WO2023062789A1 - Aerosol generation system, control method, and program - Google Patents

Aerosol generation system, control method, and program Download PDF

Info

Publication number
WO2023062789A1
WO2023062789A1 PCT/JP2021/038107 JP2021038107W WO2023062789A1 WO 2023062789 A1 WO2023062789 A1 WO 2023062789A1 JP 2021038107 W JP2021038107 W JP 2021038107W WO 2023062789 A1 WO2023062789 A1 WO 2023062789A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
unit
capsule
generating system
base material
Prior art date
Application number
PCT/JP2021/038107
Other languages
French (fr)
Japanese (ja)
Inventor
真衣 杉浦
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/038107 priority Critical patent/WO2023062789A1/en
Priority to JP2023553854A priority patent/JPWO2023062789A1/ja
Publication of WO2023062789A1 publication Critical patent/WO2023062789A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to an aerosol generation system, control method, and program.
  • the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component.
  • a user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device.
  • the action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
  • Patent Literature 1 discloses a technique in which a motion sensor is provided in a suction device and the suction device performs an operation corresponding to a gesture detected by the motion sensor.
  • Patent Document 1 The technology described in Patent Document 1 above merely uses the posture of the suction device to detect gestures.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a mechanism capable of further improving the quality of user experience.
  • an aerosol generating system comprising a control unit that controls the operation of a heating unit that heats a second substrate according to the attitude of the second substrate.
  • the second base material has the flavor source configured in the form of granules, and a flavor source storage part that stores the flavor source in an internal space, and the flavor source is changed depending on the posture of the second base material.
  • the flavor source may move within the interior space of the reservoir.
  • the control unit controls the operation of the generation unit such that the amount of the aerosol generated decreases as the inclination of the aerosol flow path in the flavor source storage unit approaches horizontal, and the temperature of the second base material decreases. You may control the operation
  • the aerosol generation system includes an orientation sensor that detects an orientation of the aerosol generation system, and the controller controls the orientation of the second base material corresponding to the orientation of the aerosol generation system detected by the orientation sensor. may be used to control the operation of the generating unit and the operation of the heating unit.
  • the control unit controls the operation of the generating unit according to the orientation of the second substrate at a first timing, and controls the operation of the heating unit according to the orientation of the second substrate at a second timing.
  • the first timing is the timing when the start of the puff is detected
  • the second timing is the timing when the aerosol generation system is powered on, and the power is turned on after the aerosol generation system is powered on.
  • At least one of the periodic timing until the puff is turned off, the timing when the start of the puff is detected, and the timing when the end of the puff is detected may be used.
  • the control unit may control the operation of the heating unit according to the attitude of the second base material at the timing when the start of the puff was detected in the past.
  • the aerosol generating system includes a plurality of heating units arranged at different positions around the second substrate, and the control unit controls the plurality of heating units according to the orientation of the second substrate. may control the operation of
  • the control unit may control so that the output of the heating unit arranged in the vertical direction among the plurality of heating units is higher than the output of the heating unit arranged in the opposite direction of the vertical direction.
  • the aerosol generating system includes a plurality of the heating units arranged at different positions around the second substrate, and the control unit controls the vertical direction of the plurality of heating units when the user puffs.
  • the output of the heating unit assumed to be located in the vertical direction may be controlled to be higher than the output of the heating unit assumed to be located in the opposite vertical direction.
  • the aerosol generation system includes a plurality of heating units arranged rotatably around the second substrate at different positions around the second substrate, and the heating units having the highest output among the plurality of heating units. and a rotating mechanism for rotating the plurality of heating units such that the heating units controlled to be elevated are positioned in the vertical direction.
  • the second base material may contain a first flavor component and a second flavor component different from the first flavor component, and the aerosol source may contain the second flavor component.
  • the aerosol generating system may comprise the first substrate and the second substrate.
  • the operation of a generating unit that generates an aerosol from an aerosol source stored in a first base material, and the flavor that imparts a flavor component to the aerosol A control method is provided, including controlling the operation of a heating unit that heats a second substrate including a source according to the orientation of the second substrate.
  • a computer controls the operation of a generating unit that generates an aerosol from an aerosol source stored in a first base material, and the addition of a flavor component to the aerosol.
  • a program is provided for functioning as a control section that controls the operation of the heating section that heats the second base material including the flavor source to be imparted, according to the posture of the second base material.
  • a mechanism is provided that can further improve the quality of user experience.
  • FIG. 1 is a schematic diagram schematically showing a logical configuration example of an aerosol generation system according to an embodiment of the present invention
  • FIG. 1 is a diagram schematically showing a physical configuration example of an aerosol generating system according to this embodiment
  • FIG. FIG. 2 is a diagram schematically showing the physical configuration of a capsule according to this embodiment
  • FIG. FIG. 4 is a diagram schematically showing the state of the aerosol generating system according to the present embodiment when the angle ⁇ is 0 degrees
  • FIG. 4 is a diagram schematically showing the state when the angle ⁇ of the aerosol generating system according to the present embodiment is 90 degrees
  • 4 is a flow chart showing an example of the flow of processing executed in the aerosol generation system according to the present embodiment
  • FIG. 1 is a diagram schematically showing a physical configuration example of an aerosol generating system according to this embodiment
  • FIG. 2 is a diagram schematically showing the physical configuration of a capsule according to this embodiment
  • FIG. FIG. 4 is a diagram schematically showing the state of
  • 10 is a diagram schematically showing an example of the arrangement of a plurality of capsule-side heating units according to a first modified example; 8 is a diagram for explaining an example of control of a plurality of capsule-side heating units shown in FIG. 7; FIG. It is an explanatory view for explaining the 2nd modification. It is an explanatory view for explaining the 3rd modification.
  • An aerosol generating system is a system that produces a substance that is inhaled by a user.
  • the following description assumes that the substance produced by the aerosol-generating system is an aerosol.
  • the substance produced by the aerosol-generating system may be a gas.
  • a configuration example of the aerosol generation system according to the present embodiment will be described below with reference to FIG.
  • FIG. 1 is a schematic diagram schematically showing a logical configuration example of an aerosol generation system according to one embodiment of the present invention.
  • the aerosol generation system 1 includes a power supply unit 110, a cartridge 120 and a capsule 130.
  • the power supply unit 110 and the cartridge 120 are detachably connected.
  • the aerosol generating system 1 has a capsule containing portion 50 capable of containing the capsule 130 .
  • the aerosol generation system 1 generates an aerosol to be inhaled by the user, with the power supply unit 110 and the cartridge 120 connected and the capsule 130 housed in the capsule housing portion 50 .
  • the power supply unit 110 includes a power supply section 111, a sensor section 112, a notification section 113, a storage section 114, a communication section 115, and a control section .
  • the power supply unit 111 accumulates power.
  • the power supply unit 111 supplies electric power to each component of the aerosol generation system 1 .
  • the power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery.
  • the power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like.
  • the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology.
  • only the power supply unit 111 may be removed from the power supply unit 110, or may be replaced with a new power supply unit 111.
  • the sensor unit 112 detects various types of information regarding the aerosol generation system 1. The sensor unit 112 then outputs the detected information to the control unit 116 .
  • the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor. When the sensor unit 112 detects a numerical value associated with the user's suction, the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 .
  • the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user. The sensor unit 112 then outputs the information input by the user to the control unit 116 .
  • the sensor section 112 is configured by a temperature sensor that detects the temperature of the capsule-side heating section 40B. Such a temperature sensor detects the temperature of the capsule-side heating section 40B, for example, based on the electrical resistance value of the conductive tracks forming the capsule-side heating section 40B.
  • the sensor unit 112 has an orientation sensor that detects the orientation of the aerosol generation system 1 (more specifically, the power supply unit 110). Examples of attitude sensors are gyro sensors and acceleration sensors.
  • the notification unit 113 notifies the user of information.
  • the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode).
  • the notification unit 113 emits light in a different light emission pattern when the power source unit 111 needs to be charged, when the power source unit 111 is being charged, when an abnormality occurs in the aerosol generation system 1, and the like. do.
  • the light emission pattern here is a concept including color, timing of lighting/lighting out, and the like.
  • the notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device.
  • the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that the user can inhale is notified, for example, when the temperature of the capsule-side heating section 40B reaches a predetermined temperature.
  • the storage unit 114 stores various information for the operation of the aerosol generation system 1.
  • the storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory.
  • An example of the information stored in the storage unit 114 is information related to the OS (Operating System) of the aerosol generation system 1, such as control details of various components by the control unit 116.
  • Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
  • the communication unit 115 is a communication interface for transmitting and receiving information between the aerosol generation system 1 and other devices.
  • the communication unit 115 performs communication conforming to any wired or wireless communication standard.
  • a communication standard for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted.
  • the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user.
  • the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
  • the control unit 116 functions as an arithmetic processing device and a control device, and controls overall operations within the aerosol generation system 1 according to various programs.
  • the control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor.
  • the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate.
  • the aerosol generation system 1 executes various processes based on control by the control unit 116 .
  • the cartridge 120 includes a cartridge-side heating section 40A, a liquid guide section 122, and a liquid storage section 123.
  • the liquid storage unit 123 stores an aerosol source.
  • the aerosol source is atomized by heating to produce an aerosol.
  • Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water.
  • the aerosol source may further comprise a tobacco material or an extract derived therefrom that releases flavoring components when heated. Aerosol sources may further include nicotine and menthol. If the aerosol-generating system 1 is a medical inhaler such as a nebulizer, the aerosol source may contain a medicament for inhalation by the patient.
  • the liquid guide section 122 guides the aerosol source, which is the liquid stored in the liquid storage section 123, from the liquid storage section 123 and holds it.
  • the liquid guiding part 122 is a wick formed by twisting a fibrous material such as glass fiber or a porous material such as porous ceramic.
  • Liquid guide portion 122 is in liquid communication with liquid reservoir portion 123 . Therefore, the aerosol source stored in the liquid storage section 123 spreads over the entire liquid guide section 122 due to the capillary effect.
  • the cartridge-side heating unit 40A heats the aerosol source to atomize the aerosol source and generate an aerosol.
  • the cartridge-side heating section 40A is made of any material such as metal or polyimide.
  • the cartridge-side heating section 40A is arranged close to the liquid guide section 122 .
  • the cartridge-side heating section 40A is composed of a metal coil and wound around the liquid guide section 122. As shown in FIG. Therefore, when the cartridge-side heating section 40A generates heat, the aerosol source held in the liquid guide section 122 is heated and atomized to generate an aerosol.
  • the cartridge-side heating section 40A When the cartridge-side heating section 40A generates heat, the temperature of the aerosol source held in the liquid guide section 122 rises instantaneously and atomization occurs. Therefore, the cartridge-side heating section 40A heats when the sensor section 112 detects that a puff has been performed, and generates an aerosol that is sucked by the puff.
  • the aerosol may be generated during the period from when the sensor unit 112 detects the start of the puff to when the sensor unit 112 detects the end of the puff.
  • aerosol may be generated in a predetermined period after the start of the puff is detected by the sensor unit 112 .
  • the capsule containing portion 50 is a member capable of containing the capsule 130 .
  • the capsule housing portion 50 is configured as a bottomed cylindrical body, and the inner circumference of the cylindrical body has a shape corresponding to the outer shape of the capsule 130 .
  • a through-hole 51 through which the aerosol generated by the cartridge 120 passes is provided in the bottom surface of the capsule containing portion 50 .
  • the capsule 130 includes a flavor source storage portion 131 and a mouthpiece portion 132 .
  • the flavor source storage unit 131 stores flavor sources.
  • Flavor sources are composed of raw material pieces that impart flavor components to the aerosol.
  • the lower limit of the size of the raw material pieces is preferably 0.2 mm or more and 1.2 mm or less. Furthermore, the lower limit of the size of the raw material pieces is preferably 0.2 mm or more and 0.7 mm or less.
  • the smaller the size of the raw material pieces that make up the flavor source the greater the specific surface area, so that the flavor components are more likely to be released from the raw material pieces that make up the flavor source.
  • As raw material pieces constituting the flavor source cut tobacco and a molded product obtained by molding tobacco raw materials into granules can be used.
  • Flavor sources may be composed of plants other than tobacco (eg, mints, herbs, etc.). Flavor sources such as menthol may be added to the flavor source.
  • the mouthpiece 132 is a member held by the user when puffing.
  • the aerosol generated by the cartridge-side heating section 40A passes through the flavor source storage section 131 and reaches the user's mouth.
  • the capsule-side heating section 40B heats the capsule 130.
  • the capsule-side heating section 40B is configured as a film-shaped heating section in which a conductive track is sandwiched between insulators, and is arranged so as to cover the outer periphery of the capsule containing section 50. As shown in FIG. When the capsule-side heating section 40B generates heat, the flavor source storage section 131 is heated from the outer periphery. Thereby, the aerosol passing through the capsule 130 can be easily imparted with the flavor component from the flavor source stored in the flavor source storage section 131 .
  • the heating by the capsule-side heating section 40B is desirably performed so that the capsule-side heating section 40B maintains a predetermined temperature for a long period of time.
  • power may be supplied during a period from when the first user input is detected by the sensor unit 112 until when the second user input is detected by the sensor unit 112 .
  • the first user input may be a user input that brings the aerosol generation system 1 into a power ON state and the second user input may be a user input that brings the aerosol generation system 1 into a power OFF state.
  • the power ON state is a state in which all functions of the aerosol generation system 1 including the generation of aerosol can be performed.
  • the power OFF state is a state in which at least some of the functions of the aerosol generation system 1 other than the function of detecting the power ON operation cannot be executed. That is, the capsule-side heating section 40B may be constantly heated in the power ON state. However, the capsule-side heating unit 40B may stop heating when power supply is stopped while the cartridge-side heating unit 40A is performing heating. This is for suppressing power consumption and preventing an excessive load on the power supply unit 111 . Alternatively, the capsule-side heating section 40B may heat for a predetermined period after the sensor section 112 detects the start of the puff. In this case, power consumption can be suppressed and excessive volatilization of the flavor component can be prevented, compared to the case of constantly heating in the power-on state.
  • the air flow path 180 is a flow path of air sucked by the user.
  • the air that has flowed into the air flow path 180 from the air inlet hole 181 that is the entrance of the air into the air flow path 180 flows out to the capsule housing portion 50 through the through hole 51 .
  • a liquid guiding portion 122 is arranged in the middle of the air flow path 180 .
  • the air that flows in through the air inlet hole 181 as the user inhales is mixed with the aerosol generated by the cartridge-side heating section 40A and flows into the capsule housing section 50 via the through hole 51, as shown by the air flow 190. and passes through the flavor source storage unit 131 .
  • the mixed fluid of the aerosol and air is imparted with flavor components from the flavor sources stored in the flavor source storage unit 131 when passing through the flavor source storage unit 131, and then reaches the user's mouth.
  • aerosol instead of heating by the cartridge-side heating section 40A, aerosol may be generated by vibration or induction heating. As another example, the aerosol may be generated by induction heating instead of heating by the capsule-side heating section 40B.
  • the cartridge-side heating section 40A is an example of a generating section that generates aerosol from an aerosol source stored in the first base material.
  • Cartridge 120 is an example of a first base material.
  • the capsule-side heating unit 40B is an example of a heating unit that heats the second base material containing a flavor source that imparts a flavor component to the aerosol.
  • Capsule 130 is an example of a second substrate.
  • FIG. 2 is a diagram schematically showing a physical configuration example of the aerosol generation system 1 according to this embodiment.
  • FIG. 3 is a diagram schematically showing the physical configuration of the capsule 130 according to this embodiment.
  • the aerosol generation system 1 may be configured in a substantially cylindrical shape.
  • the power supply unit 110, the cartridge 120, the capsule holder 140, and the capsule 130 are detachably connected in this order from one longitudinal end of the aerosol generating system 1 to the other.
  • the side on which the power supply unit 110 is arranged in the longitudinal direction is defined as the bottom, and the side on which the capsule 130 is arranged is defined as the top.
  • D indicates the lower side of the longitudinal direction
  • U indicates the upper side
  • G indicates the vertical direction.
  • the capsule holder 140 is a connecting device for connecting the cartridge 120 and the capsule 130.
  • the lower end of capsule-holder 140 is connected to the upper end of cartridge 120 .
  • the capsule holder 140 has a capsule containing portion 50 containing a capsule 130, and contains the capsule 130 inserted into the capsule containing portion 50 from above.
  • the capsule holder 140 also includes a capsule-side heating section 40B, which heats the capsule 130 by power supply from the power supply unit 110. As shown in FIG.
  • the side surface of the power supply unit 110 is provided with an operation section 15 that can be operated by the user.
  • the operation unit 15 is a circular push-button switch.
  • the operation unit 15 may have a shape other than a circular shape, and may be composed of a switch other than a push button type, a touch panel, or the like.
  • the operation unit 15 is an example of an input device included in the sensor unit 112 . The user can switch ON/OFF of the aerosol generation system 1 , for example, by operating the operation unit 15 .
  • the capsule 130 is configured in a substantially cylindrical shape.
  • the capsule 130 is accommodated in the capsule holder 140 such that the cylindrical axis direction matches the longitudinal direction of the aerosol generating system 1 .
  • the flavor source storage part 131 is arranged on the lower side and the mouthpiece part 132 is arranged on the upper side.
  • the flavor source storage unit 131 has an internal space for storing the flavor source 133. As shown in FIG. 3 , the flavor source storage unit 131 stores a granular flavor source 133 in an internal space. With the flavor source storage unit 131 storing the flavor source 133, a predetermined empty space is provided in the internal space. As an example, about 70% of the internal space of the flavor source storage unit 131 is occupied by the flavor source 133, and about 30% is empty space. Therefore, the flavor source 133 moves in the internal space of the flavor source storage part 131 according to the posture of the capsule 130 . Specifically, the flavor source 133 is unevenly distributed in the vertical space of the interior space of the flavor source storage unit 131 .
  • a lower partition wall 131D that forms the bottom surface of the flavor source storage unit 131 is configured to allow the aerosol generated in the cartridge 120 positioned below the capsule 130 to pass through.
  • the upper partition wall 131U which constitutes the top surface of the flavor source storage unit 131, is configured to allow passage of the aerosol that has flowed into the flavor source storage unit 131 through the lower partition wall 131D.
  • the lower partition 131D and the upper partition 131U may be configured in a mesh shape having gaps through which the flavor source 133 cannot pass but the aerosol can pass.
  • airflow 190 aerosol generated in cartridge 120 located below capsule 130 passes through flavor source reservoir 131 and reaches mouthpiece 132 into the user's mouth.
  • FIG. 4 is a diagram schematically showing the state of the aerosol generating system 1 according to this embodiment when the angle ⁇ is 0 degrees.
  • FIG. 5 is a diagram schematically showing the state of the aerosol generating system 1 according to this embodiment when the angle ⁇ is 90 degrees.
  • the angle ⁇ of the aerosol generating system 1 refers to the angle formed by the downward direction of the aerosol generating system 1 and the vertical direction.
  • Capsule-side heating section 40B is desirably arranged to cover from the lower end of capsule 130 to upper surface 133U of flavor source 133 when angle ⁇ of aerosol generating system 1 is 0°. This is because it is difficult to efficiently heat the flavor source 133 even if the space above the upper surface 133U of the flavor source 133 in the capsule 130 is heated.
  • the capsule-side heating section 40B can directly heat the portion of the flavor source storage section 131 where the flavor source 133 exists. Furthermore, since the air flow 190 flowing from the through-hole 51 to the mouthpiece 132 passes through the space where the flavor source 133 exists in the flavor source storage part 131, it is possible to add many flavor components to the aerosol.
  • the flavor source 133 is unevenly distributed in the vertical direction, that is, to the side of the flavor source storage section 131 . Therefore, it becomes difficult to efficiently heat the flavor source 133 in the region of the capsule-side heating section 40B on the side opposite to the vertical direction. Furthermore, as shown in FIG. 5, the air flow 190 flowing from the through-hole 51 to the mouthpiece 132 tends to pass through the space where the flavor source 133 is absent and which has a smaller ventilation resistance in the flavor source reservoir 131 . Therefore, it becomes difficult to impart the flavor component to the aerosol passing through the flavor source storage unit 131 along the air flow 190 .
  • Table 1 shows the trend of change in the amount of flavor component delivered to the user and the amount of aerosol as the angle ⁇ of the aerosol generating system 1 increases.
  • the first flavor component is a component contained in the flavor source 133 stored in the capsule 130.
  • the first flavor component is, for example, nicotine, tobacco flavor components, and other flavors.
  • a second flavor component is a component commonly contained in the aerosol source stored in cartridge 120 and the flavor source 133 stored in capsule 130 .
  • the second flavor component is different than at least the first flavor component.
  • the second flavor component is, for example, menthol.
  • the delivery amount of the first flavor component decreases as the angle ⁇ of the aerosol generating system 1 increases.
  • the first factor is that less aerosol passes through the flavor source 133 as the angle ⁇ of the aerosol generating system 1 increases.
  • the second factor is that the more the angle ⁇ of the aerosol generating system 1 increases, the less efficiently the flavor source 133 is heated and the less the first flavor component is imparted to the aerosol.
  • the delivery amount of the second flavor component does not change as the angle of the aerosol generating system 1 increases. This is because the increase in the second flavor component from cartridge 120 is offset by the decrease in the second flavor component from capsule 130 .
  • the second flavor component from cartridge 120 applied to the aerosol is filtered (ie, adheres to flavor source 133).
  • the angle ⁇ of the aerosol generating system 1 increases, the second flavor component derived from the cartridge 120 becomes less filtered, and the delivery amount of the second flavor component derived from the cartridge 120 increases.
  • the angle ⁇ of the aerosol-generating system 1 increases, the less efficient the flavor source 133 is heated, the less the second flavor ingredient delivered from the capsule 130 is delivered.
  • the aerosol delivery amount slightly increases as the angle ⁇ of the aerosol generating system 1 increases.
  • the reason for this is that as the angle ⁇ of the aerosol generating system 1 increases, the presence of the flavor source 133 reduces the obstruction of the passage of the aerosol inside the capsule, making it easier for the aerosol to reach the user's mouth.
  • control unit 116 controls the operation of the cartridge-side heating unit 40A and the operation of the capsule-side heating unit 40B according to the attitude of the capsule 130. According to this configuration, the change in the balance of the ingredients delivered to the user due to the change in the posture of the capsule 130 can be suppressed by controlling the operation of the cartridge-side heating section 40A and the operation of the capsule-side heating section 40B. becomes possible.
  • the control unit 116 controls the operation of the cartridge-side heating unit 40A and the operation of the capsule-side heating unit 40B according to the orientation of the capsule 130 corresponding to the orientation of the aerosol generation system 1 detected by the sensor unit 112.
  • the attitude of the capsule 130 is the angle between the direction of the aerosol flow path in the capsule 130 (that is, the direction of the straight line connecting the lower partition 131D and the upper partition 131U) and the vertical direction.
  • the attitude of the capsule 130 refers to the angle ⁇ of the aerosol generating system 1 . That is, the control unit 116 according to this embodiment controls the operation of the cartridge-side heating unit 40A and the operation of the capsule-side heating unit 40B according to the angle ⁇ of the aerosol generation system 1 detected by the sensor unit 112.
  • control unit 116 controls the operation of the cartridge-side heating unit 40A so that the amount of aerosol generated decreases as the inclination of the aerosol flow path in the flavor source storage unit 131 approaches horizontal.
  • the operation of the capsule-side heating section 40B is controlled so that the temperature of the heating section 40B rises.
  • control unit 116 controls the operation of the cartridge-side heating unit 40A so that the amount of aerosol generated decreases as the angle ⁇ of the aerosol-generating system 1 increases (closer to 90°).
  • the operation of the capsule-side heating section 40B is controlled so that the temperature of the section 40B rises.
  • the angle ⁇ of the aerosol generation system 1 is detected periodically. Then, the control unit 116 controls the operation of the cartridge-side heating unit 40A and the operation of the capsule-side heating unit 40B based on the most recently detected angle ⁇ . According to such a configuration, the operation of the cartridge-side heating section 40A and the operation of the capsule-side heating section 40B are controlled so as to follow the angle ⁇ of the aerosol-generating system 1 that changes every moment when the aerosol-generating system 1 is used. becomes possible.
  • FIG. 6 is a flowchart showing an example of the flow of processing executed in the aerosol generation system 1 according to this embodiment.
  • the control unit 116 determines whether or not the timing for detecting the angle ⁇ of the aerosol generation system 1 has arrived (step S102). When it is determined that the timing for detecting the angle ⁇ of the aerosol generating system 1 has not arrived (step S102: NO), the control unit 116 waits until the timing for detecting the angle ⁇ of the aerosol generating system 1 arrives. .
  • the control unit 116 controls the sensor unit 112 to detect the angle ⁇ of the aerosol generation system 1 (step S104). For example, the control unit 116 acquires the angle ⁇ of the aerosol generation system 1 based on the acceleration detected by the acceleration sensor as the sensor unit 112 .
  • control unit 116 determines whether or not the detected angle ⁇ of the aerosol generation system 1 has changed since the previous detection (step S106).
  • step S106 When it is determined that the angle ⁇ of the aerosol generation system 1 has changed since the previous detection (step S106: YES), the control unit 116 adjusts the cartridge-side heating unit based on the angle ⁇ of the aerosol generation system 1 detected this time. 40A and the operation of the capsule-side heating unit 40B are controlled (step S108). After that, the process ends.
  • step S106 NO
  • the aerosol generation system 1 has a plurality of capsule-side heating units 40B, and the operation of the plurality of capsule-side heating units 40B is controlled according to the angle ⁇ of the aerosol generation system 1.
  • This is an example of This modification will be described in detail with reference to FIGS. 7 and 8.
  • FIG. 7 is an example of This modification.
  • FIG. 7 is a diagram schematically showing an example of arrangement of a plurality of capsule-side heating units 40B according to this modified example.
  • FIG. 8 is a diagram for explaining an example of control of the plurality of capsule-side heating units 40B shown in FIG.
  • the aerosol generating system 1 has four capsule-side heating units 40B (40B-1 to 40B-4) arranged at different positions around the capsule .
  • the capsule-side heating section 40B-1 is arranged so as to cover the left half of the upper side surface of the capsule containing section 50.
  • the capsule-side heating section 40B-2 is arranged so as to cover the left half of the lower side surface of the capsule containing section 50.
  • FIG. 1 is a diagram schematically showing an example of arrangement of a plurality of capsule-side heating units 40B according to this modified example.
  • FIG. 8 is a diagram for explaining an example of control of the plurality of capsule-side heating units 40B shown in FIG.
  • the aerosol generating system 1 has four capsule-side heating units 40B (
  • the capsule-side heating section 40B-3 is arranged so as to cover the right half of the upper side surface of the capsule containing section 50. As shown in FIG.
  • the capsule-side heating section 40B-4 is arranged so as to cover the right half of the lower side surface of the capsule containing section 50.
  • the control unit 116 controls the operation of the four capsule-side heating units 40B according to the angle ⁇ of the aerosol generation system 1.
  • control unit 116 controls the output of the capsule-side heating unit 40B arranged vertically among the four capsule-side heating units 40B to be the output of the capsule-side heating unit 40B arranged in the opposite vertical direction. Control to be higher than For example, based on the angle ⁇ of the aerosol generation system 1 detected by the sensor unit 112, the control unit 116 identifies the capsule-side heating unit 40B positioned in the vertical direction. Then, the control unit 116 controls the four capsule-side heating units 40B so that the temperature of the capsule-side heating unit 40B located in the vertical direction is higher than the temperature of the capsule-side heating unit 40B located in the opposite vertical direction. control the power supply to
  • the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (1).
  • H1 is the output of the capsule side heating section 40B-1
  • H2 is the output of the capsule side heating section 40B-2
  • H3 is the output of the capsule side heating section 40B-3
  • H4 is the output of the capsule side heating section 40B-3. This is the output of the capsule-side heating section 40B-4.
  • the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (1).
  • the capsule-side heating units 40B-1, 40B-2, and 40B-4 are positioned below the upper surface 133U of the flavor source 133, About half of the portion 40B-3 is located below the upper surface 133U of the flavor source 133.
  • the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (2).
  • the capsule-side heating units 40B-1 and 40B-2 are positioned below the upper surface 133U of the flavor source 133, and the capsule-side heating unit 40B-3 is positioned below the upper surface 133U of the flavor source 133, and about half of the capsule-side heating section 40B-4 is positioned below the upper surface 133U of the flavor source 133. Therefore, the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (3).
  • H1 H2 > H4 > H3 (3)
  • the capsule-side heating units 40B-1 and 40B-2 are positioned below the upper surface 133U of the flavor source 133, and the capsule-side heating units 40B-3 and B- 4 is located below the upper surface 133U of the flavor source 133.
  • the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (4).
  • the flavor source 133 stored in the flavor source storage unit 131 can be efficiently heated by the capsule-side heating unit 40B positioned below the upper surface 133U of the flavor source 133. Moreover, since heating can be performed with high efficiency, power consumption can be suppressed.
  • FIG. 9 is an explanatory diagram for explaining this modified example.
  • the aerosol generating system 1 according to this modified example is provided with a concave portion 16 . It is assumed that the user places the thumb on the recess 16 and puffs while supporting the aerosol generating system 1 with the thumb. That is, it is assumed that the recess 16 is positioned vertically during puffing.
  • the aerosol generating system 1 has four capsule-side heating units 40B (40B-1 to 40B-4) arranged at different positions around the capsule 130, as in the first modification. are doing. However, as shown in FIG. 9, the capsule-side heating units 40B-1 and 40B-2 are arranged on the side where the concave portion 16 is provided. On the other hand, capsule-side heating units 40B-3 and 40B-4 are arranged on the side opposite to the side where the concave portion 16 is provided. When the user puffs, it is assumed that the concave portion 16 is positioned vertically, so the capsule-side heating units 40B-1 and 40B-2 are positioned vertically, and the capsule-side heating units 40B-3 and 40B- 4 is assumed to lie in the opposite vertical direction.
  • the control unit 116 controls the outputs of the capsule-side heating units 40B-1 and 40B-2, which are assumed to be positioned in the vertical direction when the user performs a puff, among the four capsule-side heating units 40B so that the outputs of the capsule-side heating units 40B-1 and 40B-2 are reversed in the vertical direction. It is controlled to be higher than the output of the capsule side heating units 40B-3 and 40B-4 assumed to be located in the direction. According to this configuration, the flavor source 133 stored in the flavor source storage unit 131 can be efficiently heated by the capsule-side heating unit 40B assumed to be positioned below the upper surface 133U of the flavor source 133. . Moreover, since heating can be performed with high efficiency, power consumption can be suppressed.
  • the concave portion 16 was given as an example of the configuration for limiting the posture of the aerosol generating system 1 during puffing, but the present invention is not limited to such an example.
  • convex portions may be provided.
  • This modification is an example in which the aerosol generation system 1 has a plurality of capsule-side heating units 40B, like the first modification.
  • the aerosol generating system 1 according to this modification has a mechanism in which the positions of the plurality of capsule-side heating units 40B are changed according to the posture of the aerosol-generating system 1 so that a specific capsule-side heating unit 40B is positioned in the vertical direction.
  • FIG. 10 is an explanatory diagram for explaining this modified example.
  • a rotating shaft 52 that coincides with the cylindrical axis direction of the capsule 130 is provided on the bottom surface of the capsule housing portion 50 of the aerosol generating system 1 according to this modification.
  • the capsule housing part 50 is rotatable along a rotation axis 52 .
  • Capsule-side heating units 40B-1 to 40B-4 arranged to cover the outer periphery of capsule housing part 50 are also rotatable together with capsule housing part 50. As shown in FIG.
  • a weight 53 is arranged outside the capsule-side heating section 40B-1 and the capsule-side heating section 40B-2. Therefore, when the aerosol generating system 1 is tilted, the capsule containing section 50 and the capsule-side heating sections 40B-1 to 40B-4 rotate along the rotating shaft 52 so that the weight 53 is positioned vertically. . As a result, the capsule-side heating section 40B-1 and the capsule-side heating section 40B-2 are always positioned vertically. Therefore, the capsule-side heating section 40B-1 and the capsule-side heating section 40B-2 are controlled to have the highest output among the four capsule-side heating sections 40B.
  • the capsule-side heating units 40B-1 and 40B-2 which are controlled to have the highest output, are always positioned in the vertical direction, and the flavor source 133 stored in the flavor source storage unit 131 is efficiently heated. It can be heated well. Moreover, since heating can be performed with high efficiency, power consumption can be suppressed.
  • the rotating shaft 52 and the weight 53 were given as an example of the rotating mechanism for rotating the plurality of capsule-side heating units 40B, but the present invention is not limited to such an example. Any other configuration may be utilized as the rotating mechanism.
  • the angle ⁇ of the aerosol generating system 1 is periodically detected, but the present invention is not limited to this example.
  • the control unit 116 controls the operation of the cartridge side heating unit 40A according to the angle ⁇ of the aerosol generation system 1 at the first timing, and controls the operation of the capsule side heating unit 40A according to the angle ⁇ of the aerosol generation system 1 at the second timing. 40B may be controlled.
  • the first timing is, for example, the timing when the start of the puff is detected.
  • the control unit 116 controls the operation of the cartridge-side heating unit 40A so as to generate an amount of aerosol corresponding to the angle ⁇ of the aerosol generation system 1 detected at the timing when the start of the puff is detected. It is believed that the angle ⁇ of the aerosol generating system 1 can vary significantly before and after the puff is started. In this regard, according to this configuration, it is possible to generate an appropriate amount of aerosol according to the angle ⁇ of the aerosol generating system 1 after puffing is started.
  • the second timing is, for example, the timing when the aerosol generation system 1 is powered on, the periodic timing between when the power of the aerosol generation system 1 is turned on and the power is turned off, and the timing when the start of the puff is detected. , and the timing at which the end of the puff is detected.
  • the temperature of the capsule-side heating section 40B may be controlled according to the angle ⁇ of the aerosol-generating system 1 at various timings while the aerosol-generating system 1 is in use.
  • control unit 116 may control the operation of the capsule-side heating unit 40B according to the angle ⁇ of the aerosol generation system 1 at the timing when the start of the puff was detected in the past. That is, the control unit 116 may learn the angle ⁇ of the aerosol generation system 1 when the user puffs, and control the operation of the capsule-side heating unit 40B according to the learned angle ⁇ . Since the capsule-side heating section 40B heats the flavor source storage section 131 from the outer periphery, it takes time to raise the temperature of the entire flavor source 133 stored in the flavor source storage section 131 . In this respect, according to this configuration, it is possible to sufficiently raise the temperature of the flavor source 133 stored in the flavor source storage unit 131 in advance.
  • cartridge 120 and the capsule 130 commonly contain the second flavor component, but the present invention is not limited to this example.
  • Cartridge 120 and capsule 130 may not contain a second flavor segment.
  • capsule 130 may contain a first flavoring ingredient and cartridge 120 may not contain any flavoring ingredient. Even in that case, by performing the same control as in the above-described embodiment, it is possible to suppress changes in taste balance caused by changes in the angle ⁇ of the aerosol generation system 1 .
  • a program that constitutes software is stored in advance in a recording medium (more specifically, a non-temporary computer-readable storage medium) provided inside or outside each device, for example.
  • a recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed, for example, via a network without using a recording medium.
  • the following configuration also belongs to the technical scope of the present invention.
  • the operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material. Equipped with a control unit that controls according to the posture of the material, Aerosol generation system.
  • the second base material is the flavor source configured in a granular form; a flavor source storage unit storing the flavor source in an internal space; has the flavor source moves in the internal space of the flavor source storage unit according to the orientation of the second base material;
  • the aerosol generating system according to (1) above.
  • the control unit controls the operation of the generation unit such that the amount of the aerosol generated decreases as the inclination of the aerosol flow path in the flavor source storage unit approaches horizontal, and the temperature of the second base material decreases. controlling the operation of the heating unit so that the The aerosol generating system according to (2) above.
  • the aerosol generation system comprises an orientation sensor that detects the orientation of the aerosol generation system, The control unit controls the operation of the generation unit and the operation of the heating unit according to the attitude of the second base material corresponding to the attitude of the aerosol generation system detected by the attitude sensor.
  • the aerosol generating system according to any one of (1) to (3) above.
  • the control unit controls the operation of the generating unit according to the orientation of the second substrate at a first timing, and controls the operation of the heating unit according to the orientation of the second substrate at a second timing.
  • control and The first timing is the timing at which the start of the puff is detected
  • the second timing includes the timing when the aerosol generation system is powered on, the periodic timing from when the aerosol generation system is powered on until it is powered off, the timing when the start of the puff is detected, and at least one of the timing at which the end of the puff is detected,
  • the aerosol generating system according to any one of (1) to (4) above.
  • the control unit controls the operation of the heating unit according to the attitude of the second base material at the timing when the start of the puff was detected in the past.
  • the aerosol generating system according to any one of (1) to (4) above.
  • the aerosol generating system comprises a plurality of heating units arranged at different positions around the second substrate, The control unit controls the operation of the plurality of heating units according to the posture of the second base material.
  • the aerosol generating system according to any one of (1) to (6) above.
  • the control unit controls so that the output of the heating unit arranged in the vertical direction among the plurality of heating units is higher than the output of the heating unit arranged in the opposite direction of the vertical direction.
  • the aerosol generating system according to (7) above.
  • the aerosol generating system comprises a plurality of heating units arranged at different positions around the second substrate,
  • the control unit controls the output of the heating unit assumed to be positioned in the vertical direction when the user puffs out of the plurality of heating units, and the output of the heating unit assumed to be positioned in the opposite direction to the vertical direction. controlled to be higher than
  • the aerosol generating system according to any one of (1) to (8) above.
  • the aerosol generating system includes a plurality of heating units arranged rotatably around the second substrate at different positions around the second substrate; a rotating mechanism that rotates the plurality of heating units so that the heating unit that is controlled to have the highest output among the plurality of heating units is positioned in a vertical direction; comprising a The aerosol generating system according to any one of (1) to (9) above.
  • the second base contains a first flavor component and a second flavor component different from the first flavor component, the aerosol source contains the second flavoring ingredient;
  • the aerosol generating system according to any one of (1) to (10) above.
  • the aerosol-generating system comprises the first substrate and the second substrate;
  • the operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material.
  • Control according to the posture of the material Control method including. (14) the computer, The operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material.

Abstract

[Problem] To provide a mechanism capable of further improving the quality of user experience. [Solution] An aerosol generation system comprising a control unit for controlling the operation of a generation unit that generates aerosol from an aerosol source retained in a first base material and the operation of a heating unit that heats a second base material containing a flavor source for imparting a flavor component to the aerosol, in accordance with the orientation of the second base material.

Description

エアロゾル生成システム、制御方法、及びプログラムAEROSOL GENERATION SYSTEM, CONTROL METHOD, AND PROGRAM
 本発明は、エアロゾル生成システム、制御方法、及びプログラムに関する。 The present invention relates to an aerosol generation system, control method, and program.
 電子タバコ及びネブライザ等の、ユーザに吸引される物質を生成する吸引装置が広く普及している。例えば、吸引装置は、エアロゾルを生成するためのエアロゾル源、及び生成されたエアロゾルに香味成分を付与するための香味源等を含む基材を用いて、香味成分が付与されたエアロゾルを生成する。ユーザは、吸引装置により生成された、香味成分が付与されたエアロゾルを吸引することで、香味を味わうことができる。ユーザがエアロゾルを吸引する動作を、以下ではパフ又はパフ動作とも称する。 Inhalation devices, such as electronic cigarettes and nebulizers, that produce substances that are inhaled by the user are widespread. For example, the suction device uses a base material including an aerosol source for generating an aerosol and a flavor source for imparting a flavor component to the generated aerosol to generate an aerosol imparted with a flavor component. A user can enjoy the flavor by inhaling the flavor component-applied aerosol generated by the suction device. The action of the user inhaling the aerosol is hereinafter also referred to as puffing or puffing action.
 吸引装置を用いたユーザ体験の質を向上させるための様々な技術が検討されている。例えば、下記特許文献1では、吸引装置にモーションセンサを設け、モーションセンサにより検出されたジェスチャに対応する動作を吸引装置に実行させる技術が開示されている。 Various technologies are being considered to improve the quality of user experience using suction devices. For example, Patent Literature 1 below discloses a technique in which a motion sensor is provided in a suction device and the suction device performs an operation corresponding to a gesture detected by the motion sensor.
特開2021-58212号公報Japanese Patent Application Laid-Open No. 2021-58212
 上記特許文献1に記載の技術は、吸引装置の姿勢をジェスチャの検出に用いるものに過ぎなかった。 The technology described in Patent Document 1 above merely uses the posture of the suction device to detect gestures.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、ユーザ体験の質をより向上させることが可能な仕組みを提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a mechanism capable of further improving the quality of user experience.
 上記課題を解決するために、本発明のある観点によれば、第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御する制御部を備える、エアロゾル生成システムが提供される。 In order to solve the above problems, according to one aspect of the present invention, the operation of a generating unit that generates an aerosol from an aerosol source stored in a first base material, and the flavor source that imparts a flavor component to the aerosol are included. An aerosol generating system is provided, comprising a control unit that controls the operation of a heating unit that heats a second substrate according to the attitude of the second substrate.
 前記第2基材は、粒状に構成された前記香味源と、内部空間に前記香味源を貯蔵する香味源貯蔵部と、を有し、前記第2基材の姿勢に応じて、前記香味源貯蔵部の前記内部空間で前記香味源が移動してもよい。 The second base material has the flavor source configured in the form of granules, and a flavor source storage part that stores the flavor source in an internal space, and the flavor source is changed depending on the posture of the second base material. The flavor source may move within the interior space of the reservoir.
 前記制御部は、前記香味源貯蔵部における前記エアロゾルの流路の傾斜が水平に近づくほど、前記エアロゾルの生成量が低下するように前記生成部の動作を制御し、前記第2基材の温度が上昇するよう前記加熱部の動作を制御してもよい。 The control unit controls the operation of the generation unit such that the amount of the aerosol generated decreases as the inclination of the aerosol flow path in the flavor source storage unit approaches horizontal, and the temperature of the second base material decreases. You may control the operation|movement of the said heating part so that .
 前記エアロゾル生成システムは、前記エアロゾル生成システムの姿勢を検出する姿勢センサを備え、前記制御部は、前記姿勢センサにより検出された前記エアロゾル生成システムの姿勢に対応する前記第2基材の姿勢に応じて、前記生成部の動作及び前記加熱部の動作を制御してもよい。 The aerosol generation system includes an orientation sensor that detects an orientation of the aerosol generation system, and the controller controls the orientation of the second base material corresponding to the orientation of the aerosol generation system detected by the orientation sensor. may be used to control the operation of the generating unit and the operation of the heating unit.
 前記制御部は、第1のタイミングにおける前記第2基材の姿勢に応じて前記生成部の動作を制御し、第2のタイミングにおける前記第2基材の姿勢に応じて前記加熱部の動作を制御し、前記第1のタイミングは、パフの開始が検出されたタイミングであり、前記第2のタイミングは、前記エアロゾル生成システムが電源ONされたタイミング、前記エアロゾル生成システムが電源ONされてから電源OFFされるまでの間の周期的なタイミング、パフの開始が検出されたタイミング、及びパフの終了が検出されたタイミングの少なくともいずれか1つであってもよい。 The control unit controls the operation of the generating unit according to the orientation of the second substrate at a first timing, and controls the operation of the heating unit according to the orientation of the second substrate at a second timing. The first timing is the timing when the start of the puff is detected, the second timing is the timing when the aerosol generation system is powered on, and the power is turned on after the aerosol generation system is powered on. At least one of the periodic timing until the puff is turned off, the timing when the start of the puff is detected, and the timing when the end of the puff is detected may be used.
 前記制御部は、過去にパフの開始が検出されたタイミングにおける前記第2基材の姿勢に応じて、前記加熱部の動作を制御してもよい。 The control unit may control the operation of the heating unit according to the attitude of the second base material at the timing when the start of the puff was detected in the past.
 前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に配置される複数の前記加熱部を備え、前記制御部は、前記第2基材の姿勢に応じて、複数の前記加熱部の動作を制御してもよい。 The aerosol generating system includes a plurality of heating units arranged at different positions around the second substrate, and the control unit controls the plurality of heating units according to the orientation of the second substrate. may control the operation of
 前記制御部は、複数の前記加熱部のうち鉛直方向に配置された前記加熱部の出力が、鉛直方向の逆方向に配置された前記加熱部の出力よりも高くなるよう制御してもよい。 The control unit may control so that the output of the heating unit arranged in the vertical direction among the plurality of heating units is higher than the output of the heating unit arranged in the opposite direction of the vertical direction.
 前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に配置される複数の前記加熱部を備え、前記制御部は、複数の前記加熱部のうちユーザがパフを行う際に鉛直方向に位置すると想定される前記加熱部の出力が、鉛直方向の逆方向に位置すると想定される前記加熱部の出力よりも高くなるよう制御してもよい。 The aerosol generating system includes a plurality of the heating units arranged at different positions around the second substrate, and the control unit controls the vertical direction of the plurality of heating units when the user puffs. The output of the heating unit assumed to be located in the vertical direction may be controlled to be higher than the output of the heating unit assumed to be located in the opposite vertical direction.
 前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に、前記第2基材の周囲を回転可能に配置される複数の前記加熱部と、複数の前記加熱部のうち最も出力が高くなるよう制御される前記加熱部が鉛直方向に位置するよう複数の前記加熱部を回転させる回転機構と、を備えてもよい。 The aerosol generation system includes a plurality of heating units arranged rotatably around the second substrate at different positions around the second substrate, and the heating units having the highest output among the plurality of heating units. and a rotating mechanism for rotating the plurality of heating units such that the heating units controlled to be elevated are positioned in the vertical direction.
 前記第2基材は、第1の香味成分及び前記第1の香味成分とは異なる第2の香味成分を含有し、前記エアロゾル源は、前記第2の香味成分を含有してもよい。 The second base material may contain a first flavor component and a second flavor component different from the first flavor component, and the aerosol source may contain the second flavor component.
 前記エアロゾル生成システムは、前記第1基材及び前記第2基材を備えてもよい。 The aerosol generating system may comprise the first substrate and the second substrate.
 また、上記課題を解決するために、本発明の別の観点によれば、第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御すること、を含む制御方法が提供される。 Further, in order to solve the above problems, according to another aspect of the present invention, the operation of a generating unit that generates an aerosol from an aerosol source stored in a first base material, and the flavor that imparts a flavor component to the aerosol A control method is provided, including controlling the operation of a heating unit that heats a second substrate including a source according to the orientation of the second substrate.
 また、上記課題を解決するために、本発明の別の観点によれば、コンピュータを、第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御する制御部、として機能させるためのプログラムが提供される。 Further, in order to solve the above problems, according to another aspect of the present invention, a computer controls the operation of a generating unit that generates an aerosol from an aerosol source stored in a first base material, and the addition of a flavor component to the aerosol. A program is provided for functioning as a control section that controls the operation of the heating section that heats the second base material including the flavor source to be imparted, according to the posture of the second base material.
 以上説明したように本発明によれば、ユーザ体験の質をより向上させることが可能な仕組みが提供される。 As described above, according to the present invention, a mechanism is provided that can further improve the quality of user experience.
本発明の一実施形態に係るエアロゾル生成システムの論理的な構成例を模式的に示す模式図である。1 is a schematic diagram schematically showing a logical configuration example of an aerosol generation system according to an embodiment of the present invention; FIG. 本実施形態に係るエアロゾル生成システムの物理的な構成例を模式的に示す図である。1 is a diagram schematically showing a physical configuration example of an aerosol generating system according to this embodiment; FIG. 本実施形態に係るカプセルの物理的な構成を模式的に示す図である。FIG. 2 is a diagram schematically showing the physical configuration of a capsule according to this embodiment; FIG. 本実施形態に係るエアロゾル生成システムの角度θが0度である場合の様子を模式的に示す図である。FIG. 4 is a diagram schematically showing the state of the aerosol generating system according to the present embodiment when the angle θ is 0 degrees; 本実施形態に係るエアロゾル生成システムの角度θが90度である場合の様子を模式的に示す図である。FIG. 4 is a diagram schematically showing the state when the angle θ of the aerosol generating system according to the present embodiment is 90 degrees; 本実施形態に係るエアロゾル生成システムにおいて実行される処理の流れの一例を示すフローチャートである。4 is a flow chart showing an example of the flow of processing executed in the aerosol generation system according to the present embodiment; 第1の変形例に係る複数のカプセル側加熱部の配置の一例を模式的に示す図である。FIG. 10 is a diagram schematically showing an example of the arrangement of a plurality of capsule-side heating units according to a first modified example; 図7に示した複数のカプセル側加熱部の制御の一例を説明するための図である。8 is a diagram for explaining an example of control of a plurality of capsule-side heating units shown in FIG. 7; FIG. 第2の変形例について説明するための説明図である。It is an explanatory view for explaining the 2nd modification. 第3の変形例について説明するための説明図である。It is an explanatory view for explaining the 3rd modification.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
 <1.エアロゾル生成システムの概略的な構成例>
 エアロゾル生成システムは、ユーザにより吸引される物質を生成するシステムである。以下では、エアロゾル生成システムにより生成される物質が、エアロゾルであるものとして説明する。他に、エアロゾル生成システムにより生成される物質は、気体であってもよい。以下、図1を参照しながら、本実施形態に係るエアロゾル生成システムの構成例を説明する。
<1. Schematic Configuration Example of Aerosol Generation System>
An aerosol generating system is a system that produces a substance that is inhaled by a user. The following description assumes that the substance produced by the aerosol-generating system is an aerosol. Alternatively, the substance produced by the aerosol-generating system may be a gas. A configuration example of the aerosol generation system according to the present embodiment will be described below with reference to FIG.
 図1は、本発明の一実施形態に係るエアロゾル生成システムの論理的な構成例を模式的に示す模式図である。図1に示すように、エアロゾル生成システム1は、電源ユニット110、カートリッジ120、及びカプセル130を含む。電源ユニット110とカートリッジ120とは、着脱可能に接続される。エアロゾル生成システム1は、カプセル130を収容可能なカプセル収容部50を有する。エアロゾル生成システム1は、電源ユニット110とカートリッジ120とが接続され、且つカプセル収容部50にカプセル130が収容された状態で、ユーザに吸引されるエアロゾルを生成する。 FIG. 1 is a schematic diagram schematically showing a logical configuration example of an aerosol generation system according to one embodiment of the present invention. As shown in FIG. 1, the aerosol generation system 1 includes a power supply unit 110, a cartridge 120 and a capsule 130. As shown in FIG. The power supply unit 110 and the cartridge 120 are detachably connected. The aerosol generating system 1 has a capsule containing portion 50 capable of containing the capsule 130 . The aerosol generation system 1 generates an aerosol to be inhaled by the user, with the power supply unit 110 and the cartridge 120 connected and the capsule 130 housed in the capsule housing portion 50 .
 図1に示すように、電源ユニット110は、電源部111、センサ部112、通知部113、記憶部114、通信部115、及び制御部116を含む。 As shown in FIG. 1, the power supply unit 110 includes a power supply section 111, a sensor section 112, a notification section 113, a storage section 114, a communication section 115, and a control section .
 電源部111は、電力を蓄積する。そして、電源部111は、エアロゾル生成システム1の各構成要素に、電力を供給する。電源部111は、例えば、リチウムイオン二次電池等の充電式バッテリにより構成され得る。電源部111は、USB(Universal Serial Bus)ケーブル等により外部電源に接続されることで、充電されてもよい。また、電源部111は、ワイヤレス電力伝送技術により送電側のデバイスに非接続な状態で充電されてもよい。他にも、電源部111のみを電源ユニット110から取り外すことができてもよく、新しい電源部111と交換することができてもよい。 The power supply unit 111 accumulates power. The power supply unit 111 supplies electric power to each component of the aerosol generation system 1 . The power supply unit 111 may be composed of, for example, a rechargeable battery such as a lithium ion secondary battery. The power supply unit 111 may be charged by being connected to an external power supply via a USB (Universal Serial Bus) cable or the like. Also, the power supply unit 111 may be charged in a state of being disconnected from the device on the power transmission side by wireless power transmission technology. Alternatively, only the power supply unit 111 may be removed from the power supply unit 110, or may be replaced with a new power supply unit 111. FIG.
 センサ部112は、エアロゾル生成システム1に関する各種情報を検出する。そして、センサ部112は、検出した情報を制御部116に出力する。一例として、センサ部112は、コンデンサマイクロホン等の圧力センサ、流量センサ又は温度センサにより構成される。そして、センサ部112は、ユーザによる吸引に伴う数値を検出した場合に、ユーザによる吸引が行われたことを示す情報を制御部116に出力する。他の一例として、センサ部112は、ボタン又はスイッチ等の、ユーザからの情報の入力を受け付ける入力装置により構成される。そして、センサ部112は、ユーザにより入力された情報を制御部116に出力する。他の一例として、センサ部112は、カプセル側加熱部40Bの温度を検出する温度センサにより構成される。かかる温度センサは、例えば、カプセル側加熱部40Bを構成する導電トラックの電気抵抗値に基づいて、カプセル側加熱部40Bの温度を検出する。他の一例として、センサ部112は、エアロゾル生成システム1(より詳しくは、電源ユニット110)の姿勢を検出する姿勢センサを有する。姿勢センサの一例は、ジャイロセンサ、及び加速度センサである。 The sensor unit 112 detects various types of information regarding the aerosol generation system 1. The sensor unit 112 then outputs the detected information to the control unit 116 . As an example, the sensor unit 112 is configured by a pressure sensor such as a condenser microphone, a flow rate sensor, or a temperature sensor. When the sensor unit 112 detects a numerical value associated with the user's suction, the sensor unit 112 outputs information indicating that the user has performed suction to the control unit 116 . As another example, the sensor unit 112 is configured by an input device, such as a button or switch, that receives information input from the user. The sensor unit 112 then outputs the information input by the user to the control unit 116 . As another example, the sensor section 112 is configured by a temperature sensor that detects the temperature of the capsule-side heating section 40B. Such a temperature sensor detects the temperature of the capsule-side heating section 40B, for example, based on the electrical resistance value of the conductive tracks forming the capsule-side heating section 40B. As another example, the sensor unit 112 has an orientation sensor that detects the orientation of the aerosol generation system 1 (more specifically, the power supply unit 110). Examples of attitude sensors are gyro sensors and acceleration sensors.
 通知部113は、情報をユーザに通知する。一例として、通知部113は、LED(Light Emitting Diode)などの発光装置により構成される。その場合、通知部113は、電源部111の状態が要充電である場合、電源部111が充電中である場合、及びエアロゾル生成システム1に異常が発生した場合等に、それぞれ異なる発光パターンで発光する。ここでの発光パターンとは、色、及び点灯/消灯のタイミング等を含む概念である。通知部113は、発光装置と共に、又は代えて、画像を表示する表示装置、音を出力する音出力装置、及び振動する振動装置等により構成されてもよい。他にも、通知部113は、ユーザによる吸引が可能になったことを示す情報を通知してもよい。ユーザによる吸引が可能になったことを示す情報は、例えば、カプセル側加熱部40Bの温度が所定の温度に達した場合に、通知される。 The notification unit 113 notifies the user of information. As an example, the notification unit 113 is configured by a light-emitting device such as an LED (Light Emitting Diode). In this case, the notification unit 113 emits light in a different light emission pattern when the power source unit 111 needs to be charged, when the power source unit 111 is being charged, when an abnormality occurs in the aerosol generation system 1, and the like. do. The light emission pattern here is a concept including color, timing of lighting/lighting out, and the like. The notification unit 113 may be configured by a display device that displays an image, a sound output device that outputs sound, a vibration device that vibrates, or the like, together with or instead of the light emitting device. In addition, the notification unit 113 may notify information indicating that suction by the user has become possible. Information indicating that the user can inhale is notified, for example, when the temperature of the capsule-side heating section 40B reaches a predetermined temperature.
 記憶部114は、エアロゾル生成システム1の動作のための各種情報を記憶する。記憶部114は、例えば、フラッシュメモリ等の不揮発性の記憶媒体により構成される。記憶部114に記憶される情報の一例は、制御部116による各種構成要素の制御内容等の、エアロゾル生成システム1のOS(Operating System)に関する情報である。記憶部114に記憶される情報の他の一例は、吸引回数、吸引時刻、吸引時間累計等の、ユーザによる吸引に関する情報である。 The storage unit 114 stores various information for the operation of the aerosol generation system 1. The storage unit 114 is configured by, for example, a non-volatile storage medium such as flash memory. An example of the information stored in the storage unit 114 is information related to the OS (Operating System) of the aerosol generation system 1, such as control details of various components by the control unit 116. Another example of the information stored in the storage unit 114 is information related to suction by the user, such as the number of times of suction, suction time, total suction time, and the like.
 通信部115は、エアロゾル生成システム1と他の装置との間で情報を送受信するための、通信インタフェースである。通信部115は、有線又は無線の任意の通信規格に準拠した通信を行う。かかる通信規格としては、例えば、無線LAN(Local Area Network)、有線LAN、Wi-Fi(登録商標)、又はBluetooth(登録商標)等が採用され得る。一例として、通信部115は、ユーザによる吸引に関する情報をスマートフォンに表示させるために、ユーザによる吸引に関する情報をスマートフォンに送信する。他の一例として、通信部115は、記憶部114に記憶されているOSの情報を更新するために、サーバから新たなOSの情報を受信する。 The communication unit 115 is a communication interface for transmitting and receiving information between the aerosol generation system 1 and other devices. The communication unit 115 performs communication conforming to any wired or wireless communication standard. As such a communication standard, for example, wireless LAN (Local Area Network), wired LAN, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be adopted. As an example, the communication unit 115 transmits information about suction by the user to the smartphone so that the smartphone displays information about suction by the user. As another example, the communication unit 115 receives new OS information from the server in order to update the OS information stored in the storage unit 114 .
 制御部116は、演算処理装置及び制御装置として機能し、各種プログラムに従ってエアロゾル生成システム1内の動作全般を制御する。制御部116は、例えばCPU(Central Processing Unit)、及びマイクロプロセッサ等の電子回路によって実現される。他に、制御部116は、使用するプログラム及び演算パラメータ等を記憶するROM(Read Only Memory)、並びに適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)を含んでいてもよい。エアロゾル生成システム1は、制御部116による制御に基づいて、各種処理を実行する。電源部111から他の各構成要素への給電、電源部111の充電、センサ部112による情報の検出、通知部113による情報の通知、記憶部114による情報の記憶及び読み出し、並びに通信部115による情報の送受信は、制御部116により制御される処理の一例である。各構成要素への情報の入力、及び各構成要素から出力された情報に基づく処理等、エアロゾル生成システム1により実行されるその他の処理も、制御部116により制御される。 The control unit 116 functions as an arithmetic processing device and a control device, and controls overall operations within the aerosol generation system 1 according to various programs. The control unit 116 is realized by an electronic circuit such as a CPU (Central Processing Unit) and a microprocessor. In addition, the control unit 116 may include a ROM (Read Only Memory) for storing programs to be used, calculation parameters, etc., and a RAM (Random Access Memory) for temporarily storing parameters, etc. that change as appropriate. The aerosol generation system 1 executes various processes based on control by the control unit 116 . Power supply from power supply unit 111 to other components, charging of power supply unit 111, detection of information by sensor unit 112, notification of information by notification unit 113, storage and reading of information by storage unit 114, and communication unit 115 Transmission and reception of information is an example of processing controlled by the control unit 116 . Other processes executed by the aerosol generation system 1, such as information input to each component and processing based on information output from each component, are also controlled by the control unit 116. FIG.
 カートリッジ120は、カートリッジ側加熱部40A、液誘導部122、及び液貯蔵部123を含む。 The cartridge 120 includes a cartridge-side heating section 40A, a liquid guide section 122, and a liquid storage section 123.
 液貯蔵部123は、エアロゾル源を貯蔵する。エアロゾル源は、加熱されることで霧化され、エアロゾルが生成される。エアロゾル源は、例えば、グリセリン及びプロピレングリコール等の多価アルコール、並びに水等の液体である。エアロゾル源は、加熱されることによって香味成分を放出する、たばこ原料又はたばこ原料由来の抽出物をさらに含んでいてもよい。エアロゾル源は、ニコチン、及びメンソールをさらに含んでいてもよい。エアロゾル生成システム1がネブライザなどの医療用吸入器である場合、エアロゾル源は、患者が吸入するための薬剤を含んでもよい。 The liquid storage unit 123 stores an aerosol source. The aerosol source is atomized by heating to produce an aerosol. Aerosol sources are, for example, polyhydric alcohols such as glycerin and propylene glycol, and liquids such as water. The aerosol source may further comprise a tobacco material or an extract derived therefrom that releases flavoring components when heated. Aerosol sources may further include nicotine and menthol. If the aerosol-generating system 1 is a medical inhaler such as a nebulizer, the aerosol source may contain a medicament for inhalation by the patient.
 液誘導部122は、液貯蔵部123に貯蔵された液体であるエアロゾル源を、液貯蔵部123から誘導し、保持する。液誘導部122は、例えば、ガラス繊維等の繊維素材又は多孔質状のセラミック等の多孔質状素材を撚って形成されるウィックである。液誘導部122は液貯蔵部123と液体連通している。そのため、液貯蔵部123に貯蔵されたエアロゾル源は、毛細管効果によって、液誘導部122の全体に行き渡る。 The liquid guide section 122 guides the aerosol source, which is the liquid stored in the liquid storage section 123, from the liquid storage section 123 and holds it. The liquid guiding part 122 is a wick formed by twisting a fibrous material such as glass fiber or a porous material such as porous ceramic. Liquid guide portion 122 is in liquid communication with liquid reservoir portion 123 . Therefore, the aerosol source stored in the liquid storage section 123 spreads over the entire liquid guide section 122 due to the capillary effect.
 カートリッジ側加熱部40Aは、エアロゾル源を加熱することで、エアロゾル源を霧化してエアロゾルを生成する。カートリッジ側加熱部40Aは、金属又はポリイミド等の任意の素材で構成される。カートリッジ側加熱部40Aは、液誘導部122に近接して配置される。図1に示した例では、カートリッジ側加熱部40Aは、金属製のコイルにより構成され、液誘導部122に巻き付けられる。よって、カートリッジ側加熱部40Aが発熱すると、液誘導部122に保持されたエアロゾル源が加熱されて霧化され、エアロゾルが生成される。 The cartridge-side heating unit 40A heats the aerosol source to atomize the aerosol source and generate an aerosol. The cartridge-side heating section 40A is made of any material such as metal or polyimide. The cartridge-side heating section 40A is arranged close to the liquid guide section 122 . In the example shown in FIG. 1, the cartridge-side heating section 40A is composed of a metal coil and wound around the liquid guide section 122. As shown in FIG. Therefore, when the cartridge-side heating section 40A generates heat, the aerosol source held in the liquid guide section 122 is heated and atomized to generate an aerosol.
 カートリッジ側加熱部40Aが発熱すると液誘導部122に保持されたエアロゾル源は瞬間的に昇温して霧化するので、パフが行われたタイミングで加熱されることが望ましい。そこで、カートリッジ側加熱部40Aは、パフが行われたことがセンサ部112により検出された場合に加熱し、当該パフにおいて吸引されるエアロゾルを生成する。一例として、パフの開始がセンサ部112により検出されてからパフの終了がセンサ部112により検出されるまでの期間において、エアロゾルが生成されてもよい。他の一例として、パフの開始がセンサ部112により検出されてからの所定期間において、エアロゾルが生成されてもよい。 When the cartridge-side heating section 40A generates heat, the temperature of the aerosol source held in the liquid guide section 122 rises instantaneously and atomization occurs. Therefore, the cartridge-side heating section 40A heats when the sensor section 112 detects that a puff has been performed, and generates an aerosol that is sucked by the puff. As an example, the aerosol may be generated during the period from when the sensor unit 112 detects the start of the puff to when the sensor unit 112 detects the end of the puff. As another example, aerosol may be generated in a predetermined period after the start of the puff is detected by the sensor unit 112 .
 カプセル収容部50は、カプセル130を収容可能な部材である。例えば、カプセル収容部50は、有底の筒状体として構成され、筒状体の内周は、カプセル130の外形に対応した形状を有する。カプセル収容部50の底面には、カートリッジ120により生成されたエアロゾルが通過する貫通孔51が設けられている。 The capsule containing portion 50 is a member capable of containing the capsule 130 . For example, the capsule housing portion 50 is configured as a bottomed cylindrical body, and the inner circumference of the cylindrical body has a shape corresponding to the outer shape of the capsule 130 . A through-hole 51 through which the aerosol generated by the cartridge 120 passes is provided in the bottom surface of the capsule containing portion 50 .
 カプセル130は、香味源貯蔵部131、及び吸口部132を含む。 The capsule 130 includes a flavor source storage portion 131 and a mouthpiece portion 132 .
 香味源貯蔵部131は、香味源を貯蔵する。香味源は、エアロゾルに香味成分を付与する原料片によって構成される。原料片のサイズの下限は、0.2mm以上1.2mm以下であることが好ましい。さらには、原料片のサイズの下限は、0.2mm以上0.7mm以下であることが好ましい。香味源を構成する原料片のサイズが小さいほど、比表面積が増大するため、香味源を構成する原料片から香味成分がリリースされやすい。香味源を構成する原料片としては、刻みたばこ、たばこ原料を粒状に成形した成形体を用いることができる。香味源は、たばこ以外の植物(例えば、ミント、及びハーブ等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。 The flavor source storage unit 131 stores flavor sources. Flavor sources are composed of raw material pieces that impart flavor components to the aerosol. The lower limit of the size of the raw material pieces is preferably 0.2 mm or more and 1.2 mm or less. Furthermore, the lower limit of the size of the raw material pieces is preferably 0.2 mm or more and 0.7 mm or less. The smaller the size of the raw material pieces that make up the flavor source, the greater the specific surface area, so that the flavor components are more likely to be released from the raw material pieces that make up the flavor source. As raw material pieces constituting the flavor source, cut tobacco and a molded product obtained by molding tobacco raw materials into granules can be used. Flavor sources may be composed of plants other than tobacco (eg, mints, herbs, etc.). Flavor sources such as menthol may be added to the flavor source.
 吸口部132は、パフの際にユーザに咥えられる部材である。ユーザが吸口部132を咥えてパフを行うと、カートリッジ側加熱部40Aにより生成されたエアロゾルが香味源貯蔵部131を通過してユーザの口内に到達する。 The mouthpiece 132 is a member held by the user when puffing. When the user holds the mouthpiece 132 in his mouth and performs a puff, the aerosol generated by the cartridge-side heating section 40A passes through the flavor source storage section 131 and reaches the user's mouth.
 カプセル側加熱部40Bは、カプセル130を加熱する。例えば、カプセル側加熱部40Bは、導電トラックを絶縁体により挟んだフィルム状の加熱部として構成され、カプセル収容部50の外周を覆うように配置される。そして、カプセル側加熱部40Bが発熱すると、香味源貯蔵部131が外周から加熱される。これにより、カプセル130を通過するエアロゾルに、香味源貯蔵部131に貯蔵された香味源から香味成分を付与しやすくすることができる。 The capsule-side heating section 40B heats the capsule 130. For example, the capsule-side heating section 40B is configured as a film-shaped heating section in which a conductive track is sandwiched between insulators, and is arranged so as to cover the outer periphery of the capsule containing section 50. As shown in FIG. When the capsule-side heating section 40B generates heat, the flavor source storage section 131 is heated from the outer periphery. Thereby, the aerosol passing through the capsule 130 can be easily imparted with the flavor component from the flavor source stored in the flavor source storage section 131 .
 香味源貯蔵部131は外周から加熱されるので、内部まで均等に昇温するまでには時間がかかる。そのため、カプセル側加熱部40Bによる加熱は、カプセル側加熱部40Bが所定の温度を長期間にわたって維持するように実行されることが望ましい。一例として、第1のユーザ入力がセンサ部112により検出されてから第2のユーザ入力がセンサ部112により検出されるまでの期間、給電されてもよい。第1のユーザ入力は、エアロゾル生成システム1を電源ON状態にするユーザ入力であり、第2のユーザ入力は、エアロゾル生成システム1の電源OFF状態にするユーザ入力であってよい。なお、電源ON状態とは、エアロゾルの生成を含む、エアロゾル生成システム1が有する全ての機能が実行可能な状態である。他方、電源OFF状態とは、エアロゾル生成システム1の機能のうち、電源ON操作を検出する機能以外の少なくとも一部の機能が実行不可能な状態である。即ち、カプセル側加熱部40Bは、電源ON状態において、定常的に加熱していてもよい。ただし、カプセル側加熱部40Bは、カートリッジ側加熱部40Aによる加熱が実行されている期間において給電が停止され、加熱を停止してもよい。消費電力を抑制し、且つ、電源部111への過度な負荷を防止するためである。若しくは、カプセル側加熱部40Bは、パフの開始がセンサ部112により検出されてから所定期間、加熱してもよい。その場合、電源ON状態において常時加熱する場合と比較して、消費電力を抑制し、且つ、香味成分の過剰な揮発を防止することが可能となる。 Since the flavor source storage part 131 is heated from the outer periphery, it takes time to evenly raise the temperature to the inside. Therefore, the heating by the capsule-side heating section 40B is desirably performed so that the capsule-side heating section 40B maintains a predetermined temperature for a long period of time. As an example, power may be supplied during a period from when the first user input is detected by the sensor unit 112 until when the second user input is detected by the sensor unit 112 . The first user input may be a user input that brings the aerosol generation system 1 into a power ON state and the second user input may be a user input that brings the aerosol generation system 1 into a power OFF state. Note that the power ON state is a state in which all functions of the aerosol generation system 1 including the generation of aerosol can be performed. On the other hand, the power OFF state is a state in which at least some of the functions of the aerosol generation system 1 other than the function of detecting the power ON operation cannot be executed. That is, the capsule-side heating section 40B may be constantly heated in the power ON state. However, the capsule-side heating unit 40B may stop heating when power supply is stopped while the cartridge-side heating unit 40A is performing heating. This is for suppressing power consumption and preventing an excessive load on the power supply unit 111 . Alternatively, the capsule-side heating section 40B may heat for a predetermined period after the sensor section 112 detects the start of the puff. In this case, power consumption can be suppressed and excessive volatilization of the flavor component can be prevented, compared to the case of constantly heating in the power-on state.
 空気流路180は、ユーザに吸引される空気の流路である。空気流路180内への空気の入り口である空気流入孔181から空気流路180に流入した空気は、貫通孔51を介してカプセル収容部50に流出する。空気流路180の途中には、液誘導部122が配置される。ユーザによる吸引に伴い空気流入孔181から流入した空気は、空気流190に示すように、カートリッジ側加熱部40Aにより生成されたエアロゾルと混合され、貫通孔51を経由してカプセル収容部50に流入し、香味源貯蔵部131を通過する。エアロゾルと空気との混合流体は、香味源貯蔵部131を通過する際に、香味源貯蔵部131に貯蔵された香味源から香味成分が付与され、その後、ユーザに口内に到達する。 The air flow path 180 is a flow path of air sucked by the user. The air that has flowed into the air flow path 180 from the air inlet hole 181 that is the entrance of the air into the air flow path 180 flows out to the capsule housing portion 50 through the through hole 51 . A liquid guiding portion 122 is arranged in the middle of the air flow path 180 . The air that flows in through the air inlet hole 181 as the user inhales is mixed with the aerosol generated by the cartridge-side heating section 40A and flows into the capsule housing section 50 via the through hole 51, as shown by the air flow 190. and passes through the flavor source storage unit 131 . The mixed fluid of the aerosol and air is imparted with flavor components from the flavor sources stored in the flavor source storage unit 131 when passing through the flavor source storage unit 131, and then reaches the user's mouth.
 -補足
 以上、エアロゾル生成システム1の構成例を説明した。もちろんエアロゾル生成システム1の構成は上記に限定されず、以下に例示する多様な構成をとり得る。
- Supplementation An example of the configuration of the aerosol generation system 1 has been described above. Of course, the configuration of the aerosol generation system 1 is not limited to the above, and can take various configurations exemplified below.
 一例として、カートリッジ側加熱部40Aによる加熱に代えて、振動又は誘導加熱により、エアロゾルの生成が行われてもよい。他の一例として、カプセル側加熱部40Bによる加熱に代えて、誘導加熱により、エアロゾルの生成が行われてもよい。 As an example, instead of heating by the cartridge-side heating section 40A, aerosol may be generated by vibration or induction heating. As another example, the aerosol may be generated by induction heating instead of heating by the capsule-side heating section 40B.
 なお、カートリッジ側加熱部40Aは、第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の一例である。カートリッジ120は、第1基材の一例である。 The cartridge-side heating section 40A is an example of a generating section that generates aerosol from an aerosol source stored in the first base material. Cartridge 120 is an example of a first base material.
 また、カプセル側加熱部40Bは、エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の一例である。カプセル130は、第2基材の一例である。 Also, the capsule-side heating unit 40B is an example of a heating unit that heats the second base material containing a flavor source that imparts a flavor component to the aerosol. Capsule 130 is an example of a second substrate.
 <2.技術的特徴>
 (1)エアロゾル生成システム1の物理的な構成
 図2は、本実施形態に係るエアロゾル生成システム1の物理的な構成例を模式的に示す図である。図3は、本実施形態に係るカプセル130の物理的な構成を模式的に示す図である。
<2. Technical features>
(1) Physical Configuration of Aerosol Generation System 1 FIG. 2 is a diagram schematically showing a physical configuration example of the aerosol generation system 1 according to this embodiment. FIG. 3 is a diagram schematically showing the physical configuration of the capsule 130 according to this embodiment.
 図2に示すように、エアロゾル生成システム1は、略円柱状に構成されてもよい。図2に示した例では、電源ユニット110、カートリッジ120、カプセルホルダ140、及びカプセル130が、エアロゾル生成システム1の長手方向の一端から他端に向かって、この順に着脱可能に接続されている。以下では、長手方向のうち電源ユニット110が配置されている側を下、カプセル130が配置されている側を上と定義する。また、図面では、長手方向のうち下側をD、上側をUとして示し、鉛直方向をGとして示す。 As shown in FIG. 2, the aerosol generation system 1 may be configured in a substantially cylindrical shape. In the example shown in FIG. 2, the power supply unit 110, the cartridge 120, the capsule holder 140, and the capsule 130 are detachably connected in this order from one longitudinal end of the aerosol generating system 1 to the other. Below, the side on which the power supply unit 110 is arranged in the longitudinal direction is defined as the bottom, and the side on which the capsule 130 is arranged is defined as the top. In the drawings, D indicates the lower side of the longitudinal direction, U indicates the upper side, and G indicates the vertical direction.
 カプセルホルダ140は、カートリッジ120とカプセル130とを接続するための接続器具である。カプセルホルダ140の下端は、カートリッジ120の上端に接続される。カプセルホルダ140は、カプセル130を収容するカプセル収容部50を備え、上側からカプセル収容部50に挿入されたカプセル130を収容する。また、カプセルホルダ140は、カプセル側加熱部40Bを備え、電源ユニット110からの給電によりカプセル130を加熱する。 The capsule holder 140 is a connecting device for connecting the cartridge 120 and the capsule 130. The lower end of capsule-holder 140 is connected to the upper end of cartridge 120 . The capsule holder 140 has a capsule containing portion 50 containing a capsule 130, and contains the capsule 130 inserted into the capsule containing portion 50 from above. The capsule holder 140 also includes a capsule-side heating section 40B, which heats the capsule 130 by power supply from the power supply unit 110. As shown in FIG.
 図2に示すように、電源ユニット110の側面には、ユーザが操作可能な操作部15が設けられている。本実施形態では、操作部15は、円形状の押しボタン式のスイッチである。なお、操作部15は、円形状以外の形状でもよいし、押しボタン式以外のスイッチ又はタッチパネル等から構成されていてもよい。操作部15は、センサ部112に含まれる入力装置の一例である。ユーザは、操作部15を操作することで、例えばエアロゾル生成システム1の電源ON/OFFを切り替えることができる。 As shown in FIG. 2, the side surface of the power supply unit 110 is provided with an operation section 15 that can be operated by the user. In this embodiment, the operation unit 15 is a circular push-button switch. Note that the operation unit 15 may have a shape other than a circular shape, and may be composed of a switch other than a push button type, a touch panel, or the like. The operation unit 15 is an example of an input device included in the sensor unit 112 . The user can switch ON/OFF of the aerosol generation system 1 , for example, by operating the operation unit 15 .
 図3に示すように、カプセル130は、略円筒形状に構成される。カプセル130は、円筒軸方向がエアロゾル生成システム1の長手方向に一致するようにして、カプセルホルダ140に収容される。カプセル130がカプセルホルダ140に収容された状態で、香味源貯蔵部131は下側に、吸口部132は上側に配置される。 As shown in FIG. 3, the capsule 130 is configured in a substantially cylindrical shape. The capsule 130 is accommodated in the capsule holder 140 such that the cylindrical axis direction matches the longitudinal direction of the aerosol generating system 1 . With the capsule 130 accommodated in the capsule holder 140, the flavor source storage part 131 is arranged on the lower side and the mouthpiece part 132 is arranged on the upper side.
 香味源貯蔵部131は、香味源133を貯蔵するための内部空間を有する。図3に示すように、香味源貯蔵部131には、粒状に構成された香味源133を内部空間に貯蔵する。香味源貯蔵部131が香味源133を貯蔵した状態で、内部空間には所定の空き空間が設けられる。一例として、香味源貯蔵部131の内部空間の70%程度が香味源133により占められ、残り30%程度が空き空間となる。そのため、カプセル130の姿勢に応じて、香味源貯蔵部131の内部空間で香味源133が移動する。具体的には、香味源貯蔵部131の内部空間のうち鉛直方向側の空間に、香味源133が偏在することとなる。 The flavor source storage unit 131 has an internal space for storing the flavor source 133. As shown in FIG. 3 , the flavor source storage unit 131 stores a granular flavor source 133 in an internal space. With the flavor source storage unit 131 storing the flavor source 133, a predetermined empty space is provided in the internal space. As an example, about 70% of the internal space of the flavor source storage unit 131 is occupied by the flavor source 133, and about 30% is empty space. Therefore, the flavor source 133 moves in the internal space of the flavor source storage part 131 according to the posture of the capsule 130 . Specifically, the flavor source 133 is unevenly distributed in the vertical space of the interior space of the flavor source storage unit 131 .
 香味源貯蔵部131の底面を構成する下側隔壁131Dは、カプセル130より下方に位置するカートリッジ120において生成されたエアロゾルが通過可能に構成される。他方、香味源貯蔵部131の天面を構成する上側隔壁131Uは、下側隔壁131Dを通過して香味源貯蔵部131の内部に流入したエアロゾルが通過可能に構成される。一例として、下側隔壁131D及び上側隔壁131Uは、香味源133が通過不能であり、エアロゾルが通過可能な程度の隙間を有する、網目状に構成されてもよい。空気流190に示すように、カプセル130より下方に位置するカートリッジ120において生成されたエアロゾルは、香味源貯蔵部131を通過し、吸口部132からユーザの口内に到達する。 A lower partition wall 131D that forms the bottom surface of the flavor source storage unit 131 is configured to allow the aerosol generated in the cartridge 120 positioned below the capsule 130 to pass through. On the other hand, the upper partition wall 131U, which constitutes the top surface of the flavor source storage unit 131, is configured to allow passage of the aerosol that has flowed into the flavor source storage unit 131 through the lower partition wall 131D. As an example, the lower partition 131D and the upper partition 131U may be configured in a mesh shape having gaps through which the flavor source 133 cannot pass but the aerosol can pass. As shown by airflow 190 , aerosol generated in cartridge 120 located below capsule 130 passes through flavor source reservoir 131 and reaches mouthpiece 132 into the user's mouth.
 (2)香味源の偏りに応じた制御
 ユーザは、エアロゾル生成システム1を傾けて保持しながら、パフを行い得る。エアロゾル生成システム1が傾くと共にカプセル130が傾き、香味源133が香味源貯蔵部131内で移動することとなる。香味源貯蔵部131内で香味源133が移動すると、ユーザが味わう香味が変化し得る。この点について、図4及び図5を参照しながら詳しく説明する。
(2) Control according to bias of flavor source The user can puff while tilting and holding the aerosol generating system 1 . As the aerosol generating system 1 tilts, the capsule 130 tilts and the flavor source 133 moves within the flavor source reservoir 131 . Movement of flavor source 133 within flavor source reservoir 131 may change the flavor experienced by the user. This point will be described in detail with reference to FIGS. 4 and 5. FIG.
 図4は、本実施形態に係るエアロゾル生成システム1の角度θが0度である場合の様子を模式的に示す図である。図5は、本実施形態に係るエアロゾル生成システム1の角度θが90度である場合の様子を模式的に示す図である。ここで、エアロゾル生成システム1の角度θとは、エアロゾル生成システム1の下方向と鉛直方向とが成す角を指す。 FIG. 4 is a diagram schematically showing the state of the aerosol generating system 1 according to this embodiment when the angle θ is 0 degrees. FIG. 5 is a diagram schematically showing the state of the aerosol generating system 1 according to this embodiment when the angle θ is 90 degrees. Here, the angle θ of the aerosol generating system 1 refers to the angle formed by the downward direction of the aerosol generating system 1 and the vertical direction.
 図4に示すように、エアロゾル生成システム1の角度θが0°である場合、香味源133は、鉛直方向、即ち香味源貯蔵部131の下方向に偏在する。カプセル側加熱部40Bは、エアロゾル生成システム1の角度θが0°である状態で、カプセル130の下端から香味源133の上面133Uまでを覆うように配置されることが望ましい。カプセル130のうち、香味源133の上面133Uよりも上側の空間を加熱しても、香味源133を効率的に加熱することが困難なためである。 As shown in FIG. 4 , when the angle θ of the aerosol generating system 1 is 0°, the flavor source 133 is unevenly distributed in the vertical direction, that is, downward of the flavor source storage section 131 . Capsule-side heating section 40B is desirably arranged to cover from the lower end of capsule 130 to upper surface 133U of flavor source 133 when angle θ of aerosol generating system 1 is 0°. This is because it is difficult to efficiently heat the flavor source 133 even if the space above the upper surface 133U of the flavor source 133 in the capsule 130 is heated.
 エアロゾル生成システム1の角度θが0°である場合、カプセル側加熱部40Bは、香味源貯蔵部131のうち香味源133が存在する部分を直接的に加熱することができる。さらに、貫通孔51から吸口部132に流れる空気流190は、香味源貯蔵部131のうち香味源133が存在する空間を通過するので、多くの香味成分をエアロゾルに付与することが可能となる。 When the angle θ of the aerosol generation system 1 is 0°, the capsule-side heating section 40B can directly heat the portion of the flavor source storage section 131 where the flavor source 133 exists. Furthermore, since the air flow 190 flowing from the through-hole 51 to the mouthpiece 132 passes through the space where the flavor source 133 exists in the flavor source storage part 131, it is possible to add many flavor components to the aerosol.
 図5に示すように、エアロゾル生成システム1の角度θが90°である場合、香味源133は、鉛直方向、即ち香味源貯蔵部131の側方に偏在することなる。そのため、カプセル側加熱部40Bのうち、鉛直方向とは逆側の領域は香味源133を効率的に加熱することが困難になる。さらに、図5に示すように、貫通孔51から吸口部132に流れる空気流190は、香味源貯蔵部131のうち通気抵抗のより小さい、香味源133が無い空間を通過する傾向がある。そのため、空気流190に沿って香味源貯蔵部131を通過するエアロゾルに、香味成分が付与することが困難になる。 As shown in FIG. 5, when the angle θ of the aerosol generating system 1 is 90°, the flavor source 133 is unevenly distributed in the vertical direction, that is, to the side of the flavor source storage section 131 . Therefore, it becomes difficult to efficiently heat the flavor source 133 in the region of the capsule-side heating section 40B on the side opposite to the vertical direction. Furthermore, as shown in FIG. 5, the air flow 190 flowing from the through-hole 51 to the mouthpiece 132 tends to pass through the space where the flavor source 133 is absent and which has a smaller ventilation resistance in the flavor source reservoir 131 . Therefore, it becomes difficult to impart the flavor component to the aerosol passing through the flavor source storage unit 131 along the air flow 190 .
 エアロゾル生成システム1の角度θの増加に伴う、ユーザに送達される香味成分の量及びエアロゾル量の変化の傾向を、下記の表1に示す。 Table 1 below shows the trend of change in the amount of flavor component delivered to the user and the amount of aerosol as the angle θ of the aerosol generating system 1 increases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1の香味成分とは、カプセル130に貯蔵された香味源133に含有される成分である。第1の香味成分は、例えば、ニコチン、たばこの香味成分、及びその他の香料である。第2の香味成分は、カートリッジ120に貯蔵されたエアロゾル源、及びカプセル130に貯蔵された香味源133に共通して含有される成分である。第2の香味成分は、少なくとも第1の香味成分とは異なる。第2の香味成分は、例えば、メンソールである。 The first flavor component is a component contained in the flavor source 133 stored in the capsule 130. The first flavor component is, for example, nicotine, tobacco flavor components, and other flavors. A second flavor component is a component commonly contained in the aerosol source stored in cartridge 120 and the flavor source 133 stored in capsule 130 . The second flavor component is different than at least the first flavor component. The second flavor component is, for example, menthol.
 表1に示すように、第1の香味成分の送達量は、エアロゾル生成システム1の角度θが増加するほど減少する。その第1の要因は、エアロゾル生成システム1の角度θが増加するほど、エアロゾルが香味源133を通過しなくなることである。第2の要因は、エアロゾル生成システム1の角度θが増加するほど、香味源133が効率的に加熱されなくなり、第1の香味成分がエアロゾルに付与されにくくなることである。 As shown in Table 1, the delivery amount of the first flavor component decreases as the angle θ of the aerosol generating system 1 increases. The first factor is that less aerosol passes through the flavor source 133 as the angle θ of the aerosol generating system 1 increases. The second factor is that the more the angle θ of the aerosol generating system 1 increases, the less efficiently the flavor source 133 is heated and the less the first flavor component is imparted to the aerosol.
 表1に示すように、第2の香味成分の送達量は、エアロゾル生成システム1の角度が増加しても変化しない。その要因は、カートリッジ120由来の第2の香味成分の増加が、カプセル130由来の第2の香味成分の減少により相殺されるためである。エアロゾルが香味源133を通過する際に、エアロゾルに付与されたカートリッジ120由来の第2の香味成分がろ過される(即ち、香味源133に付着する)。この点、エアロゾル生成システム1の角度θが増加するほど、カートリッジ120由来の第2の香味成分はろ過されにくくなり、カートリッジ120由来の第2香味成分の送達量は増加する。他方、エアロゾル生成システム1の角度θが増加するほど、香味源133が効率的に加熱されなくなり、カプセル130由来の第2香味成分の送達量は減少する。 As shown in Table 1, the delivery amount of the second flavor component does not change as the angle of the aerosol generating system 1 increases. This is because the increase in the second flavor component from cartridge 120 is offset by the decrease in the second flavor component from capsule 130 . As the aerosol passes through flavor source 133, the second flavor component from cartridge 120 applied to the aerosol is filtered (ie, adheres to flavor source 133). In this regard, as the angle θ of the aerosol generating system 1 increases, the second flavor component derived from the cartridge 120 becomes less filtered, and the delivery amount of the second flavor component derived from the cartridge 120 increases. On the other hand, as the angle θ of the aerosol-generating system 1 increases, the less efficient the flavor source 133 is heated, the less the second flavor ingredient delivered from the capsule 130 is delivered.
 表1に示すように、エアロゾルの送達量は、エアロゾル生成システム1の角度θが増加するほど微増する。その要因は、エアロゾル生成システム1の角度θが増加するほど、香味源133の存在によってカプセル内のエアロゾルの通過が妨げられることが減り、エアロゾルがユーザの口内に到達しやすくなることである。 As shown in Table 1, the aerosol delivery amount slightly increases as the angle θ of the aerosol generating system 1 increases. The reason for this is that as the angle θ of the aerosol generating system 1 increases, the presence of the flavor source 133 reduces the obstruction of the passage of the aerosol inside the capsule, making it easier for the aerosol to reach the user's mouth.
 表1に示したように、エアロゾル生成システム1の角度が変化すると、ユーザに送達される成分のバランスが変化してしまい、味のバランスが崩れてしまうおそれがある。 As shown in Table 1, when the angle of the aerosol generating system 1 changes, the balance of the ingredients delivered to the user changes, and there is a risk that the taste will be out of balance.
 そこで、制御部116は、カートリッジ側加熱部40Aの動作及びカプセル側加熱部40Bの動作を、カプセル130の姿勢に応じて制御する。かかる構成によれば、カプセル130の姿勢の変化に起因するユーザに送達される成分のバランスの変化を、カートリッジ側加熱部40Aの動作及びカプセル側加熱部40Bの動作を制御することで抑制することが可能となる。 Therefore, the control unit 116 controls the operation of the cartridge-side heating unit 40A and the operation of the capsule-side heating unit 40B according to the attitude of the capsule 130. According to this configuration, the change in the balance of the ingredients delivered to the user due to the change in the posture of the capsule 130 can be suppressed by controlling the operation of the cartridge-side heating section 40A and the operation of the capsule-side heating section 40B. becomes possible.
 制御部116は、センサ部112により検出されたエアロゾル生成システム1の姿勢に対応するカプセル130の姿勢に応じて、カートリッジ側加熱部40Aの動作及びカプセル側加熱部40Bの動作を制御する。カプセル130の姿勢とは、カプセル130におけるエアロゾルの流路の方向(即ち、下側隔壁131Dと上側隔壁131Uとの結ぶ直線の方向)と鉛直方向とが成す角度である。本実施形態のように、カプセル130におけるエアロゾルの流路の方向とエアロゾル生成システム1の長手方向とが一致する場合、カプセル130の姿勢は、エアロゾル生成システム1の角度θを指す。即ち、本実施形態に係る制御部116は、センサ部112により検出されたエアロゾル生成システム1の角度θに応じて、カートリッジ側加熱部40Aの動作及びカプセル側加熱部40Bの動作を制御する。 The control unit 116 controls the operation of the cartridge-side heating unit 40A and the operation of the capsule-side heating unit 40B according to the orientation of the capsule 130 corresponding to the orientation of the aerosol generation system 1 detected by the sensor unit 112. The attitude of the capsule 130 is the angle between the direction of the aerosol flow path in the capsule 130 (that is, the direction of the straight line connecting the lower partition 131D and the upper partition 131U) and the vertical direction. When the direction of the aerosol flow path in the capsule 130 and the longitudinal direction of the aerosol generating system 1 match as in this embodiment, the attitude of the capsule 130 refers to the angle θ of the aerosol generating system 1 . That is, the control unit 116 according to this embodiment controls the operation of the cartridge-side heating unit 40A and the operation of the capsule-side heating unit 40B according to the angle θ of the aerosol generation system 1 detected by the sensor unit 112.
 具体的には、制御部116は、香味源貯蔵部131におけるエアロゾルの流路の傾斜が水平に近づくほど、エアロゾルの生成量が低下するようにカートリッジ側加熱部40Aの動作を制御し、カプセル側加熱部40Bの温度が上昇するようカプセル側加熱部40Bの動作を制御する。換言すると、制御部116は、エアロゾル生成システム1の角度θが増加するほど(90°に近付くほど)、エアロゾルの生成量が低下するようにカートリッジ側加熱部40Aの動作を制御し、カプセル側加熱部40Bの温度が上昇するようカプセル側加熱部40Bの動作を制御する。第1に、カプセル側加熱部40Bの温度を上昇させることで、第1香味成分の送達量を増加させて、表1に示した第1香味成分の送達量の低下を抑制することが可能となる。第2に、エアロゾルの生成量を低下させつつ、カプセル側加熱部40Bの温度を上昇させることで、カートリッジ120由来の第2香味成分の送達量の低下をカプセル130由来の第2香味成分の送達量の増加により相殺することができる。即ち、第2の香味成分の送達量の変化を抑制することが可能となる。第3に、エアロゾルの生成量を低下させることで、表1に示したエアロゾルの送達量の微増を打ち消すことが可能となる。このように、かかる構成によれば、エアロゾル生成システム1の角度θの変化に起因する、味のバランスの変化を抑制することが可能となる。 Specifically, the control unit 116 controls the operation of the cartridge-side heating unit 40A so that the amount of aerosol generated decreases as the inclination of the aerosol flow path in the flavor source storage unit 131 approaches horizontal. The operation of the capsule-side heating section 40B is controlled so that the temperature of the heating section 40B rises. In other words, the control unit 116 controls the operation of the cartridge-side heating unit 40A so that the amount of aerosol generated decreases as the angle θ of the aerosol-generating system 1 increases (closer to 90°). The operation of the capsule-side heating section 40B is controlled so that the temperature of the section 40B rises. First, by increasing the temperature of the capsule-side heating unit 40B, it is possible to increase the delivery amount of the first flavor component and suppress the decrease in the delivery amount of the first flavor component shown in Table 1. Become. Second, by increasing the temperature of the capsule-side heating section 40B while reducing the amount of aerosol generated, the decrease in the delivery amount of the second flavor component derived from the cartridge 120 can be reduced. It can be offset by an increase in volume. That is, it becomes possible to suppress the change in the delivery amount of the second flavor component. Third, by reducing the amount of aerosol generated, it is possible to offset the slight increase in the delivered amount of aerosol shown in Table 1. Thus, according to such a configuration, it is possible to suppress changes in taste balance caused by changes in the angle θ of the aerosol generating system 1 .
 エアロゾル生成システム1の角度θは、定期的に検出される。そして、制御部116は、直近に検出された角度θに基づいて、カートリッジ側加熱部40Aの動作及びカプセル側加熱部40Bの動作を制御する。かかる構成によれば、エアロゾル生成システム1の使用時に時々刻々と変化するエアロゾル生成システム1の角度θに追随するようにして、カートリッジ側加熱部40Aの動作及びカプセル側加熱部40Bの動作を制御することが可能となる。  The angle θ of the aerosol generation system 1 is detected periodically. Then, the control unit 116 controls the operation of the cartridge-side heating unit 40A and the operation of the capsule-side heating unit 40B based on the most recently detected angle θ. According to such a configuration, the operation of the cartridge-side heating section 40A and the operation of the capsule-side heating section 40B are controlled so as to follow the angle θ of the aerosol-generating system 1 that changes every moment when the aerosol-generating system 1 is used. becomes possible.
 (3)処理の流れ
 図6は、本実施形態に係るエアロゾル生成システム1において実行される処理の流れの一例を示すフローチャートである。
(3) Flow of Processing FIG. 6 is a flowchart showing an example of the flow of processing executed in the aerosol generation system 1 according to this embodiment.
 図6に示すように、まず、制御部116は、エアロゾル生成システム1の角度θを検出するタイミングが到来したか否かを判定する(ステップS102)。エアロゾル生成システム1の角度θを検出するタイミングが到来していないと判定された場合(ステップS102:NO)、制御部116は、エアロゾル生成システム1の角度θを検出するタイミングが到来するまで待機する。 As shown in FIG. 6, first, the control unit 116 determines whether or not the timing for detecting the angle θ of the aerosol generation system 1 has arrived (step S102). When it is determined that the timing for detecting the angle θ of the aerosol generating system 1 has not arrived (step S102: NO), the control unit 116 waits until the timing for detecting the angle θ of the aerosol generating system 1 arrives. .
 エアロゾル生成システム1の角度θを検出するタイミングが到来したと判定された場合(ステップS102:YES)、制御部116は、エアロゾル生成システム1の角度θを検出するようセンサ部112を制御する(ステップS104)。例えば、制御部116は、センサ部112としての加速度センサにより検出された加速度に基づいて、エアロゾル生成システム1の角度θを取得する。 When it is determined that the timing for detecting the angle θ of the aerosol generation system 1 has arrived (step S102: YES), the control unit 116 controls the sensor unit 112 to detect the angle θ of the aerosol generation system 1 (step S104). For example, the control unit 116 acquires the angle θ of the aerosol generation system 1 based on the acceleration detected by the acceleration sensor as the sensor unit 112 .
 次いで、制御部116は、検出されたエアロゾル生成システム1の角度θが前回検出時から変化したか否かを判定する(ステップS106)。 Next, the control unit 116 determines whether or not the detected angle θ of the aerosol generation system 1 has changed since the previous detection (step S106).
 エアロゾル生成システム1の角度θが前回検出時から変化したと判定された場合(ステップS106:YES)、制御部116は、今回検出されたエアロゾル生成システム1の角度θに基づいて、カートリッジ側加熱部40A及びカプセル側加熱部40Bの動作を制御する(ステップS108)。その後、処理は終了する。 When it is determined that the angle θ of the aerosol generation system 1 has changed since the previous detection (step S106: YES), the control unit 116 adjusts the cartridge-side heating unit based on the angle θ of the aerosol generation system 1 detected this time. 40A and the operation of the capsule-side heating unit 40B are controlled (step S108). After that, the process ends.
 他方、エアロゾル生成システム1の角度θが前回検出時から変化していないと判定された場合(ステップS106:NO)、そのまま処理は終了する。 On the other hand, if it is determined that the angle θ of the aerosol generation system 1 has not changed since the previous detection (step S106: NO), the process ends.
 <3.補足>
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
<3. Supplement>
Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also belong to the technical scope of the present invention.
 (1)第1の変形例
 本変形例は、エアロゾル生成システム1が複数のカプセル側加熱部40Bを有し、エアロゾル生成システム1の角度θに応じて複数のカプセル側加熱部40Bの動作が制御される例である。本変形例について、図7及び図8を参照しながら詳しく説明する。
(1) First Modification In this modification, the aerosol generation system 1 has a plurality of capsule-side heating units 40B, and the operation of the plurality of capsule-side heating units 40B is controlled according to the angle θ of the aerosol generation system 1. This is an example of This modification will be described in detail with reference to FIGS. 7 and 8. FIG.
 図7は、本変形例に係る複数のカプセル側加熱部40Bの配置の一例を模式的に示す図である。図8は、図7に示した複数のカプセル側加熱部40Bの制御の一例を説明するための図である。図7に示した例では、エアロゾル生成システム1は、カプセル130の周囲のそれぞれ異なる位置に配置される4つのカプセル側加熱部40B(40B-1~40B-4)を有している。カプセル側加熱部40B-1は、カプセル収容部50の上側側面の左半分を覆うように配置されている。カプセル側加熱部40B-2は、カプセル収容部50の下側側面の左半分を覆うように配置されている。カプセル側加熱部40B-3は、カプセル収容部50の上側側面の右半分を覆うように配置されている。カプセル側加熱部40B-4は、カプセル収容部50の下側側面の右半分を覆うように配置されている。制御部116は、エアロゾル生成システム1の角度θに応じて、4つのカプセル側加熱部40Bの動作を制御する。 FIG. 7 is a diagram schematically showing an example of arrangement of a plurality of capsule-side heating units 40B according to this modified example. FIG. 8 is a diagram for explaining an example of control of the plurality of capsule-side heating units 40B shown in FIG. In the example shown in FIG. 7, the aerosol generating system 1 has four capsule-side heating units 40B (40B-1 to 40B-4) arranged at different positions around the capsule . The capsule-side heating section 40B-1 is arranged so as to cover the left half of the upper side surface of the capsule containing section 50. As shown in FIG. The capsule-side heating section 40B-2 is arranged so as to cover the left half of the lower side surface of the capsule containing section 50. As shown in FIG. The capsule-side heating section 40B-3 is arranged so as to cover the right half of the upper side surface of the capsule containing section 50. As shown in FIG. The capsule-side heating section 40B-4 is arranged so as to cover the right half of the lower side surface of the capsule containing section 50. As shown in FIG. The control unit 116 controls the operation of the four capsule-side heating units 40B according to the angle θ of the aerosol generation system 1.
 具体的には、制御部116は、4つのカプセル側加熱部40Bのうち鉛直方向に配置されたカプセル側加熱部40Bの出力が、鉛直方向の逆方向に配置されたカプセル側加熱部40Bの出力よりも高くなるように制御する。例えば、制御部116は、センサ部112により検出されたエアロゾル生成システム1の角度θに基づいて、鉛直方向に位置するカプセル側加熱部40Bを特定する。そして、制御部116は、鉛直方向に位置するカプセル側加熱部40Bの温度が、鉛直方向の逆方向に位置するカプセル側加熱部40Bの温度よりも高くなるように、4つのカプセル側加熱部40Bへの給電を制御する。 Specifically, the control unit 116 controls the output of the capsule-side heating unit 40B arranged vertically among the four capsule-side heating units 40B to be the output of the capsule-side heating unit 40B arranged in the opposite vertical direction. Control to be higher than For example, based on the angle θ of the aerosol generation system 1 detected by the sensor unit 112, the control unit 116 identifies the capsule-side heating unit 40B positioned in the vertical direction. Then, the control unit 116 controls the four capsule-side heating units 40B so that the temperature of the capsule-side heating unit 40B located in the vertical direction is higher than the temperature of the capsule-side heating unit 40B located in the opposite vertical direction. control the power supply to
 詳しくは、図8に示すように、θ=0°の場合、カプセル側加熱部40B-1~40B-4は香味源133の上面133Uよりも下方に位置している。そのため、制御部116は、数式(1)を満たすように、カプセル側加熱部40B-1~カプセル側加熱部40B-4の出力を制御する。
  H=H=H=H  …(1)
 なお、Hはカプセル側加熱部40B-1の出力であり、Hはカプセル側加熱部40B-2の出力であり、Hはカプセル側加熱部40B-3の出力であり、Hはカプセル側加熱部40B-4の出力である。
Specifically, as shown in FIG. 8, when θ=0°, the capsule-side heating units 40B-1 to 40B-4 are positioned below the upper surface 133U of the flavor source 133. As shown in FIG. Therefore, the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (1).
H1 = H2 = H3 = H4 (1)
Here, H1 is the output of the capsule side heating section 40B-1, H2 is the output of the capsule side heating section 40B-2, H3 is the output of the capsule side heating section 40B-3, and H4 is the output of the capsule side heating section 40B-3. This is the output of the capsule-side heating section 40B-4.
 図8に示すように、0°<θ≦30°の場合、カプセル側加熱部40B-1、40B-2、及び40B-4は香味源133の上面133Uよりも下方に位置し、カプセル側加熱部40B-3の大部分が香味源133の上面133Uよりも下方に位置している。そのため、制御部116は、数式(1)を満たすように、カプセル側加熱部40B-1~40B-4の出力を制御する。 As shown in FIG. 8, when 0°<θ≦30°, the capsule-side heating units 40B-1, 40B-2, and 40B-4 are positioned below the upper surface 133U of the flavor source 133, Most of the portion 40B-3 is positioned below the upper surface 133U of the flavor source 133. As shown in FIG. Therefore, the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (1).
 図8に示すように、30°<θ≦60°の場合、カプセル側加熱部40B-1、40B-2、及び40B-4は香味源133の上面133Uよりも下方に位置し、カプセル側加熱部40B-3の半分程度が香味源133の上面133Uよりも下方に位置している。そのため、制御部116は、数式(2)を満たすように、カプセル側加熱部40B-1~40B-4の出力を制御する。
  H=H=H>H  …(2)
As shown in FIG. 8, when 30°<θ≦60°, the capsule-side heating units 40B-1, 40B-2, and 40B-4 are positioned below the upper surface 133U of the flavor source 133, About half of the portion 40B-3 is located below the upper surface 133U of the flavor source 133. As shown in FIG. Therefore, the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (2).
H1 = H2 = H4 > H3 (2)
 図8に示すように、60°<θ<90°の場合、カプセル側加熱部40B-1、及び40B-2は香味源133の上面133Uよりも下方に位置し、カプセル側加熱部40B-3のわずかな部分が香味源133の上面133Uよりも下方に位置し、カプセル側加熱部40B-4の半分程度が香味源133の上面133Uよりも下方に位置している。そのため、制御部116は、数式(3)を満たすように、カプセル側加熱部40B-1~40B-4の出力を制御する。
  H=H>H>H  …(3)
As shown in FIG. 8, when 60°<θ<90°, the capsule-side heating units 40B-1 and 40B-2 are positioned below the upper surface 133U of the flavor source 133, and the capsule-side heating unit 40B-3 is positioned below the upper surface 133U of the flavor source 133, and about half of the capsule-side heating section 40B-4 is positioned below the upper surface 133U of the flavor source 133. Therefore, the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (3).
H1 = H2 > H4 > H3 (3)
 図8に示すように、θ=90°の場合、カプセル側加熱部40B-1、及び40B-2は香味源133の上面133Uよりも下方に位置し、カプセル側加熱部40B-3及びB-4のわずかな部分が香味源133の上面133Uよりも下方に位置している。そのため、制御部116は、数式(4)を満たすように、カプセル側加熱部40B-1~40B-4の出力を制御する。
  H=H>H=H  …(4)
As shown in FIG. 8, when θ=90°, the capsule-side heating units 40B-1 and 40B-2 are positioned below the upper surface 133U of the flavor source 133, and the capsule-side heating units 40B-3 and B- 4 is located below the upper surface 133U of the flavor source 133. As shown in FIG. Therefore, the control unit 116 controls the outputs of the capsule-side heating units 40B-1 to 40B-4 so as to satisfy the formula (4).
H1 = H2 > H3 =H4 ( 4 )
 以上説明した構成によれば、香味源貯蔵部131に貯蔵された香味源133を、香味源133の上面133Uよりも下方に位置するカプセル側加熱部40Bにより効率よく加熱することが可能となる。また、高効率での加熱が可能なため、消費電力を抑制することも可能である。 According to the configuration described above, the flavor source 133 stored in the flavor source storage unit 131 can be efficiently heated by the capsule-side heating unit 40B positioned below the upper surface 133U of the flavor source 133. Moreover, since heating can be performed with high efficiency, power consumption can be suppressed.
 (2)第2の変形例
 本変形例は、第1の変形例と同様に、エアロゾル生成システム1が複数のカプセル側加熱部40Bを有する例である。ただし、本変形例に係るエアロゾル生成システム1は、パフの際のエアロゾル生成システム1の姿勢を限定するよう構成される。そして、限定された姿勢に応じて予め設定された通りに、カプセル側加熱部40Bの動作が制御される。以下、図9を参照しながら本変形例について詳しく説明する。
(2) Second Modification This modification is an example in which the aerosol generation system 1 has a plurality of capsule-side heating units 40B, like the first modification. However, the aerosol generating system 1 according to this modification is configured to limit the posture of the aerosol generating system 1 during puffing. Then, the operation of the capsule-side heating section 40B is controlled as preset according to the limited posture. This modification will be described in detail below with reference to FIG.
 図9は、本変形例について説明するための説明図である。図9に示すように、本変形例に係るエアロゾル生成システム1には、凹部16が設けられている。ユーザは、凹部16に親指を置いて、親指でエアロゾル生成システム1を支えながらパフを行うことが想定される。つまり、パフの際には、凹部16が鉛直方向に位置すると想定される。 FIG. 9 is an explanatory diagram for explaining this modified example. As shown in FIG. 9, the aerosol generating system 1 according to this modified example is provided with a concave portion 16 . It is assumed that the user places the thumb on the recess 16 and puffs while supporting the aerosol generating system 1 with the thumb. That is, it is assumed that the recess 16 is positioned vertically during puffing.
 本変形例に係るエアロゾル生成システム1は、第1の変形例と同様に、カプセル130の周囲のそれぞれ異なる位置に配置される4つのカプセル側加熱部40B(40B-1~40B-4)を有している。ただし、図9に示すように、凹部16が設けられる側には、カプセル側加熱部40B-1及び40B-2が配置されている。他方、凹部16が設けられる側の逆側には、カプセル側加熱部40B-3及び40B-4が配置されている。ユーザがパフを行う際には、凹部16が鉛直方向に位置すると想定されるので、カプセル側加熱部40B-1及び40B-2が鉛直方向に位置し、カプセル側加熱部40B-3及び40B-4が鉛直方向とは逆方向に位置すると想定される。そこで、制御部116は、4つのカプセル側加熱部40Bのうちユーザがパフを行う際に鉛直方向に位置すると想定されるカプセル側加熱部40B-1及び40B-2の出力が、鉛直方向の逆方向に位置すると想定されるカプセル側加熱部40B-3及び40B-4の出力よりも高くなるよう制御する。かかる構成によれば、香味源貯蔵部131に貯蔵された香味源133を、香味源133の上面133Uよりも下方に位置すると想定されるカプセル側加熱部40Bにより効率よく加熱することが可能となる。また、高効率での加熱が可能なため、消費電力を抑制することも可能である。 The aerosol generating system 1 according to this modification has four capsule-side heating units 40B (40B-1 to 40B-4) arranged at different positions around the capsule 130, as in the first modification. are doing. However, as shown in FIG. 9, the capsule-side heating units 40B-1 and 40B-2 are arranged on the side where the concave portion 16 is provided. On the other hand, capsule-side heating units 40B-3 and 40B-4 are arranged on the side opposite to the side where the concave portion 16 is provided. When the user puffs, it is assumed that the concave portion 16 is positioned vertically, so the capsule-side heating units 40B-1 and 40B-2 are positioned vertically, and the capsule-side heating units 40B-3 and 40B- 4 is assumed to lie in the opposite vertical direction. Therefore, the control unit 116 controls the outputs of the capsule-side heating units 40B-1 and 40B-2, which are assumed to be positioned in the vertical direction when the user performs a puff, among the four capsule-side heating units 40B so that the outputs of the capsule-side heating units 40B-1 and 40B-2 are reversed in the vertical direction. It is controlled to be higher than the output of the capsule side heating units 40B-3 and 40B-4 assumed to be located in the direction. According to this configuration, the flavor source 133 stored in the flavor source storage unit 131 can be efficiently heated by the capsule-side heating unit 40B assumed to be positioned below the upper surface 133U of the flavor source 133. . Moreover, since heating can be performed with high efficiency, power consumption can be suppressed.
 上記例では、パフの際のエアロゾル生成システム1の姿勢を限定するための構成の一例として凹部16を挙げたが、本発明はかかる例に限定されない。他に、例えば凸部が設けられていてもよい。 In the above example, the concave portion 16 was given as an example of the configuration for limiting the posture of the aerosol generating system 1 during puffing, but the present invention is not limited to such an example. In addition, for example, convex portions may be provided.
 (3)第3の変形例
 本変形例は、第1の変形例と同様に、エアロゾル生成システム1が複数のカプセル側加熱部40Bを有する例である。ただし、本変形例に係るエアロゾル生成システム1は、特定のカプセル側加熱部40Bが鉛直方向に位置するよう、エアロゾル生成システム1の姿勢に応じて複数のカプセル側加熱部40Bの位置が変化する機構を有する。以下、図10を参照しながら本変形例について詳しく説明する。
(3) Third Modification This modification is an example in which the aerosol generation system 1 has a plurality of capsule-side heating units 40B, like the first modification. However, the aerosol generating system 1 according to this modification has a mechanism in which the positions of the plurality of capsule-side heating units 40B are changed according to the posture of the aerosol-generating system 1 so that a specific capsule-side heating unit 40B is positioned in the vertical direction. have This modification will be described in detail below with reference to FIG.
 図10は、本変形例について説明するための説明図である。本変形例に係るエアロゾル生成システム1のカプセル収容部50の底面に、カプセル130の円筒軸方向に一致する回転軸52が設けられる。カプセル収容部50は、回転軸52に沿って回転可能である。カプセル収容部50の外周を覆うように配置されたカプセル側加熱部40B-1~40B-4もまた、カプセル収容部50と共に回転可能である。 FIG. 10 is an explanatory diagram for explaining this modified example. A rotating shaft 52 that coincides with the cylindrical axis direction of the capsule 130 is provided on the bottom surface of the capsule housing portion 50 of the aerosol generating system 1 according to this modification. The capsule housing part 50 is rotatable along a rotation axis 52 . Capsule-side heating units 40B-1 to 40B-4 arranged to cover the outer periphery of capsule housing part 50 are also rotatable together with capsule housing part 50. As shown in FIG.
 本変形例では、図10に示すように、カプセル側加熱部40B-1及びカプセル側加熱部40B-2の外側に、重り53が配置されている。そのため、エアロゾル生成システム1が傾いた際には、重り53が鉛直方向に位置するように、カプセル収容部50及びカプセル側加熱部40B-1~40B-4が、回転軸52に沿って回転する。これにより、カプセル側加熱部40B-1及びカプセル側加熱部40B-2が、常に鉛直方向に位置することとなる。そこで、カプセル側加熱部40B-1及びカプセル側加熱部40B-2は、4つのカプセル側加熱部40Bのうち、最も出力が高くなるように制御される。かかる構成によれば、最も出力が高くなるよう制御されたカプセル側加熱部40B-1及び40B-2を、常時鉛直方向に位置させて、香味源貯蔵部131に貯蔵された香味源133を効率よく加熱することが可能となる。また、高効率での加熱が可能なため、消費電力を抑制することも可能である。 In this modified example, as shown in FIG. 10, a weight 53 is arranged outside the capsule-side heating section 40B-1 and the capsule-side heating section 40B-2. Therefore, when the aerosol generating system 1 is tilted, the capsule containing section 50 and the capsule-side heating sections 40B-1 to 40B-4 rotate along the rotating shaft 52 so that the weight 53 is positioned vertically. . As a result, the capsule-side heating section 40B-1 and the capsule-side heating section 40B-2 are always positioned vertically. Therefore, the capsule-side heating section 40B-1 and the capsule-side heating section 40B-2 are controlled to have the highest output among the four capsule-side heating sections 40B. According to such a configuration, the capsule-side heating units 40B-1 and 40B-2, which are controlled to have the highest output, are always positioned in the vertical direction, and the flavor source 133 stored in the flavor source storage unit 131 is efficiently heated. It can be heated well. Moreover, since heating can be performed with high efficiency, power consumption can be suppressed.
 上記例では、複数のカプセル側加熱部40Bを回転させる回転機構の一例として、回転軸52及び重り53を挙げたが、本発明はかかる例に限定されない。その他の任意の構成が、回転機構として利用されてよい。 In the above example, the rotating shaft 52 and the weight 53 were given as an example of the rotating mechanism for rotating the plurality of capsule-side heating units 40B, but the present invention is not limited to such an example. Any other configuration may be utilized as the rotating mechanism.
 (4)第4の変形例
 上記実施形態では、エアロゾル生成システム1の角度θが定期的に検出されるものと説明したが、本発明はかかる例に限定されない。制御部116は、第1のタイミングにおけるエアロゾル生成システム1の角度θに応じてカートリッジ側加熱部40Aの動作を制御し、第2のタイミングにおけるエアロゾル生成システム1の角度θに応じてカプセル側加熱部40Bの動作を制御してもよい。
(4) Fourth Modification In the above embodiment, the angle θ of the aerosol generating system 1 is periodically detected, but the present invention is not limited to this example. The control unit 116 controls the operation of the cartridge side heating unit 40A according to the angle θ of the aerosol generation system 1 at the first timing, and controls the operation of the capsule side heating unit 40A according to the angle θ of the aerosol generation system 1 at the second timing. 40B may be controlled.
 第1のタイミングは、例えば、パフの開始が検出されたタイミングである。その場合、制御部116は、パフの開始が検出されたタイミングで検出されたエアロゾル生成システム1の角度θに応じた量のエアロゾルを生成するよう、カートリッジ側加熱部40Aの動作を制御する。エアロゾル生成システム1の角度θは、パフが開始される前後で大きく変化し得ると考えられる。この点、かかる構成によれば、パフが開始された後のエアロゾル生成システム1の角度θに応じた、適量のエアゾロルを生成することが可能となる。 The first timing is, for example, the timing when the start of the puff is detected. In that case, the control unit 116 controls the operation of the cartridge-side heating unit 40A so as to generate an amount of aerosol corresponding to the angle θ of the aerosol generation system 1 detected at the timing when the start of the puff is detected. It is believed that the angle θ of the aerosol generating system 1 can vary significantly before and after the puff is started. In this regard, according to this configuration, it is possible to generate an appropriate amount of aerosol according to the angle θ of the aerosol generating system 1 after puffing is started.
 第2のタイミングは、例えば、エアロゾル生成システム1が電源ONされたタイミング、エアロゾル生成システム1が電源ONされてから電源OFFされるまでの間の周期的なタイミング、パフの開始が検出されたタイミング、及びパフの終了が検出されたタイミングの少なくともいずれか1つである。このように、エアロゾル生成システム1が使用されている間の様々なタイミングにおけるエアロゾル生成システム1の角度θに応じて、カプセル側加熱部40Bの温度が制御されてよい。 The second timing is, for example, the timing when the aerosol generation system 1 is powered on, the periodic timing between when the power of the aerosol generation system 1 is turned on and the power is turned off, and the timing when the start of the puff is detected. , and the timing at which the end of the puff is detected. Thus, the temperature of the capsule-side heating section 40B may be controlled according to the angle θ of the aerosol-generating system 1 at various timings while the aerosol-generating system 1 is in use.
 若しくは、制御部116は、過去にパフの開始が検出されたタイミングにおけるエアロゾル生成システム1の角度θに応じて、カプセル側加熱部40Bの動作を制御してもよい。つまり、制御部116は、ユーザがパフを行う際のエアロゾル生成システム1の角度θを学習しておき、学習した角度θに応じてカプセル側加熱部40Bの動作を制御してもよい。カプセル側加熱部40Bは香味源貯蔵部131を外周から加熱するので、香味源貯蔵部131に貯蔵された香味源133の全体が昇温するには時間がかかる。この点、かかる構成によれば、香味源貯蔵部131に貯蔵された香味源133を、予め十分に昇温させることが可能となる。 Alternatively, the control unit 116 may control the operation of the capsule-side heating unit 40B according to the angle θ of the aerosol generation system 1 at the timing when the start of the puff was detected in the past. That is, the control unit 116 may learn the angle θ of the aerosol generation system 1 when the user puffs, and control the operation of the capsule-side heating unit 40B according to the learned angle θ. Since the capsule-side heating section 40B heats the flavor source storage section 131 from the outer periphery, it takes time to raise the temperature of the entire flavor source 133 stored in the flavor source storage section 131 . In this respect, according to this configuration, it is possible to sufficiently raise the temperature of the flavor source 133 stored in the flavor source storage unit 131 in advance.
 (5)第5の変形例
 上記実施形態では、カートリッジ120及びカプセル130が第2の香味成分を共通して含有しているものと説明したが、本発明はかかる例に限定されない。カートリッジ120及びカプセル130は、第2の香味線分を含有していなくてもよい。例えば、カプセル130が第1の香味成分を含有し、カートリッジ120は何ら香味成分を含有していなくてもよい。その場合であっても、上記実施形態と同様の制御を行うことで、エアロゾル生成システム1の角度θの変化に起因する、味のバランスの変化を抑制することが可能となる。
(5) Fifth Modification In the above embodiment, it was explained that the cartridge 120 and the capsule 130 commonly contain the second flavor component, but the present invention is not limited to this example. Cartridge 120 and capsule 130 may not contain a second flavor segment. For example, capsule 130 may contain a first flavoring ingredient and cartridge 120 may not contain any flavoring ingredient. Even in that case, by performing the same control as in the above-described embodiment, it is possible to suppress changes in taste balance caused by changes in the angle θ of the aerosol generation system 1 .
 (6)その他
 なお、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記録媒体(詳しくは、コンピュータにより読み取り可能な非一時的な記憶媒体)に予め格納される。そして、各プログラムは、例えば、本明細書において説明した各装置を制御するコンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。上記記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
(6) Others Note that a series of processes by each device described in this specification may be realized using any of software, hardware, or a combination of software and hardware. A program that constitutes software is stored in advance in a recording medium (more specifically, a non-temporary computer-readable storage medium) provided inside or outside each device, for example. Each program, for example, is read into a RAM when executed by a computer that controls each device described in this specification, and is executed by a processor such as a CPU. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Also, the above computer program may be distributed, for example, via a network without using a recording medium.
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。 Also, the processes described using the flowcharts and sequence diagrams in this specification do not necessarily have to be executed in the illustrated order. Some processing steps may be performed in parallel. Also, additional processing steps may be employed, and some processing steps may be omitted.
 なお、以下のような構成も本発明の技術的範囲に属する。
(1)
 第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御する制御部を備える、
 エアロゾル生成システム。
(2)
 前記第2基材は、
 粒状に構成された前記香味源と、
 内部空間に前記香味源を貯蔵する香味源貯蔵部と、
 を有し、
 前記第2基材の姿勢に応じて、前記香味源貯蔵部の前記内部空間で前記香味源が移動する、
 前記(1)に記載のエアロゾル生成システム。
(3)
 前記制御部は、前記香味源貯蔵部における前記エアロゾルの流路の傾斜が水平に近づくほど、前記エアロゾルの生成量が低下するように前記生成部の動作を制御し、前記第2基材の温度が上昇するよう前記加熱部の動作を制御する、
 前記(2)に記載のエアロゾル生成システム。
(4)
 前記エアロゾル生成システムは、前記エアロゾル生成システムの姿勢を検出する姿勢センサを備え、
 前記制御部は、前記姿勢センサにより検出された前記エアロゾル生成システムの姿勢に対応する前記第2基材の姿勢に応じて、前記生成部の動作及び前記加熱部の動作を制御する、
 前記(1)~(3)のいずれか一項に記載のエアロゾル生成システム。
(5)
 前記制御部は、第1のタイミングにおける前記第2基材の姿勢に応じて前記生成部の動作を制御し、第2のタイミングにおける前記第2基材の姿勢に応じて前記加熱部の動作を制御し、
 前記第1のタイミングは、パフの開始が検出されたタイミングであり、
 前記第2のタイミングは、前記エアロゾル生成システムが電源ONされたタイミング、前記エアロゾル生成システムが電源ONされてから電源OFFされるまでの間の周期的なタイミング、パフの開始が検出されたタイミング、及びパフの終了が検出されたタイミングの少なくともいずれか1つである、
 前記(1)~(4)のいずれか一項に記載のエアロゾル生成システム。
(6)
 前記制御部は、過去にパフの開始が検出されたタイミングにおける前記第2基材の姿勢に応じて、前記加熱部の動作を制御する、
 前記(1)~(4)のいずれか一項に記載のエアロゾル生成システム。
(7)
 前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に配置される複数の前記加熱部を備え、
 前記制御部は、前記第2基材の姿勢に応じて、複数の前記加熱部の動作を制御する、
 前記(1)~(6)のいずれか一項に記載のエアロゾル生成システム。
(8)
 前記制御部は、複数の前記加熱部のうち鉛直方向に配置された前記加熱部の出力が、鉛直方向の逆方向に配置された前記加熱部の出力よりも高くなるよう制御する、
 前記(7)に記載のエアロゾル生成システム。
(9)
 前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に配置される複数の前記加熱部を備え、
 前記制御部は、複数の前記加熱部のうちユーザがパフを行う際に鉛直方向に位置すると想定される前記加熱部の出力が、鉛直方向の逆方向に位置すると想定される前記加熱部の出力よりも高くなるよう制御する、
 前記(1)~(8)のいずれか一項に記載のエアロゾル生成システム。
(10)
 前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に、前記第2基材の周囲を回転可能に配置される複数の前記加熱部と、
 複数の前記加熱部のうち最も出力が高くなるよう制御される前記加熱部が鉛直方向に位置するよう複数の前記加熱部を回転させる回転機構と、
 を備える、
 前記(1)~(9)のいずれか一項に記載のエアロゾル生成システム。
(11)
 前記第2基材は、第1の香味成分及び前記第1の香味成分とは異なる第2の香味成分を含有し、
 前記エアロゾル源は、前記第2の香味成分を含有する、
 前記(1)~(10)のいずれか一項に記載のエアロゾル生成システム。
(12)
 前記エアロゾル生成システムは、前記第1基材及び前記第2基材を備える、
 前記(1)~(11)のいずれか一項に記載のエアロゾル生成システム。
(13)
 第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御すること、
 を含む制御方法。
(14)
 コンピュータを、
 第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御する制御部、
 として機能させるためのプログラム。
The following configuration also belongs to the technical scope of the present invention.
(1)
The operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material. Equipped with a control unit that controls according to the posture of the material,
Aerosol generation system.
(2)
The second base material is
the flavor source configured in a granular form;
a flavor source storage unit storing the flavor source in an internal space;
has
the flavor source moves in the internal space of the flavor source storage unit according to the orientation of the second base material;
The aerosol generating system according to (1) above.
(3)
The control unit controls the operation of the generation unit such that the amount of the aerosol generated decreases as the inclination of the aerosol flow path in the flavor source storage unit approaches horizontal, and the temperature of the second base material decreases. controlling the operation of the heating unit so that the
The aerosol generating system according to (2) above.
(4)
The aerosol generation system comprises an orientation sensor that detects the orientation of the aerosol generation system,
The control unit controls the operation of the generation unit and the operation of the heating unit according to the attitude of the second base material corresponding to the attitude of the aerosol generation system detected by the attitude sensor.
The aerosol generating system according to any one of (1) to (3) above.
(5)
The control unit controls the operation of the generating unit according to the orientation of the second substrate at a first timing, and controls the operation of the heating unit according to the orientation of the second substrate at a second timing. control and
The first timing is the timing at which the start of the puff is detected,
The second timing includes the timing when the aerosol generation system is powered on, the periodic timing from when the aerosol generation system is powered on until it is powered off, the timing when the start of the puff is detected, and at least one of the timing at which the end of the puff is detected,
The aerosol generating system according to any one of (1) to (4) above.
(6)
The control unit controls the operation of the heating unit according to the attitude of the second base material at the timing when the start of the puff was detected in the past.
The aerosol generating system according to any one of (1) to (4) above.
(7)
The aerosol generating system comprises a plurality of heating units arranged at different positions around the second substrate,
The control unit controls the operation of the plurality of heating units according to the posture of the second base material.
The aerosol generating system according to any one of (1) to (6) above.
(8)
The control unit controls so that the output of the heating unit arranged in the vertical direction among the plurality of heating units is higher than the output of the heating unit arranged in the opposite direction of the vertical direction.
The aerosol generating system according to (7) above.
(9)
The aerosol generating system comprises a plurality of heating units arranged at different positions around the second substrate,
The control unit controls the output of the heating unit assumed to be positioned in the vertical direction when the user puffs out of the plurality of heating units, and the output of the heating unit assumed to be positioned in the opposite direction to the vertical direction. controlled to be higher than
The aerosol generating system according to any one of (1) to (8) above.
(10)
The aerosol generating system includes a plurality of heating units arranged rotatably around the second substrate at different positions around the second substrate;
a rotating mechanism that rotates the plurality of heating units so that the heating unit that is controlled to have the highest output among the plurality of heating units is positioned in a vertical direction;
comprising a
The aerosol generating system according to any one of (1) to (9) above.
(11)
The second base contains a first flavor component and a second flavor component different from the first flavor component,
the aerosol source contains the second flavoring ingredient;
The aerosol generating system according to any one of (1) to (10) above.
(12)
the aerosol-generating system comprises the first substrate and the second substrate;
The aerosol generating system according to any one of (1) to (11) above.
(13)
The operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material. Control according to the posture of the material,
Control method including.
(14)
the computer,
The operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material. A control unit that controls according to the posture of the material,
A program to function as
 1  エアロゾル生成システム
 15  操作部
 16  凹部
 40A カートリッジ側加熱部
 40B カプセル側加熱部
 50  カプセル収容部
 51  貫通孔
 52  回転軸
 53  重り
 110  電源ユニット
 111  電源部
 112  センサ部
 113  通知部
 114  記憶部
 115  通信部
 116  制御部
 120  カートリッジ
 122  液誘導部
 123  液貯蔵部
 130  カプセル
 131  香味源貯蔵部
 131D  香味源貯蔵部の下側隔壁
 131U  香味源貯蔵部の上側隔壁
 132  吸口部
 133  香味源
 133U  香味源の上面
 140  カプセルホルダ
 180  空気流路
 181  空気流入孔
 190  空気流
 
1 Aerosol Generation System 15 Operation Part 16 Recess 40A Cartridge Side Heating Part 40B Capsule Side Heating Part 50 Capsule Storage Part 51 Through Hole 52 Rotating Shaft 53 Weight 110 Power Supply Unit 111 Power Supply Part 112 Sensor Part 113 Notification Part 114 Storage Part 115 Communication Part 116 Control Part 120 Cartridge 122 Liquid Guidance Part 123 Liquid Storage Part 130 Capsule 131 Flavor Source Storage Part 131D Lower Partition Wall of Flavor Source Storage Part 131U Upper Partition Wall of Flavor Source Storage Part 132 Mouthpiece 133 Flavor Source 133U Upper Surface of Flavor Source 140 Capsule Holder 180 air flow path 181 air inlet hole 190 air flow

Claims (14)

  1.  第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御する制御部を備える、
     エアロゾル生成システム。
    The operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material. Equipped with a control unit that controls according to the posture of the material,
    Aerosol generation system.
  2.  前記第2基材は、
     粒状に構成された前記香味源と、
     内部空間に前記香味源を貯蔵する香味源貯蔵部と、
     を有し、
     前記第2基材の姿勢に応じて、前記香味源貯蔵部の前記内部空間で前記香味源が移動する、
     請求項1に記載のエアロゾル生成システム。
    The second base material is
    the flavor source configured in a granular form;
    a flavor source storage unit storing the flavor source in an internal space;
    has
    the flavor source moves in the internal space of the flavor source storage unit according to the orientation of the second base material;
    2. The aerosol generating system of claim 1.
  3.  前記制御部は、前記香味源貯蔵部における前記エアロゾルの流路の傾斜が水平に近づくほど、前記エアロゾルの生成量が低下するように前記生成部の動作を制御し、前記第2基材の温度が上昇するよう前記加熱部の動作を制御する、
     請求項2に記載のエアロゾル生成システム。
    The control unit controls the operation of the generation unit such that the amount of the aerosol generated decreases as the inclination of the aerosol flow path in the flavor source storage unit approaches horizontal, and the temperature of the second base material decreases. controlling the operation of the heating unit so that the
    3. The aerosol generating system of claim 2.
  4.  前記エアロゾル生成システムは、前記エアロゾル生成システムの姿勢を検出する姿勢センサを備え、
     前記制御部は、前記姿勢センサにより検出された前記エアロゾル生成システムの姿勢に対応する前記第2基材の姿勢に応じて、前記生成部の動作及び前記加熱部の動作を制御する、
     請求項1~3のいずれか一項に記載のエアロゾル生成システム。
    The aerosol generation system comprises an orientation sensor that detects the orientation of the aerosol generation system,
    The control unit controls the operation of the generation unit and the operation of the heating unit according to the attitude of the second base material corresponding to the attitude of the aerosol generation system detected by the attitude sensor.
    Aerosol generating system according to any one of claims 1-3.
  5.  前記制御部は、第1のタイミングにおける前記第2基材の姿勢に応じて前記生成部の動作を制御し、第2のタイミングにおける前記第2基材の姿勢に応じて前記加熱部の動作を制御し、
     前記第1のタイミングは、パフの開始が検出されたタイミングであり、
     前記第2のタイミングは、前記エアロゾル生成システムが電源ONされたタイミング、前記エアロゾル生成システムが電源ONされてから電源OFFされるまでの間の周期的なタイミング、パフの開始が検出されたタイミング、及びパフの終了が検出されたタイミングの少なくともいずれか1つである、
     請求項1~4のいずれか一項に記載のエアロゾル生成システム。
    The control unit controls the operation of the generating unit according to the orientation of the second substrate at a first timing, and controls the operation of the heating unit according to the orientation of the second substrate at a second timing. control and
    The first timing is the timing at which the start of the puff is detected,
    The second timing includes the timing when the aerosol generation system is powered on, the periodic timing from when the aerosol generation system is powered on until it is powered off, the timing when the start of the puff is detected, and at least one of the timing at which the end of the puff is detected,
    Aerosol generating system according to any one of claims 1-4.
  6.  前記制御部は、過去にパフの開始が検出されたタイミングにおける前記第2基材の姿勢に応じて、前記加熱部の動作を制御する、
     請求項1~4のいずれか一項に記載のエアロゾル生成システム。
    The control unit controls the operation of the heating unit according to the attitude of the second base material at the timing when the start of the puff was detected in the past.
    Aerosol generating system according to any one of claims 1-4.
  7.  前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に配置される複数の前記加熱部を備え、
     前記制御部は、前記第2基材の姿勢に応じて、複数の前記加熱部の動作を制御する、
     請求項1~6のいずれか一項に記載のエアロゾル生成システム。
    The aerosol generating system comprises a plurality of heating units arranged at different positions around the second substrate,
    The control unit controls the operation of the plurality of heating units according to the posture of the second base material.
    Aerosol generating system according to any one of claims 1-6.
  8.  前記制御部は、複数の前記加熱部のうち鉛直方向に配置された前記加熱部の出力が、鉛直方向の逆方向に配置された前記加熱部の出力よりも高くなるよう制御する、
     請求項7に記載のエアロゾル生成システム。
    The control unit controls so that the output of the heating unit arranged in the vertical direction among the plurality of heating units is higher than the output of the heating unit arranged in the opposite direction of the vertical direction.
    8. The aerosol generating system of claim 7.
  9.  前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に配置される複数の前記加熱部を備え、
     前記制御部は、複数の前記加熱部のうちユーザがパフを行う際に鉛直方向に位置すると想定される前記加熱部の出力が、鉛直方向の逆方向に位置すると想定される前記加熱部の出力よりも高くなるよう制御する、
     請求項1~8のいずれか一項に記載のエアロゾル生成システム。
    The aerosol generating system comprises a plurality of heating units arranged at different positions around the second substrate,
    The control unit controls the output of the heating unit assumed to be positioned in the vertical direction when the user puffs out of the plurality of heating units, and the output of the heating unit assumed to be positioned in the opposite direction to the vertical direction. controlled to be higher than
    Aerosol generating system according to any one of claims 1-8.
  10.  前記エアロゾル生成システムは、前記第2基材の周囲のそれぞれ異なる位置に、前記第2基材の周囲を回転可能に配置される複数の前記加熱部と、
     複数の前記加熱部のうち最も出力が高くなるよう制御される前記加熱部が鉛直方向に位置するよう複数の前記加熱部を回転させる回転機構と、
     を備える、
     請求項1~9のいずれか一項に記載のエアロゾル生成システム。
    The aerosol generating system includes a plurality of heating units arranged rotatably around the second substrate at different positions around the second substrate;
    a rotating mechanism that rotates the plurality of heating units so that the heating unit that is controlled to have the highest output among the plurality of heating units is positioned in a vertical direction;
    comprising
    Aerosol generating system according to any one of claims 1-9.
  11.  前記第2基材は、第1の香味成分及び前記第1の香味成分とは異なる第2の香味成分を含有し、
     前記エアロゾル源は、前記第2の香味成分を含有する、
     請求項1~10のいずれか一項に記載のエアロゾル生成システム。
    The second base contains a first flavor component and a second flavor component different from the first flavor component,
    the aerosol source contains the second flavoring ingredient;
    Aerosol generating system according to any one of claims 1-10.
  12.  前記エアロゾル生成システムは、前記第1基材及び前記第2基材を備える、
     請求項1~11のいずれか一項に記載のエアロゾル生成システム。
    the aerosol-generating system comprises the first substrate and the second substrate;
    Aerosol generating system according to any one of claims 1-11.
  13.  第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御すること、
     を含む制御方法。
    The operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material. Control according to the posture of the material,
    Control method including.
  14.  コンピュータを、
     第1基材に貯留されたエアロゾル源からエアロゾルを生成する生成部の動作、及び前記エアロゾルに香味成分を付与する香味源を含む第2基材を加熱する加熱部の動作を、前記第2基材の姿勢に応じて制御する制御部、
     として機能させるためのプログラム。
     
    the computer,
    The operation of the generating unit that generates an aerosol from the aerosol source stored in the first base material and the operation of the heating unit that heats the second base material including the flavor source that imparts a flavor component to the aerosol are performed by the second base material. A control unit that controls according to the posture of the material,
    A program to function as
PCT/JP2021/038107 2021-10-14 2021-10-14 Aerosol generation system, control method, and program WO2023062789A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/038107 WO2023062789A1 (en) 2021-10-14 2021-10-14 Aerosol generation system, control method, and program
JP2023553854A JPWO2023062789A1 (en) 2021-10-14 2021-10-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/038107 WO2023062789A1 (en) 2021-10-14 2021-10-14 Aerosol generation system, control method, and program

Publications (1)

Publication Number Publication Date
WO2023062789A1 true WO2023062789A1 (en) 2023-04-20

Family

ID=85988180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038107 WO2023062789A1 (en) 2021-10-14 2021-10-14 Aerosol generation system, control method, and program

Country Status (2)

Country Link
JP (1) JPWO2023062789A1 (en)
WO (1) WO2023062789A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180070639A1 (en) * 2016-09-14 2018-03-15 Shenzhen First Union Technology Co., Ltd. Atomizing device and electronic cigarette having same
WO2020044385A1 (en) * 2018-08-27 2020-03-05 日本たばこ産業株式会社 Flavor component delivery device
JP2020528279A (en) * 2017-10-30 2020-09-24 ケイティー アンド ジー コーポレイション Aerosol generator and heater for aerosol generator
WO2021199159A1 (en) * 2020-03-30 2021-10-07 日本たばこ産業株式会社 Control device, control method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180070639A1 (en) * 2016-09-14 2018-03-15 Shenzhen First Union Technology Co., Ltd. Atomizing device and electronic cigarette having same
JP2020528279A (en) * 2017-10-30 2020-09-24 ケイティー アンド ジー コーポレイション Aerosol generator and heater for aerosol generator
WO2020044385A1 (en) * 2018-08-27 2020-03-05 日本たばこ産業株式会社 Flavor component delivery device
WO2021199159A1 (en) * 2020-03-30 2021-10-07 日本たばこ産業株式会社 Control device, control method, and program

Also Published As

Publication number Publication date
JPWO2023062789A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP6622437B2 (en) Handheld vaporizer
JP7019628B2 (en) Electronic inhaler
US20220040423A1 (en) Mobile inhaler and a container for using therewith
RU2741896C2 (en) Aerosol delivery device with improved fluid transfer
KR102611163B1 (en) Aerosol delivery device with improved atomizer
JP2022008448A (en) Detachable power source for aerosol delivery device
UA126667C2 (en) Photodetector for measuring aerosol precursor composition in an aerosol delivery device
JP7440597B2 (en) Aerosol generation control device, terminal device, management device, power supply device, information processing method and program
US20230000172A1 (en) Inhaling device
CN112584716A (en) Aerosol generating device
JP7324741B2 (en) Video analysis camera system for aerosol delivery devices
WO2023062789A1 (en) Aerosol generation system, control method, and program
TW202112256A (en) Battery unit, information processing method and program
US20230000152A1 (en) Inhaling device, control method, and non-transitory computer readable medium
WO2023188102A1 (en) Aerosol generating device, control method, and program
CN117940033A (en) Aerosol generating system, control method, and program
WO2022230016A1 (en) Aerosol generation system
WO2023112339A1 (en) Aerosol generation device and information display device
WO2022064560A1 (en) Suction device, control device, and control method
WO2023026322A1 (en) Aerosol generation system
WO2023026323A1 (en) Aerosol generation system
WO2023188103A1 (en) Aerosol generating device, control method, and program
KR20230167188A (en) Aerosol generating module and aerosol generating device
EP3791733A1 (en) Smoking substitute system
KR20190143723A (en) Fine particle generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960646

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023553854

Country of ref document: JP