WO2023185566A1 - 用于无线通信的方法和电子设备以及计算机可读存储介质 - Google Patents

用于无线通信的方法和电子设备以及计算机可读存储介质 Download PDF

Info

Publication number
WO2023185566A1
WO2023185566A1 PCT/CN2023/082993 CN2023082993W WO2023185566A1 WO 2023185566 A1 WO2023185566 A1 WO 2023185566A1 CN 2023082993 W CN2023082993 W CN 2023082993W WO 2023185566 A1 WO2023185566 A1 WO 2023185566A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
positioning
user equipment
electronic device
reference signal
Prior art date
Application number
PCT/CN2023/082993
Other languages
English (en)
French (fr)
Inventor
马可
邹灏明
王昭诚
曹建飞
Original Assignee
索尼集团公司
马可
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 马可 filed Critical 索尼集团公司
Publication of WO2023185566A1 publication Critical patent/WO2023185566A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of wireless communication technology, and more specifically, to a method and electronic device for wireless communication that facilitates locating user equipment, as well as a computer-readable storage medium.
  • the downlink positioning reference signal uses the Positioning Reference Signal (PRS)
  • the uplink positioning reference signal uses the SRS configured in the positioning sounding reference signal (Sounding Reference Signal, SRS) resource set (SRS-PosResourceSet).
  • the first category is a positioning method based on the global satellite navigation system, which uses the time of flight (Time of Flight, ToF) between the user equipment and multiple satellites for positioning. This method has been widely used, but its positioning accuracy is low and its power consumption is high.
  • the second type is triangulation positioning based on geometric properties, which uses ToF, Angle of Arrival (AoA), Angle of Departure (AoD) and other characteristics between the base station and the user equipment to calculate the UE position.
  • Figure 1 is a schematic diagram for explaining AoD-based triangulation positioning, which schematically shows that the positioning result of the user equipment UE can be obtained based only on the current serving base station TRP1 of the user equipment UE and one adjacent base station TPR2.
  • LOS Line of Sight
  • NLOS Non-Line of Sight
  • An object of at least one aspect of the present disclosure is to provide a method and electronic device for wireless communication and a computer-readable storage medium, which facilitates higher-precision positioning of user equipment in various scenarios.
  • an electronic device includes a processing circuit configured to: obtain a plurality of positioning information of a user equipment respectively related to each of a plurality of base stations. , wherein the positioning information of the user equipment related to each base station is obtained based on the received signal of the reference signal transmitted between the base station and the user equipment, using the positioning model related to the base station, wherein, The plurality of positioning information of the user equipment have the same form as each other; and based on the plurality of positioning information of the user equipment, a positioning result of the user equipment is obtained.
  • an electronic device includes a processing circuit.
  • the processing circuit is configured to: based on a received signal of a reference signal transmitted between the base station and the user equipment, utilize The positioning model of the user equipment is used to obtain the positioning information of the user equipment related to the base station; and the positioning information of the user equipment related to the base station is provided to another electronic device for the other electronic device to be based on the positioning information including the base station respectively.
  • the multiple positioning information of the user equipment related to multiple base stations is used to obtain the positioning result of the user equipment, wherein the multiple positioning information of the user equipment have the same form as each other.
  • an electronic device includes a processing circuit configured to: transmit or receive a reference signal with each base station in a plurality of base stations respectively, so as to For each base station in the plurality of base stations to obtain positioning information of the electronic device related to the base station based on a received signal of a reference signal transmitted between the base station and the electronic device using a positioning model related to the base station, wherein, the positioning information of the electronic device related to each base station in the plurality of base stations has the same form.
  • a method for wireless communication including: obtaining a plurality of user equipment configurations respectively associated with each of a plurality of base stations. bit information, wherein the positioning information of the user equipment related to each base station is obtained based on the received signal of the reference signal transmitted between the base station and the user equipment, using the positioning model related to the base station, so The plurality of positioning information of the user equipment have the same form as each other; and based on the plurality of positioning information of the user equipment, a positioning result of the user equipment is obtained.
  • a method for wireless communication includes: based on the received signal of the reference signal transmitted between the base station and the user equipment, using a positioning model related to the base station to obtain The positioning information of the user equipment related to this base station; and providing the positioning information of the user equipment related to this base station to another electronic device, so that the other electronic device can be based on the connection with multiple base stations including this base station. Correlating multiple positioning information of the user equipment to obtain the positioning result of the user equipment, wherein the multiple positioning information of the user equipment have the same form as each other.
  • a method for wireless communication includes: controlling the electronic device to transmit or receive a reference signal with each of a plurality of base stations respectively, for multiple base stations.
  • Each of the base stations acquires the positioning information of the electronic device related to the base station based on the received signal of the reference signal transmitted between the base station and the electronic device using a positioning model related to the base station, wherein, The positioning information of the electronic device associated with each of the plurality of base stations has the same form.
  • a non-transitory computer-readable storage medium storing executable instructions. When executed by a processor, the executable instructions cause the processor to perform the above method for wireless communication. or various functions of the above-mentioned electronic devices.
  • the positioning of the user equipment is extracted using a positioning model related to each base station (for example, a positioning model obtained through deep learning that can reflect the wireless environment/wireless channel characteristics around the base station) information, and obtain the positioning result of the user equipment based on multiple positioning information extracted by multiple positioning models respectively related to multiple base stations, thereby utilizing the positioning information extracted by each positioning model in a mutually integrated manner, which is beneficial to Provide high-precision positioning results for user equipment in various scenarios.
  • a positioning model related to each base station for example, a positioning model obtained through deep learning that can reflect the wireless environment/wireless channel characteristics around the base station
  • Figure 1 is a schematic diagram used to illustrate triangulation positioning based on AoD
  • Figure 2 is a schematic diagram illustrating that different base stations have different wireless environments
  • FIG. 3 is a block diagram showing a configuration example of an electronic device according to an embodiment of the present disclosure.
  • FIGS. 4A and 4B are schematic diagrams for illustrating a usage example of a positioning model according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram illustrating an example of a convolutional neural network (CNN) model
  • FIG. 6 is a flowchart illustrating example signaling interactions of a positioning process according to an embodiment of the present disclosure
  • Figure 7 is a schematic diagram for explaining an example of determining a positioning base station group
  • Figure 8 is a schematic diagram showing distribution curves with different kurtosis
  • FIG. 9 is a flowchart illustrating an example signaling interaction for a process of determining a positioning base station group according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram illustrating alternative base stations that may be used for positioning in a simulation example of a positioning process according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram for explaining the results of a simulation example of a positioning process according to an embodiment of the present disclosure
  • FIG. 12 is a flowchart illustrating a process example of a method for wireless communication according to the first embodiment of the present disclosure
  • FIG. 13 is a flowchart illustrating a process example of a method for wireless communication according to the second embodiment of the present disclosure
  • FIG. 14 is a flowchart illustrating a process example of a method for wireless communication according to a third embodiment of the present disclosure
  • FIG. 15 is a diagram illustrating a schematic configuration of a server to which the technology of the present disclosure may be applied.
  • 16 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 17 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • FIG. 18 is a block diagram illustrating an example of a schematic configuration of a smartphone to which the technology of the present disclosure may be applied;
  • 19 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, neither of which should be construed to limit the scope of the present disclosure. In certain example embodiments, well-known processes, well-known structures, and well-known techniques have not been described in detail.
  • Fingerprint positioning utilizes the specificity of the wireless environment to record and store the wireless channel characteristics of the reference location as a fingerprint data set.
  • the wireless channel characteristics corresponding to the user equipment are measured, and the most similar reference position is selected from the fingerprint data set as the positioning result.
  • Fingerprint positioning can be applied to NLOS scenarios and may provide higher positioning accuracy.
  • the prerequisite for achieving this goal is the need to store large-capacity fingerprint data sets, which will bring significant overhead.
  • the inventor proposed to use multiple positioning models respectively related to multiple base stations (for example, a positioning model obtained through deep learning that can reflect the wireless environment/wireless channel characteristics around the base station) to determine the relationship between the base station and the user equipment.
  • the reference signal transmitted between the received signal Extract the positioning information (positioning features) of the user equipment, and then fuse the extracted positioning information to obtain the positioning result of the user equipment.
  • FIG. 2 is a schematic diagram for explaining that different base stations have different wireless environments, in which (A) and (B) respectively show the wireless environments of base station TRP1 and base station TRP2. Since each base station has its specific wireless environment, there is a unique correlation between the received signal of the reference signal transmitted between that base station and the user equipment and the location of the user equipment.
  • the correlation between the respective wireless environments of multiple base stations and the user's location can be used to obtain multiple positioning information of the user equipment, and then the positioning result of the user equipment is obtained based on the positioning information.
  • the positioning model related to a base station it is possible to avoid using a positioning model related to a base station to extract positioning information that is not accurate enough to cause a decrease in positioning accuracy, and is conducive to providing higher-precision positioning results for user equipment in various scenarios.
  • FIG. 3 is a block diagram showing a configuration example of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 300 may include a control unit 310 and a communication unit 320 and an optional storage unit 330 .
  • each unit of the electronic device 300 may be included in the processing circuit. It should be noted that the electronic device 300 may include one processing circuit or multiple processing circuits. Further, the processing circuitry may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the electronic device 300 of the first embodiment may be a core network side device, a base station side device or a terminal side device, which is not limited by this disclosure. Further details of the example processing will be described later in the first, second and third configuration examples in conjunction with the case where the electronic device 300 is implemented on the core network side, the base station side and the terminal side respectively.
  • the control unit 310 of the electronic device 300 may (for example, using the communication unit 320) obtain a plurality of positioning information of the user equipment respectively related to each of a plurality of base stations, wherein, related to each base station The positioning information of the user equipment is obtained based on the received signal of the reference signal transmitted between the base station and the user equipment, using a positioning model related to the base station, wherein the plurality of positioning information of the user equipment have the same form as each other.
  • the control unit 310 may also obtain the positioning result of the user equipment based on multiple positioning information of the user equipment.
  • the positioning model related to each base station may be obtained through deep learning, A positioning model that can reflect the wireless environment or wireless channel characteristics around the base station.
  • a positioning model that can reflect the wireless environment or wireless channel characteristics around the base station.
  • a localization model based on a convolutional neural network (CNN) such as that described in detail later may be adopted.
  • the input of the positioning model related to each base station may be the received signal of the uplink reference signal received by the base station from the user equipment, or may be the received signal of the downlink reference signal received by the user equipment from the base station.
  • the received signal of the reference signal input to the positioning model can be the signal quantity of the received signal, such as the reference signal receiving power (Reference Signal Receiving Power, RSRP) or the signal-to-interference-noise ratio of the received signal ( Signal to Interference plus Noise Ratio, SINR) form.
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • each positioning model related to multiple base stations can be distributed, that is, directly arranged in the corresponding base station. At this time, each base station can extract the positioning information by itself and send it to the electronic device 300 .
  • various positioning models related to multiple base stations may also be arranged in a centralized manner, for example, in the electronic device 300 .
  • the electronic device 300 can, for example, obtain received signals of uplink or downlink reference signals from multiple base stations or user equipment, and then extract positioning information using various positioning models arranged by itself.
  • the present disclosure has no special restrictions on the reference signal used by the positioning model and the arrangement of the positioning model. In the following, further detailed description will be given of various preferred configurations.
  • a set of multiple base stations whose positioning models are used to extract positioning information of user equipment may be collectively referred to as a positioning base station group, and the base stations in the positioning base station group may be referred to as positioning base stations.
  • multiple positioning information extracted using multiple positioning models of multiple base stations in the positioning base station group and respectively related to the wireless environment/wireless channel characteristics of each base station are used.
  • the positioning model of a single base station such as the current serving base station
  • this is conducive to comprehensively considering the wireless environment/wireless channel characteristics of multiple base stations, thereby providing More accurate positioning results.
  • multiple positioning information for a given user device extracted using respective positioning models have the same form as each other, these positioning information can be processed uniformly during calculation without distinguishing their sources, thus facilitating simplified processing.
  • the positioning base station group may be a set of base stations that meet predetermined conditions.
  • the predetermined condition may be, for example, that the received signal of the signal transmitted between the base station and the user equipment is less affected by noise and/or the channel between the base station and the user equipment The possibility of a direct line of sight is high, so that the positioning information extracted by using the received signal of the reference signal transmitted between such a base station and the user equipment is more reliable.
  • the predetermined conditions set to ensure that the received signal is less affected by noise interference may include that the estimated distance between the candidate base station and the serving base station of the user equipment is less than the (first) predetermined threshold and/or the estimated distance from the user equipment. Less than the (second) predetermined threshold, the two predetermined thresholds may be the same or different, and may be set appropriately.
  • the predetermined condition may also include that the channel quality between the (alternative base station) and the user equipment is better than a predetermined threshold.
  • the channel quality may be represented by, for example, the quality of the received signal such as RSRP or the path loss of the channel.
  • the predetermined condition set to ensure that the channel is more likely to be a direct line of sight may include that the channel kurtosis of the angle domain channel or the delay domain channel between the candidate base station and the user equipment is greater than a predetermined threshold.
  • One or more of the above conditions may be applied to determine the set of positioning base stations for a given user equipment.
  • the electronic device 300 can, for example, use various existing methods (from related devices or itself) to obtain the estimated distance between each base station and the serving base station/user equipment, and then determine the base station that satisfies the predetermined conditions regarding the distance. Determine the positioning base station group.
  • the electronic device 300 is a core network side device.
  • the positioning models related to each base station in the positioning base station group adopt a distributed arrangement, that is, they are directly arranged in the corresponding base station, and each base station in the positioning base station group can extract the positioning information by itself and send it 300 for electronic equipment. Since the computing power of base stations is generally stronger than that of user equipment, distributing the positioning model in each base station is beneficial to reducing computing delays.
  • the control unit 310 of the electronic device 300 may be configured to control the communication unit 320 to respectively receive the positioning information of the user equipment related to each base station from multiple base stations.
  • the reference signal used for positioning is an uplink reference signal. That is, the input of the positioning model related to each base station can be the received signal of the uplink reference signal received by the base station from the user equipment, thereby avoiding the feedback overhead of the user equipment to the base station and conducive to simplifying the signaling process.
  • the above uplink reference signal may use SRS resources in the positioning SRS resource set (SRS-PosResourceSet).
  • FIG. 4A is a schematic diagram for explaining a first usage example of a positioning model according to an embodiment of the present disclosure.
  • the positioning model PMi related to each base station TRPi (hereinafter also appropriately referred to as the positioning model of each base station) is used to determine the distance between the base station and the given user equipment.
  • the positioning information (or positioning feature) P-infoi is extracted from the received signal of the transmitted reference signal, such as the RSRPi of the reference signal; thereafter, the electronic device 300 obtains the positioning information from each base station TRPi, and then obtains the final positioning through appropriate fusion calculation FC
  • the embodiments of the present disclosure are not limited to this, but can be generalized to the case where the positioning base station group includes more base stations.
  • the positioning model PMi may be arranged at the base station TRPi, and the reference signal may adopt an uplink reference signal such as SRS resources in the positioning SRS resource set, but embodiments of the present disclosure are not limited thereto.
  • the positioning model PMi of each base station TRPi may be a CNN-based model. Since wireless channels such as angle domain or delay domain channels have the characteristics of prominent local content, the CNN-based positioning model will be beneficial to extracting the wireless channel characteristics of the base station, that is, it is beneficial to extract from the received signal of the reference signal, such as the RSRPi of the reference signal. The channel characteristics then obtain positioning information P-infoi.
  • FIG. 5 is a schematic diagram for explaining an example of a CNN model.
  • the positioning model PMi of each base station can adopt a CNN model such as that shown in Figure 5, which includes a convolution layer, a pooling layer and a fully connected layer arranged in sequence from the input side to the output side.
  • the input of the CNN model as the positioning model PMi can be, for example, the received signal of the uplink reference signal of the base station TRPi, for example, the uplink reference signal of the base station TRPi.
  • N BS and N UE are the number of candidate beams at the base station TRPi and the user equipment UE respectively.
  • the base station TRPi uses its N BS receive beams to try to receive the N UE transmit beams of the user equipment UE.
  • the convolution layer of the CNN model uses multi-layer convolution blocks to extract the characteristics of the received signal of the input reference signal (such as the RSRP i of the reference signal), where each layer of convolution block includes a convolution layer and a ReLU activation layer.
  • the ReLU activation layer can be expressed as mathematical formula (1):
  • the features extracted by the convolutional layer are Downsampled and provided to the fully connected layer.
  • the fully connected layer transforms the features downsampled by the pooling layer into the specified form (size) of positioning information.
  • the output of the pooling layer that is, the input of the fully connected layer
  • Wi and bi are the linear weights and biases of the fully connected layer respectively.
  • the output y i of the fully connected layer of the CNN model as the positioning model PMi is the positioning information P-infoi of the user equipment extracted using the positioning model PMi.
  • the positioning information extracted by a positioning model such as the above-mentioned CNN form of each base station may include hard information (the location of the user equipment) as well as various forms of soft information (confidence, probability distribution, etc.).
  • the form of the positioning information may include at least one of the following: the location of the user equipment; the location and confidence of the user equipment; and the probability distribution of the location of the user equipment.
  • the electronic device 300 can use the control unit 310 to perform fusion calculation in an appropriate manner based on multiple positioning information of the user equipment obtained from multiple base stations to obtain the positioning result of the user equipment. For example, when the positioning information is in the form of the location of the user equipment, the electronic device can obtain the final positioning result by averaging the respective positioning information. When the positioning information is in the form of the location and confidence of the user equipment, the electronic device can obtain the final positioning result by weighting the average of each positioning information with the confidence as the weight. When the positioning information is in the form of a probability distribution of the user equipment's location, the electronic device can obtain the final positioning result by multiplying each probability distribution to obtain the location with the highest probability.
  • the individual parameters of a localization model can be obtained via training.
  • the positioning model PMi of each base station TRPi may be obtained in advance through training using the received signal of the reference signal transmitted between the base station and one or more user equipments with known positions as training data.
  • the set of locations of one or more user equipments used for training covers the entire environmental range of the base station TRPi (eg, the entire range in which the user equipment may communicate with the base station TRPi).
  • the positioning models of each base station in the positioning base station group can be obtained by training separately.
  • a loss function can be constructed based on the difference between the positioning information yi extracted for the user equipment and the real position information of the user equipment, such as the adaptive moment estimation (Adaptive Moment Estimation) using the gradient backpropagation algorithm.
  • Adaptive Moment Estimation Adaptive Moment Estimation
  • Grad Estimation, Adam optimizer optimizes the loss function, for example, when the loss function is minimized (or other iterations are satisfied) Stop condition) to complete the training and obtain the optimal parameters of the positioning model PMi.
  • FIG. 4B is a schematic diagram for explaining a second usage example of the positioning model according to the embodiment of the present disclosure.
  • the main difference between the second usage example shown in FIG. 4B and the first usage example shown in FIG. 4A is that the electronic device 300 can use the fusion model FM (while based on the positioning information P-infoi of the user equipment extracted by each positioning model PMi
  • the final positioning result PR is obtained without reference to the fusion calculation FC described in Figure 4A.
  • the positioning model PMi may be arranged at the base station TRPi, and the reference signal may adopt an uplink reference signal such as positioning SRS resources in the SRS resource set, but embodiments of the present disclosure are not limited thereto.
  • the positioning model PMi of each base station can also adopt a CNN model such as that shown in FIG. 5 .
  • the input of the CNN model as the positioning model PMi may be, for example, the received signal of the uplink reference signal of the base station TRPi, such as the uplink reference signal.
  • its output can be the output yi of the fully connected layer, where yi is the positioning information P-infoi and has the prescribed form or size of the positioning information P-infoi.
  • the positioning information output by the CNN model as the positioning model PMi may have the same form as the first usage example (such as but not limited to the location of the user equipment; the location and confidence of the user equipment; the location of the user equipment probability distribution) or a form different from it.
  • the positioning information extracted by the positioning model of each base station is directly input to another model, that is, the fusion model, so the positioning information is not required to have a specified form suitable for simple fusion calculation (such as the form of the first usage example) , but the positioning information can be regarded as the output of an intermediate layer of the overall model including each positioning model and the fusion model (as shown in the rectangular box with dotted lines in Figure 4B).
  • the positioning information can be used to benefit the overall model. Get accurate positioning results in any shape or size.
  • the fusion model can be various appropriate models obtained through deep learning.
  • the fusion model may include a CNN-based model. Considering that the number of base stations in the positioning base station group may change dynamically, the input dimensions of the fusion model may also change dynamically, so it is particularly advantageous to use a CNN that can handle dynamically sized inputs as the fusion model.
  • the fusion model can also use a CNN model such as shown in Figure 5, which includes a convolution layer, a pooling layer and a fully connected layer arranged in sequence from the input side to the output side.
  • the convolution layer of the fusion model can use multi-layer convolution blocks. Extract the features of the positioning information Y info .
  • the pooling layer can downsample the features extracted by the convolutional layer, and the fully connected layer can transform the features downsampled by the pooling layer into the size of the positioning result to output the positioning result of the specified size.
  • PR the positioning result PR may have a similar form to the positioning information in the first usage example, such as the position of the user equipment; the position and confidence of the user equipment; and the probability distribution of the position of the user equipment.
  • the positioning model PMi of each base station TRPi in the plurality of base stations and the fusion model FM utilized by the electronic device 300 may be transmitted between each base station and one or more user equipments with known locations.
  • the received signal of the reference signal is used as training data and is obtained in advance through joint training.
  • a loss function may be constructed by the electronic device 300 , such as using the control unit 310 , for the difference between the positioning result output by the fusion model FM and the real position of the user device.
  • 2 (xx pre ) 2 +(yy pre ) 2 ...(3)
  • the Adam optimizer in the gradient backpropagation algorithm can be used for optimization, and for example, the training is completed when the loss function is minimum (or other iteration stop conditions are met), and the optimal parameters of multiple positioning models and fusion models are obtained. .
  • the electronic device 300 uses, for example, the control unit 310 to control the communication unit 320 to communicate with the base station where each positioning model is arranged, so as to feed back its information to each base station.
  • the gradient of the positioning model is used to achieve joint training of each positioning model and the fusion model.
  • FIG. 6 is a flowchart illustrating example signaling interactions of a positioning process according to an embodiment of the present disclosure.
  • the electronic device 300 of the first configuration example is implemented as the core network device 5GC
  • the user equipment that needs to be positioned is a UE
  • the positioning base station group determined for the UE includes the current serving base station TRP1 of the user equipment UE and another Base station TRP2, etc.
  • other base stations of the positioning base station group are omitted, but it can be understood that this example process can be similarly applied to the situation where the positioning base station group includes more base stations.
  • the multiple positioning models PM1, PM2, etc. and the fusion model FM obtained through joint training such as those described above in the second usage example of FIG. 4B, are respectively arranged in the corresponding base stations TRP1, TRP2, etc. and the core network device 5GCC.
  • the core network device 5GC determines the base stations TRP1, TRP2, etc. that meet the predetermined conditions as positioning through appropriate processing (and optionally signaling interaction with related devices). base station group, and notifies each base station in the positioning base station group of the determination result.
  • the core network device 5GC may simply determine each base station within a threshold distance from the current serving base station TRP1 of the UE as a positioning base station group.
  • the determination result notification sent by the 5GC to the UE's current serving base station TRP1 may, for example, include the identification (ID) of each base station in the positioning base station group and optional relevant information of each base station such as location information.
  • the determination result notification sent by the 5GC to other base stations in the positioning base station group, such as TRP2, is optional, and may, for example, only include indication information that the base station is included in the positioning base station group. Further details for determining the group of positioning base stations will be described later.
  • step S601 the 5GC sends a positioning measurement notification to the UE's current serving base station TRP1.
  • the current serving base station TRP1 of the UE is configured according to the received positioning measurement notification (and optionally, according to the determination result notification received in step S600), for example, via a Radio Resource Control (Radio Resource Control, RRC) signal.
  • the SRS configuration information is sent to the UE to configure SRS resources for the UE that can be used for positioning measurement by each base station of the positioning base station group.
  • TRP1 can configure, for example, existing periodic, semi-periodic or aperiodic SRS signals for the UE, and preferably configures periodic SRS signals to simplify the process.
  • TRP1 can configure the SRS signal in the SRS resource set for the UE.
  • TRP1 can configure the UE to periodically transmit omnidirectional beams or all directional beams, for example, sequentially transmit 64 or 8 beams covering the entire beam range. beam.
  • each base station in the positioning base station group can receive all beams transmitted by the UE in parallel with each other.
  • TRP1 can learn the location of each base station in the positioning base station group based on the positioning measurement notification it received in step S602 (and optionally based on the determination result notification received in step S600), then TRP1 can The UE is configured to transmit a directional beam for each base station in turn, for example.
  • each base station in the positioning base station group can receive corresponding beams sent by the UE in sequence.
  • TRP1 also sends information related to the configured SRS signal to the 5GC.
  • the SRS related information may include, for example, the time-frequency resources and optional beam information of the SRS to be sent by the UE.
  • the 5GC may send a positioning measurement notification to other base stations in the positioning base station group, such as TRP2, based on the received SRS related information, to notify the base station, such as the time-frequency resources used by the SRS signals to be sent by the UE. and optional beam information.
  • step S605 the UE uses the designated time-frequency resources (and optionally designated beams) to send SRS signals based on the SRS configuration information received from TRP1; the current serving base station TRP1 in the positioning base station group receives the UE accordingly
  • the SRS signal sent by the UE and its received signal, such as its RSRP1 are obtained; other base stations in the positioning base station group, such as TRP2, also receive the SRS signal sent by the UE based on the positioning measurement notification and its received signal, such as its RSRP2, is obtained.
  • the positioning base station Each base station in the group may receive all beams sent by the UE in parallel with each other, or receive corresponding beams sent by the UE in sequence, and this disclosure does not limit this.
  • each positioning base station uses its respective positioning model to extract the positioning information of the UE based on the received signal of the SRS signal.
  • each positioning base station sends the extracted positioning information to the 5GC.
  • the 5GC uses its fusion model to obtain the positioning result PR.
  • the 5GC sends the positioning result PR to the UE via the current serving base station TRP1.
  • 5GC may have a location management function (LMF), and optional access and mobility management function (AMF).
  • LMF location management function
  • AMF access and mobility management function
  • NG-RAN Next Generation Radio Access Network
  • the current serving base station TRP1 of the UE may also configure an SRS reference signal for the UE that is different from the existing positioning SRS resource set.
  • the UE's current serving base station TRP1 can also configure for the UE an uplink reference signal in the uplink reference signal resource set that is repeatedly sent in the same period, such as but not limited to positioning SRS in the positioning SRS resource set that is repeatedly sent in the same period.
  • a repetition factor can be added to the resource mapping (resourceMapping) of the uplink positioning SRS resource (SRS-PosResource) to indicate the number of times of repeated transmission in one cycle.
  • the existing positioning SRS resource set (SRS-PosResourceSet) does not support repeated transmission of positioning SRS within a period. Using the configuration of this example, it is possible to repeatedly send positioning SRS within a period to suppress noise interference and improve positioning accuracy through repeated measurements.
  • the UE's current serving base station TRP1 can also configure multiple uplink references for the UE.
  • Uplink reference signals with the same time domain resources and located within the same partial bandwidth (Bandwidth Part, BWP) in a signal resource set such as but not limited to positioning SRS with the same time domain resources and located within the same partial bandwidth in multiple SRS resource sets , so that the UE can send these positioning SRS at the same time.
  • the SRS resource set for positioning may be configured similarly with reference to the configuration of the SRS resource set for beam management in this aspect.
  • high-level usage parameters such as "PosMeasurement” (positioning measurement)
  • Positioning measurement may be defined for the SRS resource set used for positioning with reference to the high-layer usage parameter "beamManagement" of the SRS resource set used for beam management.
  • BeamManagement the high-layer usage parameter of the SRS resource set used for beam management.
  • each SRS resource set can only send one SRS resource at a given moment, but multiple SRS resource sets have the same time domain resources and are located SRS within the same part of the bandwidth can be sent simultaneously.
  • TRP1 can configure the UE to simultaneously send multiple SRS resource sets for positioning that have the same time domain resources and are located n SRS within the same partial bandwidth.
  • the existing positioning SRS resource set (SRS-PosResourceSet) does not support simultaneous transmission of positioning SRS in multiple positioning SRS resource sets that have the same time domain resources and are located in the same part of the bandwidth.
  • the UE can simultaneously send SRS for positioning in multiple positioning SRS resource sets, which is beneficial to improving the speed of positioning processing and reducing positioning delay.
  • the information sent from the user equipment UE or received by at least one base station among the multiple base stations is received from the user equipment UE.
  • the uplink reference signal may satisfy at least one of the following conditions: the uplink reference signal is an uplink reference signal in one uplink reference signal resource set and is repeatedly transmitted in the same period; and the uplink reference signal is in multiple uplink reference signal resource sets. uplink reference signals with the same time domain resources and located within the same part of the bandwidth.
  • the example signaling interaction of the positioning process in Figure 6 that is, the example signaling interaction of the usage process of the positioning model and the fusion model is similarly applicable to the positioning model and the fusion Joint training process of models.
  • step S608 is modified to use the fusion model to obtain the positioning result PR and calculate the loss function based on the positioning result and the real position (for example, previously described in "Positioning Model” (Loss function such as mathematical formula (3) described in "Second Use Example"), and for example, the Adam optimizer in the gradient back propagation algorithm is used for optimization, and step S609 is modified to feed back the gradient to each positioning base station TRP1, TRP2, So that the parameters of each model can be updated; thereafter, the training process can repeat the steps starting from step S601 (in this case, the updated model is used in step S606 and modified step S608) until the optimal parameters of the positioning model and the fusion model are obtained. until.
  • the processing in step S608 is modified to use the fusion model to obtain the positioning result PR and calculate the loss function based on the positioning result and the real position (for example, previously described in "Positioning Model” (Loss function such as mathematical formula (3) described in "Second Use Example"), and
  • the electronic device 300 can determine a set of base stations that meet predetermined conditions as a positioning base station group.
  • the predetermined conditions may include, for example, at least one of the following: with the user equipment.
  • the first three conditions are related to the current location of the user equipment, and the first condition may also depend on the current transmit power of the user equipment (when measured using the uplink reference signal), so these conditions are met
  • the conditions of the base station may change dynamically.
  • the positioning base station group determined based on such conditions is flexible and may change in real time, which is beneficial to positioning the user equipment in real time with appropriate base stations having reliable wireless channel characteristics. For example, when all the above four conditions are applied, base stations that are closer to the user equipment, have better channel quality, and are more likely to have direct line-of-sight can be determined as positioning base stations, while base stations with poor channel quality that are far away from the user equipment can be eliminated. A base station (even if the base station is adjacent to the user equipment's current serving base station). Therefore, reliable wireless channel features can be extracted.
  • FIG. 7 is a schematic diagram for explaining an example of determining a positioning base station group.
  • the positioning base station group PG-0 within the elliptical range on the left is less than It is determined by the condition of a predetermined threshold, which includes four base stations including TRP-S centered on TRP-S.
  • the electronic device 300 when the electronic device 300 is implemented as a core network side device, it stores relevant information of each base station in the storage unit 330, and therefore can directly determine the relationship between each base station and the current serving base station TRP-S of the user equipment. distance, and determine the positioning base station group PG-0 shown in (A) and (B) of Figure 7 accordingly.
  • the electronic device 300 can also instruct the UE's current serving base station TRP-S and the nearest neighboring base station to perform triangulation positioning based on AoD, for example, via the communication unit 320. (see, e.g., FIG.
  • the UE may determine an estimated distance between each base station and the UE based on, for example, the estimated position of the UE reported from the serving base station TRP-S, and accordingly determine that the estimates for the UE are satisfied.
  • the distance to the base station will not be described here.
  • the positioning base station groups PG-1 and PG2 within the elliptical range on the right are predetermined by the electronic device 300 of this embodiment based on the channel quality between each base station and the UE. determined based on the threshold condition, which respectively show that in the case where the user equipment UE held by a pedestrian has different transmit power (13dB and 23dB), the determined TRP-S including TRP-S centered on the UE 4 base stations or 7 base stations.
  • the positioning base station group PG-2 determined in the example where the UE shown in (B) has a larger transmit power is better than the positioning determined in the example where the UE has a smaller transmit power shown in (A).
  • Base Station Group PG-1 includes more of base stations, because in the example shown in (B), the channel quality between more base stations and UEs is better than the predetermined threshold.
  • the above-mentioned channel quality can be obtained by, for example, controlling the electronic device 300 as the core network device, causing each base station and the UE to measure channel quality, such as measuring the RSRP of the reference signal transmitted between the base station and the UE.
  • the electronic device 300 can also perform channel estimation or measurement between each base station and the UE through necessary signaling interactions, and determine the channel kurtosis of the delay domain or angle domain channel, And determine the base station whose channel kurtosis of the angle domain channel or delay domain channel between it and the UE is greater than a predetermined threshold as a base station whose channel is more likely to be a direct line of sight than the predetermined threshold, and then determine it as a base station in the positioning base station group positioning base station.
  • the details of the signaling interaction will be described later.
  • the frequency domain channel has been obtained through uplink or downlink measurement between the selected base station and the UE.
  • M Rx is the number of antennas of the UE
  • M Tx is the number of antennas of the candidate base station
  • K is the number of subcarriers
  • the electronic device 300 has, for example, obtained the above-mentioned frequency domain channel H from the candidate base station or UE via the communication unit 320 .
  • the electronic device 300 can use the control unit 310 to perform discrete Fourier Transform (DFT) on the frequency domain channel H using the antenna dimensions of the UE or the alternative base station to obtain the angle domain channel.
  • DFT discrete Fourier Transform
  • the electronic device 300 can also obtain the base station angle domain channel in a similar manner, which will not be described again here.
  • the electronic device 300 can also use the control unit 310 to perform discrete Fourier transform on the frequency domain channel H in the subcarrier dimension through the following mathematical formula (5) to obtain the delay domain channel H d
  • the electronic device 300 can also use the control unit 310 to calculate the kurtosis of the channel.
  • Kurtosis is a characteristic number that characterizes the peak value of a probability density distribution curve at the mean value. Kurtosis can be calculated, for example, by dividing the fourth-order cumulant by the square of the second-order cumulant, that is, dividing the fourth-order central moment by the square of the variance of the probability distribution and subtracting 3 (3 represents the kurtosis of the normal distribution) to calculate. If the kurtosis is greater than 3, the shape of the peak is relatively sharp and steeper than the normal distribution peak, which can be called positive kurtosis; if the kurtosis is less than 3, it can be called negative kurtosis.
  • Figure 8 is a schematic diagram of distribution curves with different kurtosis (where the horizontal axis represents the number of samples), where curve C1 is a curve with positive kurtosis, curve C2 is a curve of normal distribution, and curve C3 is a curve with negative kurtosis. .
  • Each group of samples can calculate the kurtosis KURT(x) of the group of samples through the following mathematical formula (6):
  • the average value of the kurtosis of the samples in the M Rx ⁇ M Tx group is calculated as the kurtosis KURT of the delay domain channel H d .
  • the electronic device 300 can also calculate the kurtosis of the angle domain channel in a similar manner, which will not be described again here.
  • the electronic device may determine, for example, the candidate base station whose kurtosis of the delay domain channel or angle domain channel with the UE is greater than a predetermined threshold calculated in the above manner as the positioning base station.
  • the LOS path dominates the wireless channel, it appears as a sharp main peak of the sample distribution of the angle domain or delay domain channel, so the angle domain or delay domain with larger kurtosis
  • the channel is more likely to have a LOS path.
  • the LOS path is not affected by reflection or occlusion, can more accurately reflect the orientation and other information between the UE and the base station, and has relatively reliable positioning characteristics.
  • a base station that is more likely to have a LOS path can be selected, that is, a base station that can extract more reliable wireless channel characteristics can be selected.
  • FIG. 9 is a flow chart illustrating an example signaling interaction of a process of determining a positioning base station group according to an embodiment of the present disclosure.
  • the electronic device 300 of the first configuration example is implemented as the core network device 5GC
  • the user equipment that needs to be positioned is the UE
  • the current serving base station of the UE is TRP1
  • alternative base stations as positioning base stations include TRPj, etc.
  • other candidate base stations of the positioning base station are omitted from the illustration, but it can be understood that this example process can be similarly applied to a situation including more candidate base stations.
  • the core network device 5GC initially determines candidate base stations TRP1 and TRPj that meet predetermined conditions through appropriate processing.
  • the predetermined conditions may be, for example, the distance from the current serving base station TRP1 of the UE and /or the estimated distance from the UE is within a predetermined threshold.
  • the 5GC sends an alternative base station determination notification to the UE's current serving base station TRP1.
  • the notification may include, for example, the identified identification (ID) of each alternative base station and the optional correlation of each alternative base station. Information such as location information, etc.
  • 5GC sends an alternative base station determination notification to other alternative base stations, such as TRPj, except the current serving base station TRP1.
  • the notification may, for example, only include indication information that the base station is determined to be an alternative base station.
  • the UE's current serving base station TRP1 determines the notification according to the received candidate base station, for example, sends SRS configuration information to the UE via radio resource control RRC signaling, so as to configure the UE to be able to communicate with each candidate base station.
  • TRP1 can configure, for example, existing periodic, semi-periodic or aperiodic SRS signals for the UE, and preferably configures periodic SRS signals to simplify the process.
  • TRP1 can configure the UE to periodically transmit omnidirectional beams, for example, sequentially transmit 64 or 8 beams covering the entire beam range.
  • the candidate base stations can receive all beams transmitted by the UE in parallel with each other.
  • TRP1 may configure the UE to send directional beams for each candidate base station in sequence, for example.
  • each candidate base station can receive corresponding beams sent by the UE in sequence.
  • TRP1 also sends information related to the configured SRS signal to the 5GC.
  • the SRS related information may include, for example, the time-frequency resources and optional beam information of the SRS to be sent by the UE.
  • the 5GC may based on the received SRS related information, and sends a measurement notification to alternative base stations other than the current serving base station, such as TRPj, to inform the base station of the time-frequency resources and optional beam information used by the SRS signal to be sent by the UE.
  • the UE uses the designated time-frequency resources (and optionally designated beams) to send SRS signals based on the SRS configuration information received from TRP1; the current serving base station TRP1 accordingly receives the SRS signal sent by the UE, And can obtain its received signal such as its RSRP1 and/or determine the channel H1 between the base station and the UE; other alternative base stations such as TRPj also receive the SRS signal sent by the UE based on the measurement notification, and can obtain its received signal such as its RSRPj and/or determine the channel Hj between the base station and the UE.
  • TRPj also receive the SRS signal sent by the UE based on the measurement notification, and can obtain its received signal such as its RSRPj and/or determine the channel Hj between the base station and the UE.
  • each device may receive all beams sent by the UE in parallel with each other, or receive corresponding beams sent by the UE in sequence, and this disclosure does not limit this.
  • each candidate base station sends the obtained received signal, such as its RSRP and/or channel, to the 5GC.
  • the 5GC transforms the received channel into the angle domain or delay domain when necessary (for example, when the channel received from each candidate base station is a frequency domain channel) and converts the angle domain or the angle domain between the UE and the UE.
  • the candidate base station whose kurtosis of the delay domain channel is greater than the predetermined threshold and/or the RSRP of the SRS received from the UE is higher than the predetermined threshold is determined as the positioning base station in the positioning base station group.
  • TRPj in addition to the current serving base station TRP1 of the UE, TRPj, for example, is also determined as the positioning base station.
  • the 5GC sends a positioning base station group determination notification to the UE's current serving base station TRP1.
  • the notification may include, for example, the identification (ID) of each base station in the determined positioning base station group and optional relevant information of each base station. Such as location information, etc.
  • 5GC sends a positioning base station determination notification to other base stations in the positioning base station group except the current serving base station TRP1, such as TRPj.
  • the notification may, for example, only include indication information that the base station is determined to be a positioning base station.
  • Some or all of the above steps S901 to S911 may be performed repeatedly, for example periodically, to determine or update the positioning base station group for the UE in real time.
  • the 5GC may have, for example, a location management function LMF, and an optional access and mobility management function AMF.
  • LMF location management function
  • AMF access and mobility management function
  • NRPPa e.g. via AMF function
  • the above describes the first configuration example of the electronic device 300 of this embodiment, that is, the electronic device implemented on the core network side and its related preferred arrangement/implementation, in which the positioning model adopts a distributed arrangement of each base station in the positioning base station group. location, and the uplink reference signal sent by the user equipment is used for positioning measurements.
  • the present disclosure has no particular limitations on the arrangement of the positioning model and the reference signal used by the positioning model. Therefore, in a modified example, for example, the arrangement of the positioning model and/or the reference signal used by the positioning model may be changed.
  • the positioning models trained at each positioning base station can be sent to the electronic device 300 implemented on the core network side, that is, each trained positioning model is centrally arranged at the electronic device 300 .
  • the electronic device 300 may, for example, obtain received signals of uplink or downlink reference signals from multiple base stations or user equipment, and then extract positioning information using each positioning model arranged by itself.
  • the electronic device 300 of the first embodiment has been described above as a first configuration example of the core network side device.
  • second and third configuration examples in which the electronic device 300 is implemented on the base station side and the terminal side will be described respectively, and the differences from the first configuration example will be focused on and unnecessary repetitions will be omitted.
  • the electronic device 300 is a base station side device.
  • the electronic device may be a first base station among a plurality of base stations constituting a group of positioning base stations.
  • the first base station may be, for example, the current serving base station of the user equipment.
  • the positioning models related to each base station in the positioning base station group adopt a distributed arrangement, that is, they are directly arranged in the corresponding base station, and each base station including the first base station in the positioning base station group can extract it by itself. Positioning information, and base stations other than the first base station can send the extracted positioning information to the electronic device 300 as the first base station. Since the computing power of base stations is generally stronger than that of user equipment, distributing the positioning model in the base station is beneficial to reducing computing delays.
  • control unit 310 of the electronic device 300 as the first base station may be configured to obtain the positioning information related to the first base station based on the received signal of the reference signal transmitted between the first base station and the user equipment, using the positioning model related to the first base station. Positioning information of the user equipment related to a base station.
  • control unit 310 of the electronic device 300 may be further configured to control the communication unit 320 to receive positioning information of the user equipment related to other base stations from other base stations among the plurality of base stations except the first base station.
  • the reference signal used for positioning is an uplink reference signal. That is, the input of the positioning model related to each base station can be the received signal of the uplink reference signal received by the base station from the user equipment, thereby avoiding the feedback overhead of the user equipment to the base station and conducive to simplifying the signaling process.
  • the above uplink reference signal may use SRS resources in the positioning SRS resource set (SRS-PosResourceSet).
  • the main difference is the destination to which the positioning information will be sent (and optionally, the receiving The source of measurement notification, determination results, etc.) is modified from the core network device to the first base station, and other operations are basically the same or similar to those described in the first configuration example.
  • the main difference lies in the addition of the function of extracting positioning information using its own positioning model, and other operations are basically the same or similar to those described in the first configuration example.
  • the above example signaling interactions of the positioning process described in the first configuration example may be similarly applied to the second configuration example with appropriate modifications.
  • the first base station such as the current serving base station TRP1 of the user equipment, initiates positioning measurement. (Sending positioning measurement notifications to other positioning base stations), and TRP1 obtains the positioning information of other positioning base stations, and then TRP1 determines the positioning result.
  • TRP1 may, for example, directly communicate with other positioning base stations (for example, via device-to-device (D2D) communication or sidelink communication), or may use 5GC as a transit to communicate with each other.
  • D2D device-to-device
  • TRP1 at this time serves as the current serving base station of the user equipment UE, and it still continues to perform SRS configuration for the UE, etc.
  • the positioning described above in the first configuration example The determination of the base station group and the related signaling interactions shown in Figure 9 can be similarly applied to the second configuration example after appropriate modifications (for example, also adding a process or step for the first base station such as the current serving base station TRP1 to obtain relevant information from the 5GC).
  • the second configuration example it is preferable that positioning models related to each base station in the positioning base station group are distributed and arranged at each base station, and uplink reference signals are preferably used in positioning measurements
  • the second configuration example is not limited to this.
  • the positioning models related to each base station can be centrally arranged at the user equipment, and the downlink reference signal is used in the measurement.
  • the first base station in the positioning base station group (for example, the current serving base station of the user equipment) obtains the positioning information (downlink reference signal) extracted by the user equipment using multiple positioning models from the user equipment, and then performs fusion calculation or fusion processing.
  • the electronic device 300 is a terminal-side device.
  • the electronic device may be a user device to be located.
  • positioning models related to each base station in the positioning base station group are centrally arranged at the user equipment.
  • each positioning model may be first trained at each positioning base station to obtain its own positioning model, and then sent to the electronic device 300 as the user device.
  • the control unit 310 of the electronic device 300 as the user equipment may be configured to use a signal associated with each of the base stations based on a received signal of a reference signal transmitted between the user equipment and the base station.
  • the positioning model is used to obtain the positioning information of the user equipment related to the base station.
  • the reference signal used for positioning is a downlink reference signal. That is, the input of each positioning model, which is arranged at the electronic device 300 as the user equipment and is respectively related to each base station, may be the received signal of the downlink reference signal received by the electronic device 300 from the corresponding base station, thereby avoiding the user equipment from receiving the downlink reference signal from the corresponding base station. Obtain the overhead of receiving signals and help simplify the signaling process.
  • the above downlink reference signal may use the positioning reference signal PRS.
  • the main difference is that they no longer extract positioning information by themselves, but only send downlink information to the electronic device 300 as the user equipment. reference signal.
  • the difference mainly lies in the addition of the positioning base station group
  • Each base station in the system receives the downlink reference signal and extracts the corresponding positioning using each deployed positioning model.
  • the functions of the information, and other operations are basically the same or similar to those described in the first configuration example.
  • the various usage examples of the positioning model described above in the first configuration example may be similarly applied to the third configuration example.
  • the above example signaling interactions of the positioning process described in the first configuration example may be similarly applied to the third configuration example with appropriate modifications.
  • the user equipment UE instead of the core network device 5GC initiating the positioning measurement, the user equipment UE initiates the positioning measurement, and the UE performs the positioning measurement based on the reference signals transmitted between the UE and each positioning base station. Receive signals to obtain positioning information and determine positioning results.
  • the UE may, for example, communicate with other positioning base stations via its serving base station TRP1 (for example, via D2D communication or Sidelink communication between base stations), or may communicate with other positioning base stations via its serving base station TRP1 and then use 5GC as a transit.
  • the determination of the positioning base station group described above in the first configuration example and the related signaling interaction shown in Figure 9 can be similarly applied after appropriate modifications (for example, the processing or steps for the UE to obtain relevant information from the 5GC are also added) In the third configuration example.
  • the positioning models related to each base station in the positioning base station group are centrally arranged at the electronic device as the user equipment and the downlink reference signal is preferably used in the positioning measurement
  • the third configuration example not limited to this.
  • the positioning models related to each base station can be distributed and arranged at each positioning base station, and the uplink reference signal is used in the measurement.
  • the electronic device as the user equipment obtains the positioning information extracted by using the corresponding positioning model from each base station in the positioning base station group, and then performs fusion calculation or fusion processing.
  • the above describes the electronic device according to the first embodiment of the present disclosure, which can obtain through interaction with related devices or directly obtain multiple positioning information for one user equipment extracted using positioning models related to each positioning base station respectively. , and obtain the positioning result of the user device based on this positioning information.
  • a positioning model is arranged and the positioning model is used to extract the user equipment.
  • Positioning information for a second device used by the first device for example, each positioning base station described in the first configuration example, positioning base stations other than the first base station described in the second configuration example, modified example of the third configuration example Each positioning base station described in, etc.
  • a third device that interacts with the positioning base station in order to provide input (received signal of the reference signal) to the relevant device arranged with the positioning model (for example, the first configuration example or the second user device as described in the configuration example).
  • the second and third embodiments of the present disclosure are made to the above-mentioned second and third devices.
  • an outline description of the second and third embodiments will be given, while unnecessary details thereof will be omitted.
  • the electronic device of the second embodiment may have a similar functional block diagram to the electronic device of the first embodiment. That is, the electronic device of the second embodiment may have the form of the electronic device 300 shown in FIG. 3 and include the control unit 310 and the communication unit 320 and the optional storage unit 330.
  • the electronic device 300 of the second embodiment is preferably a base station side device.
  • the control unit 310 of the electronic device 300 can use the positioning model related to the base station to obtain the positioning model of the user equipment related to the base station based on the received signal of the reference signal transmitted between the base station and the user equipment. Positioning information.
  • the control unit 310 can also control the communication unit 320 to provide the positioning information of the user equipment related to the base station to another electronic device, so that the other electronic device can use the positioning information of the user equipment related to the base station including the base station based on the positioning information of the user equipment.
  • the plurality of positioning information of the user equipment is used to obtain the positioning result of the user equipment, wherein the plurality of positioning information of the user equipment have the same form as each other.
  • the "additional electronic device” used to obtain the positioning result of the user equipment may be the electronic device (first device) in each configuration previously described in the first embodiment, and the multiple base stations including the present base station may be the previously The positioning base station group is described in the first embodiment.
  • the electronic device 300 of this embodiment may be the base station among multiple base stations constituting a positioning base station group, which may be, for example, each of the positioning base stations described in the first configuration example of the first embodiment.
  • the reference signal is an uplink reference signal.
  • the electronic device of the third embodiment may have a similar functional block diagram to the electronic device of the first embodiment. That is, the electronic device of the third embodiment may have the form of the electronic device 300 shown in FIG. 3 and include the control unit 310 and the communication unit 320 and the optional storage unit 330.
  • the electronic device 300 of the third embodiment is preferably a terminal-side device.
  • control unit 310 of the electronic device 300 may control the communication unit 320 to transmit or receive a reference signal with each of the plurality of base stations respectively, so that each of the plurality of base stations can use the reference signal based on the Reference signal transmitted between the base station and the electronic device
  • the received signal is used to obtain the positioning information of the electronic device related to the base station using the positioning model related to the base station, wherein the positioning information of the electronic device related to each base station in the plurality of base stations has the same form.
  • the plurality of base stations that interact with the electronic device 300 as the terminal-side device may be each base station in the positioning base station group described previously in the first embodiment.
  • the electronic device 300 of this embodiment may be a user equipment to be positioned, which may be, for example, the user equipment described in the first configuration example or the second configuration example of the first embodiment.
  • the reference signal is an uplink reference signal.
  • FIG. 10 is a schematic diagram illustrating candidate base stations that may be used for positioning in a simulation example of a positioning process according to an embodiment of the present disclosure, which shows a semicircular area containing 12 candidate base stations with a radius of 200 meters.
  • the user equipment not shown in the figure can be located at any position (random position) within the semicircle area, and the current serving base station of the user equipment can be determined based on the channel quality between the user equipment and 12 candidate base stations.
  • one base station among the 12 candidate base stations for example, the base station with the largest RSRP between the user equipment and the user equipment can be used as the serving base station).
  • Each base station includes LOS scenarios and NLOS scenarios, and each base station and user equipment use a linear antenna array (Uniform Linear Array, ULA).
  • ULA Uniform Linear Array
  • the electronic device 300 of the first configuration example of the first embodiment is used to use the uplink reference signal, that is, the positioning SRS, as the positioning model through the positioning process shown in Figure 6 input to obtain the positioning result of the user equipment UE.
  • the difference between the two simulation examples lies in the selection of positioning base station groups.
  • all 12 candidate base stations in Figure 10 are used as the positioning base station group;
  • the existing COST2100 wireless channel model is used to generate channel data.
  • the simulation parameters are shown in Table 1.
  • simulation example A and simulation example B when only the position of the user equipment is changed and other conditions remain unchanged, 5000 positioning process simulations are performed respectively.
  • the user in each simulation The location of the device can be randomly determined within the semicircular area shown in Figure 10.
  • the average positioning error E is used as the evaluation index.
  • the positioning error Error can be calculated according to the mathematical formula (3) It is calculated in a similar way as
  • Figure 11 shows the cumulative distribution function (CDF) of the positioning errors of simulation examples A and B, where the positioning errors in the 50%, 90% and 99% ranges are shown in Table 2. It can be seen that the median positioning error of simulation example B is only 1.67 meters, which is smaller than the positioning error of simulation example A. At the same time, as shown in Table 2, simulation example B only requires an average of 5.85 uplink measurements of positioning base stations, so it also has smaller positioning overhead.
  • CDF cumulative distribution function
  • the present disclosure provides the following method embodiments.
  • FIG. 12 is a flowchart illustrating a process example of the method for wireless communication according to the first embodiment of the present disclosure.
  • step S1201 multiple positioning information of the user equipment related to each base station in the plurality of base stations is obtained, wherein the positioning information of the user equipment related to each base station is based on The received signal of the reference signal transmitted between the base station and the user equipment is obtained using a positioning model related to the base station, and multiple positioning information of the user equipment have the same form as each other.
  • step S1202 a positioning result of the user equipment is obtained based on a plurality of positioning information of the user equipment.
  • each base station in the plurality of base stations in the positioning base station group meets at least one of the following conditions: the possibility that the channel with the user equipment is a direct line of sight is higher than a predetermined threshold; The channel quality between the user equipment is better than a predetermined threshold; the estimated distance to the user equipment is less than the predetermined threshold; and the estimated distance to the serving base station of the user equipment is less than the predetermined threshold.
  • the positioning model of each base station uses the received signal of the reference signal transmitted between the base station and one or more user equipments with known positions as training data, and is pre-trained through training. acquired.
  • positioning information takes the form It includes at least one of the following: the location of the user equipment; the location and confidence of the user equipment; and the probability distribution of the location of the user equipment.
  • step S1202 based on multiple positioning information of the user equipment, simple fusion calculation is used to obtain the positioning result of the user equipment.
  • a fusion model is used to obtain a positioning result of the user equipment based on multiple positioning information of the user equipment.
  • the positioning model of each base station in the plurality of base stations and the fusion model are based on the reception of reference signals transmitted between each base station in the plurality of base stations and one or more user equipments with known positions.
  • the signal is used as training data and is obtained in advance through joint training.
  • the example method shown in Figure 12 is executed on the core network side.
  • the positioning model is distributed and arranged at each positioning base station, and in step S1201, by receiving the positioning information of the user equipment related to each base station from multiple base stations, the multiple base stations are obtained. positioning information.
  • the example method shown in Figure 12 is executed on one base station side among multiple base stations.
  • the positioning model is distributed and arranged at each positioning base station, and in step S1201, the plurality of positioning information is obtained in the following manner: based on the reception of the reference signal transmitted between the first base station and the user equipment signal, using a positioning model related to the first base station to obtain positioning information of the user equipment related to the first base station; and receiving the user information related to other base stations from other base stations other than the first base station among the plurality of base stations.
  • Device location information is based on the reception of the reference signal transmitted between the first base station and the user equipment signal, using a positioning model related to the first base station to obtain positioning information of the user equipment related to the first base station; and receiving the user information related to other base stations from other base stations other than the first base station among the plurality of base stations.
  • the reference signal used in positioning measurement may be an uplink reference signal.
  • the uplink reference signal received by at least one base station among multiple base stations from the user equipment satisfies at least one of the following conditions: the uplink reference signal is in an uplink reference signal resource set and is repeatedly transmitted in the same cycle.
  • An uplink reference signal; and the uplink reference signal is a simultaneously transmitted uplink reference signal in a plurality of uplink reference signal resource sets that has the same time domain resource and is located within the same partial bandwidth.
  • the example method shown in Figure 12 is executed on the user equipment side.
  • the positioning model is centrally arranged at the user equipment, and in step S1201, the plurality of positioning information is obtained in the following manner: based on transmission between each base station in the plurality of base stations and the user equipment The received signal of the reference signal and the positioning model related to the base station are used to obtain the positioning information of the user equipment related to the base station.
  • the reference signal used in positioning measurement is as follows row reference signal.
  • the subject that performs the above method may be an electronic device according to the first embodiment of the present disclosure, so all the embodiments mentioned above regarding the electronic device of the first embodiment are applicable here.
  • FIG. 13 is a flowchart illustrating a process example of the method for wireless communication according to the second embodiment of the present disclosure.
  • step S1301 based on the received signal of the reference signal transmitted between the base station and the user equipment, using the positioning model related to the base station, the positioning information of the user equipment related to the base station is obtained.
  • step S1302 the positioning information of the user equipment related to the base station is provided to another electronic device, so that the other electronic device can use the positioning information of the user equipment related to multiple base stations including the base station based on the user equipment.
  • Multiple positioning information of the user equipment is used to obtain the positioning result of the user equipment, wherein the plurality of positioning information of the user equipment have the same form as each other.
  • the multiple base stations involved in step S1301 may be collectively referred to as a positioning base station group, and each base station may be called a positioning base station.
  • the example method shown in Figure 13 is executed at the current base station among the plurality of base stations.
  • multiple positioning models are distributed and arranged at each positioning base station, and the reference signal used in positioning measurement may be an uplink reference signal.
  • the subject that performs the above method may be an electronic device according to the second embodiment of the present disclosure, so all the embodiments mentioned above regarding the electronic device of the second embodiment are applicable here.
  • FIG. 14 is a flowchart illustrating a process example of a method for wireless communication according to the third embodiment of the present disclosure.
  • step S1401 the control electronic device transmits or receives a reference signal with each of the multiple base stations respectively, so that each of the multiple base stations can communicate with the base station based on the base station.
  • the received signal of the reference signal transmitted between the electronic devices uses the positioning model related to the base station to obtain the positioning information of the electronic device related to the base station, wherein the positioning information related to each base station in the plurality of base stations is
  • the positioning information of electronic devices has the same form.
  • the example method shown in Figure 14 may be performed at an electronic device to be located.
  • the subject executing the above method may be according to the third aspect of the present disclosure.
  • the electronic device of the third embodiment therefore, all the embodiments mentioned above regarding the electronic device of the third embodiment are applicable here.
  • the technology of the present disclosure can be applied to a variety of products.
  • the electronic device of the first configuration example of the first embodiment may be implemented on the core network side.
  • the electronic device may be implemented as any type of control entity, such as various types of servers, such as tower servers, rack servers, and blade servers.
  • the electronic device may be a control module mounted on the server, such as an integrated circuit module that includes a single die, and a card or blade that is inserted into a slot of the blade server.
  • the electronic device of the second configuration example of the first embodiment and the electronic device of the second embodiment may be implemented on the base station side.
  • the electronic device may be implemented as any type of base station equipment, such as macro eNB and small eNB, and may also be implemented as any type of gNB (base station in the 5G system).
  • a small eNB may be an eNB covering a smaller cell than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station may be implemented as any other type of base station, such as NodeB and Base Transceiver Station (BTS).
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRH) disposed at a different place from the main body.
  • RRH remote radio heads
  • the electronic equipment on the base station side can also be implemented as any type of TRP.
  • the TRP can have sending and receiving functions, for example, it can receive information from user equipment and base station equipment, and can also send information to user equipment and base station equipment.
  • TRP can provide services to user equipment and is controlled by base station equipment.
  • the TRP may have a similar structure to that of the base station equipment, or may only have the structure related to sending and receiving information in the base station equipment.
  • the electronic device of the third configuration example of the first embodiment and the electronic device of the third embodiment can be implemented on the terminal side.
  • the electronic device may be various user devices, which may be implemented as a mobile terminal (such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal , portable/dongle-type mobile routers and digital camera devices) or vehicle-mounted terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also known as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single die) installed on each of the above-mentioned user equipments.
  • Server 1700 includes processor 1701, memory 1702, storage device 1703, network interface 1704, and bus 1706.
  • the processor 1701 may be, for example, a central processing unit (CPU) or a digital signal processor (DSP), and controls the functions of the server 1700.
  • the memory 1702 includes random access memory (RAM) and read only memory (ROM), and stores data and programs executed by the processor 1701.
  • the storage device 1703 may include storage media such as semiconductor memory and hard disk.
  • Network interface 1704 is a wired communication interface used to connect server 1700 to wired communication network 1705.
  • the wired communication network 1705 may be a core network such as an Evolved Packet Core Network (EPC) or a Packet Data Network (PDN) such as the Internet.
  • EPC Evolved Packet Core Network
  • PDN Packet Data Network
  • Bus 1706 connects processor 1701, memory 1702, storage 1703, and network interface 1704 to each other.
  • Bus 1706 may include two or more buses each having a different speed (such as a high speed bus and a low speed bus).
  • the control unit in the electronic device 300 of the first configuration example of the first embodiment described previously with reference to FIG. 3 may be implemented by the processor 1701 .
  • the processor 1701 can perform the functions of the above control unit by executing instructions stored in the memory 1702 or the storage device 1703.
  • the communication unit in the electronic device 300 may be implemented via the network interface 1704 or the like.
  • the storage unit in the electronic device 300 may be implemented by the memory 1702 and/or the storage device 1703.
  • eNB 1800 includes one or more antennas 1810 and base station equipment 1820.
  • the base station device 1820 and each antenna 1810 may be connected to each other via an RF cable.
  • Antennas 1810 each include a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and are used by base station device 1820 to transmit and receive wireless signals.
  • eNB 1800 may include multiple antennas 1810.
  • multiple antennas 1810 may be compatible with multiple frequency bands used by eNB 1800.
  • Figure 16 An example is shown where the eNB 1800 includes multiple antennas 1810, but the eNB 1800 may also include a single antenna 1810.
  • the base station device 1820 includes a controller 1821, a memory 1822, a network interface 1823, and a wireless communication interface 1825.
  • the controller 1821 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1820 . For example, the controller 1821 generates data packets based on the data in the signal processed by the wireless communication interface 1825 and delivers the generated packets via the network interface 1823 . The controller 1821 may bundle data from multiple baseband processors to generate bundled packets, and deliver the generated bundled packets. The controller 1821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1822 includes RAM and ROM, and stores programs executed by the controller 1821 and various types of control data such as terminal lists, transmission power data, and scheduling data.
  • the network interface 1823 is a communication interface used to connect the base station device 1820 to the core network 1824. Controller 1821 may communicate with core network nodes or additional eNBs via network interface 1823. In this case, the eNB 1800 and the core network node or other eNBs may be connected to each other through logical interfaces such as the S1 interface and the X2 interface.
  • the network interface 1823 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If network interface 1823 is a wireless communication interface, network interface 1823 may use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1825.
  • the wireless communication interface 1825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of the eNB 1800 via the antenna 1810 .
  • Wireless communication interface 1825 may generally include, for example, a baseband (BB) processor 1826 and RF circuitry 1827.
  • the BB processor 1826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • Packet Data Convergence Protocol Various types of signal processing for PDCP
  • the BB processor 1826 may have some or all of the above-mentioned logical functions.
  • the BB processor 1826 may be a memory that stores a communication control program, or a module including a processor and related circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 1826 to change.
  • the module may be a card or blade that plugs into a slot in the base station device 1820. Alternatively, the module may be a chip mounted on a card or blade.
  • the RF circuit 1827 may include, for example, a mixer, filter, and amplifier, and may be Line 1810 to transmit and receive wireless signals.
  • the wireless communication interface 1825 may include multiple BB processors 1826.
  • multiple BB processors 1826 may be compatible with multiple frequency bands used by eNB 1800.
  • wireless communication interface 1825 may include a plurality of RF circuits 1827.
  • multiple RF circuits 1827 may be compatible with multiple antenna elements.
  • FIG. 16 shows an example in which the wireless communication interface 1825 includes multiple BB processors 1826 and multiple RF circuits 1827, the wireless communication interface 1825 may also include a single BB processor 1826 or a single RF circuit 1827.
  • the second configuration example of the first embodiment previously described with reference to FIG. 3 and the communication unit in the electronic device 300 of the second embodiment can pass through the wireless communication interface 1825 and the optional antenna 1810 accomplish.
  • the functions of the control unit in the electronic device 300 may be implemented by the controller 1821.
  • the controller 1821 may implement the functions of the control unit by executing instructions stored in the memory 1822.
  • the storage unit in the electronic device 300 may be implemented by the memory 1822.
  • eNB 1930 includes one or more antennas 1940, base station equipment 1950, and RRH 1960.
  • the RRH 1960 and each antenna 1940 may be connected to each other via RF cables.
  • the base station equipment 1950 and the RRH 1960 may be connected to each other via high-speed lines such as fiber optic cables.
  • Antennas 1940 each include single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by RRH 1960 to transmit and receive wireless signals.
  • eNB 1930 may include multiple antennas 1940.
  • multiple antennas 1940 may be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 17 shows an example in which eNB 1930 includes multiple antennas 1940, eNB 1930 may also include a single antenna 1940.
  • the base station device 1950 includes a controller 1951, a memory 1952, a network interface 1953, a wireless communication interface 1955, and a connection interface 1957.
  • the controller 1951, the memory 1952, and the network interface 1953 are the same as the controller 1821, the memory 1822, and the network interface 1823 described with reference to FIG. 16 .
  • the wireless communication interface 1955 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via the RRH 1960 and the antenna 1940 to terminals located in the sector corresponding to the RRH 1960 .
  • Wireless communication interface 1955 may typically include, for example, a BB processor 1956.
  • the BB processor 1956 is the same as the BB processor 1826 described with reference to FIG. 16 except that the BB processor 1956 is connected to the RF circuit 1964 of the RRH 1960 via the connection interface 1957 .
  • the wireless communication interface 1955 may include multiple BB processors 1956.
  • multiple BB processors 1956 may be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 17 shows an example in which the wireless communication interface 1955 includes multiple BB processors 1956, the wireless communication interface 1955 may also include a single BB processor 1956.
  • connection interface 1957 is an interface for connecting the base station device 1950 (wireless communication interface 1955) to the RRH 1960.
  • the connection interface 1957 may also be a communication module used to connect the base station device 1950 (wireless communication interface 1955) to the communication in the above-mentioned high-speed line of the RRH 1960.
  • RRH 1960 includes a connection interface 1961 and a wireless communication interface 1963.
  • connection interface 1961 is an interface for connecting the RRH 1960 (wireless communication interface 1963) to the base station device 1950.
  • the connection interface 1961 may also be a communication module used for communication in the above-mentioned high-speed line.
  • Wireless communication interface 1963 transmits and receives wireless signals via antenna 1940.
  • Wireless communication interface 1963 may generally include RF circuitry 1964, for example.
  • RF circuitry 1964 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1940 .
  • wireless communication interface 1963 may include a plurality of RF circuits 1964.
  • multiple RF circuits 1964 may support multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 1963 includes a plurality of RF circuits 1964, the wireless communication interface 1963 may also include a single RF circuit 1964.
  • control unit in the electronic device 300 can be implemented by the controller 1951.
  • the controller 1951 may implement the functions of the control unit by executing instructions stored in the memory 1952.
  • the storage unit in the electronic device 300 may be implemented by the memory 1952.
  • the smart phone 2000 includes a processor 2001, a memory 2002, a storage device 2003, an external connection interface 2004, a camera 2006, a sensor 2007, a microphone 2008, an input device 2009, a display device 2010, a speaker 2011, a wireless communication interface 2012, one or more Antenna switch 2015, one or more antennas 2016, bus 2017, battery 2018, and auxiliary controller 2019.
  • the processor 2001 may be, for example, a CPU or a system on a chip (SoC), and controls functions of the application layer and other layers of the smartphone 2000 .
  • the memory 2002 includes RAM and ROM, and stores data and programs executed by the processor 2001.
  • the storage device 2003 may include storage media such as semiconductor memory and hard disk.
  • the external connection interface 2004 is an interface for connecting external devices, such as memory cards and Universal Serial Bus (USB) devices, to the smartphone 2000 .
  • the camera 2006 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) and generates a captured image.
  • Sensors 2007 may include a group of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2008 converts the sound input to the smartphone 2000 into an audio signal.
  • the input device 2009 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2010, and receives an operation or information input from a user.
  • the display device 2010 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2000 .
  • the speaker 2011 converts the audio signal output from the smartphone 2000 into sound.
  • the wireless communication interface 2012 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2012 may generally include a BB processor 2013 and an RF circuit 2014, for example.
  • the BB processor 2013 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2014 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 2016.
  • the wireless communication interface 2012 may be a chip module on which the BB processor 2013 and the RF circuit 2014 are integrated. As shown in Figure 18, the wireless communication interface 2012 may include multiple BB processors 2013 and multiple RF circuits 2014.
  • FIG. 18 shows an example in which the wireless communication interface 2012 includes a plurality of BB processors 2013 and a plurality of RF circuits 2014, the wireless communication interface 2012 may also include a single BB processor 2013 or a single RF circuit 2014.
  • the wireless communication interface 2012 may support other types of Types of wireless communication solutions, such as short-range wireless communication solutions, near field communication solutions and wireless local area network (LAN) solutions.
  • the wireless communication interface 2012 may include a BB processor 2013 and an RF circuit 2014 for each wireless communication scheme.
  • Each of the antenna switches 2015 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 2012 (for example, circuits for different wireless communication schemes).
  • Antennas 2016 each include single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 2012 to transmit and receive wireless signals.
  • smartphone 2000 may include multiple antennas 2016.
  • FIG. 18 shows an example in which smartphone 2000 includes multiple antennas 2016, smartphone 2000 may also include a single antenna 2016.
  • the smartphone 2000 may include an antenna 2016 for each wireless communication scheme.
  • the antenna switch 2015 may be omitted from the configuration of the smartphone 2000.
  • the bus 2017 connects the processor 2001, the memory 2002, the storage device 2003, the external connection interface 2004, the camera 2006, the sensor 2007, the microphone 2008, the input device 2009, the display device 2010, the speaker 2011, the wireless communication interface 2012 and the auxiliary controller 2019 to each other. connect.
  • the battery 2018 provides power to the various blocks of the smartphone 2000 shown in Figure 18 via feeders, which are partially shown in the figure as dotted lines.
  • the auxiliary controller 2019 operates the minimum necessary functions of the smartphone 2000 in the sleep mode, for example.
  • the third configuration example of the first embodiment described previously with reference to FIG. 3 and the communication unit in the electronic device 300 of the third embodiment can be configured through the wireless communication interface 2012 and the optional antenna. Achieved in 2016.
  • the functions of the control unit in the electronic device 300 may be implemented by the processor 2001 or the auxiliary controller 2019.
  • the processor 2001 or the auxiliary controller 2019 can implement the functions of the control unit by executing instructions stored in the memory 2002 or the storage device 2003.
  • the storage unit in the electronic device 300 may be implemented by the memory 2002 or the storage device 2003.
  • the car navigation device 2120 includes a processor 2121, a memory 2122, a global positioning system (GPS) module 2124, a sensor 2125, a data interface 2126, a content player 2127, a storage media interface 2128, an input device 2129, a display device 2130, Speaker 2131, wireless communication interface 2133, one or more antenna switches 2136, one or more antennas 2137, and battery 2138.
  • GPS global positioning system
  • the processor 2121 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 2120.
  • the memory 2122 includes RAM and ROM, and stores data and programs executed by the processor 2121.
  • the GPS module 2124 measures the location (such as latitude, longitude, and altitude) of the car navigation device 2120 using GPS signals received from GPS satellites.
  • Sensors 2125 may include a group of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 2126 is connected to, for example, the vehicle-mounted network 2141 via a terminal not shown, and acquires data generated by the vehicle (such as vehicle speed data).
  • the content player 2127 reproduces content stored in storage media, such as CDs and DVDs, which are inserted into the storage media interface 2128 .
  • the input device 2129 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2130, and receives an operation or information input from a user.
  • the display device 2130 includes a screen such as an LCD or an OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 2131 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2133 may generally include, for example, BB processor 2134 and RF circuitry 2135.
  • the BB processor 2134 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communications.
  • the RF circuit 2135 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 2137.
  • the wireless communication interface 2133 may also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135.
  • FIG. 19 shows an example in which the wireless communication interface 2133 includes a plurality of BB processors 2134 and a plurality of RF circuits 2135, the wireless communication interface 2133 may also include a single BB processor 2134 or a single RF circuit 2135.
  • the wireless communication interface 2133 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 2133 may include a BB processor 2134 and an RF circuit 2135 for each wireless communication scheme.
  • Each of the antenna switches 2136 switches the connection destination of the antenna 2137 between a plurality of circuits included in the wireless communication interface 2133, such as circuits for different wireless communication schemes.
  • Antennas 2137 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and are used by wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 may include a plurality of antennas 2137.
  • FIG. 19 shows an example in which the car navigation device 2120 includes a plurality of antennas 2137, the car navigation device 2120 may also include a single antenna 2137.
  • the car navigation device 2120 may include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 may be omitted from the configuration of the car navigation device 2120.
  • the battery 2138 provides power to the various blocks of the car navigation device 2120 shown in FIG. 19 via feeders, which are partially shown in the figure as dotted lines. Battery 2138 accumulates power provided from the vehicle.
  • the third configuration example of the first embodiment described previously with reference to FIG. 3 and the communication unit in the electronic device 300 of the third embodiment can be configured through the wireless communication interface 2133 and optionally Antenna 2137 implemented.
  • the functions of the control unit in the electronic device 300 may be implemented by the processor 2121.
  • the processor 2121 may implement the functions of the control unit by executing instructions stored in the memory 2122.
  • the storage unit in the electronic device 300 may be implemented by the memory 2122.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 2140 including a car navigation device 2120 , an in-vehicle network 2141 , and one or more blocks of a vehicle module 2142 .
  • vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 2141 .
  • the units shown in dotted boxes in the functional block diagrams shown in the accompanying drawings all indicate that the functional units are optional in the corresponding devices, and each optional functional unit can be combined in an appropriate manner to achieve the required functions. .
  • a plurality of functions included in one unit in the above embodiments may be provided by separate device to achieve.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • steps described in the flowchart include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in steps processed in time series, it goes without saying that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

提供了用于无线通信的方法和电子设备以及计算机可读存储介质。电子设备可以包括处理电路,所述处理电路被配置为:获得分别与多个基站中的每个基站相关的、用户设备的多个定位信息,其中,与每个基站相关的所述用户设备的定位信息是基于该基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取的,其中,所述用户设备的多个定位信息具有彼此相同的形式;以及基于所述用户设备的多个定位信息,获得所述用户设备的定位结果。

Description

用于无线通信的方法和电子设备以及计算机可读存储介质
本申请要求于2022年3月29日提交中国专利局、申请号为202210318983.8、发明名称为“用于无线通信的方法和电子设备以及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及一种利于对用户设备进行定位的用于无线通信的方法和电子设备以及计算机可读存储介质。
背景技术
高精度定位是下一代无线通信的重要需求之一,在物联网、车辆网等领域具有广阔的应用前景。对高精度定位的支持也得到了通信标准的广泛关注。在第三代合作伙伴计划(Third Generation Partnership Project,3GPP)的第五代移动通信技术(5th generation mobile networks,5G)Rel.16中,下行定位参考信号采用定位参考信号(Positioning Reference Signal,PRS),上行定位参考信号采用配置于定位探测参考信号(Sounding Reference Signal,SRS)资源集(SRS-PosResourceSet)中的SRS。
传统定位方法主要包括两类。第一类是基于全球卫星导航系统的定位方法,其利用用户设备和多个卫星之间的飞行时间(Time of Flight,ToF)进行定位。该方法得到了广泛的应用,但是其定位精度较低,并且功耗较高。第二类是基于几何性质的三角定位,即利用基站和用户设备间的ToF、到达角(Angle of Arrival,AoA)、离开角(Angle of Departure,AoD)等特征计算UE位置。图1是用于说明基于AoD的三角定位的示意图,其示意性地示出了仅基于用户设备UE当前服务基站TRP1和一个相邻基站TPR2即可获得UE的定位结果。然而,该技术高度依赖于直视径(Line of Sight,LOS)场景,在非直视径(Non-Line of Sight,NLOS)场景下性能显著恶化。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
本公开的至少一方面的目的是提供一种用于无线通信的方法和电子设备以及计算机可读存储介质,其利于在各种场景下实现用户设备的较高精度的定位。
根据本公开的第一方面,提供了一种电子设备,该电子设备包括处理电路,该处理电路被配置成:获得分别与多个基站中的每个基站相关的、用户设备的多个定位信息,其中,与每个基站相关的所述用户设备的定位信息是基于该基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取的,其中,所述用户设备的多个定位信息具有彼此相同的形式;以及基于所述用户设备的多个定位信息,获得所述用户设备的定位结果。
根据本公开的第二方面,提供了一种电子设备,该电子设备包括处理电路,该处理电路被配置成:基于本基站与用户设备之间传送的参考信号的接收信号,利用与本基站相关的定位模型,获取与本基站相关的所述用户设备的定位信息;以及向另外的电子设备提供与本基站相关的所述用户设备的定位信息,以供该另外的电子设备基于分别与包括本基站的多个基站相关的所述用户设备的多个定位信息来获得所述用户设备的定位结果,其中所述用户设备的多个定位信息具有彼此相同的形式。
根据本公开的第三方面,提供了一种电子设备,该电子设备包括处理电路,该处理电路被配置成:分别与多个基站中的每个基站之间进行参考信号的发送或接收,以供多个基站中的每个基站基于该基站与所述电子设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取与该基站相关的所述电子设备的定位信息,其中,与多个基站中的每个基站相关的所述电子设备的定位信息具有相同的形式。
根据本公开的第一方面,还提供了一种用于无线通信的方法,该方法包括:获得分别与多个基站中的每个基站相关的、用户设备的多个定 位信息,其中,与每个基站相关的所述用户设备的定位信息是基于该基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取的,所述用户设备的多个定位信息具有彼此相同的形式;以及基于所述用户设备的多个定位信息,获得所述用户设备的定位结果。
根据本公开的第二方面,还提供了一种用于无线通信的方法,该方法包括:基于本基站与用户设备之间传送的参考信号的接收信号,利用与本基站相关的定位模型,获取与本基站相关的所述用户设备的定位信息;以及向另外的电子设备提供与本基站相关的所述用户设备的定位信息,以供该另外的电子设备基于分别与包括本基站的多个基站相关的所述用户设备的多个定位信息来获得所述用户设备的定位结果,其中所述用户设备的多个定位信息具有彼此相同的形式。
根据本公开的第三方面,还提供了一种用于无线通信的方法,该方法包括:控制电子设备分别与多个基站中的每个基站之间进行参考信号的发送或接收,以供多个基站中的每个基站基于该基站与所述电子设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取与该基站相关的所述电子设备的定位信息,其中,与多个基站中的每个基站相关的所述电子设备的定位信息具有相同的形式。
根据本公开的另一方面,还提供了一种存储有可执行指令的非暂态计算机可读存储介质,该可执行指令当由处理器执行时,使得处理器执行上述用于无线通信的方法或上述电子设备的各个功能。
根据本公开的其它方面,还提供了用于实现上述根据本公开的方法的计算机程序代码和计算机程序产品。
根据本公开的实施例的至少一方面,利用与每个基站相关的定位模型(例如,经由深度学习获得的、能够体现该基站周围的无线环境/无线信道特征的定位模型)提取用户设备的定位信息,并基于利用分别与多个基站相关的多个定位模型提取的多个定位信息来获得该用户设备的定位结果,从而以彼此融合的方式利用了各个定位模型所提取的定位信息,有利于在各种场景下提供用户设备的较高精度的定位结果。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是用于说明基于AoD的三角定位的示意图;
图2是用于说明不同基站具有不同无线环境的示意图;
图3是示出根据本公开的实施例的电子设备的配置示例的框图;
图4A和图4B是用于说明根据本公开的实施例的定位模型的使用示例的示意图;
图5是用于说明卷积神经网络(Convolutional Neural Network,CNN)模型的示例的示意图;
图6是用于说明根据本公开的实施例的定位过程的示例信令交互的流程图;
图7是用于说明确定定位基站组的示例的示意图;
图8是示出了具有不同峰度的分布曲线的示意图;
图9是用于说明根据本公开的实施例的确定定位基站组的过程的示例信令交互的流程图;
图10是用于说明根据本公开的实施例的定位过程的仿真示例中可能被用于定位的备选基站的示意图;
图11是用于说明根据本公开的实施例的定位过程的仿真示例的结果的示意图;
图12是示出根据本公开的第一实施例的用于无线通信的方法的过程示例的流程图;
图13是示出根据本公开的第二实施例的用于无线通信的方法的过程示例的流程图;
图14是示出根据本公开的第三实施例的用于无线通信的方法的过程示例的流程图;
图15是示出可以应用本公开内容的技术的服务器的示意性配置的第 一示例的框图;
图16是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图18是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图19是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.概述
2.第一实施例的电子设备配置示例
2.1第一配置示例
2.1.1定位模型的第一使用示例
2.1.2定位模型的第二使用示例
2.1.3定位过程的示例信令交互
2.1.4确定定位基站组的示例
2.1.5修改示例
2.2第二配置示例
2.3第三配置示例
3.第二实施例的电子设备的配置示例
4.第三实施例的电子设备的配置示例
5.仿真结果
6.方法实施例
7.应用示例
<1.概述>
为了解决传统的两类定位方法存在的问题,已有研究提出了第三类定位方法,即指纹定位。指纹定位利用无线环境的特异性,记录并存储参考位置的无线信道特征作为指纹数据集。当用户设备需要定位时,测量该用户设备对应的无线信道特征,并从指纹数据集中选择最相似的参考位置作为定位结果。指纹定位能够应用于NLOS场景,并且可能提供较高的定位精度。然而,实现这一目标的前提是需要储存大容量的指纹数据集,这将带来较大开销。
为了解决传统指纹定位的问题,提出了将深度学习应用于定位,以利用其强大的自适应拟合能力充分提取复杂的高维度环境特征,从而降低定位误差。基于深度学习的定位方案无需储存数据集,只需储存训练好的定位模型,这有利于降低存储开销。另外,深度学习的在线学习策略还支持根据无线环境变化实现快速的模型调整。
特别地,发明人提出了利用分别与多个基站相关的多个定位模型(例如,经由深度学习获得的、能够体现该基站周围的无线环境/无线信道特征的定位模型)来从基站与用户设备之间传送的参考信号的接收信号中 提取用户设备的定位信息(定位特征),再将所提取的定位信息进行融合以获得该用户设备的定位结果。图2是用于说明不同基站具有不同无线环境的示意图,其中(A)和(B)分别示出了基站TRP1和基站TRP2各自的无线环境。由于每个基站具有其特定的无线环境,因此在该基站和用户设备之间传送的参考信号的接收信号与用户设备的位置之间具有独特的关联性。根据发明人的发明构思,可以利用多个基站各自的无线环境与用户位置之间的关联性而获取用户设备的多个定位信息,再基于这些定位信息获得用户设备的定位结果。以此方式,可以避免使用与一个基站相关的一个定位模型提取的定位信息不够准确而导致定位准确性的下降,并且有利于在各种场景下提供用户设备的较高精度的定位结果。
<2.第一实施例的电子设备的配置示例>
图3是示出根据本公开的实施例的电子设备的配置示例的框图。
如图3所示,电子设备300可以包括控制单元310和通信单元320以及可选的存储单元330。
这里,电子设备300的各个单元都可以包括在处理电路中。需要说明的是,电子设备300既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
第一实施例的电子设备300可以是核心网侧设备,也可以是基站侧设备或者终端侧设备,本公开对此不进行限制。稍后将在第一、第二和第三配置示例中,分别结合电子设备300实现在核心网侧、基站侧和终端侧的情况来描述示例处理的进一步细节。
根据第一实施例,电子设备300的控制单元310可以(例如利用通信单元320)获得分别与多个基站中的每个基站相关的、用户设备的多个定位信息,其中,与每个基站相关的所述用户设备的定位信息是基于该基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取的,其中,所述用户设备的多个定位信息具有彼此相同的形式。此外,控制单元310还可以基于所述用户设备的多个定位信息,获得所述用户设备的定位结果。
这里,与每个基站相关的定位模型例如可以是经由深度学习获得的、 能够体现该基站周围的无线环境或无线信道特征的定位模型。作为示例,可以采用诸如稍后详细描述的基于卷积神经网络CNN的定位模型。
此外,与每个基站相关的定位模型的输入可以是该基站从用户设备接收的上行参考信号的接收信号,也可以是用户设备从该基站接收的下行参考信号的接收信号。仅作为示例而非限制,输入定位模型的参考信号的接收信号可以采用参考信号的而接收信号的信号量,例如参考信号接收功率(Reference Signal Receiving Power,RSRP)或接收信号的信干噪比(Signal to Interference plus Noise Ratio,SINR)的形式。
另外,与多个基站相关的各个定位模型可以采用分布式布置,即直接布置在相应的基站中。此时,各个基站可以自行提取定位信息,并且可以将其发送给电子设备300。替选地,与多个基站相关的各个定位模型也可以采用集中式布置,例如布置在电子装置300中。此时,电子装置300例如可以从多个基站或用户设备获得上行或下行参考信号的接收信号,再利用自身布置的各个定位模型提取定位信息。本公开对定位模型使用的参考信号以及定位模型的布置方式没有特别的限制。下文中,将对各种优选配置给出进一步的详细描述。
在本公开的上下文中,其定位模型被用于提取用户设备的定位信息的多个基站的集合可以被统称为定位基站组,定位基站组中的基站可以被称为定位基站。在本公开的实施例中,针对一个用户设备,使用了利用定位基站组中的多个基站的多个定位模型提取的分别与每个基站的无线环境/无线信道特征相关的多个定位信息、而非利用单个基站(例如当前服务基站)的定位模型提取的与单个基站的无线环境/无线信道特征相关的单个定位信息,这有利于综合虑多个基站的无线环境/无线信道特征,从而提供更准确的定位结果。此外,由于利用各个定位模型提取的给定用户设备的多个定位信息具有彼此相同的形式,因此在计算时可以对这些定位信息进行统一处理而无需区分其来源,因而有利于简化处理。
作为示例,定位基站组可以是满足预定条件的基站的集合,该预定条件例如可以是基站与用户设备之间传送的信号的接收信号受噪声干扰较小以及/或者基站与用户设备之间的信道是直视径的可能性较高,以使得利用这样的基站与用户设备之间传送的参考信号的接收信号所提取的定位信息较为可靠。
例如,为确保接收信号受噪声干扰较小而设置的预定条件可以包括备选基站与用户设备的服务基站之间的估计距离小于(第一)预定阈值并且/或者与用户设备之间的估计距离小于(第二)预定阈值,两个预定阈值可以相同也可以不同,并且可以适当地设置。该预定条件还可以包括(备选基站)与用户设备之间的信道质量优于预定阈值。信道质量例如可以由接收信号的质量例如RSRP或信道的路径损耗等表示。此外,为确保信道是直视径的可能性较高而设置的预定条件可以包括备选基站与用户设备之间的角度域信道或延时域信道的信道峰度大于预定阈值。可以应用上述条件中的一个或更多个来确定给定用户设备的定位基站组。
稍后将具体描述电子设备300经由适当方式确定定位基站组的处理的进一步细节。在一个简化示例中,电子设备300例如可以利用各种现有方式(从相关设备或自身)得到各个基站与服务基站/用户设备之间的估计距离,进而确定满足关于距离的预定条件的基站以确定定位基站组。
以上描述了根据第一实施例的电子设备以及其组成单元的示例处理。接下来,将针对第一实施例的电子设备实现在核心网侧、基站侧、终端侧的情况描述根据本公开第一实施例的进一步的配置示例或示例处理。
[2.1第一配置示例]
在第一配置示例中,电子设备300是核心网侧设备。在本示例中,优选地,定位基站组中的各个基站相关的定位模型采用分布式布置,即直接布置在相应的基站中,并且定位基站组中的各个基站可以自行提取定位信息并将其发送给电子设备300。由于基站的计算能力一般强于用户设备,因此将定位模型分布式布置在各个基站中有利于降低计算延时。
相应地,作为电子设备300获得用户设备的定位信息的方式,电子设备300的控制单元310可以被配置为控制通信单元320从多个基站分别接收与每个基站相关的用户设备的定位信息。在本示例中,优选地,被用于定位的参考信号是上行参考信号。即,每个基站相关的定位模型的输入可以是该基站从用户设备接收的上行参考信号的接收信号,从而避免了用户设备向基站的反馈开销,并且有利于简化信令流程。作为示例,上述上行参考信号可以采用定位SRS资源集(SRS-PosResourceSet)中的SRS资源。
接下来,将描述本示例中的示例处理。
(2.1.1定位模型的第一使用示例)
图4A是用于说明根据本公开的实施例的定位模型的第一使用示例的示意图。如图4A所示,在本使用示例中,利用每个基站TRPi相关的定位模型PMi(下文中也适当地简称为每个基站的定位模型),分别从该基站与给定的用户设备之间传送的参考信号的接收信号例如参考信号的RSRPi中提取定位信息(或定位特征)P-infoi;此后,电子设备300从各个基站TRPi获取这些定位信息,再通过适当的融合计算FC获得最终的定位结果PR,其中,i=1,…,N,N表示定位基站组中的基站的个数。在本示例中,为便于图示和说明,设置了N=2的简化情形,但本公开的实施例不限于此,而是可推广到定位基站组中包括更多基站的情况。此外,在本示例中,定位模型PMi可以布置在基站TRPi处,并且参考信号可以采用上行参考信号例如定位SRS资源集中的SRS资源,但本公开的实施例不限于此。
作为示例,每个基站TRPi的定位模型PMi可以是基于CNN的模型。由于无线信道例如角度域或延时域信道具有局部内容突出的特征,因此基于CNN的定位模型将有利于提取基站的无线信道特征,即,利于从参考信号的接收信号例如参考信号的RSRPi中提取信道特征继而获得定位信息P-infoi。
图5是用于说明CNN模型的示例的示意图。作为示例,每个基站的定位模型PMi可以采用诸如图5所示的CNN模型,其包括从输入侧到输出侧依次布置的卷积层、池化层和全连接层。作为定位模型PMi的该CNN模型的输入例如可以是基站TRPi的上行参考信号的接收信号,例如上行参考信号的其中,NBS和NUE分别为基站TRPi和用户设备UE端备选波束的数目。即,在本示例中,基站TRPi采用其NBS个接收波束尝试接收用户设备UE的NUE个发送波束。CNN模型的卷积层采用多层卷积块提取输入的参考信号的接收信号(例如参考信号的RSRPi)的特征,其中,每层卷积块包括一层卷积层和一层ReLU激活层,ReLU激活层可以表示为数学式(1):
作为定位模型PMi的CNN模型的池化层将卷积层提取的特征进行 降采样,并提供给全连接层。全连接层将池化层降采样的特征变换为规定的定位信息的形式(尺寸)。这里,假设池化层的输出即全连接层的输入为xi,则全连接层的输出yi例如可以表示为数学式(2):
yi=Wixi+bi   …(2)
其中,Wi和bi分别为全连接层的线性权重和偏置。作为定位模型PMi的CNN模型的全连接层的输出yi即为利用定位模型PMi提取的用户设备的定位信息P-infoi。
每个基站的诸如上述CNN形式的定位模型所提取的定位信息可以包括硬信息(用户设备的位置)以及各种形式的软信息(置信度、概率分布,等等)。作为示例,定位信息的形式可以包括下述中的至少一者:用户设备的位置;用户设备的位置及置信度;用户设备的位置的概率分布。
相应地,电子设备300可以利用控制单元310,基于从多个基站获得的用户设备的多个定位信息,以适当方式进行融合计算而获得用户设备的定位结果。例如,在定位信息的形式为用户设备的位置时,电子设备可以通过对各个定位信息求平均而获得最终的定位结果。在定位信息的形式为用户设备的位置及置信度时,电子设备可以通过以置信度作为权重对各个定位信息进行加权平均而获得最终的定位结果。在定位信息的形式为用户设备的位置的概率分布时,电子设备可以通过将各个概率分布相乘以获得概率最大的位置的方式,获得最终的定位结果。
诸如采用上述CNN模型的形式的定位模型的各个参数可以经由训练获得。在本示例中,每个基站TRPi的定位模型PMi可以是利用该基站与具有已知位置的一个或更多个用户设备之间传送的参考信号的接收信号作为训练数据,通过训练而预先获得的。理想地,用于训练的上述一个或更多个用户设备的位置的集合覆盖了基站TRPi的全部环境范围(例如,用户设备可能与基站TRPi进行通信的全部范围)。换言之,在本示例中,定位基站组中的各个基站的定位模型可以分别单独训练而获得。例如,对于基站TRPi的定位模型PMi,可以基于为用户设备提取的定位信息yi与用户设备的真实位置信息之间的差异构建损失函数,例如采用梯度反向传播算法的自适应矩估计(Adaptive Moment Estimation,Adam)优化器针对损失函数进行优化,例如在损失函数最小(或满足其他迭代 停止条件时)完成训练,并获得定位模型PMi的优选参数。
(2.1.2定位模型的第二使用示例)
图4B是用于说明根据本公开的实施例的定位模型的第二使用示例的示意图。图4B所示的第二使用示例与图4A所示的第一使用示例的主要区别在于,电子设备300可以基于各个定位模型PMi提取的用户设备的定位信息P-infoi,利用融合模型FM(而非参照图4A描述的融合计算FC)获得最终的定位结果PR。与图4A的示例类似地,在本示例中,定位模型PMi可以布置在基站TRPi处,并且参考信号可以采用上行参考信号例如定位SRS资源集中的SRS资源,但本公开的实施例不限于此。
在图4B所示的第二使用示例中,每个基站的定位模型PMi同样可以采用诸如图5所示的CNN模型。此时,作为定位模型PMi的CNN模型的输入例如可以是基站TRPi的上行参考信号的接收信号例如上行参考信号的并且其输出可以是全连接层的输出yi,yi即为定位信息P-infoi并且具有定位信息P-infoi的规定形式或尺寸。
在第二使用示例中,作为定位模型PMi的CNN模型输出的定位信息可以具有与第一使用示例相同的形式(例如但不限于用户设备的位置;用户设备的位置及置信度;用户设备的位置的概率分布)或者与其不同的形式。在本示例中,每个基站的定位模型提取的定位信息直接输入到另一模型即融合模型,因此不要求该定位信息具有适合于简单的融合计算的指定形式(例如第一使用示例的形式),而是可以将该定位信息视为包括了各个定位模型和融合模型的整体模型(如图4B中点划线的矩形框所示)的一个中间层的输出,该定位信息可以采用利于整体模型获得准确定位结果的任何形式或尺寸。
融合模型可以是通过深度学习获得的各种适当模型。作为示例,融合模型可以包括基于CNN的模型。考虑到即定位基站组中的基站的数目可能动态变化,融合模型的输入维度也可能动态变化,因此采用能够处理动态尺寸的输入的CNN作为融合模型是特别有利的。
与定位模型类似,融合模型同样可以采用诸如图5所示的CNN模型,其包括从输入侧到输出侧依次布置的卷积层、池化层和全连接层。融合模型的输入是定位基站组中各基站的定位模型PM1,…,PMN提取的定位信息Yinfo=[P-info1,…,P-infoN]融合模型的卷积层可以采用多层卷积块 提取定位信息Yinfo的特征,池化层可以将卷积层提取的特征进行降采样,并且全连接层可以将池化层降采样的特征变换为定位结果的尺寸,以输出指定尺寸的定位结果PR。作为示例,定位结果PR可以与第一使用示例中的定位信息具有类似的形式,例如为用户设备的位置;用户设备的位置及置信度;用户设备的位置的概率分布。
诸如采用上述CNN模型的形式的定位模型和融合模型的各个参数可以经由训练获得。在本示例中,多个基站中的每个基站TRPi的定位模型PMi和电子设备300所利用的融合模型FM可以是利用每个基站与具有已知位置的一个或更多个用户设备之间传送的参考信号的接收信号作为训练数据,通过联合训练而预先获得的。
换言之,在本示例中,由于将多个定位模型和融合模型作为一个整体模型使用,其训练也作为一个整体模型进行。例如,可以由电子设备300例如利用控制单元310,针对融合模型FM输出的定位结果与用户设备的真实位置之间的差异构建损失函数。例如,融合模型FM输出的定位结果PR可以简单地为ppre=(xpre,ypre),其中xpre,ypre分别为位置坐标。此时,可以采用均方差损失(Mean Square Error,MSE)基于定位结果ppre和真实位置p=(x,y)构建损失函数E,表示为数学式(3)
E=|p-ppre|2=(x-xpre)2+(y-ypre)2   …(3)
基于上述损失函数,可以采用梯度反向传播算法中的Adam优化器进行优化,并且例如在损失函数最小(或满足其他迭代停止条件时)完成训练,并获得多个定位模型和融合模型的优选参数。
在上述训练过程中,在各个定位模型分别布置在相应的基站处的情况下,电子设备300例如利用控制单元310控制通信单元320与布置有各个定位模型的基站通信,以向每个基站反馈其定位模型的梯度,从而实现各个定位模型和融合模型的联合训练。
(2.1.3定位过程的示例信令交互)
接下来,将结合具体示例描述根据本公开实施例的定位过程的示例信令交互,其例如可以利用上述第一实施例的第一配置示例的电子设备 300(实现在核心网侧的电子设备)与相关设备的交互来实现。
图6是用于说明根据本公开实施例的定位过程的示例信令交互的流程图。在图6的示例中,第一配置示例的电子设备300实现为核心网设备5GC,需要定位的用户设备为UE,针对UE确定的定位基站组中包括用户设备UE的当前服务基站TRP1与另外的基站TRP2等。为便于描述,省略示出了定位基站组的其他基站,但可以理解,该示例流程可类似地适用于定位基站组中包括更多个基站的情况。在本示例中,例如以上在图4B的第二使用示例描述的经由联合训练获得的多个定位模型PM1、PM2等和融合模型FM分别布置在相应的基站TRP1、TRP2等和核心网设备5GCC。
如图6所示,可选地,首先,在步骤S600中,核心网设备5GC经由适当处理(以及可选地与相关设备的信令交互),确定满足预定条件的基站TRP1、TRP2等作为定位基站组,并向定位基站组中的每个基站通知该确定结果。作为示例,核心网设备5GC例如可以简单地将距UE的当前服务基站TRP1阈值距离内的各个基站确定为定位基站组。5GC向UE的当前服务基站TRP1发送的确定结果通知例如可以包括定位基站组中的各个基站的标识(ID)以及可选的每个基站的相关信息如位置信息等。5GC向定位基站组中的其他基站例如TRP2发送的确定结果通知是可选的,并且例如可以仅包括该基站被划入定位基站组的指示信息。确定定位基站组的进一步的细节将稍后描述。
接着,例如,在步骤S601中,5GC向UE的当前服务基站TRP1发送定位测量通知。
在步骤S602中,UE的当前服务基站TRP1根据所接收到的定位测量通知(以及可选地,根据步骤S600中接收到的确定结果通知),例如经由无线资源控制(Radio Resource Control,RRC)信令向UE发送SRS配置信息,以为UE配置能够被定位基站组的各个基站用于定位测量的SRS资源。TRP1可以为UE配置例如现有的周期性、半周期性或非周期性的SRS信号,并且优选地配置周期性SRS信号以简化流程。优选地,TRP1可以为UE配置定位SRS资源集中的SRS信号。
在一个优选示例中,TRP1可以将UE配置为周期性地发送全向波束或者全部的指向性波束,例如依次发送覆盖全部波束范围的64个或8个 波束。对于这种配置,定位基站组中的各个基站可以彼此并行地针对UE发送的全部波束进行接收。替选地,如果TRP1根据其在步骤S602中接收到的定位测量通知(以及可选地根据步骤S600中接收到的确定结果通知),可以了解定位基站组中的各个基站的位置,则TRP1可以将UE配置为例如依次针对每个基站发送指向性波束。对于这种配置,定位基站组中的各个基站可以依次针对UE发送的相应波束进行接收。
此外,在步骤S603中,TRP1还将与所配置的SRS信号相关的信息发送给5GC,该SRS相关信息例如可以包括UE要发送的SRS的时频资源以及可选的波束信息。接着,在步骤S604中,5GC可以基于所接收到的SRS相关信息,向定位基站组中的其他基站例如TRP2发送定位测量通知,以通知该基站例如UE要发送的SRS信号所使用的时频资源以及可选的波束信息。
接下来,在步骤S605中,UE基于从TRP1接收的SRS配置信息,利用指定的时频资源(以及可选地指定的波束)发送SRS信号;定位基站组中的当前服务基站TRP1相应地接收UE发送的SRS信号并且获得其接收信号例如其RSRP1;定位基站组中的其他基站例如TRP2也基于定位测量通知来接收UE发送的SRS信号并且获得其接收信号例如其RSRP2。如前所述,取决于UE的当前服务基站TRP1对UE的SRS信号的具体配置(通过全向波束发送的SRS信号,或者通过针对每个定位基站的指向性波束发送的SRS信号),定位基站组中的各个基站可以彼此并行地针对UE发送的全部波束进行接收,或者依次针对UE发送的相应波束进行接收,本公开对此不进行限制。
接下来,在步骤S606中,各个定位基站基于SRS信号的接收信号,利用各自的定位模型提取UE的定位信息。在步骤S607中,各个定位基站将所提取的定位信息发送到5GC。在步骤S608中,5GC利用其融合模型获取定位结果PR。在可选的步骤S609中,5GC将定位结果PR经由当前服务基站TRP1发送到UE。
在一个示例中,5GC例如可以具有定位管理功能(Location Management Function,LMF),以及可选的接入和移动管理功能(Access and Mobility Management Function,AMF)。在这种情况下,可以在5GC中的LMF功能与下一代无线接入网(Next Generation Radio Access Network,NG-RAN)的定位基站组中的各个基站TRP1、TRP2等之间,(例如经由 AMF功能)通过NR(新空口,New Radio)定位协议附件(NR Positioning Protocol Annex,NRPPa)信令进行与定位相关的各种信令交互。
在上述的步骤S602中,作为示例,描述了UE的当前服务基站TRP1为UE配置例如现有定位SRS资源集中的SRS信号并相应地向UE发送SRS配置信息的情况。可选地,根据本公开的实施例,UE的当前服务基站TRP1还可以为UE配置不同于现有定位SRS资源集中的SRS参考信号。
例如,UE的当前服务基站TRP1还可以为UE配置一个上行参考信号资源集中的、相同周期内重复发送的上行参考信号,例如但不限于定位SRS资源集中的、相同周期内重复发送的定位SRS。作为示例,可以在在上行定位SRS资源(SRS-PosResource)的资源映射(resourceMapping)中加入重复系数(repetitionFactor),指示一个周期内重复发送的次数。
现有的定位SRS资源集(SRS-PosResourceSet)不支持周期内重复发送定位SRS。利用本示例的配置,支持周期内重复发送定位SRS以利于通过重复测量来抑制噪声干扰并提高定位精度。
此外,在UE支持同时发送多个上行信号(例如但不限于UE具有多个射频链路从而可以发送多个数据流)的情况下,UE的当前服务基站TRP1还可以为UE配置多个上行参考信号资源集中的具有相同时域资源并且位于相同部分带宽(Bandwidth Part,BWP)内的上行参考信号,例如但不限于多个SRS资源集中的具有相同时域资源并且位于相同部分带宽内的定位SRS,使得UE可以同时发送这些定位SRS。举例而言,可以参照用于波束管理的SRS资源集在这一方面的配置,类似地配置用于定位的SRS资源集。例如,可以参照用于波束管理的SRS资源集的高层使用参数“beamManagement”(波束管理),针对用于定位的SRS资源集定义高层使用参数,例如“PosMeasurement”(定位测量)。当这样的用于定位的SRS资源集的高层使用参数设置为“PosMeasurement”时,每个SRS资源集在给定时刻只能发送一个SRS资源,但多个SRS资源集中具有相同时域资源并且位于相同部分带宽内的SRS可以同时发送。作为示例,在UE支持同时发送n个上行信号的情况下(n为大于1的自然数),TRP1可以将UE配置为可以同时发送多个用于定位的SRS资源集中的具有相同时域资源并且位于相同部分带宽内的n个SRS。
现有的定位SRS资源集(SRS-PosResourceSet)不支持同时发送多个定位SRS资源集中的具有相同时域资源并且位于相同部分带宽内的定位SRS。利用本示例的配置,使得UE可以同时发送多个定位的SRS资源集中的用于定位的SRS,从而有利于提高定位处理的速度以及降低定位时延。
在UE的当前服务基站TRP1为UE进行了上行参考信号的上述配置的情况下,相应地,在步骤S605中,从用户设备UE发送的或者多个基站中的至少一个基站从用户设备UE接收的上行参考信号可以满足下述条件至少之一:所述上行参考信号是一个上行参考信号资源集中的、相同周期内重复发送的上行参考信号;以及所述上行参考信号是多个上行参考信号资源集中的具有相同时域资源并且位于相同部分带宽内的上行参考信号。
以上结合图6描述了根据本公开实施例利用定位模型和融合模型进行的定位过程的示例信令交互。
由于机器学习的模型的训练过程与使用过程的对应性,因此图6的定位过程的示例信令交互,即,定位模型和融合模型的使用过程的示例信令交互类似地适用于定位模型和融合模型的联合训练过程。联合训练过程与图6所示的定位过程的主要区别在于,将步骤S608中的处理修改为利用融合模型获得定位结果PR并且基于该定位结果与真实位置计算损失函数(例如此前在“定位模型的第二使用示例”中描述的诸如数学式(3)的损失函数),并且例如采用梯度反向传播算法中的Adam优化器进行优化,将步骤S609修改为向各个定位基站TRP1、TRP2反馈梯度,使得可以更新各个模型的参数;此后,训练过程可以重复例如步骤S601开始的各个步骤(此时步骤S606和修改的步骤S608中使用更新后的模型),直至获得定位模型和融合模型的最优参数为止。
(2.1.4确定定位基站组的示例)
如前所述,根据本实施例的电子设备300可以将满足预定条件的基站的集合确定为定位基站组,该预定条件例如可以包括下述中的至少一者:与所述用户设备之间的信道是直视径的可能性高于预定阈值;与所述用户设备之间的信道质量优于预定阈值;与所述用户设备之间的估计距离小于预定阈值;与所述用户设备的服务基站之间的估计距离小于预 定阈值。
在上述预定条件中,前三个条件均与用户设备的当前位置有关,并且第一个条件还可能取决于用户设备的当前发射功率(在采用上行参考信号进行衡量的情况下),因此满足这些条件的基站可能是动态变化的。相应地,基于这样的条件确定的定位基站组是灵活的并且可能是实时变化的,有利于实时地以具有可靠无线信道特征的适当基站进行用户设备的定位。例如,在应用上述全部四个条件的情况下,可以确定距离用户设备较近、信道质量较好、并且更可能具有直视径的基站作为定位基站,而剔除远离用户设备的信道质量较差的基站(即使该基站邻近用户设备的当前服务基站)。因此,可以提取可靠的无线信道特征。
接下来,将参照图7结合具体示例描述根据本公开实施例的确定定位基站组的示例。图7是用于说明确定定位基站组的示例的示意图。在图7的(A)和(B)中,左侧椭圆范围内的定位基站组PG-0是本实施例的电子设备300根据各个基站与UE的服务基站TRP-S之间的估计距离小于预定阈值这一条件而确定的,其包括以TRP-S为中心的包括TRP-S在内的4个基站。
例如,在电子设备300实现为核心网侧设备的情况下,其例如在存储单元330中存储有各个基站的相关信息,因此可以直接确定各个基站与用户设备的当前服务基站TRP-S之间的距离,并相应地确定图7的(A)和(B)所示的定位基站组PG-0。此外,尽管图中未示出,但在控制单元310控制下,电子设备300还可以经由通信单元320指示UE的当前服务基站TRP-S及距离最近的一个相邻基站进行例如基于AoD的三角定位(例如参见图1)以获得UE的估计位置,并且可以基于例如从服务基站TRP-S报告的UE的估计位置来确定各个基站与UE之间的估计距离,并相应地确定满足关于UE的估计距离的基站,这里不再赘述。
此外,在图7的(A)和(B)中,右侧椭圆范围内的定位基站组PG-1和PG2是本实施例的电子设备300根据各个基站与UE之间的信道质量优于预定阈值这一条件而确定的,其分别示出了在行人持握的用户设备UE具有不同的发射功率(13dB和23dB)的情况下,所确定的包括以UE为中心的包括TRP-S在内的4个基站或7个基站。如图7所示,在(B)所示的UE具有较大发射功率的示例中确定的定位基站组PG-2比在(A)所示的UE具有较小发射功率的示例中确定的定位基站组PG-1包括更多 的基站,这是因为在(B)所示的示例中,更多的基站与UE之间的信道质量优于预定阈值。
可以例如经由作为核心网设备的电子设备300的控制,使各个基站与UE之间进行信道质量的测量例如基站与UE之间所传送的参考信号的RSRP的测量,从而获得上述信道质量。替选地或者附加地,在一个示例中,电子设备300还可以经由必要的信令交互,使得各个基站与UE之进行信道估计或测量,并确定延时域或角度域信道的信道峰度,并将与UE之间的角度域信道或延时域信道的信道峰度大于预定阈值的基站确定为信道是直视径的可能性高于预定阈值的基站,进而将其确定为定位基站组中的定位基站。信令交互的细节将稍后描述。
这里,假设备选基站与UE之间已经经由上行或下行测量而得到了频域信道其中MRx为UE的天线数目,MTx为备选基站的天线数目,K为子载波数目,并且电子设备300例如已经经由通信单元320从备选基站或UE获得了上述频域信道H。
例如,电子设备300可以利用控制单元310,对频域信道H以UE端或备选基站端的天线维度进行离散傅里叶变换(Discrete Fourier Transform,DFT)而得到角度域信道。作为示例,电子设备300通过以下的数学式(4)获得UE端的角度域信道Hang,UE
Hang,UE=FUEH    …(4)
其中,为MRx阶DFT矩阵。电子设备300还可以通过类似方式获得基站端角度域信道,这里不再赘述。
此外,电子设备300还可以利用控制单元310,通过以下的数学式(5)对频域信道H在子载波维度做离散傅里叶变换得到延时域信道Hd
其中,为K阶DFT矩阵。
对于以上述方式获得的角度域信道或延时域信道,电子设备300还可以利用控制单元310,计算该信道的峰度。
峰度(kurtosis)是表征概率密度分布曲线在平均值处峰值高低的特征数。峰度例如可以通过四阶累积量除以二阶累积量的平方来计算,即以四阶中心矩除以概率分布方差的平方再减去3(3表示正态分布的峰度) 来计算。如果峰度大于3,峰的形状比较尖,比正态分布峰要陡峭,可以称为正峰度;如果峰度小于3,则可以称为负峰度。图8是具有不同峰度的分布曲线的示意图(其中横轴表示样本数),其中曲线C1是具有正峰度的曲线,曲线C2是正态分布的曲线,曲线C3是具有负峰度的曲线。
以作为三维矩阵的延时域信道Hd为例,电子设备300可以将其视为多组分别具有K个值的样本x=[x1,x2,…,xK],其中每个样本值是延时域信道Hd的三维矩阵中的子载波维度的一个对应元素,在延时域信道Hd中共包含MRx×MTx组样本。每组样本可以通过以下的数学式(6)计算该组样本的峰度KURT(x):
其中,最终,计算MRx×MTx组样本峰度的平均值作为延时域信道Hd的峰度KURT。
电子设备300还可以通过类似方式计算角度域信道的峰度,这里不再赘述。电子设备可以将例如以上述方式计算的、与UE之间的延时域信道或角度域信道的峰度大于预定阈值的备选基站确定为定位基站。
如图8所示,样本分布的峰度越大,说明样本分布具有越尖锐的主峰。对于角度域或延时域信道,当LOS径在无线信道中占主导地位时,其表现为角度域或延时域信道的样本分布的尖锐主峰,因此峰度较大的角度域或延时域信道更可能具有LOS径。LOS径不受反射或遮挡影响,能较为准确地体现UE和基站间的方位等信息,具有较为可靠的定位特征,因此通过适当地设置峰度阈值并选择满足该阈值要求的基站作为定位基站,可以选择更可能具有LOS径的基站,即选择了能够提取更可靠的无线信道特征的基站。
接下来,将结合具体示例描述根据本公开实施例的确定定位基站组的过程的示例信令交互,其例如可以利用上述第一实施例的第一配置示例的电子设备300(实现在核心网侧的电子设备)与相关设备的交互来实现。
图9是用于说明根据本公开实施例的确定定位基站组的过程的一个示例信令交互的流程图。在图9的示例中,第一配置示例的电子设备300实现为核心网设备5GC,需要定位的用户设备为UE,UE的当前服务基站为TRP1,作为定位基站的备选的基站包括TRPj等。为便于描述,省略示出了定位基站的其他备选基站,但可以理解,该示例流程可类似地适用于包括更多个备选基站的情况。
如图9所示,首先,在步骤S901中,核心网设备5GC经由适当处理初步确定满足预定条件的备选基站TRP1和TRPj等,该预定条件例如可以是距UE的当前服务基站TRP1的距离和/或距UE的估计距离在预定阈值内。
接着,在步骤S902中,5GC向UE的当前服务基站TRP1发送备选基站确定通知,该通知例如可以包括所确定的各个备选基站的标识(ID)以及可选的每个备选基站的相关信息如位置信息等。此外,在可选的步骤S903中,5GC向除了当前服务基站TRP1以外的其他备选基站例如TRPj发送备选基站确定通知,该通知例如可以仅包括该基站被确定为备选基站的指示信息。
在步骤S904中,UE的当前服务基站TRP1根据所接收到的备选基站确定通知,例如经由无线资源控制RRC信令向UE发送SRS配置信息,以为UE配置能够与各个备选基站之间进行信号质量测量或信道测量等的SRS信号。TRP1可以为UE配置例如现有的周期性、半周期性或非周期性的SRS信号,并且优选地配置周期性SRS信号以简化流程。
在一个优选示例中,TRP1可以将UE配置为周期性地发送全向波束,例如依次发送覆盖全部波束范围的64个或8个波束。对于这种配置,各个备选基站可以彼此并行地针对UE发送的全部波束进行接收。替选地,如果TRP1根据其在步骤S902中接收到的备选基站确定通知而可以了解各个备选基站的位置,则TRP1可以将UE配置为例如依次针对每个备选基站发送指向性波束。对于这种配置,各个备选基站可以依次针对UE发送的相应波束进行接收。
此外,在步骤S905中,TRP1还将与所配置的SRS信号相关的信息发送给5GC,该SRS相关信息例如可以包括UE要发送的SRS的时频资源以及可选的波束信息。接着,在步骤S906中,5GC可以基于所接收到 的SRS相关信息,向除了当前服务基站以外的其他备选基站例如TRPj发送测量通知,以通知该基站UE要发送的SRS信号所使用的时频资源以及可选的波束信息。
接下来,在步骤S907中,UE基于从TRP1接收的SRS配置信息,利用指定的时频资源(以及可选地指定的波束)发送SRS信号;当前服务基站TRP1相应地接收UE发送的SRS信号,并且可以获得其接收信号例如其RSRP1和/或确定该基站与UE之间的信道H1;其他备选基站例如TRPj也基于测量通知来接收UE发送的SRS信号,并且可以获得其接收信号例如其RSRPj和/或确定该基站与UE之间的信道Hj。如前所述,取决于UE的当前服务基站TRP1对UE的SRS信号的具体配置(通过全向波束发送的SRS信号,或者通过针对每个定位基站的指向性波束发送的SRS信号),各个备选基站可以彼此并行地针对UE发送的全部波束进行接收,或者依次针对UE发送的相应波束进行接收,本公开对此不进行限制。
接下来,在步骤S908中,各个备选基站将所获得的接收信号例如其RSRP和/或信道发送到5GC。在步骤S909中,5GC在必要时将所接收的信道变换到角度域或延时域(例如在从各个备选基站接收到的信道是频域信道时)并且将与UE之间的角度域或延时域信道的峰度大于预定阈值并且/或者从UE接收的SRS的RSRP高于预定阈值的备选基站确定为定位基站组中的定位基站。在本示例中,除了UE的当前服务基站TRP1之外,例如TRPj等也被确定为定位基站。
在步骤S910中,5GC向UE的当前服务基站TRP1发送定位基站组确定通知,该通知例如可以包括所确定的定位基站组中的各个基站的标识(ID)以及可选的每个基站的相关信息如位置信息等。此外,在可选的步骤S911中,5GC向定位基站组中除了当前服务基站TRP1以外的其他基站例如TRPj发送定位基站确定通知,该通知例如可以仅包括该基站被确定为定位基站的指示信息。
上述步骤S901至S911中的部分或全部可以重复执行例如周期性地执行,以为UE实时确定或更新其定位基站组。
在一个示例中,5GC例如可以具有定位管理功能LMF,以及可选的接入和移动管理功能AMF。在这种情况下,可以通过NRPPa(例如经由 AMF功能)在5GC中的LMF功能与NG-RAN中的各个备选基站TRP1、TRPj等之间进行与定位测量相关的各种信令交互,例如但不限于上述步骤S910、S911中关于定位基站组或定位基站的确定通知等。
(2.1.5修改示例)
以上描述了本实施例的电子设备300的第一配置示例即实现在核心网侧的电子设备及其相关的优选布置/实现,其中,定位模型采用分布式布置在定位基站组中的每个基站处,并且针对定位测量使用了用户设备发送的上行参考信号。
然而,如前所述,本公开对定位模型的布置方式以及定位模型使用的参考信号没有特别的限制。因此,在修改示例中,例如可以改变定位模型的布置方式以及/或者定位模型使用的参考信号。例如,在一个修改示例中,可以将在各个定位基站处训练获得的定位模型发送给实现在核心网侧的电子设备300,即,在电子设备300处集中布置各个训练好的定位模型。在该情况下,电子装置300例如可以从多个基站或用户设备获得上行或下行参考信号的接收信号,再利用自身布置的各个定位模型提取定位信息。
以上已经描述了第一实施例的电子设备300作为核心网侧设备的第一配置示例。接下来,将分别描述电子设备300实现在基站侧和终端侧的第二和第三配置示例,并且将着重描述其与第一配置示例的区别而省略不必要的重复。
[2.2第二配置示例]
在第二配置示例中,电子设备300是基站侧设备。
作为示例,电子设备可以是构成定位基站组的多个基站中的第一基站。该第一基站例如可以是用户设备的当前服务基站。
在本示例中,优选地,定位基站组中的各个基站相关的定位模型采用分布式布置,即直接布置在相应的基站中,并且定位基站组中包括第一基站在内的各个基站可以自行提取定位信息,并除了第一基站以外的基站可以将其提取的定位信息发送给作为第一基站的电子设备300。由于基站的计算能力一般强于用户设备,因此将定位模型分布式布置在基站中有利于降低计算延时。
更具体地,作为第一基站的电子设备300的控制单元310可以被配置为基于第一基站与用户设备之间传送的参考信号的接收信号,利用与第一基站相关的定位模型,获取与第一基站相关的所述用户设备的定位信息。此外,电子设备300的控制单元310还可以被配置为控制通信单元320从多个基站中除第一基站以外的其他基站接收与其他基站相关的所述用户设备的定位信息。
在本示例中,优选地,被用于定位的参考信号是上行参考信号。即,每个基站相关的定位模型的输入可以是该基站从用户设备接收的上行参考信号的接收信号,从而避免了用户设备向基站的反馈开销,并且有利于简化信令流程。作为示例,上述上行参考信号可以采用定位SRS资源集(SRS-PosResourceSet)中的SRS资源。
在第二配置示例中,与第一配置示例的情况相比,对于定位基站组中除了第一基站以外的基站而言,其主要区别在于将发送定位信息的目的地(以及可选地,接收测量通知和确定结果等的源头)从核心网设备修改为第一基站,并且其他操作与第一配置示例中描述的基本相同或相似。此外,在第二配置示例中,与第一配置示例的情况相比,对于作为定位基站组中的第一基站(例如用户设备的当前服务基站)的电子设备、而非用作核心网设备的电子设备而言,其区别主要在于增加了利用自身的定位模型提取定位信息的功能,并且其他操作与第一配置示例中描述的基本相同或相似。
因此,上述在第一配置示例中描述的定位模型的各种使用示例可以类似地适用于第二配置示例。
此外,上述在第一配置示例中描述的定位过程的示例信令交互可以在适当修改后类似地适用于第二配置示例。例如,在图6所示的示例信令交互中,此时,取代由核心网设备5GC发起定位测量、获得定位信息和获得定位结果,由第一基站例如用户设备的当前服务基站TRP1发起定位测量(向其他定位基站发送定位测量通知),并由TRP1获得其他定位基站的定位信息,进而由TRP1确定定位结果。此时,TRP1例如可以直接与其他定位基站进行通信(例如经由设备到设备(Device to Device,D2D)通信或旁路(Sidelink)通信),或者可以利用5GC作为中转彼此通信。注意,此时的TRP1作为用户设备UE的当前服务基站,其仍继续执行对UE的SRS配置等。类似地,上述在第一配置示例中描述的定位 基站组的确定以及图9所示的相关信令交互可以在适当修改后(例如还增加第一基站如当前服务基站TRP1从5GC获得相关信息的处理或步骤)类似地适用于第二配置示例。
另外,尽管在第二配置示例中,优选地定位基站组中的各个基站相关的定位模型分布式布置在各个基站处,并且优选地在定位测量中使用上行参考信号,但第二配置示例不限于此。作为修改示例,例如,各个基站相关的定位模型可以集中布置在用户设备处,并且在测量中使用下行参考信号。此时,定位基站组中的第一基站(例如为用户设备的当前服务基站)从用户设备获取用户设备利用多个定位模型提取的定位信息(下行参考信号),再进行融合计算或融合处理。
[2.3第三配置示例]
在第三配置示例中,电子设备300是终端侧设备。
作为示例,电子设备可以是要进行定位的用户设备。
在本示例中,优选地,定位基站组中的各个基站相关的定位模型集中布置在用户设备处。例如,可以首先在各个定位基站处训练获得其各自的定位模型,再将其发送给作为用户设备的电子设备300。
在这种情况下,作为用户设备的电子设备300的控制单元310可以被配置为基于多个基站中的每个基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型,获取与该基站相关的所述用户设备的定位信息。在本示例中,优选地,被用于定位的参考信号是下行参考信号。即,布置在作为用户设备的电子设备300处的、分别与各个基站相关的各个定位模型的输入可以是电子设备300从相应基站接收的下行参考信号的接收信号,从而避免了用户设备从相应基站获得接收信号的开销,并且有利于简化信令流程。作为示例,上述下行参考信号可以采用定位参考信号PRS。
在第三配置示例中,与第一配置示例的情况相比,对于定位基站组中的基站而言,其区别主要在于不再自行提取定位信息,而只是向作为用户设备的电子设备300发送下行参考信号。此外,在第三配置示例中,与第一配置示例的情况相比,对于作为用户设备的电子设备、而非用作核心网设备的电子设备而言,其区别主要在于增加了从定位基站组中的各个基站接收下行参考信号并利用部署的各个定位模型提取相应的定位 信息的功能,并且其他操作与第一配置示例中描述的基本相同或相似。
因此,上述在第一配置示例中描述的定位模型的各种使用示例可以类似地适用于第三配置示例。此外,上述在第一配置示例中描述的定位过程的示例信令交互可以在适当修改后类似地适用于第三配置示例。例如,在图6所示的示例信令交互中,此时,取代由核心网设备5GC发起定位测量,由用户设备UE发起定位测量,并由UE基于与各个定位基站之间传送的参考信号的接收信号获得定位信息并确定定位结果。此时,UE例如可以经由其服务基站TRP1与其他定位基站进行通信(例如经由各个基站之间的D2D通信或Sidelink通信),或者可以经由其服务基站TRP1再利用5GC作为中转与其他定位基站通信。类似地,上述在第一配置示例中描述的定位基站组的确定以及图9所示的相关信令交互可以在适当修改后(例如还增加UE从5GC获得相关信息的处理或步骤)类似地适用于第三配置示例。
另外,尽管在第三配置示例中,优选地定位基站组中的各个基站相关的定位模型集中布置在作为用户设备的电子设备处并优选地在定位测量中使用下行参考信号,但第三配置示例不限于此。作为修改示例,例如,各个基站相关的定位模型可以分布布置在各个定位基站处,并且在测量中使用上行参考信号。此时,作为用户设备的电子设备从定位基站组中的各个基站获取其利用相应的定位模型提取的定位信息,再进行融合计算或融合处理。
以上描述了根据本公开的第一实施例的电子设备,其能够经由与相关设备的交互来获取或者自身直接获取分别利用各个定位基站相关的定位模型提取的、针对一个用户设备的多个定位信息,并基于这些定位信息获得该用户设备的定位结果。
在以上第一实施例的描述过程中,除了根据第一实施例的用于基于定位信息获得的定位结果的第一设备之外,同样描述了布置有定位模型并且利用定位模型来提取用户设备的定位信息以供第一设备使用的第二设备(例如,第一配置示例中描述的各个定位基站,第二配置示例中描述的除第一基站之外的定位基站,第三配置示例的修改示例中描述的各个定位基站等),以及为了向布置有定位模型的相关设备提供输入(参考信号的接收信号)而与定位基站交互的第三设备即用户设备(例如,第一配置示例或第二配置示例中描述的用户设备)。换言之,发明人已经针 对上述第二和第三设备做出了本公开的第二和第三实施例。以下将在第一实施例的描述的基础上,给出第二和第三实施例的概要描述,而省略其不必要的细节。
<3.第二实施例的电子设备的配置示例>
第二实施例的电子设备可以具有与第一实施例的电子设备类似的功能框图。即,第二实施例的电子设备可以具有图3所示的电子设备300的形式,并且包括控制单元310和通信单元320以及可选的存储单元330。第二实施例的电子设备300优选地是基站侧设备。
根据第二实施例,电子设备300的控制单元310可以基于本基站与用户设备之间传送的参考信号的接收信号,利用与本基站相关的定位模型,获取与本基站相关的所述用户设备的定位信息。此外,控制单元310还可以控制通信单元320向另外的电子设备提供与本基站相关的所述用户设备的定位信息,以供该另外的电子设备基于分别与包括本基站的多个基站相关的所述用户设备的多个定位信息来获得所述用户设备的定位结果,其中所述用户设备的多个定位信息具有彼此相同的形式。
这里,用于获得用户设备的定位结果的“另外的电子设备”可以是此前在第一实施例中描述的各个配置中的电子设备(第一设备),包括本基站的多个基站可以是此前在第一实施例中描述的定位基站组。优选地,本实施例的电子设备300可以是构成定位基站组的多个基站中的本基站,其例如可以是第一实施例的第一配置示例中描述的各个定位基站,第二配置示例中描述的除第一基站之外的定位基站,第三配置示例的修改示例中描述的各个定位基站等。优选地,在本示例中,参考信号为上行参考信号。
<3.第三实施例的电子设备的配置示例>
第三实施例的电子设备可以具有与第一实施例的电子设备类似的功能框图。即,第三实施例的电子设备可以具有图3所示的电子设备300的形式,并且包括控制单元310和通信单元320以及可选的存储单元330。第三实施例的电子设备300优选地是终端侧设备。
根据第三实施例,电子设备300的控制单元310可以控制通信单元320分别与多个基站中的每个基站之间进行参考信号的发送或接收,以供多个基站中的每个基站基于该基站与所述电子设备之间传送的参考信号 的接收信号、利用与该基站相关的定位模型而获取与该基站相关的所述电子设备的定位信息,其中,与多个基站中的每个基站相关的所述电子设备的定位信息具有相同的形式。
这里,与作为终端侧设备的电子设备300交互的多个基站可以是此前在第一实施例中描述的定位基站组中的各个基站。优选地,本实施例的电子设备300可以是要定位的用户设备,其例如可以是第一实施例的第一配置示例或第二配置示例中描述的用户设备。优选地,在本示例中,参考信号为上行参考信号。
<5.仿真结果>
接下来,将结合图10的示例描述根据本公开的实施例的定位过程的仿真结果。图10是用于说明根据本公开的实施例的定位过程的仿真示例中可能被用于定位的备选基站的示意图,其中示出了半径为200米的半圆区域内包含12个备选基站的定位场景,图中未示出的用户设备可以位于该半圆区域内的任意位置(随机位置),用户设备的当前服务基站可以为基于用户设备与12个备选基站之间的信道质量而确定的、12个备选基站中的一个基站(例如可以将与用户设备之间的RSRP最大的那个基站作为服务基站)。每个基站均包括LOS场景和NLOS场景,并且各个基站和用户设备均使用线性天线阵列(Uniform Linear Array,ULA)。
在仿真示例A和仿真示例B中,均利用第一实施例的第一配置示例的电子设备300即核心网设备5GC,经由图6所示的定位过程,采用上行参考信号即定位SRS作为定位模型的输入,获得用户设备UE的定位结果。两个仿真示例的区别在于定位基站组的选择。在仿真示例A中,将图10的全部12个备选基站作为定位基站组;在仿真示例B中,将图10的12个备选基站当中与用户设备UE之间的RSRP大于RSRP阈值(RSRP阈值η=-88dBm)的基站作为定位基站组。采用现有的COST2100无线信道模型产生信道数据。仿真参数如表1所示。

表1
基于上述仿真条件和仿真参数,在仿真示例A和仿真示例B中,在仅改变用户设备的位置而其他条件保持不变的情况下,分别进行5000次定位过程的仿真,每次仿真中的用户设备的位置可以在图10中所示的半圆区域内随机确定。采用平均定位误差E作为评价指标。假设经由仿真获得的用户设备UE的预测位置为ppre=(xpre,ypre),用户设备UE的实际位置为p=(x,y),则定位误差Error可以按照与数学式(3)类似的方式计算为
图11示出了仿真示例A和B的定位误差的累积分布函数(Cumulative Distribution Function,CDF),其中,其中50%、90%和99%范围的定位误差如表2所示。可以看到,仿真示例B的定位误差中位数仅为1.67米,其相较于仿真示例A具有更小的定位误差。同时,如表2所示,仿真示例B仅需平均5.85个定位基站的上行测量,因此还具有更小的定位开销。
表2
<6.方法实施例>
与上述装置实施例相对应的,本公开提供了以下方法实施例。
图12是示出根据本公开的第一实施例的用于无线通信的方法的过程示例的流程图。
如图12所示,在步骤S1201中,获得分别与多个基站中的每个基站相关的、用户设备的多个定位信息,其中,与每个基站相关的所述用户设备的定位信息是基于该基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取的,所述用户设备的多个定位信息具有彼此相同的形式。
接下来,在步骤S1202中,基于所述用户设备的多个定位信息,获得所述用户设备的定位结果。
步骤S1201中涉及的多个基站可以统称为定位基站组,其中每个基站可以称为定位基站。可选地,定位基站组中的多个基站中的每个基站满足下述条件中的至少一者:与所述用户设备之间的信道是直视径的可能性高于预定阈值;与所述用户设备之间的信道质量优于预定阈值;与所述用户设备之间的估计距离小于预定阈值;与所述用户设备的服务基站之间的估计距离小于预定阈值。
在定位模型的第一使用示例中,每个基站的定位模型是利用该基站与具有已知位置的一个或更多个用户设备之间传送的参考信号的接收信号作为训练数据,通过训练而预先获得的。作为示例,定位信息的形式 包括下述中的至少一者:用户设备的位置;用户设备的位置及置信度;用户设备的位置的概率分布。此时,在步骤S1202中,基于所述用户设备的多个定位信息,利用简单的融合计算获得所述用户设备的定位结果。
在定位模型的第二使用示例中,在步骤S1202中,基于所述用户设备的多个定位信息,利用融合模型获得所述用户设备的定位结果。作为示例,多个基站中的每个基站的定位模型和所述融合模型是利用多个基站中的每个基站与具有已知位置的一个或更多个用户设备之间传送的参考信号的接收信号作为训练数据,通过联合训练而预先获得的。
在本实施例的方法的第一执行示例中,在核心网侧执行图12所示的示例方法。此时,优选地,定位模型分布式布置在各个定位基站处,并且在步骤S1201中,通过从多个基站分别接收与每个基站相关的所述用户设备的定位信息的方式,获得所述多个定位信息。
在本实施例的方法的第二执行示例中,在多个基站中的一个基站侧执行图12所示的示例方法。此时,优选地,定位模型分布式布置在各个定位基站处,并且在步骤S1201中,通过下述方式获得所述多个定位信息:基于第一基站与用户设备之间传送的参考信号的接收信号,利用与第一基站相关的定位模型,获取与第一基站相关的所述用户设备的定位信息;以及从多个基站中除第一基站以外的其他基站接收与其他基站相关的所述用户设备的定位信息。
在上述第一和第二执行示例中,可选地,定位测量中使用的参考信号可以为上行参考信号。可选地,多个基站中的至少一个基站从所述用户设备接收的上行参考信号满足下述条件至少之一:所述上行参考信号是一个上行参考信号资源集中的、相同周期内重复发送的上行参考信号;以及所述上行参考信号是多个上行参考信号资源集中的具有相同时域资源并且位于相同部分带宽内的同时发送的上行参考信号。
在本实施例的方法的第三执行示例中,在用户设备侧执行图12所示的示例方法。此时,优选地,定位模型集中布置在用户设备处,并且在步骤S1201中,通过下述方式获得所述多个定位信息:基于多个基站中的每个基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型,获取与该基站相关的所述用户设备的定位信息。
在上述第三执行示例中,可选地,定位测量中使用的参考信号为下 行参考信号。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的第一实施例的电子设备,因此前文中关于第一实施例的电子设备的全部实施例均适用于此。
图13是示出根据本公开的第二实施例的用于无线通信的方法的过程示例的流程图。
如图13所示,在步骤S1301中,基于本基站与用户设备之间传送的参考信号的接收信号,利用与本基站相关的定位模型,获取与本基站相关的所述用户设备的定位信息。
接下来,在步骤S1302中,向另外的电子设备提供与本基站相关的所述用户设备的定位信息,以供该另外的电子设备基于分别与包括本基站的多个基站相关的所述用户设备的多个定位信息来获得所述用户设备的定位结果,其中所述用户设备的多个定位信息具有彼此相同的形式。
步骤S1301中涉及的多个基站可以统称为定位基站组,其中每个基站可以称为定位基站。在一个示例中,在多个基站中的本基站处执行图13所示的示例方法。此时,优选地,多个定位模型分布式布置在各个定位基站处,并且定位测量中使用的参考信号可以为上行参考信号。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的第二实施例的电子设备,因此前文中关于第二实施例的电子设备的全部实施例均适用于此。
图14是示出根据本公开的第三实施例的用于无线通信的方法的过程示例的流程图。
如图14所示,在步骤S1401中,控制电子设备分别与多个基站中的每个基站之间进行参考信号的发送或接收,以供多个基站中的每个基站基于该基站与所述电子设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取与该基站相关的所述电子设备的定位信息,其中,与多个基站中的每个基站相关的所述电子设备的定位信息具有相同的形式。
图14所示的示例方法可以在要被定位的电子设备处执行。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的第 三实施例的电子设备,因此前文中关于第三实施例的电子设备的全部实施例均适用于此。
<7.应用示例>
本公开内容的技术能够应用于各种产品。
例如,第一实施例的第一配置示例的电子设备可以被实现在核心网侧。该电子设备可以被实现为任何类型的控制实体,例如各种类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。电子设备可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。
此外,第一实施例的第二配置示例的电子设备以及第二实施例的电子设备可以实现在基站侧。当电子设备实现在基站侧时,该电子设备可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
基站侧的电子设备还可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
另外,第一实施例的第三配置示例的电子设备以及第三实施例的电子设备可以实现在终端侧。当电子设备实现在终端侧例如实现为终端设备时,该电子设备可以为各种用户设备,其可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于控制实体的应用示例]
图15是示出可以应用本公开内容的技术的服务器1700的示意性配置的示例的框图。服务器1700包括处理器1701、存储器1702、存储装置1703、网络接口1704以及总线1706。
处理器1701可以为例如中央处理单元(CPU)或数字信号处理器(DSP),并且控制服务器1700的功能。存储器1702包括随机存取存储器(RAM)和只读存储器(ROM),并且存储数据和由处理器1701执行的程序。存储装置1703可以包括存储介质,诸如半导体存储器和硬盘。
网络接口1704为用于将服务器1700连接到有线通信网络1705的有线通信接口。有线通信网络1705可以为诸如演进分组核心网(EPC)的核心网或者诸如因特网的分组数据网络(PDN)。
总线1706将处理器1701、存储器1702、存储装置1703和网络接口1704彼此连接。总线1706可以包括各自具有不同速度的两个或更多个总线(诸如高速总线和低速总线)。
在图15所示的服务器1700中,此前参照图3描述的第一实施例的第一配置示例的电子设备300中的控制单元可以由处理器1701实现。例如,处理器1701可以通过执行存储器1702或存储装置1703中存储的指令而执行上述控制单元的功能。此外,电子设备300中的通信单元可以经由网络接口1704等实现。此外,电子设备300中的存储单元可以通过存储器1702和/或存储装置1703实现。
[关于基站的应用示例]
(第一应用示例)
图16是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1800包括一个或多个天线1810以及基站设备1820。基站设备1820和每个天线1810可以经由RF线缆彼此连接。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收无线信号。如图16所示,eNB 1800可以包括多个天线1810。例如,多个天线1810可以与eNB 1800使用的多个频带兼容。虽然图16 示出其中eNB 1800包括多个天线1810的示例,但是eNB 1800也可以包括单个天线1810。
基站设备1820包括控制器1821、存储器1822、网络接口1823以及无线通信接口1825。
控制器1821可以为例如CPU或DSP,并且操作基站设备1820的较高层的各种功能。例如,控制器1821根据由无线通信接口1825处理的信号中的数据来生成数据分组,并经由网络接口1823来传递所生成的分组。控制器1821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1823为用于将基站设备1820连接至核心网1824的通信接口。控制器1821可以经由网络接口1823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1823为无线通信接口,则与由无线通信接口1825使用的频带相比,网络接口1823可以使用较高频带用于无线通信。
无线通信接口1825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1810来提供到位于eNB 1800的小区中的终端的无线连接。无线通信接口1825通常可以包括例如基带(BB)处理器1826和RF电路1827。BB处理器1826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1821,BB处理器1826可以具有上述逻辑功能的一部分或全部。BB处理器1826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1826的功能改变。该模块可以为插入到基站设备1820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1827可以包括例如混频器、滤波器和放大器,并且经由天 线1810来传送和接收无线信号。
如图16所示,无线通信接口1825可以包括多个BB处理器1826。例如,多个BB处理器1826可以与eNB 1800使用的多个频带兼容。如图16所示,无线通信接口1825可以包括多个RF电路1827。例如,多个RF电路1827可以与多个天线元件兼容。虽然图16示出其中无线通信接口1825包括多个BB处理器1826和多个RF电路1827的示例,但是无线通信接口1825也可以包括单个BB处理器1826或单个RF电路1827。
在图16所示的eNB 1800中,此前参照图3描述的第一实施例的第二配置示例以及第二实施例的电子设备300中的通信单元可以通过无线通信接口1825以及可选的天线1810实现。电子设备300中的控制单元的功能可以通过控制器1821实现。例如,控制器1821可以通过执行存储器1822中存储的指令而实现控制单元的功能。此外,电子设备300中的存储单元可以通过存储器1822实现。
(第二应用示例)
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1930包括一个或多个天线1940、基站设备1950和RRH 1960。RRH 1960和每个天线1940可以经由RF线缆而彼此连接。基站设备1950和RRH 1960可以经由诸如光纤线缆的高速线路而彼此连接。
天线1940中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1960发送和接收无线信号。如图17所示,eNB 1930可以包括多个天线1940。例如,多个天线1940可以与eNB 1930使用的多个频带兼容。虽然图17示出其中eNB 1930包括多个天线1940的示例,但是eNB 1930也可以包括单个天线1940。
基站设备1950包括控制器1951、存储器1952、网络接口1953、无线通信接口1955以及连接接口1957。控制器1951、存储器1952和网络接口1953与参照图16描述的控制器1821、存储器1822和网络接口1823相同。
无线通信接口1955支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1960和天线1940来提供到位于与RRH 1960对应的扇区中的终端的无线通信。无线通信接口1955通常可以包括例如BB处理器 1956。除了BB处理器1956经由连接接口1957连接到RRH 1960的RF电路1964之外,BB处理器1956与参照图16描述的BB处理器1826相同。如图17所示,无线通信接口1955可以包括多个BB处理器1956。例如,多个BB处理器1956可以与eNB 1930使用的多个频带兼容。虽然图17示出其中无线通信接口1955包括多个BB处理器1956的示例,但是无线通信接口1955也可以包括单个BB处理器1956。
连接接口1957为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的接口。连接接口1957还可以为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的上述高速线路中的通信的通信模块。
RRH 1960包括连接接口1961和无线通信接口1963。
连接接口1961为用于将RRH 1960(无线通信接口1963)连接至基站设备1950的接口。连接接口1961还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1963经由天线1940来传送和接收无线信号。无线通信接口1963通常可以包括例如RF电路1964。RF电路1964可以包括例如混频器、滤波器和放大器,并且经由天线1940来传送和接收无线信号。如图17所示,无线通信接口1963可以包括多个RF电路1964。例如,多个RF电路1964可以支持多个天线元件。虽然图17示出其中无线通信接口1963包括多个RF电路1964的示例,但是无线通信接口1963也可以包括单个RF电路1964。
在图17所示的eNB 1930中,此前参照图3描述的第一实施例的第二配置示例以及第二实施例的电子设备300中的通信单元例如可以通过无线通信接口1963以及可选的天线1940实现。电子设备300中的控制单元的功能可以通过控制器1951实现。例如,控制器1951可以通过执行存储器1952中存储的指令而实现控制单元的功能。此外,电子设备300中的存储单元可以通过存储器1952实现。
[关于用户设备的应用示例]
(第一应用示例)
图18是示出可以应用本公开内容的技术的智能电话2000的示意性 配置的示例的框图。智能电话2000包括处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012、一个或多个天线开关2015、一个或多个天线2016、总线2017、电池2018以及辅助控制器2019。
处理器2001可以为例如CPU或片上系统(SoC),并且控制智能电话2000的应用层和另外层的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。存储装置2003可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2004为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2000的接口。
摄像装置2006包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2007可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2008将输入到智能电话2000的声音转换为音频信号。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2000的输出图像。扬声器2011将从智能电话2000输出的音频信号转换为声音。
无线通信接口2012支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2012通常可以包括例如BB处理器2013和RF电路2014。BB处理器2013可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2014可以包括例如混频器、滤波器和放大器,并且经由天线2016来传送和接收无线信号。无线通信接口2012可以为其上集成有BB处理器2013和RF电路2014的一个芯片模块。如图18所示,无线通信接口2012可以包括多个BB处理器2013和多个RF电路2014。虽然图18示出其中无线通信接口2012包括多个BB处理器2013和多个RF电路2014的示例,但是无线通信接口2012也可以包括单个BB处理器2013或单个RF电路2014。
此外,除了蜂窝通信方案之外,无线通信接口2012可以支持另外类 型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2012可以包括针对每种无线通信方案的BB处理器2013和RF电路2014。
天线开关2015中的每一个在包括在无线通信接口2012中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线2016中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2012传送和接收无线信号。如图18所示,智能电话2000可以包括多个天线2016。虽然图18示出其中智能电话2000包括多个天线2016的示例,但是智能电话2000也可以包括单个天线2016。
此外,智能电话2000可以包括针对每种无线通信方案的天线2016。在此情况下,天线开关2015可以从智能电话2000的配置中省略。
总线2017将处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012以及辅助控制器2019彼此连接。电池2018经由馈线向图18所示的智能电话2000的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2019例如在睡眠模式下操作智能电话2000的最小必需功能。
在图18所示的智能电话2000中,此前参照图3描述的第一实施例的第三配置示例以及第三实施例的电子设备300中的通信单元可以通过无线通信接口2012以及可选的天线2016实现。电子设备300中的控制单元的功能可以由处理器2001或辅助控制器2019实现。例如,处理器2001或辅助控制器2019可以通过执行存储器2002或存储装置2003中存储的指令而实现控制单元的功能。此外,电子设备300中的存储单元可以通过存储器2002或存储装置2003实现。
(第二应用示例)
图19是示出可以应用本公开内容的技术的汽车导航设备2120的示意性配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位系统(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、存储介质接口2128、输入装置2129、显示装置2130、 扬声器2131、无线通信接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图19所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图19示出其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图19所示,汽车导航设备2120可以包括多个天线2137。虽然图19示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图19所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
在图19示出的汽车导航设备2120中,此前参照图3描述的第一实施例的第三配置示例以及第三实施例的电子设备300中的通信单元可以通过无线通信接口2133以及可选的天线2137实现。电子设备300中的控制单元的功能可以由处理器2121实现。例如,处理器2121可以通过执行存储器2122中存储的指令而实现控制单元的功能。此外,电子设备300中的存储单元可以通过存储器2122实现。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载系统(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的 装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (23)

  1. 一种电子设备,包括:
    处理电路,被配置为
    获得分别与多个基站中的每个基站相关的、用户设备的多个定位信息,其中,与每个基站相关的所述用户设备的定位信息是基于该基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取的,其中,所述用户设备的多个定位信息具有彼此相同的形式;以及
    基于所述用户设备的多个定位信息,获得所述用户设备的定位结果。
  2. 根据权利要求1所述的电子设备,其中,多个基站中的每个基站满足下述条件中的至少一者:
    与所述用户设备之间的信道是直视径的可能性高于预定阈值;
    与所述用户设备之间的信道质量优于预定阈值;
    与所述用户设备之间的估计距离小于预定阈值;
    与所述用户设备的服务基站之间的估计距离小于预定阈值。
  3. 根据权利要求1所述的电子设备,其中,每个基站的定位模型是利用该基站与具有已知位置的一个或更多个用户设备之间传送的参考信号的接收信号作为训练数据,通过训练而预先获得的。
  4. 根据权利要求3所述的电子设备,其中,定位信息的形式包括下述中的至少一者:用户设备的位置;用户设备的位置及置信度;用户设备的位置的概率分布。
  5. 根据权利要求1所述的电子设备,其中,处理电路还被配置为:基于所述用户设备的多个定位信息,利用融合模型获得所述用户设备的 定位结果。
  6. 根据权利要求5所述的电子设备,其中,多个基站中的每个基站的定位模型和所述融合模型是利用多个基站中的每个基站与具有已知位置的一个或更多个用户设备之间传送的参考信号的接收信号作为训练数据,通过联合训练而预先获得的。
  7. 根据权利要求1所述的电子设备,其中,所述电子设备为所述多个基站中的第一基站。
  8. 根据权利要求7所述的电子设备,其中,处理电路还被配置为:
    基于第一基站与用户设备之间传送的参考信号的接收信号,利用与第一基站相关的定位模型,获取与第一基站相关的所述用户设备的定位信息;以及
    从多个基站中除第一基站以外的其他基站接收与其他基站相关的所述用户设备的定位信息。
  9. 根据权利要求1所述的电子设备,其中,所述电子设备为核心网设备。
  10. 根据权利要求9所述的电子设备,其中,处理电路还被配置为:
    从多个基站分别接收与每个基站相关的所述用户设备的定位信息。
  11. 根据权利要求7或9所述的电子设备,其中,参考信号为上行参考信号。
  12. 根据权利要求11所述的电子设备,其中,多个基站中的至少一个基站从所述用户设备接收的上行参考信号满足下述条件至少之一:
    所述上行参考信号是一个上行参考信号资源集中的、相同周期内重复发送的上行参考信号;以及
    所述上行参考信号是多个上行参考信号资源集中的具有相同时域资源并且位于相同部分带宽内的同时发送的上行参考信号。
  13. 根据权利要求1所述的电子设备,其中,所述电子设备为所述用户设备。
  14. 根据权利要求13所述的电子设备,其中,处理电路还被配置为:基于多个基站中的每个基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型,获取与该基站相关的所述用户设备的定位信息。
  15. 根据权利要求13所述的电子设备,其中,参考信号为下行参考信号。
  16. 一种电子设备,包括:
    处理电路,被配置为
    基于本基站与用户设备之间传送的参考信号的接收信号,利用与本基站相关的定位模型,获取与本基站相关的所述用户设备的定位信息;以及
    向另外的电子设备提供与本基站相关的所述用户设备的定位信息,以供该另外的电子设备基于分别与包括本基站的多个基站相关的所述用户设备的多个定位信息来获得所述用户设备的定位结果,其中所述用户设备的多个定位信息具有彼此相同的形式。
  17. 根据权利要求16所述的电子设备,其中,所述电子设备为所述多个基站中的本基站。
  18. 根据权利要求16所述的电子设备,其中,参考信号为上行参考信号。
  19. 一种电子设备,包括:
    分别与多个基站中的每个基站之间进行参考信号的发送或接收,以供多个基站中的每个基站基于该基站与所述电子设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取与该基站相关的所述电子设备的定位信息,其中,与多个基站中的每个基站相关的所述电子设备的定位信息具有相同的形式。
  20. 一种用于无线通信的方法,包括:
    获得分别与多个基站中的每个基站相关的、用户设备的多个定位信息,其中,与每个基站相关的所述用户设备的定位信息是基于该基站与所述用户设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取的,所述用户设备的多个定位信息具有彼此相同的形式;以及
    基于所述用户设备的多个定位信息,获得所述用户设备的定位结果。
  21. 一种用于无线通信的方法,包括:
    基于本基站与用户设备之间传送的参考信号的接收信号,利用与本基站相关的定位模型,获取与本基站相关的所述用户设备的定位信息;以及
    向另外的电子设备提供与本基站相关的所述用户设备的定位信息,以供该另外的电子设备基于分别与包括本基站的多个基站相关的所述用户设备的多个定位信息来获得所述用户设备的定位结果,其中所述用户设备的多个定位信息具有彼此相同的形式。
  22. 一种用于无线通信的方法,包括:
    控制电子设备分别与多个基站中的每个基站之间进行参考信号的发送或接收,以供多个基站中的每个基站基于该基站与所述电子设备之间传送的参考信号的接收信号、利用与该基站相关的定位模型而获取与该基站相关的所述电子设备的定位信息,其中,与多个基站中的每个基站相关的所述电子设备的定位信息具有相同的形式。
  23. 一种存储有可执行指令的非暂态计算机可读存储介质,所述可执行指令在由处理器执行时,使得所述处理器执行如权利要求20至22中任一项所述的用于无线通信的方法。
PCT/CN2023/082993 2022-03-29 2023-03-22 用于无线通信的方法和电子设备以及计算机可读存储介质 WO2023185566A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210318983.8A CN116939819A (zh) 2022-03-29 2022-03-29 用于无线通信的方法和电子设备以及计算机可读存储介质
CN202210318983.8 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023185566A1 true WO2023185566A1 (zh) 2023-10-05

Family

ID=88199284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082993 WO2023185566A1 (zh) 2022-03-29 2023-03-22 用于无线通信的方法和电子设备以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116939819A (zh)
WO (1) WO2023185566A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202376A (zh) * 2010-03-23 2011-09-28 中兴通讯股份有限公司 结合网络及无线传感器网络终端加入网络的方法
KR20140081498A (ko) * 2012-12-21 2014-07-01 주식회사 케이티 기지국, 측위 장치, 및 그의 측위 방법
CN106604228A (zh) * 2016-12-23 2017-04-26 大连理工大学 一种基于lte信令数据的指纹定位方法
CN110022523A (zh) * 2018-01-05 2019-07-16 华为技术有限公司 用于终端设备定位的方法、装置及系统
CN111356075A (zh) * 2018-12-22 2020-06-30 华为技术有限公司 一种多站点的定位方法及装置
CN112887897A (zh) * 2019-11-29 2021-06-01 中国电信股份有限公司 终端的定位方法、装置和计算机可读存储介质
CN113055901A (zh) * 2019-12-27 2021-06-29 中国电信股份有限公司 一种终端定位的方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202376A (zh) * 2010-03-23 2011-09-28 中兴通讯股份有限公司 结合网络及无线传感器网络终端加入网络的方法
KR20140081498A (ko) * 2012-12-21 2014-07-01 주식회사 케이티 기지국, 측위 장치, 및 그의 측위 방법
CN106604228A (zh) * 2016-12-23 2017-04-26 大连理工大学 一种基于lte信令数据的指纹定位方法
CN110022523A (zh) * 2018-01-05 2019-07-16 华为技术有限公司 用于终端设备定位的方法、装置及系统
CN111356075A (zh) * 2018-12-22 2020-06-30 华为技术有限公司 一种多站点的定位方法及装置
CN112887897A (zh) * 2019-11-29 2021-06-01 中国电信股份有限公司 终端的定位方法、装置和计算机可读存储介质
CN113055901A (zh) * 2019-12-27 2021-06-29 中国电信股份有限公司 一种终端定位的方法和装置

Also Published As

Publication number Publication date
CN116939819A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN113840324B (zh) 一种测量上报方法及装置
US20210345141A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2017071618A1 (zh) 无线通信系统中的装置和方法
US20210329416A1 (en) Method and Apparatus for Location Services
US20190349063A1 (en) Base station, terminal apparatus, method and recording medium
WO2015186380A1 (ja) 端末装置、基地局、及びプログラム
CN110313134A (zh) 电子设备、通信装置和信号处理方法
WO2021088797A1 (zh) 网络侧设备、终端侧设备、通信方法、通信装置以及介质
JP6939558B2 (ja) 無線通信のための装置と方法
CN110602781A (zh) 电子设备、用户设备、无线通信方法和存储介质
US20230327831A1 (en) Electronic device and method for wireless communication, and computer readable storage medium
CN111512685A (zh) 信道状态信息测量方法、装置及计算机存储介质
CN106416104B (zh) 一种设备
CN111373666B (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2021056588A1 (zh) 一种配置预编码的方法及装置
WO2022022327A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20240015693A1 (en) User equipment (ue) positioning
JP7452540B2 (ja) 電子機器、通信方法、及び記憶媒体
WO2023185566A1 (zh) 用于无线通信的方法和电子设备以及计算机可读存储介质
WO2021190435A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021237463A1 (en) Method and apparatus for position estimation
JP2023553432A (ja) チャネル情報フィードバック方法及び通信装置
CN114666188A (zh) 信息生成方法及相关装置
WO2023134571A1 (zh) 用于无线通信的电子设备和方法以及计算机可读存储介质
WO2024017301A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777937

Country of ref document: EP

Kind code of ref document: A1