WO2023185664A1 - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
WO2023185664A1
WO2023185664A1 PCT/CN2023/083602 CN2023083602W WO2023185664A1 WO 2023185664 A1 WO2023185664 A1 WO 2023185664A1 CN 2023083602 W CN2023083602 W CN 2023083602W WO 2023185664 A1 WO2023185664 A1 WO 2023185664A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
cross
heat
loop
heat exchange
Prior art date
Application number
PCT/CN2023/083602
Other languages
English (en)
French (fr)
Inventor
陆向迅
杰弗里·L 塔克
李天磊
张乐平
Original Assignee
丹佛斯有限公司
陆向迅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210353076.7A external-priority patent/CN116928763A/zh
Priority claimed from CN202220769450.7U external-priority patent/CN217979087U/zh
Application filed by 丹佛斯有限公司, 陆向迅 filed Critical 丹佛斯有限公司
Publication of WO2023185664A1 publication Critical patent/WO2023185664A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/30Artificial light

Definitions

  • Embodiments of the invention relate to an air conditioning system.
  • an air conditioning system typically includes a compressor, condenser, expansion device, and evaporator.
  • the purpose of embodiments of the present invention is to provide an air conditioning system, whereby the heat exchange efficiency of the air conditioning system can be improved, thereby saving energy.
  • an air conditioning system including: an air conditioning subsystem, the air conditioning subsystem including: a compressor; a first heat exchanger as one of a condenser and an evaporator; and as a condenser and a second heat exchanger of the other one of the evaporators, the compressor, the first heat exchanger and the second heat exchanger in the order from the compressor through the first heat exchanger to the second heat exchanger. connect;
  • Phase change heat subsystem the phase change heat subsystem includes: a phase change material container; a phase change material contained in the phase change material container; and a heat exchange circuit provided in the phase change material container; and a cross-system Heat exchanger, the cross-system heat exchanger includes a first loop and a second loop, the first loop is connected to the air conditioning subsystem to enable the heat exchange medium of the air conditioning subsystem to selectively flow through the first loop , and the second circuit is connected to the heat exchange circuit of the phase change heat subsystem so that the heat exchange medium in the circuit formed by the second circuit and the heat exchange circuit of the phase change heat subsystem can be selective
  • the ground conducts heat exchange with the phase change material contained in the phase change material container.
  • the cross-system heat exchanger doubles as at least one of the first heat exchanger and the second heat exchanger.
  • the cross-system heat exchanger doubles as the first heat exchanger, the first heat exchanger serves as an evaporator, and the second heat exchanger serves as a condenser.
  • the cross-system heat exchanger The heat obtained from the phase change thermal subsystem can be selectively released in the second loop.
  • the cross-system heat exchanger doubles as the second heat exchanger, the first heat exchanger serves as a condenser, and the second heat exchanger serves as an evaporator, and the cross-system heat exchanger
  • the device can selectively absorb the cold energy obtained from the phase change heat subsystem in the second circuit.
  • the cross-system heat exchanger doubles as the first heat exchanger, the first heat exchanger serves as a condenser, and the second heat exchanger serves as an evaporator, and the cross-system heat exchanger
  • the device can selectively dissipate the heat obtained from the phase change heating subsystem in the second loop.
  • the first loop of the cross-system heat exchanger is connected between the first heat exchanger and the second heat exchanger of the air conditioning subsystem, so that the heat exchange medium discharged from the compressor passes through After passing through one of the first and second heat exchangers, it enters the cross-system heat exchanger, and then enters the other of the first and second heat exchangers.
  • the heat exchange medium in the first loop can perform heat exchange with the heat exchange medium in the second loop.
  • the air conditioning subsystem further includes an expansion device connected between the first heat exchanger and the second heat exchanger of the air conditioning subsystem, so that the heat exchanged by the compressor discharges The medium enters the expansion device after passing through one of the first and second heat exchangers, and then enters the other of the first and second heat exchangers.
  • the first heat exchanger serves as a condenser
  • the second heat exchanger serves as an evaporator
  • the first loop of the cross-system heat exchanger is connected to an expansion device of the air conditioning subsystem and serves as an evaporator.
  • the phase change heat subsystem reduces the temperature of the heat exchange medium expanded by the expansion device through the cross-system heat exchanger.
  • the first heat exchanger serves as a condenser
  • the second heat exchanger serves as an evaporator
  • the first loop of the cross-system heat exchanger is connected to the first loop of the air conditioning subsystem serving as the condenser.
  • the phase change heat subsystem reduces the temperature of the heat exchange medium condensed by the condenser through the cross-system heat exchanger.
  • the heat exchange circuit of the phase change heat subsystem includes a first heat exchange circuit and a second heat exchange circuit;
  • the cross-system heat exchanger includes a first cross-system heat exchanger. and a second cross-system heat exchanger, the first cross-system heat exchanger includes a first loop and a second loop, and the first loop of the first cross-system heat exchanger is connected to the air conditioning subsystem so that The heat exchange medium of the air-conditioning subsystem can selectively flow through the first circuit of the first cross-system heat exchanger, and the second circuit of the first cross-system heat exchanger interacts with the phase-change heat exchanger.
  • the first heat exchange circuit of the subsystem is connected so that the heat exchange medium in the circuit formed by the second circuit of the first cross-system heat exchanger and the first heat exchange circuit of the phase change heat subsystem can selectively perform heat exchange with the phase change material contained in the phase change material container; and the second cross-system heat exchanger includes a first loop and a second loop, the second cross-system heat exchanger includes A first circuit is connected to the air conditioning subsystem to enable the heat exchange medium of the air conditioning subsystem to selectively flow through the first circuit of the second cross-system heat exchanger, and the second cross-system heat exchanger
  • the second loop is connected to the second heat exchange loop of the phase change heat subsystem such that the second loop of the phase change heat subsystem and the second heat exchange loop of the second cross-system heat exchanger form a
  • the heat exchange medium in the loop can selectively perform heat exchange with the phase change material contained in the phase change material container, and in the second cross-system heat exchanger,
  • the heat exchange medium in the first circuit can exchange heat with the heat exchange medium in the
  • the heat exchange loop of the phase change heat subsystem includes a first heat exchange loop;
  • the cross-system heat exchanger includes a first cross-system heat exchanger and a second cross-system heat exchanger
  • the first cross-system heat exchanger includes a first loop and a second loop, and the first loop of the first cross-system heat exchanger is connected to the air conditioning subsystem to enable the heat exchange medium of the air conditioning subsystem to be selectively ground flows through the first loop of the first cross-system heat exchanger, and the second loop of the first cross-system heat exchanger is connected to the first heat exchange loop of the phase change heat subsystem to
  • the heat exchange medium in the circuit formed by the second circuit of the first cross-system heat exchanger and the first heat exchange circuit of the phase change heat subsystem can be selectively combined with the heat exchange medium contained in the phase change material container.
  • the phase change material in the heat exchanger performs heat exchange; and the second cross-system heat exchanger includes a first loop and a second loop, and the first loop of the second cross-system heat exchanger is connected to the air conditioning subsystem to allow
  • the heat exchange medium of the air conditioning subsystem can selectively flow through the first circuit of the second cross-system heat exchanger, and the second circuit of the second cross-system heat exchanger is in phase-conversion heat exchanger.
  • the first heat exchange loop of the subsystem is connected such that the first loop of the phase change heat subsystem and the second cross-system heat exchanger
  • the heat exchange medium in the circuit formed by the heat exchange circuit can selectively conduct heat exchange with the phase change material contained in the phase change material container, and in the second cross-system heat exchanger, the second cross-system heat exchanger
  • the heat exchange medium in the first circuit of the heat exchanger can perform heat exchange with the heat exchange medium in the second circuit of the second cross-system heat exchanger, the second circuit of the first cross-system heat exchanger
  • the second circuit of the second cross-system heat exchanger is connected in parallel to the first heat exchange circuit of the phase change heat subsystem.
  • the heat exchange circuit of the phase change heat subsystem further includes a third heat exchange circuit;
  • the cross-system heat exchanger further includes a third cross-system heat exchanger, and the third cross-system heat exchanger
  • the heat exchanger includes a first loop and a second loop, and the first loop of the third cross-system heat exchanger is connected to the air conditioning subsystem so that the heat exchange medium of the air conditioning subsystem can selectively flow through the third The first loop of the three-span system heat exchanger, and the second loop of the third span system heat exchanger is connected to the third heat exchange loop of the phase change heat subsystem such that the third span
  • the heat exchange medium in the circuit formed by the second loop of the system heat exchanger and the third heat exchange loop of the phase change heat subsystem can selectively interact with the phase change material contained in the phase change material container. heat exchange.
  • the heat exchange circuit of the phase change heat subsystem further includes a second heat exchange circuit;
  • the cross-system heat exchanger further includes a third cross-system heat exchanger, and the third cross-system heat exchanger
  • the heat exchanger includes a first loop and a second loop, and the first loop of the third cross-system heat exchanger is connected to the air conditioning subsystem so that the heat exchange medium of the air conditioning subsystem can selectively flow through the third The first loop of the three-span system heat exchanger, and the second loop of the third span system heat exchanger is connected to the second heat exchange loop of the phase change heat subsystem such that the third span
  • the heat exchange medium in the circuit formed by the second loop of the system heat exchanger and the second heat exchange loop of the phase change heat subsystem can selectively interact with the phase change material contained in the phase change material container. heat exchange.
  • the air conditioning subsystem further includes an expansion device connected between the first heat exchanger and the second heat exchanger of the air conditioning subsystem, so that the heat exchanged by the compressor discharges The medium enters the expansion device after passing through one of the first heat exchanger and the second heat exchanger, and then enters the other of the first heat exchanger and the second heat exchanger.
  • the first circuit of the second cross-system heat exchanger is connected between the expansion device of the air conditioning subsystem and the second heat exchanger to enable selection of the heat exchange medium of the air conditioning subsystem flow through the first loop of the second cross-system heat exchanger.
  • the first cross-system heat exchanger doubles as a second heat exchanger, said first heat exchanger acting as a condenser, and the second heat exchanger acting as an evaporator.
  • the first cross-system heat exchanger doubles as a second heat exchanger
  • the third cross-system heat exchanger doubles as the first heat exchanger
  • the first heat exchanger serves as an evaporator and the second heat exchanger serves as a condenser.
  • the second cross-system heat exchanger is a plate heat exchanger.
  • the air conditioning system further includes: a pump connected between the first heat exchange circuit of the phase change heat subsystem and the second circuit of the first cross-system heat exchanger and the The heat exchange medium in the circuit formed between the second circuit of the second cross-system heat exchanger and the first heat exchange circuit of the phase change heat exchanger subsystem and the second circuit of the first cross-system heat exchanger. Flow and promote the flow of the heat exchange medium in the circuit formed by the first heat exchange circuit of the phase change heat subsystem and the second circuit of the second cross-system heat exchanger.
  • the cross-system heat exchanger doubles as the second heat exchanger, the first heat exchanger serves as a condenser, and the second heat exchanger serves as an evaporator, and the phase change heat exchanger
  • the heat exchange circuit of the subsystem includes a first heat exchange circuit and a second heat exchange circuit, and the second circuit of the cross-system heat exchanger is connected to the first heat exchange circuit of the phase change heat subsystem so that the The heat exchange medium in the loop formed by the second loop and the first heat exchange loop can selectively conduct heat exchange with the phase change material contained in the phase change material container.
  • the second heat exchange loop is connected to the cross-system exchanger.
  • the first circuit of the heater is connected in parallel to the air conditioning subsystem so that the heat exchange medium in the air conditioning subsystem can selectively conduct heat exchange with the phase change material contained in the phase change material container through the second heat exchange circuit.
  • the first cross-system heat exchanger doubles as the second heat exchanger
  • the second cross-system heat exchanger doubles as the first heat exchanger
  • the air conditioning system further includes: a pump connected between the first heat exchange circuit of the phase change heat subsystem and the second circuit of the first cross-system heat exchanger to Promoting the flow of the heat exchange medium in the circuit formed by the first heat exchange circuit of the phase change heat subsystem and the second circuit of the first cross-system heat exchanger; and the phase change heat subsystem compressor and the phase change heat exchange subsystem expansion device, the phase change heat subsystem compressor and the phase change heat subsystem expansion device is connected between the second heat exchange circuit of the phase change heat subsystem and the second circuit of the second cross-system heat exchanger to control the second heat exchanger of the phase change heat subsystem.
  • the heat exchange medium in the circuit formed by the heat exchange circuit and the second circuit of the second cross-system heat exchanger is compressed and expanded.
  • the cross-system heat exchanger includes: a first heat exchange tube used to form a first loop and a second heat exchange tube used to form a second loop, a plurality of first heat exchange tube groups At least some of the heat exchange tube groups and at least some of the second heat exchange tube groups are alternately arranged, each first heat exchange tube group includes at least one first heat exchange tube, and each second heat exchange tube group includes at least one first heat exchange tube group. Two heat exchange tubes.
  • the cross-system heat exchanger is a plate heat exchanger.
  • the heat exchange medium in the second loop of the cross-system heat exchanger is water or ethylene glycol.
  • the condenser and the evaporator refer to the air conditioning system under cooling conditions.
  • the condenser and the evaporator refer to the air conditioning system when it is in heating mode.
  • the heat exchange efficiency of the air conditioning system can be improved, thereby saving energy.
  • Figure 1 is a schematic diagram of an air conditioning subsystem according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of an air conditioning system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an air conditioning system according to another embodiment of the present invention.
  • Figure 4 is a schematic diagram of an air conditioning system according to yet another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an air conditioning system according to yet another embodiment of the present invention.
  • Figure 6 is a schematic diagram of an air conditioning system according to a further embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an air conditioning system according to another embodiment of the present invention.
  • Figure 8 is a schematic diagram of an air conditioning system according to yet another embodiment of the present invention.
  • Figure 9 is a schematic diagram of an air conditioning system according to yet another embodiment of the present invention.
  • Figure 10 is a schematic diagram of an air conditioning system according to a further embodiment of the present invention.
  • Figure 11 is a schematic side view of a heat exchanger according to an embodiment of the invention.
  • Figure 12 is a schematic front view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 1 only shows the air conditioning subsystem 10
  • FIGS. 2 to 10 show various air conditioning systems according to various embodiments of the present invention
  • FIGS. 11 to 12 show heat exchangers according to embodiments of the present invention. device.
  • the arrows on the air conditioning subsystem 10 indicate the flow direction of the heat exchange medium under the cooling condition of the air conditioning subsystem 10 .
  • the arrows on the air conditioning subsystem 10 indicate the flow direction of the heat exchange medium under the heating condition of the air conditioning subsystem 10 .
  • arrows indicate the flow direction of the heat exchange medium in the two circuits of the heat exchanger.
  • the air conditioning system of the present invention may have only one working mode, such as a single cooling air conditioning system, or it may be a heat pump air conditioning system with two working modes of cooling and heating.
  • phase change sub-heat exchange subsystem 20 is charged by the air conditioning subsystem 10; in the embodiment shown in Figure 10, a compressor 25 and an expansion device 26 are added to form The phase change sub-heat exchange subsystem 20 is a charging circuit.
  • an air conditioning system 100 includes: an air conditioning subsystem 10 , a phase conversion heat subsystem 20 and a cross-system heat exchanger 30 .
  • the air conditioning subsystem 10 includes: a compressor 11; a first heat exchanger 12A serving as one of a condenser and an evaporator; and a second heat exchanger 12B serving as the other of a condenser and an evaporator.
  • the compressor 11, the first heat exchanger 12A, and the second heat exchanger 12B are connected in this order from the compressor 11 through the first heat exchanger 12A to the second heat exchanger 12B.
  • the phase change thermal subsystem 20 includes: a phase change material container 21; a phase change material contained in the phase change material container 21; and a heat exchange circuit 22 provided in the phase change material container 21.
  • the heat exchange circuit 22 may be a heat exchange tube or a heat exchange channel.
  • the heat exchange medium flows in the heat exchange tube or the heat exchange channel.
  • the outer wall of the heat exchange tube or the heat exchange channel is in contact with the phase change material, in a similar manner to a heat exchanger. way to perform heat exchange between the heat exchange medium and the phase change material.
  • the cross-system heat exchanger 30 includes a first loop 31A and a second loop 31B.
  • the first loop 31A is connected to the air conditioning subsystem 10 so that the heat exchange medium of the air conditioning subsystem 10 can selectively flow through the first loop 31A
  • the The second loop 31B is connected to the heat exchange loop 22 of the phase change heating subsystem 20 so that the heat exchange medium in the loop formed by the second loop 31B and the heat exchange loop 22 can selectively interact with the phase change material container.
  • the phase change material within 21 performs heat exchange.
  • the heat exchange medium in the first loop 31A in the cross-system heat exchanger 30 can perform heat exchange with the heat exchange medium in the second loop 31B.
  • the air conditioning system 100 also includes: valves, pipes, controllers, etc.
  • the heat exchange circuit of the air conditioning subsystem 10 and the heat exchange circuit 22 of the phase conversion heat subsystem 20 are independent.
  • the heat exchange medium of the air conditioning subsystem 10 is, for example, refrigerant, and the heat exchange medium in the heat exchange circuit 22 of the phase change heat subsystem 20 may be ethylene glycol or other media.
  • the cross-system heat exchanger 30 also serves as at least one of the first heat exchanger 12A and the second heat exchanger 12B. .
  • the cross-system heat exchanger 30 also serves as the first heat exchanger 12A.
  • a cross-system heat exchanger 30, 30A also serves as the second heat exchanger 12B.
  • the cross-system heat exchangers 30A and 30B also serve as the first heat exchanger 12A and the second heat exchanger 12B.
  • the first heat exchanger 12A serves as a condenser
  • the second heat exchanger 12B serves as an evaporator
  • the first heat exchanger 12A serves as an evaporator
  • the second heat exchanger 12B serves as a condenser
  • the cross-system heat exchangers 30 and 30C also serve as the first heat exchanger 12A.
  • the One heat exchanger 12A serves as an evaporator
  • the second heat exchanger 12B serves as a condenser
  • the cross-system heat exchangers 30, 30C serve as the evaporators.
  • the cross-system heat exchangers can selectively convert all the components from The heat obtained by the phase conversion thermal subsystem is released in the second loop 31B.
  • the cross-system heat exchangers 30 and 30C also serve as the first heat exchanger 12A.
  • the first heat exchanger 12A serves as an evaporator.
  • the second heat exchanger 12B serves as a condenser, the cross-system heat exchangers 30, 30C
  • the heat obtained from the phase change thermal subsystem 20 can be selectively released in the second loop 31B.
  • the phase change heating subsystem 20 is used in a heat pump system.
  • the first heat exchanger 12A as an outdoor unit operates at a temperature below the dew point and is prone to frost.
  • the phase change By converting the heat exchange medium with a temperature higher than the dew point of the thermal subsystem 20 to eliminate the frost generated on the surface of the first heat exchanger 12A, the frost and defrost cycle can be greatly shortened, and even uninterrupted heating and timely defrosting can be achieved.
  • the first loop 31A of the cross-system heat exchangers 30, 30B is connected to the first heat exchanger of the air conditioning subsystem 10. between the heat exchanger 12A and the second heat exchanger 12B, so that the heat exchange medium discharged from the compressor 11 enters the cross-system heat exchanger after passing through one of the first heat exchanger 12A and the second heat exchanger 12B. 30, 30B, and then into the other of the first heat exchanger 12A and the second heat exchanger 12B.
  • the air conditioning subsystem 10 further includes an expansion device 13, and the expansion device 13 is connected to the first end of the air conditioning subsystem 10. between the heat exchanger 12A and the second heat exchanger 12B, so that the heat exchange medium discharged from the compressor 11 enters the expansion device after passing through one of the first heat exchanger 12A and the second heat exchanger 12B. 13, and then enters the other of the first heat exchanger 12A and the second heat exchanger 12B.
  • the first heat exchanger 12A serves as a condenser
  • the second heat exchanger 12B serves as an evaporator.
  • 30 doubles as the second heat exchanger 12B.
  • the cross-system heat exchanger 30 can selectively absorb the cold energy obtained from the phase change heat subsystem 20 in the second loop 31B.
  • the phase change heat subsystem 20 starts to work
  • the phase change heat subsystem 20 releases energy, thereby increasing the cooling capacity of the air conditioning system 100 and improving the energy efficiency ratio of the air conditioning system 100 .
  • the phase conversion heating subsystem 20 stops working, the air conditioning subsystem 10 works normally.
  • the first heat exchanger 12A serves as a condenser
  • the second heat exchanger 12B serves as an evaporator, exchanging heat across the system.
  • the heat exchanger 30 also serves as the first heat exchanger 12A.
  • the cross-system heat exchanger is capable of selectively dissipating heat obtained from the phase change heat subsystem in a second loop.
  • the air conditioning subsystem 10 works normally, and the first heat exchanger 12A It is only used in the air conditioning subsystem 10, effectively utilizing the heat exchange area between the first heat exchanger 12A and the air.
  • the phase conversion heating subsystem 20 starts to operate, the air conditioning subsystem 10 may not operate. Therefore, the heating capacity of the air conditioning system 100 can be improved, and the energy efficiency ratio and comfort of the air conditioning system 100 can be improved.
  • the first heat exchanger 12A serves as a condenser
  • the second heat exchanger 12B serves as an evaporator
  • the first loop 31A of the cross-system heat exchanger 30 is connected at Between the expansion device 13 of the air conditioning subsystem 10 and the second heat exchanger 12B as an evaporator, the phase change heat subsystem 20 reduces the heat exchange medium expanded by the expansion device 13 through the cross-system heat exchanger 30 temperature to reduce the dryness of the heat exchange medium.
  • the cross-system heat exchanger 30 may be a plate heat exchanger.
  • the phase conversion heating subsystem 20 participates in the operation of the air conditioning subsystem 10 .
  • the cross-system heat exchanger 30 reduces the temperature of the expanded heat exchange medium through the phase change heat subsystem 20, which can reduce the dryness of the heat exchange medium, thereby making the two
  • the phase flow is distributed more evenly in the second heat exchanger 12B as the evaporator, even causing the heat exchange medium to become a single-phase liquid heat exchange medium, and then enters the second heat exchanger 12B as the evaporator, thereby avoiding two phases.
  • the distribution problem of heat exchange medium is the distribution problem of heat exchange medium.
  • the first heat exchanger 12A serves as a condenser
  • the second heat exchanger 12B serves as an evaporator
  • the first loop 31A of the cross-system heat exchanger 30 is connected Between the first heat exchanger as a condenser of the air conditioning subsystem 10 and the expansion device 13 , the phase change heat subsystem 20 reduces the heat exchange medium condensed by the condenser through the cross-system heat exchanger 30 . temperature to increase the subcooling of the heat exchange medium.
  • the cross-system heat exchanger 30 may be a plate heat exchanger.
  • the phase conversion heating subsystem 20 participates in the operation of the air conditioning subsystem 10 .
  • the cross-system heat exchanger 30 follows the first heat exchanger 12A, the condenser. Sufficient subcooling of the heat exchange medium is obtained through the phase change heat subsystem 20, thereby reducing the design requirements of the condenser and compressor.
  • the first heat exchanger 12A in Figure 7 is modified according to the embodiment shown in Figure 6, that is, the phase change heat subsystem 20
  • the heat exchange loop 22 also includes a third heat exchange loop
  • the cross-system heat exchanger 30 also includes a third cross-system heat exchanger
  • the third cross-system heat exchanger includes the first loop and the second loop
  • the first loop of the third cross-system heat exchanger is connected to the air conditioning subsystem 10 so that the heat exchange medium of the air conditioning subsystem 10 can selectively flow through all the third cross-system heat exchangers.
  • the first loop, and the second loop of the third cross-system heat exchanger is connected to the third heat exchange loop of the phase change heat subsystem 20 so that the third cross-system heat exchanger
  • the heat exchange medium in the loop formed by the second loop and the third heat exchange loop of the phase change heat subsystem 20 can selectively exchange heat with the phase change material contained in the phase change material container 21 .
  • the heat exchange circuit 22 of the phase change heat subsystem 20 includes a first heat exchange circuit 22A and a second heat exchange circuit 22B.
  • the cross-system heat exchanger 30 includes a first cross-system heat exchanger 30A and a second cross-system heat exchanger 30B.
  • the first cross-system heat exchanger 30A includes a first loop 31A and a second loop 31B.
  • the first loop 31A of the first cross-system heat exchanger 30A is connected to the air conditioning subsystem 10 so that the air conditioning subsystem 10
  • the heat exchange medium can selectively flow through the first loop 31A of the first cross-system heat exchanger 30A, and the second loop 31B of the first cross-system heat exchanger 30A has a phase change
  • the first heat exchange circuit 22A of the thermal subsystem 20 is connected so that the heat exchange medium in the circuit formed by the second circuit 31B and the first heat exchange circuit 22A of the first cross-system heat exchanger 30A can be selectively Heat exchange is performed with the phase change material contained in the phase change material container 21 .
  • the second cross-system heat exchanger 30B includes a first loop 31A and a second loop 31B.
  • the first loop 31A of the second cross-system heat exchanger 30B is connected to the air conditioning subsystem 10 so that the air conditioning subsystem 10
  • the heat exchange medium can selectively flow through the first loop 31A of the second cross-system heat exchanger 30B, and the second loop 31B of the second cross-system heat exchanger 30B is in phase change.
  • the second heat exchange loop 22B of the thermal subsystem 20 is connected such that the second loop 31B of the phase change thermal subsystem 20 and the second heat exchange loop 22B of the second cross-system heat exchanger 30B are in a loop.
  • the heat exchange medium can selectively perform heat exchange with the phase change material contained in the phase change material container 21, and in the second cross-system heat exchanger 30B,
  • the heat exchange medium in the first circuit 31A can perform heat exchange with the heat exchange medium in the second circuit 31B of the second cross-system heat exchanger 30B.
  • the heat exchange medium in the first circuit 31A of the first cross-system heat exchanger 30A can be combined with The heat exchange medium in the second circuit 31B of the first cross-system heat exchanger 30A performs heat exchange.
  • the air conditioning subsystem 10 further includes an expansion device 13.
  • the expansion device 13 is connected between the first heat exchanger 12A and the second heat exchanger of the air conditioning subsystem 10. between the heat exchangers 12B, so that the heat exchange medium discharged from the compressor 11 enters the expansion device 13 after passing through one of the first heat exchanger 12A and the second heat exchanger 12B, and then enters the third heat exchanger 12B. one heat exchanger 12A and the other one of the second heat exchanger 12B.
  • the first circuit 31A of the second cross-system heat exchanger 30B is connected between the expansion device 13 of the air conditioning subsystem 10 and the second heat exchanger 12B so that the heat exchange medium of the air conditioning subsystem 10 can selectively flow through The first circuit 31A of the second cross-system heat exchanger 30B.
  • the second cross-system heat exchanger 30B may be a plate heat exchanger.
  • the first cross-system heat exchanger 30A also serves as the second heat exchanger 12B, and the second heat exchanger 12B is used as an evaporator.
  • the first cross-system heat exchanger 30A can The phase change thermal subsystem 20 is used for refrigeration, and the second cross-system heat exchanger 30B can use the air conditioning subsystem 10 to reduce the temperature of the phase change material contained in the phase change material container 21 of the phase change thermal subsystem 20 .
  • the air conditioning subsystem 10 or the phase conversion heat subsystem 20 can be selectively operated to perform cooling.
  • the first cross-system heat exchanger 30A doubles as the second heat exchanger 12B, and the second cross-system heat exchanger 30B doubles as the first heat exchanger.
  • Heater 12A in some embodiments of the present invention, 19.
  • the air conditioning system 100 further includes: a pump 51, the pump 51 is connected between the first heat exchange circuit 22A of the phase conversion heat subsystem 20 and the third heat exchange circuit 22A.
  • phase change heat subsystem compressor 25 and the phase change heat subsystem expansion device 26 are connected Between the second heat exchange circuit 22B of the phase change heat subsystem 20 and the second circuit 31B of the second cross-system heat exchanger 30B, the second heat exchange circuit 22B of the phase change heat subsystem 20 and The heat exchange medium in the circuit formed by the second circuit 31B of the second cross-system heat exchanger 30B is compressed and expanded.
  • phase change heat subsystem compressor 25 and the phase change heat subsystem expansion The expansion device 26, the second heat exchange circuit 22B of the phase change heat subsystem 20, and the second circuit 31B of the second cross-system heat exchanger 30B constitute a refrigeration system to accommodate the phase change heat subsystem 20.
  • the phase change material in the phase change material container 21 is cooled.
  • the cross-system heat exchanger 30 includes a first cross-system heat exchanger 30A and a second cross-system heat exchanger 30B.
  • the first cross-system heat exchanger 30A includes a first loop 31A and a second loop 31B.
  • the first loop 31A of the first cross-system heat exchanger 30A is connected to the air conditioning subsystem 10 so that the air conditioning subsystem 10
  • the heat exchange medium can selectively flow through the first loop 31A of the first cross-system heat exchanger 30A, and the second loop 31B of the first cross-system heat exchanger 30A has a phase change
  • the first heat exchange circuit 22A of the thermal subsystem 20 is connected so that the heat exchange medium in the circuit formed by the second circuit 31B and the first heat exchange circuit 22A of the first cross-system heat exchanger 30A can be selectively Heat exchange is performed with the phase change material contained in the phase change material container 21 .
  • the second cross-system heat exchanger 30B includes a first loop 31A and a second loop 31B.
  • the first loop 31A of the second cross-system heat exchanger 30B is connected to the air conditioning subsystem 10 so that the air conditioning subsystem 10
  • the heat exchange medium can selectively flow through the first loop 31A of the second cross-system heat exchanger 30B, and the second loop 31B of the second cross-system heat exchanger 30B is in phase change.
  • the first heat exchange loop 22A of the thermal subsystem 20 is connected such that the first loop 31A of the phase change thermal subsystem 20 and the second heat exchange loop 22B of the second cross-system heat exchanger 30B are in a loop.
  • the heat exchange medium can selectively perform heat exchange with the phase change material contained in the phase change material container 21, and in the second cross-system heat exchanger 30B,
  • the heat exchange medium in the first loop 31A can perform heat exchange with the heat exchange medium in the second loop 31B of the second cross-system heat exchanger 30B.
  • the second loop of the first cross-system heat exchanger 30A 31B and the second circuit 31B of the second cross-system heat exchanger 30B are connected in parallel to the first heat exchange circuit 22A of the phase change heat subsystem 20 .
  • the air conditioning system 100 further includes a pump 51, which is connected between the first heat exchange circuit 22A of the phase change heat subsystem 20 and the first cross-system heat exchanger.
  • the heat exchange medium in the first circuit 31A of the first cross-system heat exchanger 30A can be mixed with the heat exchange medium in the first cross-system heat exchanger 30A.
  • the heat exchange medium in the second circuit 31B of the heat exchanger 30A performs heat exchange.
  • the first heat exchange circuit 22A of the heat exchange circuit 22 of the phase change heat subsystem 20 can be performed using the phase change heat subsystem 20 and the second heat exchanger 12B, that is, an evaporator.
  • Refrigeration and can use the air conditioning subsystem 10 and the first heat exchanger 12A, that is, the condenser, to reduce the temperature of the phase change material contained in the phase change material container 21 of the phase change heat subsystem 20.
  • the phase change heat subsystem 20 The system compressor 25 and the phase change heat subsystem expansion device 26 can use electric energy to cool the phase change material in the phase change material container 21 when the electric wave is in the valley, so as to utilize the phase change material in the phase change material container 21 in the electric wave peak. Phase change materials for refrigeration.
  • the phase change material in the phase change material container 21 can be cooled by electric energy generated by solar energy during the day.
  • the first cross-system heat exchanger 30A also serves as the second heat exchanger 12B.
  • the first heat exchanger Heater 12A serves as a condenser
  • second heat exchanger 12B serves as an evaporator.
  • the heat exchange loop 22 of the phase change heat subsystem 20 includes a first heat exchange loop 22A and a second heat exchange loop 22B.
  • the cross-system heat exchanger 30 includes: a first cross-system heat exchanger 30A; a second cross-system heat exchanger 30B; and a third cross-system heat exchanger 30C.
  • the first cross-system heat exchanger 30A includes a first loop 31A and a second loop 31B.
  • the first loop 31A of the first cross-system heat exchanger 30A is connected to the air conditioning subsystem 10 so that the air conditioning subsystem 10
  • the heat exchange medium can selectively flow through the first loop 31A of the first cross-system heat exchanger 30A, and the second loop 31B of the first cross-system heat exchanger 30A has a phase change
  • the first heat exchange circuit 22A of the thermal subsystem 20 is connected so that the heat exchange medium in the circuit formed by the second circuit 31B and the first heat exchange circuit 22A of the first cross-system heat exchanger 30A can be selectively Perform heat exchange with the phase change material contained in the phase change material container 21;
  • the second cross-system heat exchanger 30B includes a first loop 31A and a second loop 31B, and all the components of the second cross-system heat exchanger 30B are
  • the first circuit 31A is connected to the air conditioning subsystem 10 to make the air
  • the heat exchange medium of the tune system 10 can selectively flow through the first loop 31A of the second cross-system heat exchanger 30B, and the
  • the heat exchange medium in the loop can selectively perform heat exchange with the phase change material contained in the phase change material container 21, and in the second cross-system heat exchanger 30B, the heat exchange medium is exchanged in the second cross-system heat exchanger 30B.
  • the heat exchange medium in the first loop 31A of the second cross-system heat exchanger 30B can perform heat exchange with the heat exchange medium in the second loop 31B of the second cross-system heat exchanger 30B.
  • the first cross-system heat exchanger 30A The second loop 31B and the second loop 31B of the second cross-system heat exchanger 30B are connected in parallel to the first heat exchange loop 22A of the phase change heat subsystem 20; and the third cross-system heat exchanger 30C includes The first loop 31A and the second loop 31B.
  • the first loop 31A of the third cross-system heat exchanger 30C is connected to the air conditioning subsystem 10 so that the heat exchange medium of the air conditioning subsystem 10 can selectively flow through the first loop 31A and the second loop 31B.
  • the first loop 31A of the third cross-system heat exchanger 30C, and the second loop 31B of the third cross-system heat exchanger 30C and the second heat exchange loop 22B of the phase change heat subsystem 20 connected so that the heat exchange medium in the circuit formed by the second loop 31B of the third cross-system heat exchanger 30C and the second heat exchange loop 22B of the phase change heat subsystem 20 can selectively interact with
  • the phase change material contained in the phase change material container 21 undergoes heat exchange.
  • the heat exchange medium in the first circuit 31A of the first cross-system heat exchanger 30A can be mixed with the heat exchange medium in the first cross-system heat exchanger 30A.
  • the heat exchange medium in the second circuit 31B of the heat exchanger 30A performs heat exchange.
  • the heat exchange medium in the first loop 31A of the third cross-system heat exchanger 30C can be mixed with the heat exchange medium in the third cross-system heat exchanger 30C.
  • the heat exchange medium in the second circuit 31B of the heat exchanger 30C performs heat exchange.
  • the first cross-system heat exchanger 30A doubles as the second heat exchanger 12B, and the third cross-system heat exchanger 30C doubles as the first heat exchanger 12A.
  • the first heat exchanger 12A serves as an evaporator
  • the second heat exchanger 12B serves as a condenser.
  • cross-system heat exchanger 30A may utilize phase change heat
  • the subsystem 20 performs refrigeration
  • the cross-system heat exchanger 30B can utilize the air conditioning subsystem 10 to reduce the temperature of the phase change material contained in the phase change material container 21 of the phase change heat subsystem 20
  • the cross-system heat exchanger 30C can In the heating mode of the air conditioning subsystem 10, the phase change heating subsystem 20 is used to defrost the first heat exchanger 12A.
  • the cross-system heat exchanger 30 also serves as the second heat exchanger 12B.
  • the first heat exchanger Heat exchanger 12A serves as a condenser
  • second heat exchanger 12B serves as an evaporator.
  • the heat exchange circuit 22 of the phase change heat subsystem 20 includes a first heat exchange circuit 22A and a second heat exchange circuit 22B.
  • the second circuit 31B of the cross-system heat exchanger 30 is connected with the phase change heat subsystem.
  • the first heat exchange circuit 22A of the system 20 is connected so that the heat exchange medium in the circuit formed by the second circuit 31B and the first heat exchange circuit 22A can selectively interact with the phase change material contained in the phase change material container 21 Perform heat exchange.
  • the second heat exchange circuit 22B is connected to the air conditioning subsystem 10 in parallel with the first circuit 31A of the cross-system heat exchanger 30 so that the heat exchange medium in the air conditioning subsystem 10 can selectively pass through the second heat exchange circuit. 22B performs heat exchange with the phase change material contained in the phase change material container 21 .
  • the first heat exchange circuit 22A of the heat exchange circuit 22 of the phase change heat subsystem 20 can use the phase change heat subsystem 20 for cooling, and can use the air conditioning subsystem 10 to reduce the phase change.
  • the temperature of the phase change material contained in the phase change material container 21 of the thermal subsystem 20 is converted, and the second heat exchange circuit 22B of the heat exchange circuit 22 of the phase change thermal subsystem 20 can be used in the system of the air conditioning subsystem 10 Under hot conditions, the phase change thermal subsystem 20 is used to defrost the first heat exchanger 12A.
  • the cross-system heat exchanger 30 includes: a first heat exchange tube 32A used to form a first loop 31A and a third heat exchanger tube 32A used to form a second loop 31B.
  • Two heat exchange tubes 32B, at least some of the plurality of first heat exchange tube groups and at least some of the plurality of second heat exchange tube groups are alternately arranged, and each first heat exchange tube group includes at least one first heat exchange tube. 32A, and each second heat exchange tube group includes at least one second heat exchange tube 32B.
  • the cross-system heat exchanger 30 also includes a header 33 and fins arranged alternately with the heat exchange tubes. When the cross-system heat exchanger 30 serves as the first heat exchanger 12A and the second heat exchanger 12B, the cross-system heat exchanger 30 may be the heat exchanger shown in FIGS. 11 and 12 .
  • the cross-system heat exchanger 30 is a plate heat exchanger.
  • the cross-system heat exchanger 30 may be a plate heat exchanger.
  • the heat exchange medium in the second loop 31B of the cross-system heat exchanger 30 may be water or ethylene glycol.
  • the efficiency of the heat exchanger can be effectively improved, and at the same time, electric energy can be used to cool or heat the phase change material in the phase change material container 21 when the electric wave is used at the peak, so as to utilize the phase change material during the electric wave peak.
  • the phase change material in the change material container 21 is cooled or heated.
  • the phase change material in the phase change material container 21 can be cooled or heated by the electric energy generated by solar energy during the day, so that the phase change material in the phase change material container 21 can be used for cooling or heating at night, thereby achieving independent operation.
  • Grid air conditioning system is cooled or heated.
  • the air conditioning system improves the distribution of heat exchange medium in the evaporator, and can effectively utilize the phase change material in the phase change material container 21 to defrost the heat exchanger under heating conditions. And also reduces the load on the compressor when the exhaust temperature is too high.
  • the air conditioning system according to the embodiment of the present invention improves heat exchange efficiency, thereby saving energy. Since existing components of conventional air conditioning systems are used as much as possible and these components are used efficiently, the air conditioning system according to the embodiment of the present invention can reduce the cost of the system. Due to the use of the heat exchanger shown in Figures 11 and 12, the air conditioning system according to the embodiment of the present invention can save space. Furthermore, the air conditioning system according to the embodiment of the present invention improves the uniformity of the two-phase heat exchange medium distribution in the evaporator, and can reduce the design requirements of the compressor and heat exchanger to a certain extent, making the system more tolerant. sex.
  • the air conditioning system can increase the heat exchange area (fins) of the heat exchanger with the air when the phase conversion heat subsystem 20 stops working. ) are used in the air conditioning subsystem 10. Similarly, when the air conditioning subsystem 10 stops working, the heat exchange area (fins) of the heat exchanger with the air is used for the phase conversion heat subsystem 20, thereby effectively utilizing the heat exchange area of the heat exchanger and improving the efficiency of the heat exchanger. Thermal efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

本发明公开了一种空调系统。该空调系统包括空调子系统、相变换热子系统和跨系统换热器。相变换热子系统包括相变材料容器、容纳在相变材料容器内的相变材料以及设置在相变材料容器中的换热回路。跨系统换热器包括第一回路和第二回路,第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过第一回路,并且第二回路与相变换热子系统的换热回路连接以使第二回路和所述相变换热子系统的换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换。本发明提高了空调系统的换热效率,从而能够节能。

Description

空调系统 技术领域
本发明的实施例涉及一种空调系统。
背景技术
通常,空调系统包括压缩机、冷凝器、膨胀装置和蒸发器。
发明内容
本发明的实施例的目的是提供一种空调系统,由此能够提高空调系统的换热效率,从而能够节能。
根据本发明的实施例,提供了一种空调系统,包括:空调子系统,所述空调子系统包括:压缩机;作为冷凝器和蒸发器中的一个的第一换热器;以及作为冷凝器和蒸发器中的另一个的第二换热器,所述压缩机、第一换热器以及第二换热器以从所述压缩机经过第一换热器到第二换热器的顺序连接;
相变换热子系统,所述相变换热子系统包括:相变材料容器;容纳在相变材料容器内的相变材料;以及设置在相变材料容器中的换热回路;以及跨系统换热器,所述跨系统换热器包括第一回路和第二回路,所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第一回路,并且所述第二回路与相变换热子系统的换热回路连接以使所述第二回路和所述相变换热子系统的换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换。
根据本发明的实施例,所述跨系统换热器兼作所述第一换热器和第二换热器中的至少一个。
根据本发明的实施例,所述跨系统换热器兼作所述第一换热器,所述第一换热器作为蒸发器,并且第二换热器作为冷凝器所述跨系统换热器能够选择性地将从所述相变换热子系统获得的热量在第二回路放热。
根据本发明的实施例,所述跨系统换热器兼作所述第二换热器,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所述跨系统换热器能够选择性地将从所述相变换热子系统获得的冷量在第二回路吸热。
根据本发明的实施例,所述跨系统换热器兼作所述第一换热器,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所述跨系统换热器能够选择性地将从所述相变换热子系统获得的热量在第二回路放热。
根据本发明的实施例,所述跨系统换热器的第一回路连接在空调子系统的所述第一换热器与第二换热器之间,使得压缩机排出的换热介质在穿过所述第一换热器和第二换热器中的一个后进入所述跨系统换热器,并且然后进入所述第一换热器和第二换热器中的另一个。
根据本发明的实施例,在所述跨系统换热器中在第一回路中的换热介质能够与在第二回路中的换热介质进行热交换。
根据本发明的实施例,所述空调子系统还包括膨胀装置,所述膨胀装置连接在空调子系统的所述第一换热器与第二换热器之间,使得压缩机排出的换热介质在穿过所述第一换热器和第二换热器中的一个后进入所述膨胀装置,并且然后进入所述第一换热器和第二换热器中的另一个。
根据本发明的实施例,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所述跨系统换热器的第一回路连接在空调子系统的膨胀装置与作为蒸发器的第二换热器之间,所述相变换热子系统通过所述跨系统换热器来降低由膨胀装置膨胀后的换热介质的温度。
根据本发明的实施例,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所述跨系统换热器的第一回路连接在空调子系统的作为冷凝器的第一换热与器膨胀装置之间,所述相变换热子系统通过所述跨系统换热器来降低由冷凝器冷凝后的换热介质的温度。
根据本发明的实施例,所述相变换热子系统的换热回路包括第一换热回路和第二换热回路;所述跨系统换热器包括第一跨系统换热 器和第二跨系统换热器,所述第一跨系统换热器包括第一回路和第二回路,所述第一跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第一跨系统换热器的所述第一回路,并且所述第一跨系统换热器的所述第二回路与相变换热子系统的第一换热回路连接以使所述第一跨系统换热器的所述第二回路和所述相变换热子系统的第一换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换;以及所述第二跨系统换热器包括第一回路和第二回路,所述第二跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第二跨系统换热器的所述第一回路,并且所述第二跨系统换热器的所述第二回路与相变换热子系统的第二换热回路连接以使相变换热子系统的所述第二回路和所述第二跨系统换热器的第二换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换,并且在所述第二跨系统换热器中在所述第二跨系统换热器的第一回路中的换热介质能够与在所述第二跨系统换热器的第二回路中的换热介质进行热交换。
根据本发明的实施例,所述相变换热子系统的换热回路包括第一换热回路;所述跨系统换热器包括第一跨系统换热器和第二跨系统换热器,所述第一跨系统换热器包括第一回路和第二回路,所述第一跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第一跨系统换热器的所述第一回路,并且所述第一跨系统换热器的所述第二回路与相变换热子系统的第一换热回路连接以使所述第一跨系统换热器的所述第二回路和所述相变换热子系统的第一换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换;以及所述第二跨系统换热器包括第一回路和第二回路,所述第二跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第二跨系统换热器的所述第一回路,并且所述第二跨系统换热器的所述第二回路与相变换热子系统的第一换热回路连接以使相变换热子系统的所述第一回路和所述第二跨系统换热器的第二 换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换,并且在所述第二跨系统换热器中在所述第二跨系统换热器的第一回路中的换热介质能够与在所述第二跨系统换热器的第二回路中的换热介质进行热交换,所述第一跨系统换热器的第二回路和所述第二跨系统换热器的第二回路并联连接于相变换热子系统的第一换热回路。
根据本发明的实施例,所述相变换热子系统的换热回路还包括第三换热回路;所述跨系统换热器还包括第三跨系统换热器,所述第三跨系统换热器包括第一回路和第二回路,所述第三跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第三跨系统换热器的所述第一回路,并且所述第三跨系统换热器的所述第二回路与相变换热子系统的第三换热回路连接以使所述第三跨系统换热器的所述第二回路和所述相变换热子系统的第三换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换。
根据本发明的实施例,所述相变换热子系统的换热回路还包括第二换热回路;所述跨系统换热器还包括第三跨系统换热器,所述第三跨系统换热器包括第一回路和第二回路,所述第三跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第三跨系统换热器的所述第一回路,并且所述第三跨系统换热器的所述第二回路与相变换热子系统的第二换热回路连接以使所述第三跨系统换热器的所述第二回路和所述相变换热子系统的第二换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换。
根据本发明的实施例,所述空调子系统还包括膨胀装置,所述膨胀装置连接在空调子系统的所述第一换热器与第二换热器之间,使得压缩机排出的换热介质在穿过所述第一换热器和第二换热器中的一个后进入所述膨胀装置,并且然后进入所述第一换热器和第二换热器中的另一个,所述第二跨系统换热器的第一回路连接在空调子系统的膨胀装置与第二换热器之间以使空调子系统的换热介质能够选择 性地流过所述第二跨系统换热器的所述第一回路。
根据本发明的实施例,第一跨系统换热器兼作第二换热器,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器。
根据本发明的实施例,第一跨系统换热器兼作第二换热器,并且所述第三跨系统换热器兼作所述第一换热器。
根据本发明的实施例,所述第一换热器作为蒸发器,并且第二换热器作为冷凝器。
根据本发明的实施例,第二跨系统换热器是板式换热器。
根据本发明的实施例,所述空调系统还包括:泵,所述泵连接在相变换热子系统的第一换热回路与所述第一跨系统换热器的第二回路和所述第二跨系统换热器的第二回路之间以促进相变换热子系统的第一换热回路与所述第一跨系统换热器的第二回路构成的回路中的换热介质的流动以及促进相变换热子系统的第一换热回路与所述第二跨系统换热器的第二回路构成的回路中的换热介质的流动。
根据本发明的实施例,所述跨系统换热器兼作所述第二换热器,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所述相变换热子系统的换热回路包括第一换热回路和第二换热回路,所述跨系统换热器的所述第二回路与相变换热子系统的第一换热回路连接以使所述第二回路和第一换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换,所述第二换热回路与所述跨系统换热器的第一回路并联连接于空调子系统以使空调子系统中的换热介质能够选择性地通过第二换热回路与容纳在相变材料容器内的相变材料进行热交换。
根据本发明的实施例,所述第一跨系统换热器兼作所述第二换热器,并且所述第二跨系统换热器兼作所述第一换热器。
根据本发明的实施例,所述空调系统还包括:泵,所述泵连接在相变换热子系统的第一换热回路与所述第一跨系统换热器的第二回路之间以促进相变换热子系统的第一换热回路与所述第一跨系统换热器的第二回路构成的回路中的换热介质的流动;以及相变换热子系统压缩机和相变换热子系统膨胀装置,所述相变换热子系统压缩机 和相变换热子系统膨胀装置连接在相变换热子系统的第二换热回路与所述第二跨系统换热器的第二回路之间以对相变换热子系统的第二换热回路与所述第二跨系统换热器的第二回路构成的回路中的换热介质进行压缩和膨胀。
根据本发明的实施例,所述跨系统换热器包括:用于形成第一回路的第一换热管以及用于形成第二回路的第二换热管,多个第一换热管组中的至少一些和多个第二换热管组中的至少一些交替排列,每一个第一换热管组包括至少一个第一换热管,并且每一个第二换热管组包括至少一个第二换热管。
根据本发明的实施例,所述跨系统换热器是板式换热器。
根据本发明的实施例,所述跨系统换热器的第二回路中的换热介质是水或者乙二醇。
根据本发明的实施例,所述冷凝器和所述蒸发器是指所述空调系统在制冷工况下而言。
根据本发明的实施例,所述冷凝器和所述蒸发器是指所述空调系统在制热工况下而言。
采用根据本发明的实施例的空调系统,能够提高空调系统的换热效率,从而能够节能。
附图说明
图1为根据本发明的实施例的空调子系统的示意图;
图2为根据本发明的实施例的空调系统的示意图;
图3为根据本发明的另一个实施例的空调系统的示意图;
图4为根据本发明的再一个实施例的空调系统的示意图;
图5为根据本发明的又一个实施例的空调系统的示意图;
图6为根据本发明的进一步的实施例的空调系统的示意图;
图7为根据本发明的另一个实施例的空调系统的示意图;
图8为根据本发明的再一个实施例的空调系统的示意图;
图9为根据本发明的又一个实施例的空调系统的示意图;
图10为根据本发明的进一步的实施例的空调系统的示意图;
图11为根据本发明的实施例的换热器的示意侧视图;以及
图12为根据本发明的实施例的换热器的示意主视图。
具体实施方式
下面结合附图及具体实施方式对本发明做进一步说明。
图1仅仅示出了空调子系统10,图2至图10示出了根据本发明的各个实施例的各种空调系统,而图11至图12示出了根据本发明的实施例的换热器。在图2、图4、图5中,空调子系统10上的箭头表示在空调子系统10的制冷工况下,换热介质的流动方向。在图3和图6中,空调子系统10上的箭头表示在空调子系统10的制热工况下,换热介质的流动方向。图11和图12中,箭头表示换热器的两个回路的换热介质的流动方向。本发明的空调系统可以只有一种工况,例如单冷空调系统,也可以是具有制冷和制热两种工况的热泵空调系统。
图2至图6对本发明实施例的空调系统进行了原理性的示意,不限于相变换热子系统20内的能量是如何充进去的。图7至图10所示的实施例中公开了几种向相变换热子系统20内充能的方式。例如,图7至图9所示的实施例中,相变子换热子系统20利用空调子系统10充能;图10所示的实施例中,添加压缩机25和膨胀装置26等形成为相变子换热子系统20充能的回路。
参见图1至图10,根据本发明的实施例的空调系统100包括:空调子系统10、相变换热子系统20和跨系统换热器30。所述空调子系统10包括:压缩机11;作为冷凝器和蒸发器中的一个的第一换热器12A;以及作为冷凝器和蒸发器中的另一个的第二换热器12B,所述压缩机11、第一换热器12A以及第二换热器12B以从所述压缩机11经过第一换热器12A到第二换热器12B的顺序连接。所述相变换热子系统20包括:相变材料容器21;容纳在相变材料容器21内的相变材料;以及设置在相变材料容器21中的换热回路22。换热回路22可以是换热管或者换热通道,换热介质在换热管或者换热通道中流动,换热管或者换热通道的外壁与相变材料接触,以与换热器类似的方式,在换热介质和相变材料之间进行热交换。所述跨系统换热器 30包括第一回路31A和第二回路31B,所述第一回路31A与空调子系统10连接以使空调子系统10的换热介质能够选择性地流过所述第一回路31A,并且所述第二回路31B与相变换热子系统20的换热回路22连接以使所述第二回路31B和换热回路22构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换。在本发明的一些示例中,在所述跨系统换热器30中在第一回路31A中的换热介质能够与在第二回路31B中的换热介质进行热交换。此外,空调系统100还包括:阀门、管道、控制器等。
参见图2至图8、图10,在本发明的一些实施例中,空调子系统10的换热回路和相变换热子系统20的换热回路22是独立的。空调子系统10的换热介质例如是冷媒,相变换热子系统20的换热回路22中的换热介质可以是乙二醇或其他介质。
参见图2、图3、图6至图10,在本发明的一些实施例中,所述跨系统换热器30兼作所述第一换热器12A和第二换热器12B中的至少一个。参见图3、图6,所述跨系统换热器30兼作所述第一换热器12A。参见图2、图7、图9,一个跨系统换热器30,30A兼作所述第二换热器12B。参见图8、图10,所述跨系统换热器30A,30B兼作所述第一换热器12A和第二换热器12B。根据本发明的示例,在所述空调子系统10的制冷工况下,所述第一换热器12A作为冷凝器,并且第二换热器12B作为蒸发器,并且在所述空调子系统10的制热工况下,所述第一换热器12A作为蒸发器,并且第二换热器12B作为冷凝器。
在图6、图8所示的实施例中,所述跨系统换热器30、30C兼作所述第一换热器12A,在所述空调子系统10的制热工况下,所述第一换热器12A作为蒸发器,并且第二换热器12B作为冷凝器,所述跨系统换热器30、30C作为所述蒸发器,所述跨系统换热器能够选择性地将从所述相变换热子系统获得的热量在第二回路31B放热。
在图6、图8所示的实施例中,所述跨系统换热器30、30C兼作所述第一换热器12A,在制热工况中,所述第一换热器12A作为蒸发器,并且第二换热器12B作为冷凝器,所述跨系统换热器30、30C 能够选择性地将从所述相变换热子系统20获得的热量在第二回路31B放热。相变换热子系统20用在热泵系统中,作为室外机的第一换热器12A在低于露点的温度下运行,容易结霜,使用图11和图12所示的换热器,相变换热子系统20高于露点温度的换热介质消除第一换热器12A表面生成的霜,可以大大缩短结霜除霜周期,甚至能够实现不间断制热并及时除霜。
参见图4、图5、图7、图8,在本发明的一些实施例中,所述跨系统换热器30、30B的第一回路31A连接在空调子系统10的所述第一换热器12A与第二换热器12B之间,使得压缩机11排出的换热介质在穿过所述第一换热器12A和第二换热器12B中的一个后进入所述跨系统换热器30、30B,并且然后进入所述第一换热器12A和第二换热器12B中的另一个。
参见图1至图5、图7至图10,在本发明的一些实施例中,所述空调子系统10还包括膨胀装置13,所述膨胀装置13连接在空调子系统10的所述第一换热器12A与第二换热器12B之间,使得压缩机11排出的换热介质在穿过所述第一换热器12A和第二换热器12B中的一个后进入所述膨胀装置13,并且然后进入所述第一换热器12A和第二换热器12B中的另一个。
在图2所示的实施例中,以空调子系统10处制冷工况为例,所述第一换热器12A作为冷凝器,并且第二换热器12B作为蒸发器,跨系统换热器30兼作第二换热器12B。跨系统换热器30能够选择性地将从相变换热子系统20获得的冷量在第二回路31B吸热。当相变换热子系统20开始工作时,相变换热子系统20释放能量,从而提高空调系统100的制冷能力,提高空调系统100能效比。当相变换热子系统20停止工作时,空调子系统10正常工作。
在图3所示的实施例中,以空调子系统10处制热工况为例,所述第一换热器12A作为冷凝器,并且第二换热器12B作为蒸发器,跨系统换热器30兼作第一换热器12A。所述跨系统换热器能够选择性地将从所述相变换热子系统获得的热量在第二回路放热。当相变换热子系统20停止工作时,空调子系统10正常工作,第一换热器12A 仅用于空调子系统10,有效利用了第一换热器12A与空气的换热面积。当相变换热子系统20开始工作时,空调子系统10可以不工作。因此可以提高空调系统100的制热能力,提高空调系统100能效比和舒适度。
参见图4在本发明的一些实施例中,所述第一换热器12A作为冷凝器,并且第二换热器12B作为蒸发器,所述跨系统换热器30的第一回路31A连接在空调子系统10的膨胀装置13与作为蒸发器的第二换热器12B之间,所述相变换热子系统20通过跨系统换热器30来降低由膨胀装置13膨胀后的换热介质的温度,以降低换热介质的干度。跨系统换热器30可以是板式换热器。
在图4所示的实施例中,相变换热子系统20参与空调子系统10的操作。跨系统换热器30在第二换热器12B,即蒸发器,之前,通过相变换热子系统20降低膨胀后的换热介质的温度,可以降低换热介质的干度,从而使得两相流在作为蒸发器的第二换热器12B中的分配更加均匀,甚至使得换热介质变成单相液态换热介质,然后进入作为蒸发器的第二换热器12B,从而避免两相换热介质的分配问题。
参见图5,在本发明的一些实施例中,所述第一换热器12A作为冷凝器,并且第二换热器12B作为蒸发器,所述跨系统换热器30的第一回路31A连接在空调子系统10的作为冷凝器的第一换热与器膨胀装置13之间,所述相变换热子系统20通过跨系统换热器30来降低由冷凝器冷凝后的换热介质的温度,以增加换热介质的过冷度。跨系统换热器30可以是板式换热器。
在图5所示的实施例中,相变换热子系统20参与空调子系统10的操作。跨系统换热器30在第一换热器12A,即冷凝器,之后。通过相变换热子系统20获得足够的换热介质的过冷度,从而可以降低冷凝器和压缩机的设计要求。
参见图6和图7,在本发明的一些实施例中,将图7中的第一换热器12A根据图6所示的实施例进行修改,即,所述相变换热子系统20的换热回路22还包括第三换热回路;所述跨系统换热器30还包括第三跨系统换热器,所述第三跨系统换热器包括第一回路和第二 回路,所述第三跨系统换热器的所述第一回路与空调子系统10连接以使空调子系统10的换热介质能够选择性地流过所述第三跨系统换热器的所述第一回路,并且所述第三跨系统换热器的所述第二回路与相变换热子系统20的第三换热回路连接以使所述第三跨系统换热器的所述第二回路和所述相变换热子系统20的第三换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换。
参见图7、图8、图10,在本发明的一些实施例中,所述相变换热子系统20的换热回路22包括第一换热回路22A和第二换热回路22B。所述跨系统换热器30包括第一跨系统换热器30A和第二跨系统换热器30B。所述第一跨系统换热器30A包括第一回路31A和第二回路31B,所述第一跨系统换热器30A的所述第一回路31A与空调子系统10连接以使空调子系统10的换热介质能够选择性地流过所述第一跨系统换热器30A的所述第一回路31A,并且所述第一跨系统换热器30A的所述第二回路31B与相变换热子系统20的第一换热回路22A连接以使所述第一跨系统换热器30A的所述第二回路31B和第一换热回路22A构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换。所述第二跨系统换热器30B包括第一回路31A和第二回路31B,所述第二跨系统换热器30B的所述第一回路31A与空调子系统10连接以使空调子系统10的换热介质能够选择性地流过所述第二跨系统换热器30B的所述第一回路31A,并且所述第二跨系统换热器30B的所述第二回路31B与相变换热子系统20的第二换热回路22B连接以使相变换热子系统20的所述第二回路31B和所述第二跨系统换热器30B的第二换热回路22B构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换,并且在所述第二跨系统换热器30B中在所述第二跨系统换热器30B的第一回路31A中的换热介质能够与在所述第二跨系统换热器30B的第二回路31B中的换热介质进行热交换。在本发明的一些示例中,在所述第一跨系统换热器30A中在所述第一跨系统换热器30A的第一回路31A中的换热介质能够与 在所述第一跨系统换热器30A的第二回路31B中的换热介质进行热交换。
在本发明的示例中,参见图7、图8,所述空调子系统10还包括膨胀装置13,所述膨胀装置13连接在空调子系统10的所述第一换热器12A与第二换热器12B之间,使得压缩机11排出的换热介质在穿过所述第一换热器12A和第二换热器12B中的一个后进入所述膨胀装置13,并且然后进入所述第一换热器12A和第二换热器12B中的另一个。所述第二跨系统换热器30B的第一回路31A连接在空调子系统10的膨胀装置13与第二换热器12B之间以使空调子系统10的换热介质能够选择性地流过所述第二跨系统换热器30B的所述第一回路31A。第二跨系统换热器30B可以是板式换热器。
在图7、图8所示的实施例中,第一跨系统换热器30A兼做第二换热器12B,第二换热器12B作为蒸发器使用,第一跨系统换热器30A可以利用相变换热子系统20进行制冷,而第二跨系统换热器30B可以利用空调子系统10降低相变换热子系统20的容纳在相变材料容器21内的相变材料的温度。在图7、图8所示的空调系统100中,可选择性地运行空调子系统10或相变换热子系统20,以进行制冷。
参见图10,在本发明的一些实施例中,所述第一跨系统换热器30A兼作所述第二换热器12B,并且所述第二跨系统换热器30B兼作所述第一换热器12A。参见图10,在本发明的一些实施例中,19.所述空调系统100还包括:泵51,所述泵51连接在相变换热子系统20的第一换热回路22A与所述第一跨系统换热器30A的第二回路31B之间以促进相变换热子系统20的第一换热回路22A与所述第一跨系统换热器30A的第二回路31B构成的回路中的换热介质的流动;以及相变换热子系统压缩机25和相变换热子系统膨胀装置26,所述相变换热子系统压缩机25和相变换热子系统膨胀装置26连接在相变换热子系统20的第二换热回路22B与所述第二跨系统换热器30B的第二回路31B之间以对相变换热子系统20的第二换热回路22B与所述第二跨系统换热器30B的第二回路31B构成的回路中的换热介质进行压缩和膨胀。所述相变换热子系统压缩机25、相变换热子系统膨 胀装置26、相变换热子系统20的第二换热回路22B、所述第二跨系统换热器30B的第二回路31B构成制冷系统,以对相变换热子系统20的容纳在相变材料容器21内的相变材料进行冷却。
参见图8,在本发明的一些实施例中,所述跨系统换热器30包括第一跨系统换热器30A和第二跨系统换热器30B。所述第一跨系统换热器30A包括第一回路31A和第二回路31B,所述第一跨系统换热器30A的所述第一回路31A与空调子系统10连接以使空调子系统10的换热介质能够选择性地流过所述第一跨系统换热器30A的所述第一回路31A,并且所述第一跨系统换热器30A的所述第二回路31B与相变换热子系统20的第一换热回路22A连接以使所述第一跨系统换热器30A的所述第二回路31B和第一换热回路22A构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换。所述第二跨系统换热器30B包括第一回路31A和第二回路31B,所述第二跨系统换热器30B的所述第一回路31A与空调子系统10连接以使空调子系统10的换热介质能够选择性地流过所述第二跨系统换热器30B的所述第一回路31A,并且所述第二跨系统换热器30B的所述第二回路31B与相变换热子系统20的第一换热回路22A连接以使相变换热子系统20的所述第一回路31A和所述第二跨系统换热器30B的第二换热回路22B构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换,并且在所述第二跨系统换热器30B中在所述第二跨系统换热器30B的第一回路31A中的换热介质能够与在所述第二跨系统换热器30B的第二回路31B中的换热介质进行热交换,所述第一跨系统换热器30A的第二回路31B和所述第二跨系统换热器30B的第二回路31B并联连接于相变换热子系统20的第一换热回路22A。参见图8,根据本发明的示例,所述空调系统100还包括泵51,所述泵51连接在相变换热子系统20的第一换热回路22A与所述第一跨系统换热器30A的第二回路31B和所述第二跨系统换热器30B的第二回路31B之间以促进相变换热子系统20的第一换热回路22A与所述第一跨系统换热器30A的第二回路31B构成的回路中的换热介质的流动以及促进相 变换热子系统20的第一换热回路22A与所述第二跨系统换热器30B的第二回路31B构成的回路中的换热介质的流动。在本发明的一些示例中,在所述第一跨系统换热器30A中在所述第一跨系统换热器30A的第一回路31A中的换热介质能够与在所述第一跨系统换热器30A的第二回路31B中的换热介质进行热交换。
在图10所示的实施例中,相变换热子系统20的换热回路22的第一换热回路22A可以利用相变换热子系统20以及第二换热器12B,即蒸发器进行制冷,并且可以利用空调子系统10以及第一换热器12A,即冷凝器,降低相变换热子系统20的容纳在相变材料容器21内的相变材料的温度,相变换热子系统压缩机25和相变换热子系统膨胀装置26可以在用电波谷时利用电能对相变材料容器21内的相变材料进行冷却,以在用电波峰时利用相变材料容器21内的相变材料进行制冷。此外,可在白天通过太阳能产生的电能对相变材料容器21内的相变材料进行冷却。
参见图7至图10,在本发明的一些实施例中,第一跨系统换热器30A兼作第二换热器12B,在所述空调子系统10的制冷工况下,所述第一换热器12A作为冷凝器,并且第二换热器12B作为蒸发器。
参见图8,在本发明的一些实施例中,所述相变换热子系统20的换热回路22包括第一换热回路22A和第二换热回路22B。所述跨系统换热器30包括:第一跨系统换热器30A;第二跨系统换热器30B;以及第三跨系统换热器30C。所述第一跨系统换热器30A包括第一回路31A和第二回路31B,所述第一跨系统换热器30A的所述第一回路31A与空调子系统10连接以使空调子系统10的换热介质能够选择性地流过所述第一跨系统换热器30A的所述第一回路31A,并且所述第一跨系统换热器30A的所述第二回路31B与相变换热子系统20的第一换热回路22A连接以使所述第一跨系统换热器30A的所述第二回路31B和第一换热回路22A构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换;所述第二跨系统换热器30B包括第一回路31A和第二回路31B,所述第二跨系统换热器30B的所述第一回路31A与空调子系统10连接以使空 调子系统10的换热介质能够选择性地流过所述第二跨系统换热器30B的所述第一回路31A,并且所述第二跨系统换热器30B的所述第二回路31B与相变换热子系统20的第一换热回路22A连接以使相变换热子系统20的所述第一回路31A和所述第二跨系统换热器30B的第二换热回路22B构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换,并且在所述第二跨系统换热器30B中在所述第二跨系统换热器30B的第一回路31A中的换热介质能够与在所述第二跨系统换热器30B的第二回路31B中的换热介质进行热交换,所述第一跨系统换热器30A的第二回路31B和所述第二跨系统换热器30B的第二回路31B并联连接于相变换热子系统20的第一换热回路22A;以及所述第三跨系统换热器30C包括第一回路31A和第二回路31B,所述第三跨系统换热器30C的所述第一回路31A与空调子系统10连接以使空调子系统10的换热介质能够选择性地流过所述第三跨系统换热器30C的所述第一回路31A,并且所述第三跨系统换热器30C的所述第二回路31B与相变换热子系统20的第二换热回路22B连接以使所述第三跨系统换热器30C的所述第二回路31B和所述相变换热子系统20的第二换热回路22B构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换。在本发明的一些示例中,在所述第一跨系统换热器30A中在所述第一跨系统换热器30A的第一回路31A中的换热介质能够与在所述第一跨系统换热器30A的第二回路31B中的换热介质进行热交换。在本发明的一些示例中,在所述第三跨系统换热器30C中在所述第三跨系统换热器30C的第一回路31A中的换热介质能够与在所述第三跨系统换热器30C的第二回路31B中的换热介质进行热交换。
根据本发明的示例,第一跨系统换热器30A兼作第二换热器12B,并且所述第三跨系统换热器30C兼作所述第一换热器12A。在所述空调子系统10的制热工况下,所述第一换热器12A作为蒸发器,并且第二换热器12B作为冷凝器。
在图8所示的实施例中,跨系统换热器30A可以利用相变换热 子系统20进行制冷,跨系统换热器30B可以利用空调子系统10降低相变换热子系统20的容纳在相变材料容器21内的相变材料的温度,而跨系统换热器30C可以在空调子系统10的制热工况下利用相变换热子系统20对第一换热器12A进行除霜。
参见图9,在本发明的一些实施例中,所述跨系统换热器30兼作所述第二换热器12B,在所述空调子系统10的制冷工况下,所述第一换热器12A作为冷凝器,并且第二换热器12B作为蒸发器。所述相变换热子系统20的换热回路22包括第一换热回路22A和第二换热回路22B,所述跨系统换热器30的所述第二回路31B与相变换热子系统20的第一换热回路22A连接以使所述第二回路31B和第一换热回路22A构成的回路中的换热介质能够选择性地与容纳在相变材料容器21内的相变材料进行热交换。所述第二换热回路22B与所述跨系统换热器30的第一回路31A并联连接于空调子系统10以使空调子系统10中的换热介质能够选择性地通过第二换热回路22B与容纳在相变材料容器21内的相变材料进行热交换。
在图9所示的实施例中,相变换热子系统20的换热回路22的第一换热回路22A可以利用相变换热子系统20进行制冷,并且可以利用空调子系统10降低相变换热子系统20的容纳在相变材料容器21内的相变材料的温度,而相变换热子系统20的换热回路22的第二换热回路22B可以在空调子系统10的制热工况下利用相变换热子系统20对第一换热器12A进行除霜。
参见图11、图12,在本发明的一些实施例中,所述跨系统换热器30包括:用于形成第一回路31A的第一换热管32A以及用于形成第二回路31B的第二换热管32B,多个第一换热管组中的至少一些和多个第二换热管组中的至少一些交替排列,每一个第一换热管组包括至少一个第一换热管32A,并且每一个第二换热管组包括至少一个第二换热管32B。所述跨系统换热器30还包括集流管33以及与换热管交替排列的翅片。在跨系统换热器30兼作第一换热器12A和第二换热器12B的情况下,跨系统换热器30可以采用图11、图12所示的换热器。
在本发明的另一些实施例中,所述跨系统换热器30是板式换热器。在跨系统换热器30不兼作第一换热器12A和第二换热器12B的情况下,所述跨系统换热器30可以是板式换热器。所述跨系统换热器30的第二回路31B中的换热介质可以是水或者乙二醇。
根据本发明的实施例,可以有效地提高换热器的效率,同时可以在用电波谷时利用电能对相变材料容器21内的相变材料进行冷却或加热,以在用电波峰时利用相变材料容器21内的相变材料进行制冷或制热。此外,可在白天通过太阳能产生的电能对相变材料容器21内的相变材料进行冷却或加热,以在晚间利用相变材料容器21内的相变材料进行制冷或制热,从而达到独立于电网的空调系统。
此外,根据本发明的实施例的空调系统改善了蒸发器的换热介质的分配,可以有效地利用相变材料容器21内的相变材料对制热工况下的换热器进行除霜,并且以及降低了压缩机在过高排气温度时的负荷。
根据本发明的实施例的空调系统提高换热效率,从而节能。由于尽可能使用常规空调系统的已有零部件,并且高效使用这些零部件,因此,根据本发明的实施例的空调系统可以降低系统的成本。由于采用了图11和图12所示的换热器,根据本发明的实施例的空调系统能够节省空间。再者,根据本发明的实施例的空调系统改善了蒸发器两相换热介质分布的均匀性,并且可以在一定程度上降低压缩机和换热器的设计要求,使得系统有更大的包容性。
由于采用了图11和图12所示的换热器,根据本发明的实施例的空调系统能够在相变换热子系统20停止工作时,换热器的与空气的换热面积(翅片)都用于空调子系统10。同样空调子系统10停止工作时,换热器的与空气的换热面积(翅片)都用于相变换热子系统20,从而有效地利用了换热器的换热面积,提高了换热效率。

Claims (28)

  1. 一种空调系统,包括:
    空调子系统,所述空调子系统包括:压缩机;作为冷凝器和蒸发器中的一个的第一换热器;以及作为冷凝器和蒸发器中的另一个的第二换热器,所述压缩机、第一换热器以及第二换热器以从所述压缩机经过第一换热器到第二换热器的顺序连接;
    相变换热子系统,所述相变换热子系统包括:相变材料容器;容纳在相变材料容器内的相变材料;以及设置在相变材料容器中的换热回路;以及
    跨系统换热器,所述跨系统换热器包括第一回路和第二回路,所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第一回路,并且所述第二回路与相变换热子系统的换热回路连接以使所述第二回路和所述相变换热子系统的换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换。
  2. 如权利要求1所述的空调系统,其中:
    所述跨系统换热器兼作所述第一换热器和第二换热器中的至少一个。
  3. 如权利要求2所述的空调系统,其中:
    所述跨系统换热器兼作所述第一换热器,所述第一换热器作为蒸发器,并且第二换热器作为冷凝器所述跨系统换热器能够选择性地将从所述相变换热子系统获得的热量在第二回路放热。
  4. 如权利要求2所述的空调系统,其中:
    所述跨系统换热器兼作所述第二换热器,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所述跨系统换热器能够选择性地将从所述相变换热子系统获得的冷量在第二回路吸热。
  5. 如权利要求2所述的空调系统,其中:
    所述跨系统换热器兼作所述第一换热器,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所述跨系统换热器能够选择性地将从所述相变换热子系统获得的热量在第二回路放热。
  6. 如权利要求1所述的空调系统,其中:
    所述跨系统换热器的第一回路连接在空调子系统的所述第一换热器与第二换热器之间,使得压缩机排出的换热介质在穿过所述第一换热器和第二换热器中的一个后进入所述跨系统换热器,并且然后进入所述第一换热器和第二换热器中的另一个。
  7. 如权利要求1所述的空调系统,其中:
    在所述跨系统换热器中在第一回路中的换热介质能够与在第二回路中的换热介质进行热交换。
  8. 如权利要求1所述的空调系统,其中:
    所述空调子系统还包括膨胀装置,所述膨胀装置连接在空调子系统的所述第一换热器与第二换热器之间,使得压缩机排出的换热介质在穿过所述第一换热器和第二换热器中的一个后进入所述膨胀装置,并且然后进入所述第一换热器和第二换热器中的另一个。
  9. 如权利要求8所述的空调系统,其中:
    所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所述跨系统换热器的第一回路连接在空调子系统的膨胀装置与作为蒸发器的第二换热器之间,所述相变换热子系统通过所述跨系统换热器来降低由膨胀装置膨胀后的换热介质的温度。
  10. 如权利要求8所述的空调系统,其中:
    所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,所 述跨系统换热器的第一回路连接在空调子系统的作为冷凝器的第一换热与器膨胀装置之间,所述相变换热子系统通过所述跨系统换热器来降低由冷凝器冷凝后的换热介质的温度。
  11. 如权利要求1所述的空调系统,其中:
    所述相变换热子系统的换热回路包括第一换热回路和第二换热回路;
    所述跨系统换热器包括第一跨系统换热器和第二跨系统换热器,
    所述第一跨系统换热器包括第一回路和第二回路,所述第一跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第一跨系统换热器的所述第一回路,并且所述第一跨系统换热器的所述第二回路与相变换热子系统的第一换热回路连接以使所述第一跨系统换热器的所述第二回路和所述相变换热子系统的第一换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换;以及
    所述第二跨系统换热器包括第一回路和第二回路,所述第二跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第二跨系统换热器的所述第一回路,并且所述第二跨系统换热器的所述第二回路与相变换热子系统的第二换热回路连接以使相变换热子系统的所述第二回路和所述第二跨系统换热器的第二换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换,并且在所述第二跨系统换热器中在所述第二跨系统换热器的第一回路中的换热介质能够与在所述第二跨系统换热器的第二回路中的换热介质进行热交换。
  12. 如权利要求1所述的空调系统,其中:
    所述相变换热子系统的换热回路包括第一换热回路;
    所述跨系统换热器包括第一跨系统换热器和第二跨系统换热器,
    所述第一跨系统换热器包括第一回路和第二回路,所述第一跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第一跨系统换热器的所述第一回路,并且所述第一跨系统换热器的所述第二回路与相变换热子系统的第一换热回路连接以使所述第一跨系统换热器的所述第二回路和所述相变换热子系统的第一换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换;以及
    所述第二跨系统换热器包括第一回路和第二回路,所述第二跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第二跨系统换热器的所述第一回路,并且所述第二跨系统换热器的所述第二回路与相变换热子系统的第一换热回路连接以使相变换热子系统的所述第一回路和所述第二跨系统换热器的第二换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换,并且在所述第二跨系统换热器中在所述第二跨系统换热器的第一回路中的换热介质能够与在所述第二跨系统换热器的第二回路中的换热介质进行热交换,所述第一跨系统换热器的第二回路和所述第二跨系统换热器的第二回路并联连接于相变换热子系统的第一换热回路。
  13. 如权利要求11所述的空调系统,其中:
    所述相变换热子系统的换热回路还包括第三换热回路;
    所述跨系统换热器还包括第三跨系统换热器,
    所述第三跨系统换热器包括第一回路和第二回路,所述第三跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第三跨系统换热器的所述第一回路,并且所述第三跨系统换热器的所述第二回路与相变换热子系统的第三换热回路连接以使所述第三跨系统换热器的所述第二回路和所述相变换热子系统的第三换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换。
  14. 如权利要求12所述的空调系统,其中:
    所述相变换热子系统的换热回路还包括第二换热回路;
    所述跨系统换热器还包括第三跨系统换热器,
    所述第三跨系统换热器包括第一回路和第二回路,所述第三跨系统换热器的所述第一回路与空调子系统连接以使空调子系统的换热介质能够选择性地流过所述第三跨系统换热器的所述第一回路,并且所述第三跨系统换热器的所述第二回路与相变换热子系统的第二换热回路连接以使所述第三跨系统换热器的所述第二回路和所述相变换热子系统的第二换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换。
  15. 如权利要求11、12、13和14中的任一项所述的空调系统,其中:
    所述空调子系统还包括膨胀装置,所述膨胀装置连接在空调子系统的所述第一换热器与第二换热器之间,使得压缩机排出的换热介质在穿过所述第一换热器和第二换热器中的一个后进入所述膨胀装置,并且然后进入所述第一换热器和第二换热器中的另一个,
    所述第二跨系统换热器的第一回路连接在空调子系统的膨胀装置与第二换热器之间以使空调子系统的换热介质能够选择性地流过所述第二跨系统换热器的所述第一回路。
  16. 如权利要求11至15中的任一项所述的空调系统,其中:
    第一跨系统换热器兼作第二换热器,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器。
  17. 如权利要求13或14所述的空调系统,其中:
    第一跨系统换热器兼作第二换热器,并且所述第三跨系统换热器兼作所述第一换热器。
  18. 如权利要求17所述的空调系统,其中:
    所述第一换热器作为蒸发器,并且第二换热器作为冷凝器。
  19. 如权利要求11、12、13和14中的任一项所述的空调系统,其中:
    第二跨系统换热器是板式换热器。
  20. 如权利要求12或14所述的空调系统,还包括:
    泵,所述泵连接在相变换热子系统的第一换热回路与所述第一跨系统换热器的第二回路和所述第二跨系统换热器的第二回路之间以促进相变换热子系统的第一换热回路与所述第一跨系统换热器的第二回路构成的回路中的换热介质的流动以及促进相变换热子系统的第一换热回路与所述第二跨系统换热器的第二回路构成的回路中的换热介质的流动。
  21. 如权利要求1所述的空调系统,其中:
    所述跨系统换热器兼作所述第二换热器,所述第一换热器作为冷凝器,并且第二换热器作为蒸发器,
    所述相变换热子系统的换热回路包括第一换热回路和第二换热回路,
    所述跨系统换热器的所述第二回路与相变换热子系统的第一换热回路连接以使所述第二回路和第一换热回路构成的回路中的换热介质能够选择性地与容纳在相变材料容器内的相变材料进行热交换,
    所述第二换热回路与所述跨系统换热器的第一回路并联连接于空调子系统以使空调子系统中的换热介质能够选择性地通过第二换热回路与容纳在相变材料容器内的相变材料进行热交换。
  22. 如权利要求11所述的空调系统,其中:
    所述第一跨系统换热器兼作所述第二换热器,并且所述第二跨系统换热器兼作所述第一换热器。
  23. 如权利要求22所述的空调系统,还包括:
    泵,所述泵连接在相变换热子系统的第一换热回路与所述第一跨系统换热器的第二回路之间以促进相变换热子系统的第一换热回路与所述第一跨系统换热器的第二回路构成的回路中的换热介质的流动;以及
    相变换热子系统压缩机和相变换热子系统膨胀装置,所述相变换热子系统压缩机和相变换热子系统膨胀装置连接在相变换热子系统的第二换热回路与所述第二跨系统换热器的第二回路之间以对相变换热子系统的第二换热回路与所述第二跨系统换热器的第二回路构成的回路中的换热介质进行压缩和膨胀。
  24. 如权利要求2、3、21、22和23中的任一项所述的空调系统,其中:
    所述跨系统换热器包括:用于形成第一回路的第一换热管以及用于形成第二回路的第二换热管,多个第一换热管组中的至少一些和多个第二换热管组中的至少一些交替排列,每一个第一换热管组包括至少一个第一换热管,并且每一个第二换热管组包括至少一个第二换热管。
  25. 如权利要求6、9和10中的任一项所述的空调系统,其中:
    所述跨系统换热器是板式换热器。
  26. 如权利要求25所述的空调系统,其中:
    所述跨系统换热器的第二回路中的换热介质是水或者乙二醇。
  27. 如权利要求4、9、10、16、18和21中的任一项所述的空调系统,其中:
    所述冷凝器和所述蒸发器是指所述空调系统在制冷工况下而言。
  28. 如权利要求3或5所述的空调系统,其中:
    所述冷凝器和所述蒸发器是指所述空调系统在制热工况下而言。
PCT/CN2023/083602 2022-04-02 2023-03-24 空调系统 WO2023185664A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202220769450.7 2022-04-02
CN202210353076.7 2022-04-02
CN202210353076.7A CN116928763A (zh) 2022-04-02 2022-04-02 空调系统
CN202220769450.7U CN217979087U (zh) 2022-04-02 2022-04-02 空调系统

Publications (1)

Publication Number Publication Date
WO2023185664A1 true WO2023185664A1 (zh) 2023-10-05

Family

ID=88199360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083602 WO2023185664A1 (zh) 2022-04-02 2023-03-24 空调系统

Country Status (1)

Country Link
WO (1) WO2023185664A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680898A (en) * 1994-08-02 1997-10-28 Store Heat And Produce Energy, Inc. Heat pump and air conditioning system incorporating thermal storage
US20030183375A1 (en) * 2002-03-29 2003-10-02 Clarksean Randy Lee PCM (phase change material) system and method for shifting peak electrical load
CN201973957U (zh) * 2011-04-07 2011-09-14 Tcl空调器(中山)有限公司 储能空调热水器
CN105571029A (zh) * 2016-01-27 2016-05-11 王昊 一种实现空调跨季度同步蓄冷蓄热的方法及设备
CN207438784U (zh) * 2017-08-08 2018-06-01 中铁第四勘察设计院集团有限公司 一种相变冷凝空调
CN109695909A (zh) * 2017-10-20 2019-04-30 吴良柏 跨季节高效太阳能蓄热供热供暖制冷发电系统
CN113669947A (zh) * 2020-05-13 2021-11-19 青岛海尔新能源电器有限公司 相变蓄热式热泵系统
CN217979087U (zh) * 2022-04-02 2022-12-06 丹佛斯有限公司 空调系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680898A (en) * 1994-08-02 1997-10-28 Store Heat And Produce Energy, Inc. Heat pump and air conditioning system incorporating thermal storage
US20030183375A1 (en) * 2002-03-29 2003-10-02 Clarksean Randy Lee PCM (phase change material) system and method for shifting peak electrical load
CN201973957U (zh) * 2011-04-07 2011-09-14 Tcl空调器(中山)有限公司 储能空调热水器
CN105571029A (zh) * 2016-01-27 2016-05-11 王昊 一种实现空调跨季度同步蓄冷蓄热的方法及设备
CN207438784U (zh) * 2017-08-08 2018-06-01 中铁第四勘察设计院集团有限公司 一种相变冷凝空调
CN109695909A (zh) * 2017-10-20 2019-04-30 吴良柏 跨季节高效太阳能蓄热供热供暖制冷发电系统
CN113669947A (zh) * 2020-05-13 2021-11-19 青岛海尔新能源电器有限公司 相变蓄热式热泵系统
CN217979087U (zh) * 2022-04-02 2022-12-06 丹佛斯有限公司 空调系统

Similar Documents

Publication Publication Date Title
CN103129348B (zh) 一种电动汽车热泵系统
CN201989796U (zh) 微通道换热冷凝式轨道交通空调机组
CN102759193A (zh) 一种空气源热泵系统
KR101325887B1 (ko) 이원냉동 사이클 히트펌프 온수 시스템
CN211625782U (zh) 用于冷水机组的液滴蒸发装置及冷水机组
CN217979087U (zh) 空调系统
WO2023185664A1 (zh) 空调系统
US20230272927A1 (en) Systems with multi-circuited, phase-change composite heat exchangers
CN203980715U (zh) 全逆流风冷冷热水机组
CN203561015U (zh) 一种多层热管换热式半导体制冷系统
CN102305496B (zh) 一种风冷热泵机组
CN103557570A (zh) 一种多层热管换热式半导体制冷系统
CN109869942B (zh) 一种扁管套管式热回收型热泵空调系统及其工作方法
CN211177491U (zh) 一种高效风冷热泵机组
CN209312749U (zh) 半导体器件散热装置
CN201463411U (zh) 翅片管式换热器
CN108332323B (zh) 一种扁平管板翅式热源塔热泵空调系统及其工作方法
JP4273727B2 (ja) 冷凍システム
CN112944741A (zh) 用于冷水机组的液滴蒸发装置及冷水机组
JP2002022307A (ja) 空気調和装置
CN215637593U (zh) 一种空调制冷系统
CN116928763A (zh) 空调系统
CN212481495U (zh) 一种空调器
CN221036260U (zh) 换热系统和具有其的空调器
CN216745022U (zh) 一种用于中小型制冷设备的回热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778033

Country of ref document: EP

Kind code of ref document: A1