WO2023185883A1 - 谐振腔图形的布图构建方法、系统、存储介质和电子设备 - Google Patents

谐振腔图形的布图构建方法、系统、存储介质和电子设备 Download PDF

Info

Publication number
WO2023185883A1
WO2023185883A1 PCT/CN2023/084518 CN2023084518W WO2023185883A1 WO 2023185883 A1 WO2023185883 A1 WO 2023185883A1 CN 2023084518 W CN2023084518 W CN 2023084518W WO 2023185883 A1 WO2023185883 A1 WO 2023185883A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
air bridge
layout
line
radius
Prior art date
Application number
PCT/CN2023/084518
Other languages
English (en)
French (fr)
Inventor
李舒啸
熊秋锋
李孜怡
郑世杰
Original Assignee
本源科仪(成都)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210335864.3A external-priority patent/CN114757138A/zh
Priority claimed from CN202210997399.XA external-priority patent/CN115374747A/zh
Application filed by 本源科仪(成都)科技有限公司 filed Critical 本源科仪(成都)科技有限公司
Publication of WO2023185883A1 publication Critical patent/WO2023185883A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/394Routing
    • G06F30/3947Routing global
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]

Definitions

  • the present disclosure relates generally to the field of circuit layout design technology. More specifically, the present disclosure relates to a layout construction method, system, storage medium and electronic device of a resonant cavity pattern.
  • the resonant cavity is mainly used to transmit microwave frequency signals. It consists of two parallel conductor transmission lines.
  • resonant cavities are mostly drawn manually.
  • the layout space reserved for the resonant cavity in the integrated circuit layout is not fixed.
  • the shape of the resonant cavity needs to adapt to the reserved layout space, and the total length of the resonant cavity needs to adapt to the design frequency. Therefore, layout designers often need to manually draw the resonant cavity graphics for the reserved layout space.
  • due to factors such as the shape constraints of the layout space, the constraints of the total length of the resonant cavity, and the constraints of the resonant cavity line width manual drawing of the resonant cavity is difficult.
  • the cavity graphics are very complicated. Therefore, how to automatically draw a resonant cavity that meets the requirements in a given layout space is an urgent need.
  • this disclosure proposes a layout construction method, system, storage medium and electronic device for resonant cavity graphics to solve the problem of cumbersome and complicated manual drawing of resonant cavity graphics in the prior art. problem, the resonant cavity pattern that meets the requirements can be automatically generated.
  • the present disclosure provides solutions in multiple aspects as follows.
  • the present disclosure provides a layout construction method for a resonant cavity pattern.
  • the resonant cavity includes two conductor transmission lines whose line spacing is always consistent and whose line widths are equal.
  • the layout construction method includes: obtaining a polygon The shape parameters of the frame and the resonant cavity.
  • the polygonal frame is marked with a first marking point and a second marking point.
  • the shape parameters include the total length, line width and line spacing of the resonant cavity; generated within the polygonal frame.
  • An auxiliary line from the first marking point to the second marking point and with a length of the total length is generated according to the line width and the line spacing, with the auxiliary line as the center line and located within the polygon frame
  • the resonant cavity pattern is generated according to the line width and the line spacing, with the auxiliary line as the center line and located within the polygon frame.
  • the shape parameter also includes a radius range;
  • the auxiliary line includes a straight line segment and a circular arc with a radius within the radius range, and the straight line segment and the circular arc are tangentially connected, so The parts connecting the auxiliary line to the first marking point and the second marking point are all straight line segments, and the straight line segment connecting the first marking point and the second marking point to the first marking point perpendicular to the line segment where the second mark point is located.
  • the straight line segments in the auxiliary line except for the straight line segment connecting the first marking point and the second marking point, are perpendicular to the line segment where the first marking point is located.
  • the line segment on the polygonal frame where the first marker point is located is perpendicular to the line segment where the second marker point is located.
  • the arc includes a half arc and a quarter arc, and straight line segments that are parallel to each other Half arcs are connected between them, and quarter arcs are connected between straight line segments that are perpendicular to each other.
  • the step of generating an auxiliary line from the first marker point to the second marker point and having a length of the total length within the polygonal frame includes: selecting from the radius range The median value is used as a temporary radius; an auxiliary line from the first marker point to the second marker point is generated within the polygon frame based on the temporary radius, and the length of the auxiliary line is calculated; the temporary radius is determined Whether the corresponding length is equal to the total length; if the length corresponding to the temporary radius is equal to the total length, then the temporary radius is used as the target radius, and the auxiliary line corresponding to the target radius is used as the final auxiliary line.
  • the step of generating an auxiliary line from the first marking point to the second marking point and having a length of the total length within the polygonal frame further includes: if the temporary radius corresponds to is not equal to the total length, determine whether the length corresponding to the temporary radius is greater than or less than the total length; if the length corresponding to the temporary radius is greater than the total length, determine whether the currently selected temporary radius is the same as the previously selected temporary radius.
  • the difference is less than the preset threshold; if it is less than the preset threshold, use the temporary radius as the target radius, and remove the straight line segment connecting the first mark point and the second mark point from the auxiliary line corresponding to the target radius If is not less than the preset threshold, replace the lower limit of the radius range with the temporary radius, and continue with the step of selecting a median value from the radius range as the temporary radius.
  • the step of generating an auxiliary line from the first marking point to the second marking point and having a length of the total length within the polygonal frame further includes: if the temporary radius corresponds to If the length is less than the total length, the temporary radius is replaced by the upper limit of the radius range, and the step of selecting the median value from the radius range as the temporary radius continues.
  • the step before the step of selecting a median value from the radius range as the temporary radius, the step further includes: generating a polygon within the polygon frame based on the upper limit value and the lower limit value of the radius range respectively. An auxiliary line from the first mark point to the second mark point, and calculate the length of the auxiliary line; determine whether the total length is between the length corresponding to the upper limit value and the length corresponding to the lower limit value.
  • the layout construction method further includes: generating an air bridge graphic spanning both sides of the auxiliary line on the auxiliary line.
  • the step of generating an air bridge graphic across both sides of the auxiliary line on the auxiliary line includes: obtaining the width, span and spacing of adjacent air bridges on the auxiliary line; After determining the insertion point and insertion angle of the first air bridge graphic, starting from the second air bridge graphic, determine the insertion point and insertion angle of the current air bridge graphic according to the distance between the adjacent air bridges; determine the current air bridge Whether the graphics interferes with the generated air bridge graphics; if there is interference, move the insertion point position of the current air bridge graphics on the auxiliary line until it does not interfere with the generated air bridge graphics.
  • the insertion point after the position is moved generates the current air bridge graphic according to the insertion angle, the width and the span; if there is no interference, the current air bridge graphic is generated at the insertion point according to the insertion angle, the width and the span. Bridge graphics.
  • each air bridge graphic is the insertion point of each air bridge graphic
  • the center line of each air bridge graphic in the span direction is the same as the insertion point of each air bridge graphic.
  • the tangent line at is vertical.
  • the present disclosure also provides a layout construction system for a resonant cavity pattern, where the resonant cavity includes two strips of A conductor transmission line whose line spacing is always consistent and whose line widths are equal.
  • the layout construction system includes: an acquisition module for acquiring the shape parameters of a polygonal frame and a resonant cavity.
  • the polygonal frame is marked with a first marking point and a second marking point.
  • the shape parameters include the total length, line width and line spacing of the resonant cavity; a generation module for generating from the first marking point to the second marking point within the polygonal frame with a length of The auxiliary line of the total length; a layout module, configured to generate a resonant cavity pattern with the auxiliary line as the center line and located within the polygonal frame according to the line width and the line spacing.
  • the layout module is also used to generate an air bridge graphic across both sides of the auxiliary line on the auxiliary line.
  • the present disclosure also provides a storage medium in which a computer program is stored, and the computer program is configured to execute any one of the aforementioned layout construction methods of a resonant cavity pattern when running. .
  • the present disclosure also provides an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the foregoing.
  • Layout construction method of resonant cavity pattern
  • this disclosure proposes a method, system, storage medium and electronic device for constructing air bridge graphics to solve the problem of low efficiency and ease of manually drawing air bridge graphics in the prior art. If errors occur, the air bridge graphics can be automatically constructed, greatly improving the drawing efficiency and accuracy of the air bridge graphics.
  • the present disclosure provides solutions in multiple aspects as follows.
  • the present disclosure provides a method for constructing an air bridge pattern, including: determining a target layer in a qubit layout for which an air bridge pattern is to be constructed; and obtaining the endpoints of each trace on the target layer, where , the traces on the target layer are composed of line segments; on each trace of the target layer, the layout line segment to be constructed of the air bridge graphic is determined, wherein the endpoint of the layout line segment is not the target The endpoint of any trace on the layer; place an air bridge graphic on each layout segment.
  • the step of determining the layout line segments to be constructed of the air bridge pattern on each trace of the target layer includes: detecting the number of endpoints of each trace of the target layer; When the number of endpoints of the current trace is two, a first circle with a radius of a first preset distance value is constructed with the two endpoints of the current trace as the center of the circle, and the current trace is connected to the first circle. The non-overlapping parts of the circles are determined as layout line segments.
  • the step of determining the layout line segments to be constructed of the air bridge graphics on each trace of the target layer further includes: when the number of endpoints of the current trace is more than two, The first endpoint and the last endpoint of the current trace are used as the center of the circle to construct a first circle with a radius of the first preset distance value, and the other endpoints of the current trace are used as the center of the circle to construct a second circle with a radius of the first preset distance value.
  • a second circle with a preset distance value determines the portion of the current trace that does not overlap with the first circle and the second circle as a layout line segment.
  • the step of placing air bridge graphics on each of the layout line segments is: sequentially placing air bridge graphics on each of the layout line segments with a preset step value as the minimum spacing, So that there is no center point of other air bridge graphics within the range with the center point of each air bridge graphic as the center point and the radius as the preset spacing value, wherein the preset step value is not less than the preset distance value. spacing value.
  • the step of sequentially placing air bridge graphics on each of the layout line segments with a preset step value as the minimum spacing includes: using one endpoint of the layout line segment as the current detection point; Detect whether there are center points of other air bridge graphics within the range with the current detection point as the center and the radius as the preset spacing value; when there is no center point of other air bridge graphics, place the air bridge at the current detection point graph and add the distance to the current detection point
  • the point with the preset step value is determined as the current detection point; repeat the step of detecting whether there are other center points of the air bridge graphics within the range with the current detection point as the center and the radius as the preset spacing value, until the The current detection point is not located on the layout line segment.
  • the step before repeating the step of detecting whether there are other center points of air bridge graphics within a range with the current detection point as the center and a radius as a preset spacing value, the step further includes: When the center point of the air bridge graphic is the center point of the air bridge graphic, a point with a preset fine-tuning value from the current detection point is determined as the current detection point, wherein the preset fine-tuning value is smaller than the preset step value.
  • the center point of the air bridge graphic is the current detection point.
  • the method before the step of sequentially placing air bridge patterns on each of the layout line segments with a preset step value as the minimum spacing, the method further includes: determining that air bridges are needed in the qubit layout The avoidance layer of the graphics avoidance; obtain the endpoint of each trace on the avoidance layer, where the traces on the avoidance layer are composed of line segments; calculate the scatter points of the avoidance layer based on the preset avoidance value Step value: Select points at equal intervals between the two adjacent endpoints of each trace on the avoidance layer according to the scatter point step value, and use the endpoints and the selected points on each trace as scattered points.
  • the step of detecting whether there are center points of other air bridge graphics within the range of the current detection point as the center point and the radius as the preset spacing value also includes: detecting the current detection point as the center point of the circle and the radius as the preset spacing value.
  • the step of determining the point with the preset spacing value as the current detection point is: when there are no center points of other air bridge graphics and there are no scatter points of the avoidance layer, place the air bridge graphics at the current detection point, and Determine a point with a preset step value from the current detection point as the current detection point; when there is a center point of other air bridge graphics, determine a point with a preset fine adjustment value from the current detection point as the current detection point.
  • the step of point is: when there are center points of other air bridge graphics or scattered points of the avoidance layer, determine the point with a preset fine-tuning value from the current detection point as the current detection point.
  • the step of calculating the scatter step value of the avoidance layer based on the preset avoidance value includes: using the preset avoidance value as the height of the equilateral triangle to calculate the height of the equilateral triangle. Side length; use the side length of the equilateral triangle as the scatter step value.
  • points are selected at equal intervals between two adjacent endpoints of each trace on the avoidance layer according to the scatter point step value, and the sum of the endpoints on each trace is
  • the step of selecting the points as scatter points also includes: detecting whether the first and last endpoints of each trace on the avoidance layer coincide; when the first and last endpoints of the current trace coincide, follow the preset direction in the closed area of the current trace. Fill in the auxiliary lines, where the distance between two adjacent auxiliary lines is the preset avoidance value; select points at equal intervals between the two endpoints of each auxiliary line according to the scatter point step value, and The endpoints and selected points on each of the auxiliary lines are used as scatter points.
  • the present disclosure also provides a system for constructing an air bridge graph, including: a layer determination module for determining the target layer of the air bridge graph to be constructed in the qubit layout; an endpoint acquisition module for obtaining The end points of each trace on the target layer, where the traces on the target layer are composed of line segments; a line segment determination module is used to determine the air to be constructed on each trace of the target layer A layout line segment of a bridge pattern, wherein the endpoint of the layout line segment is not an endpoint of any trace on the target layer; a layout construction module for placing an air bridge pattern on each of the layout line segments.
  • the line segment determination module includes: an endpoint detection unit, used to detect the number of endpoints of each line of the target layer; a line segment determination unit, used to detect the current line when the endpoint detection unit detects When the number of endpoints of the line is two, a first circle with a radius of a first preset distance value is constructed with the two endpoints of the current line as the center of the circle. shape, and determine the portion of the current trace that does not overlap with the first circle as a layout line segment.
  • the line segment determination unit is also configured to use the first endpoint and the last endpoint of the current line when the endpoint detection unit detects that the number of endpoints of the current line is more than two. Construct a first circle with a radius of a first preset distance value for the center of the circle, and construct a second circle with a radius of a second preset distance value using the other endpoints of the current trace as the center of the circle, and convert the current The portion of the trace that does not overlap the first circle and the second circle is determined as a layout line segment.
  • the layout building module is specifically configured to sequentially place air bridge graphics on each of the layout line segments with a preset step value as the minimum spacing, so that each of the air bridge graphics There is no center point of other air bridge graphics within the range where the center point is the center of the circle and the radius is the preset spacing value, wherein the preset step value is not less than the preset spacing value.
  • the layout construction module includes: a starting point determination unit, used to use an endpoint of the layout line segment as the current detection point; a proximity detection unit, used to detect the current detection point as the center of the circle , whether there are center points of other air bridge graphics within the range of the preset spacing value; the graphics placement unit is used to, when the adjacent detection unit detects that there is no center point of other air bridge graphics, in the current detection Place the air bridge graphic at a point, and determine the point with a preset step value from the current detection point as the current detection point; a loop execution unit for repeatedly executing the adjacent detection unit until the current detection point is not located at the current detection point. Describe the layout line segments.
  • the graphic placement unit is further configured to determine a point with a preset fine-tuning value from the current detection point as the current detection point when the proximity detection unit detects the presence of a center point of another air bridge graphic. point, wherein the preset fine-tuning value is smaller than the preset step value.
  • the center point of the air bridge graphic is the current detection point.
  • system further includes a step size calculation module and a scatter point selection module; the layer determination module is also used to determine the avoidance layer in the qubit layout that requires air bridge graphics avoidance; the endpoint acquisition The module is also used to obtain the endpoint of each trace on the avoidance layer, where the traces on the avoidance layer are composed of line segments; the step size calculation module is used to calculate the avoidance based on the preset avoidance value.
  • the scatter point step value of the layer is used to select points at equal intervals between the two adjacent endpoints of each trace on the avoidance layer according to the scatter point step value, and The endpoints and selected points on each trace are used as scattered points;
  • the proximity detection unit is specifically used to detect whether there are centers of other air bridge graphics within the range with the current detection point as the center and the radius as the preset spacing value. point, and detect whether there are scattered points of the avoidance layer within the range with the current detection point as the center and the radius as the preset avoidance value;
  • the graphics placement unit is specifically used to detect that there are no other scattered points in the proximity detection unit.
  • the step length calculation module includes: a side length calculation unit for calculating the side length of the equilateral triangle using the preset avoidance value as the height of the equilateral triangle; a step length determination unit, Used to use the side length of the equilateral triangle as the scatter step value.
  • the system further includes a closure detection module and a closure filling module; the closure detection module is used to detect whether the first and last endpoints of each trace on the avoidance layer coincide; the closure filling module uses When the closure detection module detects that the first and last endpoints of the current trace coincide with each other, auxiliary lines are filled in the closed area of the current trace according to the preset direction, wherein the distance between two adjacent auxiliary lines is the preset direction. avoidance value; the scatter point selection module also uses Points are selected at equal intervals between the two endpoints of each auxiliary line according to the scatter point step value, and the endpoints of each auxiliary line and the selected points are used as scatter points.
  • the present disclosure also provides a storage medium in which a computer program is stored, and the computer program is configured to execute any of the foregoing methods for constructing an air bridge graphic when running.
  • the present disclosure also provides an electronic device including a memory and a processor, a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the foregoing. method of constructing air bridge graphics.
  • Figure 1 is a schematic structural diagram of a resonant cavity
  • Figure 2 is a schematic flowchart of a layout construction method of a resonant cavity pattern provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the polygonal frame obtained by the layout construction method of the resonant cavity pattern in Figure 2;
  • Figure 4 is a schematic diagram of the auxiliary lines generated by the layout construction method of the resonant cavity pattern in Figure 2;
  • Figure 5 is a schematic diagram of the resonant cavity pattern generated by the layout construction method of the resonant cavity pattern in Figure 2;
  • Figure 6 is a specific flow diagram of step S12 in the layout construction method of the resonant cavity pattern provided by the embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart before step S121 in Figure 6;
  • Figure 8 is a schematic flowchart of a layout construction method of a resonant cavity pattern provided by an embodiment of the present disclosure
  • FIG. 9 is a specific flow diagram of step S14 in Figure 8.
  • Figure 10 is a schematic diagram of the air bridge graphic generated on the auxiliary line
  • Figure 11 is a schematic flowchart of a method for constructing an air bridge graphic provided by an embodiment of the present disclosure
  • Figure 12 is another schematic flowchart of a method for constructing an air bridge pattern provided by an embodiment of the present disclosure
  • Figure 13 is a schematic diagram of determining the layout line segment when the current routing is a line segment
  • Figure 14 is a schematic diagram of determining layout line segments when the current routing is a polyline
  • Figure 15 is a schematic flowchart of the operation of constructing an air bridge graphic provided by an embodiment of the present disclosure
  • Figure 16 is another schematic flowchart of the operation of constructing an air bridge pattern provided by an embodiment of the present disclosure
  • Figure 17 is a scatter diagram of a trace on the avoidance layer
  • FIG 18 is a specific flow diagram of step S37 in the process shown in Figure 16;
  • Figure 19 is a schematic diagram of the calculation principle of the scatter point step value
  • FIG 20 is a specific flow diagram of step S38 in the process shown in Figure 16;
  • Figure 21 is a schematic diagram after the closed area of the trace is filled with auxiliary lines
  • Figure 22 is a partial schematic diagram of the qubit layout after constructing the air bridge pattern.
  • FIG. 23 is a schematic diagram of the principle of a layout construction system for resonant cavity patterns provided by an embodiment of the present disclosure.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • the first embodiment of the present disclosure provides a layout construction method of a resonant cavity pattern.
  • the resonant cavity includes two conductor transmission lines whose line spacing is always consistent and the line width is equal. Please refer to Figure 1.
  • the resonant cavity includes two conductor transmission lines.
  • the line width of the two conductor transmission lines is W.
  • the line spacing of the two conductor transmission lines is D.
  • the layout construction method in this embodiment includes:
  • S11 Obtain the shape parameters of the polygonal frame and the resonant cavity.
  • the polygonal frame is marked with a first marking point and a second marking point.
  • the shape parameters include the total length, line width and line spacing of the resonant cavity.
  • the polygon border can be drawn manually by the user, or can be generated based on parameters input by the user. For example, the user inputs the coordinates of each vertex of the polygon border, and then connects each vertex in a preset order to generate the polygon border. Similarly, the first marking point and the second marking point can be marked manually by the user, or they can be marked according to parameters such as coordinates input by the user.
  • the total length, line width and line spacing of the resonant cavity can be manually input by the user, or obtained directly or indirectly based on the resonant cavity parameters input by the user. For example, the user only inputs the total width and line spacing of the resonant cavity, then the line width is (total width -line spacing)/2.
  • a polygon border can be any shape composed of line segments. Generally speaking, the number of sides of a polygon border should be as small as possible. As shown in Figure 3, in an application, the polygonal frame is a rectangle, and the polygonal frame is marked with a first marking point A and a second marking point B.
  • S12 Generate an auxiliary line from the first marking point to the second marking point within the polygon border with a length equal to the total length.
  • the auxiliary line can be of any shape, as long as the length is the total length of the resonant cavity.
  • the auxiliary lines should be bent as much as possible, but the degree of bending should also be considered. Try to ensure smooth bending to avoid deviations from the resonant cavity design such as signal reflection, resonant frequency deviation, etc. parameter phenomenon.
  • the shape parameter of the resonant cavity also includes a radius range.
  • the auxiliary line includes a straight line segment and an arc with a radius within the radius range.
  • the straight line segment and the arc are connected tangentially.
  • the parts of the auxiliary line connected to the first marking point A and the second marking point B are both is a straight line segment, and the straight line segment connecting the first marking point A and the second marking point B is perpendicular to the line segment where the first marking point A and the second marking point B are located.
  • the line segments located by the first marker point A and the second marker point B are line segments on the polygon border.
  • auxiliary lines In order to facilitate the generation of auxiliary lines, please continue to refer to Figure 4. Except for the straight line segment connecting the first marking point A and the second marking point B, the other straight line segments in the auxiliary line are perpendicular to the line segment where the first marking point A is located.
  • the line segment where the first marker point A is located on the polygon border is perpendicular to the line segment where the second marker point B is located.
  • arcs include half arcs and quarter arcs, straight line segments parallel to each other are connected to half arcs, and straight line segments perpendicular to each other are connected to quarter arcs. Since only two parallel straight line segments can be connected by a half arc, the distance between parallel straight line segments in the auxiliary line is the diameter of the arc.
  • the moved intersection point is regarded as the end point of the current straight line segment
  • a straight line segment perpendicular to the line segment where the second marked point is located is generated at the second mark point.
  • the intersection of the straight line segment connecting the second marked point and the nearest straight line segment is used as the end point of the nearest straight line segment, and the end point of the nearest straight line segment is deleted.
  • S13 Generate a resonant cavity pattern with the auxiliary line as the center line and located within the polygonal frame according to the line width and line spacing.
  • the resonant cavity graphics can be generated through Boolean operations. First, according to the line width and line spacing, a first line graphic with a line width of 2W+D with the auxiliary line as the center line and a line width of D with the auxiliary line as the center line are generated. the second line graphic, and then perform a Boolean NOT operation on the first line graphic and the second line graphic to finally obtain the resonant cavity graphic.
  • locating within the polygonal frame refers to not exceeding the polygonal frame.
  • the resonant cavity pattern and the polygonal frame are completely or partially coincident with each other and do not exceed the polygonal frame. As shown in Figure 5, except for the edge where the first marking point A and the edge where the second marking point B are located coincide with the polygonal frame, the rest of the resonant cavity graphic is located within the polygonal frame.
  • this embodiment can realize the layout of the resonant cavity pattern based on the polygonal frame marked with the first marking point and the second marking point and the shape parameters of the resonant cavity (the shape parameters include the total length, line width and line spacing of the resonant cavity).
  • the constructed resonant cavity graphic is located within the polygonal frame and the length is the total length of the resonant cavity.
  • the second embodiment of the present disclosure provides a layout construction method of a resonant cavity pattern.
  • the layout construction method of this embodiment includes all the technical features of the first embodiment. The difference is that, please refer to Figure 6 to generate an auxiliary line from the first marking point to the second marking point and the total length within the polygon border.
  • the steps, namely step S12, include:
  • S121 Select the median value from the radius range as the temporary radius.
  • the median value of the radius range is the average of the lower limit value and the upper limit value of the radius range.
  • S122 Generate an auxiliary line from the first marker point to the second marker point within the polygon border based on the temporary radius, and calculate the length of the auxiliary line.
  • the spacing between two adjacent parallel straight line segments and the shortest distance from the end point of each straight line segment to the polygon border except the first mark point and the second mark point can be determined, and then each straight line segment is generated, Finally, two parallel straight line segments are connected by a half arc, and two perpendicular straight line segments are connected by a quarter arc to obtain the auxiliary line.
  • the length of the auxiliary line is the sum of the arc lengths of all arcs and the lengths of all straight line segments.
  • the auxiliary line corresponding to the target radius is used as the final auxiliary line.
  • the step of generating an auxiliary line from the first marker point to the second marker point and having a total length within the polygon border further includes:
  • S127 If it is less than the preset threshold, use the temporary radius as the target radius, and shorten the remaining straight segments in the auxiliary line corresponding to the target radius except the straight segment connecting the first mark point and the second mark point by the same value.
  • the auxiliary line is used as the final auxiliary line, where the sum of the shortened lengths of all straight line segments is equal to the difference between the length corresponding to the temporary radius and the total length.
  • the temporary radius is selected as the target radius, and then Shorten the remaining straight line segments by equal amounts to make up for the difference, except for the straight line segment connecting the first marking point and the second marking point, thereby obtaining an auxiliary line whose length is the total length of the resonant cavity.
  • the length of the auxiliary line generally increases as the radius decreases. If the length corresponding to the temporary radius is greater than the total length and the difference between the two is less than The preset threshold indicates that the currently selected temporary radius is too small. Therefore, after replacing the lower limit of the radius range with the temporary radius, when the median value is selected as the temporary radius from the radius range again, it will inevitably be smaller than the last selected temporary radius. is large, the length of the generated guide lines will be reduced.
  • the step of generating an auxiliary line from the first marker point to the second marker point and having a total length within the polygon border also includes:
  • the length of the auxiliary line generally decreases with the increase of the radius. If the length corresponding to the temporary radius is less than the total length, it means that the currently selected temporary radius Too large. After replacing the upper limit of the radius range with the temporary radius, when the median value is selected as the temporary radius from the radius range again, it will be smaller than the temporary radius selected last time, so the length of the generated auxiliary line will increase.
  • the length of the straight line segment when the length corresponding to the temporary radius is less than the total length, the length of the straight line segment is not increased to make up for the difference between the length corresponding to the temporary radius and the total length. This is because increasing the length of the straight line segment may cause the generation of The resonator pattern extends beyond the polygon border.
  • radius range and/or the total length settings may be unreasonable, it may happen that any radius value within the selected radius range cannot generate an auxiliary line with a length of the total length of the resonator.
  • Figure 7 Before the step of selecting the median value from the radius range as the temporary radius, it also includes:
  • S201 Generate an auxiliary line from the first marker point to the second marker point within the polygon border based on the upper limit value and the lower limit value of the radius range, and calculate the length of the auxiliary line.
  • S202 Determine whether the total length is between the length corresponding to the upper limit value and the length corresponding to the lower limit value.
  • the total length of the resonant cavity is between the length corresponding to the upper limit value and the length corresponding to the lower limit value, indicating that there must be a radius with an optimal radius value within the radius range, and an auxiliary line with a length of the total length of the resonant cavity can be generated.
  • the total length of the resonant cavity is between the length corresponding to the upper limit value and the length corresponding to the lower limit value, which means that no matter which radius value is selected within the radius range, an auxiliary line with a length of the total length of the resonant cavity cannot be generated. In this case, it is necessary to Change the total length or radius range of the resonator, so provide prompts for changing the total length or radius range.
  • the third embodiment of the present disclosure provides a layout construction method of a resonant cavity pattern.
  • the layout construction method of this embodiment includes all the technical features of the first embodiment or the second embodiment. The difference is that, please refer to Figure 8 , the layout construction method of this embodiment also includes:
  • the auxiliary lines can be deleted or retained according to actual needs.
  • the steps to generate an air bridge graphic across both sides of the auxiliary line on the auxiliary line include:
  • S141 Get the air bridge width, span and spacing between adjacent air bridges.
  • the span L is the distance between the air bridge and the two ends of the spanning auxiliary line
  • the width M is the size of the air bridge perpendicular to the span direction
  • the spacing S between adjacent air bridges refers to the distance between adjacent air bridges.
  • the length of the center line between spans which is the central axis of the air bridge in the span direction.
  • the width, span and spacing of adjacent air bridges are determined based on signal transmission requirements, relevant parameters of the substrate, etc. when constructing the air bridge pattern.
  • the distance between the determined insertion point of the first air bridge graphic and the first mark point A is the spacing S.
  • the second air bridge graphic is determined according to the spacing S between adjacent air bridges. , and then determine whether the second air bridge pattern interferes with each generated air bridge pattern (i.e., the first air bridge pattern). If it interferes, move the current air bridge pattern away from the first air bridge pattern on the auxiliary line.
  • the insertion point position of the air bridge graphic is until it does not interfere with each generated air bridge graphic.
  • the second air bridge graphic is generated according to the insertion angle at the insertion point after the moved position.
  • some of the spacings of the air bridge graphics generated on the auxiliary lines are spacing S, and some are greater than spacing S.
  • the spacing of all air bridge graphics on the first straight line segment is spacing S.
  • the distance between the last air bridge pattern on the straight line segment and the first air bridge pattern on the second straight line segment is greater than the spacing S.
  • the center point of each air bridge graphic is the insertion point of each air bridge graphic
  • the center line of the span direction of each air bridge graphic is perpendicular to the tangent line at the insertion point of each air bridge graphic.
  • the intersection point of the center line in the span direction and the center line in the width direction of each air bridge graphic is the center point of the air bridge graphic.
  • the center point is located on the auxiliary line.
  • the center line in the span direction and the auxiliary line are on The tangent line at the center point is perpendicular, or the center line in the width direction is parallel to the tangent line of the auxiliary line at the center point.
  • the present disclosure can also construct an air bridge graphic through the following operations. Please refer to Figure 11.
  • the aforementioned operations include the following steps:
  • the target layer can be determined based on the user's operation or a preset identification. For example, the user selects a layer and determines the layer selected by the user as the target layer, or the user assigns a preset identifier to the layer and determines the layer with the preset identifier as the target layer.
  • the preset identifier can be Preset layer colors, preset symbols in layer names, etc.
  • the line on the target layer can be a line segment, or it can be a polyline formed by connecting multiple line segments in sequence. Since a line segment must have two endpoints, the endpoints of each trace can be obtained.
  • S33 Determine the layout line segment of the air bridge graphic to be constructed on each trace of the target layer, where the layout line segment does not include the endpoint of any trace on the target layer.
  • the layout line segment since the layout line segment does not include the endpoints of any trace on the target layer, the layout line segment is the part of the trace on the target layer other than the endpoints of the trace.
  • the layout line segment is the adjacent part of the trace on the target layer. Part of a line segment between two endpoints.
  • the air bridge graphic can avoid the endpoints of all traces on the target layer.
  • the method of constructing an air bridge pattern in this embodiment can automatically construct an air bridge pattern on each trace of the target layer.
  • Each air bridge pattern avoids the end points of the trace.
  • this embodiment can automatically construct the air bridge graphics, greatly improve the drawing efficiency and drawing accuracy of the air bridge graphics, and can greatly reduce the labor of designers. Intensity and time cost.
  • step S34 is specifically: sequentially placing air bridge graphics on each layout line segment with a preset step value as the minimum spacing, so that the center point of each air bridge graphics is the center of the circle, There is no center point of other air bridge graphics within the range of the preset spacing value.
  • the preset step value is not less than the preset spacing value.
  • the preset step value represents the minimum distance between two adjacent air bridge graphics
  • the preset spacing value represents the minimum distance between any two air bridge graphics.
  • the size of the preset step value and the preset spacing value can be determined according to Actual requirements settings.
  • the minimum distance between two adjacent air bridge graphics on each layout line segment is the preset step value, so the placement position of each air bridge graphics needs to be based on the center point of the currently placed air bridge graphics as the center point and the radius.
  • the spacing between two adjacent air bridge patterns on the same trace requires To meet the specified minimum spacing, and at the same time, certain distance rules need to be met between any two air bridge graphics.
  • the preset step value the minimum spacing requirement between two adjacent air bridge graphics on the same line can be met.
  • the preset spacing value the distance rules between any two air bridge graphics can be met. For designers, they only need to manually set the target layer, preset step value and preset spacing value to automatically complete the air bridge. The placement of the bridge graphics allows this embodiment to automatically construct the air bridge graphics.
  • step S33 determines the layout line segments of the air bridge pattern to be constructed on each routing line of the target layer, that is, step S33 includes:
  • each trace of the target layer may be a line segment or a polyline containing two or more line segments, the number of endpoints of each trace is at least two.
  • S332 When the number of endpoints of the current trace is two, use the two endpoints of the current trace as the center of the circle to construct a first circle with a radius of the first preset distance value, and separate the current trace from the first circle.
  • the overlapping parts are determined as layout line segments.
  • the number of endpoints of the current trace is two, which means that the current trace is a line segment.
  • the first preset distance value represents the minimum distance between the air bridge pattern and the starting point or end point of the trace, and its size can be set according to actual needs. After the first circle is constructed at the two endpoints of the current trace, there are two situations in the relationship between the current trace and the first circle.
  • the first preset distance value is d1.
  • the first situation is that the length of the current trace is more than twice the first preset distance value d1, then there is a non-overlapping portion of the current trace and the first circle, as shown in Figure
  • the part between the two first circles C1 and the two intersection points O of the current trace is determined as a layout line segment.
  • the second situation is that the length of the current trace is twice the first preset distance value d1 or less, then there is no non-overlapping part between the current trace and the first circle, as shown in (b) in Figure 13, The portion between the two first circles C1 and the two intersection points O of the current trace is still within the coverage of the two first circles C1, and there is no need to determine the layout line segment at this time.
  • step S33 also includes:
  • the second preset distance value represents the minimum distance between the air bridge graphic and the vertex of the polyline, and its size can be set according to actual needs.
  • the current line segment has four endpoints, then the two middle endpoints are vertices, then the current route includes three line segments, which are recorded as line segment a, line segment b and line segment c in turn.
  • the first preset distance The value d1 is greater than the second preset distance value d2.
  • the first situation is that the length of line segment b is more than twice the second preset distance value d2, and there is no intersection between the first first circle and line segment b, or the intersection is within the coverage of the second circle, then the line segment There is a non-overlapping portion between b and the second circle, that is, as shown in (a) in Figure 14, the portion between the two intersections of the two second circles C2 and the line segment b, this portion is determined as the layout line segment.
  • the second situation is that the length of line segment b is more than twice the second preset distance value, and there is an intersection between the first first circle and line segment b, and the intersection point is outside the coverage of the second circle, then line segment b and The second circle has a non-overlapping part, but part of the non-overlapping part overlaps with the first first circle, as shown in (b) in Figure 14, so the first first circle C1 and The part between the two intersection points O of the second circle C2 and the line segment b is determined as the layout line part.
  • the third situation is that the length of line segment b is twice the first preset distance value or less, then there is no non-overlapping part between line segment b and the second circle.
  • the two The portion between the two intersection points O of the second circle C2 and the line segment b is still within the coverage of the two second circles C2, and there is no need to determine the layout line segment.
  • each air bridge pattern avoids the end point of the trace.
  • Each air bridge pattern is within the range that satisfies the center point of each air bridge pattern as the center point and the radius as the preset spacing value. The distance between adjacent air bridge graphics is the smallest under the condition that there are center points of other air bridge graphics.
  • This embodiment can automatically construct air bridge graphics, greatly improve the drawing efficiency and drawing accuracy of air bridge graphics, and can greatly reduce the labor intensity and time cost of designers.
  • the embodiment of the present disclosure includes the step of sequentially placing air bridge graphics on each layout line segment with a preset step value as the minimum spacing, that is, step S34.
  • S341 Use an endpoint of the layout line segment as the current detection point.
  • the first endpoint that is the current detection point can be the starting point of the layout line segment.
  • the starting point of the layout line segment can be determined according to user operation, or the point closest to the starting point of the layout line segment where it is located is used as the starting point.
  • the starting point of the trace of the target layer can be determined according to the order of drawing the endpoints.
  • a common way of drawing the trace is that the user clicks the mouse once on the preset position on the drawing board to determine the first endpoint, and then clicks on other positions. Once the mouse is used to determine the second endpoint, a line segment is automatically generated between the first endpoint and the second endpoint, and the first endpoint is used as the starting point of the trace.
  • the center points of other air bridge graphics include not only the center points of the air bridge graphics on the same layout line segment, but also the center points of the air bridge graphics on other layout line segments.
  • the air bridge graphics placed at the current detection point satisfy certain distance rules with other air bridge graphics.
  • the current detection point is updated, and the current detection point becomes a point with a preset step value from the current detection point before the update. For example, assume that the two endpoints of the layout line segment are point A and point B respectively, and point A is used as the current detection point. After placing the air bridge graphic at point A, move the distance from point A by a preset step value in the direction of point B. Point C is determined as the current detection point.
  • the center point of the air bridge graphic is the current detection point. That is to say, the center point of the air bridge graphic is on the layout line segment. Since the top view shape of the air bridge is a rectangle, the center point of the air bridge graphic is the center point of the rectangle.
  • this embodiment can use vector comparison to detect whether the current detection point is located on the layout line segment.
  • the current detection point on the layout line segment is point C.
  • Vector A ⁇ B compare the directions of vector C ⁇ B and vector A ⁇ B. If the directions of the two vectors are consistent, the current detection point on the surface is located on the layout line segment. If the two vectors are in the same direction, the current detection point on the surface is located on the layout line segment. The directions of the vectors are inconsistent, indicating that the current detection point has exceeded the layout line segment.
  • step S342 is executed. If the current detection point is not located on the layout line segment, the air bridge graphic placement of the layout line segment is ended.
  • step S344 it also includes:
  • the preset fine-tuning value is smaller than the preset step value.
  • the preset fine adjustment value is one-tenth of the preset spacing value.
  • the position of the current detection point will change according to the center points of other air bridge graphics.
  • the distance between the center points of two adjacent air bridge graphics on the final layout line segment is the preset step value + n*
  • the preset fine-tuning value, n represents the number of repeated executions of step S342. It can be seen that the minimum distance between the center points of two adjacent air bridge graphics on the layout line segment is the preset step value.
  • the method of constructing an air bridge pattern in this embodiment can construct an air bridge pattern on the target layer.
  • Each air bridge pattern avoids the end points of the wiring.
  • Two adjacent air bridge patterns on the same wiring are The minimum spacing between them is the preset step value.
  • Each air bridge graphic must have the center point of each air bridge graphic as the center of the circle and the radius as the preset spacing value. There is no center point of other air bridge graphics within the range. The distance between adjacent air bridge graphics is the smallest under certain conditions. For designers, they only need to manually set the target layer, preset step value, preset spacing value and preset fine-tuning value to automatically complete the air bridge. Therefore, this embodiment can automatically construct air bridge graphics, greatly improve the drawing efficiency and drawing accuracy of air bridge graphics, and greatly reduce the labor intensity and time cost of designers.
  • the embodiment of the present disclosure is based on the step of sequentially placing the air bridge pattern on each layout line segment with the preset step value as the minimum spacing.
  • Methods also include:
  • a route on the avoidance layer includes three endpoints A1, B1, and C1. Two points S are selected between the line segment A1B1, and two points S are also selected between the line segment B1C1. Then in the end The scatter points include three endpoints A1, B1, and C1 and four selected points S.
  • step S342 also includes:
  • step S343 is specifically:
  • the air bridge graphic When there is no center point of other air bridge graphics and there are no scatter points of the avoidance layer, the air bridge graphic is placed at the current detection point, and the point with a preset step value from the current detection point is determined as the current detection point.
  • step S345 the step of determining the point with a preset fine-tuning value from the current detection point as the current detection point, that is, step S345 is specifically as follows:
  • the point with a preset fine-tuning value from the current detection point is determined as the current detection point.
  • the air bridge graphics on the target layer can avoid the end points of the traces on the target layer, and can also meet the distance rules between any two air bridge graphics, and can also satisfy the air bridge graphics on the target layer to avoid the avoidance map. Scattered points on the layer.
  • step S37 includes:
  • S371 Use the preset avoidance value as the height of the equilateral triangle to calculate the side length of the equilateral triangle.
  • an equilateral triangle with a height of the preset avoidance value d3 is constructed, and the side length of the equilateral triangle is calculated according to geometric principles.
  • step S38 also includes:
  • S38A Check whether the first and last endpoints of each trace on the avoidance layer coincide.
  • the qubit layout may include graphic components, that is, the component graphics are polygons, and the polygon is composed of multiple line segments connected end to end, that is, the end points of the traces coincide with each other. Therefore, it is necessary to detect whether the first and last endpoints of the trace overlap. If they do not overlap, it means that the trace is not closed. If they overlap, it forms a polygon.
  • the preset direction can be any direction in the drawing board coordinate system.
  • a reference coordinate system is needed, and usually the horizontal direction of the drawing board is the X-axis, and the vertical direction of the drawing board is the Y-axis.
  • the auxiliary lines are filled in the current routing closed area in the positive direction of the Y axis.
  • the distance between the auxiliary lines filled in a polygon is the preset avoidance value d3.
  • the dotted line in the figure represents the auxiliary line.
  • S38C Select points at equal intervals between the two endpoints of each auxiliary line according to the scatter point step value, and use the endpoints of each auxiliary line and the selected points as scatter points.
  • FIG 22 it is a partial schematic diagram of the qubit layout after constructing the air bridge pattern. It can be seen from the figure that after the air bridge pattern is constructed using the method of the embodiment of the present disclosure, the air bridge patterns 102 placed on the same trace 101 are separated by a certain distance, and the air bridge patterns placed on two adjacent traces 101 are separated by a certain distance. The air bridge graphics 102 are also separated by a certain distance. Some traces 101 overlap or are too close to traces 103 on the avoidance layer (some traces 103 have their first and last endpoints coincident, forming a polygon). Therefore, these traces 101 Only few air bridge graphics 102 or no air bridge graphics 102 can be placed on it.
  • Embodiments of the present disclosure also provide a layout construction system for resonant cavity patterns.
  • the resonant cavity includes two conductor transmission lines whose line spacing is always consistent and the line width is equal. Please refer to Figure 1.
  • the resonant cavity includes two conductor transmission lines.
  • the line width of the two conductor transmission lines is W.
  • the line spacing of the two conductor transmission lines is D.
  • the layout construction system of this embodiment includes:
  • the acquisition module 11 is used to obtain the shape parameters of the polygonal frame and the resonant cavity.
  • the polygonal frame is marked with a first marking point and a second marking point.
  • the shape parameters include the total length, line width and line spacing of the resonant cavity.
  • the polygon border can be manually drawn by the user, or it can be generated based on parameters input by the user. For example, the user inputs the number of sides of the polygon border and the length of each side, and then connects each side in a preset order to generate a polygon border. Similarly, the first marking point and the second marking point can be marked manually by the user, or they can be marked according to the user input. Enter parameter markers such as coordinates.
  • the total length, line width and line spacing of the resonant cavity can be manually input by the user, or obtained directly or indirectly based on the resonant cavity parameters input by the user.
  • a polygon border can be any shape composed of line segments. Generally speaking, the number of sides of a polygon border should be as small as possible.
  • the polygonal frame is preferably a quadrilateral.
  • the generation module 12 is configured to generate an auxiliary line from the first marking point to the second marking point within the polygonal frame and with a length equal to the total length.
  • the auxiliary line can be of any shape, as long as the length is the total length of the resonant cavity.
  • the auxiliary lines should be bent as much as possible, but the degree of bending should also be considered. Try to ensure smooth bending to avoid deviations from the resonant cavity design such as signal reflection, resonant frequency deviation, etc. parameter phenomenon.
  • the first layout module 13 is used to generate a resonant cavity pattern with the auxiliary line as the center line and located within the polygon frame according to the line width and line spacing.
  • the generation process of the resonant cavity pattern can use Boolean operations, for example, according to the line width and line spacing, a first line pattern with a line width of 2W+D with the auxiliary line as the center line and a line width with the auxiliary line as the center line are generated.
  • the second line graphic of D and then perform a Boolean NOT operation on the first line graphic and the second line graphic, and finally obtain the resonant cavity graphic.
  • locating within the polygonal frame refers to not exceeding the polygonal frame.
  • the resonant cavity pattern and the polygonal frame are completely or partially coincident with each other and do not exceed the polygonal frame.
  • the aforementioned first layout module 13 is also used to generate an air bridge pattern spanning both sides of the auxiliary line on the auxiliary line.
  • this embodiment can realize the layout of the resonant cavity pattern based on the polygonal frame marked with the first marking point and the second marking point and the shape parameters of the resonant cavity (the shape parameters include the total length, line width and line spacing of the resonant cavity).
  • the constructed resonant cavity graphic is located within the polygonal frame and the length is the total length of the resonant cavity.
  • the aforementioned layout construction system of the embodiment of the present disclosure may further include:
  • the layer determination module is used to determine the target layer of the air bridge pattern to be constructed in the qubit layout.
  • the target layer can be determined based on the user's operation or a preset identification. For example, the user selects a layer and determines the layer selected by the user as the target layer, or the user assigns a preset identifier to the layer and determines the layer with the preset identifier as the target layer.
  • the preset identifier can be Preset layer colors, preset symbols in layer names, etc.
  • the endpoint acquisition module is used to obtain the endpoint of each trace on the target layer, where the traces on the target layer are composed of line segments.
  • the line on the target layer can be a line segment, or it can be a polyline formed by connecting multiple line segments in sequence. Since a line segment must have two endpoints, the endpoints of each trace can be obtained.
  • the line segment determination module is used to determine the layout line segment to be constructed of the air bridge graphic on each trace of the target layer, where the layout line segment does not include the endpoint of any trace on the target layer.
  • the layout line segment since the layout line segment does not include the endpoints of any trace on the target layer, the layout line segment is the part of the trace on the target layer other than the endpoints of the trace.
  • the layout line segment is the adjacent part of the trace on the target layer. Part of a line segment between two endpoints.
  • the second layout module is used to place air bridge graphics on each layout line segment.
  • the layout line segment does not include the endpoints of any trace on the target layer, and the air bridge graphic is placed on the layout line segment, the air bridge graphic can avoid the endpoints of all traces on the target layer.
  • the second layout module is specifically used to sequentially place air bridge graphics on each layout line segment with a preset step value as the minimum spacing, so that the center point of each air bridge graphics is the center point of the circle and the radius is the preset spacing value. There is no center point of other air bridge graphics within the range.
  • the preset step value is not less than the preset spacing value.
  • the preset step value represents the minimum distance between two adjacent air bridge graphics, and the preset spacing value represents the minimum distance between any two air bridge graphics.
  • the size of the preset step value and the preset spacing value can be determined according to Actual requirements settings.
  • the minimum distance between two adjacent air bridge graphics on each layout line segment is the preset step value, so the placement position of each air bridge graphics needs to be based on the center point of the currently placed air bridge graphics as the center point and the radius. Based on the fact that there are no center points of other air bridge graphics within the range of the preset spacing value, after the air bridge graphics are finally placed on all layout line segments, it needs to be satisfied that the center point of each air bridge graphic is the center of the circle and the radius is the preset spacing. There is no other center point of the air bridge shape within the value range.
  • the spacing between two adjacent air bridge patterns on the same line is required to meet the specified minimum spacing.
  • the distance between any two air bridge patterns needs to meet certain distance rules.
  • the preset step value can meet the minimum spacing requirement between two adjacent air bridge graphics on the same line.
  • the preset spacing value the distance rule between any two air bridge graphics can be met.
  • the above-mentioned line segment determination module of this embodiment includes:
  • the endpoint detection unit is used to detect the number of endpoints of each trace of the target layer.
  • each trace of the target layer may be a line segment or a polyline containing two or more line segments, the number of endpoints of each trace is at least two.
  • a line segment determination unit configured to construct a first circle with a radius of a first preset distance value using the two endpoints of the current line as the center points when the endpoint detection unit detects that the number of endpoints of the current line is two, The part that does not overlap the current trace and the first circle is determined as a layout line segment.
  • the number of endpoints of the current trace is two, which means that the current trace is a line segment.
  • the first preset distance value represents the minimum distance between the air bridge pattern and the starting point or end point of the trace, and its size can be set according to actual needs.
  • the line segment determination unit is also used to construct a first preset radius with the first endpoint and the last endpoint of the current line as the center of the circle when the endpoint detection unit detects that the number of endpoints of the current line is more than two.
  • the first circle with the distance value, and the second circle with the radius of the second preset distance value are constructed with the other endpoints of the current trace as the center, respectively, so that the current trace does not overlap with the first circle and the second circle.
  • the part is determined as the layout line segment. Among them, if the number of endpoints of the current trace is more than two, it means that the current trace is a polyline.
  • the second preset distance value represents the minimum distance between the air bridge graphic and the vertex of the polyline, and its size can be set according to actual needs.
  • the above-mentioned second layout module may also include:
  • the starting point determination unit is used to set an endpoint of the layout line segment as the current detection point.
  • the first endpoint that is the current detection point can be the starting point of the layout line segment.
  • the starting point of the layout line segment can be determined according to user operation, or the point closest to the starting point of the layout line segment where it is located is used as the starting point.
  • the starting point of the trace of the target layer can be determined according to the order of drawing the endpoints.
  • a common way of drawing the trace is that the user clicks the mouse once on the preset position on the drawing board to determine the first endpoint, and then clicks on other positions. Once the mouse is used to determine the second endpoint, a line segment is automatically generated between the first endpoint and the second endpoint, and the first endpoint is used as the starting point of the trace.
  • a proximity detection unit is used to detect whether there are center points of other air bridge graphics within the range with the current detection point as the center and the radius as the preset spacing value.
  • the center points of other air bridge graphics include not only the center points of the air bridge graphics on the same layout line segment, but also the center points of the air bridge graphics on other layout line segments.
  • a graphics placement unit which is used to place the air bridge graphic at the current detection point when the adjacent detection unit detects that there is no center point of other air bridge graphics, and determine the point with a preset step value from the current detection point as the current detection point.
  • the air bridge graphic placed at the current detection point satisfies certain distance rules with other air bridge graphics.
  • the current detection point is updated, and the current detection point becomes a point with a preset step value from the current detection point before the update.
  • the center point of the air bridge graphic is the current detection point. That is to say, the center point of the air bridge graphic is on the layout line segment. Since the top view shape of the air bridge is a rectangle, the center point of the air bridge graphic is the center point of the rectangle.
  • a loop execution unit is used to repeatedly execute the proximity detection unit until the current detection point is not located on the layout line segment.
  • this embodiment can use vector comparison to detect whether the current detection point is located on the layout line segment.
  • the current detection point on the layout line segment is point C. Get the vector C ⁇ B from the current detection point to the second endpoint B of the layout line segment and the vector from the first endpoint A to the second endpoint B of the layout line segment.
  • Vector A ⁇ B compare the directions of vector C ⁇ B and vector A ⁇ B. If the directions of the two vectors are consistent, the current detection point on the surface is located on the layout line segment. If the directions of the two vectors are inconsistent, it indicates that the current detection point has exceeded the layout line segment.
  • the above-mentioned graphic placement unit is also used to determine the point with a preset fine-tuning value from the current detection point as the current detection point when the adjacent detection unit detects the presence of the center point of other air bridge graphics, where , the preset fine-tuning value is smaller than the preset step value.
  • the preset fine adjustment value is one-tenth of the preset spacing value.
  • the position of the current detection point will change according to the center points of other air bridge graphics.
  • the distance between the center points of two adjacent air bridge graphics on the final layout line segment is the preset step value + n*
  • the preset fine-tuning value, n represents the number of repeated executions of the adjacent detection unit. It can be seen that the minimum distance between the center points of two adjacent air bridge graphics on the layout line segment is the preset step value.
  • the above layout construction system also includes a step size calculation module and a scatter point selection module.
  • the layer determination module is also used to determine the avoidance layers in the qubit layout that require air bridge graphic avoidance.
  • the endpoint acquisition module is also used to obtain the endpoint of each trace on the avoidance layer, where the traces on the avoidance layer are composed of line segments.
  • the step calculation module is used to calculate the scatter step value of the avoidance layer based on the preset avoidance value.
  • the scatter point selection module is used to select points at equal intervals between the two adjacent endpoints of each trace on the avoidance layer according to the scatter point step value, and the endpoints and selected points on each trace are regarded as scattered points. point.
  • the proximity detection unit is specifically used to detect whether there are center points of other air bridge graphics within the range with the current detection point as the center and the radius as the preset spacing value, and to detect the range with the current detection point as the center and the radius as the preset avoidance value. Whether there are scatter points in the avoidance layer.
  • the graphic placement unit is specifically used to place the air bridge graphic at the current detection point and set a preset distance from the current detection point when the adjacent detection unit detects that there are no center points of other air bridge graphics and there are no scatter points of the avoidance layer.
  • the point with the value is determined as the current detection point, and when the adjacent detection unit detects the existence of the center point of other air bridge graphics or the existence of scatter points of the avoidance layer, the point with the preset fine-tuning value from the current detection point is determined as the current detection point .
  • the proximity detection unit not only detects whether there are center points of other air bridge graphics at the current detection point, but also detects whether there are scatter points of the avoidance layer. As long as one exists, the current detection point needs to be adjusted. If the location does not exist, the air bridge graphic can be placed at the current detection point. Therefore, the air bridge graphics on the target layer can avoid the end points of the traces on the target layer, and can also meet the distance rules between any two air bridge graphics, and can also make the air bridge graphics on the target layer avoid the avoidance map. Scattered points on the layer.
  • step size calculation module includes:
  • the side length calculation unit is used to calculate the side length of the equilateral triangle using the preset avoidance value as the height of the equilateral triangle.
  • the step size determination unit is used to use the side lengths of the equilateral triangle as the scatter point step value.
  • the above layout construction system also includes a closure detection module and a closure filling module.
  • the closure detection module is used to detect whether the first and last endpoints of each trace on the avoidance layer coincide.
  • the qubit layout may include graphic components, that is, the component graphics are polygons, and the polygon is composed of multiple line segments connected end to end, that is, the end points of the traces coincide with each other. Therefore, it is necessary to detect whether the first and last endpoints of the trace overlap. If they do not overlap, it means that the trace is not closed. If they overlap, it forms a polygon.
  • the closed filling module is used to fill the auxiliary lines in the closed area of the current wiring according to the preset direction when the closing detection module detects that the first and last endpoints of the current wiring coincide.
  • the distance between two adjacent auxiliary lines is the preset avoidance value.
  • the preset direction can be any direction in the drawing board coordinate system. When drawing a layout, a reference coordinate system is needed, and usually the horizontal direction of the drawing board is the X-axis, and the vertical direction of the drawing board is the Y-axis.
  • the auxiliary lines are filled in the current routing closed area in the positive direction of the Y axis.
  • a line on the avoidance layer forms a polygon. After the closed area of the polygon is filled with auxiliary lines, the spacing between the auxiliary lines is the preset avoidance value d4.
  • the scatter point selection module is also used to select points at equal intervals between the two endpoints of each auxiliary line according to the scatter point step value, and use the endpoints of each auxiliary line and the selected points as scatter points.
  • the present disclosure also provides a non-transitory storage medium.
  • a computer program is stored in the storage medium.
  • the computer program is configured to execute multiple embodiments of the layout construction method of the resonant cavity pattern of the embodiments of the present disclosure when running.
  • the above-mentioned storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM), mobile Various media such as hard drives, magnetic disks, or optical disks that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile Various media such as hard drives, magnetic disks, or optical disks that can store computer programs.
  • the present disclosure also provides an electronic device, including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor is configured to run the computer program to execute multiple embodiments of the layout construction method of the resonant cavity pattern according to the embodiments of the present disclosure. .
  • the memory and the processor can be connected through a data bus.
  • the above-mentioned electronic device may also include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • references to the terms “one embodiment,” “some embodiments,” “examples,” or “specific examples” or the like means that a particular feature, structure, material, or characteristic is described in connection with the embodiment or example. Included in at least one embodiment or example of the present disclosure.
  • the schematic expressions of the above terms are not necessarily directed to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments.
  • those skilled in the art may join and combine the different embodiments or examples described in this specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Architecture (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本公开涉及一种谐振腔图形的布图构建方法、系统、存储介质和电子设备,其中布图构建方法包括:获取多边形边框以及谐振腔的形状参数,所述多边形边框上标记有第一标记点和第二标记点,所述形状参数包括所述谐振腔的总长、线宽和线距;在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线;按照所述线宽和所述线距生成以所述辅助线为中心线且位于所述多边形边框内的谐振腔图形。利用本公开的方案,能够自动生成满足要求的谐振腔图形。

Description

谐振腔图形的布图构建方法、系统、存储介质和电子设备
相关申请的交叉引用
本公开要求于2022年03月31日申请的,申请号为2022103358643,名称为“谐振腔图形的布图构建方法、系统、存储介质和电子设备”;于2022年08月19日申请的,申请号为202210997399X,名称为“构建空气桥图形的方法、系统、存储介质及电子设备”的中国专利申请的优先权。
技术领域
本公开一般地涉及电路布图设计技术领域。更具体地,本公开涉及一种谐振腔图形的布图构建方法、系统、存储介质和电子设备。
背景技术
在集成电路中,谐振腔主要用于传输微波频率信号,它由两条平行的导体传输线构成。目前,在集成电路布图设计中,谐振腔大多由人工绘制。但是,集成电路版图中留给谐振腔的布图空间不是固定的,谐振腔的形状需要适配预留的布图空间,而且谐振腔的总长需要适配设计频率。因此,版图设计人员经常需要针对预留的布图空间手动绘制谐振腔图形,然而,由于受到布图空间的形状约束、谐振腔总长的约束、谐振腔线宽的约束等因素,导致手动绘制谐振腔图形十分繁琐复杂。因此,如何在给定布图空间内自动绘制出满足要求的谐振腔是当前迫切的需求。
发明内容
2022103358643为了至少解决上述背景技术部分所描述的技术问题,本公开提出了一种谐振腔图形的布图构建方法、系统、存储介质和电子设备,以解决现有技术中手动绘制谐振腔图形繁琐复杂的问题,能够自动生成满足要求的谐振腔图形。鉴于此,本公开在如下的多个方面提供解决方案。
在第一方面中,本公开提供一种谐振腔图形的布图构建方法,所述谐振腔包括两条线距始终保持一致且线宽相等的导体传输线,所述布图构建方法包括:获取多边形边框以及谐振腔的形状参数,所述多边形边框上标记有第一标记点和第二标记点,所述形状参数包括所述谐振腔的总长、线宽和线距;在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线;按照所述线宽和所述线距生成以所述辅助线为中心线且位于所述多边形边框内的谐振腔图形。
在一个实施例中,所述形状参数还包括半径范围;所述辅助线包括直线段和半径在所述半径范围内的圆弧,所述直线段和所述圆弧之间相切连接,所述辅助线与所述第一标记点和所述第二标记点连接的部分均为直线段,且连接所述第一标记点和所述第二标记点的直线段与所述第一标记点和所述第二标记点所在线段垂直。
在另一个实施例中,所述辅助线中除连接所述第一标记点和第二标记点的直线段之外的其他所述直线段均与所述第一标记点所在线段垂直。
在又一个实施例中,所述多边形边框上所述第一标记点所在线段与所述第二标记点所在线段垂直。
在又一个实施例中,所述圆弧包括二分之一圆弧和四分之一圆弧,相互平行的直线段 之间连接二分之一圆弧,相互垂直的直线段之间连接四分之一圆弧。
在又一个实施例中,所述在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线的步骤包括:从所述半径范围中选取中值作为临时半径;基于所述临时半径在所述多边形边框内生成由所述第一标记点至所述第二标记点的辅助线,并计算所述辅助线的长度;判断所述临时半径对应的长度是否等于所述总长;如果所述临时半径对应的长度等于所述总长,则将所述临时半径作为目标半径,将所述目标半径对应的辅助线作为最终的辅助线。
在又一个实施例中,所述在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线的步骤还包括:如果所述临时半径对应的长度不等于所述总长,判断所述临时半径对应的长度大于还是小于所述总长;如果所述临时半径对应的长度大于所述总长,则判断当前选取的临时半径与前一次选取的临时半径的差值是否小于预设阈值;如果小于预设阈值,将所述临时半径作为目标半径,将所述目标半径对应的辅助线中除连接所述第一标记点和第二标记点的直线段之外的其余所述直线段等值缩短,将缩短后的辅助线作为最终的辅助线,其中,所有直线段缩短的长度总和等于所述临时半径对应的长度与所述总长的差值;如果不小于预设阈值,将所述临时半径代替所述半径范围的下限值,并继续进行所述从所述半径范围中选取中值作为临时半径的步骤。
在又一个实施例中,所述在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线的步骤还包括:如果所述临时半径对应的长度小于所述总长,则将所述临时半径代替所述半径范围的上限值,并继续进行所述从所述半径范围中选取中值作为临时半径的步骤。
在又一个实施例中,所述从所述半径范围中选取中值作为临时半径的步骤之前,还包括:分别基于所述半径范围的上限值和下限值在所述多边形边框内生成由所述第一标记点至所述第二标记点的辅助线,并计算所述辅助线的长度;判断所述总长是否处于所述上限值对应的长度和所述下限值对应的长度之间;如果处于所述上限值对应的长度和所述下限值对应的长度之间,进行所述从所述半径范围中选取中值作为临时半径的步骤;如果不处于所述上限值对应的长度和所述下限值对应的长度之间,则提供更改所述总长或所述半径范围的提示。
在又一个实施例中,所述布图构建方法还包括:在所述辅助线上生成横跨辅助线两侧的空气桥图形。
在又一个实施例中,所述在所述辅助线上生成横跨辅助线两侧的空气桥图形的步骤包括:获取空气桥宽度、跨度以及相邻空气桥的间距;在所述辅助线上确定第一个空气桥图形的插入点和插入角度后,从第二个空气桥图形开始按照所述相邻空气桥的间距确定当前空气桥图形的插入点和插入角度;判断所述当前空气桥图形是否与已生成的各空气桥图形存在干涉;如果存在干涉,则在所述辅助线上移动所述当前空气桥图形的插入点位置,直至与已生成的各空气桥图形不干涉为止,在移动位置后的插入点按照所述插入角度、所述宽度和所述跨度生成当前空气桥图形;如果不存在干涉,则在插入点按照所述插入角度、所述宽度和所述跨度生成当前空气桥图形。
在又一个实施例中,各所述空气桥图形的中心点为各所述空气桥图形的插入点,并且各所述空气桥图形的跨度方向的中心线与各所述空气桥图形的插入点处的切线垂直。
在第二方面中,本公开还提供一种谐振腔图形的布图构建系统,所述谐振腔包括两条 线距始终保持一致且线宽相等的导体传输线,所述布图构建系统包括:获取模块,用于获取多边形边框以及谐振腔的形状参数,所述多边形边框上标记有第一标记点和第二标记点,所述形状参数包括所述谐振腔的总长、线宽和线距;生成模块,用于在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线;布图模块,用于按照所述线宽和所述线距生成以所述辅助线为中心线且位于所述多边形边框内的谐振腔图形。
在一个实施例中,所述布图模块还用于在所述辅助线上生成横跨辅助线两侧的空气桥图形。
在第三方面中,本公开还提供一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行前述任一种所述的谐振腔图形的布图构建方法。
在第四方面中,本公开还提供一种电子设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行前述任一种所述的谐振腔图形的布图构建方法。
2022103358643
202210997399X为了至少解决上述背景技术部分所描述的技术问题,本公开提出了一种构建空气桥图形的方法、系统、存储介质及电子设备,以解决现有技术中手动绘制空气桥图形效率低、容易出错的问题,能够自动构建空气桥图形,极大提高空气桥图形的绘制效率和绘制精度。鉴于此,本公开在如下的多个方面提供解决方案。
在第一方面中,本公开提供一种构建空气桥图形的方法,包括:确定量子比特版图中待构建空气桥图形的目标图层;获取所述目标图层上每一走线的端点,其中,所述目标图层上的走线由线段构成;在所述目标图层的每一走线上确定待构建空气桥图形的布图线段,其中,所述布图线段的端点不是所述目标图层上任一走线的端点;在每一所述布图线段上放置空气桥图形。
在一个实施例中,所述在所述目标图层的每一走线上确定待构建空气桥图形的布图线段的步骤包括:检测所述目标图层的每一走线的端点数量;在当前走线的端点数量为两个时,以所述当前走线的两个端点为圆心分别构建半径为第一预设距离值的第一圆形,将所述当前走线与所述第一圆形不重叠的部分确定为布图线段。
在另一个实施例中,所述在所述目标图层的每一走线上确定待构建空气桥图形的布图线段的步骤还包括:在当前走线的端点数量为两个以上时,以所述当前走线的第一个端点和最后一个端点为圆心分别构建半径为第一预设距离值的第一圆形,以及以所述当前走线的其他端点为圆心分别构建半径为第二预设距离值的第二圆形,将所述当前走线与所述第一圆形和所述第二圆形不重叠的部分确定为布图线段。
在又一个实施例中,所述在每一所述布图线段上放置空气桥图形的步骤为:在每一所述布图线段上以预设步长值作为最小间距依次放置空气桥图形,以使得以每一所述空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点,其中,所述预设步长值不小于所述预设间距值。
在又一个实施例中,所述在每一所述布图线段上以预设步长值作为最小间距依次放置空气桥图形的步骤包括:将所述布图线段的一个端点作为当前检测点;检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点;在不存在其他空气桥图形的中心点时,在所述当前检测点放置空气桥图形,并将距离所述当前检测点 预设步长值的点确定为当前检测点;重复所述检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点的步骤,直至所述当前检测点不位于所述布图线段。
在又一个实施例中,所述重复所述检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点的步骤之前,还包括:在存在其他空气桥图形的中心点时,将距离所述当前检测点预设微调值的点确定为当前检测点,其中,所述预设微调值小于所述预设步长值。
在又一个实施例中,所述空气桥图形的中心点为所述当前检测点。
在又一个实施例中,所述在每一所述布图线段上以预设步长值作为最小间距依次放置空气桥图形的步骤之前,所述方法还包括:确定量子比特版图中需要空气桥图形避让的避让图层;获取所述避让图层上每一走线的端点,其中,所述避让图层上的走线由线段构成;基于预设避让值计算所述避让图层的散点步长值;在所述避让图层上每一走线的相邻两个端点之间按照所述散点步长值等间距选取点,将每一走线上的端点和选取的点作为散点;所述检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点的步骤还包括:检测以所述当前检测点为圆心、半径为预设避让值的范围内是否存在所述避让图层的散点;所述在不存在其他空气桥图形的中心点时,在所述当前检测点放置空气桥图形,并将距离所述当前检测点预设间距值的点确定为当前检测点的步骤为:在不存在其他空气桥图形的中心点并且不存在所述避让图层的散点时,在所述当前检测点放置空气桥图形,并将距离所述当前检测点预设步长值的点确定为当前检测点;所述在存在其他空气桥图形的中心点时,将距离所述当前检测点预设微调值的点确定为当前检测点的步骤为:在存在其他空气桥图形的中心点或者存在所述避让图层的散点时,将距离所述当前检测点预设微调值的点确定为当前检测点。
在又一个实施例中,所述基于预设避让值计算所述避让图层的散点步长值的步骤包括:将所述预设避让值作为等边三角形的高计算所述等边三角形的边长;将所述等边三角形的边长作为散点步长值。
在又一个实施例中,所述在所述避让图层上每一走线的相邻两个端点之间按照所述散点步长值等间距选取点,将每一走线上的端点和选取的点作为散点的步骤还包括:检测所述避让图层上每一走线的首尾端点是否重合;在当前走线的首尾端点重合时,按照预设方向在所述当前走线封闭区域内填充辅助线,其中,相邻两条辅助线的间距为所述预设避让值;在每一所述辅助线的两个端点之间按照所述散点步长值等间距选取点,将每一所述辅助线上的端点和选取的点作为散点。
在第二方面中,本公开还提供一种构建空气桥图形的系统,包括:图层确定模块,用于确定量子比特版图中待构建空气桥图形的目标图层;端点获取模块,用于获取所述目标图层上每一走线的端点,其中,所述目标图层上的走线由线段构成;线段确定模块,用于在所述目标图层的每一走线上确定待构建空气桥图形的布图线段,其中,所述布图线段的端点不是所述目标图层上任一走线的端点;布图构建模块,用于在每一所述布图线段上放置空气桥图形。
在一个实施例中,所述线段确定模块包括:端点检测单元,用于检测所述目标图层的每一走线的端点数量;线段确定单元,用于在所述端点检测单元检测到当前走线的端点数量为两个时,以所述当前走线的两个端点为圆心分别构建半径为第一预设距离值的第一圆 形,将所述当前走线与所述第一圆形不重叠的部分确定为布图线段。
在另一个实施例中,所述线段确定单元还用于在所述端点检测单元检测到当前走线的端点数量为两个以上时,以所述当前走线的第一个端点和最后一个端点为圆心分别构建半径为第一预设距离值的第一圆形,以及以所述当前走线的其他端点为圆心分别构建半径为第二预设距离值的第二圆形,将所述当前走线与所述第一圆形和所述第二圆形不重叠的部分确定为布图线段。
在又一个实施例中,所述布图构建模块具体用于在每一所述布图线段上以预设步长值作为最小间距依次放置空气桥图形,以使得以每一所述空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点,其中,所述预设步长值不小于所述预设间距值。
在又一个实施例中,所述布图构建模块包括:起点确定单元,用于将所述布图线段的一个端点作为当前检测点;邻近检测单元,用于检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点;图形放置单元,用于在所述邻近检测单元检测到不存在其他空气桥图形的中心点时,在所述当前检测点放置空气桥图形,并将距离所述当前检测点预设步长值的点确定为当前检测点;循环执行单元,用于重复执行所述邻近检测单元,直至所述当前检测点不位于所述布图线段。
在又一个实施例中,所述图形放置单元还用于在所述邻近检测单元检测到存在其他空气桥图形的中心点时,将距离所述当前检测点预设微调值的点确定为当前检测点,其中,所述预设微调值小于所述预设步长值。
在又一个实施例中,所述空气桥图形的中心点为所述当前检测点。
在又一个实施例中,所述系统还包括步长计算模块和散点选取模块;所述图层确定模块还用于确定量子比特版图中需要空气桥图形避让的避让图层;所述端点获取模块还用于获取所述避让图层上每一走线的端点,其中,所述避让图层上的走线由线段构成;所述步长计算模块用于基于预设避让值计算所述避让图层的散点步长值;所述散点选取模块用于在所述避让图层上每一走线的相邻两个端点之间按照所述散点步长值等间距选取点,将每一走线上的端点和选取的点作为散点;所述邻近检测单元具体用于检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点,并且检测以所述当前检测点为圆心、半径为预设避让值的范围内是否存在所述避让图层的散点;图形放置单元具体用于在所述邻近检测单元检测到不存在其他空气桥图形的中心点并且不存在所述避让图层的散点时,在所述当前检测点放置空气桥图形,并将距离所述当前检测点预设间距值的点确定为当前检测点,以及在所述邻近检测单元检测到存在其他空气桥图形的中心点或者存在所述避让图层的散点时,将距离所述当前检测点预设微调值的点确定为当前检测点。
在又一个实施例中,所述步长计算模块包括:边长计算单元,用于将所述预设避让值作为等边三角形的高计算所述等边三角形的边长;步长确定单元,用于将所述等边三角形的边长作为散点步长值。
在又一个实施例中,所述系统还包括封闭检测模块和封闭填充模块;所述封闭检测模块用于检测所述避让图层上每一走线的首尾端点是否重合;所述封闭填充模块用于在所述封闭检测模块检测到当前走线的首尾端点重合时,按照预设方向在所述当前走线封闭区域内填充辅助线,其中,相邻两条辅助线的间距为所述预设避让值;所述散点选取模块还用 于在每一所述辅助线的两个端点之间按照所述散点步长值等间距选取点,将每一所述辅助线上的端点和选取的点作为散点。
在第三方面中,本公开还提供一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行前述任一项所述的构建空气桥图形的方法。
在第四方面中,本公开还提供一种电子设备,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行前述任一项所述的构建空气桥图形的方法。
202210997399X
附图说明
通过参考附图阅读下文的详细描述,本公开示例性实施方式的说明以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本公开的若干实施方式,并且相同或对应的标号表示相同或对应的部分,其中:
图1为一种谐振腔的结构示意图;
图2为本公开实施例提供的谐振腔图形的布图构建方法的流程示意图;
图3为图2中谐振腔图形的布图构建方法获取的多边形边框的示意图;
图4为图2中谐振腔图形的布图构建方法生成的辅助线的示意图;
图5为图2中谐振腔图形的布图构建方法生成的谐振腔图形的示意图;
图6为本公开实施例提供的谐振腔图形的布图构建方法中步骤S12的具体流程示意图;
图7为图6中步骤S121之前的流程示意图;
图8为本公开实施例提供的谐振腔图形的布图构建方法的流程示意图;
图9为图8中步骤S14的具体流程示意图;
图10为在辅助线上生成的空气桥图形的示意图;
图11为本公开实施例提供的构建空气桥图形的方法的流程示意图;
图12为本公开实施例提供的构建空气桥图形的方法的又一流程示意图;
图13为当前走线为一条线段时,确定布图线段的示意图;
图14为当前走线为折线时,确定布图线段的示意图;
图15为本公开实施例提供的构建空气桥图形的操作的流程示意图;
图16为本公开实施例提供的构建空气桥图形的操作的又一流程示意图;
图17为避让图层上一条走线的散点示意图;
图18为图16所示的流程中步骤S37的具体流程示意图;
图19为散点步长值的计算原理示意图;
图20为图16所示的流程中步骤S38的具体流程示意图;
图21为走线的封闭区域填充辅助线后的示意图;
图22为构建空气桥图形后的量子比特版图的部分示意图;以及
图23为本公开实施例提供的谐振腔图形的布图构建系统的原理示意图。
具体实施方式
下面将结合示意图对本公开的具体实施方式进行更详细的描述。根据下列描述和权利要求书,本公开的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使 用非精准的比例,仅用以方便、明晰地辅助说明本公开实施例的目的。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“左”、“右”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本公开第一实施例提供了一种谐振腔图形的布图构建方法。谐振腔包括两条线距始终保持一致且线宽相等的导体传输线,请参考图1,谐振腔包括两条导体传输线,两条导体传输线的线宽均为W,两条导体传输线的线距为D。请参考图2,本实施例的布图构建方法包括:
S11:获取多边形边框以及谐振腔的形状参数,多边形边框上标记有第一标记点和第二标记点,形状参数包括谐振腔的总长、线宽和线距。
其中,多边形边框可以由用户手动绘制,也可以是根据用户输入的参数生成,例如用户输入多边形边框的每个顶点的坐标,然后按照预设顺序依次连接每个顶点生成多边形边框。同样的,第一标记点和第二标记点可以由用户手动标记,也可以由根据用户输入的坐标等参数标记。
谐振腔的总长、线宽和线距可以由用户手动输入,或者根据用户输入的谐振腔参数直接或间接得到,例如用户只输入了谐振腔的总宽和线距,那么线宽为(总宽-线距)/2。
多边形边框可以是由线段组成的任意形状,通常来说,多边形边框的边的数量尽量少。如图3所示,在一个应用中,多边形边框为一个矩形,多边形边框上标记有第一标记点A和第二标记点B。
S12:在多边形边框内生成由第一标记点至第二标记点且长度为总长的辅助线。
其中,辅助线可以是任意形状,只要满足长度为谐振腔的总长即可。通常,为了减小辅助线的占用面积,辅助线应当尽量弯折,但同时也要考虑弯折的程度,应尽量保证平滑弯曲,避免出现例如产生信号反射、谐振频率偏移等偏离谐振腔设计参数的现象。
在本实施例中,谐振腔的形状参数还包括半径范围。如图4所示,辅助线包括直线段和半径在半径范围内的圆弧,直线段和圆弧之间相切连接,辅助线与第一标记点A和第二标记点B连接的部分均为直线段,且连接第一标记点A和第二标记点B的直线段与第一标记点A和第二标记点B所在线段垂直。其中,第一标记点A和第二标记点B所在线段为多边形边框上的线段。
为了便于辅助线的生成,请继续参考图4,辅助线中除连接第一标记点A和第二标记点B的直线段之外的其他直线段均与第一标记点A所在线段垂直。
为了进一步便于辅助线的生成,多边形边框上第一标记点A所在线段与第二标记点B所在线段垂直。其中,圆弧包括二分之一圆弧和四分之一圆弧,相互平行的直线段之间连接二分之一圆弧,相互垂直的直线段之间连接四分之一圆弧。由于只有两条平行的直线段才能通过二分之一圆弧连接,因此,辅助线中平行的直线段的间距为圆弧的直径。
辅助线的生成方式可以有多种,本实施例采用一种比较有效率的生成方式,具体为:
在第一标记点和第二标记点之间按照顺序生成与多边形边框相交的当前直线段,其中,当前直线段为第一条直线段时,起点为第一标记点;
将当前直线段与多边形边框的交点朝向当前直线段的起点步进移动;
当步进移动后的交点到多边形边框的最短距离第一次大于或等于W+D/2时,将移动后的交点作为当前直线段的终点;
在当前直线段的终点朝向第二标记点所在一侧生成长度为2倍圆弧半径的垂线段;
判断垂线段与第二标记点所在线段是否相交;
如果不相交,则以垂线段的端点为起点生成与多边形边框相交的下一条直线段,将下一条直线段作为当前直线段,并进行将当前直线段与多边形边框的交点朝向当前直线段的起点步进移动的步骤;
如果相交,则在第二标记点生成垂直第二标记点所在线段的直线段,将连接第二标记点的直线段与最近直线段的交点作为最近直线段的终点,并删除最近直线段的终点之外的部分,其中,连接第二标记点的直线段长度大于圆弧半径;
将每相邻两条平行的直线段之间的垂线段用二分之一圆弧替换,将相互垂直的直线段的拐点进行四分之一圆弧的圆角化处理,进而得到辅助线。
其中,在替换垂线段时,二分之一圆弧与垂线段相切。
S13:按照线宽和线距生成以辅助线为中心线且位于多边形边框内的谐振腔图形。
其中,谐振腔图形可以通过布尔运算生成,首先按照线宽和线距生成以辅助线为中心线的线宽为2W+D的第一线条图形以及以辅助线为中心线的线宽为D的第二线条图形,然后对第一线条图形和第二线条图形做布尔非运算,最终得到谐振腔图形。
需要注意的是,本公开所称的位于多边形边框内是指不超出多边形边框,谐振腔图形与多边形边框全部或部分重合属于不超出多边形边框的情形。如图5所示,谐振腔图形除了第一标记点A所在的边缘以及第二标记点B所在的边缘与多边形边框重合外,其余部分均位于多边形边框内。
通过上述步骤,本实施例能够针对标记有第一标记点和第二标记点的多边形边框以及谐振腔的形状参数(形状参数包括谐振腔的总长、线宽和线距)实现谐振腔图形的布图构建,所构建出的谐振腔图形位于多边形边框内且长度为谐振腔的总长。
本公开第二实施例提供了一种谐振腔图形的布图构建方法。本实施例的布图构建方法包括第一实施例的全部技术特征,不同之处在于,请参考图6,在多边形边框内生成由第一标记点至第二标记点且长度为总长的辅助线的步骤,即步骤S12包括:
S121:从半径范围中选取中值作为临时半径。
其中,半径范围的中值为半径范围的下限值和上限值的平均值。
S122:基于临时半径在多边形边框内生成由第一标记点至第二标记点的辅助线,并计算辅助线的长度。
其中,根据临时半径可以确定相邻两条平行直线段之间的间距以及除第一标记点和第二标记点以外每条直线段的端点到多边形边框的最短距离,然后生成每条直线段,最后将两条平行的直线段通过二分之一圆弧连接,将两条垂直的直线段通过四分之一圆弧连接,从而得到辅助线。
辅助线的长度为所有圆弧的弧长以及所有直线段的长度之和。
S123:判断临时半径对应的长度是否等于总长。
S124:如果临时半径对应的长度等于总长,则将临时半径作为目标半径,将目标半径对应的辅助线作为最终的辅助线。
其中,临时半径对应的长度在等于谐振腔的总长时,表明所选取的半径为最优的半径,因此将目标半径对应的辅助线作为最终的辅助线。
由于弧长的计算与π有关,而π不是一个整数,因此有可能存在临时半径对应的长度不等于总长的情形。在本实施例中,在多边形边框内生成由第一标记点至所述第二标记点且长度为总长的辅助线的步骤还包括:
S125:如果临时半径对应的长度不等于总长,判断临时半径对应的长度大于还是小于总长。
S126:如果临时半径对应的长度大于总长,则判断当前选取的临时半径与前一次选取的临时半径的差值是否小于预设阈值。
S127:如果小于预设阈值,将临时半径作为目标半径,将目标半径对应的辅助线中除连接第一标记点和第二标记点的直线段之外的其余直线段等值缩短,将缩短后的辅助线作为最终的辅助线,其中,所有直线段缩短的长度总和等于临时半径对应的长度与总长的差值。
其中,如果临时半径对应的长度大于总长,但两者的差值小于预设阈值,表明该当前选取的临时半径在一定精度范围内时最优的半径,因此,选择临时半径作为目标半径,然后将除连接第一标记点和第二标记点的直线段之外的其余直线段等值缩短来弥补差值,从而得到长度为谐振腔总长的辅助线。
S128:如果不小于预设阈值,将临时半径代替半径范围的下限值,并继续进行从半径范围中选取中值作为临时半径的步骤。
其中,由于圆弧的半径越小,直线段的数量越可能增加,所以辅助线的长度总体上随着半径的减小而增大,如果临时半径对应的长度大于总长且两者的差值小于预设阈值,说明当前选取的临时半径偏小过多,从而将临时半径代替半径范围的下限值后,再次从半径范围中选取中值作为临时半径时,必然比上一次选取的临时半径更大,从而生成的辅助线的长度将减小。
进一步地,在多边形边框内生成由第一标记点至第二标记点且长度为总长的辅助线的步骤还包括:
S129:如果临时半径对应的长度小于总长,则将临时半径代替半径范围的上限值,并继续进行从半径范围中选取中值作为临时半径的步骤。
其中,由于圆弧的半径越大,直线段的数量越可能减少,所以辅助线的长度总体上随着半径的增大而减小,如果临时半径对应的长度小于总长,说明当前选取的临时半径偏大,将临时半径代替半径范围的上限值后,再次从半径范围中选取中值作为临时半径时,必然比上一次选取的临时半径更小,从而生成的辅助线的长度将增大。
需要说明的是,本实施例在临时半径对应的长度小于总长时,没有增加直线段的长度来弥补临时半径对应的长度与总长的差值,这是因为增加直线段的长度后有可能导致生成的谐振腔图形超出多边形边框。
如果可能存在半径范围和/或总长设置不合理,出现选取半径范围内的任何半径值都无法生成长度为谐振腔总长的辅助线的情形。在这种情形下,本实施例中,请参考图7,从半径范围中选取中值作为临时半径的步骤之前,还包括:
S201:分别基于半径范围的上限值和下限值在多边形边框内生成由第一标记点至第二标记点的辅助线,并计算辅助线的长度。
S202:判断总长是否处于上限值对应的长度和下限值对应的长度之间。
S121:如果处于上限值对应的长度和下限值对应的长度之间,进行从半径范围中选取中值作为临时半径的步骤。
其中,谐振腔的总长处于上限值对应的长度和下限值对应的长度之间,表明半径范围内必然存在一个半径值为最优的半径,可以生成长度为谐振腔的总长的辅助线。
S203:如果不处于上限值对应的长度和下限值对应的长度之间,则提供更改总长或半径范围的提示。
其中,谐振腔的总长处于上限值对应的长度和下限值对应的长度之间,表明无论选取半径范围内的任何一个半径值都无法生成长度为谐振腔的总长的辅助线,此时需要更改谐振腔总长或者半径范围,因此提供更改总长或半径范围的提示。
本公开第三实施例提供了一种谐振腔图形的布图构建方法。本实施例的布图构建方法包括第一实施例或第二实施例的全部技术特征,不同之处在于,请参考图8,本实施例的布图构建方法还包括:
S14:在辅助线上生成横跨辅助线两侧的空气桥图形。
其中,空气桥图形生成后,辅助线可以根据实际需要删除或保留。
具体的,请参考图9,在辅助线上生成横跨辅助线两侧的空气桥图形的步骤包括:
S141:获取空气桥宽度、跨度以及相邻空气桥的间距。
其中,如图10所示,跨度L为空气桥与跨越辅助线两端之间的距离,宽度M为空气桥垂直于跨度方向的尺寸,相邻空气桥的间距S是指相邻空气桥之间中心线的长度,中心线为跨度方向空气桥的中轴线。空气桥宽度、跨度以及相邻空气桥的间距在构建空气桥图形时根据信号传输要求、基底的相关参数等确定。
S142:在辅助线上确定第一个空气桥图形的插入点和插入角度后,从第二个空气桥图形开始按照相邻空气桥的间距确定当前空气桥图形的插入点和插入角度。
S143:判断当前空气桥图形是否与已生成的各空气桥图形存在干涉。
其中,如果两个空气桥图形之间的最短距离小于设定值,则两个空气桥图形存在干涉。
S144:如果存在干涉,则在辅助线上移动当前空气桥图形的插入点位置,直至与已生成的各空气桥图形不干涉为止,在移动位置后的插入点按照插入角度、宽度和跨度生成当前空气桥图形。
其中,在移动当前空气桥图形的插入点位置时,可以按照预设步长进行步进移动。
S145:如果不存在干涉,则在插入点按照插入角度、宽度和跨度生成当前空气桥图形。
其中,假设确定的第一个空气桥图形的插入点与第一标记点A的距离为间距S,从第二个空气桥图形开始,按照相邻空气桥的间距S确定第二个空气桥图形,然后判断第二个空气桥图形是否与已生成的各空气桥图形(即第一个空气桥图形)存在干涉,如果干涉,则在辅助线上向远离第一个空气桥图形的方向移动当前空气桥图形的插入点位置,直到与已生成的各空气桥图形不干涉为止。此时再在移动位置后的插入点按照插入角度生成第二个空气桥图形。
生成其余空气桥图形时同样按照上述流程,直到生成指定数量的空气桥图形或者第二标记点与相邻的空气桥图形之间无法再生成空气桥图形为止。
如图10所示,辅助线上生成的空气桥图形的间距有的为间距S,有的大于间距S,例如第一条直线段上的所有空气桥图形的间距均为间距S,第一条直线段上的最后一个空气桥图形与第二条直线段的第一个空气桥图形的间距大于间距S。
在本实施例中,各空气桥图形的中心点为各空气桥图形的插入点,并且各空气桥图形的跨度方向的中心线与各空气桥图形的插入点处的切线垂直。如图10所示,每一个空气桥图形的跨度方向的中心线与宽度方向的中心线的交点为空气桥图形的中心点,中心点位于辅助线上,同时跨度方向的中心线与辅助线在中心点处的切线垂直,或者说宽度方向的中心线与辅助线在中心点处的切线平行。
在一个实施例中,本公开还可以通过以下操作构建空气桥图形,请参考图11,前述操作包括以下步骤:
S31:确定量子比特版图中待构建空气桥图形的目标图层。
其中,目标图层可以根据用户的操作或者预设标识来确定。例如用户对图层进行选中操作,将用户选中的图层确定为目标图层,或者用户对图层赋予预设标识,将具有预设标识的图层确定为目标图层,预设标识可以是预设的图层颜色、图层名称中预设的符号等。
S32:获取目标图层上每一走线的端点,其中,目标图层上的走线由线段构成。
其中,目标图层上的走线可以是一条线段,也可以是多条线段依次连接而成的折线。由于一条线段必然存在两个端点,可以获取每一走线的端点。
S33:在目标图层的每一走线上确定待构建空气桥图形的布图线段,其中,布图线段不包含目标图层上任一走线的端点。
其中,由于布图线段不包含目标图层上任一走线的端点,那么布图线段为目标图层的走线上除走线的端点之外的部分,例如布图线段为走线上相邻两个端点之间的部分线段。
S34:在每一布图线段上放置空气桥图形。
其中,由于布图线段不包含目标图层上任一走线的端点,而空气桥图形在布图线段上放置,所以空气桥图形可以避开目标图层上所有走线的端点。
通过上述方式,本实施例的构建空气桥图形的方法可以在目标图层的每一走线上自动构建出空气桥图形,每一空气桥图形避开了走线的端点,对于设计人员而言,只需要手动设置目标图层,即可自动完成空气桥图形的放置,从而本实施例能够自动构建空气桥图形,极大提高空气桥图形的绘制效率和绘制精度,可以大大降低设计人员的劳动强度和时间成本。
进一步的,在本实施例中,步骤S34具体为:在每一布图线段上以预设步长值作为最小间距依次放置空气桥图形,以使得以每一空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点。
其中,预设步长值不小于预设间距值。预设步长值表示相邻两个空气桥图形之间的最小距离,预设间距值表示任意两个空气桥图形之间的最小距离,预设步长值和预设间距值的大小可以根据实际需求设置。每一布图线段上相邻两个空气桥图形之间的最小间距为预设步长值,所以每个空气桥图形的放置位置需要以当前放置的空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点为依据,最终所有布图线段上放置空气桥图形后,需要满足以每一空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点。
在一些量子比特版图设计中,要求同一走线上的相邻两个空气桥图形之间的间距需要 满足规定的最小间距,同时任意两个空气桥图形之间需要满足一定的距离规则,通过设置预设步长值可以满足同一走线上的相邻两个空气桥图形之间的最小间距需求,通过设置预设间距值可以满足任意两个空气桥图形之间的距离规则,对于设计人员而言,只需要手动设置目标图层、预设步长值和预设间距值,即可自动完成空气桥图形的放置,从而本实施例能够自动构建空气桥图形。
请参考图12,本公开实施例在上述构建空气桥图形实施例的基础上,在目标图层的每一走线上确定待构建空气桥图形的布图线段的步骤,即步骤S33包括:
S331:检测目标图层的每一走线的端点数量。
其中,由于目标图层的每一走线可能为一条线段,也可能为包括含两条及以上线段的折线,因此每一走线的端点数量最少为两个。
S332:在当前走线的端点数量为两个时,以当前走线的两个端点为圆心分别构建半径为第一预设距离值的第一圆形,将当前走线与第一圆形不重叠的部分确定为布图线段。
其中,当前走线的端点数量为两个,表示当前走线为一条线段。第一预设距离值表示空气桥图形与走线的起点或终点的最小距离,其大小可以根据实际需求设置。在当前走线的两个端点构建第一圆形后,当前走线与第一圆形之间的关系存在两种情形。
假设第一预设距离值为d1,第一种情形是当前走线的长度为第一预设距离值d1的两倍以上,那么当前走线与第一圆形存在不重叠的部分,即图13中(a)所示,两个第一圆形C1与当前走线的两个交点O之间的部分,将该部分确定为布图线段。
第二种情形是当前走线的长度为第一预设距离值d1的两倍及以下,那么当前走线与第一圆形不存在不重叠的部分,即图13中(b)所示,两个第一圆形C1与当前走线的两个交点O之间的部分仍然处于两个第一圆形C1的覆盖范围内,此时无需确定布图线段。
进一步的,步骤S33还包括:
S333:在当前走线的端点数量为两个以上时,以当前走线的第一个端点和最后一个端点为圆心分别构建半径为第一预设距离值的第一圆形,以及以当前走线的其他端点为圆心分别构建半径为第二预设距离值的第二圆形,将当前走线与第一圆形和第二圆形不重叠的部分确定为布图线段。
其中,当前走线的端点数量为两个以上,表示当前走线为折线。第二预设距离值表示空气桥图形与折线的折点的最小距离,其大小可以根据实际需求设置。如图14所示,假设当前线段具有四个端点,那么中间的两个端点为折点,那么当前走线包括三条线段,依次记为线段a、线段b和线段c,假设第一预设距离值d1大于第二预设距离值d2。在当前走线的首尾端点构建第一圆形、在当前走线的折点构建第二圆形后,线段b与第二圆形之间的关系存在三种情形。
第一种情形是线段b的长度为第二预设距离值d2的两倍以上,而且第一个第一圆形与线段b不存在交点,或者交点在第二圆形覆盖范围内,那么线段b与第二圆形存在不重叠的部分,即图14中(a)所示,两个第二圆形C2与线段b的两个交点之间的部分,将该部分确定为布图线段。
第二种情形是线段b的长度为第二预设距离值的两倍以上,而且第一个第一圆形与线段b存在交点,且交点在第二圆形覆盖范围外,那么线段b与第二圆形存在不重叠的部分,但是该不重叠的部分又有一部分与第一个第一圆形重叠,即图14中(b)所示,因此将第一个第一圆形C1和第二个第二圆形C2与线段b的两个交点O之间的部分确定为布图线 段。
第三种情形是线段b的长度为第一预设距离值的两倍及以下,那么线段b与第二圆形不存在不重叠的部分,此时即图14中(c)所示,两个第二圆形C2与线段b的两个交点O之间的部分仍然处于两个第二圆形C2的覆盖范围内,无需确定布图线段。
通过上述方式,本实施例的构建空气桥图形可以在目标图层的每一走线上自动确定布图线段,在布图线段上构建出空气桥图形,由于布图线段的端点不是目标图层上任一走线的端点,因此每一空气桥图形避开了走线的端点,每一空气桥图形在满足以每一空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点的条件下与其相邻空气桥图形之间的间距最小。对于设计人员而言,只需要手动设置目标图层、预设步长值、预设间距值、第一预设距离值和第二预设距离值,即可自动完成空气桥图形的放置,从而本实施例能够自动构建空气桥图形,极大提高空气桥图形的绘制效率和绘制精度,可以大大降低设计人员的劳动强度和时间成本。
请参考图15,本公开实施例在上述构建空气桥图形实施例的基础上,在每一所述布图线段上以预设步长值作为最小间距依次放置空气桥图形的步骤,即步骤S34包括:
S341:将布图线段的一个端点作为当前检测点。
其中,第一个作为当前检测点的端点可以是布图线段的起点,布图线段的起点可以根据用户操作确定,或者将布图线段距离其所在走线的起点距离最近的点作为起点,而目标图层的走线的起点可以根据端点绘制顺序来确定,一种常见的走线绘制方式是,用户在绘制版图的画板上预设位置点击一次鼠标确定第一个端点,再到其他位置点击一次鼠标确定第二个端点,第一个端点与第二个端点之间自动生成线段,那么第一个端点作为走线的起点。
S342:检测以当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点。
其中,其他空气桥图形的中心点不仅包括同一条布图线段上的空气桥图形的中心点,还包括其他布图线段上的空气桥图形的中心点。
S343:在不存在其他空气桥图形的中心点时,在当前检测点放置空气桥图形,并将距离当前检测点预设步长值的点确定为当前检测点。
其中,由于以当前检测点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点,那么在当前检测点放置空气桥图形与其他空气桥图形满足一定的距离规则。在当前检测点放置空气桥图形后,对当前检测点进行更新,当前检测点变为距离更新前当前检测点预设步长值的点。举例而言,假设布图线段的两个端点分别为A点和B点,A点作为当前检测点,在A点放置空气桥图形后,朝着B点方向将距离A点预设步长值的C点确定为当前检测点。
在本实施例中,空气桥图形的中心点为当前检测点。也就是说,空气桥图形的中心点在布图线段上,由于空气桥的俯视形状为矩形,因此空气桥图形的中心点为矩形的中心点。
S344:检测当前检测点是否位于布图线段。
其中,本实施例可以采用向量比较的方式来检测当前检测点是否位于布图线段。举例而言,布图线段上的当前检测点为C点,获取当前检测点到布图线段第二个端点B的向量C→B以及布图线段第一个端点A到第二个端点B的向量A→B,比较向量C→B与向量A→B的方向,如果两个向量的方向一致,表面当前检测点位于布图线段上,如果两个 向量的方向不一致,表明当前检测点已经超出了布图线段。
如果当前检测点位于布图线段上,则执行步骤S342,如果当前检测点不位于布图线段,则结束布图线段的空气桥图形放置。
进一步的,在本实施例中,步骤S344之前,还包括:
S345:在存在其他空气桥图形的中心点时,将距离当前检测点预设微调值的点确定为当前检测点。
其中,预设微调值小于预设步长值。在一个实际应用中,预设微调值为预设间距值的十分之一。
在本实施例中,当前检测点的位置会根据其他空气桥图形的中心点变化,最终布图线段上相邻两个空气桥图形的中心点之间的间距为预设步长值+n*预设微调值,n表示步骤S342的重复执行次数,由此可见,布图线段上相邻两个空气桥图形的中心点之间的最小间距为预设步长值。
通过上述方式,本实施例的构建空气桥图形的方法可以在目标图层上构建出空气桥图形,每一空气桥图形避开了走线的端点,同一走线上相邻两个空气桥图形之间的最小间距为预设步长值,每一空气桥图形在满足以每一空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点的条件下与其相邻空气桥图形之间的间距最小,对于设计人员而言,只需要手动设置目标图层、预设步长值、预设间距值和预设微调值,即可自动完成空气桥图形的放置,从而本实施例能够自动构建空气桥图形,极大提高空气桥图形的绘制效率和绘制精度,可以大大降低设计人员的劳动强度和时间成本。
请参考图16,本公开实施例在上述构建空气桥图形实施例的基础上,在每一布图线段上以预设步长值作为最小间距依次放置空气桥图形的步骤之前,本实施例的方法还包括:
S35:确定量子比特版图中需要空气桥图形避让的避让图层。
S36:获取避让图层上每一走线的端点,其中,避让图层上的走线由线段构成。
S37:基于预设避让值计算避让图层的散点步长值。
S38:在避让图层上每一走线的相邻两个端点之间按照散点步长值等间距选取点,将每一走线上的端点和选取的点作为散点。其中,如图17所示,避让图层上一条走线包括A1、B1、C1三个端点,线段A1B1之间选取了两个点S,线段B1C1之间也选取了两个点S,那么最终散点包括A1、B1、C1三个端点以及四个选取的点S。
检测以当前检测点为圆心、半径为预设步长值的范围内是否存在其他空气桥图形的中心点的步骤,即步骤S342还包括:
检测以当前检测点为圆心、半径为预设避让值的范围内是否存在避让图层的散点。
在不存在其他空气桥图形的中心点时,在当前检测点放置空气桥图形,并将距离当前检测点预设间距值的点确定为当前检测点的步骤,即步骤S343具体为:
在不存在其他空气桥图形的中心点并且不存在避让图层的散点时,在当前检测点放置空气桥图形,并将距离当前检测点预设步长值的点确定为当前检测点。
在存在其他空气桥图形的中心点时,将距离当前检测点预设微调值的点确定为当前检测点的步骤,即步骤S345具体为:
在存在其他空气桥图形的中心点或者存在避让图层的散点时,将距离当前检测点预设微调值的点确定为当前检测点。
在本实施例中,在当前检测点不仅要检测是否存在其他空气桥图形的中心点,同时还 要检测是否存在避让图层的散点,只要有一个存在,就需要调整当前检测点的位置,如果都不存在,就可以在当前检测点放置空气桥图形。从而目标图层上的空气桥图形可以避让目标图层上走线的端点,也可以满足任意两个空气桥图形之间的距离规则,还可以满足目标图层上的空气桥图形避开避让图层上的散点。
在本实施例中,参考图18,基于预设避让值计算避让图层的散点步长值的步骤,即步骤S37包括:
S371:将预设避让值作为等边三角形的高计算等边三角形的边长。
S372:将等边三角形的边长作为散点步长值。
其中,如图19所示,构建一个高为预设避让值d3的等边三角形,根据几何原理计算等边三角形的边长,可以计算得到等边三角形的边长为L=d3/sin(π/3),等边三角形的边长就等于散点步长值。
参考图20,在避让图层上每一走线的相邻两个端点之间按照散点步长值等间距选取点,将每一走线上的端点和选取的点作为散点的步骤,即步骤S38还包括:
S38A:检测避让图层上每一走线的首尾端点是否重合。
其中,量子比特版图有可能包括图形化的元器件,即元器件图形为多边形,而多边形是由多条线段首尾相连组成,即走线的首尾端点重合。所以需要检测走线的首尾端点是否重合,如果不重合,表示走线不是封闭的,如果重合,则构成多边形。
S38B:在当前走线的首尾端点重合时,按照预设方向在当前走线封闭区域内填充辅助线,其中,相邻两条辅助线的间距为预设避让值。
其中,预设方向可以是画板坐标系的任意方向。在进行版图绘制时,需要参考坐标系,而通常画板的水平方向为X轴,画板的垂直方向为Y轴。本实施例从多边形的纵坐标最小的端点开始按照Y轴正方向在当前走线封闭区域内填充辅助线。如图21所示,一个多边形内填充的辅助线的间距为预设避让值d3,图中点虚线表示辅助线。
S38C:在每一辅助线的两个端点之间按照散点步长值等间距选取点,将每一辅助线上的端点和选取的点作为散点。
如图22所示,是构建空气桥图形后的量子比特版图的部分示意图。从图中可以看出,采用本公开实施例的方法构建空气桥图形后,同一条走线101上放置的空气桥图形102两两之间间隔一定距离,相邻两条走线101上放置的空气桥图形102之间也间隔一定距离,有的走线101与避让图层上的走线103(有的走线103首尾端点重合,构成了多边形)重合或过于接近,所以,这些走线101上只能放置很少的空气桥图形102或者没有放置空气桥图形102。
本公开实施例还提供了一种谐振腔图形的布图构建系统。谐振腔包括两条线距始终保持一致且线宽相等的导体传输线,请参考图1,谐振腔包括两条导体传输线,两条导体传输线的线宽均为W,两条导体传输线的线距为D。请参考图23,本实施例的布图构建系统包括:
获取模块11,用于获取多边形边框以及谐振腔的形状参数,多边形边框上标记有第一标记点和第二标记点,形状参数包括谐振腔的总长、线宽和线距。
其中,多边形边框可以由用户手动绘制,也可以是根据用户输入的参数生成,例如用户输入多边形边框的边的数量,每条边的长度,然后按照预设顺序依次连接每条边生成多边形边框。同样的,第一标记点和第二标记点可以由用户手动标记,也可以由根据用户输 入的坐标等参数标记。
谐振腔的总长、线宽和线距可以由用户手动输入,或者根据用户输入的谐振腔参数直接或间接得到。
多边形边框可以是由线段组成的任意形状,通常来说,多边形边框的边的数量尽量少。在本实施例中,多边形边框优选为四边形。
生成模块12,用于在多边形边框内生成由第一标记点至第二标记点且长度为总长的辅助线。
其中,辅助线可以是任意形状,只要满足长度为谐振腔的总长即可。通常,为了减小辅助线的占用面积,辅助线应当尽量弯折,但同时也要考虑弯折的程度,应尽量保证平滑弯曲,避免出现例如产生信号反射、谐振频率偏移等偏离谐振腔设计参数的现象。
第一布图模块13,用于按照线宽和线距生成以辅助线为中心线且位于多边形边框内的谐振腔图形。
其中,谐振腔图形的生成过程可以借助布尔运算,例如按照线宽和线距生成以辅助线为中心线的线宽为2W+D的第一线条图形以及以辅助线为中心线的线宽为D的第二线条图形,然后对第一线条图形和第二线条图形做布尔非运算,最终得到谐振腔图形。
需要注意的是,本公开所称的位于多边形边框内是指不超出多边形边框,谐振腔图形与多边形边框全部或部分重合属于不超出多边形边框的情形。
在本实施例中,前述第一布图模块13还用于在辅助线上生成横跨辅助线两侧的空气桥图形。
通过上述方式,本实施例能够针对标记有第一标记点和第二标记点的多边形边框以及谐振腔的形状参数(形状参数包括谐振腔的总长、线宽和线距)实现谐振腔图形的布图构建,所构建出的谐振腔图形位于多边形边框内且长度为谐振腔的总长。
在一个实施例中,本公开实施例的前述布图构建系统还可以包括:
图层确定模块,其用于确定量子比特版图中待构建空气桥图形的目标图层。其中,目标图层可以根据用户的操作或者预设标识来确定。例如用户对图层进行选中操作,将用户选中的图层确定为目标图层,或者用户对图层赋予预设标识,将具有预设标识的图层确定为目标图层,预设标识可以是预设的图层颜色、图层名称中预设的符号等。
端点获取模块,其用于获取目标图层上每一走线的端点,其中,目标图层上的走线由线段构成。其中,目标图层上的走线可以是一条线段,也可以是多条线段依次连接而成的折线。由于一条线段必然存在两个端点,可以获取每一走线的端点。
线段确定模块,其用于在目标图层的每一走线上确定待构建空气桥图形的布图线段,其中,布图线段不包含目标图层上任一走线的端点。其中,由于布图线段不包含目标图层上任一走线的端点,那么布图线段为目标图层的走线上除走线的端点之外的部分,例如布图线段为走线上相邻两个端点之间的部分线段。
第二布图模块,其用于在每一布图线段上放置空气桥图形。其中,由于布图线段不包含目标图层上任一走线的端点,而空气桥图形在布图线段上放置,所以空气桥图形可以避开目标图层上所有走线的端点。
进一步的,在本实施例中,第二布图模块具体用于在每一布图线段上以预设步长值作为最小间距依次放置空气桥图形,以使得以每一空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点。其中,预设步长值不小于预设间距值。 预设步长值表示相邻两个空气桥图形之间的最小距离,预设间距值表示任意两个空气桥图形之间的最小距离,预设步长值和预设间距值的大小可以根据实际需求设置。每一布图线段上相邻两个空气桥图形之间的最小间距为预设步长值,所以每个空气桥图形的放置位置需要以当前放置的空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点为依据,最终所有布图线段上放置空气桥图形后,需要满足以每一空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点。
在一些量子比特版图设计中,要求同一走线上的相邻两个空气桥图形之间的间距需要满足规定的最小间距,同时任意两个空气桥图形之间需要满足一定的距离规则,通过设置预设步长值可以满足同一走线上的相邻两个空气桥图形之间的最小间距需求,通过设置预设间距值可以满足任意两个空气桥图形之间的距离规则,对于设计人员而言,只需要手动设置目标图层、预设步长值和预设间距值,即可自动完成空气桥图形的放置,从而本实施例能够自动构建空气桥图形。
在一个实施例中,本实施例的上述线段确定模块包括:
端点检测单元,其用于检测目标图层的每一走线的端点数量。其中,由于目标图层的每一走线可能为一条线段,也可能为包括含两条及以上线段的折线,因此每一走线的端点数量最少为两个。
线段确定单元,其用于在端点检测单元检测到当前走线的端点数量为两个时,以当前走线的两个端点为圆心分别构建半径为第一预设距离值的第一圆形,将当前走线与第一圆形不重叠的部分确定为布图线段。其中,当前走线的端点数量为两个,表示当前走线为一条线段。第一预设距离值表示空气桥图形与走线的起点或终点的最小距离,其大小可以根据实际需求设置。
进一步的,线段确定单元还用于在端点检测单元检测到当前走线的端点数量为两个以上时,以当前走线的第一个端点和最后一个端点为圆心分别构建半径为第一预设距离值的第一圆形,以及以当前走线的其他端点为圆心分别构建半径为第二预设距离值的第二圆形,将当前走线与第一圆形和第二圆形不重叠的部分确定为布图线段。其中,当前走线的端点数量为两个以上,表示当前走线为折线。第二预设距离值表示空气桥图形与折线的折点的最小距离,其大小可以根据实际需求设置。
在本实施例中,上述第二布图模块还可以包括:
起点确定单元,其用于将布图线段的一个端点作为当前检测点。其中,第一个作为当前检测点的端点可以是布图线段的起点,布图线段的起点可以根据用户操作确定,或者将布图线段距离其所在走线的起点距离最近的点作为起点,而目标图层的走线的起点可以根据端点绘制顺序来确定,一种常见的走线绘制方式是,用户在绘制版图的画板上预设位置点击一次鼠标确定第一个端点,再到其他位置点击一次鼠标确定第二个端点,第一个端点与第二个端点之间自动生成线段,那么第一个端点作为走线的起点
邻近检测单元,其用于检测以当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点。其中,其他空气桥图形的中心点不仅包括同一条布图线段上的空气桥图形的中心点,还包括其他布图线段上的空气桥图形的中心点。
图形放置单元,其用于在邻近检测单元检测到不存在其他空气桥图形的中心点时,在当前检测点放置空气桥图形,并将距离当前检测点预设步长值的点确定为当前检测点。其中,由于以当前检测点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心 点,那么在当前检测点放置空气桥图形与其他空气桥图形满足一定的距离规则。在当前检测点放置空气桥图形后,对当前检测点进行更新,当前检测点变为距离更新前当前检测点预设步长值的点。
在本实施例中,空气桥图形的中心点为当前检测点。也就是说,空气桥图形的中心点在布图线段上,由于空气桥的俯视形状为矩形,因此空气桥图形的中心点为矩形的中心点。
循环执行单元,其用于重复执行邻近检测单元,直至当前检测点不位于布图线段。其中,本实施例可以采用向量比较的方式来检测当前检测点是否位于布图线段。举例而言,布图线段上的当前检测点为C点,获取当前检测点到布图线段第二个端点B的向量C→B以及布图线段第一个端点A到第二个端点B的向量A→B,比较向量C→B与向量A→B的方向,如果两个向量的方向一致,表面当前检测点位于布图线段上,如果两个向量的方向不一致,表明当前检测点已经超出了布图线段。
进一步的,在本实施例中,上述图形放置单元还用于在邻近检测单元检测到存在其他空气桥图形的中心点时,将距离当前检测点预设微调值的点确定为当前检测点,其中,预设微调值小于预设步长值。在一个实际应用中,预设微调值为预设间距值的十分之一。
在本实施例中,当前检测点的位置会根据其他空气桥图形的中心点变化,最终布图线段上相邻两个空气桥图形的中心点之间的间距为预设步长值+n*预设微调值,n表示邻近检测单元的重复执行次数,由此可见,布图线段上相邻两个空气桥图形的中心点之间的最小间距为预设步长值。
进一步的,在本实施例中,上述布图构建系统还包括步长计算模块和散点选取模块。
图层确定模块还用于确定量子比特版图中需要空气桥图形避让的避让图层。
端点获取模块还用于获取避让图层上每一走线的端点,其中,避让图层上的走线由线段构成。
步长计算模块,其用于基于预设避让值计算避让图层的散点步长值。
散点选取模块,其用于在避让图层上每一走线的相邻两个端点之间按照散点步长值等间距选取点,将每一走线上的端点和选取的点作为散点。
邻近检测单元具体用于检测以当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点,并且检测以当前检测点为圆心、半径为预设避让值的范围内是否存在避让图层的散点。
图形放置单元具体用于在邻近检测单元检测到不存在其他空气桥图形的中心点并且不存在避让图层的散点时,在当前检测点放置空气桥图形,并将距离当前检测点预设间距值的点确定为当前检测点,以及在邻近检测单元检测到存在其他空气桥图形的中心点或者存在避让图层的散点时,将距离当前检测点预设微调值的点确定为当前检测点。
在本实施例中,邻近检测单元在当前检测点不仅要检测是否存在其他空气桥图形的中心点,同时还要检测是否存在避让图层的散点,只要有一个存在,就需要调整当前检测点的位置,如果都不存在,就可以在当前检测点放置空气桥图形。从而目标图层上的空气桥图形可以避让目标图层上走线的端点,也可以满足任意两个空气桥图形之间的距离规则,还可以使得目标图层上的空气桥图形避开避让图层上的散点。
进一步的,步长计算模块包括:
边长计算单元用于将预设避让值作为等边三角形的高计算所述等边三角形的边长。
步长确定单元用于将等边三角形的边长作为散点步长值。
进一步的,上述布图构建系统还包括封闭检测模块和封闭填充模块。
封闭检测模块用于检测避让图层上每一走线的首尾端点是否重合。其中,量子比特版图有可能包括图形化的元器件,即元器件图形为多边形,而多边形是由多条线段首尾相连组成,即走线的首尾端点重合。所以需要检测走线的首尾端点是否重合,如果不重合,表示走线不是封闭的,如果重合,则构成多边形。
封闭填充模块用于在封闭检测模块检测到当前走线的首尾端点重合时,按照预设方向在当前走线封闭区域内填充辅助线,其中,相邻两条辅助线的间距为预设避让值。其中,预设方向可以是画板坐标系的任意方向。在进行版图绘制时,需要参考坐标系,而通常画板的水平方向为X轴,画板的垂直方向为Y轴。本实施例从多边形的纵坐标最小的端点开始按照Y轴正方向在当前走线封闭区域内填充辅助线。避让图层上的一条走线构成多边形,多边形的封闭区域内填充辅助线后,辅助线之间的间距为预设避让值d4。
散点选取模块还用于在每一辅助线的两个端点之间按照散点步长值等间距选取点,将每一辅助线上的端点和选取的点作为散点。
本公开还提供一种非瞬态存储介质,存储介质中存储有计算机程序,计算机程序被设置为运行时执行本公开实施例的谐振腔图形的布图构建方法的多个实施例。
具体的,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开还提供一种电子设备,包括存储器和处理器,存储器中存储有计算机程序,处理器被设置为运行计算机程序以执行本公开实施例的谐振腔图形的布图构建方法的多个实施例。
具体的,存储器和处理器可以通过数据总线连接。此外,上述电子设备还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”或“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
上述仅为本公开的优选实施例而已,并不对本公开起到任何限制作用。任何所属技术领域的技术人员,在不脱离本公开的技术方案的范围内,对本公开揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本公开的技术方案的内容,仍属于本公开的保护范围之内。

Claims (27)

  1. 一种谐振腔图形的布图构建方法,所述谐振腔包括两条线距始终保持一致且线宽相等的导体传输线,其特征在于,所述布图构建方法包括:
    获取多边形边框以及谐振腔的形状参数,所述多边形边框上标记有第一标记点和第二标记点,所述形状参数包括所述谐振腔的总长、线宽和线距;
    在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线;
    按照所述线宽和所述线距生成以所述辅助线为中心线且位于所述多边形边框内的谐振腔图形。
  2. 根据权利要求1所述的布图构建方法,其特征在于,所述形状参数还包括半径范围;
    所述辅助线包括直线段和半径在所述半径范围内的圆弧,所述直线段和所述圆弧之间相切连接,所述辅助线与所述第一标记点和所述第二标记点连接的部分均为直线段,且连接所述第一标记点和所述第二标记点的直线段与所述第一标记点和所述第二标记点所在线段垂直。
  3. 根据权利要求2所述的布图构建方法,其特征在于,所述辅助线中除连接所述第一标记点和第二标记点的直线段之外的其他所述直线段均与所述第一标记点所在线段垂直。
  4. 根据权利要求3所述的布图构建方法,其特征在于,所述多边形边框上所述第一标记点所在线段与所述第二标记点所在线段垂直。
  5. 根据权利要求4所述的布图构建方法,其特征在于,所述圆弧包括二分之一圆弧和四分之一圆弧,相互平行的直线段之间连接二分之一圆弧,相互垂直的直线段之间连接四分之一圆弧。
  6. 根据权利要求5所述的布图构建方法,其特征在于,所述在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线的步骤包括:
    从所述半径范围中选取中值作为临时半径;
    基于所述临时半径在所述多边形边框内生成由所述第一标记点至所述第二标记点的辅助线,并计算所述辅助线的长度;
    判断所述临时半径对应的长度是否等于所述总长;
    如果所述临时半径对应的长度等于所述总长,则将所述临时半径作为目标半径,将所述目标半径对应的辅助线作为最终的辅助线。
  7. 根据权利要求6所述的布图构建方法,其特征在于,所述在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线的步骤还包括:
    如果所述临时半径对应的长度不等于所述总长,判断所述临时半径对应的长度大于还是小于所述总长;
    如果所述临时半径对应的长度大于所述总长,则判断当前选取的临时半径与前一次选取的临时半径的差值是否小于预设阈值;
    如果小于预设阈值,将所述临时半径作为目标半径,将所述目标半径对应的辅助线中除连接所述第一标记点和第二标记点的直线段之外的其余所述直线段等值缩短,将缩短后的辅助线作为最终的辅助线,其中,所有直线段缩短的长度总和等于所述临时半径对应的长度与所述总长的差值;
    如果不小于预设阈值,将所述临时半径代替所述半径范围的下限值,并继续进行所述从所述半径范围中选取中值作为临时半径的步骤。
  8. 根据权利要求7所述的布图构建方法,其特征在于,所述在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线的步骤还包括:
    如果所述临时半径对应的长度小于所述总长,则将所述临时半径代替所述半径范围的上限值,并继续进行所述从所述半径范围中选取中值作为临时半径的步骤。
  9. 根据权利要求6至8任一项所述的布图构建方法,其特征在于,所述从所述半径范围中选取中值作为临时半径的步骤之前,还包括:
    分别基于所述半径范围的上限值和下限值在所述多边形边框内生成由所述第一标记点至所述第二标记点的辅助线,并计算所述辅助线的长度;
    判断所述总长是否处于所述上限值对应的长度和所述下限值对应的长度之间;
    如果处于所述上限值对应的长度和所述下限值对应的长度之间,进行所述从所述半径范围中选取中值作为临时半径的步骤;
    如果不处于所述上限值对应的长度和所述下限值对应的长度之间,则提供更改所述总长或所述半径范围的提示。
  10. 根据权利要求1所述的布图构建方法,其特征在于,所述布图构建方法还包括:
    在所述辅助线上生成横跨辅助线两侧的空气桥图形。
  11. 根据权利要求10所述的布图构建方法,其特征在于,所述在所述辅助线上生成横跨辅助线两侧的空气桥图形的步骤包括:
    获取空气桥宽度、跨度以及相邻空气桥的间距;
    在所述辅助线上确定第一个空气桥图形的插入点和插入角度后,从第二个空气桥图形开始按照所述相邻空气桥的间距确定当前空气桥图形的插入点和插入角度;
    判断所述当前空气桥图形是否与已生成的各空气桥图形存在干涉;
    如果存在干涉,则在所述辅助线上移动所述当前空气桥图形的插入点位置,直至与已生成的各空气桥图形不干涉为止,在移动位置后的插入点按照所述插入角度、所述宽度和所述跨度生成当前空气桥图形;
    如果不存在干涉,则在插入点按照所述插入角度、所述宽度和所述跨度生成当前空气桥图形。
  12. 根据权利要求11所述的布图构建方法,其特征在于,各所述空气桥图形的中心点为各所述空气桥图形的插入点,并且各所述空气桥图形的跨度方向的中心线与各所述空气桥图形的插入点处的切线垂直。
  13. 根据权利要求10所述的布图构建方法,其特征在于,还包括通过以下操作构建所述空气桥图形:
    确定待构建空气桥图形的目标图层;
    获取所述目标图层上每一走线的端点,其中,所述目标图层上的走线由线段构成;
    在所述目标图层的每一走线上确定待构建空气桥图形的布图线段,其中,所述布图线段不包含所述目标图层上任一走线的端点;
    在每一所述布图线段上放置空气桥图形。
  14. 根据权利要求13所述的布图构建方法,其特征在于,所述在所述目标图层的每一走线上确定待构建空气桥图形的布图线段的步骤包括:
    检测所述目标图层的每一走线的端点数量;
    在当前走线的端点数量为两个时,以所述当前走线的两个端点为圆心分别构建半径为第一预设距离值的第一圆形,将所述当前走线与所述第一圆形不重叠的部分确定为布图线段。
  15. 根据权利要求14所述的布图构建方法,其特征在于,所述在所述目标图层的每一走线上确定待构建空气桥图形的布图线段的步骤还包括:
    在当前走线的端点数量为两个以上时,以所述当前走线的第一个端点和最后一个端点为圆心分别构建半径为第一预设距离值的第一圆形,以及以所述当前走线的其他端点为圆心分别构建半径为第二预设距离值的第二圆形,将所述当前走线与所述第一圆形和所述第二圆形不重叠的部分确定为布图线段。
  16. 根据权利要求13所述的布图构建方法,其特征在于,所述在每一所述布图线段上放置空气桥图形的步骤为:
    在每一所述布图线段上以预设步长值作为最小间距依次放置空气桥图形,以使得以每一所述空气桥图形的中心点为圆心、半径为预设间距值的范围内不存在其他空气桥图形的中心点,其中,所述预设步长值不小于所述预设间距值。
  17. 根据权利要求16所述的布图构建方法,其特征在于,所述在每一所述布图线段上以预设步长值作为最小间距依次放置空气桥图形的步骤包括:
    将所述布图线段的一个端点作为当前检测点;
    检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点;
    在不存在其他空气桥图形的中心点时,在所述当前检测点放置空气桥图形,并将距离所述当前检测点预设步长值的点确定为当前检测点;
    重复所述检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点的步骤,直至所述当前检测点不位于所述布图线段。
  18. 根据权利要求17所述的布图构建方法,其特征在于,所述重复所述检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥图形的中心点的步骤之前,还包括:
    在存在其他空气桥图形的中心点时,将距离所述当前检测点预设微调值的点确定为当前检测点,其中,所述预设微调值小于所述预设步长值。
  19. 根据权利要求18所述的布图构建方法,其特征在于,所述空气桥图形的中心点为所述当前检测点。
  20. 根据权利要求18或19所述的布图构建方法,其特征在于,所述在每一所述布图线段上以预设步长值作为最小间距依次放置空气桥图形的步骤之前,所述布图构建方法还包括:
    确定需要空气桥图形避让的避让图层;
    获取所述避让图层上每一走线的端点,其中,所述避让图层上的走线由线段构成;
    基于预设避让值计算所述避让图层的散点步长值;
    在所述避让图层上每一走线的相邻两个端点之间按照所述散点步长值等间距选取点,将每一走线上的端点和选取的点作为散点;
    所述检测以所述当前检测点为圆心、半径为预设间距值的范围内是否存在其他空气桥 图形的中心点的步骤还包括:
    检测以所述当前检测点为圆心、半径为预设避让值的范围内是否存在所述避让图层的散点;
    所述在不存在其他空气桥图形的中心点时,在所述当前检测点放置空气桥图形,并将距离所述当前检测点预设间距值的点确定为当前检测点的步骤为:
    在不存在其他空气桥图形的中心点并且不存在所述避让图层的散点时,在所述当前检测点放置空气桥图形,并将距离所述当前检测点预设步长值的点确定为当前检测点;
    所述在存在其他空气桥图形的中心点时,将距离所述当前检测点预设微调值的点确定为当前检测点的步骤为:
    在存在其他空气桥图形的中心点或者存在所述避让图层的散点时,将距离所述当前检测点预设微调值的点确定为当前检测点。
  21. 根据权利要求20所述的布图构建方法,其特征在于,所述基于预设避让值计算所述避让图层的散点步长值的步骤包括:
    将所述预设避让值作为等边三角形的高计算所述等边三角形的边长;
    将所述等边三角形的边长作为散点步长值。
  22. 根据权利要求20所述的布图构建方法,其特征在于,所述在所述避让图层上每一走线的相邻两个端点之间按照所述散点步长值等间距选取点,将每一走线上的端点和选取的点作为散点的步骤还包括:
    检测所述避让图层上每一走线的首尾端点是否重合;
    在当前走线的首尾端点重合时,按照预设方向在所述当前走线封闭区域内填充辅助线,其中,相邻两条辅助线的间距为所述预设避让值;
    在每一所述辅助线的两个端点之间按照所述散点步长值等间距选取点,将每一所述辅助线上的端点和选取的点作为散点。
  23. 一种谐振腔图形的布图构建系统,所述谐振腔包括两条线距始终保持一致且线宽相等的导体传输线,其特征在于,所述布图构建系统包括:
    获取模块,用于获取多边形边框以及谐振腔的形状参数,所述多边形边框上标记有第一标记点和第二标记点,所述形状参数包括所述谐振腔的总长、线宽和线距;
    生成模块,用于在所述多边形边框内生成由所述第一标记点至所述第二标记点且长度为所述总长的辅助线;
    第一布图模块,用于按照所述线宽和所述线距生成以所述辅助线为中心线且位于所述多边形边框内的谐振腔图形。
  24. 根据权利要求23所述的布图构建系统,其特征在于,所述第一布图模块还用于在所述辅助线上生成横跨辅助线两侧的空气桥图形。
  25. 根据权利要求23所述的布图构建系统,其特征在于,所述布图构建系统还包括:
    图层确定模块,用于确定待构建空气桥图形的目标图层;
    端点获取模块,用于获取所述目标图层上每一走线的端点,其中,所述目标图层上的走线由线段构成;
    线段确定模块,用于在所述目标图层的每一走线上确定待构建空气桥图形的布图线段,其中,所述布图线段不包含所述目标图层上任一走线的端点;
    第二布图模块,用于在每一所述布图线段上放置空气桥图形。
  26. 一种非瞬态计算机存储介质,其特征在于,所述非瞬态计算机存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行权利要求1至22任一项所述的谐振腔图形的布图构建方法。
  27. 一种电子设备,其特征在于,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行权利要求1至22任一项所述的谐振腔图形的布图构建方法。
PCT/CN2023/084518 2022-03-31 2023-03-28 谐振腔图形的布图构建方法、系统、存储介质和电子设备 WO2023185883A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210335864.3 2022-03-31
CN202210335864.3A CN114757138A (zh) 2022-03-31 2022-03-31 谐振腔图形的布图构建方法、系统、存储介质和电子设备
CN202210997399.XA CN115374747A (zh) 2022-08-19 2022-08-19 构建空气桥图形的方法、系统、存储介质及电子设备
CN202210997399.X 2022-08-19

Publications (1)

Publication Number Publication Date
WO2023185883A1 true WO2023185883A1 (zh) 2023-10-05

Family

ID=88199261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084518 WO2023185883A1 (zh) 2022-03-31 2023-03-28 谐振腔图形的布图构建方法、系统、存储介质和电子设备

Country Status (1)

Country Link
WO (1) WO2023185883A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117745976A (zh) * 2024-02-19 2024-03-22 浙江省测绘科学技术研究院 融合先验知识和密集匹配点云的桥梁三维模型构建方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109299538A (zh) * 2018-09-21 2019-02-01 郑州云海信息技术有限公司 一种布图设计的检测方法及装置
US20190266781A1 (en) * 2018-02-23 2019-08-29 Ephere Inc. Method of rendering computer graphics curves
CN113745791A (zh) * 2020-05-29 2021-12-03 合肥本源量子计算科技有限责任公司 共面波导谐振器布图的构建方法、空气桥图层的构建方法
CN113745790A (zh) * 2020-05-29 2021-12-03 合肥本源量子计算科技有限责任公司 在矩形约束框内确定共面波导传输线路径的方法、系统
CN113745792A (zh) * 2020-05-29 2021-12-03 合肥本源量子计算科技有限责任公司 共面波导谐振器布图的构建方法、系统
CN114757138A (zh) * 2022-03-31 2022-07-15 本源科仪(成都)科技有限公司 谐振腔图形的布图构建方法、系统、存储介质和电子设备
CN115374747A (zh) * 2022-08-19 2022-11-22 本源科仪(成都)科技有限公司 构建空气桥图形的方法、系统、存储介质及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190266781A1 (en) * 2018-02-23 2019-08-29 Ephere Inc. Method of rendering computer graphics curves
CN109299538A (zh) * 2018-09-21 2019-02-01 郑州云海信息技术有限公司 一种布图设计的检测方法及装置
CN113745791A (zh) * 2020-05-29 2021-12-03 合肥本源量子计算科技有限责任公司 共面波导谐振器布图的构建方法、空气桥图层的构建方法
CN113745790A (zh) * 2020-05-29 2021-12-03 合肥本源量子计算科技有限责任公司 在矩形约束框内确定共面波导传输线路径的方法、系统
CN113745792A (zh) * 2020-05-29 2021-12-03 合肥本源量子计算科技有限责任公司 共面波导谐振器布图的构建方法、系统
CN114757138A (zh) * 2022-03-31 2022-07-15 本源科仪(成都)科技有限公司 谐振腔图形的布图构建方法、系统、存储介质和电子设备
CN115374747A (zh) * 2022-08-19 2022-11-22 本源科仪(成都)科技有限公司 构建空气桥图形的方法、系统、存储介质及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117745976A (zh) * 2024-02-19 2024-03-22 浙江省测绘科学技术研究院 融合先验知识和密集匹配点云的桥梁三维模型构建方法
CN117745976B (zh) * 2024-02-19 2024-05-14 浙江省测绘科学技术研究院 融合先验知识和密集匹配点云的桥梁三维模型构建方法

Similar Documents

Publication Publication Date Title
WO2023185883A1 (zh) 谐振腔图形的布图构建方法、系统、存储介质和电子设备
US5265197A (en) Geometric modeling apparatus
JP3710710B2 (ja) Icレイアウトにおけるポリゴン表現
KR100753536B1 (ko) 3차원 역설계 모델링을 위한 원시 모델 데이터로부터 2차원스케치 데이터를 검출하는 방법
US6829757B1 (en) Method and apparatus for generating multi-layer routes
JPH0550030B2 (zh)
KR101760795B1 (ko) 기준 패턴의 인스턴스들에 대해 집적 회로 레이아웃을 검사하는 방법, 시스템 및 컴퓨터 프로그램 물건
CN113745791B (zh) 共面波导谐振器布图的构建方法、空气桥图层的构建方法
CN114757138A (zh) 谐振腔图形的布图构建方法、系统、存储介质和电子设备
JP2004529402A5 (zh)
CN115374747A (zh) 构建空气桥图形的方法、系统、存储介质及电子设备
WO2023160556A1 (zh) 量子芯片版图的构建方法和装置及存储介质
CN113745792B (zh) 共面波导谐振器布图的构建方法、系统
WO2024037336A1 (zh) 构建芯片pad图形的方法、系统、存储介质及电子设备
US6859916B1 (en) Polygonal vias
JPH0421910B2 (zh)
JP4728944B2 (ja) 電源ノイズ解析モデル生成プログラム及び電源ノイズ解析モデル作成装置
US7310793B1 (en) Interconnect lines with non-rectilinear terminations
CN116433794A (zh) 一种cae软件中三维模型的处理方法及系统
TW202403585A (zh) 具有非較佳方向曲線配線的積體電路
US7080329B1 (en) Method and apparatus for identifying optimized via locations
US7069530B1 (en) Method and apparatus for routing groups of paths
CN111680471B (zh) 一种集成电路版图中的布线倒角方法
CN115130420B (zh) 集成电路版图图形的线对齐方法、系统、介质及电子设备
JP2005079392A (ja) 描画データ作成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778248

Country of ref document: EP

Kind code of ref document: A1