WO2023186744A1 - Antriebsvorrichtung für ein kraftfahrzeug, insbesondere für einen kraftwagen - Google Patents
Antriebsvorrichtung für ein kraftfahrzeug, insbesondere für einen kraftwagen Download PDFInfo
- Publication number
- WO2023186744A1 WO2023186744A1 PCT/EP2023/057693 EP2023057693W WO2023186744A1 WO 2023186744 A1 WO2023186744 A1 WO 2023186744A1 EP 2023057693 W EP2023057693 W EP 2023057693W WO 2023186744 A1 WO2023186744 A1 WO 2023186744A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- differential
- planetary
- rotor
- drive device
- Prior art date
Links
- 230000004907 flux Effects 0.000 claims abstract description 45
- 239000000969 carrier Substances 0.000 claims description 41
- 239000003921 oil Substances 0.000 description 7
- 238000007789 sealing Methods 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 4
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012208 gear oil Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
- B60K17/16—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
- B60K17/165—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing provided between independent half axles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
- B60K17/043—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
- B60K17/043—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
- B60K17/046—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K1/00—Arrangement or mounting of electrical propulsion units
- B60K2001/001—Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/60—Electric Machines, e.g. motors or generators
- B60Y2400/607—Axial flux machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2410/00—Constructional features of vehicle sub-units
- B60Y2410/10—Housings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2410/00—Constructional features of vehicle sub-units
- B60Y2410/102—Shaft arrangements; Shaft supports, e.g. bearings
Definitions
- the invention relates to a drive device for a motor vehicle, in particular for a motor vehicle, according to the preamble of patent claim 1.
- the drive device has an electrical machine, which is designed as an axial flux machine.
- the axial flow machine is also called
- Disc rotor machine refers to and has a stator and two rotors rotatable relative to the stator, the stator being arranged between the rotors in the axial direction of the axial flux machine.
- DE 102009 012 256 A1 discloses a drive device for an electric motor-operated vehicle, comprising an electric motor with a rotor and a stator. A differential gear is also provided.
- the object of the present invention is to further develop a drive device of the type mentioned in such a way that a particularly advantageous drive can be realized in a particularly space- and weight-efficient manner.
- a differential gear is provided according to the invention, which has a first output wheel which is connected in a rotationally fixed manner to a first output shaft and one rotating with a second Has a second output gear connected to the output shaft.
- the rotors each have a rotor carrier, which is positively connected to one another.
- the rotors are connected to one another in a form-fitting and in particular rotationally fixed manner.
- the rotors form, at least in the axial direction of the electric machine, a differential housing, also referred to as a differential gear housing, in which, for example, the differential gear is at least partially arranged, in particular in such a way that the differential gear is in the radial direction of the electrical Machine is at least partially covered from the outside by the differential housing
- the differential gear also simply referred to as a differential
- a differential is designed as a planetary differential.
- the planetary differential is also referred to as a planetary differential gear or spur gear and is at least partially arranged radially within the stator. This means that the differential gear, in particular the planetary differential, is at least partially arranged within the stator in the radial direction of the axial flux machine.
- the differential gear in particular planetary differential, which runs in the axial direction of the axial flux machine, which is also referred to as a planetary gear differential or planetary gear differential gear, is overlapped or covered outwards by the stator in the radial direction of the axial flux machine, in particular in the axial direction
- the circumferential direction of the axial flow machine runs completely around the circumference.
- the axial direction of the axial flux machine coincides with an axis of rotation, the rotors being drivable by means of the stator and thereby rotatable about said axis of rotation relative to the stator.
- the radial direction of the axial flow machine is perpendicular to the axial direction and therefore perpendicular to the axis of rotation.
- the first output gear is a first sun gear that is non-rotatably connected to the first output shaft
- the second output gear is a second sun gear that is non-rotatably connected to the second output shaft.
- the planetary differential preferably has at least two planetary bolts held on the rotor carriers, via which the rotor carriers are positively connected to one another.
- the planetary differential has at least one first planetary gear which is rotatably held on a first of the planetary bolts and meshes with the first sun gear.
- the planetary differential has at least one second planetary gear which is rotatably held on the second planetary pin and meshes with the second sun gear and which also meshes with the first planetary gear.
- the planetary bolts are in the axial direction of the axial flux machine and thus around the Rotation axis extending circumferential direction of the axial flow machine arranged successively.
- the planetary bolts are held on the rotors so that the rotors are positively connected to one another via the planetary bolts.
- the respective planetary bolt is connected to the rotors in a rotationally fixed manner.
- the first sun gear is a first spur gear of the planetary differential.
- the second sun gear is a second spur gear of the planetary differential.
- the planetary differential also has the first planetary gear, which is rotatably held on the first planetary bolt and meshes with the first sun gear, which is a third spur gear of the planetary differential.
- the planetary differential has the second planetary gear rotatably held on the second planetary bolt, which is a fourth spur gear of the planetary differential.
- the second planet gear meshes with the second sun gear.
- the second planetary gear meshes with the first planetary gear.
- the planetary differential is therefore integrated into the axial flux machine in a particularly space-saving manner.
- the rotor carriers and thus the rotors form the differential housing, with the planetary bolts being held on the differential housing, in particular in a rotationally fixed manner.
- the planet gears are at least partially arranged in the differential housing.
- optimal use of installation space through synergy effects between the axial flux machine and the differential gear which is also simply referred to as a differential, combined assembly of the axial flux machine and the differential and thus reduction of subtasks, complex screwing and/or plug connection of the rotors to each other or with each other and with a force dissipation point can be avoided, since a particularly rotation-proof and / or positive connection of the rotors to one another can be achieved by mounting the planetary bolts, also simply referred to as bolts, on the rotors, in particular the rotor carriers, and thus with the rotors, in particular non-rotatable, are connected.
- the axial flux machine When the differential is arranged next to the axial flux machine, the axial flux machine is again interspersed with a differential output shaft, which causes diameter restrictions and can be avoided by the invention.
- the differential gear is designed as a bevel differential, which is also referred to as a bevel gear differential or ball differential becomes. Furthermore, it is conceivable that the differential gear is designed as a crown gear differential, which is also referred to as a crown gear differential gear.
- the differential gear is designed as a planetary differential, a particularly small space requirement can be achieved, especially in the radial direction of the axial flux machine and thus the drive device as a whole.
- the differential and the axial flux machine are mounted at the same time. This eliminates the need for partial assembly work because, for example, the positioning of the rotor carrier relative to one another and the assembly of the differential are carried out together.
- the drive device can therefore be assembled in a particularly time- and cost-effective manner.
- complex screw connections or plug connections can be omitted since force is introduced directly from the respective rotor, in particular the rotor carrier, into the differential or differential housing, in particular because, for example, the respective rotor carrier of the respective rotor is made in one piece, in particular in one piece, with a respective housing part of the differential housing is formed.
- the invention enables a wide bearing base for storing the rotor carriers, in particular a composite which includes the rotor carriers and the differential.
- the invention is suitable for both a coaxial and an axially parallel structure. Another wave of implementation can be avoided.
- the differential can be made particularly compact through any downstream transmission, particularly on each output side.
- the differential gear is designed as a bevel gear differential, with the rotor carriers being positively connected to one another via at least one web.
- the bridge is separate from the Rotor carriers are formed and, in particular, each rotated, connected to the rotor carriers.
- the first output gear is a first bevel gear that is connected to the first output shaft
- the second output gear is a second bevel gear that is connected to the second output shaft.
- the bevel gear differential has at least one compensating gear rotatably held on the web, which is designed as a third bevel gear of the bevel gear differential that meshes simultaneously with the first driven gear and with the second driven gear.
- At least one of the rotors is rotatably mounted on a housing of the drive device via at least one bearing, in particular roller bearings, the rotors being rotatable about the axis of rotation relative to the housing.
- At least one of the rotors is rotatably mounted on one of the output shafts via at least one bearing, in particular roller bearings.
- FIG. 1 shows a detail of a schematic longitudinal sectional view of a first embodiment of a drive device for a motor vehicle
- Fig. 2 is a schematic representation of a second embodiment of the drive device
- FIG. 3 shows a schematic representation of a third embodiment of the drive device; 4 shows a detail of a schematic longitudinal sectional view of a fourth embodiment of the drive device;
- FIG. 5 shows a schematic representation of a fifth embodiment of the drive device
- FIG. 6 shows a schematic representation of a sixth embodiment of the drive device
- FIG. 7 shows a detail of a schematic longitudinal sectional view of a seventh embodiment of the drive device.
- Fig. 8 shows a detail of a schematic longitudinal sectional view of an eighth embodiment of the drive device.
- Fig. 1 shows a detail in a schematic longitudinal section view of a first embodiment of a drive device 10 for a motor vehicle, in particular for a motor vehicle and especially for a passenger car.
- the drive device 10 is in particular an electric drive device, by means of which the motor vehicle can be driven, in particular purely electrically.
- the motor vehicle has at least one vehicle axle, also referred to as an axle, which has at least or exactly two vehicle wheels, also simply referred to as wheels.
- the vehicle wheels are ground contact elements via which the motor vehicle can be supported or supported downwards on a ground in the vertical direction of the vehicle.
- the vehicle wheels of the vehicle axle can be driven, in particular purely, electrically, whereby the motor vehicle can be driven, in particular purely, electrically.
- the drive device 10 has an electrical machine, which is designed as an axial flux machine 12.
- the axial flux machine 12 is also referred to as a disc rotor machine.
- the axial flux machine 12 has, in particular, a stator 14, which is connected, in particular firmly and in particular in a rotationally fixed manner, to a housing 16 of the drive device 10, which is shown particularly schematically in FIG.
- the axial flux machine 12 has, in particular at least or exactly, two rotors 18 and 20, which can be driven by means of the stator 14 and can therefore be rotated about an axis of rotation 21 relative to the stator 14 and relative to the housing 16. Via its rotors 18 and 20, the axial flux machine 12 can provide drive torque for driving the vehicle wheels and thus the motor vehicle.
- the respective rotor 18, 20 has a respective rotor carrier 22, 24.
- the respective rotor 18, 20 has magnets 26, 28. It can be seen that the respective magnet 26, 28 is held on the respective rotor carrier 22, 24 of the respective rotor 18, 20.
- the respective magnet 26, 28 is a permanent magnet. From Fig.
- the stator 14 is arranged in the axial direction of the axial flux machine 12 between the rotors 18 and 20, the axial direction of the axial flux machine 12 coinciding with the axis of rotation 21.
- the respective rotor 18, 20 is at least essentially disk-shaped, so that the respective rotor 18, 20 is also referred to as a disk rotor.
- the drive device 10 has a differential gear 29 which is at least partially arranged radially within the stator 14, which is also simply referred to as a differential.
- the differential gear 29 is designed as a planetary differential, which is also referred to as a planetary differential gear, planetary gear differential, planetary gear differential gear, spur gear differential or spur gear differential gear.
- the planetary differential has a first output gear 31 in the form of a first spur gear, which in the first embodiment is designed as a first sun gear 31 and is connected in a rotationally fixed manner to a first output shaft 30.
- the planetary differential has a second output gear 32 in the form of a second spur gear, which in the first embodiment is designed as a second sun gear and is connected in a rotationally fixed manner to a second output shaft 34.
- the output shafts 30 and 34 are arranged coaxially to one another and are rotatable about the axis of rotation 21 relative to the housing 16.
- the output shafts 30 and 34 which are also referred to as side shafts or are designed as side shafts, can be rotated relative to one another about the axis of rotation 21.
- a first Vehicle wheels can be driven by the axial flux machine 12 via the output shaft 30 and the second vehicle wheel can be driven via the output shaft 34.
- the rotor carriers 22 and 24 of the rotors 18 and 20 are connected to one another in a form-fitting and therefore rotationally fixed manner, the rotor carriers 22 and 24 being viewed at least in the axial direction of the electrical machine and thus along the axis of rotation 21, a differential housing 23, in which the differential gear 29 is at least partially arranged, in particular in such a way that the differential gear 29 is at least partially overlapped and thus covered in the radial direction of the electric machine towards the outside by the differential housing 23 and thus by the rotor carriers 22 and 24.
- the planetary differential has at least two planetary bolts 36 and 38, the respective longitudinal extension direction of which runs parallel to the axial direction of the axial flux machine 12 and thus the drive device 10 as a whole.
- the planetary bolts 36 and 38 are arranged sequentially, that is to say one behind the other, in the circumferential direction of the axial flux machine 12 and thus the drive device 10, which extends around the axial direction of the axial flux machine 12 and thus around the axis of rotation 21.
- the planetary bolts 36 and 38 which are also simply referred to as bolts, are held on the rotor carriers 22 and 24 and thus on the rotors 18 and 20, in particular in such a way that the bolts are non-rotatable with the rotor carriers 22 and 24 and thus non-rotatable with the Rotors 18 and 20 are connected.
- the rotors 18 and 20, that is to say the rotor carriers 22 and 24, are thus positively connected to one another via the planetary bolts 36 and 38.
- the rotor carriers 22 and 24 and thus the rotors 18 and 20 are connected to one another in a form-fitting, rotationally fixed manner via the planetary bolts 36 and 38. From Fig.
- the planetary differential has a third spur gear in the form of a first planetary gear 40 which is rotatably held on the first planetary pin 36 and which meshes with the driven gear 31 but not with the driven gear 32. Furthermore, the planetary differential has a fourth spur gear rotatably held on the planetary bolt 38 in the form of a second planetary gear 42, which meshes with the planetary gear 40 and with the driven gear 32, but not with the driven gear 31.
- Planetary gear 40 can be seen that, for example, the respective planetary gear 40, 42 is rotatably mounted on the respective planetary bolt 36, 38 via a respective bearing 44, in particular designed as a rolling bearing.
- the respective planetary gear 40, 42 is rotatable about a respective axis of rotation 46, 48 relative to the respective planetary pin 36, 38, the respective axis of rotation 46, 48 running parallel to the axis of rotation 21 and spaced from the axis of rotation 21.
- the output gears 31 and 32, the planetary gears 40 and 42, the planetary bolts 36 and 38 and also the output shafts 30 and 34 are each at least partially overlapped towards the outside in the radial direction of the axial flux machine 12 by the stator 14 and are therefore covered , which means that a particularly compact and space-saving structure can be created.
- the rotor carriers 22 and 24 function as housing parts of the differential housing, in which the driven gears 31 and 32 and the planetary gears 40 and 42 are each arranged at least partially, in particular completely.
- Fig. 1 50 denotes a sealing ring, and 52 or 54 denotes a respective oil passage hole through which oil can flow.
- the differential gear 29 can thus be supplied with the oil and thereby cooled and/or lubricated.
- the rotor carrier 22 and thus the rotor 18 can be rotatably mounted on the housing 16 via a bearing 56 designed, for example, as a rolling bearing.
- the rotor carrier 24 and thus the rotor 20 can be rotatably mounted on the output shaft 34 via a bearing 58 designed, for example, as a rolling bearing.
- 60 denotes an optional sealing ring.
- the planet bolts 36 and 38 position the two rotor carriers 22 and 24 relative to one another.
- the respective rotor carrier 22, 24 is optionally designed as a simple formed part. Forces from the respective rotor carrier 22, 24 flow on the corresponding side into a respective planet carrier, also referred to as a web, whereby an unfavorable redirection of force can be avoided.
- Fig. 2 shows a second embodiment of the drive device 10.
- the second embodiment basically corresponds to the first embodiment.
- an axially parallel arrangement is provided.
- the output shafts 30 and 34 are connected in a rotationally fixed manner to respective spur gears 62 and 64, which mesh with corresponding, further spur gears 66 and 68.
- the vehicle wheels are over the Spur gears 66 and 68 can be driven, so that the vehicle wheels or their wheel rotation axes are off-axis and thus arranged axially parallel to the output shafts 30 and 34.
- the spur gears 62, 64, 66 and 68 ensure an advantageous translation, in particular final translation, which is also referred to as final drive.
- Fig. 3 shows a third embodiment of the drive device 10.
- the third embodiment basically corresponds to the first embodiment, whereby, in contrast to the second embodiment, in the third embodiment a coaxial arrangement of the vehicle wheels or their wheel rotation axes is provided, in particular with respect to the output shafts 30 and 34.
- a respective final transmission is formed by a respective, further planetary gear set 72, 74.
- the respective planetary gear set 72, 74 has, for example, a sun gear 76 connected in a rotationally fixed manner to the respective output shaft 30, 34, a respective planet carrier 78 and a respective ring gear 80.
- the respective ring gear 80 is, for example, connected to the housing 16 in a rotationally fixed manner.
- the respective sun gear 76 is connected to the respective output shaft 30, 34 in a rotationally fixed manner. Furthermore, the respective planetary gear set 72, 74 has further planetary gears 82, which are rotatably mounted on the respective planet carrier 78. The vehicle wheels can be driven via the planet carriers 78, as illustrated by the arrows 70. In this way, a coaxial arrangement of the vehicle wheels or their wheel rotation axes can be realized, in particular with the output shafts 30 and 34.
- Fig. 4 shows a fourth embodiment of the drive device 10.
- the differential gear 29 is designed as a bevel differential, which is also referred to as a bevel gear differential or ball differential.
- the output gear 31, which is non-rotatably connected to the output shaft 30, is a first bevel gear 86.
- the second output gear 32 is designed as a second bevel gear 88.
- the bevel gear differential has a compensating wheel 83 designed as a third bevel gear, which is rotatably mounted on the differential carrier, such that the compensating wheel 83 is rotatable about a compensating wheel rotation axis 84 relative to the differential carrier and thus relative to the rotor carriers 22 and 24, the compensating wheel rotation axis 84 runs perpendicular to the axis of rotation 21.
- the differential carrier is, for example, the differential housing or part of the differential housing.
- the bevel gear 86 meshes with the balance gear 83, and the bevel gear 88 meshes with the balance gear 83, but not with the bevel gear 86.
- the output gears 31 and 32 and the balance gear 83 are gears.
- the rotor carriers 22 and 24 are, in particular directly, connected to one another in a rotational manner and, for this purpose, are screwed together, for example.
- an oil passage bore 90 via which the differential gear 29 arranged radially within the stator 14 can be supplied with oil. Any sealing bandage that may be provided is designated by 92.
- a parking lock wheel 94 of a parking lock is also optionally provided, the parking lock wheel 94 rotating with the rotor carriers 22 and 24 and thus rotating with the rotors 18 and 20.
- the rotor carriers 22 are rotatably mounted via the bearings 56 and 58, which are designed, for example, as roller bearings, in particular on the housing 16.
- a so-called differential screw connection 96 by means of which, for example, the rotor carriers 22 and 24 and thus the rotors 18 and 20 are screwed together and thereby are connected to each other.
- Fig. 5 shows a fifth embodiment of the drive device 10.
- the fifth embodiment basically corresponds to the fourth embodiment, with an axially parallel arrangement of the vehicle wheels or their wheel rotation axes, in particular with respect to the output shafts 30 and 34, being provided in the fifth embodiment.
- FIG. 6 shows a sixth embodiment of the drive device 10.
- the sixth embodiment which basically corresponds to the fourth embodiment, a coaxial arrangement of the vehicle wheels or their wheel rotation axes is provided, in particular with respect to the output shafts 30 and 34.
- the planetary differential is free of a ring gear with which the planet gears 40 and 42 mesh.
- the differential gear 29 is alternatively designed as a crown gear differential, which is not shown in the figures.
- Fig. 7 shows a section of a schematic representation of a seventh embodiment of the drive device 10.
- the axial flux machine 12 is designed in a so-called H-design, in which it is also used as a rotor disk designated or designed as rotor disks, rotors 18 and 20 are spaced apart from one another in the axial direction of the axial flux machine 12 and thus viewed along the axis of rotation 21 and the stator 14 in the axial direction of the Axial flux machine 12 is at least partially arranged between the rotors 18 and 20 (rotor disks).
- the differential gear 29, also simply referred to as a differential, is arranged particularly compactly within the axial flux machine 12 and in particular within the stator 14, in particular in such a way that the differential gear 29 in the radial direction of the axial flux machine 12 outwards at least partially through the stator 14 and in the present case also at least partially overlapped and thus covered by the rotors 18 and 20 and also at least partially by the differential housing 23.
- the differential gear 29, as in the sixth embodiment is designed as a bevel gear differential, which is also simply referred to as a bevel differential, bevel differential gear or bevel gear differential gear.
- the rotor carriers 22 and 24 and thus the rotors 18 and 20 are connected to one another in a form-fitting manner via a web 98 and are therefore non-rotatable.
- the web 98 is designed separately from the rotor carriers 22, 24 and is each connected to the rotor carriers 22 and 24 in a form-fitting and, in particular, rotationally fixed manner.
- the differential housing 23 is formed by the rotors 18 and 20 and by the web 98, so that the differential gear 29 in the radial direction of the axial flux machine 12 is at least partially overlapped to the outside by the web 98 and is thus covered.
- the compensating wheel 83 designed as a bevel gear is rotatably mounted about the compensating wheel rotation axis relative to the web 98 and relative to the rotors 18 and 20 or relative to the rotor carriers 22, 24 in such a way that the compensating wheel 83 is rotatable about the compensating wheel rotation axis 84 relative to a Axis 100 is rotatably held on axis 100.
- the axis 100 is held, in particular in a rotationally fixed manner, on the web 98, in particular in such a way that relative rotations between the axis 100 and the web 98 about the compensating wheel rotation axis 84 are prevented.
- the axle 100 which is also referred to as the balance wheel axle, is integrated into the web 98, so to speak.
- the axis 100 is designed separately from the web 98 and is connected to the web 98, that is, held on the web 98.
- the seventh embodiment also represents a space-saving and weight-saving integration of the differential gear 29 into the axial flux machine 12, since already existing components of the axial flux machine 12, in particular the rotor carriers 22 and 24, are used or shared to realize the differential housing 23.
- the sound-radiating rotors 18 and 20 are, for example, encapsulated between bearing covers, particularly when viewed in the axial direction of the axial flow machine 12, and are an overall arrangement for example, again connected to the housing 16 on a flange surface of the housing 16, also referred to as a gear housing, in particular by means of at least one connecting element 102 shown particularly schematically in FIG.
- Respective connecting elements by means of which the web 98 is connected to the rotor supports 22 and 24 are shown particularly schematically in FIG. 7 and are designated 102.
- the respective connecting element 102 can be designed, for example, as a screw or as a pin or as another connecting element.
- the aforementioned bearing caps can be seen in FIG. 7 and are designated 104.
- the respective rotor carrier 22, 24 is therefore the respective rotor 18,
- the 20 is rotatably mounted on the respective bearing cover 104 via a respective bearing 106, in the present case designed as a rolling bearing.
- the respective bearing 106 is designed as an angular contact ball bearing, with the bearing unit 106 preferably being arranged in an O-arrangement.
- the connecting element 102 can be designed as a screw, as a pin or as another connecting element.
- the axial flux machine 12 is designed in a so-called I-design.
- the stator 14 comprises at least or exactly two stator elements 15 and 17, which are spaced apart from one another in the axial direction of the axial flux machine 12 and thus along the axis of rotation 21.
- the stator elements 15 and 17 are designed as stator disks or the stator elements 15 and
- the axial flux machine 12 has at least or exactly one rotor 18, which is designed, for example, as a rotor disk or is also referred to as a rotor disk.
- the rotor 18 is arranged in the axial direction of the axial flux machine 12 between the stator elements 15 and 17, in particular in such a way that the stator element 15 is at least partially overlapped by the rotor 18 in the axial direction of the axial flux machine 12 to the stator element 17 by the rotor 18 and vice versa.
- the rotor 18 has the rotor carriers 22 and 24, which are connected to one another in a form-fitting and thus rotationally fixed manner via the web 98 and, in particular together with the web 98, at least partially form the differential housing 23. It can be seen that the rotor carriers 22 and 24 and thus the rotor
- stator 18 are rotatably mounted on the bearing covers 104 via the bearings 106, which are designed in particular as radial bearings, and are mounted on the housing 16 via these.
- the stator elements 15 and 17 and thus the stator 14 are at least related to the axis of rotation
- the axial flow machine 12 is shown in H-design or I-design, with the differential gear 29 being integrated into the axial flow machine 12 to save space.
- advantageous noise behavior which is also known as NVH behavior (NVH - noise vibration harshness ) is referred to, can be realized.
- the differential housing 23 is formed from the web 98 and the rotor carriers 22 and 24 or the rotor disks (rotors 18 and 20), in particular in the H-design, or, in particular in the I-design, the differential housing 23 is made from the in particular as Rotor disk formed rotor 18, the web 98 and at least one of the bearing caps 104.
- the web 98 there is a receptacle for the axle 100, for example designed as a receiving hole, and for example, at least one or more running surfaces for the compensating wheel 83 is or are integrated in the web 98.
- This arrangement allows the bevel gears to be accommodated in a space-saving manner.
- the two rotor disks with the running surfaces for the bevel gears complete the bevel gear arrangement.
- a rotor disk and a cover In the I-design, which is also referred to as an I-arrangement, a rotor disk and a cover.
- the components are connected to one another using suitable connecting elements.
- the web 98 can also be made in one piece with the rotor, in particular only screwed on one side.
- the screw connection can also be carried out on one side, especially if the screw completely penetrates the web and the thread is contained in the other rotor disk.
- the respective output gear 31, 32 is firmly connected to the respective output shaft 30, 34, also referred to as the axle shaft.
- the gear set can be made particularly compact, since the driven gear 31, 32, which is designed, for example, as an axle bevel gear, does not have to have any additional splines in the axial basin installation space.
- the shaft-umbel connection is therefore moved axially outwards into the less space-critical area.
- the axial running surface in the rotor disk for the bevel gear can thereby be made particularly large.
- the rotor disks can accommodate the bearings 106, or in the case of an I-arrangement, the rotor disk and the cover can accommodate the bearings 106.
- the differential and/or the web 98 may also be partially engaged under the rotor.
- the rotor disks can be encapsulated within the bearing cap 104 and are therefore additionally shielded as a sound source (primarily airborne sound), whereby the entire arrangement is attached to the housing 16 via the flange surface formed on the bearing cap.
- a sound source primarily airborne sound
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Retarders (AREA)
Abstract
Die Erfindung betrifft eine Antriebsvorrichtung (10) für ein Kraftfahrzeug, mit einer als Axialflussmaschine (12) ausgebildeten elektrischen Maschine, welche einen Stator (14) und zwei relativ zu dem Stator (14) drehbare Rotoren (18, 20) aufweist, wobei der Stator (14) in axialer Richtung der Axialflussmaschine (12) zwischen den Rotoren (18, 20) angeordnet ist. Vorgesehen ist ein zumindest teilweise radial innerhalb des Stators (14) angeordnetes Differentialgetriebe (29), welches ein drehfest mit einer ersten Abtriebswelle (30) verbundenes, erstes Abtriebsrad (31), und ein drehfest mit einer zweiten Abtriebswelle (34) verbundenes, zweites Abtriebsrad (32) aufweist, wobei die Rotoren (18, 20) jeweils einen Rotorträger (22, 24) aufweisen, welche formschlüssig miteinander verbunden sind und zumindest in axialer Richtung der elektrischen Maschine betrachtet ein Differentialgehäuse ausbilden.
Description
Antriebsvorrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen
Die Erfindung betrifft eine Antriebsvorrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, gemäß dem Oberbegriff von Patentanspruch 1.
Derartige Antriebsvorrichtungen für Kraftfahrzeuge, insbesondere für Kraftwagen, sind aus dem allgemeinen Stand der Technik bereits hinlänglich bekannt. Die Antriebsvorrichtung weist eine elektrische Maschine auf, welche als eine Axialflussmaschine ausgebildet ist. Die Axialflussmaschine wird auch als
Scheibenläufermaschine bezeichnet und weist einen Stator und zwei relativ zu dem Stator drehbare Rotoren auf, wobei der Stator in axialer Richtung der Axialflussmaschine zwischen den Rotoren angeordnet ist.
Des Weiteren offenbart die DE 102009 012 256 A1 eine Antriebsvorrichtung für ein elektromotorisch betriebenes Fahrzeug, umfassend einen Elektromotor mit einem Rotor und einem Stator. Vorgesehen ist auch ein Differentialgetriebe.
Aufgabe der vorliegenden Erfindung ist es, eine Antriebsvorrichtung der eingangs genannten Art derart weiterzuentwickeln, sodass auf besonders bauraum- und gewichtsgünstige Weise ein besonders vorteilhafter Antrieb realisiert werden kann.
Diese Aufgabe wird durch eine Antriebsvorrichtung mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben.
Um eine Antriebsvorrichtung der im Oberbegriff des Patentanspruchs 1 angegebenen Art derart weiterzuentwickeln, dass auf besonders bauraum- und gewichtsgünstige Weise ein besonders vorteilhafter Antrieb des Kraftfahrzeugs realisiert werden kann, ist erfindungsgemäß ein Differentialgetriebe vorgesehen, welches ein drehfest mit einer ersten Abtriebswelle verbundenes, erstes Abtriebsrad und ein drehfest mit einer zweiten
Abtriebswelle verbundenes, zweites Abtriebsrad aufweist. Die die Rotoren weisen jeweils einen Rotorträger auf, welche formschlüssig miteinander verbunden sind. Somit sind die Rotoren formschlüssig und insbesondere drehfest miteinander verbunden Die Rotoren bilden zumindest in axialer Richtung der elektrischen Maschine betrachtet ein auch als Differentialgetriebegehäuse bezeichnetes Differentialgehäuse aus, in welchem beispielsweise das Differentialgetriebe zumindest teilweise angeordnet ist, insbesondere derart, dass das Differentialgetriebe in radialer Richtung der elektrischen Maschine nach außen hin zumindest teilweise durch das Differentialgehäuse überdeckt ist
In vorteilhafter Ausgestaltung der Erfindung ist das einfach auch als Differential bezeichnete Differentialgetriebe als ein Planetendifferential ausgebildet. Das Planetendifferential wird auch als Planetendifferentialgetriebe oder Stirnradgetriebe bezeichnet und ist zumindest teilweise radial innerhalb des Stators angeordnet. Dies bedeutet, dass das Differentialgetriebe, insbesondere das Planetendifferential, in radialer Richtung der Axialflussmaschine zumindest teilweise innerhalb des Stators angeordnet ist. Dies bedeutet auch, dass zumindest ein in axialer Richtung der Axialflussmaschine verlaufender Längenbereich des Differentialgetriebes, insbesondere Planetendifferentials, welches auch als Planetenraddifferential oder Planetenraddifferentialgetriebe bezeichnet wird, in radialer Richtung der Axialflussmaschine nach außen hin durch den Stator überlappt beziehungsweise überdeckt ist, insbesondere in um die axiale Richtung der Axialflussmaschine verlaufender Umfangsrichtung vollständig umlaufend. Die axiale Richtung der Axialflussmaschine fällt mit einer Drehachse zusammen, wobei die Rotoren mittels des Stators antreibbar und dadurch um die genannte Drehachse relativ zu dem Stator drehbar sind. Die radiale Richtung der Axialflussmaschine verläuft senkrecht zur axialen Richtung und somit senkrecht zur Drehachse.
Das erste Abtriebsrad ist dabei ein drehfest mit der ersten Abtriebswelle verbundenes, erstes Sonnenrad, und das zweite Abtriebsrad ist dabei ein drehfest mit der zweiten Abtriebswelle verbundenes, zweites Sonnenrad. Ferner weist vorzugsweise das Planetendifferential wenigstens zwei an den Rotorträgern gehaltene Planetenbolzen auf, über welche die Rotorträger formschlüssig miteinander verbunden sind. Das Planetendifferential weist wenigstens ein drehbar an einem ersten der Planetenbolzen gehaltenes und mit dem ersten Sonnenrad kämmendes, erstes Planetenrad auf. Außerdem weist das Planetendifferential wenigstens ein drehbar an dem zweiten Planetenbolzen gehaltenes und mit dem zweiten Sonnenrad kämmendes, zweites Planetenrad auf, welches auch mit dem ersten Planetenrad kämmt. Insbesondere sind die Planetenbolzen in um die axiale Richtung der Axialflussmaschine und somit um die
Drehachse verlaufender Umfangsrichtung der Axialflussmaschine aufeinanderfolgend angeordnet. Die Planetenbolzen sind an den Rotoren gehalten, sodass die Rotoren über die Planetenbolzen formschlüssig miteinander verbunden sind. Insbesondere ist der jeweilige Planetenbolzen drehfest mit den Rotoren verbunden. Insbesondere ist das erste Sonnenrad ein erstes Stirnrad des Planetendifferentials. Ferner ist beispielsweise das zweite Sonnenrad ein zweites Stirnrad des Planetendifferentials.
Das Planetendifferential weist außerdem das drehbar an dem ersten Planetenbolzen gehaltene und mit dem ersten Sonnenrad kämmende, erste Planetenrad auf, welches ein drittes Stirnrad des Planetendifferentials ist. Das Planetendifferential weist das drehbar an dem zweiten Planetenbolzen gehaltene, zweite Planetenrad auf, welches ein viertes Stirnrad des Planetendifferentials ist. Das zweite Planetenrad kämmt mit dem zweiten Sonnenrad. Außerdem kämmt das zweite Planetenrad mit dem ersten Planetenrad. Somit ist das Planetendifferential besonders bauraumgünstig in die Axialflussmaschine integriert. Außerdem bilden die Rotorträger und somit die Rotoren das Differentialgehäuse, wobei die Planetenbolzen, insbesondere drehfest, am Differentialgehäuse gehalten sind. Außerdem sind die Planetenräder zumindest teilweise im Differentialgehäuse angeordnet. Somit können durch die Erfindung zumindest die folgenden Vorteile realisiert werden: bauraumoptimale Nutzung durch Synergieeffekte zwischen der Axialflussmaschine und dem Differentialgetriebe, welches einfach auch als Differential bezeichnet wird kombinierte Montage der Axialflussmaschine und des Differentials und somit Reduktion von Teilaufgaben aufwendige Verschraubung und/oder Steckverbindung der Rotoren zueinander beziehungsweise miteinander und mit einer Kraftausleitungsstelle können vermieden werden, da eine insbesondere drehfeste und/oder formschlüssige Verbindung der Rotoren miteinander dadurch realisierbar ist, dass die einfach auch als Bolzen bezeichneten Planetenbolzen an den Rotoren, insbesondere den Rotorträgern, montiert und somit mit den Rotoren, insbesondere drehfest, verbunden werden.
Bei neben der Axialflussmaschine angeordnetem Differential wird die Axialflussmaschine erneut mit einer Differentialabtriebswelle durchsetzt, was Durchmessereinschränkungen verursacht und durch die Erfindung vermieden werden kann.
Grundsätzlich ist es denkbar, dass das Differentialgetriebe als ein Kegeldifferential ausgebildet ist, welches auch als Kegelraddifferential oder Kugeldifferential bezeichnet
wird. Ferner ist es denkbar, dass das Differentialgetriebe als ein Kronenraddifferential ausgebildet ist, welches auch als Kronenraddifferentialgetriebe bezeichnet wird. Jedoch kann durch die Ausbildung des Differentialgetriebes als Planetendifferential ein besonders geringer Bauraumbedarf dargestellt werden, insbesondere in radialer Richtung der Axialflussmaschine und somit der Antriebsvorrichtung insgesamt.
Durch das Zusammenfügen der Teile der erfindungsgemäßen Antriebsvorrichtung werden gleichzeitig das Differential und die Axialflussmaschine montiert. Damit entfallen Teilmontageumfänge, da zum Beispiel eine Positionierung der Rotorträger zueinander sowie eine Montage des Differentials gemeinsam ausgeführt werden. Somit kann die Antriebsvorrichtung besonders zeit- und kostengünstig montiert werden. Im Vergleich zu herkömmlichen Lösungen können aufwendige Verschraubungen oder Steckverbindungen entfallen, da eine Krafteinleitung direkt vom jeweiligen Rotor, insbesondere Rotorträger, in das Differential beziehungsweise Differentialgehäuse verläuft, insbesondere dadurch, dass beispielsweise der jeweilige Rotorträger des jeweiligen Rotors einteilig, insbesondere einstückig, mit einem jeweiligen Gehäuseteil des Differentialgehäuses ausgebildet ist. In Kombination mit einem Planeten- oder Stirnraddifferential erfolgt über jeweilige Stege eine direkte Krafteinleitung in die auch als Planetenradbolzen bezeichneten Planetenbolzen. Unter dem jeweiligen Steg ist ein jeweiliger Planetenträger zu verstehen, welcher bei der Erfindung durch den jeweiligen Rotor, insbesondere Rotorträger, beziehungsweise durch das jeweilige, durch den jeweiligen Rotor, insbesondere Rotorträger, gebildete Gehäuseteil des Differentialgehäuses gebildet ist. Mit anderen Worten, da die Planetenräder drehbar an den Planetenbolzen gehalten sind, und da die Planetenbolzen an den Rotoren, insbesondere an den Rotorträgern, gehalten sind, fungieren die Rotoren, insbesondere die Rotorträger, gleichzeitig als Planetenträger, an denen die Planetenräder drehbar gehalten sind. Dadurch können die Teileanzahl und somit das Gewicht, die Kosten und der Bauraumbedarf der Antriebsvorrichtung besonders gering gehalten werden. Des Weiteren ermöglicht die Erfindung eine breite Lagerbasis zur Lagerung der Rotorträger, insbesondere eines Verbunds, welcher die Rotorträger und das Differential umfasst. Die Erfindung ist sowohl geeignet für einen koaxialen als auch für einen achsparallelen Aufbau. Eine weitere Durchführungswelle kann vermieden werden. Durch etwaige, nachgelagerte Übersetzung, insbesondere auf jeder Abtriebsseite, kann das Differential besonders kompakt ausgeführt werden.
In vorteilhafter Ausgestaltung der Erfindung ist das Differentialgetriebe als ein Kegelraddifferential ausgebildet ist, wobei die Rotorträger über wenigstens einen Steg formschlüssig miteinander verbunden sind. Beispielsweise ist der Steg separat von den
Rotorträgern ausgebildet und, insbesondere jeweils drehtest, mit den Rotorträgern verbunden. Dabei ist das erste Abtriebsrad ein drehtest mit der ersten Abtriebswelle verbundenes, erstes Kegelrad, und das zweite Abtriebsrad ist ein drehtest mit der zweiten Abtriebswelle verbundenes, zweites Kegelrad. Dabei weist das Kegelraddifferential wenigstens ein drehbar an dem Steg gehaltenes Ausgleichsrad auf, welches als ein gleichzeitig mit dem ersten Abtriebsrad und mit dem zweiten Abtriebsrad kämmendes, drittes Kegelrad des Kegelraddifferentials ausgebildet ist.
In weiterer Ausgestaltung der Erfindung ist zumindest einer der Rotoren über wenigstens ein Lager, insbesondere Wälzlager, drehbar an einem Gehäuse der Antriebsvorrichtung gelagert, wobei die Rotoren um die Drehachse relativ zu dem Gehäuse drehbar sind.
In weiterer Ausgestaltung der Erfindung ist zumindest einer der Rotoren über wenigstens ein Lager, insbesondere Wälzlager, drehbar an einer der Abtriebswellen gelagert.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Die Zeichnung zeigt in:
Fig. 1 ausschnittsweise eine schematische Längsschnittansicht einer ersten Ausführungsform einer Antriebsvorrichtung für ein Kraftfahrzeug;
Fig. 2 eine schematische Darstellung einer zweiten Ausführungsform der Antriebsvorrichtung;
Fig. 3 eine schematische Darstellung einer dritten Ausführungsform der Antriebsvorrichtung;
Fig. 4 ausschnittsweise eine schematische Längsschnittansicht einer vierten Ausführungsform der Antriebsvorrichtung;
Fig. 5 eine schematische Darstellung einer fünften Ausführungsform der Antriebsvorrichtung;
Fig. 6 eine schematische Darstellung einer sechsten Ausführungsform der Antriebsvorrichtung;
Fig. 7 ausschnittsweise eine schematische Längsschnittansicht einer siebten Ausführungsform der Antriebsvorrichtung; und
Fig. 8 ausschnittsweise eine schematische Längsschnittansicht einer achten Ausführungsform der Antriebsvorrichtung.
In den Fig. sind gleiche oder funktionsgleiche Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt ausschnittsweise in einer schematischen Längsschnittansicht eine erste Ausführungsform einer Antriebsvorrichtung 10 für ein Kraftfahrzeug, insbesondere für einen Kraftwagen und ganz insbesondere für einen Personenkraftwagen. Dies bedeutet, dass das Kraftfahrzeug in seinem vollständig hergestellten Zustand die Antriebsvorrichtung 10 aufweist. Die Antriebsvorrichtung 10 ist insbesondere eine elektrische Antriebsvorrichtung, mittels welcher das Kraftfahrzeug, insbesondere rein, elektrisch angetrieben werden kann. Insbesondere weist das Kraftfahrzeug wenigstens eine auch als Achse bezeichnete Fahrzeugachse auf, welche wenigstens oder genau zwei einfach auch als Räder bezeichnete Fahrzeugräder aufweist. Die Fahrzeugräder sind Bodenkontaktelemente, über welche das Kraftfahrzeug in Fahrzeughochrichtung nach unten hin an einem Boden abstützbar oder abgestützt ist. Mittels der Antriebsvorrichtung 10 können die Fahrzeugräder der Fahrzeugachse, insbesondere rein, elektrisch angetrieben werden, wodurch das Kraftfahrzeug, insbesondere rein, elektrisch angetrieben werden kann. Hierfür weist die Antriebsvorrichtung 10 eine elektrische Maschine auf, welche als eine Axialflussmaschine 12 ausgebildet ist. Die Axialflussmaschine 12 wird auch als Scheibenläufermaschine bezeichnet.
Die Axialflussmaschine 12 weist, insbesondere genau, einen Stator 14 auf, welcher, insbesondere fest und ganz insbesondere drehfest, mit einem in Fig. 1 besonders schematisch dargestellten Gehäuse 16 der Antriebsvorrichtung 10 verbunden ist. Des Weiteren weist die Axialflussmaschine 12, insbesondere wenigstens oder genau, zwei Rotoren 18 und 20 auf, welche mittels des Stators 14 antreibbar und dadurch um eine Drehachse 21 relativ zu dem Stator 14 und relativ zu dem Gehäuse 16 drehbar sind. Über ihre Rotoren 18 und 20 kann die Axialflussmaschine 12 Antriebsdrehmomente zum Antreiben der Fahrzeugräder und somit des Kraftfahrzeugs bereitstellen. Der jeweilige Rotor 18, 20 weist einen jeweiligen Rotorträger 22, 24 auf. Außerdem weist der jeweilige Rotor 18, 20 Magnete 26, 28 auf. Es ist erkennbar, dass der jeweilige Magnet 26, 28 an dem jeweiligen Rotorträger 22, 24 des jeweiligen Rotors 18, 20 gehalten ist. Insbesondere ist der jeweilige Magnet 26, 28 ein Permanentmagnet. Aus Fig. 1 ist erkennbar, dass der Stator 14 in axialer Richtung der Axialflussmaschine 12 zwischen den Rotoren 18 und 20 angeordnet ist, wobei die axiale Richtung der Axialflussmaschine 12 mit der Drehachse 21 zusammenfällt. Beispielsweise ist der jeweilige Rotor 18, 20 zumindest im Wesentlichen scheibenförmig, sodass der jeweilige Rotor 18, 20 auch als Scheibenläufer bezeichnet wird.
Um nun auf besonders bauraum- und gewichtsgünstige Weise einen besonders vorteilhaften Antrieb des Kraftfahrzeugs realisieren zu können, weist die Antriebsvorrichtung 10 ein zumindest teilweise radial innerhalb des Stators 14 angeordnetes Differentialgetriebe 29 auf, welches auch einfach als Differential bezeichnet wird. Bei der in Fig. 1 gezeigten ersten Ausführungsform der Antriebsvorrichtung 10 ist das Differentialgetriebe 29 als ein Planetendifferential ausgebildet, welches auch als Planetendifferentialgetriebe, Planetenraddifferential, Planetenraddifferentialgetriebe, Stirnraddifferential oder Stirnraddifferentialgetriebe bezeichnet wird. Bei der ersten Ausführungsform weist das Planetendifferential ein erstes Abtriebsrad 31 in Form eines ersten Stirnrads, welches bei der ersten Ausführungsform als ein erstes Sonnenrad 31 ausgebildet und drehfest mit einer ersten Abtriebswelle 30 verbunden ist. Das Planetendifferential weist ein zweite Abtriebsrad 32 in Form eines zweiten Stirnrads auf, welches bei der ersten Ausführungsform als ein zweites Sonnenrads ausgebildet und drehfest mit einer zweiten Abtriebswelle 34 verbunden ist. Es ist erkennbar, dass die Abtriebswellen 30 und 34 koaxial zueinander angeordnet und um die Drehachse 21 relativ zu dem Gehäuse 16 drehbar sind. Außerdem können die Abtriebswellen 30 und 34, welche auch als Seitenwellen bezeichnet werden oder als Seitenwellen ausgebildet sind, um die Drehachse 21 relativ zueinander gedreht werden. Insbesondere ist ein erstes der
Fahrzeugräder über die Abtriebswelle 30 und das zweite Fahrzeugrad über die Abtriebswelle 34 von der Axialflussmaschine 12 antreibbar.
Wie im Folgenden noch genauer erläutert wird, sind die Rotorträger 22 und 24 der Rotoren 18 und 20 formschlüssig und dadurch drehfest miteinander verbunden, wobei die Rotorträger 22 und 24 zumindest in axialer Richtung der elektrischen Maschine und somit und somit entlang der Drehachse 21 betrachtet ein Differentialgehäuse 23 ausbilden, in welchem das Differentialgetriebe 29 zumindest teilweise angeordnet ist, insbesondere derart, dass das Differentialgetriebe 29 in radialer Richtung der elektrischen Maschine nach außen hin zumindest teilweise durch das Differentialgehäuse 23 und somit durch die Rotorträger 22 und 24 überlappt und somit überdeckt ist.
Das Planetendifferential weist wenigstens zwei Planetenbolzen 36 und 38 auf, deren jeweilige Längserstreckungsrichtung parallel zur axialen Richtung der Axialflussmaschine 12 und somit der Antriebsvorrichtung 10 insgesamt verläuft. Die Planetenbolzen 36 und 38 sind in um die axiale Richtung der Axialflussmaschine 12 und somit um die Drehachse 21 verlaufender Umfangsrichtung der Axialflussmaschine 12 und somit der Antriebsvorrichtung 10 insgesamt aufeinanderfolgend, das heißt hintereinander, angeordnet. Außerdem sind die Planetenbolzen 36 und 38, welche auch einfach als Bolzen bezeichnet werden, an den Rotorträgern 22 und 24 und somit an den Rotoren 18 und 20 gehalten, insbesondere derart, dass die Bolzen drehfest mit den Rotorträgern 22 und 24 und somit drehfest mit den Rotoren 18 und 20 verbunden sind. Somit sind die Rotoren 18 und 20, das heißt die Rotorträger 22 und 24, über die Planetenbolzen 36 und 38 formschlüssig miteinander verbunden. Insbesondere sind die Rotorträger 22 und 24 und somit die Rotoren 18 und 20 über die Planetenbolzen 36 und 38 formschlüssig drehfest miteinander verbunden. Aus Fig. 1 ist erkennbar, dass zumindest ein in axialer Richtung der Axialflussmaschine 12 verlaufender Längenbereich des Differentialgetriebes 29 in um die Drehachse 21 verlaufender Umfangsrichtung der Axialflussmaschine 12 vollständig umlaufend in radialer Richtung nach außen hin durch den Stator 14 überlappt und somit überdeckt sind. Dies wird im Folgenden noch näher erläutert.
Das Planetendifferential weist ein drehbar an dem ersten Planetenbolzen 36 gehaltenes, drittes Stirnrad in Form eines ersten Planetenrads 40 auf, welches mit dem Abtriebsrad 31 , nicht jedoch mit dem Abtriebsrad 32 kämmt. Des Weiteren weist das Planetendifferential ein drehbar an dem Planetenbolzen 38 gehaltenes, viertes Stirnrad in Form eines zweiten Planetenrads 42 auf, welches mit dem Planetenrad 40 und mit dem Abtriebsrad 32, nicht jedoch mit dem Abtriebsrad 31 kämmt. Am Beispiel des
Planetenrads 40 ist erkennbar, dass beispielsweise das jeweilige Planetenrad 40, 42 über ein jeweiliges, insbesondere als Wälzlager ausgebildetes Lager 44 drehbar an dem jeweiligen Planetenbolzen 36, 38 gelagert ist. Das jeweilige Planetenrad 40, 42 ist um eine jeweilige Drehachse 46, 48 relativ zu dem jeweiligen Planetenbolzen 36, 38 drehbar, wobei die jeweilige Drehachse 46, 48 parallel zur Drehachse 21 verläuft und von der Drehachse 21 beabstandet ist. Es ist erkennbar, dass die Abtriebsräder 31 und 32, die Planetenräder 40 und 42, die Planetenbolzen 36 und 38 und auch die Abtriebswellen 30 und 34 jeweils zumindest teilweise in radialer Richtung der Axialflussmaschine 12 nach außen hin durch den Stator 14 überlappt und somit überdeckt sind, wodurch ein besonders kompakter und bauraumgünstiger Aufbau dargestellt werden kann. Außerdem fungieren die Rotorträger 22 und 24 als Gehäuseteile des Differentialgehäuses, in welchem die Abtriebsräder 31 und 32 und die Planetenräder 40 und 42 jeweils zumindest teilweise, insbesondere vollständig, angeordnet sind.
In Fig. 1 ist mit 50 ein Abdichtring bezeichnet, und mit 52 beziehungsweise 54 ist eine jeweilige Öldurchlassbohrung bezeichnet, welche von Öl durchströmbar ist. Somit kann das Differentialgetriebe 29 mit dem Öl versorgt und dadurch gekühlt und/oder geschmiert werden.
Am Beispiel des Rotorträgers 22 ist gezeigt, dass der Rotorträger 22 und somit der Rotor 18 über ein beispielsweise als Wälzlager ausgebildetes Lager 56 drehbar an dem Gehäuse 16 gelagert sein kann. Am Beispiel des Rotorträgers 24 ist gezeigt, dass der Rotorträger 24 und somit der Rotor 20 über ein beispielsweise als Wälzlager ausgebildetes Lager 58 drehbar an der Abtriebswelle 34 gelagert sein kann. Des Weiteren ist mit 60 ein optional vorgesehener Dichtring bezeichnet. Es ist erkennbar, dass die Planetenbolzen 36 und 38 eine Positionierung der beiden Rotorträger 22 und 24 zueinander übernehmen. Der jeweilige Rotorträger 22, 24 ist gegebenenfalls als einfaches Umformteil ausgeführt. Kräfte aus dem jeweiligen Rotorträger 22, 24 fließen auf der entsprechenden Seite in einen jeweiligen, auch als Steg bezeichneten Planetenträger, wodurch eine ungünstige Kraftumleitung vermieden werden kann.
Fig. 2 zeigt eine zweite Ausführungsform der Antriebsvorrichtung 10. Die zweite Ausführungsform entspricht im Grunde der ersten Ausführungsform. Bei der zweiten Ausführungsform ist eine achsparallele Anordnung vorgesehen. Hierzu sind beispielsweise die Abtriebswellen 30 und 34 drehfest mit jeweiligen Stirnrädern 62 und 64 verbunden, welche mit korrespondierenden, weiteren Stirnräder 66 und 68 kämmen. Wie durch Pfeile 70 veranschaulicht ist, sind beispielsweise die Fahrzeugräder über die
Stirnräder 66 und 68 antreibbar, sodass die Fahrzeugräder beziehungsweise deren Raddrehachsen desachsiert und somit achsparallel zu den Abtriebswellen 30 und 34 angeordnet sind. Die Stirnräder 62, 64, 66 und 68 sorgen dabei für eine vorteilhafte Übersetzung, insbesondere Endübersetzung, welche auch als Final Drive bezeichnet wird.
Fig. 3 zeigt eine dritte Ausführungsform der Antriebsvorrichtung 10. Die dritte Ausführungsform entspricht im Grunde der ersten Ausführungsform, wobei im Gegensatz zur zweiten Ausführungsform bei der dritten Ausführungsform eine koaxiale Anordnung der Fahrzeugräder beziehungsweise deren Raddrehachsen insbesondere bezüglich der Abtriebswellen 30 und 34 vorgesehen ist. Hierbei ist beispielsweise eine jeweilige Endübersetzung durch einen jeweiligen, weitere Planetenradsatz 72, 74 gebildet. Der jeweilige Planetenradsatz 72, 74 weist ein beispielsweise drehfest mit der jeweiligen Abtriebswelle 30, 34 verbundenes Sonnenrad 76, einen jeweiligen Planetenträger 78 und ein jeweiliges Hohlrad 80 auf. Das jeweilige Hohlrad 80 ist beispielsweise drehfest mit dem Gehäuse 16 verbunden. Das jeweilige Sonnenrad 76 ist drehfest mit der jeweiligen Abtriebswelle 30, 34 verbunden. Des Weiteren weist der jeweilige Planetenradsatz 72, 74 weitere Planetenräder 82 auf, welche drehbar an dem jeweiligen Planetenträger 78 gelagert sind. Dabei sind die Fahrzeugräder über die Planetenträger 78 antreibbar, wie es durch die Pfeile 70 veranschaulicht ist. Hierdurch kann eine koaxiale Anordnung der Fahrzeugräder beziehungsweise deren Raddrehachsen insbesondere zu den Abtriebswellen 30 und 34 realisiert werden.
Fig. 4 zeigt eine vierte Ausführungsform der Antriebsvorrichtung 10. Bei der vierten Ausführungsform ist das Differentialgetriebe 29 als ein Kegeldifferential ausgebildet, welches auch als Kegelraddifferential oder Kugeldifferential bezeichnet wird. Dabei bildet zumindest einer der Rotorträger 22 und 24, vorliegend der Rotorträger 22, einen Differentialkorb. Bei dem Kegelraddifferential ist das drehfest mit der Abtriebswelle 30 verbundene Abtriebsrad 31 ein erstes Kegelrad 86. Des Weiteren ist das zweite Abtriebsrad 32 als ein zweites Kegelrad 88 ausgebildet. Das Kegelraddifferential weist ein als drittes Kegelrad ausgebildetes Ausgleichsrad 83 auf, welches drehbar an dem Differentialkorb gelagert ist, derart, dass das Ausgleichsrad 83 um eine Ausgleichsraddrehachse 84 relativ zu dem Differentialkorb und somit relativ zu den Rotorträgern 22 und 24 drehbar ist, wobei die Ausgleichsraddrehachse 84 senkrecht zur Drehachse 21 verläuft. Dabei ist der Differentialkorb beispielsweise das Differentialgehäuse oder ein Teil des Differentialgehäuses.
Das Kegelrad 86 kämmt mit dem Ausgleichsrad 83, und das Kegelrad 88 kämmt mit dem Ausgleichsrad 83, jedoch nicht mit dem Kegelrad 86. Die Abtriebsräder 31 und 32 und das Ausgleichsrad 83 sind Zahnräder. Beispielsweise sind die Rotorträger 22 und 24, insbesondere direkt, drehtest miteinander verbunden und hierzu beispielsweise miteinander verschraubt. Besonders schematisch in Fig. 4 dargestellt ist eine Öldurchlassbohrung 90, über welche das radial innerhalb des Stators 14 angeordnete Differentialgetriebe 29 mit Öl versorgt werden kann. Mit 92 ist eine etwaig vorgesehene Abdichtbandage bezeichnet. Optional vorgesehen ist außerdem ein Parksperrenrad 94 einer Parksperre, wobei das Parksperrenrad 94 drehtest mit den Rotorträgern 22 und 24 und somit drehtest mit den Rotoren 18 und 20 verbunden ist. Die Rotorträger 22 sind über die beispielsweise als Wälzlager ausgebildeten Lager 56 und 58 drehbar gelagert, insbesondere an dem Gehäuse 16. Besonders schematisch dargestellt ist auch eine sogenannte Differentialverschraubung 96, mittels welcher beispielsweise die Rotorträger 22 und 24 und somit die Rotoren 18 und 20 miteinander verschraubt und dadurch drehtest miteinander verbunden sind.
Fig. 5 zeigt eine fünfte Ausführungsform der Antriebsvorrichtung 10. Die fünfte Ausführungsform entspricht im Grunde der vierten Ausführungsform, wobei bei der fünften Ausführungsform eine achsparallele Anordnung der Fahrzeugräder beziehungsweise deren Raddrehachsen, insbesondere bezüglich der Abtriebswellen 30 und 34, vorgesehen ist.
Fig. 6 zeigt eine sechste Ausführungsform der Antriebsvorrichtung 10. Bei der sechsten Ausführungsform, die im Grunde der vierten Ausführungsform entspricht, ist eine koaxiale Anordnung der Fahrzeugräder beziehungsweise deren Raddrehachsen insbesondere bezüglich der Abtriebswellen 30 und 34 vorgesehen. Es ist erkennbar, dass das Planetendifferential frei von einem Hohlrad ist, mit welchem die Planetenräder 40 und 42 kämmen. Grundsätzlich wäre es denkbar, dass das Differentialgetriebe 29 alternativ als Kronenraddifferential ausgebildet ist, was in den Fig. nicht dargestellt ist.
Fig. 7 zeigt ausschnittsweise in einer schematischen Darstellung eine siebte Ausführungsform der Antriebsvorrichtung 10. Bei der ersten, zweiten, dritten, vierten, fünften, sechsten und siebten Ausführungsform ist die Axialflussmaschine 12 in einer sogenannten H-Bauweise ausgebildet, bei welcher die auch als Rotorscheiben bezeichneten oder als Rotorscheiben ausgebildeten Rotoren 18 und 20 in axialer Richtung der Axialflussmaschine 12 und somit entlang der Drehachse 21 betrachtet voneinander beabstandet sind und der Stator 14 in axialer Richtung der
Axialflussmaschine 12 zumindest teilweise zwischen den Rotoren 18 und 20 (Rotorscheiben) angeordnet ist. Dabei ist das einfach auch als Differential bezeichnete Differentialgetriebe 29 besonders kompakt innerhalb der Axialflussmaschine 12 und dabei insbesondere innerhalb des Stators 14 angeordnet, insbesondere derart, dass das Differentialgetriebe 29 in radialer Richtung der Axialflussmaschine 12 nach außen hin zumindest teilweise durch den Stator 14 und vorliegend auch zumindest teilweise durch die Rotoren 18 und 20 und dabei auch zumindest teilweise durch das Differentialgehäuse 23 überlappt und somit überdeckt ist.
Bei der siebten Ausführungsform ist das Differentialgetriebe 29 wie beispielsweise auch bei der sechsten Ausführungsform als ein Kegelraddifferential ausgebildet, welches einfach auch als Kegeldifferential, Kegeldifferentialgetriebe oder Kegelraddifferentialgetriebe bezeichnet wird. Bei der siebten Ausführungsform sind die Rotorträger 22 und 24 und somit die Rotoren 18 und 20 über einen Steg 98 formschlüssig und dadurch drehfest miteinander verbunden. Der Steg 98 ist separat von den Rotorträgern 22, 24 ausgebildet und jeweils formschlüssig und insbesondere drehfest mit den Rotorträgern 22 und 24 verbunden. Bei der siebten Ausführungsform ist das Differentialgehäuse 23 durch die Rotoren 18 und 20 und durch den Steg 98 ausgebildet, sodass das Differentialgetriebe 29 in radialer Richtung der Axialflussmaschine 12 nach außen hin zumindest teilweise durch den Steg 98 überlappt und somit überdeckt ist. Bei der siebten Ausführungsform ist das als Kegelrad ausgebildete Ausgleichsrad 83 derart um die Ausgleichsraddrehachse relativ zu dem Steg 98 und relativ zu den Rotoren 18 und 20 beziehungsweise relativ zu den Rotorträgern 22, 24 drehbar gelagert, dass das Ausgleichsrad 83 um die Ausgleichsraddrehachse 84 relativ zu einer Achse 100 drehbar an der Achse 100 gehalten ist. Die Achse 100 ist dabei, insbesondere drehfest, an dem Steg 98 gehalten, insbesondere derart, dass um die Ausgleichsraddrehachse 84 erfolgende Relativdrehungen zwischen der Achse 100 und dem Steg 98 unterbunden sind. Somit ist sozusagen die Achse 100, welche auch als Ausgleichsradachse bezeichnet wird, in den Steg 98 integriert. Insbesondere ist die Achse 100 separat von dem Steg 98 ausgebildet und mit dem Steg 98 verbunden, das heißt an dem Steg 98 gehalten. Es ist erkennbar, dass auch bei der siebten Ausführungsform eine platzsparende und gewichtssparende Integration des Differentialgetriebe 29 in die Axialflussmaschine 12 darstellt ist, da ohnehin bereits vorhandene Bauteile der Axialflussmaschine 12, insbesondere die Rotorträger 22 und 24 zur Realisierung des Differentialgehäuses 23 genutzt oder mitgenutzt werden. Die schallabstrahlenden Rotoren 18 und 20 sind beispielsweise insbesondere in axialer Richtung der Axialflussmaschine 12 betrachtet zwischen Lagerdeckeln gekapselt, und eine Gesamtanordnung ist
beispielsweise wiederum an einer Flanschfläche des auch als Getriebegehäuse bezeichneten Gehäuses 16 mit dem Gehäuse 16 verbunden, insbesondere mittels wenigstens eines in Fig. 7 besonders schematisch dargestellten Verbindungselements 102.
Jeweilige Verbindungselemente, mittels welchen der Steg 98 mit den Rotorträgern 22 und 24 verbunden ist, sind in Fig. 7 besonders schematisch dargestellt und mit 102 bezeichnet. Das jeweilige Verbindungselement 102 kann beispielsweise als Schraube oder aber als Stift oder als anderes Verbindungselement ausgebildet sein. Außerdem sind die zuvor genannten Lagerdeckel in Fig. 7 erkennbar und mit 104 bezeichnet. Ferner ist aus Fig. 7 erkennbar, dass der jeweilige Rotorträger 22, 24 somit der jeweilige Rotor 18,
20 über ein jeweiliges, vorliegend als Wälzlager ausgebildetes Lager 106 drehbar an dem jeweiligen Lagerdeckel 104 gelagert ist. Beispielsweise ist das jeweilige Lager 106 als ein Schrägkugellager ausgebildet, wobei vorzugsweise die Lagereinheit 106 in O-Anordnung angeordnet sind. Beispielsweise kann das Verbindungselement 102 als eine Schraube, als ein Stift oder aber als ein anderes Verbindungselement ausgebildet sein.
Fig. 8 zeigt eine achte Ausführungsform der elektrischen Antriebsvorrichtung 10. Bei der achten Ausführungsform ist die Axialflussmaschine 12 in sogenannter I-Bauweise ausgebildet. Hierbei umfasst der Stator 14 wenigstens oder genau zwei Statorelemente 15 und 17, welche in axialer Richtung der Axialflussmaschine 12 und somit entlang der Drehachse 21 betrachtet voneinander beabstandet sind. Beispielsweise sind die Statorelemente 15 und 17 als Statorscheiben ausgebildet oder die Statorelemente 15 und
17 werden auch als Statorscheiben bezeichnet. Dabei weist die Axialflussmaschine 12 wenigstens oder genau einen Rotor 18 auf, welcher beispielsweise als eine Rotorscheibe ausgebildet ist oder auch als Rotorscheibe bezeichnet wird. Der Rotor 18 ist dabei in axialer Richtung der Axialflussmaschine 12 zwischen den Statorelementen 15 und 17 angeordnet, insbesondere derart, dass das Statorelement 15 in axialer Richtung der Axialflussmaschine 12 zu dem Statorelement 17 zumindest teilweise durch den Rotor 18 überlappt ist und umgekehrt. Der Rotor 18 weist dabei die Rotorträger 22 und 24 auf, welche über den Steg 98 formschlüssig und dadurch drehfest miteinander verbunden sind und, insbesondere zusammen mit den Steg 98, das Differentialgehäuse 23 zumindest teilweise ausbilden. Es ist erkennbar, dass die Rotorträger 22 und 24 und somit der Rotor
18 über die insbesondere als Radiallager ausgebildeten Lager 106 drehbar an den Lagerdeckeln 104 und über diese an dem Gehäuse 16 gelagert sind. Dabei sind die Statorelemente 15 und 17 und somit der Stator 14 zumindest bezogen auf die Drehachse
21 drehfest an den Lagerdeckeln 104 und über diese an dem Gehäuse 16 festgelegt. In
den Figuren 7 und 8 ist somit die Axialflussmaschine 12 in H-Bauweise oder I-Bauweise gezeigt, wobei das Differentialgetriebe 29 bauraumsparend in die Axialflussmaschine 12 integriert ist. Durch eine gekapselte Anordnung der Axialflussmaschine 12 innerhalb der beiden Lagerdeckel 104 insbesondere bei gleichzeitiger, einseitiger Befestigung der Gesamtanordnung über eine an einem der Lagerdeckel 104 ausgebildete Flanschfläche an das Gehäuse 16 kann ein vorteilhaftes Geräuschverhalten, welches auch als NVH- Verhalten (NVH - noise vibration harshness) bezeichnet wird, realisiert werden. Insbesondere wird das Differentialgehäuse 23 aus dem Steg 98 und den Rotorträgern 22 und 24 beziehungsweise den Rotorscheiben (Rotoren 18 und 20) gebildet, insbesondere bei der H-Bauweise, oder, insbesondere bei der I-Bauweise, wird das Differentialgehäuse 23 aus dem insbesondere als Rotorscheibe ausgebildeten Rotor 18, dem Steg 98 und wenigstens einem der Lagerdeckel 104 gebildet. In den Steg 98 befindet sich eine beispielsweise als Aufnahmbohrung ausgebildete Aufnahme für die Achse 100 und beispielsweise ist oder sind in dem Steg 98 wenigstens eine oder mehrere Laufflächen für das Ausgleichsrad 83 integriert. Durch diese Anordnung lassen sich die Kegelräder platzsparend unterbringen. Die zwei Rotorscheiben mit den Laufflächen für die Kegelräder schließen die Kegelradanordnung ab. Bei der I-Bauweise, welche auch als I-Anordnung bezeichnet wird, sinngemäß, eine Rotorscheibe und ein Deckel. Die Bauteile werden durch geeignete Verbindugnselemente miteinander verbunden. Der Steg 98 kann auch einteilig mit dem Rotor ausgeführt sein, insbesondere nur einseitig verschraubt. Die Verschraubung kann auch einseitig ausgeführt werden, insbesondere wenn die Schraube den Steg komplett durchdringt und das Gewinde in der anderen Rotorscheibe enthalten ist. Das jeweilige Abtriebsrad 31 , 32 ist fest mit der jeweiligen, auch als Achswelle bezeichneten Abtriebswelle 30, 34 verbunden. Dadurch kann der Radsatz besonders kompakt ausgeführt werden, da das beispielsweise als Achskegelrad ausgebildete Abtriebsrad 31, 32 im Axialbeckenbauraum keine zusätzliche Steckverzahnung aufweisen muss. Die Welle-Nabel-Verbindung ist somit axial nach außen in den weniger bauraumkritischen Bereich gerückt. Die axiale Lauffläche in der Rotorscheibe für das Kegelrad kann dadurch besonders groß ausgestaltet werden. Insbesondere bei der H- Bauweise, welche als H-Anordnung bezeichnet wird, können die Rotorscheiben beziehungsweise bei I-Anordnung können die Rotorscheibe und der Deckel die Lager 106 aufnehmen. Das Differential und/oder der Steg 98 können teilweise auch unter dem Rotor eingerückt sein. Die Rotorscheiben können innerhalb der Lagerdeckel 104 gekapselt sein und sind somit als Schallquelle (primär Luftschall) zusätzlich abgeschirmt, wodurch die Gesamtanordnung über die am Lagerdeckel ausgebildete Flanschfläche an das Gehäuse 16 befestigt ist.
Bezugszeichenliste
10 Antriebsvorrichtung
12 Axialflussmaschine
14 Stator
15 Statorelement
16 Gehäuse
17 Statorelement
18 Rotor
20 Rotor
21 Drehachse
22 Rotorträger
23 Differentialgehäuse
24 Rotorträger
26 Magnet
28 Magnet
29 Differentialgetriebe
30 Abtriebswelle
31 Abtriebsrad
32 Abtriebsrad
34 Abtriebswelle
36 Planetenbolzen
38 Planetenbolzen
40 Planetenrad
42 Planetenrad
44 Lager
46 Planetenraddrehachse
48 Planetenraddrehachse
50 Abdichtring
52 Öldurchlassbohrung
54 Öldurchlassbohrung
56 Lager
58 Lager
60 Dichtring
62 Stirnrad
64 Stirnrad
66 Stirnrad
Stirnrad
Pfeil
Planetenradsatz
Planetenradsatz
Sonnenrad
Planetenträger Hohlrad
Planetenrad
Ausgleichsrad Ausgleichsraddrehachse Abtriebszahnrad
Abtriebszahnrad Öldurchlassbohrung Abdichtbandage Parksperrenrad Differentialverschraubung Steg
Claims
Patentansprüche Antriebsvorrichtung (10) für ein Kraftfahrzeug, mit einer als Axialflussmaschine (12) ausgebildeten elektrischen Maschine, welche aufweist:
- einen Stator (14) und
- zwei relativ zu dem Stator (14) drehbare Rotoren (18, 20), wobei der Stator (14) in axialer Richtung der Axialflussmaschine (12) zwischen den Rotoren (18, 20) angeordnet ist, gekennzeichnet durch ein zumindest teilweise radial innerhalb des Stators (14) angeordnetes Differentialgetriebe (29), welches aufweist:
- ein drehfest mit einer ersten Abtriebswelle (30) verbundenes, erstes Abtriebsrad (31), und
- ein drehfest mit einer zweiten Abtriebswelle (34) verbundenes, zweites Abtriebsrad (32), wobei die Rotoren (18, 20) jeweils einen Rotorträger (22, 24) aufweisen, welche formschlüssig miteinander verbunden sind und zumindest in axialer Richtung der elektrischen Maschine betrachtet ein Differentialgehäuse ausbilden. Antriebsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Differentialgetriebe (29) als ein Planetendifferential ausgebildet ist, wobei:
- das erste Abtriebsrad (31) ein drehfest mit der ersten Abtriebswelle (30) verbundenes, erstes Sonnenrad ist,
- das zweite Abtriebsrad (32) ein drehfest mit der zweiten Abtriebswelle (34) verbundenes, zweites Sonnenrad ist,
- das Planetendifferential wenigstens zwei an den Rotorträgern (22, 24) gehaltene Planetenbolzen (34, 36) aufweist, über welche die Rotorträger (22, 24) formschlüssig miteinander verbunden sind,
- das Planetendifferential wenigstens ein drehbar an einem ersten der Planetenbolzen (36, 38) gehaltenes und mit dem ersten Sonnenrad kämmendes, erstes Planetenrad (40) aufweist, und
- das Planetendifferential wenigstens ein drehbar an dem zweiten Planetenbolzen (38) gehaltenes und mit dem zweiten Sonnenrad kämmendes, zweites Planetenrad (42) aufweist, welches auch mit dem ersten Planetenrad (40) kämmt. Antriebsvorrichtung (10) nach Anspruch 1 , dadurch gekennzeichnet, dass das Differentialgetriebe (29) als ein Kegelraddifferential ausgebildet ist, wobei:
- die Rotorträger (22, 24) über wenigstens einen Steg formschlüssig miteinander verbunden sind,
- das erste Abtriebsrad (31) ein drehfest mit der ersten Abtriebswelle (30) verbundenes, erstes Kegelrad (86) ist,
- das zweite Abtriebsrad (32) ein drehfest mit der zweiten Abtriebswelle (34) verbundenes, zweites Kegelrad (88) ist, und
- das Kegelraddifferential wenigstens ein drehbar an dem Steg gehaltenes Ausgleichsrad (83) aufweist, welches als ein gleichzeitig mit dem ersten Abtriebsrad (31) und mit dem zweiten Abtriebsrad (32) kämmendes, drittes Kegelrad des Kegelraddifferentials ausgebildet ist. Antriebsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest einer der Rotoren (18, 20) über wenigstens ein Lager (56) drehbar an einem Gehäuse (16) der Antriebsvorrichtung (10) gelagert ist. Antriebsvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest einer der Rotoren (18, 20) über wenigstens ein Lager (58) drehbar an einer der Abtriebswellen (30, 34) gelagert ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022001133.6 | 2022-04-01 | ||
DE102022001133.6A DE102022001133A1 (de) | 2022-04-01 | 2022-04-01 | Antriebsvorrichtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023186744A1 true WO2023186744A1 (de) | 2023-10-05 |
Family
ID=85800630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/057693 WO2023186744A1 (de) | 2022-04-01 | 2023-03-24 | Antriebsvorrichtung für ein kraftfahrzeug, insbesondere für einen kraftwagen |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102022001133A1 (de) |
WO (1) | WO2023186744A1 (de) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009012256A1 (de) | 2009-03-07 | 2010-09-09 | Schaeffler Technologies Gmbh & Co. Kg | Antriebsvorrichtung für ein Elektrofahrzeug |
DE102010048837A1 (de) * | 2010-10-18 | 2012-04-19 | Schaeffler Technologies Gmbh & Co. Kg | Antriebsvorrichtung |
DE102018203355A1 (de) * | 2017-03-28 | 2018-10-04 | Suzuki Motor Corporation | Steuersystem für eine induktionsmaschine und elektrisches fahrzeug |
DE102020109112A1 (de) * | 2020-04-01 | 2021-10-07 | Keßler & Co.GmbH & Co.KG | Achsantrieb |
DE102020209431A1 (de) * | 2020-07-27 | 2022-01-27 | Robert Bosch Gesellschaft mit beschränkter Haftung | Reluktanzmotorvorrichtung und Reluktanzmotor mit der Reluktanzmotorvorrichtung |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19860618C1 (de) | 1998-12-29 | 2000-05-25 | Voith Turbo Kg | Elektrische Antriebsmaschinenbaueinheit |
GB201013881D0 (en) | 2010-08-19 | 2010-10-06 | Oxford Yasa Motors Ltd | Electric machine - construction |
CN215817745U (zh) | 2021-06-01 | 2022-02-11 | 浙江盘毂动力科技有限公司 | 应用于差速器与电机集成结构上的密封结构 |
-
2022
- 2022-04-01 DE DE102022001133.6A patent/DE102022001133A1/de active Pending
-
2023
- 2023-03-24 WO PCT/EP2023/057693 patent/WO2023186744A1/de unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009012256A1 (de) | 2009-03-07 | 2010-09-09 | Schaeffler Technologies Gmbh & Co. Kg | Antriebsvorrichtung für ein Elektrofahrzeug |
DE102010048837A1 (de) * | 2010-10-18 | 2012-04-19 | Schaeffler Technologies Gmbh & Co. Kg | Antriebsvorrichtung |
DE102018203355A1 (de) * | 2017-03-28 | 2018-10-04 | Suzuki Motor Corporation | Steuersystem für eine induktionsmaschine und elektrisches fahrzeug |
DE102020109112A1 (de) * | 2020-04-01 | 2021-10-07 | Keßler & Co.GmbH & Co.KG | Achsantrieb |
DE102020209431A1 (de) * | 2020-07-27 | 2022-01-27 | Robert Bosch Gesellschaft mit beschränkter Haftung | Reluktanzmotorvorrichtung und Reluktanzmotor mit der Reluktanzmotorvorrichtung |
Also Published As
Publication number | Publication date |
---|---|
DE102022001133A1 (de) | 2023-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005077695A1 (de) | Lenk-und radantrieb für ein flurförderzeug | |
DE102016215720A1 (de) | Kompakte Planetenanordnung für einen Endantrieb | |
DE102017213110A1 (de) | Antriebsvorrichtung | |
WO2020239549A1 (de) | Elektrischer antrieb für ein fahrzeug in einem gehäuse | |
DE4407714C1 (de) | Elektromotor | |
DE102004052562B3 (de) | Kraftfahrzeuglenkung mit Überlagerungsgetriebe | |
WO2021144079A1 (de) | Antriebsvorrichtung zum elektrischen antreiben eines kraftwagens, insbesondere eines personenkraftwagens | |
DE102019121079B3 (de) | Kompakte Getriebeanordnung mit Stufenplanetensatz und Stirnraddifferential | |
WO2020114827A1 (de) | Elektrischer achsantrieb für ein nutzfahrzeug | |
EP1831590B1 (de) | Vorrichtung, insbesondere ein planetengetriebe, mit einem ringartigen grundkörper | |
WO2023186744A1 (de) | Antriebsvorrichtung für ein kraftfahrzeug, insbesondere für einen kraftwagen | |
DE102017219546A1 (de) | Zahnradanordnung | |
DE102021206732A1 (de) | Antriebsanordnung für ein Fahrzeug | |
WO2020109144A1 (de) | Antriebseinrichtung für ein kraftfahrzeug mit einer antriebseinheit | |
DE102009040817A1 (de) | Antriebseinheit für ein Kraftfahrzeug | |
EP3179138B1 (de) | Vorrichtung und verfahren zur verbindung zweier rotierender maschinenteile | |
DE102022001679B3 (de) | Elektrische Antriebsvorrichtung für ein Kraftfahrzeug mit zwei Elektromotoren und Torque-Vectoring- Funktion | |
EP1666765A1 (de) | Getriebe | |
DE102021003761A1 (de) | Antriebsvorrichtung zum elektrischen Antreiben eines Kraftwagens, insbesondere eines Personenkraftwagens | |
DE102022004132A1 (de) | Elektrische Antriebsvorrichtung für ein elektrifiziertes Kraftfahrzeug | |
DE102019119866A1 (de) | Differenzialgetriebe | |
DE102022003207A1 (de) | Elektrisches Antriebssystem für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug | |
DE102022004049A1 (de) | Getriebevorrichtung für ein Kraftfahrzeug, insbesondere für ein elektrifiziertes Kraftfahrzeug, sowie elektrische Antriebsvorrichtung | |
DE102022003891A1 (de) | Planetenübersetzungsstufe und elektrisches Antriebssystem | |
DE102022121427A1 (de) | Radseite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23714711 Country of ref document: EP Kind code of ref document: A1 |