WO2023185895A1 - 智能电芯、电池模组和电池包 - Google Patents

智能电芯、电池模组和电池包 Download PDF

Info

Publication number
WO2023185895A1
WO2023185895A1 PCT/CN2023/084558 CN2023084558W WO2023185895A1 WO 2023185895 A1 WO2023185895 A1 WO 2023185895A1 CN 2023084558 W CN2023084558 W CN 2023084558W WO 2023185895 A1 WO2023185895 A1 WO 2023185895A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
unit
smart
cell
state
Prior art date
Application number
PCT/CN2023/084558
Other languages
English (en)
French (fr)
Inventor
赵依军
Original Assignee
赵依军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211253281.2A external-priority patent/CN116895853A/zh
Application filed by 赵依军 filed Critical 赵依军
Publication of WO2023185895A1 publication Critical patent/WO2023185895A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to battery management technology, and in particular to smart cells, battery modules containing the smart cells, and battery packs containing the battery modules.
  • the battery cell is the basic electrical energy storage unit in the power battery. Multiple battery cells can be packaged in a shell frame to form a battery module. The battery cells in the module receive energy input from the outside through a unified boundary (when charging). when) and output (when discharging). A battery pack is formed when multiple battery modules are controlled or managed by a common battery management system and thermal management system.
  • Increasing energy density increases the amount of energy stored in batteries, allowing electric vehicles to have longer driving ranges.
  • the quality of the battery cell also determines the service life of the battery. When a battery cell fails, it may cause damage to the entire battery pack.
  • a smart battery core which includes:
  • An internal switching circuit coupled to the positive or negative pole of the cell unit
  • Local controllers including:
  • An internal detection unit configured to detect state parameters of the battery unit, where the state parameters include at least one of input voltage, output voltage and temperature;
  • a communication unit configured to establish a communication connection with a device external to the smart cell
  • a processing unit coupled to the internal switching circuit, the internal detection unit and the communication unit, configured to control the internal switching circuit based on the state parameter or in response to a control command received by the communication unit On and off.
  • the internal switch circuit includes a single MOS tube, and the processing unit causes the internal switch to turn on by controlling the on/off of the single MOS tube.
  • the circuit is either on or off.
  • the above-mentioned smart battery also includes a discharge circuit coupled to the battery unit, and the processing unit is further configured to receive a signal based on the state parameter or in response to the communication unit.
  • the control command causes the discharge circuit to be in an enabled state or a disabled state.
  • the communication unit is a wireless signal transceiver or a bus signal transceiver.
  • the processing unit is further configured to report at least one of the following items to a device external to the smart battery core via the communication unit: the occurrence of a set type of trigger event, The detected input voltage, output voltage and temperature of the battery cell unit.
  • the processing unit is configured to control the on/off of the internal switch circuit or cause the discharge circuit based on the state parameter by responding to the set type of trigger event. In enabled or disabled state.
  • the set type of trigger event includes one or more of the following items: 1a) at least one of the state parameters exceeds the corresponding preset range; 1b) at least one of the The change rate of the state parameter exceeds the corresponding threshold; 1c) at least one of the state parameters returns to the preset range from outside the corresponding preset range; 1d) the change rate of at least one of the state parameters falls back from exceeding the corresponding threshold below this threshold.
  • the local controller is further configured to modify the settings regarding the preset range and the threshold based on a configuration command from a device external to the smart battery.
  • a battery module which includes:
  • each smart cell includes:
  • An internal detection unit configured to detect a first state parameter of the battery cell unit, where the first state parameter includes at least one of an input voltage, an output voltage and a temperature of the battery cell unit;
  • a first communication unit configured to establish a communication connection with the main controller or a device external to the battery module
  • a processing unit coupled to the internal switching circuit, the internal detection unit and the first communication unit, configured to control based on the first state parameter or in response to a control command received by the first communication unit On and off of the internal switch circuit;
  • a main switch circuit coupled in series together with the cell units of the plurality of smart cells
  • Main controller including:
  • a detection unit configured to detect a second state parameter of the battery cell unit in each smart battery cell, the second state parameter including the input voltage, output voltage, input current, output current and temperature of the battery cell unit. at least one;
  • a second communication unit configured to establish a communication connection with the first communication unit in each smart cell
  • a main processing unit coupled to the detection unit, the second communication unit and the main switch circuit is configured to: i) generate the control based on the first state parameter of the battery unit reported by each smart battery cell Command or control the on-off of the main switch circuit; ii) generate the control command or control the on-off of the main switch circuit based on the second state parameter of the cell unit of each smart battery cell.
  • the internal switch circuit in each smart cell, includes a single MOS transistor connected in series in the circuit where the cell unit is located, and the processing unit controls the single MOS transistor.
  • the on and off makes the internal switch circuit in the on state or off state.
  • the main switch circuit includes a first MOS transistor and a second MOS transistor connected in series, and the main controller controls the first MOS transistor and the second MOS transistor.
  • the on and off makes the main switch circuit in the on state or off state.
  • each smart battery cell further includes a discharge circuit coupled to the battery cell unit, and the processing unit is further configured to receive a signal based on the first state parameter or in response to the communication unit receiving The control command causes the discharge circuit to be in an enabled state or a disabled state.
  • the first communication unit and the second communication unit are wireless signal transceivers or bus signal transceivers.
  • the processing unit is further configured to report the following to the main controller or a device external to the battery module via the first communication unit: At least one of the items: the occurrence of a trigger event of the first set type, the detected input voltage, output voltage and temperature of the battery unit.
  • the processing unit is configured to control the first state parameter based on the first set type of trigger event.
  • Turning on and off the internal switch circuit may cause the discharge circuit to be in an enabled state or a disabled state.
  • the first set type of trigger event includes one or more of the following items: 1a) at least one of the first state parameters exceeds the corresponding preset range; 1b ) The change rate of at least one of the first state parameters exceeds the corresponding threshold; 1c) At least one of the first state parameters returns from outside the corresponding preset range to the preset range; 1d) At least one of the first states The rate of change of the parameter falls back from exceeding the corresponding threshold to below the threshold.
  • the local controller is further configured to modify the information about the configuration based on a configuration command from the main controller or a device external to the battery module. the setting of the preset range and the threshold.
  • the main processing unit is configured to generate the control command or control the main switch circuit based on the second state parameter by responding to a trigger event of a second set type. On and off.
  • the trigger event of the second set type includes one or more of the following items: 2a) at least one of the second state parameters exceeds the corresponding preset range; 2b ) The change rate of at least one of the second state parameters exceeds the corresponding threshold; 2c) At least one of the second state parameters returns from outside the corresponding preset range to the preset range; 2d) At least one of the second states The rate of change of the parameter falls back from exceeding the corresponding threshold to below the threshold.
  • a battery pack which includes:
  • At least one master controller communicatively coupled with the main controller in each battery module.
  • the overall controller, the main controller of the battery module, and the main controller of the battery module communicate with each other via a communication bus.
  • the overall controller, the main controller of the battery module, and the main controller of the battery module communicate with each other in a wireless manner.
  • Figure 1 is a schematic block diagram of a smart battery cell according to some embodiments of the present application.
  • Figure 2 is a schematic block diagram of a local controller according to other embodiments of the present application.
  • FIG. 3 is a circuit schematic diagram of a discharge circuit according to other embodiments of the present application.
  • FIG. 4 is a schematic block diagram of a battery module according to other embodiments of the present application.
  • Figure 5 is a schematic block diagram of a main controller according to other embodiments of the present application.
  • Figure 6 is a schematic diagram of a battery pack according to other embodiments of the present application.
  • first and second do not indicate the order of the units in terms of time, space, size, etc. but are merely used to distinguish the units.
  • FIG 1 is a schematic block diagram of a smart battery cell according to some embodiments of the present application. It should be noted that in this specification, the terms “intelligent battery cell” and “battery cell module” will be used interchangeably.
  • the smart battery cell or battery module 100 shown in FIG. 1 includes a single battery cell or battery cell 110 , an internal switching circuit 120 and a local controller 130 .
  • the battery cell unit 110 can have various structures.
  • the battery cell unit includes a positive electrode, a negative electrode, a separator, an electrolyte or a solid electrolyte, and a casing that accommodates the above components and materials.
  • the internal switch circuit 120 is coupled to the negative electrode of the battery unit 110 , but this is only exemplary.
  • the internal switch circuit 120 may also be coupled to the positive electrode of the battery unit 110 .
  • the local controller 130 can control the on/off of the circuit where the battery unit 110 is located by controlling the on/off of the internal switch circuit 120 based on the status of the battery unit 110, thereby realizing charge and discharge control of the battery unit and the communication between the battery unit and the smart battery. Connection control of core external devices.
  • the internal switching circuit may include a single MOS transistor as a switching element.
  • the source (drain) of the single MOS transistor T11 is coupled with the negative electrode of the battery cell unit 110, and the drain (source) is coupled with the negative electrode of the smart battery cell.
  • the local controller 130 passes Control the gate voltage of the MOS tube to make the internal switch circuit in the on or off state.
  • Using a single MOS transistor in a smart battery core to implement the function of the internal switching circuit can simplify the circuit structure and control logic.
  • the MOS transistor T11 is not limited to the P-channel enhancement type MOS transistor shown in Figure 1. It is also feasible to use other types of MOS transistors, such as P-channel depletion type, N-channel enhancement type and N-channel enhancement type. Channel depletion type, etc.
  • FIG. 2 is a schematic block diagram of a local controller according to other embodiments of the present application.
  • the local controller can be used as a local controller in the smart battery shown in FIG. 1 .
  • each block corresponds to the corresponding logical function module. piece.
  • various ways can be used to implement the logical functions of each module.
  • one or more logical function modules may be implemented by a single hardware circuit, or one or more logical function modules may be collaboratively implemented by multiple hardware circuits.
  • the hardware circuit may be implemented in the form of a die, and optionally, multiple hardware circuits in the form of die are packaged and combined together to form a chip.
  • the local controller 130 includes an internal detection unit 131 , a communication unit 132 and a processing unit 133 .
  • the local controller 130 also includes a discharge circuit 134. The above components will be further described below.
  • the internal detection unit 131 is configured to detect the first state parameter of the battery unit 110 .
  • the first state parameter described here can be used to describe one or more operating states of the battery unit (such as electrical state, thermal state, etc.).
  • the first state parameter includes one or more of the following items: input voltage of the battery unit, output voltage of the battery unit, temperature of the battery unit, etc.
  • the input voltage and the output voltage can be obtained using a voltage sampling circuit connected to the positive or negative electrode of the battery cell unit, and the temperature can be obtained using a temperature sensor disposed inside or near the battery cell unit.
  • the communication unit 132 is a communication interface of a smart battery or a local controller, which is configured to communicate with devices external to the smart battery (such as the main controller of the battery module to be described below, as well as devices such as smartphones, laptops, tablets, and desktops). information processing device such as a computer, etc.) to establish a wireless or wired communication connection.
  • the communication unit 132 may be a wireless signal transceiver (such as a Bluetooth communication device or a near field communication device).
  • the communication unit may be a bus signal transceiver (eg a single bus signal transceiver).
  • near field communication technology can be used to implement communication between the local controller and devices external to the smart cell.
  • a wireless signal transceiver can be an initiating device (also called a master device) or a target device (also called a slave device) operating in active mode, in which it actively generates a radio frequency field to communicate with an external device. communication between.
  • the wireless transceiver can also be a target device operating in a passive mode. In this mode, it does not generate a radio frequency field, but passively receives the radio frequency field generated by the host device to achieve communication with an external device.
  • the discharge circuit 134 may be in an enabled state or a disabled state. In the enabled state, the current flowing into or out of the battery unit 110 passes through the discharge circuit 134 shunt, thereby reducing the charging voltage on the battery unit 110; in the failure state, the shunt function of the discharge circuit 134 fails.
  • the discharge circuit 134 includes a shunt resistor R1 and a switching element T31 (such as a MOS transistor) connected in series, wherein the drain or source of the switching element T31 is connected to the positive or negative electrode of the cell unit 110 connected, and shunt resistor R1 is connected to ground.
  • the processing unit 133 controls the gate voltage of the MOS transistor T31 to make the discharge circuit 134 enter the enabled state or the disabled state.
  • the processing unit 133 is coupled to the internal switching circuit 120, the internal detection unit 131, the communication unit 132 and the discharge circuit 134, and is configured to perform various operations.
  • the operation includes, for example: acquiring the first state parameter of the cell unit 110 from the internal detection unit 131 and controlling the on/off of the internal switch circuit 120 based on the first state parameter (for example, by controlling the MOS transistor T11 gate voltage), or placing the discharge circuit 134 in an enabled state or a disabled state (for example, by controlling the gate voltage of the MOS transistor T31); controlling the on/off of the internal switch circuit 120 in response to the control command received by the communication unit 132, Or the discharge circuit 134 is in an enabled state or a disabled state.
  • the processing unit 133 may implement the above operations by responding to a set type of trigger event related to changes in the first state parameter. That is, when a set type of trigger event occurs, the internal switch circuit 120 is placed in an on state or an off state, or the discharge circuit 134 is placed in an enabled state or a disabled state.
  • the set type of trigger event may include one or more of the following items:
  • At least one first state parameter exceeds the corresponding preset range. For example, assuming that the preset temperature range is -5°C to 50°C, it is determined that a trigger event of type 1a) occurs when the current temperature of the battery unit exceeds the preset range.
  • the change rate of at least one first state parameter exceeds the corresponding threshold.
  • the threshold value of the change rate of the input voltage is set to 5V/second, when the change rate of the voltage input to the battery unit exceeds the threshold value, it is determined that a trigger event of type 1b) occurs.
  • At least one first state parameter returns to the preset range from outside the corresponding preset range.
  • a trigger event of type 1c is determined to occur when the current temperature of the battery unit changes from 51°C at the previous moment to 49°C at the current moment. It should be pointed out that for the same type of state parameters, the preset ranges for the trigger condition for type 1a and the trigger condition for type 1c) can be the same, or they can Are not the same.
  • the upper limit of the preset range of type 1a) may be higher than the upper limit of the preset range of type 1c), and the lower limit of the preset range of type 1a) may be lower than the lower limit of the preset range of type 1c).
  • the rate of change of at least one first state parameter falls back from exceeding the corresponding threshold to below the threshold.
  • the occurrence type 1d is determined when the change rate of the voltage of the input cell unit drops from 5.5V/second to 5V/second. triggering event. It should be noted that for the same type of state parameters, the change rate thresholds for triggering events of types 1b) and 1d) may be the same or different.
  • the preset range of the state parameter can be used to determine the trend change of the battery unit state, that is, whether the trend change will cause the battery unit to exceed the normal operating range or return to the normal state.
  • the change rate threshold of the state parameter can be used to judge the instantaneous fluctuation of the battery cell state, that is, whether the instantaneous fluctuation will cause the battery cell to exceed the normal operating range (such as voltage and whether the current rises briefly and rapidly) or the instantaneous fluctuation is not enough to cause the battery unit to exceed the normal operating range.
  • the preset range and change rate threshold used to determine whether the above-described set type of trigger event occurs are adjustable.
  • the local controller 130 may receive commands regarding modifying or setting the preset range and change rate thresholds from a device external to the smart cell via the communication unit 132 .
  • the processing unit 133 reports various information to devices external to the smart battery cell (such as the main controller of the battery module and an information processing device external to the battery module, etc.) via the communication unit 132, including but not Limited to the occurrence of a set type of trigger event, the detected input voltage, output voltage and temperature of the battery unit, etc.
  • the processing unit 133 can also, for example, respond to a control command from a device external to the smart battery core, by adjusting the on-off time ratio (duty cycle) of the MOS transistor T11 in the internal switching circuit 120 ) to control the discharge rate or charging rate of the battery unit 110.
  • the processing unit 133 may be a processor with digital signal processing capabilities and/or analog signal processing capabilities. It should be noted that what is mentioned here
  • the processor includes but is not limited to the basic units or cores required to perform various computing tasks (the basic units include, for example, arithmetic units, instruction fetching and decoding hardware, instruction pipelines, interrupt handling hardware, I/O control hardware and cache, etc.) , a set of basic units composed of multiple cores and a system on chip (System on Chip), etc.
  • internal switching circuits and communication units are usually physically independent hardware circuits from the processing unit, and they can be integrated together in various ways to form a chipset or die .
  • a die that individually implements the above-mentioned internal switching circuit and a processing unit package can be combined together, or a die that individually implements the above bus signal transceiver or wireless transceiver functions can be combined with a processing unit package, or the die can be combined with a processing unit package.
  • the bare chip that individually implements the above internal switch circuit, the bare chip that individually implements the above bus transceiver function, the bare chip that individually implements the above wireless transceiver function, and the processing unit package are combined together.
  • the internal switch circuit 120 is provided inside the housing of the aforementioned battery cell unit 110 . Additionally optionally, the internal switching circuit 120 is provided external to the housing.
  • FIG. 4 is a schematic block diagram of a battery module according to other embodiments of the present application.
  • the battery module 400 shown in Figure 4 includes a smart battery pack 410 composed of multiple smart batteries 410-1, 410-2...410-n, a main switch circuit 420 and a main controller 430.
  • each smart battery core may have the structure, features and functions of the embodiment described above with reference to FIGS. 1-3 , so only a brief description will be given below in conjunction with this embodiment.
  • the smart battery cells 410-1, 410-2...410-n and the main switch circuit 420 are connected in series, that is, the battery cell units in each smart battery core together with the main switch Circuits are connected in series.
  • the main controller 430 can control the power output and input of the entire battery module by controlling the on and off of the main switch circuit 420, thereby realizing charge and discharge control of the battery module.
  • the main controller 430 can also communicate with the local controller in each smart cell (that is, communicate with the processing unit 133 via the communication unit 132 in the local controller), thereby realizing charge and discharge control of a single smart cell. .
  • the main switching circuit includes two MOS transistors connected in series.
  • the main switch circuit 420 includes a first MOS transistor T41, a second MOS transistor T42, first diode D41 and second diode D42.
  • the gates of the first and second MOS transistors T41 and T42 are connected to the main controller 430, the drain (source) of the first MOS transistor T41 is connected to the negative electrode of the smart battery pack 410, and the source (drain) is connected to the negative electrode of the smart battery pack 410.
  • the drains (sources) of the two MOS transistors T42 are connected, and the source (drain) of the second MOS transistor T42 is connected with the negative electrode of the battery module 400 .
  • the anode and cathode of the first diode D41 are respectively connected to the drain (source) and source (drain) of the first MOS transistor T41, and the cathode and anode of the second diode D42 are respectively connected to the second MOS transistor T42.
  • the drain (source) and source (drain) are connected. Since the first MOS transistor T41 is connected to the smart battery pack 410, it is also called an input MOS transistor; on the other hand, because the second MOS transistor T42 is connected to the output end of the battery module, it is also called an output MOS transistor. Tube.
  • MOS transistors T41 and T42 are not limited to the P-channel enhancement type MOS transistors shown in Figure 4. It is also feasible to use other types of MOS transistors, such as P-channel depletion type and N-channel enhancement type. and N-channel depletion type, etc.
  • the main switch circuit 420 can also be connected to the positive electrode of the smart battery pack 410 .
  • the drain (source) of the first MOS transistor T41 is connected to the positive electrode of the battery module 400, and the source (drain) is connected to the drain (source) of the second MOS transistor T42.
  • the second MOS transistor T42 The source (drain) of the battery pack 410 is connected to the positive electrode of the smart battery pack 410 .
  • the local controller in the smart battery cell can report various information to the main controller via the communication unit, including but not limited to the occurrence of a set type of trigger event monitored by the local controller, the occurrence of a set type of trigger event detected by the local controller, The input voltage, output voltage and temperature of the battery cell unit.
  • the main controller 430 can generate corresponding control commands based on the first state parameters of the battery unit reported by each smart battery (such as the input voltage, output voltage and temperature of the battery unit) and issue them to the local control.
  • the processing unit of the device which performs corresponding operations based on the control command, such as controlling the on and off of the internal switch circuit or making the discharge circuit in an enabled state or a disabled state, etc.; or it can be based on the battery cells reported by each smart battery cell.
  • the first state parameter of the unit is used to control the on/off of the main switch circuit 420 (for example, by controlling the gate voltage of the MOS transistor T41 or T42).
  • the main controller 430 can also be equipped with a detection capability for detecting the second state parameter of the battery module 400 .
  • the second state parameter described here can be used to describe one or more operating states of the battery module (such as electrical state, thermal state, etc.).
  • the second state parameter includes one or more of the following items: input voltage of the battery module, output voltage of the battery module, input current of the battery module, output current of the battery module, and temperature of the battery module wait.
  • the state of the smart battery pack 410 basically reflects the state of the battery module 400 , so the second state parameter of the battery module is equivalent to the second state parameter of the smart battery pack.
  • the input voltage and the output voltage can be obtained by using a voltage sampling circuit connected to the positive or negative pole of the smart battery pack
  • the input current and output current can be obtained by using a current sampling circuit connected to the positive or negative pole of the smart battery pack.
  • the temperature can be obtained by using a temperature sensor installed inside or near the smart battery pack.
  • the main controller 430 can generate a corresponding control command based on the second state parameter of the cell unit of each smart cell detected by it and issue it to the processing unit of the local controller, and the latter can generate a corresponding control command based on the control command.
  • the circuit 420 is turned on and off (for example, by controlling the gate voltage of the MOS transistor T41 or T42).
  • the local controller and the main controller By using the local controller and the main controller to detect the status parameters of the battery cells and battery modules respectively, redundancy in operating status monitoring can be provided, thereby improving the reliability of battery management. For example, even if a detection failure occurs at the local controller, as long as the detection function at the main controller runs normally, abnormal operation of the battery module can still be discovered in time, and vice versa.
  • the judgment result can be selected and the corresponding processing logic can be executed according to preset rules.
  • the rule may be set such that the credibility of the judgment result based on the second state parameter is higher than the credibility of the judgment result based on the first state parameter; or vice versa.
  • FIG. 5 is a schematic block diagram of a main controller according to other embodiments of the present application.
  • the main controller can be used as the main controller in the battery module shown in FIG. 4 .
  • each block corresponds to the corresponding logical function module.
  • various ways can be used to implement the logical functions of each module.
  • one or more logical function modules may be implemented by a single hardware circuit, or one or more logical function modules may be collaboratively implemented by multiple hardware circuits.
  • the hardware circuitry may be implemented in die form, and optionally, multiple Hardware circuits in the form of bare chips are packaged and combined together to form a chip.
  • the main controller 430 includes a detection unit 431 , a communication unit 432 and a main processing unit 433 .
  • the above components will be further described below.
  • the detection unit 431 is configured to detect the second state parameter of the battery cell in the smart battery.
  • the communication unit 432 is a communication interface of the main controller, which is configured to establish a wireless or wired communication connection with the smart battery; in addition, the communication unit 432 is also configured to communicate with devices external to the battery module 40 (such as smart phones, laptops, tablets, etc. Information processing devices such as computers and desktops) establish wireless or wired communication connections.
  • the communication unit 432 may be a wireless signal transceiver (such as a Bluetooth communication device or a near field communication device).
  • the communication unit may be a bus signal transceiver (eg a single bus signal transceiver).
  • the main processing unit 433 is coupled to the main switch circuit 320, the detection unit 431 and the communication unit 432, and is configured to perform various operations.
  • the operations include, for example:
  • the on/off of the main switch circuit 420 is controlled based on the second state parameter of each battery unit obtained by the detection unit 431 .
  • the main processing unit 433 may implement the above operations by responding to a set type of trigger event related to changes in the second state parameter. That is, when a trigger event of a set type occurs, the main switch circuit 420 is placed in an on state or an off state.
  • the set type of trigger event may include one or more of the following items:
  • At least one second state parameter exceeds the corresponding preset range.
  • At least one second state parameter returns to the preset range from outside the corresponding preset range. It should be pointed out that for the same type of state parameters, the preset ranges of the trigger condition for type 2a) and the trigger condition for type 2c) may be the same or different.
  • the preset range of the state parameter can be used to determine the trend change of the battery cell state
  • the change rate threshold of the state parameter can be used to determine the instantaneous fluctuation of the battery cell state
  • the corresponding judgment result can be used according to the preset rules and the corresponding processing logic can be executed (for example, the internal switch circuit Turning on or off, turning on or off the main switch circuit, and placing the discharge circuit in an enabled or disabled state, etc.).
  • the main processing unit 433 may send an adjustment command to the local controller. Accordingly, the local controller sets the preset range and change rate thresholds related to the trigger events of the setting types 1a)-1d) based on the adjustment command. Make adjustments.
  • the main processing unit 433 may be configured to determine the SOC value of the cell unit in each smart cell and generate a charge and discharge rate adjustment command based on the determined SOC value. Accordingly, the local controller In response to the charge and discharge rate adjustment command, the discharge rate or charging rate of the battery unit is controlled by adjusting the on-off time ratio (duty cycle) of the MOS tube in the internal switching circuit, thereby realizing charging between multiple battery units. Equalization and discharge equalization.
  • the main processing unit 433 may be a processor with digital signal processing capabilities and/or analog signal processing capabilities.
  • the processor described here includes, but is not limited to, the basic units or cores required to perform various computing tasks (the basic units include, for example, arithmetic units, instruction fetching and decoding hardware, instruction pipelines, interrupt processing hardware, I/O control hardware and cache, etc.), a set of basic units composed of multiple cores and a system on a chip (SOC), etc.
  • the main switching circuit and communication unit are usually physically independent hardware circuits from the processing unit, and they can be integrated together in various ways to form a small chip.
  • a bare chip that individually implements the above main switch circuit can be combined with a main processing unit package, or a die that independently implements the above bus signal transceiver or wireless transceiver functions can be combined with a main processing unit package, or The bare chip that individually implements the above main switch circuit, the bare chip that individually implements the above bus transceiver function, the bare chip that individually implements the above wireless transceiver function, and the main processing unit package can be combined together.
  • Figure 6 is a schematic diagram of a battery pack according to other embodiments of the present application.
  • the battery pack 600 shown in Figure 6 includes at least one master controller 610 and multiple battery modules 620-1, 620-2...620-n, wherein the multiple battery modules 620-1, 620- 2...620-n can be connected together in series, parallel or mixed connection.
  • each battery module may have the structure, features and functions of the embodiments described above with reference to FIGS. 1-5 , which will not be described again here.
  • the main controller 610 and the main controllers in each battery module can access the communication bus 630 to implement communication between the main controller and the main controller and between the main controllers.
  • communication between the overall controller 610 and the main controller of the battery module, as well as between the main controllers of each battery module, can be implemented wirelessly.

Abstract

提供智能电芯、包含智能电芯的电池模组(100)和包含电池模组(100)的电池包(600)。智能电芯包含电芯单元(110)、内部开关电路(120)、本地控制器(130),内部开关电路(120)与电芯单元(110)的正极或负极耦合,本地控制器(130)包括内部检测单元(131)、通信单元(132)和处理单元(133),内部检测单元(131)配置为检测电芯单元(110)的状态参量,状态参量包括输入电压、输出电压以及温度中的至少一个,通信单元(132)配置为与智能电芯外部的装置建立通信连接,处理单元(133)与内部开关电路(120)、内部检测单元(131)和通信单元(132)耦合,处理单元(133)被配置为基于状态参量或响应于通信单元(132)接收到的控制命令而控制内部开关电路(120)的通断。

Description

智能电芯、电池模组和电池包 技术领域
本申请涉及电池管理技术,特别涉及智能电芯、包含该智能电芯的电池模组和包含该电池模组的电池包。
背景技术
电芯是动力电池中基本的电能存储单元,多个电芯可封装在一个外壳框架内以形成一个电池模组,该模组内的电芯通过统一的边界与外部发生能量的输入(当充电时)和输出(当放电时)。当多个电池模组由共同的电池管理系统和热管理系统控制或管理时即构成电池包。
通过提高能量密度可增加电池存储的电能,从而使电动汽车具有更长的续航里程。此外,电芯质量也决定了电池的使用寿命,当一颗电芯发生故障时,有可能会导致整个电池包的损坏。
发明内容
按照本申请的一个方面,提供一种智能电芯,其包含:
电芯单元;
与所述电芯单元的正极或负极耦合的内部开关电路;以及
本地控制器,包括:
内部检测单元,其配置为检测所述电芯单元的状态参量,所述状态参量包括输入电压、输出电压以及温度中的至少一个;
通信单元,其配置为与所述智能电芯外部的装置建立通信连接;以及
与所述内部开关电路、所述内部检测单元和所述通信单元耦合的处理单元,其配置为基于所述状态参量或响应于所述通信单元接收到的控制命令而控制所述内部开关电路的通断。
可选地,在上述智能电芯中,所述内部开关电路包含单个MOS管,所述处理单元通过控制所述单个MOS管的通断使所述内部开关 电路处于导通状态或关断状态。
除了上述一个或多个特征以外,在上述智能电芯中,还包括与所述电芯单元耦合的放电电路,所述处理单元还配置为基于所述状态参量或响应于所述通信单元接收到的控制命令而使所述放电电路处于使能状态或失效状态。
可选地,在所述的智能电芯中,所述通信单元为无线信号收发器或总线信号收发器。
可选地,在上述智能电芯中,所述处理单元还配置为经所述通信单元向所述智能电芯外部的装置上报下列项中的至少一项:设定类型的触发事件的发生、检测到的所述电芯单元的输入电压、输出电压以及温度。
可选地,在上述智能电芯中,所述处理单元配置为通过响应于所述设定类型的触发事件来基于所述状态参量而控制所述内部开关电路的通断或使所述放电电路处于使能状态或失效状态。
可选地,在上述智能电芯中,所述设定类型的触发事件包括下列项中的一项或多项:1a)至少一个所述状态参量超过相应的预设范围;1b)至少一个所述状态参量的变化率超过相应的阈值;1c)至少一个所述状态参量从对应的预设范围之外返回该预设范围;1d)至少一个所述状态参量的变化率从超过对应的阈值回落至该阈值以下。
可选地,在上述智能电芯中,所述本地控制器还配置为基于来自所述智能电芯外部的装置的配置命令而修改关于所述预设范围和所述阈值的设定。
按照本申请的另一个方面,提供一种电池模组,其包括:
多个智能电芯,每个智能电芯包括:
电芯单元;
与该电芯单元的正极或负极耦合的内部开关电路;以及本地控制器,包括:
内部检测单元,其配置为检测该电芯单元的第一状态参量,所述第一状态参量包括该电芯单元的输入电压、输出电压以及温度中的至少一个;
第一通信单元,其配置为与所述主控制器或所述电池模组外部的装置建立通信连接;以及
与所述内部开关电路、所述内部检测单元和所述第一通信单元耦合的处理单元,其配置为基于所述第一状态参量或响应于所述第一通信单元接收到的控制命令而控制所述内部开关电路的通断;
主开关电路,其连同所述多个智能电芯的电芯单元串联耦合;
主控制器,包括:
检测单元,其配置为检测每个智能电芯中的电芯单元的第二状态参量,所述第二状态参量包括该电芯单元的输入电压、输出电压、输入电流、输出电流以及温度中的至少一个;
第二通信单元,其配置为与每个智能电芯中的第一通信单元建立通信连接;
与所述检测单元、所述第二通信单元和所述主开关电路耦合的主处理单元,其配置为:i)基于每个智能电芯上报的电芯单元的第一状态参量生成所述控制命令或控制所述主开关电路的通断;ii)基于每个智能电芯的电芯单元的第二状态参量生成所述控制命令或控制所述主开关电路的通断。
可选地,在上述电池模组中,在每个智能电芯中,所述内部开关电路包含串联连接在电芯单元所在回路内的单个MOS管,所述处理单元通过控制所述单个MOS管的通断使所述内部开关电路处于导通状态或关断状态。
可选地,在上述电池模组中,所述主开关电路包含串联连接的第一MOS管和第二MOS管,所述主控制器通过控制所述第一MOS管和所述第二MOS管的通断使所述主开关电路处于导通状态或关断状态。
可选地,在上述电池模组中,每个智能电芯还包括与电芯单元耦合的放电电路,所述处理单元还配置为基于所述第一状态参量或响应于所述通信单元接收到的控制命令而使所述放电电路处于使能状态或失效状态。
可选地,在上述电池模组中,所述第一通信单元和所述第二通信单元为无线信号收发器或总线信号收发器。
可选地,在上述电池模组中,在每个智能电芯中,所述处理单元还配置为经所述第一通信单元向所述主控制器或所述电池模组外部的装置上报下列项中的至少一项:第一设定类型的触发事件的发生、检测到的电芯单元的输入电压、输出电压以及温度。
可选地,在上述电池模组中,在每个智能电芯中,所述处理单元配置为通过响应于所述第一设定类型的触发事件来基于所述第一状态参量而控制所述内部开关电路的通断或使所述放电电路处于使能状态或失效状态。
可选地,在上述电池模组中,所述第一设定类型的触发事件包括下列项中的一项或多项:1a)至少一个所述第一状态参量超过相应的预设范围;1b)至少一个所述第一状态参量的变化率超过相应的阈值;1c)至少一个所述第一状态参量从对应的预设范围之外返回该预设范围;1d)至少一个所述第一状态参量的变化率从超过对应的阈值回落至该阈值以下。
可选地,在上述电池模组中,在每个智能电芯中,所述本地控制器还配置为基于来自所述主控制器或所述电池模组外部的装置的配置命令而修改关于所述预设范围和所述阈值的设定。
可选地,在上述电池模组中,所述主处理单元配置为通过响应于第二设定类型的触发事件来基于所述第二状态参量而生成所述控制命令或控制所述主开关电路的通断。
可选地,在上述电池模组中,所述第二设定类型的触发事件包括下列项中的一项或多项:2a)至少一个所述第二状态参量超过相应的预设范围;2b)至少一个所述第二状态参量的变化率超过相应的阈值;2c)至少一个所述第二状态参量从对应的预设范围之外返回该预设范围;2d)至少一个所述第二状态参量的变化率从超过对应的阈值回落至该阈值以下。
按照本申请的还有一个方面,提供一种电池包,其包括:
如上所述的电池模组;
至少一个总控制器,其与每个所述电池模组中的主控制器通信耦合。
可选地,在上述电池包中,所述总控制器和所述电池模组的主控制器以及所述电池模组的主控制器之间经通信总线实现彼此之间的通信。
可选地,在上述电池包中,所述总控制器和所述电池模组的主控制器以及所述电池模组的主控制器之间以无线方式实现彼此之间的通信。
附图说明
本申请的上述和/或其它方面和优点将通过以下结合附图的各个方面的描述变得更加清晰和更容易理解,附图中相同或相似的单元采用相同的标号表示。附图包括:
图1为按照本申请的一些实施例的智能电芯的示意性框图。
图2为按照本申请另外一些实施例的本地控制器的示意性框图。
图3为按照本申请另外一些实施例的放电电路的电路示意图。
图4为按照本申请另外一些实施例的电池模组的示意性框图。
图5为按照本申请的另一些实施例的主控制器的示意性框图。
图6为按照本申请另外一些实施例的电池包的示意图。
具体实施方式
以下的具体实施方式在本质上仅仅是示例性的并且不用于限制本申请或本申请的应用和用途。在下面关于本申请具体实施方式的描述中阐述了许多具体细节以便提供对本申请更为深入的理解。然而对于本领域普通技术人员而言,在未提供这些具体细节的情况下仍然能够实践本申请。在一些实例中,为了避免描述的复杂化,对于那些熟知的特征作了省略。
在本说明书中,诸如“包含”和“包括”之类的用语表示除了具有在说明书和权利要求书中有直接和明确表述的单元和步骤以外,本申请的技术方案也不排除具有未被直接或明确表述的其它单元和步骤的 情形。
除非特别说明,诸如“第一”和“第二”之类的用语并不表示单元在时间、空间、大小等方面的顺序而仅仅是作区分各单元之用。
智能电芯
图1为按照本申请的一些实施例的智能电芯的示意性框图。需要指出的是,在本说明书中,术语“智能电芯”与“电芯模块”将被互换使用。
图1所示的智能电芯或电芯模块100包括单个电芯单元或电池单体110、内部开关电路120和本地控制器130。
电芯单元110作为电池包中的基本储能单元,其可具有各种结构。在一个示例性的例子中,电芯单元包括正极、负极、隔膜、电解液或固态电解质以及容纳上述各个部件和材料的壳体。在图1中,内部开关电路120与电芯单元110的负极耦合,但是这仅仅是示例性地,内部开关电路120也可以与电芯单元110的正极耦合。本地控制器130可基于电芯单元110的状态,通过控制内部开关电路120的通断来控制电芯单元110所在回路的通断,从而实现电芯单元的充放电控制以及电芯单元与智能电芯外部装置的连接控制。
在一些实施例中,内部开关电路可包含单个MOS管作为开关元件。示例性地,如图1所示,该单个MOS管T11的源极(漏极)与电芯单元110的负极耦合,漏极(源极)与智能电芯的负极耦合,本地控制器130通过控制该MOS管的栅极电压,使得内部开关电路处于导通状态或关断状态。在智能电芯中采用单个MOS管来实现内部开关电路的功能可简化电路结构和控制逻辑。需要说明的是,MOS管T11并不局限于图1所示的P沟道增强型MOS管,采用其它类型的MOS管也是可行的,例如P沟道耗尽型、N沟道增强型和N沟道耗尽型等。
图2为按照本申请另外一些实施例的本地控制器的示意性框图,该本地控制器可用作图1所示智能电芯中的本地控制器。
在图2所示的本地控制器中,每个方框对应于相应的逻辑功能模 块。需要指出的是,在具体的实施方案中,可采用各种方式来实现每个模块的逻辑功能。例如一个或多个逻辑功能模块可以由单个硬件电路来实现,或者一个或多个逻辑功能模块由多个硬件电路协同完成。在一些实施例中,硬件电路可以裸片(die)的形式实施,并且可选地,多个裸片形式的硬件电路被封装组合在一起以构成一个晶粒(Chiplet)。
参见图2,本地控制器130包括内部检测单元131、通信单元132和处理单元133。可选地,本地控制器130还包括放电电路134。以下将对上述部件作进一步的描述。
内部检测单元131配置为检测电芯单元110的第一状态参量。这里所述的第一状态参量可用于描述电芯单元的一种或多种运行状态(例如电气状态和热状态等)。在一些实施例中,第一状态参量包括下列项中的一种或多种:电芯单元的输入电压、电芯单元的输出电压以及电芯单元的温度等。示例性地,输入电压和输出电压可以利用与电芯单元的正极或负极相连的电压采样电路获取,温度则可利用设置在电芯单元内部或附近的温度传感器获取。
通信单元132为智能电芯或本地控制器的通信接口,其配置为与智能电芯外部的装置(例如下面将要描述的电池模组的主控制器以及诸如智能手机、笔记本电脑、平板电脑和台式机之类的信息处理装置等)建立无线或有线通信连接。可选地,通信单元132可以是无线信号收发器(例如蓝牙通信装置或近场通信装置)。另外可选地,通信单元可以是总线信号收发器(例如单总线信号收发器)。在一些实施例中,可以利用近场通信技术实现本地控制器与智能电芯外部的装置之间的通信。例如无线信号收发器可以是工作于主动模式下的发起设备(也称为主设备)或目标设备(也称为从设备),在该模式下,其主动地生成射频场以实现与外部装置之间的通信。无线收发器也可以是工作于被动模式下的目标设备,在该模式下,其不产生射频场,而是被动接收主设备产生的射频场以实现与外部装置之间的通信。
在处理单元133的控制下,放电电路134可处于使能状态或失效状态。在使能状态下,流入或流出电芯单元110的电流经放电电路134 分流,从而降低电芯单元110上的充电电压;在失效状态下,放电电路134的分流功能失效。示例性地,如图3所示,放电电路134包括串联连接的分流电阻R1和开关元件T31(例如MOS管),其中,开关元件T31的漏极或源极与电芯单元110的正极或负极相连,并且分流电阻R1接地。处理单元133通过控制MOS管T31的栅极电压使放电电路134进入使能状态或失效状态。
处理单元133与内部开关电路120、内部检测单元131、通信单元132和放电电路134耦合,其配置为执行各种操作。在一些实施例中,所述操作例如包括:从内部检测单元131获取电芯单元110的第一状态参量并基于第一状态参量来控制内部开关电路120的通断(例如通过控制MOS管T11的栅极电压),或使放电电路134处于使能状态或失效状态(例如通过控制MOS管T31的栅极电压);响应于通信单元132接收到的控制命令而控制内部开关电路120的通断,或使放电电路134处于使能状态或失效状态。
特别是,处理单元133可通过响应于与第一状态参量的变化相关的设定类型的触发事件来实现上述操作。即,当发生设定类型的触发事件时,使内部开关电路120处于导通状态或关断状态,或使放电电路134处于使能状态或失效状态。在一些实施例中,设定类型的触发事件可包括下列项中的一项或多项:
1a)至少一个第一状态参量超过相应的预设范围。例如,假设温度预设范围为摄氏-5℃~50℃,则在电芯单元的当前温度超出该预设范围时即确定发生类型1a)的触发事件。
1b)至少一个第一状态参量的变化率超过相应的阈值。例如,假设输入电压的变化率的阈值被设定为5V/秒,则在输入电芯单元的电压的变化率超过该阈值时即确定发生类型1b)的触发事件。
1c)至少一个第一状态参量从对应的预设范围之外返回该预设范围。例如,假设温度预设范围为摄氏-5℃~50℃,则在电芯单元的当前温度从前一时刻的51℃变化为当前的49℃时即确定发生类型1c)的触发事件。需要指出的是,对于同一类型的状态参量,用于类型1a的触发条件和用于类型1c)的触发条件的预设范围可以相同,也可以 不相同。例如类型1a)的预设范围的上限可高于类型1c)的预设范围的上限,并且类型1a)的预设范围的下限可低于类型1c)的预设范围的下限。
1d)至少一个第一状态参量的变化率从超过对应的阈值回落至该阈值以下。例如,仍然以前述输入电压的变化率的阈值被设定为5V/秒为例,则在输入电芯单元的电压的变化率从5.5V/秒回落至5V/秒时即确定发生类型1d)的触发事件。需要指出的是,对于同一类型的状态参量,用于类型1b)和1d)的触发事件的变化率阈值可以相同,也可以不相同。
在上述类型1a)和1c)中,状态参量的预设范围可被用于判断电芯单元状态的趋势性变化,即,趋势性变化是否将导致电芯单元超出正常的工作范围或返回正常的工作范围。另一方面,在上述类型1b和1d)中,状态参量的变化率阈值可被用于判断电芯单元状态的瞬时波动,即,瞬时波动是否将导致电芯单元超出正常的工作范围(例如电压和电流短暂而急速的上升)或瞬时波动是否不足以导致电芯单元超出正常的工作范围。
在一些实施例中,用于确定上述设定类型的触发事件是否发生的预设范围和变化率阈值是可调整的。可选地,本地控制器130可经通信单元132从智能电芯外部的装置接收关于修改或设置预设范围和变化率阈值的命令。
在另外一些实施例中,处理单元133经通信单元132向智能电芯外部的装置(例如电池模组的主控制器以及电池模组外部的信息处理装置等)上报各种信息,例如包括但不限于设定类型的触发事件的发生、检测到的电芯单元的输入电压、输出电压以及温度等。
除了上面所描述的各项功能和特征以外,处理单元133还可例如响应于智能电芯外部的装置的控制命令,通过调节内部开关电路120中的MOS管T11的通断时间比率(占空比)来控制电芯单元110的放电速率或充电速率。
在一些具体的实施方案中,处理单元133可以是具有数字信号处理能力和/或模拟信号处理能力的处理器。需要说明的是,这里所述的 处理器包括但不限于执行各种计算任务所需要的基本单元或内核(所述基本单元例如包括运算器、取指令和解码硬件、指令管道、中断处理硬件、I/O控制硬件和缓存等)、由多个内核组成的一组基本单元和片上系统(System on Chip)等。
特别是,内部开关电路和通信单元(例如上述总线信号收发器和无线信号收发器)通常是与处理单元在物理上独立的硬件电路,它们可以各种方式集成在一起以构成芯片组或晶粒。例如,可将单独实现上述内部开关电路的裸片与处理单元封装组合在一起,或者可将单独实现上述总线信号收发器或无线收发器功能的裸片与处理单元封装组合在一起,或者可将单独实现上述内部开关电路的裸片、单独实现上述总线收发器功能的裸片和单独实现上述无线收发器功能的裸片以及处理单元封装组合在一起。
可选地,内部开关电路120被设置在前述电芯单元110的壳体内部。另外可选地,内部开关电路120被设置在壳体外部。
电池模组
图4为按照本申请另外一些实施例的电池模组的示意性框图。
图4所示的电池模组400包括多个智能电芯410-1、410-2......410-n组成的智能电芯组410、主开关电路420和主控制器430。在图4所示的实施例中,每个智能电芯可具有上面参照图1-3所述的实施例的结构、特征和功能,因此下面仅结合本实施例作简略描述。
如图4所示,智能电芯410-1、410-2......410-n以及主开关电路420被串联连接在一起,即,各个智能电芯中的电芯单元连同主开关电路以串联方式相连。主控制器430可通过控制主开关电路420的通断来控制整个电池模组的电力输出和输入,从而实现电池模组的充放电控制。此外,主控制器430还可与每个智能电芯中的本地控制器通信(即,经本地控制器中的通信单元132与处理单元133通信),从而实现对单个智能电芯的充放电控制。
在一些实施例中,主开关电路包含两个串联连接的MOS管。示例性地,如图4所示,主开关电路420包含第一MOS管T41、第二 MOS管T42、第一二极管D41和第二二极管D42。第一和第二MOS管T41、T42的栅极与主控制器430相连,第一MOS管T41的漏极(源极)与智能电芯组410的负极相连,源极(漏极)与第二MOS管T42的漏极(源极)相连,第二MOS管T42的源极(漏极)与电池模组400的负极相连。第一二极管D41的正极和负极分别与第一MOS管T41的漏极(源极)和源极(漏极)相连,第二二极管D42的负极和正极分别与第二MOS管T42的漏极(源极)和源极(漏极)相连。由于第一MOS管T41与智能电芯组410的相连,因此又被称为输入MOS管;另一方面,由于第二MOS管T42与电池模组的输出端相连,因此又被称为输出MOS管。
需要说明的是,MOS管T41和T42并不局限于图4所示的P沟道增强型MOS管,采用其它类型的MOS管也是可行的,例如P沟道耗尽型、N沟道增强型和N沟道耗尽型等。
还需要说明的是,主开关电路420也可以与智能电芯组410的正极相连。此时,第一MOS管T41的漏极(源极)与电池模组400的正极相连,源极(漏极)与第二MOS管T42的漏极(源极)相连,第二MOS管T42的源极(漏极)则与智能电芯组410的正极相连。
如上所述,智能电芯中的本地控制器可经通信单元向主控制器上报各种信息,例如包括但不限于本地控制器监测到的设定类型的触发事件的发生、本地控制器检测到的电芯单元的输入电压、输出电压以及温度等。相应地,主控制器430可基于每个智能电芯上报的电芯单元的第一状态参量(例如电芯单元的输入电压、输出电压以及温度等)生成相应的控制命令并下发给本地控制器的处理单元,由后者基于该控制命令执行相应的操作,例如控制内部开关电路的通断或使放电电路处于使能状态或失效状态等;或者可基于每个智能电芯上报的电芯单元的第一状态参量来控制主开关电路420的通断(例如通过控制MOS管T41或T42的栅极电压)。
此外,还可为主控制器430配备检测能力,以用于检测电池模组400的第二状态参量。这里所述的第二状态参量可用于描述电池模组的一种或多种运行状态(例如电气状态和热状态等)。在一些实施例 中,第二状态参量包括下列项中的一种或多种:电池模组的输入电压、电池模组的输出电压、电池模组的输入电流、电池模组的输出电流以及电池模组的温度等。在许多情况下,智能电芯组410的状态基本上反映了电池模组400的状态,因此电池模组的第二状态参量与智能电芯组的第二状态参量是等价的。示例性地,输入电压和输出电压可以利用与智能电芯组的正极或负极相连的电压采样电路获取,输入电流和输出电流可以利用与智能电芯组的正极或负极相连的电流采样电路获取,温度则可利用设置在智能电芯组内部或附近的温度传感器获取。相应地,主控制器430可基于其检测到的每个智能电芯的电芯单元的第二状态参量生成相应的控制命令并下发给本地控制器的处理单元,由后者基于该控制命令执行相应的操作(例如使内部开关电路处于导通状态或关断状态以及使放电电路处于使能状态或失效状态等);或者可基于检测到的电芯单元的第二状态参量来控制主开关电路420的通断(例如通过控制MOS管T41或T42的栅极电压)。
通过由本地控制器和主控制器分别对电芯单元和电池模组的状态参量执行检测,可提供运行状态监测的冗余度,从而提高电池管理的可靠性。例如,即使本地控制器处发生检测故障,只要主控制器处的检测功能正常运行,则仍然能够及时发现电池模组的运行异常,反之亦然。此外,当基于第一状态参量和第二状态参量对运行状态所作的判断不匹配时,可以依据预先设置的规则对判断结果进行取舍和执行相应的处理逻辑。示例性地,可以将规则设定为基于第二状态参量作出的判断结果的可信度高于基于第一状态参量作出的判断结果的可信度;或者反之亦然。
图5为按照本申请另外一些实施例的主控制器的示意性框图,该主控制器可用作图4所示电池模组中的主控制器。
在图5所示的主控制器中,每个方框对应于相应的逻辑功能模块。需要指出的是,在具体的实施方案中,可采用各种方式来实现每个模块的逻辑功能。例如一个或多个逻辑功能模块可以由单个硬件电路来实现,或者一个或多个逻辑功能模块由多个硬件电路协同完成。在一些实施例中,硬件电路可以裸片(die)的形式实施,并且可选地,多 个裸片形式的硬件电路被封装组合在一起以构成晶粒(Chiplet)。
参见图5,主控制器430包括检测单元431、通信单元432和主处理单元433。以下将对上述部件作进一步的描述。
检测单元431配置为检测智能电芯中的电芯单元的第二状态参量。通信单元432为主控制器的通信接口,其配置为与智能电芯建立无线或有线通信连接;此外,通信单元432还配置为与电池模组40外部的装置(例如智能手机、笔记本电脑、平板电脑和台式机等信息处理装置)建立无线或有线通信连接。可选地,通信单元432可以是无线信号收发器(例如蓝牙通信装置或近场通信装置)。另外可选地,通信单元可以是总线信号收发器(例如单总线信号收发器)。
参见图5,主处理单元433与主开关电路320、检测单元431和通信单元432耦合,其配置为执行各种操作。在一些实施例中,所述操作例如包括:
基于智能电芯的本地控制器上报的关于电芯单元的第一状态参量生成相应的控制命令,并将生成的控制命令下发给本地控制器以控制智能电芯中的内部开关电路的通断,或使智能电芯中的放电电路处于使能状态或失效状态;
基于智能电芯的本地控制器上报的关于电芯单元的第一状态参量来控制主开关电路420的通断(例如通过控制主开关电路中的MOS管的栅极电压);
基于检测单元431获取的各个电芯单元的第二状态参量生成相应的控制命令,并将生成的控制命令下发给相应的本地控制器以控制智能电芯中的内部开关电路的通断,或使智能电芯中的放电电路处于使能状态或失效状态;
基于检测单元431获取的各个电芯单元的第二状态参量来控制主开关电路420的通断。
特别是,主处理单元433可通过响应于与第二状态参量的变化相关的设定类型的触发事件来实现上述操作。即,当发生设定类型的触发事件时,使主开关电路420处于导通状态或关断状态。在一些实施例中,设定类型的触发事件可包括下列项中的一项或多项:
2a)至少一个第二状态参量超过相应的预设范围。
2b)至少一个第二状态参量的变化率超过相应的阈值。
2c)至少一个第二状态参量从对应的预设范围之外返回该预设范围。需要指出的是,对于同一类型的状态参量,用于类型2a)的触发条件和用于类型2c)的触发条件的预设范围可以相同,也可以不相同。
2d)至少一个第二状态参量的变化率从超过对应的阈值回落至该阈值以下。需要指出的是,对于同一类型的状态参量,用于类型2b)和2d)的触发事件的变化率阈值可以相同,也可以不相同。
如上所述,状态参量的预设范围可被用于判断电芯单元状态的趋势性变化,而状态参量的变化率阈值可被用于判断电芯单元状态的瞬时波动。
如上所述,当基于第一状态参量和第二状态参量对运行状态所作的判断不匹配时,可以依据预先设置的规则采用相应的判断结果并以此执行相应的处理逻辑(例如使内部开关电路导通或关断、使主开关电路导通或关断以及使放电电路处于使能状态或失效状态等)。
在一些实施例中,主处理单元433可向本地控制器发送调整命令,相应地,本地控制器基于该调整命令对涉及设定类型1a)-1d)的触发事件的预设范围和变化率阈值进行调整。
在还有一些实施例中,主处理单元433可配置为确定每个智能电芯中的电芯单元的SOC值,并且基于所确定的SOC值生成充放电速率调节命令,相应地,本地控制器响应于充放电速率调节命令,通过调节内部开关电路中的MOS管的通断时间比率(占空比)来控制电芯单元的放电速率或充电速率,从而实现多个电芯单元之间的充电均衡和放电均衡。
在一些具体的实施方案中,主处理单元433可以是具有数字信号处理能力和/或模拟信号处理能力的处理器。需要说明的是,这里所述的处理器包括但不限于执行各种计算任务所需要的基本单元或内核(所述基本单元例如包括运算器、取指令和解码硬件、指令管道、中断处理硬件、I/O控制硬件和缓存等)、由多个内核组成的一组基本单元和片上系统(SOC)等。
特别是,主开关电路和通信单元(例如上述总线信号收发器和无线信号收发器)通常是与处理单元在物理上独立的硬件电路,它们可以各种方式集成在一起以构成小芯片。例如,可将单独实现上述主开关电路的裸片与主处理单元封装组合在一起,或者可将单独实现上述总线信号收发器或无线收发器功能的裸片与主处理单元封装组合在一起,或者可将单独实现上述主开关电路的裸片、单独实现上述总线收发器功能的裸片和单独实现上述无线收发器功能的裸片以及主处理单元封装组合在一起。
电池包
图6为按照本申请另外一些实施例的电池包的示意图。
图6所示的电池包600包含至少一个总控制器610和多个电池模组620-1、620-2......620-n,其中多个电池模组620-1、620-2......620-n可以串联、并联或混联方式连接在一起。
在图6所示的实施例中,每个电池模组可具有上面参照图1-5所述的实施例的结构、特征和功能,此处不再赘述。
在一些实施例中,总控制器610和每个电池模组中的主控制器均可接入通信总线630以实现总控制器与主控制器之间以及主控制器之间的通信。
在另外一些实施例中,总控制器610与电池模组的主控制器之间以及各个电池模组的主控制器之间可以无线方式实现彼此之间的通信。
本领域的技术人员将会理解,本文中所描述的各种示意性逻辑块、模块、电路和算法步骤可以被实现为电子硬件、计算机软件或两者的组合。
为了表明硬件和软件间的可互换性,各种示意性部件、块、模块、电路和步骤在上文根据其功能性总体地进行了描述。这样的功能性以硬件形式或软件形式实施取决于特定应用以及对总体系统所施加的设计限制。本领域技术人员可以针对具体的特定应用、按照变化的方 式来实现所描述的功能性,但是,这样的实现方式决策不应当被理解为导致与本申请范围的背离。
尽管只对其中一些本申请的具体实施方式进行了描述,但是本领域普通技术人员应当了解,本申请可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的,在不脱离如所附各权利要求所定义的本申请精神及范围的情况下,本申请可能涵盖各种的修改与替换。

Claims (10)

  1. 一种智能电芯,包含:
    电芯单元;
    与所述电芯单元的正极或负极耦合的内部开关电路;以及
    本地控制器,包括:
    内部检测单元,其配置为检测所述电芯单元的状态参量,所述状态参量包括输入电压、输出电压以及温度中的至少一个;
    通信单元,其配置为与所述智能电芯外部的装置建立通信连接;以及
    与所述内部开关电路、所述内部检测单元和所述通信单元耦合的处理单元,其配置为基于所述状态参量或响应于所述通信单元接收到的控制命令而控制所述内部开关电路的通断。
  2. 如权利要求1所述的智能电芯,其中,所述内部开关电路包含单个MOS管,所述处理单元通过控制所述单个MOS管的通断使所述内部开关电路处于导通状态或关断状态。
  3. 如权利要求1或2所述的智能电芯,其中,还包括与所述电芯单元耦合的放电电路,所述处理单元还配置为基于所述状态参量或响应于所述通信单元接收到的控制命令而使所述放电电路处于使能状态或失效状态。
  4. 如权利要求3所述的智能电芯,其中,所述通信单元为无线信号收发器或总线信号收发器。
  5. 如权利要求3所述的智能电芯,其中,所述处理单元还配置为经所述通信单元向所述智能电芯外部的装置上报下列项中的至少一项:设定类型的触发事件的发生、检测到的所述电芯单元的输入电压、输出电压以及温度。
  6. 如权利要求5所述的智能电芯,其中,所述处理单元配置为通过响应于所述设定类型的触发事件来基于所述状态参量而控制所述内部开关电路的通断或使所述放电电路处于使能状态或失效状态。
  7. 如权利要求5所述的智能电芯,其中,所述设定类型的触发事件包括下列项中的一项或多项:1a)至少一个所述状态参量超过相应的预设范围;1b)至少一个所述状态参量的变化率超过相应的阈值;1c)至少一个所述状态参量从对应的预设范围之外返回该预设范围;1d)至少一个所述状态参量的变化率从超过对应的阈值回落至该阈值以下。
  8. 如权利要求7所述的智能电芯,其中,所述本地控制器还配置为基于来自所述智能电芯外部的装置的配置命令而修改关于所述预设范围和所述阈值的设定。
  9. 一种电池模组,包括:
    多个智能电芯,每个智能电芯包括:
    电芯单元;
    与该电芯单元的正极或负极耦合的内部开关电路;以及
    本地控制器,包括:
    内部检测单元,其配置为检测该电芯单元的第一状态参量,所述第一状态参量包括该电芯单元的输入电压、输出电压以及温度中的至少一个;
    第一通信单元,其配置为与所述主控制器或所述电池模组外部的装置建立通信连接;以及
    与所述内部开关电路、所述内部检测单元和所述第一通信单元耦合的处理单元,其配置为基于所述第一状态参量或响应于所述第一通信单元接收到的控制命令而控制所述内部开关电路的通断;
    主开关电路,其连同所述多个智能电芯的电芯单元串联耦合;
    主控制器,包括:
    检测单元,其配置为检测所述电池模组的第二状态参量,所述第二状态参量包括所述电池模组的输入电压、输出电压、输入电流、输出电流以及温度中的至少一个;
    第二通信单元,其配置为与每个智能电芯中的第一通信单元建立通信连接;
    与所述检测单元、所述第二通信单元和所述主开关电路耦合的主处理单元,其配置为:i)基于每个智能电芯上报的电芯单元的第一状态参量生成所述控制命令或控制所述主开关电路的通断;ii)基于所述电池模组的第二状态参量生成所述控制命令或控制所述主开关电路的通断。
  10. 一种电池包,包括:
    如权利要求9所述的电池模组;
    至少一个总控制器,其与每个所述电池模组中的主控制器通信耦合。
PCT/CN2023/084558 2022-03-31 2023-03-29 智能电芯、电池模组和电池包 WO2023185895A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210329943 2022-03-31
CN202210329943.3 2022-03-31
CN202211253281.2A CN116895853A (zh) 2022-03-31 2022-10-13 智能电芯、包含智能电芯的电池模组和电池包
CN202211253281.2 2022-10-13

Publications (1)

Publication Number Publication Date
WO2023185895A1 true WO2023185895A1 (zh) 2023-10-05

Family

ID=88199275

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/084555 WO2023185894A1 (zh) 2022-03-31 2023-03-29 智能电芯、包含智能电芯的电池模组和电池包
PCT/CN2023/084558 WO2023185895A1 (zh) 2022-03-31 2023-03-29 智能电芯、电池模组和电池包

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084555 WO2023185894A1 (zh) 2022-03-31 2023-03-29 智能电芯、包含智能电芯的电池模组和电池包

Country Status (1)

Country Link
WO (2) WO2023185894A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1536730A (zh) * 2003-04-04 2004-10-13 京东方科技集团股份有限公司 连接状态可控的可充电电池单元及组合电池
JP2006114849A (ja) * 2004-10-18 2006-04-27 Sharp Corp 電気機器
CN102624050A (zh) * 2012-03-16 2012-08-01 成都宇能通能源开发有限公司 一种可自动切除串联电池组中失效单元的电池管理系统
CN204011597U (zh) * 2014-07-31 2014-12-10 广州市明昕通信技术有限公司 一种蓄电池冗余重配组的装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306851A (zh) * 2011-08-10 2012-01-04 珠海锂源新能源科技有限公司 一种电池温控安全预处理方法及系统
CN107204638A (zh) * 2016-03-17 2017-09-26 德龙伟创科技(深圳)有限公司 一种电池保护电路
CN106654410B (zh) * 2016-12-15 2020-12-25 安徽扬能电子科技有限公司 一种电池智能化控制系统
US10809305B2 (en) * 2018-02-23 2020-10-20 Ford Global Technologies, Llc System and method for detecting and responding to a battery over-discharge condition within a vehicle
CN109860740B (zh) * 2019-02-18 2021-12-28 华为数字能源技术有限公司 一种缓解电池包热失控蔓延的控制方法、装置及电池包
CN110581536A (zh) * 2019-09-05 2019-12-17 宁波奇亚电控科技有限公司 一种锂电池电路
CN113921921A (zh) * 2021-09-29 2022-01-11 东莞新能安科技有限公司 电池模组保护方法、bms系统、电池簇及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1536730A (zh) * 2003-04-04 2004-10-13 京东方科技集团股份有限公司 连接状态可控的可充电电池单元及组合电池
JP2006114849A (ja) * 2004-10-18 2006-04-27 Sharp Corp 電気機器
CN102624050A (zh) * 2012-03-16 2012-08-01 成都宇能通能源开发有限公司 一种可自动切除串联电池组中失效单元的电池管理系统
CN204011597U (zh) * 2014-07-31 2014-12-10 广州市明昕通信技术有限公司 一种蓄电池冗余重配组的装置

Also Published As

Publication number Publication date
WO2023185894A1 (zh) 2023-10-05

Similar Documents

Publication Publication Date Title
TWI418109B (zh) 電池設備、用於電池系統之積體電路及電池保護方法
CN102282739B (zh) 保护监视电路、电池组、二次电池监视电路以及保护电路
KR102247394B1 (ko) 배터리 팩 및 이를 이용하는 배터리 구동 장치 및 배터리 구동 방법
US9954384B2 (en) Instrumented super-cell
RU2629917C2 (ru) Источник питания, схема зарядки источника питания, способ зарядки источника питания и терминальное устройство
US20090220825A1 (en) Battery Pack and Battery Protection Method
EP1064710B1 (en) Integrated lithium battery protection circuit
JP2012257407A (ja) 充放電制御回路及びバッテリ装置
US20190280341A1 (en) Circuits, systems, and methods for protecting batteries
WO2021018272A1 (zh) 一种充放电保护电路、终端设备及电池放电控制方法
WO2018108095A1 (zh) 一种充电电源保护设备
CN112886684A (zh) 一种多节锂电池充放电管理电路及系统
WO2023185895A1 (zh) 智能电芯、电池模组和电池包
EP2815482B1 (en) Method and circuitry for battery protection
CN217406709U (zh) 充电仓、耳机及tws耳机
CN218829160U (zh) 电池包、电池包串联系统、均衡充电器以及电池包均衡系统
TW201448398A (zh) 電壓源堆疊系統
AU2021266257A1 (en) Battery management system and battery pack
KR20210087295A (ko) 배터리 관리 시스템, 배터리 랙 및 에너지 저장 시스템
WO2020191931A1 (zh) 一种电池化成电路及电池化成装置
CN218825249U (zh) 一种用于便携式移动播放设备的低待机电流电源装置
CN113809807B (zh) 电池保护芯片、电池充放电过流保护方法和电子设备
WO2024065180A1 (zh) 一种检测方法、电子设备以及可读存储介质
US20230029478A1 (en) Battery switch-on circuit
CN116914874A (zh) 一种电子设备及充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778260

Country of ref document: EP

Kind code of ref document: A1