を構成する。
 装置本体11の開口には、カートリッジ20が先に挿入され、次に、カプセルホルダ12が装着される。
<Example of installing an aerosol source, etc.>
FIG. 2 is a diagram illustrating how to attach an aerosol source and the like to the device main body 11, which is assumed in the first embodiment.
An opening (not shown) is provided in the upper part of the device main body 11. The opening here constitutes an end portion of a cylindrical body (not shown) provided inside the device main body 11.
The cartridge 20 is first inserted into the opening of the device main body 11, and then the capsule holder 12 is attached.
 装置本体11の開口にカプセルホルダ12を装着する際や開口から取り外す際には、ユーザがカプセルホルダ12を開口に対して例えば120°回転する。
 装置本体11に取り付けられたカプセルホルダ12は、装置本体11に挿入されたカートリッジ20の飛び出しを防ぐ押さえとして機能する。
 カプセルホルダ12にも開口が設けられている。開口は、カプセルホルダ12の内部に設けられている不図示の筒状体の端部を構成する。この開口に対し、カプセル30が装着される。カプセル30は、カプセルホルダ12の開口に押し込むことで装着が可能であり、カプセルホルダ12の開口から引き出すことで取り外しが可能である。
 本実施の形態の場合、カートリッジ20は、装置本体11の上面に設けた開口から装着されるが、装置本体11の下面側から装着する構成を採用してもよい。
When attaching or removing the capsule holder 12 from the opening of the device main body 11, the user rotates the capsule holder 12 by, for example, 120 degrees with respect to the opening.
The capsule holder 12 attached to the device main body 11 functions as a holder to prevent the cartridge 20 inserted into the device main body 11 from jumping out.
The capsule holder 12 is also provided with an opening. The opening constitutes an end of a cylindrical body (not shown) provided inside the capsule holder 12. The capsule 30 is attached to this opening. The capsule 30 can be attached by being pushed into the opening of the capsule holder 12, and can be removed by being pulled out from the opening of the capsule holder 12.
In the case of this embodiment, the cartridge 20 is installed from the opening provided on the top surface of the device main body 11, but a configuration in which the cartridge 20 is installed from the bottom surface of the device main body 11 may also be adopted.
<装置内部の構成>
 図3は、実施の形態1で想定するエアロゾル生成装置10の内部構成を模式的に示す図である。もっとも、ここでの内部構成は、装置本体11に装着されたカートリッジ20(図2参照)とカプセル30(図2参照)を含んでいる。
 図3に示す内部構成は、装置本体11の内部に設ける部品やそれらの位置関係を説明することを目的とする。このため、図3に示す部品等の外観は、前述した外観図と必ずしも一致しない。
<Device internal configuration>
FIG. 3 is a diagram schematically showing the internal configuration of the aerosol generation device 10 assumed in the first embodiment. However, the internal configuration here includes a cartridge 20 (see FIG. 2) and a capsule 30 (see FIG. 2) mounted on the device main body 11.
The purpose of the internal configuration shown in FIG. 3 is to explain the components provided inside the device main body 11 and their positional relationships. Therefore, the external appearance of the parts shown in FIG. 3 does not necessarily match the external appearance diagram described above.
 図3に示すエアロゾル生成装置10は、電源部111L、センサ部112L、通知部113L、記憶部114L、通信部115L、制御部116L、液誘導部122L、液貯蔵部123L、加熱部121L-1、加熱部121L-2、保持部140L、断熱部144Lを有している。
 装置本体11の内部には、空気流路180Lが形成されている。空気流路180Lは、液貯蔵部123Lに貯蔵されている液体のエアロゾル源から生成されたエアロゾルを、固形物のエアロゾル源が充填されたカプセル型容器130Lに輸送する通路として機能する。
The aerosol generation device 10 shown in FIG. 3 includes a power supply section 111L, a sensor section 112L, a notification section 113L, a storage section 114L, a communication section 115L, a control section 116L, a liquid guide section 122L, a liquid storage section 123L, a heating section 121L-1, It has a heating section 121L-2, a holding section 140L, and a heat insulating section 144L.
An air flow path 180L is formed inside the device main body 11. The air flow path 180L functions as a passageway for transporting aerosol generated from a liquid aerosol source stored in the liquid storage section 123L to a capsule-shaped container 130L filled with a solid aerosol source.
 液貯蔵部123Lは、前述したカートリッジ20に対応し、カプセル型容器130Lは、前述したカプセル30に対応する。
 本実施の形態の場合、保持部140Lにカプセル型容器130Lが装着された状態で、ユーザによる吸引が行われる。保持部140Lは、前述したカプセルホルダ12(図2参照)と、カプセルホルダ12が取り付けられる装置本体11側の筒状体に対応する。
The liquid storage section 123L corresponds to the cartridge 20 described above, and the capsule-shaped container 130L corresponds to the capsule 30 described above.
In the case of this embodiment, the user performs suction while the capsule-shaped container 130L is attached to the holding portion 140L. The holding portion 140L corresponds to the aforementioned capsule holder 12 (see FIG. 2) and a cylindrical body on the device main body 11 side to which the capsule holder 12 is attached.
 以下、装置本体11を構成する各部について説明する。
 電源部111Lは、電力を蓄積するデバイスであり、装置本体11を構成する各部に電力を供給する。電源部111Lには、リチウムイオン二次電池等の充電式バッテリが使用される。
 電源部111Lが充電式バッテリの場合、USB(=Universal Serial Bus)ケーブル等を通じて接続された外部電源を通じ、何度でも充電することが可能である。
Each part constituting the device main body 11 will be described below.
The power supply section 111L is a device that stores electric power, and supplies electric power to each section constituting the apparatus main body 11. A rechargeable battery such as a lithium ion secondary battery is used for the power supply unit 111L.
If the power supply unit 111L is a rechargeable battery, it can be charged any number of times through an external power supply connected via a USB (Universal Serial Bus) cable or the like.
 もっとも、装置本体11がワイヤレス電力伝送に対応する場合、送電側となる外部デバイスと非接触の状態で電源部111Lを充電することが可能である。
 電源部111Lが装置本体11から取り外し可能である場合、消耗した電源部111Lを新しい電源部111Lと交換することが可能である。
However, if the device main body 11 supports wireless power transmission, it is possible to charge the power supply unit 111L without contacting the external device that is the power transmitting side.
If the power supply section 111L is removable from the apparatus main body 11, it is possible to replace the consumed power supply section 111L with a new power supply section 111L.
 センサ部112Lは、装置本体11の各部に関する情報を検出するデバイスである。センサ部112Lは、検出した情報を制御部116Lに出力する。
 装置本体11に設けるセンサ部112Lには、例えばマイクロホンコンデンサ等の圧力センサ、流量センサ、温度センサがある。この種のセンサ部112Lは、例えばユーザの吸引の検出に使用される。この意味でのセンサ部112Lは、ユーザの吸引を検出するセンサの一例である。
The sensor unit 112L is a device that detects information regarding each part of the apparatus main body 11. The sensor section 112L outputs detected information to the control section 116L.
The sensor section 112L provided in the device main body 11 includes, for example, a pressure sensor such as a microphone capacitor, a flow rate sensor, and a temperature sensor. This type of sensor unit 112L is used, for example, to detect a user's suction. The sensor unit 112L in this sense is an example of a sensor that detects the user's suction.
 装置本体11に設けるセンサ部112Lには、例えばボタンやスイッチ等に対するユーザの操作を受け付ける入力装置がある。ここでのボタンには、前述した操作ボタン11B(図1参照)が含まれる。この種のセンサ部112Lは、例えばユーザの操作の受け付けに使用される。
 装置本体11に設けるセンサ部112Lには、例えばサーミスタがある。本実施の形態の場合、サーミスタは、例えばカプセル30の加熱に使用される加熱部121L-2の温度の測定に使用される。
The sensor unit 112L provided in the device main body 11 includes an input device that receives user operations on buttons, switches, etc., for example. The buttons here include the aforementioned operation button 11B (see FIG. 1). This type of sensor unit 112L is used, for example, to receive user operations.
The sensor section 112L provided in the device main body 11 includes, for example, a thermistor. In the case of this embodiment, the thermistor is used, for example, to measure the temperature of the heating section 121L-2 used to heat the capsule 30.
 通知部113Lは、情報をユーザに通知するデバイスである。
 装置本体11に設ける通知部113Lには、例えばLED(=Light Emitting Diode)等の発光装置がある。通知部113Lが発光装置の場合、発光装置は、通知する情報の内容に応じたパターンで発光制御される。例えば電源部111Lの充電が必要であることをユーザに通知する場合と、電源部111Lが充電中であることをユーザに通知する場合と、異常の発生を通知する場合とで、発光装置は、それぞれ異なるパターンで発光制御される。
The notification unit 113L is a device that notifies the user of information.
The notification section 113L provided in the device main body 11 includes a light emitting device such as an LED (=Light Emitting Diode). When the notification unit 113L is a light emitting device, the light emitting device is controlled to emit light in a pattern according to the content of the information to be notified. For example, when notifying the user that the power supply unit 111L needs to be charged, when notifying the user that the power supply unit 111L is being charged, and when notifying the user that an abnormality has occurred, the light emitting device Each light emission is controlled using a different pattern.
 異なる発光パターンとは、色の違い、点灯と消灯のタイミングの違い、点灯時の明るさの違い等を含む概念である。
 この他、装置本体11に設ける通知部113Lには、例えば画像を表示する表示装置、音を出力する音出力装置、振動する振動装置がある。これらの装置は、それぞれ単独で、又は、組み合わせて使用してもよく、前述した発光装置と一緒に、又は、発光装置に代えて使用してもよい。ここでの表示装置の一例がディスプレイ11A(図1参照)である。
The concept of different light emission patterns includes differences in color, differences in timing between turning on and off, and differences in brightness when turning on.
In addition, the notification section 113L provided in the device main body 11 includes, for example, a display device that displays an image, a sound output device that outputs sound, and a vibration device that vibrates. These devices may be used alone or in combination, and may be used together with the light emitting device described above or in place of the light emitting device. An example of a display device here is a display 11A (see FIG. 1).
 記憶部114Lは、装置本体11の動作に関する各種の情報を記憶する。記憶部114Lは、例えばフラッシュメモリ等の不揮発性の記憶媒体により構成される。
 記憶部114Lに記憶される情報には、例えば制御部116Lが実行するプログラムが含まれる。プログラムには、OS(=Operating System)やファームウェアの他、アプリケーションプログラムも含まれる。
The storage unit 114L stores various information regarding the operation of the device main body 11. The storage unit 114L is composed of a nonvolatile storage medium such as a flash memory, for example.
The information stored in the storage unit 114L includes, for example, a program executed by the control unit 116L. Programs include an OS (Operating System), firmware, and application programs.
 この他、記憶部114Lに記憶される情報には、例えば制御部116Lが各部の制御に必要とする情報が含まれる。
 ここでの情報には、前述したセンサ部112Lで検出された各部の情報も含まれる。例えばユーザによる吸引に関する情報や電池の残量も含まれる。ユーザによる吸引に関する情報には、例えば吸引の回数、吸引の開始や吸引の終了が検出された時刻、吸引の累積時間、実行中の加熱モードが含まれる。
 また、ここでの情報には、カートリッジ20の吸引に伴うカプセル30の消費量の計算に使用するテーブルも含まれる。
In addition, the information stored in the storage section 114L includes, for example, information required by the control section 116L to control each section.
The information here also includes information on each section detected by the sensor section 112L described above. For example, information regarding suction by the user and remaining battery power are also included. The information regarding suction by the user includes, for example, the number of suctions, the time when the start of suction or the end of suction is detected, the cumulative time of suction, and the heating mode in progress.
The information here also includes a table used to calculate the amount of capsule 30 consumed as the cartridge 20 is sucked.
 通信部115Lは、他の装置との間で情報を送受信するために使用する通信インタフェースである。通信インタフェースは、有線や無線の通信規格に準拠する。
 通信規格には、例えば無線LAN(=Local Area Network)、有線LAN、4Gや5G等の移動通信システムがある。本実施の形態では、Wi-Fi(登録商標)やBluetooth(登録商標)を使用する。
The communication unit 115L is a communication interface used for transmitting and receiving information with other devices. The communication interface complies with wired and wireless communication standards.
Communication standards include, for example, wireless LAN (Local Area Network), wired LAN, and mobile communication systems such as 4G and 5G. In this embodiment, Wi-Fi (registered trademark) and Bluetooth (registered trademark) are used.
 通信部115Lは、例えばユーザの吸引に関する情報をスマートフォンやタブレット型の端末等に表示させるために使用される。
 この他、通信部115Lは、例えば記憶部114Lに記憶されているプログラムの更新データをサーバから受信するために使用される。
The communication unit 115L is used, for example, to display information regarding the user's suction on a smartphone, tablet type terminal, or the like.
In addition, the communication unit 115L is used, for example, to receive update data for programs stored in the storage unit 114L from the server.
 制御部116Lは、演算処理装置及び制御装置として機能し、プログラムの実行を通じ、装置本体11を構成する各部の動作を制御する。
 制御部116Lには、CPU(=Central Processing Unit)やマイクロプロセッサ等の電子回路が設けられる。
 この他、制御部116Lには、プログラムや演算パラメータ等を記憶するROM(=Read Only Memory)、適宜変化するパラメータ等を一時記憶するRAM(=Random Access Memory)を設けてもよい。
The control unit 116L functions as an arithmetic processing unit and a control unit, and controls the operation of each unit constituting the device main body 11 through execution of a program.
The control unit 116L is provided with an electronic circuit such as a CPU (=Central Processing Unit) and a microprocessor.
In addition, the control unit 116L may be provided with a ROM (=Read Only Memory) that stores programs, calculation parameters, etc., and a RAM (=Random Access Memory) that temporarily stores parameters that change as appropriate.
 制御部116Lは、例えば電源部111Lから各部への給電、電源部111Lの充電、センサ部112Lによる情報の検出、通知部113Lによる情報の通知、記憶部114Lによる情報の記憶及び読み出し、通信部115Lによる情報の送受信を制御する。
 制御部116Lは、ユーザの操作による情報の受付処理、各部から出力された情報に基づく処理等も実行する。
The control unit 116L, for example, supplies power to each unit from the power supply unit 111L, charges the power supply unit 111L, detects information by the sensor unit 112L, reports information by the notification unit 113L, stores and reads information from the storage unit 114L, and communicates with the communication unit 115L. control the sending and receiving of information by
The control unit 116L also executes processing for accepting information based on user operations, processing based on information output from each unit, and the like.
 液貯蔵部123Lは、液体のエアロゾル源を貯蔵する容器である。液体のエアロゾル源には、例えばグリセリン及びプロピレングリコール等の多価アルコール、水等の液体を使用する。
 液体のエアロゾル源は、加熱されることによって香味成分を放出するたばこ原料又はたばこ原料由来の抽出物を含んでもよい。また、液体のエアロゾル源は、ニコチン成分を含んでもよい。
The liquid storage section 123L is a container that stores a liquid aerosol source. Liquid aerosol sources include polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water.
The liquid aerosol source may include tobacco raw materials or extracts derived from tobacco raw materials that release flavor components upon heating. The liquid aerosol source may also include a nicotine component.
 液誘導部122Lは、液貯蔵部123Lに貯蔵されている液体のエアロゾル源を、液貯蔵部123Lから誘導して保持する部品である。液誘導部122Lは、例えばガラス繊維等の繊維素材又は多孔質状のセラミック等の多孔質状素材を撚った構造を有している。この種の部品はウィックとも呼ばれる。
 液誘導部122Lの両端は、液貯蔵部123Lの内部と連結されている。このため、液貯蔵部123Lに貯蔵されているエアロゾル源は、毛管効果により液誘導部122Lの全体に行き渡る。
The liquid guide section 122L is a component that guides and holds the liquid aerosol source stored in the liquid storage section 123L from the liquid storage section 123L. The liquid guide portion 122L has a structure in which, for example, a fiber material such as glass fiber or a porous material such as porous ceramic is twisted. This type of component is also called a wick.
Both ends of the liquid guide section 122L are connected to the inside of the liquid storage section 123L. Therefore, the aerosol source stored in the liquid storage section 123L spreads throughout the liquid guide section 122L due to the capillary effect.
 加熱部121L-1は、液誘導部122Lに保持されているエアロゾル源を加熱して霧化し、エアロゾルを生成する部品である。加熱部121L-1は、第1の加熱部の一例である。
 加熱部121L-1は、図3に示すコイル状に限らず、フィルム状やブレード状その他の形状でもよい。加熱部121L-1の形状は、加熱の方式等により異なる。加熱部121L-1は、金属、ポリイミド等の任意の素材で構成される。
The heating unit 121L-1 is a component that heats and atomizes the aerosol source held in the liquid guide unit 122L to generate aerosol. The heating section 121L-1 is an example of a first heating section.
The heating section 121L-1 is not limited to the coil shape shown in FIG. 3, but may be a film shape, a blade shape, or other shapes. The shape of the heating section 121L-1 varies depending on the heating method and the like. The heating section 121L-1 is made of any material such as metal or polyimide.
 加熱部121L-1は、液誘導部122Lに近接して配置される。本実施の形態の場合、加熱部121L-1は、液誘導部122Lの外周面に巻き付けられた金属製のコイルである。
 加熱部121L-1は、電源部111Lからの給電により発熱し、液誘導部122Lに保持されているエアロゾル源を気化温度まで加熱する。気化温度に達したエアロゾル源は、気体として液誘導部122Lから空気中に放出されるが、周囲の空気により冷却されて霧化し、エアロゾルとなる。
The heating section 121L-1 is arranged close to the liquid guiding section 122L. In the case of this embodiment, the heating section 121L-1 is a metal coil wound around the outer peripheral surface of the liquid guiding section 122L.
The heating unit 121L-1 generates heat by receiving power from the power supply unit 111L, and heats the aerosol source held in the liquid guiding unit 122L to the vaporization temperature. The aerosol source that has reached the vaporization temperature is released into the air from the liquid guide portion 122L as a gas, but is cooled by the surrounding air and atomized to become an aerosol.
 液体のエアロゾル源を加熱する加熱部121L-1への給電は、基本的に、ユーザの吸引に連動される。すなわち、ユーザによる吸引の開始から吸引の終了まで加熱部121L-1に対して電力が供給され、ユーザによる吸引が終了すると加熱部121L-1に対する電力の供給は停止される。
 もっとも、本実施の形態では、液枯れ対策として、ユーザによる吸引を検出しても加熱部121L-1への電力の供給を停止する期間を設けてもよい。この期間については後述する。
The power supply to the heating unit 121L-1 that heats the liquid aerosol source is basically linked to the user's suction. That is, power is supplied to the heating unit 121L-1 from the start of suction by the user to the end of suction, and when the suction by the user ends, the supply of power to the heating unit 121L-1 is stopped.
However, in the present embodiment, as a countermeasure against liquid drying up, a period may be provided in which the supply of power to the heating unit 121L-1 is stopped even if suction by the user is detected. This period will be described later.
 この他、液体のエアロゾル源を加熱する加熱部121L-1への給電は、例えばエアロゾルが生成されていない状態で特定のボタンが押下されると開始し、エアロゾルが生成されている状態で特定のボタンが押下されると停止してもよい。
 エアロゾルの生成の開始を指示するボタンと、エアロゾルの生成の停止を指示するボタンは、物理的に同じボタンでもよいし、異なるボタンでもよい。
In addition, power supply to the heating unit 121L-1 that heats the liquid aerosol source starts, for example, when a specific button is pressed in a state where no aerosol is generated, and when a specific button is pressed in a state where an aerosol is generated. It may stop when the button is pressed.
The button for instructing to start generating aerosol and the button for instructing to stop generating aerosol may be physically the same button, or may be different buttons.
 カプセル型容器130Lは、固形物のエアロゾル源が充填された容器である。
 固形物のエアロゾル源は、加熱されることによって香味成分を放出する刻みたばこ又はたばこ原料を粒状、シート状、又は粉末状に成形した加工物等を含んでよい。すなわち、固形物のエアロゾル源は、たばこ由来の物質を含んでもよい。また、固形物のエアロゾル源は、例えばニコチン成分を含んでもよい。
 もっとも、固形物のエアロゾル源は、たばこ以外の植物(例えばミント、ハーブ等)から抽出された非たばこ由来の物質を含んでもよい。この他、固形物のエアロゾル源は、例えばメントール等の香料成分を含んでもよい。
The capsule type container 130L is a container filled with a solid aerosol source.
The solid aerosol source may include a processed product formed by forming shredded tobacco or tobacco raw material into granules, sheets, or powder, which releases flavor components when heated. That is, the solid aerosol source may include tobacco-derived materials. The solid aerosol source may also include, for example, a nicotine component.
However, the solid aerosol source may also include non-tobacco-derived substances extracted from plants other than tobacco (eg, mint, herbs, etc.). In addition, the solid aerosol source may also contain a fragrance ingredient such as menthol.
 保持部140Lは、例えばカプセルホルダ12(図2参照)に対応し、カプセル型容器130Lが装着される内部空間141Lを有している。保持部140Lは、底部143Lを有する筒状体であり、柱状の内部空間141Lを画定する。なお、保持部140Lは、カプセル30を保持する機構部の一例である。
 カプセル型容器130Lの一部は保持部140Lに保持され、残りは保持部140Lの外に露出する。カプセル型容器130Lのうち保持部140Lから露出する部分は、マウスピース124Lとして使用される。マウスピース124Lは、エアロゾルを吸引するユーザによって咥えられる。
The holding portion 140L corresponds to, for example, the capsule holder 12 (see FIG. 2), and has an internal space 141L into which the capsule-shaped container 130L is mounted. The holding portion 140L is a cylindrical body having a bottom portion 143L, and defines a columnar internal space 141L. Note that the holding section 140L is an example of a mechanical section that holds the capsule 30.
A part of the capsule-shaped container 130L is held by the holding part 140L, and the rest is exposed outside the holding part 140L. A portion of the capsule-shaped container 130L exposed from the holding portion 140L is used as a mouthpiece 124L. Mouthpiece 124L is held in the mouth by a user who inhales the aerosol.
 保持部140Lに対する空気の入り口(すなわち空気流入孔)は、例えば底部143Lに設けられる。なお、カプセル型容器130Lの底部には、空気の流入が可能な孔が形成されている。このため、底部143Lから流入した空気は、カプセル型容器130Lの内部を通過してマウスピース124Lに至る。すなわち、マウスピース124Lは、空気の出口(すなわち空気流出孔)となる。
 因みに、底部143Lは、装置本体11の内部に形成される空気流路180Lの空気流出孔182Lと連通される。この空気流出孔182Lを通じ、保持部140Lの内部空間141Lと空気流路180Lとが連通される。
An air inlet (that is, an air inflow hole) for the holding portion 140L is provided, for example, at the bottom portion 143L. Note that a hole through which air can flow is formed at the bottom of the capsule-shaped container 130L. Therefore, the air flowing in from the bottom 143L passes through the inside of the capsule-shaped container 130L and reaches the mouthpiece 124L. That is, the mouthpiece 124L serves as an air outlet (that is, an air outflow hole).
Incidentally, the bottom portion 143L communicates with an air outlet hole 182L of an air flow path 180L formed inside the device main body 11. The internal space 141L of the holding portion 140L and the air flow path 180L communicate with each other through the air outflow hole 182L.
 加熱部121L-2は、カプセル型容器130Lに充填されている固形物のエアロゾル源を加熱する。加熱部121L-2は、第2の加熱部の一例である。
 加熱部121L-2は、金属又はポリイミド等で構成される。加熱部121L-2は、保持部140Lの金属部分の外周面に接触する位置に設けられる。
 加熱部121L-2は、電源部111Lからの給電により発熱し、保持部140Lの金属部分に接触しているカプセル型容器130Lの外周面を加熱する。
The heating unit 121L-2 heats the solid aerosol source filled in the capsule type container 130L. The heating section 121L-2 is an example of a second heating section.
The heating section 121L-2 is made of metal, polyimide, or the like. The heating part 121L-2 is provided at a position in contact with the outer peripheral surface of the metal portion of the holding part 140L.
The heating unit 121L-2 generates heat by receiving power from the power supply unit 111L, and heats the outer peripheral surface of the capsule-shaped container 130L that is in contact with the metal portion of the holding unit 140L.
 このため、カプセル型容器130Lの外周面に近い位置が最初に加熱され、その後、加熱領域が中心部の方向に広がる。
 気化温度に達したエアロゾル源は気化される。ただし、周囲の空気に冷やされて霧化し、エアロゾルとなる。
 加熱部121L-2に対する給電と給電に伴う加熱は、制御部116Lによって制御される。
Therefore, a position close to the outer circumferential surface of the capsule-shaped container 130L is heated first, and then the heating area expands toward the center.
Once the aerosol source reaches its vaporization temperature, it is vaporized. However, it is cooled by the surrounding air and atomizes, becoming an aerosol.
The power supply to the heating unit 121L-2 and the heating accompanying the power supply are controlled by the control unit 116L.
 断熱部144Lは、加熱部121L-2から装置本体11の他の構成要素への熱の伝搬を防止する部材である。断熱部144Lは、少なくとも加熱部121L-2の外周面を覆っている。
 断熱部144Lは、例えば真空断熱材やエアロゲル断熱材で構成される。真空断熱材とは、グラスウールやシリカ(ケイ素の粉体)等を樹脂製のフィルムで包んで高真空状態にすることで、気体による熱伝導を限りなくゼロに近づけた断熱材をいう。
The heat insulating section 144L is a member that prevents heat from propagating from the heating section 121L-2 to other components of the apparatus main body 11. The heat insulating section 144L covers at least the outer peripheral surface of the heating section 121L-2.
The heat insulating section 144L is made of, for example, a vacuum heat insulating material or an airgel heat insulating material. Vacuum insulation materials are insulation materials that reduce heat conduction through gas to as close to zero as possible by wrapping glass wool, silica (silicon powder), etc. in a resin film and creating a high vacuum state.
 空気流路180Lは、前述したように、装置本体11の内部に設けられる空気の流路である。空気流路180Lは、空気流路180Lへの空気の入り口である空気流入孔181Lと、空気流路180Lからの空気の出口である空気流出孔182Lと、を両端とする管状構造を有している。
 ユーザによる吸引に伴い、空気流入孔181Lから空気流路180Lに空気が流入し、空気流出孔182Lから保持部140Lの底部143Lに空気が流出する。
The air flow path 180L is an air flow path provided inside the device main body 11, as described above. The air flow path 180L has a tubular structure with both ends having an air inflow hole 181L, which is an inlet of air to the air flow path 180L, and an air outflow hole 182L, which is an outlet of air from the air flow path 180L. There is.
With suction by the user, air flows into the air flow path 180L from the air inflow hole 181L, and air flows out from the air outflow hole 182L to the bottom 143L of the holding portion 140L.
 空気流路180Lの途中には、液誘導部122Lが配置される。加熱部121L-1の加熱により生成された液体由来のエアロゾルは、空気流入孔181Lから流入した空気と混合される。その後、液体由来のエアロゾルと空気との混合気体は、カプセル型容器130Lの内部を通過してマウスピース124Lからユーザの口腔内に出力される。図3では、この流路を矢印190Lで示している。 A liquid guide section 122L is arranged in the middle of the air flow path 180L. The liquid-derived aerosol generated by the heating of the heating section 121L-1 is mixed with the air flowing in from the air inflow hole 181L. Thereafter, the mixed gas of the liquid-derived aerosol and air passes through the inside of the capsule-shaped container 130L and is output from the mouthpiece 124L into the user's oral cavity. In FIG. 3, this flow path is indicated by an arrow 190L.
 液体由来のエアロゾルと空気の混合気体には、カプセル型容器130L内を通過する際に固形物由来のエアロゾルが付加される。
 固形物由来のエアロゾルの濃度は、加熱部121L-2の加熱制御を組み合わせることにより上昇する。
 もっとも、後述するように、本実施の形態では、加熱部121L-2の加熱制御と組み合わせない加熱モードも用意される。
A solid-derived aerosol is added to the gas mixture of a liquid-derived aerosol and air when passing through the capsule-shaped container 130L.
The concentration of aerosol derived from solid matter is increased by combining the heating control of the heating section 121L-2.
However, as will be described later, in this embodiment, a heating mode that is not combined with the heating control of the heating section 121L-2 is also provided.
 加熱部121L-2の加熱制御を組み合わせない場合には、液体由来のエアロゾルがカプセル型容器130L内を通過する際に、固形物のエアロゾル源を加熱することで、固形物由来のエアロゾルを発生させる。
 ただし、液体由来のエアロゾルの加熱により発生される固形物由来のエアロゾルの発生量は、加熱部121L-2の加熱制御を組み合わせる場合に比して少なくなる。
When the heating control of the heating unit 121L-2 is not combined, when the liquid-derived aerosol passes through the capsule-shaped container 130L, the solid aerosol source is heated to generate solid-derived aerosol. .
However, the amount of solid matter-derived aerosol generated by heating the liquid-derived aerosol is smaller than when heating control of the heating section 121L-2 is combined.
<加熱モード>
 実施の形態1で想定するエアロゾル生成装置10には、2種類の加熱モードが用意されている。
 1つ目の加熱モードは、カートリッジ20(図2参照)に貯蔵されているエアロゾル源を加熱する加熱部121L-1のみを使用する第1のモードである。すなわち、カートリッジ20のみを加熱する加熱モードである。
 以下では、この加熱モードを「ノーマルモード」という。ノーマルモードでは、固形物のエアロゾル源を加熱する加熱部121L-2が常にオフ制御される。なお、ノーマルモードにおいて、固形物のエアロゾル源を加熱する加熱部121L-2は、常にオフ制御される代わりに、供給される電力が低減されてもよい。ノーマルモードは、第1の加熱の一例である。
<Heating mode>
The aerosol generation device 10 assumed in the first embodiment has two types of heating modes.
The first heating mode is a first mode in which only the heating unit 121L-1 is used to heat the aerosol source stored in the cartridge 20 (see FIG. 2). That is, this is a heating mode in which only the cartridge 20 is heated.
Hereinafter, this heating mode will be referred to as "normal mode." In the normal mode, the heating unit 121L-2 that heats the solid aerosol source is always turned off. Note that in the normal mode, the heating unit 121L-2 that heats the solid aerosol source may be turned off at all times, but the power supplied may be reduced. The normal mode is an example of first heating.
 2つ目の加熱モードは、カートリッジ20に貯蔵されているエアロゾル源を加熱する加熱部121L-1と、カプセル30(図2参照)に充填されているエアロゾル源を加熱する加熱部121L-2の両方を使用する第2のモードである。すなわち、カートリッジ20とカプセル30の両方を加熱する加熱モードである。
 以下では、この加熱モードを「ハイモード」という。ハイモードでは、加熱部121L-1によるカートリッジ20の加熱と、加熱部121L-2によるカプセル30の加熱が交互に実行される、又は、加熱部121L-1が加熱されている間は加熱部121L―2に供給される電力が低減される。ハイモードは、第2の加熱の一例である。
The second heating mode is a heating section 121L-1 that heats the aerosol source stored in the cartridge 20 and a heating section 121L-2 that heats the aerosol source filled in the capsule 30 (see FIG. 2). The second mode uses both. That is, it is a heating mode in which both the cartridge 20 and the capsule 30 are heated.
Hereinafter, this heating mode will be referred to as "high mode." In the high mode, heating of the cartridge 20 by the heating unit 121L-1 and heating of the capsule 30 by the heating unit 121L-2 are performed alternately, or while the heating unit 121L-1 is being heated, the heating unit 121L is heated. -2 is reduced. High mode is an example of second heating.
 加熱モードの切り替えは、例えば操作ボタン11B(図1参照)を2秒以上長押しすることで実行される。
 例えばハイモード中に操作ボタン11Bが2秒以上長押しされると、動作モードはノーマルモードに切り替わる。一方、ノーマルモード中に操作ボタン11Bが2秒以上長押しされると、動作モードはハイモードに切り替わる。
Switching of the heating mode is performed, for example, by pressing and holding the operation button 11B (see FIG. 1) for 2 seconds or more.
For example, if the operation button 11B is pressed for 2 seconds or more during the high mode, the operation mode is switched to the normal mode. On the other hand, if the operation button 11B is pressed for 2 seconds or more during the normal mode, the operation mode is switched to the high mode.
 ハイモードでは、加熱部121L-1によるカートリッジ20の加熱を、加熱部121L-2によるカプセル30の加熱に優先する。
 すなわち、加熱部121L-1による加熱中、加熱部121L-2による加熱は停止又は低減するように制御される。また、加熱部121L-2によるカプセル30の加熱中に、カートリッジ20の加熱を開始するイベントが発生すると、加熱部121L-2による加熱は停止又は低減するように制御される。
In the high mode, heating of the cartridge 20 by the heating unit 121L-1 is prioritized over heating of the capsule 30 by the heating unit 121L-2.
That is, during heating by heating unit 121L-1, heating by heating unit 121L-2 is controlled to be stopped or reduced. Further, when an event that starts heating the cartridge 20 occurs while the heating unit 121L-2 is heating the capsule 30, the heating by the heating unit 121L-2 is controlled to stop or reduce.
 実施の形態1で想定するエアロゾル生成装置10の場合には、電源部111Lとして使用する電池の出力電流の上限値を超えないように、加熱部121L-1の加熱と加熱部121L-2の加熱が同時に実行されないように制御される。換言すると、加熱部121L-1の加熱の期間と加熱部121L-2の加熱の期間は分離される、又は、加熱部121L-1が加熱されている間は加熱部121L―2に供給される電力が低減される。
 ここでの同時は、加熱のタイミングが一切重複しない意味ではない。従って、例えば動作タイミングの誤差により生じる重複は許容される。
In the case of the aerosol generation device 10 assumed in the first embodiment, heating of the heating section 121L-1 and heating of the heating section 121L-2 is performed so as not to exceed the upper limit of the output current of the battery used as the power supply section 111L. are controlled so that they are not executed at the same time. In other words, the heating period of the heating section 121L-1 and the heating period of the heating section 121L-2 are separated, or while the heating section 121L-1 is being heated, the heating section 121L-2 is supplied with the heating period. Power is reduced.
Simultaneous here does not mean that the heating timings do not overlap at all. Therefore, overlaps caused, for example, by errors in operational timing are tolerated.
 なお、ハイモードにおいて、固形物のエアロゾル源を加熱する加熱部121L-2は、常にオフ制御される代わりに、供給される電力が低減されてもよい。すなわち、加熱部121L-1による加熱の期間と加熱部121L-2による加熱の期間の一部又は全部の重複を許容してもよい。もっとも、同時加熱を許容する場合には、電池の出力電流の上限値を超過しないように、同時加熱中に加熱部121L-1及び121L-2に供給する電力の最大値を、単独での加熱時に供給する電力の最大値より小さくすることが望ましい。
 例えば、加熱部121L-1によるカートリッジ20の加熱が開始された場合、電池の出力電流の上限値を超過しないように、加熱部121L-2によるカプセル30の加熱が低減される。
Note that in the high mode, the heating unit 121L-2 that heats the solid aerosol source may be turned off at all times, but the power supplied may be reduced. In other words, a part or all of the heating period by the heating section 121L-1 and the heating period by the heating section 121L-2 may be allowed to overlap. However, if simultaneous heating is allowed, the maximum value of power supplied to heating parts 121L-1 and 121L-2 during simultaneous heating should be set to It is desirable to set the value to be smaller than the maximum value of the power supplied at the time.
For example, when the heating unit 121L-1 starts heating the cartridge 20, the heating of the capsule 30 by the heating unit 121L-2 is reduced so as not to exceed the upper limit of the output current of the battery.
 図4は、ノーマルモードとハイモードを説明する図である。(A)はノーマルモードにおける加熱のタイミング例を説明する図であり、(B)はハイモードにおける加熱のタイミング例を説明する図である。
 図4(A1)はノーマルモードにおけるカートリッジ20の加熱タイミングを示し、図4(A2)はノーマルモードにおけるカプセル30の加熱タイミングを示している。
 図4(A1)及び(A2)の横軸は時間であり、縦軸は加熱の有無を表している。
 加熱がある期間には、対応する加熱部に電力が供給され、加熱がない期間には、対応する加熱部に電力が供給されない。
FIG. 4 is a diagram illustrating normal mode and high mode. (A) is a diagram illustrating an example of heating timing in normal mode, and (B) is a diagram illustrating an example of heating timing in high mode.
FIG. 4 (A1) shows the heating timing of the cartridge 20 in the normal mode, and FIG. 4 (A2) shows the heating timing of the capsule 30 in the normal mode.
The horizontal axis of FIGS. 4A1 and 4A2 represents time, and the vertical axis represents the presence or absence of heating.
During the heating period, power is supplied to the corresponding heating section, and during the non-heating period, no power is supplied to the corresponding heating section.
 ノーマルモードの加熱制御は、ロック状態が解除されることで開始される。
 ロック状態は、制御部116Lによる制御が停止している状態である。このため、ユーザが、マウスピース124L(図3参照)を加えて吸引してもエアロゾルは生成されない。
 ロック状態は、例えば操作ボタン11B(図1参照)が2秒以内に3回続けて押下されることで解除される。押下の回数、操作の対象とするボタン、操作に要する時間はいずれも一例である。
 ノーマルモードの加熱制御が開始すると、図4(A1)に示すように、吸引の期間に連動してカートリッジ20の加熱が実行される。
 「吸引の期間に連動する」とは、センサ部112Lによる吸引の検出に連動することをいう。
Heating control in normal mode is started when the locked state is released.
The locked state is a state in which control by the control unit 116L is stopped. Therefore, even if the user applies the mouthpiece 124L (see FIG. 3) and inhales, no aerosol is generated.
The locked state is released, for example, by pressing the operation button 11B (see FIG. 1) three times in succession within two seconds. The number of presses, the button to be operated, and the time required for the operation are all examples.
When the normal mode heating control starts, the cartridge 20 is heated in conjunction with the suction period, as shown in FIG. 4 (A1).
"Linked to the period of suction" means linked to the detection of suction by the sensor unit 112L.
 従って、1秒間の吸引が検出されればカートリッジ20は1秒間加熱され、2秒間の吸引が検出されればカートリッジ20は2秒間加熱される。
 本実施の形態の場合、カートリッジ20の加熱は、吸引の検知により開始される予め定めた長さの監視期間を単位として制御される。本実施の形態では、この監視期間を「加熱オン監視時間」と呼称してもよい。加熱オン監視時間は、カートリッジ20を連続的に加熱することが可能な最長時間とする。
 なお、カートリッジの加熱は、「吸引回」を単位として制御してもよい。吸引回は、先の吸引回の終了後の最初の吸引の検知により開始される監視期間である。1つの監視期間は、1つの吸引回である。
 このため、監視期間の終了時に吸引が検出されていても、カートリッジ20の加熱は終了される。
Therefore, if suction for 1 second is detected, cartridge 20 is heated for 1 second, and if suction for 2 seconds is detected, cartridge 20 is heated for 2 seconds.
In the case of this embodiment, the heating of the cartridge 20 is controlled in units of a monitoring period of a predetermined length that is started upon detection of suction. In this embodiment, this monitoring period may be referred to as "heating-on monitoring time." The heating-on monitoring time is the longest time during which the cartridge 20 can be heated continuously.
Note that the heating of the cartridge may be controlled in units of "suction times." An aspiration cycle is a monitoring period that begins with the detection of the first aspiration after the previous aspiration cycle ends. One monitoring period is one aspiration session.
Therefore, even if suction is detected at the end of the monitoring period, heating of the cartridge 20 is ended.
 監視期間の終了後、新たな吸引の検知により、新たな監視期間が設定される。新たな監視期間においては、監視期間におけるカートリッジ20の加熱と同様の加熱制御が実行される。
 監視期間と新たな監視期間との間の時間が所定値未満の場合、新たな監視期間におけるカートリッジ20の加熱は、監視期間におけるカートリッジ20の加熱に比べて低減してもよい。この場合において、新たな監視期間におけるカートリッジ20の加熱の低減の程度は、当該監視期間と当該新たな監視期間との間の時間の長さに基づいて、決定されてもよい。なお、所定値は、例えば10秒であるが、10秒に限定されず任意に設定可能である。
 監視期間と新たな監視期間との間の時間の長さに基づいて、当該新たな監視期間におけるカートリッジ20の加熱が、監視期間におけるカートリッジ20の加熱に比べて低減されるので、短インターバルの吸引が繰り返されたとしても、エアロゾルの生成量が低下させることができ、液誘導部の液体のエアロゾル源が枯渇せずに済むようになる。すなわち、液枯れが抑制され、ユーザは、エアロゾルの吸引を継続することが可能になる。
After the monitoring period ends, a new monitoring period is set upon detection of new suction. In the new monitoring period, heating control similar to the heating of the cartridge 20 during the monitoring period is performed.
If the time between the monitoring period and the new monitoring period is less than a predetermined value, the heating of the cartridge 20 during the new monitoring period may be reduced compared to the heating of the cartridge 20 during the monitoring period. In this case, the degree of reduction in heating of the cartridge 20 in the new monitoring period may be determined based on the length of time between the monitoring period and the new monitoring period. Note that the predetermined value is, for example, 10 seconds, but is not limited to 10 seconds and can be set arbitrarily.
Based on the length of time between the monitoring period and the new monitoring period, the heating of the cartridge 20 during the new monitoring period is reduced compared to the heating of the cartridge 20 during the monitoring period, so that short interval aspiration Even if this is repeated, the amount of aerosol produced can be reduced, and the liquid aerosol source in the liquid guide section will not be depleted. In other words, liquid depletion is suppressed, and the user is able to continue suctioning the aerosol.
 なお、本実施の形態では、監視期間の後に、吸引の検出によらずカートリッジ20の加熱を禁止する期間(以下「加熱禁止時間」という)を設けてもよい。
 監視期間及び加熱禁止時間を設けることにより、短インターバルの吸引が繰り返されたとしても(又は吸引が長時間継続して検出されたとしても)、カートリッジ20の加熱が開始される前に、液体のエアロゾル源をウィックに供給するための時間を確保することが可能になる。なお、吸引回等の具体例については後述する。
In the present embodiment, a period (hereinafter referred to as "heating prohibition time") during which heating of the cartridge 20 is prohibited regardless of suction detection may be provided after the monitoring period.
By providing a monitoring period and a heating prohibition time, even if short intervals of suction are repeated (or even if suction is detected continuously for a long time), the liquid will be removed before heating of the cartridge 20 begins. It becomes possible to secure time for supplying the aerosol source to the wick. Note that specific examples of suction times and the like will be described later.
 ノーマルモードでは、図4(A2)に示すように、吸引の有無によらず、カプセル30の加熱は実行されない。
 本実施の形態の場合、吸引が最後に検出されてから予め定めた時間が経過すると、制御部116Lは、ロック状態に移行する。
 ロック状態になっても、加熱モードは変更されない。ロック状態からの復帰時にも、加熱モードの変更はない。
In the normal mode, as shown in FIG. 4 (A2), heating of the capsule 30 is not performed regardless of the presence or absence of suction.
In the case of this embodiment, when a predetermined time has elapsed since suction was last detected, the control unit 116L shifts to the locked state.
Even in the locked state, the heating mode will not change. There is no change in the heating mode even when returning from the locked state.
 本実施の形態では、予め定めた時間として6分(すなわち360秒)を採用する。この時間は一例である。最後の吸引から6分が経過することは、ユーザがエアロゾルの吸引を停止した可能性が高いことを意味する。
 そこで、本実施の形態では、装置本体11(図2参照)で消費される電力を抑制する目的でロック状態に移行する。ハイモードの場合も同様である。すなわち、最後の吸引から6分が経過すると、エアロゾル生成装置10は、ロック状態に制御される。
In this embodiment, 6 minutes (ie, 360 seconds) is adopted as the predetermined time. This time is an example. If 6 minutes have passed since the last inhalation, it means that the user has likely stopped inhaling the aerosol.
Therefore, in the present embodiment, the device main body 11 (see FIG. 2) shifts to the locked state for the purpose of suppressing the power consumed. The same applies to the high mode. That is, when 6 minutes have passed since the last suction, the aerosol generating device 10 is controlled to be in a locked state.
 なお、ロック状態への移行をユーザが指示した場合にもロック状態に移行する。ユーザの手動によるロック状態への移行は、最後の吸引から6分が経過する前に、例えば操作ボタン11B(図1参照)が2秒以内に3回続けて押下されることで実行される。押下の回数、操作の対象とするボタン、操作に要する時間はいずれも一例である。 Note that the device also transitions to the locked state when the user instructs the transition to the locked state. The manual transition to the locked state by the user is performed by, for example, pressing the operation button 11B (see FIG. 1) three times in succession within 2 seconds before 6 minutes have passed since the last suction. The number of presses, the button to be operated, and the time required for the operation are all examples.
 図4(B1)はハイモードにおけるカートリッジ20の加熱タイミングを示し、図4(B2)はハイモードにおけるカプセル30の加熱タイミングを示している。
 図4(B1)及び(B2)の横軸は時間であり、縦軸は加熱の有無を表している。
 前述したように、本実施の形態では、カートリッジ20とカプセル30の同時加熱が禁止されてもよい。このため、カートリッジ20の加熱タイミングとカプセル30の加熱タイミングは重ならなくてもよい。また、カートリッジ20が加熱されている間はカプセル30に供給される電力が低減されてもよい。この場合、カートリッジ20の加熱タイミングとカプセル30の加熱タイミングは一部重なっていてもよい。
 なお、加熱を示す期間には、対応する加熱部に電力が供給され、加熱がない期間には、対応する加熱部に電力が供給されない、又は、対応する加熱部に供給される電力が低減される。
FIG. 4 (B1) shows the heating timing of the cartridge 20 in the high mode, and FIG. 4 (B2) shows the heating timing of the capsule 30 in the high mode.
The horizontal axis of FIGS. 4 (B1) and (B2) represents time, and the vertical axis represents the presence or absence of heating.
As described above, in this embodiment, simultaneous heating of cartridge 20 and capsule 30 may be prohibited. Therefore, the heating timing of the cartridge 20 and the heating timing of the capsule 30 do not have to overlap. Also, the power supplied to the capsule 30 may be reduced while the cartridge 20 is being heated. In this case, the heating timing of the cartridge 20 and the heating timing of the capsule 30 may partially overlap.
Note that during the period when heating is indicated, power is supplied to the corresponding heating section, and during the period when there is no heating, no power is supplied to the corresponding heating section, or the power supplied to the corresponding heating section is reduced. Ru.
 ハイモードの加熱制御は、ロック状態が解除されること、又は、ノーマルモードからハイモードへの切り替えにより開始される。
 ハイモードの加熱制御が開始すると、図4(B2)に示すように、カプセル30の加熱が開始される。この加熱は、基本的に、吸引が検出されるまで継続され、吸引が検出されている期間、カプセル30の加熱は停止又は低減される。
 図4(B1)及び(B2)に示すように、カートリッジ20の加熱が開始されたタイミングで、カプセル30の加熱が停止又は低減される。なお、カプセル30の初期温度は、例えばエアロゾル生成装置10が使用される環境の気温、例えば室温である。
Heating control in the high mode is started when the lock state is released or when the normal mode is switched to the high mode.
When the high mode heating control starts, heating of the capsule 30 starts as shown in FIG. 4 (B2). This heating essentially continues until suction is detected, and heating of the capsule 30 is stopped or reduced during the period when suction is detected.
As shown in FIGS. 4(B1) and (B2), heating of the capsule 30 is stopped or reduced at the timing when heating of the cartridge 20 is started. Note that the initial temperature of the capsule 30 is, for example, the temperature of the environment in which the aerosol generating device 10 is used, for example, room temperature.
 本実施の形態におけるエアロゾル生成装置10の場合には、図4(B1)及び(B2)に示すように、吸引が最後に検出されてから30秒が経過すると、カプセル30の加熱を停止又は低減し、電力消費を抑制する。すなわち、スリープ状態になる。スリープ状態になると、カプセル30の温度は徐々に低下する。 In the case of the aerosol generating device 10 according to the present embodiment, as shown in FIGS. 4(B1) and (B2), heating of the capsule 30 is stopped or reduced when 30 seconds have elapsed since suction was last detected. and reduce power consumption. In other words, it goes into a sleep state. In the sleep state, the temperature of the capsule 30 gradually decreases.
 スリープ状態において、カプセル30の加熱は停止又は低減しているが、吸引を検出するセンサ部112Lは動作している。このため、スリープ状態でユーザの吸引が検出されると、図4(B1)に示すように、カートリッジ20の加熱が実行される。また、カートリッジ20の加熱が終了すると、図4(B2)に示すように、カプセル30の加熱が開始又は増加される。 In the sleep state, heating of the capsule 30 is stopped or reduced, but the sensor unit 112L that detects suction is operating. Therefore, when the user's suction is detected in the sleep state, the cartridge 20 is heated as shown in FIG. 4 (B1). Moreover, when the heating of the cartridge 20 is completed, the heating of the capsule 30 is started or increased as shown in FIG. 4 (B2).
 本実施の形態の場合、スリープ状態への移行は、ユーザに通知されないが、ユーザに通知してもよい。
 なお、スリープ状態のまま更に5分30秒が経過すると、前述したロック状態に移行する。
In the case of this embodiment, the user is not notified of the transition to the sleep state, but the user may be notified.
Note that when another 5 minutes and 30 seconds elapse in the sleep state, the device shifts to the lock state described above.
<加熱オン監視時間>
 本実施の形態では、カプセル30の加熱は、監視期間の間、停止又は低減されていてもよい。
<Heating on monitoring time>
In this embodiment, heating of capsule 30 may be stopped or reduced during the monitoring period.
 図5~図7は、カプセル30の加熱が、監視期間の間、停止又は低減される場合における、加熱タイミングの制御例を示している。なお、以下で説明する加熱の制御例は、カプセル30(図2参照)の加熱を除き、ノーマルモードにおけるカートリッジ20(図2参照)の加熱に適用が可能である。
 図5~図7は、吸引パターンの違いに対応する。
5 to 7 show examples of controlling heating timing when heating of capsule 30 is stopped or reduced during the monitoring period. Note that the heating control example described below can be applied to heating the cartridge 20 (see FIG. 2) in the normal mode, except for heating the capsule 30 (see FIG. 2).
5 to 7 correspond to different suction patterns.
 図5は、実施の形態1におけるカートリッジ20とカプセル30の加熱タイミングの例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジ20の加熱タイミングの例を示し、(C)はカプセル30の加熱タイミングの例を示す。 FIG. 5 is a diagram illustrating an example of heating timing of the cartridge 20 and capsule 30 in the first embodiment. (A) shows the suction period, (B) shows an example of the heating timing of the cartridge 20, and (C) shows an example of the heating timing of the capsule 30.
 本実施の形態において、監視期間は「加熱オン監視時間」と呼称されてもよい。以下では、監視期間を「加熱オン監視時間」として説明する。図8の場合、加熱オン監視時間は2.4秒である。なお、加熱オン監視時間は、2.4秒に限らず、2秒でも3秒でもよい。 In this embodiment, the monitoring period may be referred to as "heat-on monitoring time." In the following, the monitoring period will be described as a "heating-on monitoring time." In the case of FIG. 8, the heating-on monitoring time is 2.4 seconds. Note that the heating-on monitoring time is not limited to 2.4 seconds, and may be 2 seconds or 3 seconds.
 図5(A)の場合、加熱オン監視時間に2回の吸引が検出されており、2回目の吸引は、加熱オン監視時間が経過する前に終了している。この場合、カートリッジ20の加熱タイミングは、図5(B)に示すように、検出された吸引の期間に一致する。
 加熱オン監視時間の終了後、新たな吸引の検知により、新たな加熱オン監視時間が設定される。新たな加熱オン監視時間は、加熱オン監視時間の終了後、新たな吸引の検知によって設定されるため、加熱オン監視時間の間に2回目の吸引が検出されても、新たな加熱オン監視時間は設定されない。
 なお、カートリッジの加熱は、「吸引回」を単位として制御してもよい。吸引回は、先の吸引回の終了後の最初の吸引の検知により開始される加熱オン監視時間である。1つの加熱オン監視時間は、1つの吸引回である。
 本実施の形態の場合、カプセル30の加熱は、図5(C)に示すように、加熱オン監視時間の全期間で停止(オフ制御)又は低減される。また、カプセル30の加熱は、図5(C)に示すように、加熱オン監視時間ではない期間において、開始又は増加される。
In the case of FIG. 5A, two suctions are detected during the heating-on monitoring time, and the second suction ends before the heating-on monitoring time elapses. In this case, the heating timing of the cartridge 20 coincides with the detected suction period, as shown in FIG. 5(B).
After the heating-on monitoring time ends, a new heating-on monitoring time is set by detecting new suction. The new heating-on monitoring time is set by the detection of new suction after the heating-on monitoring time ends, so even if the second suction is detected during the heating-on monitoring time, the new heating-on monitoring time will not be set. is not set.
Note that the heating of the cartridge may be controlled in units of "suction times." The suction cycle is a heating-on monitoring time that starts when the first suction is detected after the previous suction cycle ends. One heat-on monitoring time is one suction cycle.
In the case of this embodiment, the heating of the capsule 30 is stopped (off control) or reduced during the entire period of the heating-on monitoring time, as shown in FIG. 5(C). Furthermore, as shown in FIG. 5C, heating of the capsule 30 is started or increased during a period that is not the heating-on monitoring time.
 なお、本実施の形態では、加熱オン監視時間と新たな加熱オン監視時間との間の時間を、「加熱オフ時間」と呼称してもよい。例えば、加熱オン監視時間の終了時刻から、新たな加熱オン監視時間の開始時刻までの時間を「加熱オフ時間」という。言い換えると、加熱オン監視時間の終了時刻から、新たな吸引を検知するまでの時間を、「加熱オフ時間」という。図5(A)において、加熱オフ時間は、1.8秒である。 Note that in this embodiment, the time between the heating-on monitoring time and the new heating-on monitoring time may be referred to as the "heating-off time." For example, the time from the end time of the heating-on monitoring time to the start time of a new heating-on monitoring time is referred to as the "heating off time." In other words, the time from the end of the heating-on monitoring time until new suction is detected is referred to as the "heating-off time." In FIG. 5(A), the heating off time is 1.8 seconds.
 加熱オン監視時間の全期間において吸引が検出されたと仮定すると、カプセル30の交換の目安は、例えば、ノーマルモードで約50回、ハイモードで約30回である。
 ハイモードの場合、カプセル30が事前に加熱されているので、液体由来のエアロゾルの通過時に、ノーマルモード時よりも多くのエアロゾル源が消費されるため、ノーマルモードに比べて回数が低くなっている。
 なお、この目安の回数は例示であって、これらの回数に限られない。また、この目安の回数は、カートリッジのタイプや種別によって、異なる回数になる。また、この目安の回数は、任意に設定可能である。
Assuming that suction is detected during the entire heating-on monitoring time, the capsule 30 should be replaced approximately 50 times in normal mode and approximately 30 times in high mode, for example.
In the case of high mode, since the capsule 30 is preheated, more aerosol source is consumed during the passage of the liquid-derived aerosol than in normal mode, so the number of times is lower than in normal mode. .
Note that this standard number of times is an example, and is not limited to these numbers. Moreover, this standard number of times varies depending on the type and type of cartridge. Further, this standard number of times can be set arbitrarily.
 ところで、吸引の仕方はユーザにより様々である。このため、目安の通りに、カプセル30のエアロゾル源が消費されるとは限らない。
 そこで、本実施の形態では、吸引毎、又は、加熱オン監視時間毎に、「加熱時間長」を測定する。そして、測定された加熱時間長、又は、加熱時間長の合計時間を用いて、固形物のエアロゾル源の消費量を計算する。
 なお、加熱時間長は、「加熱オン時間」と呼称してもよい。以下では、加熱オン時間を用いて説明する。
By the way, the method of suction varies depending on the user. Therefore, the aerosol source of the capsule 30 is not necessarily consumed as expected.
Therefore, in this embodiment, the "heating time length" is measured every suction or every heating-on monitoring time. Then, using the measured heating time length or the total time of the heating time lengths, the consumption amount of the solid material aerosol source is calculated.
Note that the heating time length may also be referred to as "heating on time". In the following, explanation will be made using heating on time.
 加熱オン時間は、カートリッジ20の加熱がされた時間である。加熱オン時間は、加熱部121L-1に電力が供給された時間であってもよい。加熱オン時間は、加熱オン監視時間において、ユーザの吸引を検出した長さであってもよい。加熱オン時間は、吸引ごとに、その時間が算出されてもよいし、加熱オン監視時間内に発生した吸引の合計時間として算出されてもよい。
 加熱オン監視時間を単位として固形物のエアロゾル源の消費量を計算するのは、1つのカプセル30の使用中にノーマルモードでの加熱とハイモードでの加熱が混在する可能性があり、加熱オン時間が同じでも消費量が同じになるとは限らないためである。
The heating on time is the time during which the cartridge 20 is heated. The heating on time may be the time during which power is supplied to the heating section 121L-1. The heating-on time may be the length of time during which the user's suction is detected during the heating-on monitoring time. The heating-on time may be calculated for each suction, or may be calculated as the total time of suction that occurred within the heating-on monitoring time.
Calculating the consumption of the solid aerosol source in units of heating-on monitoring time is because heating in normal mode and heating in high mode may be mixed during use of one capsule 30, This is because even if the time is the same, the amount consumed is not necessarily the same.
 図5(A)の場合、1吸引回に2回の吸引が検出されており、2回目の吸引は、加熱オン監視時間が経過する前に終了している。この場合、カートリッジ20の加熱タイミングは、図5(B)に示すように、検出された吸引の期間に一致する。この例の場合、加熱オン監視時間に発生した2回の吸引に対応する「加熱オン時間」の合計時間は1.2秒となる。 In the case of FIG. 5(A), two suctions are detected in one suction cycle, and the second suction ends before the heating-on monitoring time elapses. In this case, the heating timing of the cartridge 20 coincides with the detected suction period, as shown in FIG. 5(B). In this example, the total time of the "heating on time" corresponding to the two suctions that occurred during the heating on monitoring time is 1.2 seconds.
 図6は、実施の形態1におけるカートリッジ20とカプセル30の加熱タイミングの他の例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジ20の加熱のタイミング例を示し、(C)はカプセル30の加熱のタイミング例を示す。
 図6には、図5との対応部分に対応する符号を付して示している。
 図6と図5との違いは、図9(A)の場合、加熱監視オン時間の2回目の吸引が加熱オン監視時間を超えて継続している点である。
FIG. 6 is a diagram illustrating another example of the heating timing of the cartridge 20 and capsule 30 in the first embodiment. (A) shows the suction period, (B) shows an example of the timing of heating the cartridge 20, and (C) shows an example of the timing of heating the capsule 30.
In FIG. 6, parts corresponding to those in FIG. 5 are shown with corresponding symbols.
The difference between FIG. 6 and FIG. 5 is that in the case of FIG. 9A, the second suction during the heating monitoring on time continues beyond the heating on monitoring time.
 図6(A)において、加熱オフ時間は、1.2秒である。図6(B)に示すように、加熱オン監視時間を超えて吸引が継続していても、加熱オン監視時間が経過すると、カートリッジ20の加熱は停止される。また、図6(C)に示すように、カプセル30の加熱が、開始又は増加される。
 図6の場合、加熱オン監視時間に発生した2回の吸引に対応する加熱オン時間の合計時間は2.0秒である。
In FIG. 6(A), the heating off time is 1.2 seconds. As shown in FIG. 6(B), even if suction continues beyond the heating-on monitoring time, heating of the cartridge 20 is stopped after the heating-on monitoring time has elapsed. Also, as shown in FIG. 6(C), heating of the capsule 30 is started or increased.
In the case of FIG. 6, the total time of the heating-on time corresponding to the two suctions that occurred during the heating-on monitoring time is 2.0 seconds.
 図7は、実施の形態1におけるカートリッジ20とカプセル30の加熱タイミングの他の例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジ20の加熱のタイミング例を示し、(C)はカプセル30の加熱のタイミング例を示す。
 図7には、図5との対応部分に対応する符号を付して示している。
 図7と図5との違いは、加熱オン監視時間が経過した後も非吸引の状態が継続し、スリープ状態に移行する点である。
FIG. 7 is a diagram illustrating another example of the heating timing of the cartridge 20 and capsule 30 in the first embodiment. (A) shows the suction period, (B) shows an example of the timing of heating the cartridge 20, and (C) shows an example of the timing of heating the capsule 30.
In FIG. 7, parts corresponding to those in FIG. 5 are shown with corresponding symbols.
The difference between FIG. 7 and FIG. 5 is that the non-suction state continues even after the heating-on monitoring time has elapsed, and the device shifts to the sleep state.
 図7では、スリープ状態に移行する期間の開始を加熱オン監視時間が終了した時刻とし、非吸引状態が30秒継続した時点にスリープ状態に移行している。なお、加熱オン監視時間内における吸引の終了時刻、図7(A)では2回目の吸引が終了した時刻から30秒が経過すると、スリープ状態に移行するようにしてもよい。図7(A)において、加熱オフ時間は、10秒以上である。
 なお、図5(A)、図6(A)、図7(A)では、加熱オン監視時間に検出された吸引の回数は2回の場合を例示しているが、加熱オン監視時間における吸引の回数は1回でも3回以上でもよい。
 図6の場合、加熱オン監視時間に発生した1回の吸引に対応する加熱オン時間の合計時間は1.2秒である。
In FIG. 7, the start of the period of transition to the sleep state is the time when the heating-on monitoring time ends, and the transition to the sleep state occurs when the non-suction state continues for 30 seconds. Note that the device may enter a sleep state when 30 seconds have elapsed from the end time of suction within the heating-on monitoring time, which is the time when the second suction ended in FIG. 7(A). In FIG. 7(A), the heating off time is 10 seconds or more.
Note that in FIGS. 5(A), 6(A), and 7(A), the number of suctions detected during the heating-on monitoring time is two, but the number of suctions detected during the heating-on monitoring time is The number of times may be one or three or more times.
In the case of FIG. 6, the total heating-on time corresponding to one suction occurring during the heating-on monitoring time is 1.2 seconds.
 なお、図5(A)、図6(A)、図7(A)では、加熱オン監視時間(1吸引回)に検出された吸引の回数は2回の場合を例示しているが、加熱オン監視時間(1吸引回)における吸引の回数は1回でも3回以上でもよい。 In addition, in FIG. 5(A), FIG. 6(A), and FIG. 7(A), the number of suctions detected during the heating-on monitoring time (one suction time) is two times, but The number of suctions during the on-monitoring time (one suction time) may be one or three or more times.
<加熱オン監視時間と加熱禁止時間>
 本実施の形態では、加熱期間(加熱オン監視時間)に加えて、加熱禁止時間を設けてもよい。以下では、図8~図10を使用して、前述した加熱オン監視時間と加熱禁止時間における加熱制御の具体例について説明する。
 図8~図10は、ハイモードにおける加熱タイミングの制御例を示している。もっとも、以下で説明する加熱の制御例は、カプセル30(図2参照)の加熱を除き、ノーマルモードにおけるカートリッジ20(図2参照)の加熱にも適用が可能である。
 図8~図10は、吸引パターンの違いに対応する。
<Heating on monitoring time and heating inhibit time>
In this embodiment, in addition to the heating period (heating-on monitoring time), a heating prohibition time may be provided. Hereinafter, a specific example of heating control during the above-mentioned heating-on monitoring time and heating inhibiting time will be described using FIGS. 8 to 10.
8 to 10 show examples of heating timing control in the high mode. However, the heating control example described below can be applied to heating the cartridge 20 (see FIG. 2) in the normal mode, except for heating the capsule 30 (see FIG. 2).
8 to 10 correspond to different suction patterns.
 図8は、ハイモードにおけるカートリッジ20とカプセル30の加熱タイミングの例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジ20の加熱タイミングの例を示し、(C)はカプセル30の加熱タイミングの例を示す。
 前述したように、吸引回(すなわち加熱オン監視時間)は、先の吸引回の終了後の最初の吸引の検知により開始される。図8の場合、加熱オン監視時間は2.4秒である。もっとも、加熱オン監視時間は、2.4秒に限らず、2秒でも3秒でもよい。
FIG. 8 is a diagram illustrating an example of heating timing of the cartridge 20 and capsule 30 in the high mode. (A) shows the suction period, (B) shows an example of the heating timing of the cartridge 20, and (C) shows an example of the heating timing of the capsule 30.
As mentioned above, the suction round (ie, the heating-on monitoring time) is started by the detection of the first suction after the previous suction round ends. In the case of FIG. 8, the heating-on monitoring time is 2.4 seconds. However, the heating-on monitoring time is not limited to 2.4 seconds, and may be 2 seconds or 3 seconds.
 図8(A)の場合、1吸引回に2回の吸引が検出されており、2回目の吸引は、加熱オン監視時間が経過する前に終了している。この場合、カートリッジ20の加熱タイミングは、図8(B)に示すように、検出された吸引の期間に一致する。この例の場合、加熱オン監視時間に発生した2回の吸引に対応する「加熱オン時間」の合計時間は1.2秒となる。
 固形物に由来するエアロゾルは、ノーマルモードとハイモードのいずれの場合も、液体に由来する高温のエアロゾルがカプセル30内を通過することで生成される。
In the case of FIG. 8A, two suctions are detected in one suction cycle, and the second suction ends before the heating-on monitoring time elapses. In this case, the heating timing of the cartridge 20 coincides with the detected period of suction, as shown in FIG. 8(B). In this example, the total time of the "heating on time" corresponding to the two suctions that occurred during the heating on monitoring time is 1.2 seconds.
Aerosol derived from a solid substance is generated when a high temperature aerosol derived from a liquid passes through the capsule 30 in both normal mode and high mode.
 ところで、吸引回(すなわち加熱オン監視時間)は、先の吸引回の終了後の最初の吸引の検知により開始されるので、同じ吸引回に2回目の吸引が検出されても、吸引回(すなわち加熱オン監視時間)の再設定は行われない。
 本実施の形態の場合、カプセル30の加熱は、図8(C)に示すように、加熱オン監視時間の全期間で停止(オフ制御)又は低減される。
By the way, the suction cycle (i.e. heating-on monitoring time) starts with the detection of the first suction after the end of the previous suction cycle, so even if the second suction is detected in the same suction cycle, the suction cycle (i.e. (heat-on monitoring time) will not be reset.
In the case of this embodiment, the heating of the capsule 30 is stopped (off control) or reduced during the entire period of the heating-on monitoring time, as shown in FIG. 8(C).
 加熱オン監視時間の終了後には、例えば1.2秒の加熱禁止時間が設けられる。なお、1.2秒の加熱禁止時間は一例である。
 加熱禁止時間は、カートリッジ20の加熱を禁止する時間である。このため、図8(A)に示すように、加熱禁止時間内に吸引が検出されても、図8(B)に示すように、カートリッジ20の加熱は実行されない。一方で、加熱禁止時間が開始すると、図8(C)に示すように、カプセル30の加熱が開始又は増加される。
After the heating-on monitoring time ends, a heating inhibition time of, for example, 1.2 seconds is provided. Note that the heating prohibition time of 1.2 seconds is an example.
The heating prohibition time is a time during which heating of the cartridge 20 is prohibited. Therefore, even if suction is detected within the heating prohibition time as shown in FIG. 8(A), heating of the cartridge 20 is not performed as shown in FIG. 8(B). On the other hand, when the heating prohibition time starts, heating of the capsule 30 is started or increased as shown in FIG. 8(C).
 図8(A)の例では、加熱禁止時間が経過しても、吸引が検出されていない。このため、加熱禁止時間の終了後も、次の吸引が検出されるまでカプセル30の加熱状態が継続されている。
 この状態で新たな吸引が検出されると、新たな加熱オン監視時間が設定され、カートリッジ20の加熱の開始と、カプセル30の加熱の停止又は低減が実行される。
 本実施の形態では、加熱オン監視時間の終了時刻(又は加熱禁止時間の開始時刻)から、加熱禁止時間の終了後に最初に検出された吸引の開始時刻までの時間を「加熱オフ時間」という。図8(A)の場合、加熱オフ時間は1.8秒である。
In the example of FIG. 8(A), suction is not detected even after the heating prohibition time has elapsed. Therefore, even after the heating prohibition time ends, the heating state of the capsule 30 continues until the next suction is detected.
When a new suction is detected in this state, a new heating-on monitoring time is set, and the heating of the cartridge 20 is started and the heating of the capsule 30 is stopped or reduced.
In the present embodiment, the time from the end time of the heating-on monitoring time (or the starting time of the heating prohibition time) to the start time of the first suction detected after the end of the heating prohibition time is referred to as the "heating off time." In the case of FIG. 8(A), the heating off time is 1.8 seconds.
 図9は、ハイモードにおけるカートリッジ20とカプセル30の加熱タイミングの他の例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジ20の加熱のタイミング例を示し、(C)はカプセル30の加熱のタイミング例を示す。
 図9には、図8との対応部分に対応する符号を付して示している。
 図9と図8との違いは、図9(A)の場合、1吸引回内の2回目の吸引が加熱オン監視時間を超えて継続している点と、その次の吸引が加熱禁止時間内に開始している点である。
FIG. 9 is a diagram illustrating another example of the heating timing of the cartridge 20 and capsule 30 in the high mode. (A) shows the suction period, (B) shows an example of the timing of heating the cartridge 20, and (C) shows an example of the timing of heating the capsule 30.
In FIG. 9, parts corresponding to those in FIG. 8 are shown with corresponding symbols.
The difference between FIG. 9 and FIG. 8 is that in the case of FIG. 9(A), the second suction in one suction cycle continues beyond the heating-on monitoring time, and the next suction is the heating prohibition time. The point is that it starts within.
 加熱オン監視時間を超えて吸引が継続していても、加熱オン監視時間が経過すると加熱禁止時間が開始するため、図9(B)に示すように、カートリッジ20の加熱は停止される。
 また、加熱禁止時間が経過する前に吸引が開始しても、カートリッジ20の加熱は禁止されている。このため、加熱禁止時間の経過を待って、次の吸引回、すなわち加熱オン監視時間が開始している。
 図9の場合、加熱オン監視時間に発生した2回の吸引に対応する加熱オン時間の合計時間は2.0秒である。
Even if suction continues beyond the heating-on monitoring time, the heating prohibition time starts after the heating-on monitoring time elapses, so heating of the cartridge 20 is stopped as shown in FIG. 9(B).
Furthermore, even if suction starts before the heating prohibition time has elapsed, heating of the cartridge 20 is prohibited. Therefore, the next suction cycle, that is, the heating-on monitoring time, starts after the heating prohibition time has elapsed.
In the case of FIG. 9, the total time of the heating-on time corresponding to the two suctions that occurred during the heating-on monitoring time is 2.0 seconds.
 図10は、ハイモードにおけるカートリッジ20とカプセル30の加熱タイミングの他の例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジ20の加熱のタイミング例を示し、(C)はカプセル30の加熱のタイミング例を示す。
 図10には、図8との対応部分に対応する符号を付して示している。
 図10と図8との違いは、加熱禁止時間が経過した後も非吸引の状態が継続し、スリープ状態に移行する点である。
FIG. 10 is a diagram illustrating another example of the heating timing of the cartridge 20 and capsule 30 in the high mode. (A) shows the suction period, (B) shows an example of the timing of heating the cartridge 20, and (C) shows an example of the timing of heating the capsule 30.
In FIG. 10, parts corresponding to those in FIG. 8 are shown with corresponding symbols.
The difference between FIG. 10 and FIG. 8 is that the non-suction state continues even after the heating prohibition time has elapsed, and the device shifts to the sleep state.
 図10では、スリープ状態に移行する期間の開始を加熱オン監視時間が終了した時刻、すなわち加熱禁止時間が開始した時刻とし、加熱禁止時間の終了後も、非吸引状態が28.8秒継続した時点にスリープ状態に移行している。
 もっとも、加熱オン監視時間内における吸引の終了時刻、図10(A)では2回目の吸引が終了した時刻から30秒が経過すると、スリープ状態に移行するようにしてもよい。
 図10の場合、加熱オン監視時間に発生した1回の吸引に対応する加熱オン時間の合計時間は1.2秒である。
In FIG. 10, the start of the period for transitioning to the sleep state is the time when the heating-on monitoring time ends, that is, the time when the heating prohibition time starts, and even after the heating prohibition time ends, the non-suction state continues for 28.8 seconds. It has gone to sleep at this point.
However, when 30 seconds have elapsed from the end time of suction within the heating-on monitoring time, which is the time when the second suction ended in FIG. 10(A), the device may enter the sleep state.
In the case of FIG. 10, the total heating-on time corresponding to one suction occurring during the heating-on monitoring time is 1.2 seconds.
 なお、前述の図8(A)、図9(A)、図10(A)では、加熱オン監視時間(1吸引回)に検出された吸引の回数は2回の場合を例示しているが、加熱オン監視時間(1吸引回)における吸引の回数は1回でも3回以上でもよい。 Note that in FIGS. 8(A), 9(A), and 10(A) described above, the number of suctions detected during the heating-on monitoring time (one suction time) is two times. The number of suctions during the heating-on monitoring time (one suction time) may be one or three or more times.
<カートリッジの加熱制御とカプセルの消費量の計算>
 図11は、実施の形態1におけるカートリッジ20の加熱制御とカプセル30の消費量の計算手法の一部分を説明するフローチャートである。図12は、実施の形態1におけるカートリッジ20の加熱制御とカプセル30の消費量の計算手法の残りの部分を説明するフローチャートである。
 図中に示す記号のSはステップを意味する。
 図11及び図12に示す処理は、プログラムの実行を通じて実現される。ここでのプログラムは、記憶部114L(図3参照)に記憶されており、制御部116L(図3参照)により実行される。
 なお、図11及び図12に示す制御は、ノーマルモードとハイモードの両方で実行される。
<Cartridge heating control and capsule consumption calculation>
FIG. 11 is a flowchart illustrating a part of a method for controlling the heating of the cartridge 20 and calculating the consumption amount of the capsule 30 in the first embodiment. FIG. 12 is a flowchart illustrating the remaining part of the method for controlling the heating of the cartridge 20 and calculating the consumption amount of the capsule 30 in the first embodiment.
The symbol S shown in the figure means a step.
The processes shown in FIGS. 11 and 12 are realized through program execution. The program here is stored in the storage unit 114L (see FIG. 3) and executed by the control unit 116L (see FIG. 3).
Note that the control shown in FIGS. 11 and 12 is executed in both normal mode and high mode.
 まず、制御部116Lは、加熱オン監視時間の開始イベントとしての吸引の開始を検出したか否かを判定する(ステップ1)。
 例えば加熱オン監視時間が経過した後に吸引の開始を検出した場合、制御部116Lは、ステップ1で肯定結果(ステップ1の「YES」)を得る。
 また、加熱禁止時間を設定する場合には、例えばカートリッジ20の加熱禁止時間が経過した後に吸引の開始を検出した場合、制御部116Lは、ステップ1で肯定結果(ステップ1の「YES」)を得るように構成してもよい。加熱禁止時間が経過した後には、スリープに入る前の期間とスリープ中の期間が含まれる。本実施の形態の場合、加熱禁止時間中に吸引が開始され、加熱禁止時間の終了時にも同吸引が継続している場合には、加熱禁止時間の終了と同時に吸引の開始が検出されたものとみなす。
 一方、例えば加熱オン監視時間内に吸引の開始を検知した場合、制御部116Lは、ステップ1で否定結果(ステップ1の「NO」)を得る。この場合、図14には図示していないが、検知した吸引が終了するまで、又は、加熱オン監視時間が経過するまでの間、カートリッジ20を加熱する加熱部121L-1に電力を供給してもよい。
 また、加熱禁止時間内に吸引の開始を検出した場合、制御部116Lは、ステップ1で否定結果(ステップ1の「NO」)を得るように構成してもよい。
First, the control unit 116L determines whether or not the start of suction as the start event of the heating-on monitoring time is detected (step 1).
For example, if the start of suction is detected after the heating-on monitoring time has elapsed, the control unit 116L obtains an affirmative result in step 1 (“YES” in step 1).
In addition, when setting the heating prohibition time, for example, if the start of suction is detected after the heating prohibition time of the cartridge 20 has elapsed, the control unit 116L returns an affirmative result in step 1 (“YES” in step 1). It may be configured to obtain. After the heating prohibition time has elapsed, the period before going to sleep and the period during sleep are included. In the case of this embodiment, if suction is started during the heating prohibition time and continues even when the heating prohibition time ends, the start of suction is detected at the same time as the heating prohibition time ends. regarded as.
On the other hand, for example, if the start of suction is detected within the heating-on monitoring time, the control unit 116L obtains a negative result in step 1 (“NO” in step 1). In this case, although not shown in FIG. 14, power is supplied to the heating unit 121L-1 that heats the cartridge 20 until the detected suction ends or until the heating-on monitoring time elapses. Good too.
Further, if the start of suction is detected within the heating prohibition time, the control unit 116L may be configured to obtain a negative result in step 1 (“NO” in step 1).
 吸引の検出に使用する圧力センサは、吸引の開始の検出に、概略60msを要する。最短では、概略20msで吸引の開始の検出が可能である。ただし、本実施の形態では、20msの判定を3回繰り返すことにより、吸引の開始の検出精度を高める。後述する吸引の終了の検出についても同様である。すなわち、制御部116Lは、概略20msの判定を3回繰り返すことにより、吸引の終了の検出精度を高める。
 ステップ1で否定結果(ステップ1の「NO」)が得られている間、制御部116Lは、ステップ1の判定を繰り返す。
The pressure sensor used to detect suction requires approximately 60 ms to detect the start of suction. At the shortest, the start of suction can be detected in approximately 20 ms. However, in this embodiment, the accuracy of detecting the start of suction is increased by repeating the 20 ms determination three times. The same applies to the detection of the end of suction, which will be described later. That is, the control unit 116L increases the accuracy of detecting the end of suction by repeating the determination three times for approximately 20 ms.
While a negative result (“NO” in step 1) is obtained in step 1, the control unit 116L repeats the determination in step 1.
 ステップ1で肯定結果(ステップ1の「YES」)が得られると、制御部116Lは、加熱オン監視時間を設定する(ステップ2)。加熱オン監視時間の長さは予め定められている。
 次に、制御部116Lは、カートリッジ20を加熱する加熱部121L-1に対する電力の供給を指示する(ステップ3)。
 続いて、制御部116Lは、加熱オン監視時間が終了したか否かを判定する(ステップ4)。
 本実施の形態の場合、加熱オン監視時間の開始イベントとなった吸引の終了が加熱オン監視時間内に検出されなくてもカートリッジ20の加熱を停止する必要がある。そこで、制御部116Lは、加熱オン監視時間が終了したか否かを判定する。
If a positive result is obtained in step 1 (“YES” in step 1), the control unit 116L sets a heating-on monitoring time (step 2). The length of the heating-on monitoring time is predetermined.
Next, the control unit 116L instructs the heating unit 121L-1 that heats the cartridge 20 to supply power (step 3).
Subsequently, the control unit 116L determines whether the heating-on monitoring time has ended (step 4).
In the case of the present embodiment, it is necessary to stop heating the cartridge 20 even if the end of suction, which is the start event of the heating-on monitoring time, is not detected within the heating-on monitoring time. Therefore, the control unit 116L determines whether or not the heating-on monitoring time has ended.
 ステップ4で否定結果(ステップ4の「NO」)が得られた場合、制御部116Lは、吸引の終了を検出したか否かを判定する(ステップ5)。検出の対象である吸引の終了は、加熱オン監視時間の開始イベントになった吸引の終了に限らず、同じ加熱オン監視時間内の2回目以降の吸引の終了も対象とされる。
 進行中の吸引が継続している場合や2回目以降の吸引が開始されていない場合、制御部116Lは、ステップ5で否定結果(ステップ5の「NO」)を得る。
 この場合、制御部116Lは、吸引の開始を検出したか否かを判定する(ステップ6)。検出の対象である吸引の開始は、2回目以降の吸引の開始である。
If a negative result is obtained in step 4 (“NO” in step 4), the control unit 116L determines whether or not the end of suction has been detected (step 5). The end of suction that is the object of detection is not limited to the end of the suction that became the start event of the heating-on monitoring time, but also the end of the second and subsequent suctions within the same heating-on monitoring time.
If the ongoing suction continues or the second and subsequent suctions have not been started, the control unit 116L obtains a negative result in step 5 (“NO” in step 5).
In this case, the control unit 116L determines whether or not the start of suction has been detected (step 6). The start of suction to be detected is the start of second and subsequent suctions.
 新たな吸引を検出しなかった場合、制御部116Lは、ステップ6で否定結果(ステップ6の「NO」)を得、ステップ4に戻る。すなわち、加熱オン監視時間内に進行中の吸引の終了も新たな吸引の開始も検出されない場合、ステップ4-ステップ5-ステップ6-ステップ4のループ処理が繰り返される。
 なお、このループ処理中に、進行中の吸引の終了が検出された場合、制御部116Lは、ステップ5で肯定結果(ステップ5の「YES」)を得る。この場合、制御部116Lは、カートリッジ20を加熱する加熱部121L-1に対する電力の供給を停止する(ステップ7)。
 続いて、制御部116Lは、今回の吸引に関する加熱オン時間を取得し(ステップ8)、ステップ4に戻る。ステップ8における加熱オン時間の取得は、加熱オン時間内に吸引の終了が検出されるたびに実行される。
If no new suction is detected, the control unit 116L obtains a negative result in step 6 (“NO” in step 6) and returns to step 4. That is, if neither the end of the suction in progress nor the start of a new suction is detected within the heating-on monitoring time, the loop process of step 4-step 5-step 6-step 4 is repeated.
Note that if the end of the suction in progress is detected during this loop process, the control unit 116L obtains a positive result in step 5 ("YES" in step 5). In this case, the control unit 116L stops supplying power to the heating unit 121L-1 that heats the cartridge 20 (step 7).
Subsequently, the control unit 116L obtains the heating on time regarding the current suction (step 8), and returns to step 4. Obtaining the heating on time in step 8 is performed every time the end of suction is detected within the heating on time.
 一方、ステップ4-ステップ5-ステップ6-ステップ4のループ処理中に、新たな呼吸を検出した場合、制御部116Lは、ステップ6で肯定結果(ステップ6の「YES」)を得、ステップ3に戻る。
 この場合、制御部116Lは、新たに検出された吸引に連動して、カートリッジ20を加熱する加熱部121L-1に対する電力の供給を指示し(ステップ3)、以後、前述した処理を実行する。
 やがて、加熱オン監視時間が終了すると、制御部116Lは、ステップ4で肯定結果(ステップ4の「YES」)を得る。この場合、制御部116Lは、吸引の継続中か否かを判定する(ステップ9)。
 ステップ9で肯定結果(ステップ9の「YES」)が得られた場合、制御部116Lは、カートリッジ20を加熱する加熱部121L-1に対する電力の供給を停止し(ステップ10)、今回の吸引に関する加熱オン時間を取得する(ステップ11)。
On the other hand, if a new breath is detected during the loop processing of step 4 - step 5 - step 6 - step 4, the control unit 116L obtains a positive result in step 6 ("YES" in step 6), and in step 3 Return to
In this case, the control unit 116L instructs the heating unit 121L-1 that heats the cartridge 20 to supply power in conjunction with the newly detected suction (step 3), and thereafter executes the above-described process.
Eventually, when the heating-on monitoring time ends, the control unit 116L obtains a positive result in step 4 ("YES" in step 4). In this case, the control unit 116L determines whether or not suction is continuing (step 9).
If a positive result is obtained in step 9 (“YES” in step 9), the control unit 116L stops the power supply to the heating unit 121L-1 that heats the cartridge 20 (step 10), and Obtain heating on time (step 11).
 なお、加熱オン監視時間が終了した時点で、既に吸引が終了していた場合、制御部116Lは、ステップ9で否定結果(ステップ9の「NO」)を得る。
 ステップ9で否定結果(ステップ9の「NO」)が得られた場合、又は、ステップ11の実行後、制御部116Lは、今回の加熱オン監視時間内の加熱オン時間の合計時間を算出する(ステップ12)。
 その後、制御部116Lは、加熱モードを取得し(ステップ13)、更に、算出された合計時間と加熱モードに基づいて、今回の加熱オン監視時間に消費されたカプセル30の消費量を計算する(ステップ14)。
 本実施の形態の場合、制御部116Lは、記憶部114Lに記憶されているテーブル(後述する図13参照)を通じ、今回の加熱オン監視時間に関するカプセル30の消費量を計算する。
Note that if the suction has already ended when the heating-on monitoring time ends, the control unit 116L obtains a negative result in step 9 (“NO” in step 9).
If a negative result is obtained in step 9 (“NO” in step 9), or after executing step 11, the control unit 116L calculates the total heating-on time within the current heating-on monitoring time ( Step 12).
After that, the control unit 116L acquires the heating mode (step 13), and further calculates the amount of capsules 30 consumed during the current heating-on monitoring time based on the calculated total time and heating mode ( Step 14).
In the case of the present embodiment, the control unit 116L calculates the consumption amount of the capsule 30 regarding the current heating-on monitoring time using a table stored in the storage unit 114L (see FIG. 13, which will be described later).
 図13は、加熱オン時間の長さと加熱モードの組み合わせに応じたカプセル30の消費量を対応付けたテーブル例を説明する図である。
 図13に示すテーブルは、左から1列目が「加熱オン時間の長さ」であり、左から2列目が「ノーマルモード」における消費量の大きさであり、左から3列目が「ハイモード」における消費量の大きさである。
 図13に示すテーブルの場合、「加熱オン時間の長さ」の単位は「秒」、各加熱モードにおける消費量の大きさの単位は「%」である。ここでの加熱オン時間の長さは、加熱オン監視時間内に検出された吸引に対応する合計時間である。
FIG. 13 is a diagram illustrating an example of a table in which the consumption amount of the capsule 30 is associated with the length of the heating on time and the combination of the heating mode.
In the table shown in FIG. 13, the first column from the left is "Length of heating on time", the second column from the left is the amount of consumption in "Normal mode", and the third column from the left is "Length of heating on time". This is the amount of consumption in "high mode".
In the case of the table shown in FIG. 13, the unit of "length of heating on time" is "second", and the unit of amount of consumption in each heating mode is "%". The length of the heating on time here is the total time corresponding to suction detected within the heating on monitoring time.
 本実施の形態では、未使用のカプセル30に充填されている固形物のエアロゾル源がエアロゾルの残量を100%とし、加熱オン時間の長さに応じて計算された消費量が記録されている。
 ノーマルモードでは、例えば、2.4秒の加熱オン時間が50回繰り返されると消費量は100%となるように設定されている。このため、2.4秒の加熱オン時間に対応するノーマルモードの数値は、2%(=100%÷50)となる。
 ハイモードでは、例えば、2.4秒の加熱オン時間が30回繰り返されると消費量は100%となるように設定されている。このため、2.4秒の加熱オン時間に対応するハイモードの数値は、3.333%(=100%÷30)となる。
In this embodiment, the remaining amount of aerosol in the solid aerosol source filled in an unused capsule 30 is set to 100%, and the consumption amount calculated according to the length of the heating-on time is recorded. .
In the normal mode, for example, the consumption amount is set to 100% when the heating on time of 2.4 seconds is repeated 50 times. Therefore, the value in the normal mode corresponding to the heating on time of 2.4 seconds is 2% (=100%÷50).
In the high mode, for example, the consumption amount is set to 100% when the heating on time of 2.4 seconds is repeated 30 times. Therefore, the high mode value corresponding to the heating on time of 2.4 seconds is 3.333% (=100%÷30).
 なお、加熱オン時間の長さに応じた消費量は、後述するように完全な線形関係ではない。例えば加熱オン時間が0.5秒までの範囲の消費量の変化率よりも0.5秒から1.5秒までの範囲の消費量の変化率の方が大きく、0.5秒から1.5秒までの範囲の消費量の変化率よりも1.5秒から2.4秒までの範囲の消費量の変化率のほうが大きい。この傾向は、ノーマルモードとハイモードに共通である。 Note that the consumption amount depending on the length of the heating-on time does not have a perfect linear relationship, as will be described later. For example, the rate of change in the consumption amount in the range from 0.5 seconds to 1.5 seconds is larger than the rate of change in the consumption amount in the range from 0.5 seconds to 1.5 seconds than the rate of change in the consumption amount in the range from 0.5 seconds to 1.5 seconds. The rate of change in consumption in the range from 1.5 seconds to 2.4 seconds is greater than the rate of change in consumption in the range up to 5 seconds. This tendency is common to normal mode and high mode.
 もっとも、エアロゾル源の組成等によっては、変化率の変化点は2つに限らないし、ノーマルモードの場合とハイモードの場合で変化点の値が異なる可能性がある。
 図13に示すテーブルには、この変化率を反映した消費量の数値が、加熱オン時間の長さに対応付けて記録されている。
 図13に示すテーブルは0.1秒刻みであるが、刻み幅はより小さくてもよい。例えば0.05秒刻みでもよいし、0.01秒刻みでもよい。
However, depending on the composition of the aerosol source, etc., the number of points of change in the rate of change is not limited to two, and the values of the points of change may differ between the normal mode and the high mode.
In the table shown in FIG. 13, the numerical value of the consumption amount reflecting this rate of change is recorded in association with the length of the heating-on time.
Although the table shown in FIG. 13 is in increments of 0.1 seconds, the increments may be smaller. For example, the interval may be 0.05 seconds or 0.01 seconds.
 図12の説明に戻る。
 ステップ14において各加熱オン監視時間に消費された固形物のエアロゾル源の消費量が計算されると、制御部116Lは、新たに計算された消費量で累積消費量を更新する(ステップ15)。
 前述したように、1つのカプセル30の使用中に加熱モードが切り替えられる可能性があり、しかも同じ加熱オン時間でも加熱モードにより消費量が異なるが、加熱オン監視時間単位で計算された消費量の累積値を計算するので、消費量の計算の正確性が向上する。
Returning to the explanation of FIG. 12.
When the consumption amount of the solid aerosol source consumed during each heating-on monitoring time is calculated in step 14, the control unit 116L updates the cumulative consumption amount with the newly calculated consumption amount (step 15).
As mentioned above, the heating mode may be switched while one capsule 30 is in use, and the consumption amount differs depending on the heating mode even for the same heating-on time, but the consumption amount calculated per heating-on monitoring time is Since the cumulative value is calculated, the accuracy of consumption calculation is improved.
 なお、ユーザがカプセル30の残量の表示を要求した場合には、次式により残量Rを計算して表示してもよい。
 残量R(%)=100(%)-累積消費量(%)
 また、カプセル30に充填されているエアロゾル源の残量Rが0%になった場合、制御部116Lは、カプセルの交換をユーザに求める通知をディスプレイ11A(図1参照)に表示する。
Note that when the user requests display of the remaining amount of the capsule 30, the remaining amount R may be calculated and displayed using the following equation.
Remaining amount R (%) = 100 (%) - Cumulative consumption amount (%)
Further, when the remaining amount R of the aerosol source filled in the capsule 30 becomes 0%, the control unit 116L displays a notification requesting the user to replace the capsule on the display 11A (see FIG. 1).
 なお、図11及び図12に示すフローチャートでは、加熱オン監視時間が終了するたびに、カプセル30に充填されている固形物のエアロゾル源の累積消費量を計算しているが、ノーマルモードにおけるカプセル30の累積消費量と、ハイモードにおけるカプセル30の累積消費量を別々に計算して記憶部114Lに記憶し、固形物のエアロゾル源の累積消費量の計算や残量の表示が求められた場合に、2つの累積消費量の合計値を計算してもよいし、合計値を用いて残量を算出してもよい。 Note that in the flowcharts shown in FIGS. 11 and 12, the cumulative consumption of the solid aerosol source filled in the capsule 30 is calculated every time the heating-on monitoring time ends. The cumulative consumption amount of the solid aerosol source and the cumulative consumption amount of the capsule 30 in the high mode are calculated separately and stored in the storage unit 114L, and when it is required to calculate the cumulative consumption amount of the solid aerosol source or display the remaining amount. , the total value of the two cumulative consumption amounts may be calculated, or the remaining amount may be calculated using the total value.
 また、記憶部114Lには、累積消費量が100%に到達したカプセル30の個数、ノーマルモードでの吸引の回数、ハイモードでの吸引の回数も記憶してもよい。これらの数値をログとして記憶することにより、不具合の発生時等における解析が可能になる。もっとも、これらの数値をディスプレイ11A(図1参照)に表示してもよい。 The storage unit 114L may also store the number of capsules 30 whose cumulative consumption has reached 100%, the number of suctions in normal mode, and the number of suctions in high mode. By storing these numerical values as a log, it becomes possible to analyze when a malfunction occurs. However, these numerical values may be displayed on the display 11A (see FIG. 1).
<吸引パターンと加熱オン時間の関係の具体例>
 以下では、図14~図16を使用して、様々な吸引パターンと加熱オン時間の具体例について説明する。
 図14は、吸引パターン1及び2を説明する図である。(A)は吸引パターン1の例を示し、(B)は吸引パターン2の例を示す。図14には、図8との対応部分に対応する符号を付して示している。
<Specific example of the relationship between suction pattern and heating on time>
Below, specific examples of various suction patterns and heating on times will be described using FIGS. 14 to 16.
FIG. 14 is a diagram illustrating suction patterns 1 and 2. (A) shows an example of suction pattern 1, and (B) shows an example of suction pattern 2. In FIG. 14, parts corresponding to those in FIG. 8 are shown with corresponding symbols.
 なお、図14~図16の説明では、ノーマルモードは、例えば、2.4秒の加熱オン時間が50回繰り返されると消費量は100%となるように設定されており、ハイモードでは、例えば、2.4秒の加熱オン時間が30回繰り返されると消費量は100%となるように設定されている場合を例にして説明する。 In addition, in the explanation of FIGS. 14 to 16, in the normal mode, for example, the consumption amount is set to 100% when the heating on time of 2.4 seconds is repeated 50 times, and in the high mode, for example, An example will be explained in which the consumption amount is set to 100% when the heating on time of 2.4 seconds is repeated 30 times.
 吸引パターン1には、2つの加熱オン監視時間が含まれている。
 1つ目の加熱オン監視時間は2回の吸引を含んでおり、2回目の吸引は加熱オン監視時間の終了時まで継続している。
 吸引パターン1における加熱オン時間の合計時間は2.0秒である。このため、図13の例では、ノーマルモードであれば1.6%のエアロゾル源が消費され、ハイモードであれば2.5%のエアロゾル源が消費される。
Suction pattern 1 includes two heating-on monitoring times.
The first heating-on monitoring period includes two suctions, and the second suction continues until the end of the heating-on monitoring period.
The total heating on time in suction pattern 1 is 2.0 seconds. Therefore, in the example of FIG. 13, 1.6% of the aerosol source is consumed in the normal mode, and 2.5% of the aerosol source is consumed in the high mode.
 吸引パターン2も、2つの加熱オン監視時間を含んでいる。また、1つ目の加熱オン監視時間は2回の吸引を含んでいる。
 ただし、1つ目の加熱オン監視時間における2回目の吸引は、加熱オン監視時間の終了前に終了する点で、吸引パターン1と相違する。
 吸引パターン2における加熱オン時間の合計時間は1.2秒である。このため、図13の例では、ノーマルモードであれば0.86%のエアロゾル源が消費され、ハイモードであれば1.2%のエアロゾル源が消費される。
Suction pattern 2 also includes two heat-on monitoring times. Further, the first heating-on monitoring time includes two suctions.
However, the second suction during the first heating-on monitoring time is different from suction pattern 1 in that it ends before the end of the heating-on monitoring time.
The total heating on time in suction pattern 2 is 1.2 seconds. Therefore, in the example of FIG. 13, 0.86% of the aerosol source is consumed in the normal mode, and 1.2% of the aerosol source is consumed in the high mode.
 図15は、吸引パターン3及び4を説明する図である。(A)は吸引パターン3の例を示し、(B)は吸引パターン4の例を示す。図15には、図14との対応部分に対応する符号を付して示している。
 吸引パターン3も、2つの加熱オン監視時間を含んでいる。また、1つ目の加熱オン監視時間は2回の吸引を含んでいる。
 ただし、1つ目の加熱オン監視時間における2回目の吸引は、加熱オン監視時間が終了した後も継続する点で吸引パターン1と相違する。
 もっとも、加熱オン監視時間が経過するとカートリッジ20の加熱は停止されるため、吸引パターン3における加熱オン時間の合計時間は2.0秒である。このため、加熱オン監視時間内の消費量の合計値は吸引パターン1と同じになる。
FIG. 15 is a diagram illustrating suction patterns 3 and 4. (A) shows an example of suction pattern 3, and (B) shows an example of suction pattern 4. In FIG. 15, parts corresponding to those in FIG. 14 are shown with corresponding symbols.
Suction pattern 3 also includes two heat-on monitoring times. Further, the first heating-on monitoring time includes two suctions.
However, the second suction during the first heating-on monitoring time is different from suction pattern 1 in that it continues even after the heating-on monitoring time ends.
However, since heating of the cartridge 20 is stopped after the heating-on monitoring time has elapsed, the total heating-on time in suction pattern 3 is 2.0 seconds. Therefore, the total amount of consumption within the heating-on monitoring time is the same as in suction pattern 1.
 吸引パターン4も、2つの加熱オン監視時間を含んでいる。
 ただし、1つ目の加熱オン監視時間の吸引は1回である。
 この場合、加熱オン監視時間内の加熱オン時間の合計時間と1回の吸引に関する加熱オン時間と一致する。図15(B)の場合、加熱オン時間は0.8秒である。このため、図13の例では、ノーマルモードであれば0.54%のエアロゾル源が消費され、ハイモードであれば0.8%のエアロゾル源が消費される。
Suction pattern 4 also includes two heat-on monitoring times.
However, the suction during the first heating-on monitoring time is one time.
In this case, the total heating-on time within the heating-on monitoring time matches the heating-on time for one suction. In the case of FIG. 15(B), the heating on time is 0.8 seconds. Therefore, in the example of FIG. 13, 0.54% of the aerosol source is consumed in the normal mode, and 0.8% of the aerosol source is consumed in the high mode.
 図16は、吸引パターン5及び6を説明する図である。(A)は吸引パターン5の例を示し、(B)は吸引パターン6の例を示す。図16には、図15との対応部分に対応する符号を付して示している。
 吸引パターン5も、2つの加熱オン監視時間を含んでいる。また、1つ目の加熱オン監視時間は1回の吸引を含んでいる。
 吸引パターン5と吸引パターン4の違いは、加熱オン時間の長さである。吸引パターン5における加熱オン時間は2.0秒である。
 従って、加熱オン監視時間内におけるカプセル30の消費量は、パターン1と同じになる。
FIG. 16 is a diagram illustrating suction patterns 5 and 6. (A) shows an example of suction pattern 5, and (B) shows an example of suction pattern 6. In FIG. 16, parts corresponding to those in FIG. 15 are shown with corresponding symbols.
Suction pattern 5 also includes two heat-on monitoring times. Further, the first heating-on monitoring time includes one suction.
The difference between suction pattern 5 and suction pattern 4 is the length of the heating on time. The heating on time in suction pattern 5 is 2.0 seconds.
Therefore, the amount of capsule 30 consumed within the heating-on monitoring time is the same as in pattern 1.
 吸引パターン6も、2つの加熱オン監視時間を含んでいる。また、1つ目の加熱オン監視時間は1回の吸引を含んでいる。
 ただし、パターン6の場合、1つ目の加熱オン監視時間内の1回の吸引が加熱オン監視時間を超えて継続し、その点で、吸引パターン4及び5と相違する。吸引は継続していても、カートリッジ20を加熱する加熱部121L-1への給電は、加熱オン監視時間が経過した時点で停止されるので、加熱オン時間は、2.4秒となる。このため、図13の例では、ノーマルモードであれば2.0%のエアロゾル源が消費され、ハイモードであれば3.3%のエアロゾル源が消費される。
 この吸引パターンを繰り返すユーザの場合、ノーマルモードであれば1つのカプセル30を約50回(吸引回)、ハイモードであれば1つのカプセル30を約30回(吸引回)使用することが可能になる。
Suction pattern 6 also includes two heat-on monitoring times. Further, the first heating-on monitoring time includes one suction.
However, in the case of pattern 6, one suction within the first heating-on monitoring time continues beyond the heating-on monitoring time, and is different from suction patterns 4 and 5 in this point. Even if the suction continues, the power supply to the heating unit 121L-1 that heats the cartridge 20 is stopped when the heating-on monitoring time has elapsed, so the heating-on time is 2.4 seconds. Therefore, in the example of FIG. 13, 2.0% of the aerosol source is consumed in the normal mode, and 3.3% of the aerosol source is consumed in the high mode.
For users who repeat this suction pattern, it is possible to use one capsule 30 approximately 50 times (suction times) in normal mode, and approximately 30 times (suction times) in high mode. Become.
<加熱禁止時間を設定する場合の例>
 以下では、図17を使用して、加熱禁止時間を設定する場合における、複数の吸引パターンと液体由来のエアロゾルを生成するために供給される電力の決定例について説明する。
 図17は、吸引パターン7及び8を説明する図である。(A)は吸引パターン7の例を示し、(B)は吸引パターン8の例を示す。図17には、図14との対応部分に対応する符号を付して示している。
<Example of setting heating prohibition time>
Below, an example of determining the power supplied to generate a plurality of suction patterns and liquid-derived aerosol in the case of setting the heating prohibition time will be described using FIG. 17.
FIG. 17 is a diagram illustrating suction patterns 7 and 8. (A) shows an example of suction pattern 7, and (B) shows an example of suction pattern 8. In FIG. 17, parts corresponding to those in FIG. 14 are shown with corresponding symbols.
<吸引パターン7>
 吸引パターン7には、2つの加熱オン監視時間が含まれている。
 1つ目の加熱オン監視時間は2回の吸引を含み、2回目の吸引は加熱オン監視時間の終了時まで継続している。
 吸引パターン7においては、1つ目の加熱オン監視時間の経過後、1.2秒間の加熱禁止時間が設定される。また、吸引パターン7においては、1つ目の加熱オン監視時間の経過後、加熱禁止時間内に、新たなパフが検出されている。さらに、吸引パターン7においては、1つ目の加熱オン監視時間の経過後、1.2秒後に再度新たなパフが検出されている。
 なお、吸引パターン7では、加熱禁止期間の終了のタイミングに吸引が検出されているため、加熱禁止期間の長さと加熱オフ期間とが同じ1.2秒となっている。加熱禁止期間の終了後に最初に検出された吸引が、例えば1.0秒後であった場合には、加熱オフ時間は2.2秒(1つ目の加熱オン監視時間経過後から、加熱禁止期間の終了後に最初に検出された吸引の時点までの2.2秒)となる。
<Suction pattern 7>
Suction pattern 7 includes two heating-on monitoring times.
The first heating-on monitoring period includes two suctions, and the second suction continues until the end of the heating-on monitoring period.
In suction pattern 7, a heating inhibition time of 1.2 seconds is set after the first heating-on monitoring time has elapsed. Furthermore, in suction pattern 7, a new puff is detected within the heating prohibition time after the first heating-on monitoring time has elapsed. Furthermore, in suction pattern 7, a new puff is detected again 1.2 seconds after the first heating-on monitoring time elapses.
Note that in suction pattern 7, since suction is detected at the timing of the end of the heating prohibition period, the length of the heating prohibition period and the heating off period are the same, 1.2 seconds. If the first suction detected after the end of the heating prohibition period is, for example, 1.0 seconds later, the heating off time is 2.2 seconds (after the first heating on monitoring time elapses, heating is prohibited) 2.2 seconds after the end of the period until the time of the first detected aspiration).
 加熱禁止時間ではカートリッジ20の加熱は実行されないため、吸引パターン7における加熱オン時間の合計時間は2.0秒である。このため、図13の例では、ノーマルモードであれば1.6%のエアロゾル源が消費され、ハイモードであれば2.5%のエアロゾル源が消費される。 Since the cartridge 20 is not heated during the heating prohibition time, the total heating on time in the suction pattern 7 is 2.0 seconds. Therefore, in the example of FIG. 13, 1.6% of the aerosol source is consumed in the normal mode, and 2.5% of the aerosol source is consumed in the high mode.
<吸引パターン8>
 吸引パターン8も、2つの加熱オン監視時間を含んでいる。ただし、吸引パターン8における1つ目の加熱オン監視時間における2回目の吸引は、加熱オン監視時間の終了前に終了している。なお、2つ目の加熱オン監視時間における1回目の吸引は、吸引パターン7と同じである。
 吸引パターン8の場合も、1つ目の加熱オン監視時間が開始する直前の加熱オフ時間の長さと、2つ目の加熱オン監視時間が開始する直前の加熱オフ時間の長さは、吸引パターン7と同じである。
<Suction pattern 8>
Suction pattern 8 also includes two heat-on monitoring times. However, the second suction in the first heating-on monitoring time in suction pattern 8 ends before the heating-on monitoring time ends. Note that the first suction during the second heating-on monitoring time is the same as suction pattern 7.
In the case of suction pattern 8, the length of the heating off time immediately before the first heating on monitoring time starts and the length of the heating off time immediately before the second heating on monitoring time starts are determined by the suction pattern. Same as 7.
 吸引パターン8において、1つ目の加熱オン監視時間の経過後、1.2秒間の加熱禁止時間が設定される。また、吸引パターン8において、1つ目の加熱オン監視時間の経過後、加熱禁止時間内に、新たなパフが検出されている。さらに、吸引パターン8において、1つ目の加熱オン監視時間の経過後、1.2秒後に再度新たなパフが検出されている。
 したがって、吸引パターン8において、加熱オフ期間は、1つ目の加熱オン監視時間が経過してから、加熱禁止期間の終了後に最初に検出された吸引の開始時刻までの時間である1.2秒となる。すなわち、加熱禁止時間内に吸引が検出されても、カートリッジ20の加熱は実行されないため、加熱オフ期間の計算には含めない。
In suction pattern 8, a heating inhibition time of 1.2 seconds is set after the first heating-on monitoring time elapses. Furthermore, in suction pattern 8, a new puff is detected within the heating prohibition time after the first heating-on monitoring time has elapsed. Furthermore, in suction pattern 8, a new puff is detected again 1.2 seconds after the first heating-on monitoring time elapses.
Therefore, in suction pattern 8, the heating off period is 1.2 seconds, which is the time from the elapse of the first heating on monitoring time to the first suction start time detected after the end of the heating inhibition period. becomes. That is, even if suction is detected within the heating prohibition time, heating of the cartridge 20 is not executed, so it is not included in the calculation of the heating off period.
 加熱禁止時間ではカートリッジ20の加熱は実行されないため、吸引パターン8における加熱オン時間の合計時間は1.2秒である。このため、図13の例では、ノーマルモードであれば0.86%のエアロゾル源が消費され、ハイモードであれば1.2%のエアロゾル源が消費される。 Since the cartridge 20 is not heated during the heating prohibition time, the total heating on time in the suction pattern 8 is 1.2 seconds. Therefore, in the example of FIG. 13, 0.86% of the aerosol source is consumed in the normal mode, and 1.2% of the aerosol source is consumed in the high mode.
<実施の形態2>
 本実施の形態では、加熱オン監視時間毎に測定される加熱オン時間の合計値に対応する消費量を計算式に基づいて計算する例を説明する。
 なお、本実施の形態で想定するエアロゾル生成装置10の外観や内部構成等は、実施の形態1で説明したエアロゾル生成装置10と同じである。
<Embodiment 2>
In this embodiment, an example will be described in which the consumption amount corresponding to the total value of the heating-on time measured for each heating-on monitoring time is calculated based on a calculation formula.
Note that the external appearance, internal configuration, etc. of the aerosol generation device 10 assumed in this embodiment are the same as the aerosol generation device 10 described in the first embodiment.
 図18は、加熱オン時間の長さに応じたカプセル30の消費量の計算方法を説明する図である。
 図18における横軸は加熱オン時間の長さであり、単位は秒である。また、図18における縦軸はカプセル30の消費量であり、単位は%である。なお、前述した吸引パターン1~3(図14、図15参照)のように、1つの加熱オン監視時間内に複数の吸引が含まれる場合、横軸に示す加熱オン時間は、各吸引に対応する加熱オン時間の合計値である。
FIG. 18 is a diagram illustrating a method of calculating the consumption amount of the capsule 30 according to the length of the heating-on time.
The horizontal axis in FIG. 18 is the length of the heating on time, and the unit is seconds. Moreover, the vertical axis in FIG. 18 is the consumption amount of the capsule 30, and the unit is %. Note that when multiple suctions are included in one heating-on monitoring time, as in suction patterns 1 to 3 (see Figures 14 and 15) described above, the heating-on time shown on the horizontal axis corresponds to each suction. This is the total value of the heating on time.
 図18では、ノーマルモード時における加熱オン時間の長さとカプセル30の消費量の関係を実線で示し、ハイモード時における加熱オン時間の長さとカプセル30の消費量の関係を破線で示している。
 図18からも分かるように、加熱オン時間が同じ長さの場合、ハイモード時の消費量が、ノーマルモード時の消費量よりも大きい。
 なお、図18に示すグラフの変化は、図13に示すテーブルの算出にも使用される。
In FIG. 18, the relationship between the length of the heating on time and the consumption amount of the capsule 30 in the normal mode is shown by a solid line, and the relationship between the length of the heating on time and the consumption amount of the capsule 30 in the high mode is shown by a broken line.
As can be seen from FIG. 18, when the heating on time is the same length, the consumption amount in the high mode is larger than the consumption amount in the normal mode.
Note that the changes in the graph shown in FIG. 18 are also used to calculate the table shown in FIG. 13.
 因みに、加熱オン時間の長さをx、カプセル30の消費量をyとすると、各動作モード時における消費量は、例えば次の計算式で計算される。
・ノーマルモード時
 y=1.0x-0.4  (ただし、1.5≦x≦2.4)
 y=0.8x-0.1  (ただし、0.5≦x<1.5)
 y=0.3       (ただし、x<0.5)
・ハイモード時
 y=2.0x-1.5  (ただし、1.5≦x≦2.4)
 y=1.0x  (ただし、0.5 ≦x<1.5)
 y=0.5       (ただし、x<0.5)
Incidentally, when the length of the heating-on time is x and the consumption amount of the capsule 30 is y, the consumption amount in each operation mode is calculated using the following formula, for example.
・Normal mode y=1.0x-0.4 (1.5≦x≦2.4)
y=0.8x-0.1 (0.5≦x<1.5)
y=0.3 (however, x<0.5)
・In high mode y=2.0x-1.5 (1.5≦x≦2.4)
y=1.0x (0.5≦x<1.5)
y=0.5 (however, x<0.5)
 なお、図18に示す計算式は一例であり、傾きの角度や傾きが切り替わる加熱オン時間の長さは異なる値を用いてもよい。
 また、図18に示す計算式は線形方程式であるが、加熱オン時間の長さに応じて計算される消費量が非線形方程式で表現されてもよい。なお、各計算式が対応する範囲毎に、線形方程式と非線形方程式が混在してもよい。
 本実施の形態の場合のように、計算式を予め用意すれば、加熱オン監視時間が終了するたびに消費量を計算する必要があるが、テーブルには用意されていない任意の加熱オン時間の長さについても消費量の計算の正確性を向上することが可能になる。
Note that the calculation formula shown in FIG. 18 is an example, and different values may be used for the angle of inclination and the length of the heating on time during which the inclination is switched.
Moreover, although the calculation formula shown in FIG. 18 is a linear equation, the consumption amount calculated according to the length of the heating on time may be expressed by a nonlinear equation. Note that linear equations and nonlinear equations may coexist for each range to which each calculation formula corresponds.
If a calculation formula is prepared in advance as in the case of this embodiment, it is necessary to calculate the consumption amount every time the heating-on monitoring time ends, but if the heating-on monitoring time is not prepared in the table, It is also possible to improve the accuracy of calculation of consumption amount regarding length.
<実施の形態3>
 本実施の形態では、ハイモード時に使用するカプセル30の他の加熱制御例について説明する。
 実施の形態3で想定するエアロゾル生成装置10(図1参照)では、加熱オン監視時間内におけるカプセル30の加熱を、カートリッジ20の加熱に連動して制御する点で実施の形態1と相違する。
 なお、本実施の形態で想定するエアロゾル生成装置10の外観や内部構成等は、実施の形態1で説明したエアロゾル生成装置10と同じである。
<Embodiment 3>
In this embodiment, another example of heating control of the capsule 30 used in the high mode will be described.
The aerosol generation device 10 (see FIG. 1) assumed in the third embodiment differs from the first embodiment in that the heating of the capsule 30 during the heating-on monitoring time is controlled in conjunction with the heating of the cartridge 20.
Note that the external appearance, internal configuration, etc. of the aerosol generation device 10 assumed in this embodiment are the same as the aerosol generation device 10 described in the first embodiment.
 図19は、実施の形態3におけるカートリッジ20とカプセル30の加熱タイミングの例を説明する図である。(A)は吸引の期間を示し、(B)はカートリッジ20の加熱タイミングの例を示し、(C)はカプセル30の加熱タイミングの例を示す。
 図19には、図8との対応部分に対応する符号を付して示している。
 図19(A)に示す吸引パターンは、図8(A)に示す吸引パターンと同じである。すなわち、1つ目の加熱オン監視時間内に2回の吸引が検出され、2回目の吸引は、加熱オン監視時間が経過する前に終了している。このため、加熱オン監視時間内には、図19(B)に示すように、カートリッジ20の加熱は、検出された吸引の期間に連動して2回実行されている。
FIG. 19 is a diagram illustrating an example of heating timing for the cartridge 20 and capsule 30 in the third embodiment. (A) shows the suction period, (B) shows an example of the heating timing of the cartridge 20, and (C) shows an example of the heating timing of the capsule 30.
In FIG. 19, parts corresponding to those in FIG. 8 are shown with corresponding symbols.
The suction pattern shown in FIG. 19(A) is the same as the suction pattern shown in FIG. 8(A). That is, two suctions are detected within the first heating-on monitoring time, and the second suction ends before the heating-on monitoring time elapses. Therefore, during the heating-on monitoring time, as shown in FIG. 19(B), heating of the cartridge 20 is performed twice in conjunction with the detected suction period.
 相違点は、カプセル30の加熱制御である。
 本実施の形態では、図19(C)に示すように、カートリッジ20の加熱がオフ制御される期間に、カプセル30の加熱制御が実行される。また、カートリッジ20の加熱がオン制御される場合、カプセル30の加熱は停止(オフ制御)又は低減される。すなわち、カートリッジ20の加熱の制御がカプセル30の加熱の制御に優先される。
 図19(A)の場合、2回目の吸引は、加熱オン監視時間が経過する前に終了するので、カプセル30の加熱は、加熱オン監視時間が終了する前から開始される。なお、加熱禁止時間を設定する場合において、カプセル30の加熱は、当該加熱禁止時間中も継続されてもよい。
 この加熱制御を採用すると、カプセル30の温度が下がり難くなるので、ユーザが吸引するエアロゾルに含まれる固形物由来のエアロゾルの濃度を増加されることができる。
The difference is in the heating control of the capsule 30.
In this embodiment, as shown in FIG. 19(C), the heating control of the capsule 30 is executed during the period in which the heating of the cartridge 20 is controlled to be turned off. Further, when the heating of the cartridge 20 is controlled to be on, the heating of the capsule 30 is stopped (controlled off) or reduced. That is, the heating control of the cartridge 20 takes priority over the heating control of the capsule 30.
In the case of FIG. 19A, the second suction ends before the heating-on monitoring time elapses, so heating of the capsule 30 starts before the heating-on monitoring time ends. Note that when setting a heating prohibition time, heating of the capsule 30 may be continued during the heating prohibition time.
When this heating control is adopted, the temperature of the capsule 30 becomes difficult to fall, so it is possible to increase the concentration of aerosol derived from solids contained in the aerosol inhaled by the user.
<実施の形態4>
 本実施の形態では、カプセル30を加熱する加熱部121L-2(図3参照)を備えないエアロゾル生成装置について説明する。
<外観例>
 図20は、実施の形態4で想定するエアロゾル生成装置1000の外観例を説明する図である。
 図20に示すエアロゾル生成装置1000も、電子たばこの一形態である。エアロゾル生成装置1000は、概略円筒型の形状を有し、燃焼を伴わずに液体由来のエアロゾルを生成する。
<Embodiment 4>
In this embodiment, an aerosol generation device that does not include a heating section 121L-2 (see FIG. 3) that heats the capsule 30 will be described.
<Example of appearance>
FIG. 20 is a diagram illustrating an example of the appearance of an aerosol generation device 1000 assumed in the fourth embodiment.
The aerosol generation device 1000 shown in FIG. 20 is also one form of electronic cigarette. The aerosol generation device 1000 has a generally cylindrical shape and generates a liquid-derived aerosol without combustion.
 エアロゾル生成装置1000は、複数のユニットにより構成されている。図20の場合、複数のユニットは、電源ユニット1010と、カートリッジ20(図2参照)が装着されるカートリッジカバー1020と、カプセル30(図2参照)が装着されるカプセルホルダ1030とで構成される。
 カートリッジカバー1020は、電源ユニット1010に対して着脱が可能であり、カプセルホルダ1030は、カートリッジカバー1020に対して着脱が可能である。換言すると、カートリッジカバー1020とカプセルホルダ1030は、いずれも交換が可能である。
Aerosol generation device 1000 is composed of a plurality of units. In the case of FIG. 20, the plurality of units includes a power supply unit 1010, a cartridge cover 1020 to which the cartridge 20 (see FIG. 2) is attached, and a capsule holder 1030 to which the capsule 30 (see FIG. 2) is attached. .
The cartridge cover 1020 is removable from the power supply unit 1010, and the capsule holder 1030 is removable from the cartridge cover 1020. In other words, both the cartridge cover 1020 and the capsule holder 1030 are replaceable.
 電源ユニット1010には、電子回路等が内蔵されている。電源ユニット1010の側面には、操作ボタン1011が設けられている。操作ボタン1011は、電源ユニット1010に対するユーザの指示の入力に使用される操作部の一例である。操作ボタン1011は、前述した操作ボタン11B(図1参照)に対応する。
 カートリッジカバー1020の側面には、空気の流入孔(以下「空気流入孔」という)1021が設けられている。空気流入孔1021から流入した空気が、カートリッジカバー1020の内部を通過し、カプセルホルダ1030から排出される。
 ユーザは、カプセルホルダ1030のマウスピース1031を加えてエアロゾルを吸引する。
The power supply unit 1010 has a built-in electronic circuit and the like. An operation button 1011 is provided on the side surface of the power supply unit 1010. The operation button 1011 is an example of an operation unit used to input user instructions to the power supply unit 1010. The operation button 1011 corresponds to the aforementioned operation button 11B (see FIG. 1).
An air inflow hole (hereinafter referred to as "air inflow hole") 1021 is provided on the side surface of the cartridge cover 1020. Air flowing in through the air inflow hole 1021 passes through the inside of the cartridge cover 1020 and is discharged from the capsule holder 1030.
The user applies the mouthpiece 1031 of the capsule holder 1030 to inhale the aerosol.
<エアロゾル源等の装着例>
 図21は、実施の形態4で想定するエアロゾル源等の装着の仕方を説明する図である。
 まず、電源ユニット1010の上部に対し、カートリッジカバー1020が装着される。なお、電源ユニット1010に対してカートリッジカバー1020を例えば120°回転することで、電源ユニット1010に対するカートリッジカバー1020の着脱が行われる。
<Example of installing an aerosol source, etc.>
FIG. 21 is a diagram illustrating how to attach an aerosol source, etc., assumed in the fourth embodiment.
First, the cartridge cover 1020 is attached to the top of the power supply unit 1010. Note that the cartridge cover 1020 is attached to and removed from the power supply unit 1010 by rotating the cartridge cover 1020 by, for example, 120 degrees with respect to the power supply unit 1010.
 カートリッジカバー1020は筒状体であり、その上端部を通じ、カートリッジ20の着脱が行われる。
 カートリッジ20をカートリッジカバー1020に装着した後、カプセルホルダ1030の下端部がカートリッジカバー1020に装着される。カプセルホルダ1030も、例えば120°の回転により、カートリッジカバー1020に対するカプセルホルダ1030の着脱か可能である。カートリッジカバー1020に取り付けられたカプセルホルダ1030は、カートリッジカバー1020に挿入されたカートリッジ20の飛び出しを防ぐ押さえとして機能する。
The cartridge cover 1020 is a cylindrical body, and the cartridge 20 is attached and detached through its upper end.
After the cartridge 20 is attached to the cartridge cover 1020, the lower end of the capsule holder 1030 is attached to the cartridge cover 1020. The capsule holder 1030 can also be attached to and removed from the cartridge cover 1020 by rotating, for example, 120 degrees. The capsule holder 1030 attached to the cartridge cover 1020 functions as a holder to prevent the cartridge 20 inserted into the cartridge cover 1020 from jumping out.
 カプセルホルダ1030の上端部には開口が設けられている。開口は、カプセルホルダ1030の内部に設けられている不図示の筒状体の端部を構成する。この開口に対し、カプセル30が装着される。カプセル30は、カプセルホルダ1030の開口に押し込むことで装着が可能であり、カプセルホルダ1030の開口から引き出すことで取り外しが可能である。なお、カプセル30の上端部がマウスピース1031として使用される。 An opening is provided at the upper end of the capsule holder 1030. The opening constitutes an end of a cylindrical body (not shown) provided inside the capsule holder 1030. The capsule 30 is attached to this opening. The capsule 30 can be attached by being pushed into the opening of the capsule holder 1030, and can be removed by being pulled out from the opening of the capsule holder 1030. Note that the upper end of the capsule 30 is used as a mouthpiece 1031.
<装置内部の構成>
 図22は、実施の形態4で想定するエアロゾル生成装置1000の内部構成を模式的に示す図である。図22には、図3との対応部分に対応する符号を付して示している。
 図22に示す内部構成も、カートリッジカバー1020に装着されたカートリッジ20(図2参照)と、カプセルホルダ1030に装着されたカプセル30(図2参照)を含んでいる。
 図22に示す内部構成も、電源ユニット1010、カートリッジカバー1020、カプセルホルダ1030の内部に設ける部品やそれらの位置関係を説明することを目的とする。このため、図21に示す部品等の外観は、前述した外観図と必ずしも一致しない。
 模式図上の違いは、カプセルホルダ1030に加熱部121L-1、保持部140L、断熱部144L等が設けられていない点を除き、基本的な構成は、エアロゾル生成装置10(図3参照)と同じである。
<Device internal configuration>
FIG. 22 is a diagram schematically showing the internal configuration of an aerosol generation device 1000 assumed in the fourth embodiment. In FIG. 22, parts corresponding to those in FIG. 3 are shown with corresponding symbols.
The internal configuration shown in FIG. 22 also includes a cartridge 20 (see FIG. 2) attached to a cartridge cover 1020 and a capsule 30 (see FIG. 2) attached to a capsule holder 1030.
The internal configuration shown in FIG. 22 is also intended to explain the components provided inside the power supply unit 1010, cartridge cover 1020, and capsule holder 1030 and their positional relationships. Therefore, the external appearance of the parts etc. shown in FIG. 21 does not necessarily match the external appearance diagram described above.
The difference in the schematic diagram is that the capsule holder 1030 is not provided with the heating section 121L-1, the holding section 140L, the heat insulating section 144L, etc., but the basic configuration is the same as that of the aerosol generation device 10 (see FIG. 3). It's the same.
<加熱モード>
 図23は、実施の形態4におけるカートリッジ20の加熱制御の一部分を説明するフローチャートである。図23には、図12との対応部分に対応する符号を付して示している。
 本実施の形態で想定するエアロゾル生成装置1000では、カプセル30を加熱する加熱部121L-2を有しないので、実施の形態1の意味でのハイモードは設けられていない。このため、加熱モードの違いによる電力の切り替えは不要である。よって、ステップ13(図12参照)が設けられない。
<Heating mode>
FIG. 23 is a flowchart illustrating a portion of the heating control of the cartridge 20 in the fourth embodiment. In FIG. 23, parts corresponding to those in FIG. 12 are shown with corresponding symbols.
The aerosol generation device 1000 assumed in this embodiment does not have the heating section 121L-2 that heats the capsule 30, and therefore is not provided with a high mode in the sense of the first embodiment. Therefore, there is no need to switch the power depending on the heating mode. Therefore, step 13 (see FIG. 12) is not provided.
 加熱モードを取得しないので、ステップ12を実行した制御部116Lは、加算出された合計時間に基づいて、今回の加熱オン監視時間に消費されたカプセルの消費量を計算する(ステップ21)。
 このステップ21でステップ14(図12参照)が置換される点が、図12に示すフローチャートとの違いである。
Since the heating mode is not acquired, the control unit 116L that executed step 12 calculates the amount of capsules consumed during the current heating-on monitoring time based on the added total time (step 21).
The difference from the flowchart shown in FIG. 12 is that step 21 replaces step 14 (see FIG. 12).
<まとめ>
 本実施の形態におけるエアロゾル生成装置1000は、加熱モードとして、実施の形態1で説明したノーマルモードしか有しないが、実施の形態1と同様、エアロゾルの吸引に伴うカプセル30の消費量を正確に計算することが可能になる。これにより、エアロゾル源の残量の精度も高めることが可能になる。
 なお、カートリッジ20を加熱する加熱部121L-1のみを有するエアロゾル生成装置1000であっても、カートリッジ20の加熱モードとして複数種類を用意してもよい。
<Summary>
Aerosol generating device 1000 in this embodiment has only the normal mode described in Embodiment 1 as a heating mode, but similarly to Embodiment 1, it accurately calculates the consumption amount of capsule 30 due to aerosol suction. It becomes possible to do so. This also makes it possible to increase the accuracy of the remaining amount of the aerosol source.
Note that even in the case of the aerosol generating device 1000 having only the heating section 121L-1 that heats the cartridge 20, a plurality of types of heating modes for the cartridge 20 may be prepared.
 例えばエアロゾルの生成量が標準的な標準モードと、標準モードよりもエアロゾルの生成量が増える増量モードとを用意してもよい。例えば増量モードを用いる場合には、加熱部121L-1に供給する電力を、標準モードを用いる場合に加熱部121L-1に供給する電力よりも大きくすることで、加熱部121L-1の発熱量を増加させてもよい。
 標準モードと増量モードの切り替えが可能な場合には、実施の形態1と同様、加熱モード別に、カプセル30の消費量を計算する。
For example, a standard mode in which the amount of aerosol produced is standard, and an increase mode in which the amount of aerosol produced is greater than in the standard mode may be provided. For example, when using the increase mode, the amount of heat generated by the heating section 121L-1 is increased by making the power supplied to the heating section 121L-1 larger than the power supplied to the heating section 121L-1 when using the standard mode. may be increased.
If switching between the standard mode and the increased amount mode is possible, the consumption amount of the capsules 30 is calculated for each heating mode, as in the first embodiment.
<実施の形態5>
 本実施の形態では、加熱オン監視時間を設定しない加熱モードを採用する場合について説明する。
 本実施の形態では、実施の形態4で説明したエアロゾル生成装置1000(図20参照)を前提とする。もっとも、実施の形態1で説明したエアロゾル生成装置10(図1参照)を前提としてもよい。
 なお、本実施の形態で想定するエアロゾル生成装置1000等の外観や内部構成等は、実施の形態4で説明したエアロゾル生成装置1000等と同じである。
<Embodiment 5>
In this embodiment, a case will be described in which a heating mode in which the heating-on monitoring time is not set is adopted.
This embodiment is based on the aerosol generation device 1000 (see FIG. 20) described in Embodiment 4. However, the aerosol generation device 10 (see FIG. 1) described in Embodiment 1 may be used as a premise.
Note that the external appearance, internal configuration, etc. of the aerosol generation device 1000 etc. assumed in this embodiment are the same as the aerosol generation device 1000 etc. described in Embodiment 4.
 本実施の形態の場合、加熱オン監視時間を設けないので、吸引が長くなると、加熱オン時間も長くなる。このため、加熱オン時間の長さに応じた消費量の対応関係を記録するテーブルや計算式については、加熱オン時間が長くなる方向に拡張すればよい。
 図24は、実施の形態5におけるカートリッジ20の加熱制御とカプセル30の消費量の計算手法の一例を説明するフローチャートである。図24には、図11及び図12との対応部分に対応する符号を付して示している。
In the case of this embodiment, since no heating-on monitoring time is provided, as the suction becomes longer, the heating-on time also becomes longer. For this reason, the table and calculation formula for recording the correspondence of the consumption amount according to the length of the heating-on time may be extended in the direction of increasing the heating-on time.
FIG. 24 is a flowchart illustrating an example of a method for controlling the heating of the cartridge 20 and calculating the consumption amount of the capsule 30 in the fifth embodiment. In FIG. 24, parts corresponding to those in FIGS. 11 and 12 are shown with corresponding symbols.
 まず、ロック状態が解除される等により制御を開始した制御部116Lは、吸引の開始を検出したか否かを判定する(ステップ31)。
 吸引の開始が検出されない間、制御部116Lは、ステップ31で否定結果(ステップ31の「NO」)を得、ステップ31の判定を繰り返す。
 吸引の開始を検出すると、制御部116Lは、ステップ31で肯定結果(ステップ31の「YES」)を得、カートリッジ20を加熱する加熱部121L-1に対する電力の供給を指示する(ステップ3)。
 次に、制御部116Lは、吸引の終了を検出したか否かを判定する(ステップ5)。吸引の終了が検出されるまで、制御部116Lは、ステップ5で否定結果(ステップ5の「NO」)を得、ステップ5の判定を繰り返す。
First, the control unit 116L that starts control when the locked state is released or the like determines whether or not the start of suction has been detected (step 31).
While the start of suction is not detected, the control unit 116L obtains a negative result in step 31 (“NO” in step 31) and repeats the determination in step 31.
When the start of suction is detected, the control unit 116L obtains a positive result in step 31 (“YES” in step 31), and instructs the heating unit 121L-1 that heats the cartridge 20 to supply power (step 3).
Next, the control unit 116L determines whether or not the end of suction is detected (step 5). The control unit 116L obtains a negative result in step 5 (“NO” in step 5) and repeats the determination in step 5 until the end of suction is detected.
 吸引の終了を検出すると、制御部116Lは、ステップ5で肯定結果(ステップ5の「YES」)を得、カートリッジ20を加熱する加熱部121L-1に対する電力の供給を停止する(ステップ7)。
 次に、制御部116Lは、今回の吸引に関する加熱オン時間を取得する(ステップ8)。本実施の形態の場合、加熱オン監視時間を設定しないので合計値の算出は不要である。
 加熱オン時間が取得されると、制御部116Lは、今回の吸引で消費されたカプセル30の消費量を計算する(ステップ32)。
 例えばノーマルモードだけを使用する場合には、ノーマルモード用のテーブルや計算式を使用して消費量が計算される。
When the end of suction is detected, the control unit 116L obtains a positive result in step 5 (“YES” in step 5), and stops supplying power to the heating unit 121L-1 that heats the cartridge 20 (step 7).
Next, the control unit 116L obtains the heating on time regarding the current suction (step 8). In the case of this embodiment, since the heating-on monitoring time is not set, there is no need to calculate the total value.
When the heating-on time is acquired, the control unit 116L calculates the consumption amount of the capsule 30 consumed by the current suction (step 32).
For example, when only normal mode is used, the consumption amount is calculated using a table or calculation formula for normal mode.
 もっとも、ノーマルモードとハイモードの切り替えが可能な場合や標準モードと増量モードの切り替えが可能な場合には、実施の形態1と同様、加熱モード別に用意されたテーブルや計算式を使用して消費量を計算する。
 次に、制御部116Lは、新たに計算された消費量で累積消費量を更新し(ステップ15)、ステップ31に戻る。図24に示すループ処理は、ロック状態に移行するまで繰り返される。
However, when it is possible to switch between normal mode and high mode, or when it is possible to switch between standard mode and increased volume mode, the consumption is calculated using tables and calculation formulas prepared for each heating mode, as in the first embodiment. Calculate quantity.
Next, the control unit 116L updates the cumulative consumption amount with the newly calculated consumption amount (step 15), and returns to step 31. The loop process shown in FIG. 24 is repeated until the lock state is reached.
<他の実施の形態>
(1)以上、本発明の実施の形態について説明したが、本発明の技術的範囲は前述した実施の形態に記載の範囲に限定されない。前述した実施の形態に、種々の変更又は改良を加えたものも、本発明の技術的範囲に含まれることは、特許請求の範囲の記載から明らかである。
<Other embodiments>
(1) Although the embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the range described in the above-described embodiments. It is clear from the claims that various changes or improvements made to the embodiments described above are also included within the technical scope of the present invention.
(2)前述の実施の形態においては、エアロゾル生成装置10(図1参照)及び1000(図20参照)が電子たばこである場合について説明したが、ネブライザーなどの医療用の吸入器でもよい。エアロゾル生成装置10等がネブライザーの場合、液体のエアロゾル源や固形物のエアロゾル源は、患者が吸入するための薬剤を含んでもよい。 (2) In the embodiments described above, a case has been described in which the aerosol generating devices 10 (see FIG. 1) and 1000 (see FIG. 20) are electronic cigarettes, but they may also be medical inhalers such as nebulizers. When the aerosol generating device 10 or the like is a nebulizer, the liquid aerosol source or the solid aerosol source may include a drug for inhalation by the patient.
(3)前述の実施の形態においては、液体のエアロゾル源を加熱部121L-1で加熱してエアロゾルを生成しているが、液体のエアロゾル源を振動子で振動させてエアロゾルを生成してもよい。また、加熱部121L-1を金属等の導電性の素材により構成されるサセプタとして構成し、このサセプタを電磁誘導源により誘導加熱してエアロゾルを生成してもよい。 (3) In the above embodiment, the aerosol is generated by heating the liquid aerosol source with the heating unit 121L-1, but the aerosol may also be generated by vibrating the liquid aerosol source with a vibrator. good. Alternatively, the heating unit 121L-1 may be configured as a susceptor made of a conductive material such as metal, and the susceptor may be heated by induction using an electromagnetic induction source to generate the aerosol.
(4)前述の実施の形態においては、ハイモードにおける加熱部121L-1と加熱部121L-2の同時加熱を禁止しているが、同時加熱を許容してもよい。すなわち、加熱部121L-1による加熱の期間と加熱部121L-2による加熱の期間の一部又は全部の重複を許容してもよい。もっとも、同時加熱を許容する場合には、電池の出力電流の上限値を超過しないように、同時加熱中に加熱部121L-1及び121L-2に供給する電力の最大値を、単独での加熱時に供給する電力の最大値より小さくすることが望ましい。
 なお、カートリッジ20とカプセル30の同時加熱を許容する場合、カプセル30の消費量は、カートリッジ20とカプセル30をそれぞれ単独で加熱する場合に比して異なる可能性がある。その場合には、同時加熱モードに専用のテーブルや計算式を用意することが望ましい。
(4) In the embodiment described above, simultaneous heating of the heating section 121L-1 and the heating section 121L-2 in the high mode is prohibited, but simultaneous heating may be allowed. In other words, a part or all of the heating period by the heating section 121L-1 and the heating period by the heating section 121L-2 may be allowed to overlap. However, if simultaneous heating is allowed, the maximum value of power supplied to heating parts 121L-1 and 121L-2 during simultaneous heating should be set to It is desirable to set the value to be smaller than the maximum value of the power supplied at the time.
Note that when the cartridge 20 and the capsule 30 are allowed to be heated simultaneously, the consumption amount of the capsule 30 may be different from that when the cartridge 20 and the capsule 30 are heated individually. In that case, it is desirable to prepare a dedicated table or calculation formula for the simultaneous heating mode.
(5)前述の実施の形態においては、加熱オン監視時間が初期値のまま固定である場合を想定しているが、加熱オン監視時間として複数の値を用意し、ユーザがいずれかの値を選択可能にしてもよい。この場合、カートリッジ20を連続的に加熱することが可能な最長時間が変化するが、選択可能な複数の値のうちで最も大きい値までを含むテーブルや計算式を用意していれば、消費量の計算については前述した各実施の形態の手法を適用することが可能である。 (5) In the embodiment described above, it is assumed that the heating-on monitoring time is fixed at the initial value, but multiple values are prepared as the heating-on monitoring time, and the user can select one of the values. It may be made selectable. In this case, the maximum time that the cartridge 20 can be heated continuously will change, but if you have prepared a table or calculation formula that includes the largest value among the multiple selectable values, you can For the calculation of , it is possible to apply the methods of each of the embodiments described above.
10、1000…エアロゾル生成装置、11…装置本体、11A…ディスプレイ、11B…操作ボタン、12、1030…カプセルホルダ、20…カートリッジ、30…カプセル、121L-1、121L-2…加熱部、1010…電源ユニット、1020…カートリッジカバー DESCRIPTION OF SYMBOLS 10, 1000...Aerosol generation device, 11...Device main body, 11A...Display, 11B...Operation button, 12,1030...Capsule holder, 20...Cartridge, 30...Capsule, 121L-1, 121L-2...Heating part, 1010... Power supply unit, 1020...Cartridge cover

Claims (10)

  1.  ユーザの吸引を検知するセンサと、
     第1のエアロゾル源を加熱する第1の加熱部と、
     前記第1の加熱部に対する電力の供給を制御する制御部と、
     を有し、
     前記制御部は、
     前記センサによる吸引の検知に連動して前記第1の加熱部に電力を供給し、
     前記第1の加熱部による前記第1のエアロゾル源の加熱時間長に基づいて、第2のエアロゾル源の消費量を計算する、
     エアロゾル生成装置。
    A sensor that detects the user's suction,
    a first heating section that heats the first aerosol source;
    a control unit that controls supply of electric power to the first heating unit;
    has
    The control unit includes:
    supplying power to the first heating unit in conjunction with detection of suction by the sensor;
    calculating the consumption amount of the second aerosol source based on the heating time length of the first aerosol source by the first heating unit;
    Aerosol generator.
  2.  前記制御部は、
     前記ユーザの吸引の検知により予め定めた長さの監視期間を設定し、
     前記監視期間毎に、当該監視期間内における前記加熱時間長を取得し、
     取得された前記加熱時間長に基づいて、前記監視期間内に消費された前記第2のエアロゾル源の消費量を計算する、
     請求項1に記載のエアロゾル生成装置。
    The control unit includes:
    setting a monitoring period of a predetermined length based on the detection of the user's suction;
    Obtaining the heating time length within the monitoring period for each monitoring period,
    calculating a consumption amount of the second aerosol source consumed within the monitoring period based on the obtained heating time length;
    The aerosol generation device according to claim 1.
  3.  前記制御部は、
     前記監視期間内に複数の吸引が検知される場合、当該複数の吸引の合計時間を前記加熱時間長とする、
     請求項2に記載のエアロゾル生成装置。
    The control unit includes:
    If a plurality of suctions are detected within the monitoring period, the total time of the plurality of suctions is set as the heating time length;
    The aerosol generation device according to claim 2.
  4.  前記制御部は、
     1つの前記監視期間を1吸引回とする場合に、吸引回毎に計算された前記消費量の累積値に基づいて、前記第2のエアロゾル源の残量を計算する、
     請求項2又は3に記載のエアロゾル生成装置。
    The control unit includes:
    When one monitoring period is one suction, calculating the remaining amount of the second aerosol source based on the cumulative value of the consumption amount calculated for each suction.
    The aerosol generation device according to claim 2 or 3.
  5.  前記制御部は、
     前記監視期間内における前記加熱時間長を大きさに応じて複数の範囲に分類し、範囲別に用意された計算手法により前記消費量を計算する、
     請求項1に記載のエアロゾル生成装置。
    The control unit includes:
    Classifying the heating time length within the monitoring period into a plurality of ranges according to size, and calculating the consumption amount using a calculation method prepared for each range.
    The aerosol generation device according to claim 1.
  6.  前記第2のエアロゾル源を加熱する第2の加熱部を更に有し、
     前記制御部は、
     前記第1の加熱部のみを使用する第1の加熱と、当該第1の加熱部と前記第2の加熱部の両方を使用する第2の加熱との切り替えが可能な場合、当該第1の加熱と当該第2の加熱の切り替えに伴い、前記第2のエアロゾル源の消費量の計算方法を切り替える、
     請求項1~5のいずれか1項に記載のエアロゾル生成装置。
    further comprising a second heating section that heats the second aerosol source,
    The control unit includes:
    If it is possible to switch between the first heating that uses only the first heating section and the second heating that uses both the first heating section and the second heating section, switching the calculation method of the consumption amount of the second aerosol source in accordance with switching between heating and the second heating;
    The aerosol generating device according to any one of claims 1 to 5.
  7.  前記制御部は、
     前記第1の加熱と前記第2の加熱における前記加熱時間長が同じである場合、当該第2の加熱時における前記第2のエアロゾル源の消費量を、当該第1の加熱時における当該第2のエアロゾル源の消費量よりも大きな値として計算する、
     請求項6に記載のエアロゾル生成装置。
    The control unit includes:
    When the heating time length in the first heating and the second heating are the same, the consumption amount of the second aerosol source during the second heating is equal to the consumption amount of the second aerosol source during the first heating. calculated as a value greater than the consumption of the aerosol source,
    The aerosol generation device according to claim 6.
  8.  前記第2のエアロゾル源は、機構部に保持されたエアロゾル源である、
     請求項1~7のいずれか1項に記載のエアロゾル生成装置。
    the second aerosol source is an aerosol source held in a mechanical part;
    The aerosol generation device according to any one of claims 1 to 7.
  9.  エアロゾルを生成するエアロゾル生成装置の制御方法であって、
     センサがユーザの吸引を検知するステップと、
     第1の加熱部が第1のエアロゾル源を加熱するステップと、
     前記センサによる吸引の検知に連動して前記第1の加熱部に電力を供給するステップと、
     前記第1の加熱部による前記第1のエアロゾル源の加熱時間長に基づいて、第2のエアロゾル源の消費量を計算するステップと、
     を含むことを特徴とする制御方法。
    A method for controlling an aerosol generation device that generates an aerosol, the method comprising:
    a step in which the sensor detects suction by the user;
    the first heating section heating the first aerosol source;
    supplying power to the first heating unit in conjunction with detection of suction by the sensor;
    calculating a consumption amount of a second aerosol source based on a heating time length of the first aerosol source by the first heating unit;
    A control method characterized by comprising:
  10.  コンピュータに、
     センサがユーザの吸引を検知する工程と、
     第1の加熱部が第1のエアロゾル源を加熱する工程と、
     前記センサによる吸引の検知に連動して前記第1の加熱部に電力を供給する工程と、
     前記第1の加熱部による前記第1のエアロゾル源の加熱時間長に基づいて、第2のエアロゾル源の消費量を計算する工程と、
     を実行させるためのプログラム。
    to the computer,
    a step in which the sensor detects suction by the user;
    the first heating section heating the first aerosol source;
    supplying power to the first heating unit in conjunction with detection of suction by the sensor;
    calculating a consumption amount of a second aerosol source based on a heating time length of the first aerosol source by the first heating unit;
    A program to run.
PCT/JP2022/015963 2022-03-30 2022-03-30 Aerosol generating device, control method, and program WO2023188102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015963 WO2023188102A1 (en) 2022-03-30 2022-03-30 Aerosol generating device, control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015963 WO2023188102A1 (en) 2022-03-30 2022-03-30 Aerosol generating device, control method, and program

Publications (1)

Publication Number Publication Date
WO2023188102A1 true WO2023188102A1 (en) 2023-10-05

Family

ID=88200282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015963 WO2023188102A1 (en) 2022-03-30 2022-03-30 Aerosol generating device, control method, and program

Country Status (1)

Country Link
WO (1) WO2023188102A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170245551A1 (en) * 2016-02-25 2017-08-31 Tony Reevell Aerosol-generating systems with liquid level determination and methods of determining liquid level in aerosol-generating systems
EP3682751A1 (en) * 2017-09-12 2020-07-22 Changzhou Patent Electronic Technology Co., Ltd Method for obtaining intake quantity of target substance and electronic device
JP2021141825A (en) * 2020-03-10 2021-09-24 日本たばこ産業株式会社 Controller for aspirator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170245551A1 (en) * 2016-02-25 2017-08-31 Tony Reevell Aerosol-generating systems with liquid level determination and methods of determining liquid level in aerosol-generating systems
EP3682751A1 (en) * 2017-09-12 2020-07-22 Changzhou Patent Electronic Technology Co., Ltd Method for obtaining intake quantity of target substance and electronic device
JP2021141825A (en) * 2020-03-10 2021-09-24 日本たばこ産業株式会社 Controller for aspirator

Similar Documents

Publication Publication Date Title
JP6545226B2 (en) Electronic suction device
JP6850302B2 (en) An electrically operated aerosol generation system with a temperature sensor
JP2020519247A (en) Steam supply system
UA126667C2 (en) Photodetector for measuring aerosol precursor composition in an aerosol delivery device
JP2019509733A (en) Electrically operated aerosol generation system with tilt sensor
EA038837B1 (en) Flavor inhaler
US20230000172A1 (en) Inhaling device
JP7158557B2 (en) FLAVOR COMPONENT GENERATION CONTROL DEVICE, FLAVOR COMPONENT GENERATION DEVICE, CONTROL METHOD AND PROGRAM
JP7244664B2 (en) Battery unit, information processing method, and program
JP7248810B2 (en) Battery unit, information processing method, and program
WO2023188102A1 (en) Aerosol generating device, control method, and program
JP7148032B2 (en) steam supply system
WO2023188101A1 (en) Aerosol generating device, control method, and program
WO2023188103A1 (en) Aerosol generating device, control method, and program
WO2023188100A1 (en) Aerosol generation device, control method, and program
JP7335444B2 (en) SUCTION DEVICE, CONTROL METHOD, AND PROGRAM
WO2023188099A1 (en) Aerosol generating device, control method, and program
WO2023112339A1 (en) Aerosol generation device and information display device
WO2023112338A1 (en) Aerosol generation device
WO2023112340A1 (en) Aerosol generation device
WO2023112341A1 (en) Aerosol generation device and information display device
WO2023062789A1 (en) Aerosol generation system, control method, and program
WO2023089754A1 (en) Inhalation device
WO2023188098A1 (en) Aerosol generating device, control method, and program
WO2023021546A1 (en) Aerosol generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935248

Country of ref document: EP

Kind code of ref document: A1