WO2023185489A1 - 一种信号发送方法、信号接收方法及通信装置 - Google Patents

一种信号发送方法、信号接收方法及通信装置 Download PDF

Info

Publication number
WO2023185489A1
WO2023185489A1 PCT/CN2023/081859 CN2023081859W WO2023185489A1 WO 2023185489 A1 WO2023185489 A1 WO 2023185489A1 CN 2023081859 W CN2023081859 W CN 2023081859W WO 2023185489 A1 WO2023185489 A1 WO 2023185489A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
bandwidth
difference
carrier
Prior art date
Application number
PCT/CN2023/081859
Other languages
English (en)
French (fr)
Inventor
罗之虎
陈俊
吴毅凌
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185489A1 publication Critical patent/WO2023185489A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits

Definitions

  • the present application relates to the field of radio frequency technology, and in particular, to a signal sending method, a signal receiving method and a communication device.
  • the received signal can be processed using amplitude modulation and envelope detection, thereby avoiding the use of higher-power RF modules.
  • envelope detection is a nonlinear device and has high noise
  • a radio frequency amplifier needs to be set up before the envelope detector to correctly demodulate the received signal.
  • the receiver needs to filter the received signal, which requires a radio frequency filter before the radio frequency amplifier, and the radio frequency filter is required to have a high Q value to achieve better filtering effects.
  • the Q value of the on-chip RF filter is low.
  • the present application provides a signal sending method, a signal receiving method and a communication device, which can reduce interference between signals without increasing the complexity of the radio frequency filter in the receiver.
  • inventions of the present application provide a signal sending method, which can be executed by a first communication device.
  • the first communication device can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip. system.
  • the following description takes the communication device as the first device as an example.
  • the first communication device is a first device, or a chip provided in the first device, or other components used to implement the functions of the first device.
  • the method includes: the first device determines a first signal and a second signal, and sends the first signal in a first frequency domain unit and a second signal in a second frequency domain unit to the second device.
  • the first frequency domain unit includes a first frequency
  • the second frequency domain unit includes a second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is related to one or more of: the first bandwidth, the second bandwidth, or the third bandwidth.
  • the first bandwidth is the bandwidth occupied by the first frequency domain unit in the frequency domain.
  • the second bandwidth is the bandwidth occupied by the second frequency domain unit in the frequency domain.
  • the third bandwidth is the bandwidth occupied by the third frequency domain unit in the frequency domain.
  • the third frequency domain unit is used by the first device to send a third signal to the third device.
  • the first signal, the second signal and the third signal are located within a working frequency band.
  • the first device as a transmitting end device, can send two signals (for example, a first signal and a second signal) at two frequency positions (for example, a first frequency and a second frequency).
  • the first device may transmit a first signal at a first frequency location and a second signal at a second frequency location.
  • the radio frequency filter of the second device should allow the first signal and the second signal to pass, that is, the passband of the radio frequency filter should This contains a first frequency and a second frequency. It can be understood that the larger the interval between the first frequency and the second frequency, the lower the Q value requirement of the radio frequency filter of the second device, that is, there is no need to require a higher Q value radio frequency filter.
  • the second device can receive the first signal and the second signal through envelope detection. After envelope detection, the absolute value of the difference between the first frequency and the second frequency is obtained.
  • the corresponding intermediate frequency component should be the signal that the second device needs to obtain, which can also be called the target signal.
  • the second device can obtain the target signal through an intermediate frequency band-pass filter and suppress other frequency components containing interference. It is understandable that the frequency of the intermediate frequency is lower than the frequency of the radio frequency. Under the same Q value requirements, the intermediate frequency filter is easier to design and implement. Therefore, through the solution of the embodiment of the present application, the second device can easily distinguish the target signal and interference through the intermediate frequency filter after envelope detection, without increasing the complexity of the design and implementation of the radio frequency filter.
  • the first device sends the first signal and the second signal within a frequency range corresponding to the channel bandwidth of the second device, and the absolute value of the difference between the first frequency and the second frequency is greater than or equal to 1 /2The channel bandwidth of the second device.
  • the intermediate frequency component ie, the target signal
  • the target signal and the interference signal do not overlap in the spectrum, so the interference signal can be filtered more easily through the intermediate frequency filter.
  • the requirements for the RF filter are lower, and there is no need to increase the complexity of the design and implementation of the RF filter.
  • the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the sum of the third bandwidth and the fourth bandwidth.
  • the fourth bandwidth is twice the sum of the first bandwidth and the second bandwidth, and the third signal is located between the first frequency and the second frequency in the frequency domain. It can be understood that the greater the difference between the first frequency and the second frequency, the greater the difference between the frequency of the target signal and the frequency of the interference signal.
  • the difference between the frequency of the target signal and the frequency of the interfering signal can be made larger, making it easier to distinguish the interfering signal from the target signal. It is also easier to filter the interfering signal through the intermediate frequency filter, which affects the radio frequency filter. The requirements are lower, and there is no need to increase the complexity of the design and implementation of RF filters.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value.
  • the preset value is related to one or more of the following: the operating frequency band, the subcarrier spacing of the first signal, or the subcarrier spacing of the second signal.
  • the operating frequency band is an operating frequency band used for communication between the first device and the second device. Since the absolute value of the difference between the first frequency and the second frequency is a preset value, it is applicable to a device that does not require the first device to inform the second device of the absolute value of the difference between the first frequency and the second frequency. Scenes. For example, after the first device and the second device establish a communication connection, the first device uses the first frequency and the second frequency to send the first piece of signaling between the first device and the second device to the second device.
  • the method further includes: the first device sending first indication information to the second device, the first indication information indicating an absolute value of the difference between the first frequency and the second frequency.
  • the first device can inform the second device of the absolute value of the difference between the first frequency and the second frequency, which is more flexible.
  • At least one of the first signal and the second signal is used to provide a carrier for uplink transmission of the second device.
  • a signal is used to provide a carrier for transmission. It can also be considered that the signal is used for reflection (backscatter) communication and can be called a carrier signal.
  • data signals which refer to signals that carry modulation information.
  • the first signal and the second signal may both be data signals, or the first signal may be a data signal and the second signal may be a carrier signal. It can be understood that the first signal is a data signal and the second signal is a carrier signal, which can reduce resource overhead of the first device.
  • the first signal and the second signal are both data signals, which can improve the reliability of data transmission.
  • the power of the first signal and the power of the second signal are the same.
  • the power of the first signal and the power of the second signal may be different.
  • the power of the first signal and the power of the second signal are the same.
  • the signal nor the second signal may be a carrier signal, that is, the first signal and the second signal are both data signals.
  • the power of the first signal is greater than the power of the second signal, the first signal is a data signal, and the second signal is a carrier signal. Since data signals carry useful information, higher power can ensure the reliability of data transmission. Relatively speaking, the second signal is carrier information and does not carry useful information. Using lower power can save the power consumption of the first device.
  • neither the first signal nor the second signal is used to provide a carrier for uplink transmission of the second device, and the power of the first signal and the power of the second signal may be the same.
  • one of the first signal and the second signal provides a carrier for the uplink transmission of the second device.
  • the power of the first signal and the second signal may be different, which can not only ensure the reliability of data transmission, but also save the cost of the second device. The power consumption of a device.
  • the first carrier is a new radio (new radio, NR) carrier or a long term evolution (long term evolution, LTE) carrier.
  • NR new radio
  • LTE long term evolution
  • both the first signal and the second signal are located in the transmission bandwidth of the second carrier, wherein the difference between the minimum value of the first frequency domain unit and the lowest frequency of the transmission bandwidth is less than or equal to the third A value, the difference between the maximum value of the second frequency domain unit and the highest frequency of the transmission bandwidth is less than or equal to the second value.
  • the first value can be 0, and the second value can also be 0.
  • the operating frequency band of the first signal i.e., the first frequency domain unit
  • the operating frequency band of the second signal i.e., the second frequency domain unit
  • the method further includes: the first device sending second indication information to the second device, the second indication information instructing the second device to receive the signal in the first receiving mode or the second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving the signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency. It can be understood that the first device has sent the first signal and the second signal. For the second device, if there is an interference signal, the second device can transmit the signal at the absolute value corresponding to the difference between the first frequency and the second frequency. The signal is received at the frequency location.
  • the second device can also receive a low-frequency signal near the DC carrier. Therefore, the first device can inform The second device receives the signal in a manner to ensure the reception performance of the second device as much as possible.
  • the modulation method of the first signal and/or the second signal is on-off keying (OOK), multicarrier on-off keying (MC-OOK), bilateral Double-sideband amplitude-shift keying (DSB-ASK), single-sideband amplitude-shift keying (SSB-ASK), phase inversion amplitude-shift keying (phase- reversal amplitude shift keying (PR-ASK), multiple amplitude shift keying (MASK), frequency-shift keying (FSK), gauss frequency shift keying (GFSK) ), multiple frequency-shift keying (MFSK), binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), pulse amplitude modulation ( pulse amplitude modulation (PAM), pulse-width modulation (PWM), pulse position modulation (PPM), pulse density modulation (PDM), or pulse-code modulation , PCM).
  • OOK on-off keying
  • MC-OOK multicarrier on-off keying
  • the first signal and the second signal have the same modulation method.
  • the modulation methods of the first signal and the second signal are different.
  • the first signal or the second signal is a single carrier signal; or the first signal or the second signal occupies one subcarrier in the frequency domain; or the first signal or the second signal is carried by a A signal composed of subcarriers of energy.
  • the first signal and/or the second signal are multi-carrier signals; or the first signal and/or the second signal occupy multiple subcarriers in the frequency domain; or the first signal and/or the second signal
  • the second signal is a signal composed of multiple energy-carrying subcarriers.
  • the antenna ports of the first signal and the second signal are the same.
  • the cyclic prefix lengths of the first signal and the second signal are the same.
  • the subcarrier intervals of the first signal and the second signal are the same.
  • the waveform of the first signal and/or the second signal is orthogonal frequency division multiplexing (OFDM) using a cyclic prefix (CP).
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • the waveform of the first signal and/or the second signal is OFDM using CP, and discrete Fourier transform (DFT) expansion is performed.
  • DFT discrete Fourier transform
  • inventions of the present application provide a signal receiving method, which can be performed by a second communication device.
  • the second communication device can be a communication device or a communication device that can support the communication device to implement the functions required by the method, for example, Chip system.
  • the following description takes the example that the communication device is the second device.
  • the second communication device is a second device, or a chip installed in the second device, or a gas component used to implement the functions of the second device.
  • the method includes:
  • the second device receives the first signal and the second signal through envelope detection, and acquires the target signal.
  • the first signal and the second signal are located within a working frequency band.
  • the frequency carrying the target signal includes the absolute value of the difference between the first frequency carrying the first signal and the second frequency carrying the second signal.
  • the frequency carrying the target signal also includes the frequency where the DC carrier is located.
  • the method before the second device acquires the target signal, the method further includes: the second device determines a receiving mode for acquiring the target signal, and the receiving mode includes a first receiving mode or a second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving a signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • the second device determines the first reception mode or the second reception mode, including: the second device receives second indication information sent by the first device, the second indication information indicating the first reception mode or the second reception mode. receiving method.
  • the absolute value of the difference between the first frequency and the second frequency is related to one or more of the following: a first bandwidth, a second bandwidth, or a third bandwidth.
  • the first bandwidth is the bandwidth occupied by the first frequency domain unit in the frequency domain, and the first frequency domain unit includes the first frequency.
  • the second bandwidth is the bandwidth occupied by the second frequency domain in the frequency domain, and the second frequency domain unit includes the second frequency.
  • the third bandwidth is the bandwidth occupied by the third frequency domain unit in the frequency domain.
  • the third frequency domain unit is used by the first device to send a third signal to the third device, and the third signal is located within the working frequency band.
  • the first signal and the second signal are sent within a frequency range corresponding to the channel bandwidth of the second device.
  • the absolute value of the difference between the first frequency and the second frequency is greater than or equal to 1/2 the channel bandwidth of the second device.
  • the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the sum of the third bandwidth and the fourth bandwidth.
  • the fourth bandwidth is twice the sum of the first bandwidth and the second bandwidth.
  • the third signal is located between the first frequency and the second frequency in the frequency domain.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value.
  • the default value Relevant to one or more of the following: the operating frequency band, the subcarrier spacing of the first signal, or the subcarrier spacing of the second signal.
  • the method further includes: the second device receiving first indication information sent by the first device, the first indication information indicating the absolute value.
  • At least one of the first signal and the second signal is used to provide a carrier for uplink transmission of the second device.
  • the power of the first signal and the power of the second signal are the same.
  • the power of the first signal and the power of the second signal are the same, and neither the first signal nor the second signal is used to provide a carrier for uplink transmission of the second device.
  • At least one of the first signal and the second signal is located within a guard band of a first carrier, and/or, the absolute value of the difference between the first frequency and the second frequency is greater than or equal to The transmission bandwidth of a first carrier.
  • the first carrier is a new wireless NR carrier or an LTE carrier.
  • both the first signal and the second signal are located in the transmission bandwidth of the second carrier, the difference between the minimum value of the first frequency unit and the lowest frequency of the transmission bandwidth is less than the first value, and The difference between the maximum value of the second frequency domain unit and the highest frequency of the transmission bandwidth is smaller than the second value.
  • the modulation method of the first signal and/or the second signal is OOK, MC-OOK, DSB-ASK, SSB-ASK, PR-ASK, MASK, FSK, GFSK, MFSK, BPSK, QPSK, PAM, PWM, PPM, PDM, or PCM.
  • the first signal and the second signal have the same modulation method.
  • the modulation methods of the first signal and the second signal are different.
  • the first signal or the second signal is a single carrier signal; or the first signal or the second signal occupies one subcarrier in the frequency domain; or the first signal or the second signal is carried by a A signal composed of subcarriers of energy.
  • the first signal and/or the second signal are multi-carrier signals; or the first signal and/or the second signal occupy multiple subcarriers in the frequency domain; or the first signal and/or the second signal
  • the second signal is a signal composed of multiple energy-carrying subcarriers.
  • the antenna ports of the first signal and the second signal are the same.
  • the cyclic prefix lengths of the first signal and the second signal are the same.
  • the subcarrier intervals of the first signal and the second signal are the same.
  • the waveform of the first signal and/or the second signal is OFDM using CP.
  • the waveform of the first signal and/or the second signal is OFDM using CP, and DFT expansion is performed.
  • inventions of the present application provide a signal sending method, which can be executed by a first communication device.
  • the first communication device can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip. system.
  • the following description takes the communication device as the first device as an example.
  • the first communication device is a first device, or a chip provided in the first device, or other components used to implement the functions of the first device.
  • the method includes:
  • the first device determines the first signal and the second signal, sends the first signal to the second device on the first frequency domain unit, and The second signal is sent on the second frequency domain unit, and the first signal and the second signal are located in the same operating frequency band.
  • the first frequency domain unit includes a first frequency
  • the second frequency domain unit includes a second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value.
  • the first device also sends the absolute value of the difference between the first frequency and the second frequency to the second device.
  • the first device sending the absolute value of the difference between the first frequency and the second frequency to the second device includes: the first device sending indication information to the second device, the indication information indicating the first The absolute value of the difference between the frequency and the second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value, and the preset value is related to one or more of the following: the working frequency band, the first signal Subcarrier spacing, or the subcarrier spacing of the second signal.
  • the first signal and the second signal are sent within a frequency range corresponding to the channel bandwidth of the second device.
  • the absolute value of the difference between the first frequency and the second frequency is greater than or equal to 1/2 the channel bandwidth of the second device.
  • the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the sum of the third bandwidth and the fourth bandwidth.
  • the fourth bandwidth is twice the sum of the first bandwidth and the second bandwidth.
  • the third bandwidth is the bandwidth occupied by the third frequency domain unit in the frequency domain.
  • the third frequency domain unit is used for the first device to send the third signal to the third device.
  • the third signal is located between the first frequency and the first frequency in the frequency domain. between the second frequencies.
  • At least one of the first signal and the second signal is used to provide a carrier for uplink transmission of the second device.
  • the power of the first signal and the power of the second signal are the same.
  • the power of the first signal and the power of the second signal are the same, and neither the first signal nor the second signal is used to provide a carrier for uplink transmission of the second device.
  • At least one of the first signal and the second signal is located within a guard band of a first carrier, and/or, the absolute value of the difference between the first frequency and the second frequency is greater than or equal to The transmission bandwidth of a first carrier.
  • the first carrier is a new wireless NR carrier or an LTE carrier.
  • both the first signal and the second signal are located in the transmission bandwidth of the second carrier, the difference between the minimum value of the first frequency unit and the lowest frequency of the transmission bandwidth is less than the first value, and The difference between the maximum value of the second frequency domain unit and the highest frequency of the transmission bandwidth is smaller than the second value.
  • the method further includes: the first device sending second indication information to the second device, the second indication information instructing the second device to receive the signal in the first receiving mode or the second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving the signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • inventions of the present application provide a signal receiving method, which can be executed by a second communication device.
  • the second communication device can be a communication device or a communication device that can support the communication device to implement the functions required by the method, such as a chip. system.
  • the following description takes the example that the communication device is the second device.
  • the second communication device is the first device, or a chip provided in the second device, or other components used to implement the functions of the second device.
  • the method includes:
  • the second device receives the first signal and the second signal through envelope detection, where the first signal and the second signal are located in an operating frequency band; the second device acquires the target signal, where the frequency carrying the target signal includes the frequency carrying the third signal.
  • the absolute value of the difference between a first frequency of a signal and a second frequency carrying a second signal is a preset value, or the absolute value of the difference between the first frequency and the second frequency is obtained from the first device.
  • the method further includes: the second device receiving first indication information sent by the first device, the first indication information indicating the absolute value.
  • the frequency carrying the target signal also includes the frequency where the DC carrier is located.
  • the method before the second device acquires the target signal, the method further includes: the second device determines a receiving mode for acquiring the target signal, and the receiving mode includes a first receiving mode or a second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving a signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • the second device determines the first reception mode or the second reception mode, including: the second device receives second indication information sent by the first device, the second indication information indicating the first reception mode or the second reception mode. receiving method.
  • the absolute value of the difference between the first frequency and the second frequency is related to one or more of the following: a first bandwidth, a second bandwidth, or a third bandwidth.
  • the first bandwidth is the bandwidth occupied by the first frequency domain unit in the frequency domain, and the first frequency domain unit includes the first frequency.
  • the second bandwidth is the bandwidth occupied by the second frequency domain in the frequency domain, and the second frequency domain unit includes the second frequency.
  • the third bandwidth is the bandwidth occupied by the third frequency domain unit in the frequency domain.
  • the third frequency domain unit is used by the first device to send a third signal to the third device, and the third signal is located within the working frequency band.
  • the first signal and the second signal are sent within a frequency range corresponding to the channel bandwidth of the second device.
  • the absolute value of the difference between the first frequency and the second frequency is greater than or equal to 1/2 the channel bandwidth of the second device.
  • the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the sum of the third bandwidth and the fourth bandwidth.
  • the fourth bandwidth is twice the sum of the first bandwidth and the second bandwidth.
  • the third signal is located between the first frequency and the second frequency in the frequency domain.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value.
  • the preset value is related to one or more of the following: the operating frequency band, the subcarrier spacing of the first signal, or the subcarrier spacing of the second signal.
  • the method further includes: the second device receiving first indication information sent by the first device, the first indication information indicating the absolute value.
  • At least one of the first signal and the second signal is used to provide a carrier for uplink transmission of the second device.
  • the power of the first signal and the power of the second signal are the same.
  • the power of the first signal and the power of the second signal are the same, and neither the first signal nor the second signal is used to provide a carrier for uplink transmission of the second device.
  • At least one of the first signal and the second signal is located within a guard band of a first carrier, and/or, the absolute value of the difference between the first frequency and the second frequency is greater than or equal to The transmission bandwidth of a first carrier.
  • the first carrier is a new wireless NR carrier or an LTE carrier.
  • both the first signal and the second signal are located in the transmission bandwidth of the second carrier, the difference between the minimum value of the first frequency unit and the lowest frequency of the transmission bandwidth is less than the first value, and The difference between the maximum value of the second frequency domain unit and the highest frequency of the transmission bandwidth is smaller than the second value.
  • embodiments of the present application provide a communication device, which has the function of implementing the behavior in the method embodiment of the first aspect.
  • the communication device may be the first device in the first aspect, or the communication device may be a device capable of implementing the method provided in the first aspect, such as a chip or a chip system.
  • the communication device includes corresponding means or modules for performing the method of the first aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module or processor) and/or a transceiver unit (sometimes also referred to as a transceiver module or transceiver). These units (modules) can perform corresponding functions in the method examples of the first aspect.
  • the processing module may be used to determine a first signal and a second signal.
  • the transceiver module may be configured to send a first signal in a first frequency domain unit and a second signal in a second frequency domain unit to the second device.
  • the first frequency domain unit includes a first frequency
  • the second frequency domain unit includes a second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is related to one or more of: the first bandwidth, the second bandwidth, or the third bandwidth.
  • the first bandwidth is the bandwidth occupied by the first frequency domain unit in the frequency domain.
  • the second bandwidth is the bandwidth occupied by the second frequency domain unit in the frequency domain.
  • the third bandwidth is the bandwidth occupied by the third frequency domain unit in the frequency domain.
  • the third frequency domain unit is used by the first device to send a third signal to the third device.
  • the first signal, the second signal and the third signal are located within a working frequency band.
  • embodiments of the present application provide a communication device.
  • the communication device has the function of implementing the behavior in the method embodiment of the second aspect.
  • the communication device may be the second device in the second aspect, or the communication device may be a device capable of implementing the method provided in the second aspect, such as a chip or a chip system.
  • the communication device includes corresponding means or modules for performing the method of the second aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module or processor) and/or a transceiver unit (sometimes also referred to as a transceiver module or transceiver). These units (modules) can perform corresponding functions in the method examples of the second aspect.
  • the transceiver module receives the first signal and the second signal through envelope detection, and the first signal and the second signal are located in an operating frequency band.
  • the processing module is configured to obtain the target signal, wherein the frequency carrying the target signal includes the absolute value of the difference between the first frequency carrying the first signal and the second frequency carrying the second signal.
  • embodiments of the present application provide a communication device.
  • the communication device has the function of implementing the behavior in the method embodiment of the third aspect.
  • the communication device may be the first device in the third aspect, or the communication device may be a device capable of implementing the method provided in the third aspect, such as a chip or a chip system.
  • the communication device includes corresponding means or modules for performing the method of the third aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module or processor) and/or a transceiver unit (sometimes also referred to as a transceiver module or transceiver). These units (modules) can perform corresponding functions in the method examples of the third aspect.
  • the processing module may be used to determine a first signal and a second signal.
  • the transceiver module may be configured to send a first signal in a first frequency domain unit and a second signal in a second frequency domain unit to the second device.
  • the first frequency domain unit includes a first frequency
  • the second frequency domain unit includes a second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is related to one or more of: the first bandwidth, the second bandwidth, or the third bandwidth.
  • the first bandwidth is the bandwidth occupied by the first frequency domain unit in the frequency domain.
  • the second bandwidth is the bandwidth occupied by the second frequency domain unit in the frequency domain.
  • the third bandwidth is the bandwidth occupied by the third frequency domain unit in the frequency domain.
  • the third frequency domain unit is used by the first device to send a third signal to the third device.
  • the first signal, the second signal and the third signal are located within a working frequency band.
  • embodiments of the present application provide a communication device, which has the function of implementing the behavior in the method embodiment of the fourth aspect.
  • the communication device may be the second device in the fourth aspect, or the communication device may be a device capable of implementing the method provided in the fourth aspect, such as a chip or a chip system.
  • the communication device includes corresponding means or modules for performing the method of the fourth aspect.
  • the communication device includes a processing unit (sometimes also referred to as a processing module or processor) and/or a transceiver unit (sometimes also referred to as a transceiver module or transceiver). These units (modules) can perform corresponding functions in the method examples of the fourth aspect.
  • the transceiver module receives the first signal and the second signal through envelope detection, and the first signal and the second signal are located in an operating frequency band.
  • the processing module is configured to obtain the target signal, wherein the frequency carrying the target signal includes the absolute value of the difference between the first frequency carrying the first signal and the second frequency carrying the second signal.
  • inventions of the present application provide a communication device.
  • the communication device may be the communication device in any of the first to fourth aspects in the above embodiments, or may be provided in the first to fourth aspects.
  • the communication device includes a communication interface and a processor, and optionally, a memory. Wherein, the memory is used to store computer programs, and the processor is coupled to the memory and the communication interface. When the processor reads the computer program or instructions, the communication device executes the steps performed by the first device or the second device in the above method embodiment. method of execution.
  • the communication interface in the communication device of the ninth aspect may be a transceiver in the communication device, for example, implemented through an antenna, a feeder, a codec, etc. in the communication device, or if the communication device is configured in the communication device chip, the communication interface may be the input/output interface of the chip, such as input/output pins, etc.
  • an embodiment of the present application provides a communication device, which includes an input-output interface and a logic circuit. Input and output interfaces are used to input and/or output information.
  • the logic circuit is used to perform the method described in any of the first to fourth aspects.
  • inventions of the present application provide a chip system.
  • the chip system includes a processor, and may also include a memory and/or a communication interface, for implementing any of the aspects described in the first to fourth aspects. Methods.
  • the chip system further includes a memory for storing a computer program.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • embodiments of the present application provide a communication system, which includes a first device and a second device, wherein the first device is configured to perform the method performed by the first device in the first aspect.
  • the second device is configured to perform the method performed by the second device in the above second aspect.
  • the first device is configured to perform the method performed by the first device in the third aspect
  • the second device is configured to perform the method performed by the second device in the fourth aspect.
  • the communication system may also include more first devices and/or more second devices.
  • the present application provides a computer-readable storage medium that stores a computer program.
  • the computer program is run, any one of the above-mentioned first to fourth aspects is implemented. Methods.
  • a computer program product includes: computer program code.
  • the method in any of the above-mentioned first to fourth aspects is performed. be executed.
  • Figure 1 is a schematic diagram of the network architecture applicable to the embodiment of this application.
  • Figure 2 is a schematic structural diagram of a receiver using an envelope detector
  • Figure 3 is a schematic diagram of the circuit structure of the envelope detector
  • Figure 4 is a schematic spectrum diagram of the input signal of the envelope detector without interference
  • Figure 5 is a schematic spectrum diagram of the output signal of the envelope detector without interference
  • Figure 6 is a schematic spectrum diagram of the baseband signal after the envelope detector without interference
  • Figure 7 is a schematic spectrum diagram of the input signal of the envelope detector in the presence of interference
  • Figure 8 is a schematic spectrum diagram of the output signal of the envelope detector in the presence of interference
  • Figure 9 is a schematic spectrum diagram of the baseband signal after the envelope detector in the presence of interference
  • Figure 10 is a schematic spectrum diagram of the input signal of the envelope detector in the presence of interference according to the embodiment of the present application.
  • Figure 11 is a schematic spectrum diagram of the output signal of the envelope detector in the presence of interference according to the embodiment of the present application.
  • Figure 12 is a schematic spectrum diagram of the baseband signal after the envelope detector in the case of interference provided by the embodiment of the present application;
  • Figure 13 is a schematic diagram of the relationship between channel bandwidth, transmission band and guard band
  • Figure 14 is a schematic flow chart of signal transmission and signal reception provided by the embodiment of the present application.
  • Figure 15 is a schematic diagram of the frequency locations of the target signal and the interference signal provided by the embodiment of the present application (the absolute value of the difference between the first frequency and the second frequency is equal to 1/2 of the carrier bandwidth);
  • Figure 16 is a schematic diagram of the frequency locations of the target signal and the interference signal provided by the embodiment of the present application (the absolute value of the difference between the first frequency and the second frequency is greater than 1/2 of the carrier bandwidth);
  • Figure 17 is a schematic diagram of the relative frequency positions of the first signal, the second signal and the third signal provided by the embodiment of the present application;
  • Figure 18 is a schematic diagram of the positions of the first signal and the second signal on the NR carrier provided by the embodiment of the present application;
  • Figure 19 is a schematic diagram of another position of the first signal and the second signal on the NR carrier provided by the embodiment of the present application.
  • Figure 20 is another schematic diagram of the positions of the first signal and the second signal on the NR carrier provided by the embodiment of the present application;
  • Figure 2l is a schematic diagram of a first device sending a signal and a second device receiving a signal according to an embodiment of the present application;
  • Figure 22 is another schematic diagram of a first device sending a signal and a second device receiving a signal according to an embodiment of the present application
  • Figure 23 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 24 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to 5G mobile communication systems, such as NR systems, or to LTE systems, or to next-generation mobile communication systems or other similar communication systems.
  • the technical solutions provided by the embodiments of the present application can also be applied to Internet of things (IoT) systems, narrowband Internet of things (NB-IoT) systems, etc., for example, based on wireless fidelity (WiFi) ) IoT or wearable WiFi network.
  • the wearable WiFi network may be a WiFi network composed of a terminal device (such as a mobile phone) as a virtual access point and an associated wearable device.
  • IoT devices and wearable WiFi network devices are powered by small-capacity batteries and require ultra-low power consumption and long battery life.
  • IoT devices e.g. Such as smart water meters, smart homes, industrial sensors, etc.
  • the communication system may include a network device and 6 terminal devices.
  • the 6 terminal devices may be cellular phones, smart phones, and portable computers. , handheld communications devices, handheld computing devices, satellite radios, global positioning systems, personal digital assistants (PDAs), and/or any other suitable device for communicating over a wireless communications system, and may be used with network equipment connect. All six terminal devices are capable of communicating with network devices.
  • the number of terminal devices in Figure 1 is just an example, and can be less or more.
  • the terminal equipment in Figure 1 is also schematic.
  • the terminal equipment can also be an Internet of Things device such as a smart water meter.
  • the network device is an access device through which the terminal device wirelessly accesses the mobile communication system, and includes, for example, an access network (AN) device, such as a base station.
  • AN access network
  • Network equipment may also refer to equipment that communicates with terminal equipment over the air interface.
  • Network equipment may include evolved base stations (evolved Node B) (also referred to as eNB or e-NodeB) in LTE systems or long term evolution-advanced (LTE-A); network equipment may also include 5G NR systems
  • eNB evolved base stations
  • e-NodeB evolved base stations
  • LTE-A long term evolution-advanced
  • network equipment may also include 5G NR systems
  • the next generation node B (gNB) in Equipment and future evolution of Public Land Mobile Network (PLMN) equipment, equipment in D2D networks, equipment in machine to machine (M2M) networks, Internet of Things (IoT) networks equipment in the PLMN network or network equipment in the PLMN network, etc.
  • PLMN Public Land Mobile Network
  • M2M machine to machine
  • IoT Internet of Things
  • the base station in the embodiment of the present application may include a centralized unit (CU) and a distributed unit (DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer functions of the wireless network they possess. For example, the functions of the packet data convergence protocol (PDCP) layer and above are set in CU and the protocol layer below PDCP, such as wireless link. Functions such as the radio link control (RLC) layer and the medium access control (medium access control, MAC) layer are set in the DU. It should be noted that this division of protocol layers is just an example, and division can also be performed on other protocol layers.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the radio frequency device can be remote and not placed in the DU, or it can be integrated in the DU, or partially remote and partially integrated in the DU.
  • the control plane (CP) and user plane (UP) of the CU can also be separated and implemented into different entities, respectively control plane CU entities (CU-CP entities). and user plane CU entities (CU-UP entities).
  • CU-CP entities control plane CU entities
  • CU-UP entities user plane CU entities
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU may directly encapsulate the signaling and transparently transmit it to the UE or CU through the protocol layer without parsing the signaling.
  • the CU is divided into network equipment on the radio access network (radio access network, RAN) side.
  • the CU can also be divided into network equipment on the core network (core network, CN) side. This application describes There is no restriction on this.
  • the access network device may also be a server or the like.
  • the network equipment in vehicle to everything (V2X) technology can be a road side unit (RSU).
  • RSU road side unit
  • the following description takes the access network equipment as a base station as an example.
  • the base station can communicate with the terminal device or communicate with the terminal device through the relay station.
  • Terminal devices can communicate with multiple base stations in different access technologies.
  • the terminal device is a device with a wireless transceiver function, which can send signals to or receive signals from the network device.
  • Terminal equipment may include user equipment (UE), sometimes also referred to as terminals, access stations, UE stations, remote stations, wireless communication equipment, or user devices, etc.
  • UE user equipment
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communications, D2D, V2X, machine-to-machine/machine-type communications (M2M/MTC), Internet of things (IoT), virtual reality (VR), augmented reality (augmented reality, AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city city), drones, robots and other scenarios.
  • cellular communications D2D, V2X
  • M2M/MTC machine-to-machine/machine-type communications
  • IoT Internet of things
  • VR virtual reality
  • AR augmented reality
  • industrial control self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city city), drones, robots and other scenarios.
  • the terminal device may be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver functions, a VR terminal, an AR terminal, a wireless terminal in industrial control, a wireless terminal in driverless driving, or an IoT network Smart speakers, wireless terminal equipment in telemedicine, wireless terminal equipment in smart grids, wireless terminal equipment in transportation security, wireless terminal equipment in smart cities, or wireless terminal equipment in smart homes, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes. wait.
  • the various terminal devices introduced above can be considered as vehicle-mounted terminal equipment if they are located on the vehicle (for example, placed or installed in the vehicle).
  • the vehicle-mounted terminal equipment is also called an on-board unit (OBU), for example. ).
  • OBU on-board unit
  • the terminal device of this application can also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • the vehicle uses the built-in vehicle-mounted module, vehicle-mounted module, Vehicle-mounted components, vehicle-mounted chips or vehicle-mounted units can implement the method of the present application.
  • the communication device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the device for realizing the functions of the network device being a network device as an example.
  • Channel bandwidth the channel bandwidth of the UE supports a single NR radio frequency carrier in the uplink or downlink of the UE. From the perspective of the base station, the channel bandwidths of different UEs may be supported within the same spectrum for transmitting and/or receiving information to UEs connected to the base station. It can support the transmission of multiple carriers to the same UE (carrier) or the transmission of multiple carriers to different UEs within the channel bandwidth of the base station. From the perspective of the UE, the UE can be configured with one or more bandwidth parts (BWP)/carriers, each carrier having its own UE channel bandwidth. The UE does not need to know the base station channel bandwidth or how the base station allocates bandwidth to different UEs.
  • BWP bandwidth parts
  • the UE channel bandwidth of each UE carrier is flexibly configured, but can only be completely within the base station channel bandwidth. Exemplary, the relationship between channel bandwidth, guard band and maximum transmission bandwidth configuration is shown in Figure 13.
  • Working frequency band refers to the frequency band supported by the device, such as 900M, 1.8G, etc.
  • One operating frequency band may include multiple carriers, and one carrier may include one transmission band and at least two guard bands. This transmission belt can be used for equipment to transmit signals.
  • Frequency domain unit refers to a continuous frequency domain resource in the frequency domain.
  • a transmission band may include multiple frequency domain units.
  • the carrier signal can be used for reflection (backscatter) communication, providing a carrier for the uplink transmission of the receiving device, and can also provide energy for the receiving device.
  • a data signal Compared to the carrier signal, there is a data signal.
  • Data signals can be thought of as signals carrying modulated information.
  • the waveform corresponding to the carrier signal may be a sine wave or a cosine wave at a given frequency, or the waveform corresponding to the carrier signal may not undergo amplitude and/or phase modulation.
  • the waveform corresponding to the carrier signal is amplitude and/or phase modulated, but the overall amplitude is not sufficient to be considered a data signal by the receiving device.
  • the number The waveform corresponding to the data signal is amplitude and/or phase modulated, and the overall amplitude is sufficient to be considered a data signal by the receiving device.
  • system and “network” in the embodiments of this application can be used interchangeably.
  • multiple can also be understood as “at least two".
  • At least one can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if it includes at least one of A, B and C, then it can include A, B, C, A and B, A and C, B and C, or A and B and C.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" unless otherwise specified, generally indicates that the related objects are in an "or" relationship.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects and are not used to limit the order, timing, priority or importance of multiple objects.
  • the first device and the second device are just to distinguish different devices, but not to limit the functions, priorities or importance of the two devices.
  • "if” and “if” can be replaced.
  • "when" and “in the case of” can be replaced.
  • the embodiments of the present application aim to reduce the interference between signals without increasing the complexity of the filter in the receiver.
  • some related concepts about the receiver are first introduced.
  • the receiver can process the received signal using amplitude modulation and envelope detection to avoid the use of higher-power RF modules, such as high-linearity mixers, thereby achieving low power consumption.
  • the module in the receiver used to complete envelope detection can be called an envelope detector.
  • Figure 2 is a schematic structural diagram of a receiver using an envelope detector.
  • the receiver mainly includes a radio frequency amplifier, envelope detector and baseband amplifier. Since the envelope detector is a nonlinear device and has large noise, in order to correctly demodulate the received signal, the received signal needs to be amplified by a radio frequency amplifier before the envelope detector. After the envelope detector outputs the baseband signal, the baseband signal can be amplified and output through a baseband amplifier.
  • the receiver requires high passband selectivity, so the received RF signal needs to be filtered through a filter before the RF amplifier.
  • a filter is a filter circuit composed of capacitors, inductors and resistors, and is mainly used to filter signal frequencies. The filter allows signals that meet specific frequencies to pass while suppressing other unwanted frequency signals, which can solve the problem of signal interference between different frequency bands.
  • FIG. 2 is only a schematic diagram of the composition of a receiver. The embodiments of the present application do not limit the specific composition of the receiver.
  • the receiver may also include multiple envelope detectors.
  • FIG 3 is a schematic diagram of the circuit structure of the envelope detector.
  • the envelope detector is mainly composed of an oscillation circuit composed of capacitors and resistors, and a diode.
  • Envelope detectors are nonlinear devices that utilize the unidirectional conductivity of diodes to operate.
  • the forward voltage signal (in the direction of the thick arrow in the figure) is input to the diode.
  • the diode opens and the current flows to the ground through the resistor R. There is a charge at both ends of C. Potential difference, the capacitor works in a charging state.
  • the diode When the reverse voltage signal (in the direction of the thin arrow in the figure) is input to the diode, the diode is in an off state, that is, the diode is not conducting. At this time, the capacitor is in a discharge state, and the current flows to the ground through the resistor R.
  • x sig (t) A sig (t) ⁇ cos (2 ⁇ f c, sig t), where A sig (t) represents the useful signal, f c, sig is the carrier frequency used to carry the useful signal.
  • the spectrum diagram of x sig (t) is shown in Figure 4.
  • the spectrum diagram of y sig (t) is shown in Figure 5. It can be seen that the frequency is 2f c and the component of sig is a high-frequency component. Filter the high-frequency component through a low-pass filter to obtain the baseband signal The spectrum is shown in Figure 6. It can be seen from Figure 4 to Figure 6 that when there is no interference signal, The spectrum is concentrated in the direct Near the direct current (DC).
  • DC direct Near the direct current
  • the frequency in y(t) is 2f c, sig , 2f c, inf and f c, inf + f c.
  • the component of sig is a high-frequency component.
  • the spectrum diagram of y(t) is shown in Figure 8. After filtering through a low-pass filter, the baseband signal can be obtained satisfy:
  • Indicators for measuring filter performance include Q value, bandwidth, stop-band suppression, insertion loss, delay time, etc.
  • Q value and insertion loss are the most important performance indicators.
  • the Q value refers to the filter quality factor, which indicates the filter's ability to separate adjacent frequency components in the signal. The higher the Q value, the narrower the passband width, the better the frequency band selectivity, and the better the filtering effect.
  • Insertion loss refers to the loss caused to the original signal in the circuit due to the introduction of the filter, expressed in dB. The greater the insertion loss value, the greater the degree of attenuation. For example, if the insertion loss is 3dB, the signal power will be attenuated by 50%.
  • the receiver requires a filter with a higher Q value to achieve better filtering effect.
  • the Q value of the on-chip filter is low. If you want the Q value of the on-chip filter to be higher, you need to connect an external bulk acoustic wave (BAW) or surface acoustic wave (SAW). Obviously, the receiver The machine integration level is low and cannot meet the needs of small receiver size.
  • BAW bulk acoustic wave
  • SAW surface acoustic wave
  • the transmitting end device may send two signals (for example, a first signal and a second signal) at two frequency locations (for example, a first frequency and a second frequency).
  • the sending end device sends a first signal at a first frequency position and a second signal at a second frequency position.
  • its radio frequency filter should allow the first signal and the second signal to pass, that is, the passband of the radio frequency filter should include the first frequency and the second frequency.
  • the second device may receive the first signal and the second signal through envelope detection. After envelope detection, the intermediate frequency component corresponding to the absolute value containing the difference between the first frequency and the second frequency should be received The signal that the end device needs to obtain (referred to as the target signal in this article). Therefore, the receiving device can obtain the target signal through the IF filter and suppress other signals containing interference.
  • the intermediate frequency filter Since the frequency of the intermediate frequency is lower than that of the radio frequency, the intermediate frequency filter is easier to design and implement under the same Q value requirements. Therefore, through the solution of the embodiment of the present application, the second device can easily distinguish the target signal and interference through the intermediate frequency filter after envelope detection, without increasing the complexity of the design and implementation of the radio frequency filter.
  • the first device sends the first signal to the second device on the first frequency, and the first device sends the first signal on the second frequency.
  • Sending the second signal is used as an example to illustrate how the solution provided by the embodiment of the present application can suppress interference.
  • x inf (t) A inf (t) ⁇ cos (2 ⁇ f c, inf t)
  • a inf (t) represents the interference signal
  • f c, inf is the carrier frequency used to carry the interference signal.
  • x sig1 (t) A sig1 (t) ⁇ cos (2 ⁇ f c, sig1 t)
  • a sig1 (t) represents the first signal
  • f c, sig1 is the carrier frequency used to carry the first signal.
  • x sig2 (t) A sig2 (t) ⁇ cos (2 ⁇ f c, sig2 t), A sig2 (t) represents the second signal, f c, sig2 is the carrier frequency used to carry the second signal.
  • the spectrum diagram of x(t) is shown in Figure 10. Signal 1 in Figure 10 is the first signal, and signal 2 is the second signal.
  • the output signal of the envelope detector includes high-frequency components, intermediate frequency components and DC components.
  • the frequencies of the high-frequency components include 2fc ,sig1,2fc , sig2,2fc, inf,fc ,inf+fc , sig1 , fc,sig2 + fc,inf and fc,sig2 + fc,sig1 .
  • the frequencies of the intermediate frequency component include f c, inf - f c, sig1 , f c, sig2 - f c, inf and f c, sig2 - f c, sig1 .
  • the interference signal can be filtered through the intermediate frequency bandpass filter to obtain the target signal.
  • a sig1 (t)A sig2 (t) ⁇ cos(2 ⁇ (f c, sig2 -f c, sig1 )t) is an intermediate frequency component, and the complexity and power consumption of intermediate frequency processing are relatively large.
  • the second device can filter the intermediate frequency component through a band-pass filter, and then further down-convert the intermediate frequency component through the band-pass filter to obtain a baseband signal, as shown in Figure 12.
  • the embodiments of this application do not limit the implementation method of frequency down conversion.
  • the second device may implement the down-conversion operation through an envelope detector, or may implement the down-conversion operation through a low-frequency crystal oscillator and mixer.
  • the input signal of the envelope detector is The output signal z(t) of the envelope detector satisfies:
  • the output signal of the envelope detector includes a high-frequency component with a frequency of 2 (f c, sig2 - f c, sig1 ). Therefore, the high-frequency component can be filtered out through a low-pass filter, and the baseband can be obtained.
  • the second device can thus Recover the information carried by the first signal and/or the second signal.
  • the input signal of the mixer is The other input signal comes from the low-frequency crystal oscillator.
  • the signal generated by the low-frequency crystal oscillator is c(t)
  • the output signal of the envelope detector includes a high-frequency component with a frequency of 2 (f c, sig2 - f c, sig1 ). Therefore, the high-frequency component can be filtered out through a low-pass filter, and the baseband signal can be obtained satisfy:
  • the second device can thus Recover the information carried by the first signal and/or the second signal.
  • a sig1 (t) and A sig2 (t) may both be data signals, that is, signals carrying useful information.
  • the modulation mode of A sig1 (t) and A sig2 (t) is ASK or OOK.
  • the information bits carried by A sig1 (t) and A sig2 (t) are both "1", and the second device The information bit "1" can be obtained by detecting it.
  • the second device obtains the information bit "1" from (A sig1 (t)A sig2 (t)) 2 /2 or (A sig1 (t)A sig2 (t))/2, that is, obtains useful information.
  • the second device obtains the information bit "0" from (A sig1 (t)A sig2 (t)) 2 /2 or (A sig1 (t)A sig2 (t))/2, that is, obtains useful information.
  • a sig1 (t) and A sig2 (t) are a data signal and the other is a carrier signal
  • a sig1 (t) is a data signal
  • a sig2 (t) is a carrier signal and does not carry useful information.
  • a sig2 (t) can be a constant value.
  • a sig2 (t) is always 1.
  • the second device only needs to pay attention to A sig1 (t) to obtain useful information.
  • the information bits carried by A sig1 (t) are all “1”, and the second device The information bit "1" can be obtained by detecting it.
  • the second device obtains the information bit "1" from (A sig1 (t)A sig2 (t)) 2 /2 or (A sig1 (t)A sig2 (t))/2, that is, obtains useful information.
  • the information bits carried by A sig1 (t) are all "0", and the second device The information bit "0" can be obtained by detecting it.
  • the second device obtains the information bit "0" from (A sig1 (t)A sig2 (t)) 2 /2 or (A sig1 (t)A sig2 (t))/2, that is, obtains useful information.
  • Figure 14 is a schematic flowchart of a signal sending method and a signal receiving method provided by an embodiment of the present application.
  • the sending end is the first device and the receiving end is the second device.
  • the first device may be a terminal device, and the second device may be an access network device.
  • the first device sends the first signal to the second device in the first frequency domain unit, and sends the second signal in the second frequency domain unit.
  • the first device when it sends a signal to the second device, it can reduce the requirements on the radio frequency filter by sending two signals at two frequency positions.
  • the first device determines (generates) a first signal and a second signal, may transmit the first signal on a first frequency on a first frequency domain unit, and transmit a second signal on a second frequency on a second frequency domain unit.
  • the first frequency domain unit can be considered as a frequency domain resource for transmitting the first signal
  • the second frequency domain unit can be considered as a frequency domain resource for transmitting the second signal.
  • the first frequency may be the center frequency of the first frequency domain unit, and correspondingly, the second frequency may be the center frequency of the second frequency domain unit.
  • the first frequency may be the lowest frequency in the first frequency domain unit, and correspondingly, the second frequency may be the lowest frequency in the second frequency domain unit.
  • the first frequency The frequency may be the highest frequency in the first frequency domain unit, and correspondingly, the second frequency is the highest frequency in the second frequency domain unit.
  • the first frequency unit may include two sub-frequency units, namely a first sub-frequency unit and a second sub-frequency unit, where the frequency of the first sub-frequency unit is higher than the frequency of the second sub-frequency unit.
  • the second frequency unit may include two sub-frequency units, namely a third sub-frequency unit and a fourth sub-frequency unit, where the frequency of the third sub-frequency unit is higher than the frequency of the fourth sub-frequency unit.
  • the first frequency may be the center frequency of the first sub-frequency domain unit, and correspondingly, the second frequency may be the center frequency of the third sub-frequency domain unit.
  • the first frequency may be the lowest frequency in the first sub-frequency domain unit, and correspondingly, the second frequency may be the lowest frequency in the third sub-frequency domain unit.
  • the first frequency may be the highest frequency in the first sub-frequency domain unit, and correspondingly, the second frequency may be the highest frequency in the third sub-frequency domain unit.
  • the first frequency may be the center frequency of the second sub-frequency domain unit, and correspondingly, the second frequency may be the center frequency of the fourth sub-frequency domain unit.
  • the first frequency may be the lowest frequency in the second sub-frequency domain unit, and correspondingly, the second frequency may be the lowest frequency in the fourth sub-frequency domain unit.
  • the first frequency may be the highest frequency in the second sub-frequency domain unit, and correspondingly, the second frequency may be the highest frequency in the fourth sub-frequency domain unit.
  • the first device sends the first signal and the second signal, and accordingly, the passband of the radio frequency filter of the second device may include the first frequency and the second frequency. It can be understood that the greater the difference between the first frequency and the second frequency, the lower the complexity requirements for the design and implementation of the radio frequency filter. Therefore, the first device transmits the first signal at the first frequency and the second signal at the second frequency without increasing the design and implementation complexity of the radio frequency filter of the second device.
  • the difference between the first frequency and the second frequency refers to the absolute value of the difference between the first frequency and the second frequency. For example, the first frequency is greater than the second frequency, and the difference between the first frequency and the second frequency is the first frequency minus the second frequency. If the first frequency is less than the second frequency, then the difference between the first frequency and the second frequency is the second frequency minus the first frequency.
  • the second device can receive the first signal and the second signal through envelope detection. After envelope detection, the absolute value of the difference between the first frequency and the second frequency is obtained.
  • the corresponding intermediate frequency component is the target signal that the second device needs to obtain.
  • the second device can obtain the target signal through an intermediate frequency band-pass filter and suppress other frequency components containing interference. It is understandable that the frequency of the intermediate frequency is lower than the frequency of the radio frequency. Under the same Q value requirements, the intermediate frequency filter is easier to design and implement. Therefore, the second device can more easily distinguish the target signal and interference through the intermediate frequency filter after envelope detection.
  • the absolute value of the difference between the first frequency and the second frequency needs to meet specific conditions to minimize the requirements for the radio frequency filter and at the same time maximize the interference suppression effect.
  • the first device may use the bandwidth occupied by the first frequency domain unit in the frequency domain, the bandwidth occupied by the second frequency domain unit in the frequency domain, or the first device may send a request to other devices except the second device.
  • the frequency domain unit used to transmit the signal is determined by one or more items in the bandwidth occupied by the frequency domain.
  • the bandwidth occupied by the first frequency domain unit in the frequency domain is called the first bandwidth
  • the bandwidth occupied by the second frequency domain unit in the frequency domain is called the second bandwidth.
  • Other devices except the second device The bandwidth occupied in the frequency domain by the frequency domain unit (for example, called the third frequency domain unit) used by the third device to send signals is called the third bandwidth.
  • the absolute value of the difference between the first frequency and the second frequency is related to one or more of the first bandwidth, the second bandwidth, or the third bandwidth.
  • the first signal, the second signal and the third signal are located within one working frequency band.
  • the working frequency band is a frequency band used for communication between the first device and the second device, and may be an NR working frequency band.
  • the third device may be one device or multiple devices.
  • the first device sends the first signal and the second signal within the frequency range corresponding to the channel bandwidth of the second device, then the absolute value of the difference between the first frequency and the second frequency is greater than or equal to 1/2 The channel bandwidth of the second device. It can be understood that the absolute value of the difference between the first frequency and the second frequency is less than or equal to the channel bandwidth of the second device.
  • the channel bandwidth of the second device may be what the second device sends to the first device. Since the absolute value of the difference between the first frequency and the second frequency is greater than or equal to 1/2 the channel bandwidth of the second device, the intermediate frequency obtained by the second device receiving the first signal and the second signal through envelope detection is The frequency of the component (that is, the target signal) is different from the frequency of the interfering signal. That is to say, the target signal and the interference signal do not overlap in the spectrum, so the interference signal can be filtered more easily through the intermediate frequency filter, and the requirements for the radio frequency filter are lower. To facilitate understanding, an illustration is provided below.
  • Figure 15 is a schematic diagram of the frequency locations of the target signal and the interference signal when the absolute value of the difference between the first frequency and the second frequency is equal to 1/2 of the carrier bandwidth.
  • BW carrier bandwidth
  • f1 is the first frequency
  • f2 is the second frequency
  • f3 is the frequency where the interference signal is located (called the third frequency).
  • f1 is the highest frequency of BW
  • f2 is 1/2BW
  • f3 is the lowest frequency of BW.
  • when the first device sends a first signal at f1, a second signal at f2, and an interference signal at f3.
  • the second device receives the first signal and the second signal through envelope detection, and the second device can obtain the signal at f1-f2, that is, the target signal. Since the absolute value of the difference between the first frequency and the second frequency is equal to 1/2BW, the frequency of the target signal is at 1/2BW and the frequency of the interference signal is at 1/2BW. That is, the interference signal and the target signal overlap in the spectrum, and it is difficult to filter out the interference signal through the filter, which requires higher requirements for radio frequency filters.
  • Figure 16 is a schematic diagram of the frequency locations of the target signal and the interference signal when the absolute value of the difference between the first frequency and the second frequency is greater than 1/2 of the carrier bandwidth.
  • the difference between Figure 16 and Figure 15 is that f2 is 1/3BW.
  • the second device receives the first signal and the second signal through envelope detection, and the second device can obtain the signal at f1-f2, that is, the target signal. Since the absolute value of the difference between the first frequency and the second frequency is 2/3BW greater than 1/2BW, the frequency f1-f2 where the target signal is located is 1/3BW, and the frequency of the interference signal is 2/3BW. That is, the interference signal and the target signal do not overlap in the spectrum. It is easier to filter out the interference signal through the intermediate frequency filter, and the requirements for the radio frequency filter are lower.
  • the first frequency and the second frequency are located on one side of the third frequency as an example.
  • the embodiment of the present application does not limit the relative positional relationship between the first frequency, the second frequency, and the third frequency.
  • the first frequency and the second frequency may be located on either side of a third frequency.
  • the first device may configure the carrier bandwidth.
  • the first device configures the carrier bandwidth according to the channel bandwidth of the second device. Therefore, before the first device sends the first signal and the second signal, the first frequency and the second frequency can be determined.
  • the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the sum of the third bandwidth and the fourth bandwidth, where the fourth bandwidth is the sum of the first bandwidth and the second bandwidth. 2 times, and the third signal is located between the first frequency and the second frequency in the frequency domain. That is, the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the third bandwidth + 2 ⁇ (first bandwidth + second bandwidth). It can be understood that when the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the third bandwidth + 2 ⁇ (first bandwidth + second bandwidth), the frequency between the target signal and the interference signal is The difference between them is larger, making it easier to distinguish the interference signal and the target signal. Therefore, it is easier to filter interference signals through the intermediate frequency filter, and the requirements for radio frequency filters are lower. To facilitate understanding, an illustration is provided below.
  • Figure 17 is a schematic diagram of the relative frequency positions of the first signal, the second signal and the third signal.
  • Figure 17 takes the first frequency (f1) as the lowest frequency of the first frequency domain unit and the second frequency (f2) as the lowest frequency of the second frequency domain unit as an example. It can be seen from Figure 17 that when the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the third bandwidth + 2 ⁇ (first bandwidth + second bandwidth), the target signal and the interference signal are in the spectrum There is no overlap, so the target signal and interference signal can be distinguished.
  • the first device may determine the first frequency and the second frequency before sending the first signal and the second signal. For example, the first device determines the first frequency and may determine the second frequency based on the absolute value of the difference between the first frequency and the second frequency. Alternatively, the first device determines the second frequency, and then determines the first frequency based on the absolute value of the difference between the first frequency and the second frequency. For the second device, it is necessary to know the absolute value of the difference between the first frequency and the second frequency, so that the second device knows at which frequency position to obtain the target signal.
  • the absolute value of the difference between the first frequency and the second frequency may be predefined or preconfigured.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value.
  • the preset value may be determined based on one or more of the operating frequency bands of the first signal and the second signal, the subcarrier spacing of the first signal, or the subcarrier spacing of the second signal. It can also be understood that the preset value is related to one or more of the following: the operating frequency bands of the first signal and the second signal, the subcarrier spacing of the first signal, or the subcarrier spacing of the second signal.
  • the preset value has a corresponding relationship with one or more of the following: the operating frequency bands of the first signal and the second signal, the subcarrier spacing of the first signal, or the subcarrier spacing of the second signal.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value
  • the first device uses the first frequency and the second frequency to send the second device to the second device.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value, which can also be used for the first device to send to the second device other than the first piece of signaling between the first device and the second device. Other signaling.
  • the first device can send the first signal at the first frequency and the second signal at the second frequency according to the preset value.
  • the second device can also obtain the signal at the frequency position corresponding to the absolute value of the difference between the first frequency and the second frequency according to the preset value.
  • the absolute value of the difference between the first frequency and the second frequency may be notified by the first device to the second device.
  • the first device sends first indication information to the second device.
  • the second device receives the first indication information sent by the first device.
  • the first indication information indicates the difference between the first frequency and the second frequency. Absolute value.
  • the first device can dynamically indicate the absolute value of the difference between the first frequency and the second frequency through the first indication information, which is more flexible. For example, when determining the absolute value of the difference between the first frequency and the second frequency, the first device can refer to the maximum transmission bandwidth capability of the second device, so that for different receiving devices, the first device can adaptively adjust The absolute value of the difference between the first frequency and the second frequency to minimize the requirements on the radio frequency filter of the respective receiving device. For the second device, a signal at a frequency position corresponding to the absolute value of the difference between the first frequency and the second frequency is obtained according to the absolute value indicated by the first indication information.
  • the first indication information indicates the absolute value of the difference between the first frequency and the second frequency.
  • the first indication information may directly indicate the absolute value of the difference between the first frequency and the second frequency, which is simple and direct.
  • the first indication information may include the absolute value of the difference between the first frequency and the second frequency.
  • the first indication information may indirectly indicate the absolute value of the difference between the first frequency and the second frequency.
  • the first indication information may include a difference between the first frequency and the second frequency.
  • the second device may determine the absolute value of the difference between the first frequency and the second frequency based on the difference between the first frequency and the second frequency.
  • the first indication information may include a first frequency and a second frequency.
  • the second device may determine the absolute value of the difference between the first frequency and the second frequency based on the difference between the first frequency and the second frequency.
  • the first indication information may include some parameters for determining the absolute value of the difference between the first frequency and the second frequency, and the second device may determine the absolute value of the difference between the first frequency and the second frequency based on these parameters. absolute value.
  • the first indication information includes the operating frequency bands of the first signal and the second signal, indirectly indicating the absolute value of the difference between the first frequency and the second frequency.
  • the second device can determine the difference between the first frequency and the second frequency according to the corresponding relationship between the working frequency band and the absolute value of the difference between the first frequency and the second frequency, and the working frequency band of the first signal and the second signal. absolute value.
  • the first indication information includes the subcarrier spacing of the first signal
  • the second device determines the corresponding relationship between the subcarrier spacing and the absolute value of the difference between the first frequency and the second frequency, and the subcarrier spacing of the first signal.
  • the absolute value of the difference between the first frequency and the second frequency can be determined.
  • S1402 is not a step that must be performed, that is, an optional step, which is illustrated by a dotted line in FIG. 14 .
  • the embodiment of the present application does not limit the execution order of S1401 and S1402, that is, S1402 may be executed before S1401, may be executed after S1401, or may be executed simultaneously with S1401.
  • At least one of the first signal and the second signal is used to provide a carrier for uplink transmission of the second device. That is, at most one of the first signal and the second signal is a carrier signal.
  • the first signal is a data signal and the second signal is a carrier signal; or the first signal is a carrier signal and the second signal is a data signal; or both the first signal and the second signal are data signals.
  • the data signal compared to the carrier signal, the data signal carries modulation information.
  • the resource overhead of the first device can be reduced.
  • the first signal and the second signal are both data signals, which can improve the reliability of data transmission.
  • the power of the first signal and the power of the second signal are the same.
  • the power of the first signal and the power of the second signal may be different.
  • neither the first signal nor the second signal may be a carrier signal, that is, both the first signal and the second signal may be data signals.
  • the first signal is a data signal and the second signal may be a carrier signal, thereby saving resource overhead.
  • the first device determines that the power of the first signal and the second signal are the same, and the first device can determine that the first signal and the second signal are both data signals.
  • the first device determines that the power of the first signal is greater than the power of the second signal, and the first device may determine that the first signal is a data signal and the second signal is a carrier signal.
  • the carrier signal does not carry useful information and can be sent with lower power, thereby saving energy consumption of the device. Therefore, in some examples, the first signal is a data signal, the second signal is a carrier signal, and the transmission power of the first signal is greater than the transmission power of the second signal. It can also be understood that the first device determines that the first signal is a data signal and the second signal is a carrier signal. The first device determines that the transmission power of the first signal is greater than the transmission power of the second signal to ensure the reliability of data transmission as much as possible. Of course, the first signal and the second signal are both data signals, so the transmission power of the first signal and the transmission power of the second signal can be the same. It can also be understood that the first device determines that the first signal and the second device are both data signals, and the first device determines that the transmission power of the first signal and the transmission power of the second signal are the same.
  • the carrier signal may be a single carrier signal.
  • the first signal is a carrier signal
  • the first signal is a single carrier signal.
  • the second signal is a carrier signal
  • the first signal is a single carrier signal.
  • the first signal or the second signal occupies one subcarrier in the frequency domain.
  • the first signal or the second signal is a signal composed of one energy-carrying subcarrier.
  • the first signal and/or the second signal are multi-carrier signals.
  • the first signal and/or the second signal occupy multiple subcarriers in the frequency domain.
  • the first signal and/or the second signal are signals composed of a plurality of energy-carrying subcarriers.
  • the frequency domain resource used for communication between the first device and the second device may be an NR carrier or an LTE carrier.
  • the frequency location of the first signal and the frequency location of the second signal should meet specific conditions. It can also be considered that the first frequency domain unit and the second frequency domain unit should meet specific conditions, including the following two situations.
  • At least one of the first signal and the second signal is located within the guard band of an NR carrier or an LTE carrier. And/or, the absolute value of the difference between the first frequency and the second frequency is greater than or equal to the transmission bandwidth of an NR carrier or an LTE carrier. To facilitate understanding, an illustration is provided below.
  • Figure 18 is a schematic diagram of the positions of the first signal and the second signal on the NR carrier.
  • Figure 18 takes as an example that the first frequency domain unit is located within the guard band of the NR carrier and the second frequency domain unit is located within the transmission band of the NR carrier. That is, the first signal is located in the guard band of the NR carrier, and the second signal is located in the transmission band of the NR carrier.
  • the first signal when the first signal is a carrier signal, the first signal may be located within the guard band of the NR carrier.
  • the first signal may be considered to be the carrier signal. Since the first signal is located within the guard band of the NR carrier, the transmission of the first signal will not affect the transmission within the transmission band of the NR carrier.
  • Figure 19 is a schematic diagram of the positions of the first signal and the second signal on the NR carrier.
  • Figure 19 takes the example that the first frequency domain unit is located in one guard band of the NR carrier, and the second frequency domain unit is located in another guard band of the NR carrier. That is, the first signal is located in the guard band of the NR carrier, and the second signal is located in another guard band of the NR carrier. Since both the first signal and the second signal are located within the guard band of the NR carrier, the transmission of the first signal and the second signal will not affect the transmission within the transmission band of the NR carrier.
  • both the first signal and the second signal are located in the transmission bandwidth of the NR carrier, where the difference between the minimum value of the first frequency domain unit and the lowest frequency of the transmission bandwidth is less than or equal to the first value , the difference between the maximum value of the second frequency domain unit and the highest frequency of the transmission bandwidth is less than or equal to the second value.
  • the first value can be 0, and the second value can also be 0.
  • the difference between the minimum value of the first frequency domain unit and the lowest frequency of the transmission bandwidth may be 0, and the difference between the maximum value of the second frequency domain unit and the highest frequency of the transmission bandwidth may be 0.
  • the first frequency domain unit and the second frequency domain unit may be located at both ends of the transmission bandwidth of the NR carrier, so as to ensure that the first signal and the second signal are Anti-interference performance.
  • an illustration is provided below.
  • Figure 20 is a schematic diagram of the positions of the first signal and the second signal on the NR carrier.
  • Figure 20 takes as an example that the first frequency domain unit is located at one end of the transmission band of the NR carrier, and the second frequency domain unit is located at the other end of the transmission band of the NR carrier. Since the first signal and the second signal are respectively located at both ends of the NR carrier, and the frequency positions of the first signal and the second signal are close to the guard band of the NR carrier, the anti-interference performance of the first signal and the second signal can be ensured as much as possible.
  • the embodiments of the present application do not limit the modulation methods of the first signal and the second signal.
  • the modulation method of the first signal and/or the second signal is switch keying, multi-carrier switch keying, double sideband amplitude shift keying, single sideband amplitude shift keying, phase inversion amplitude shift keying, or multiple amplitude shift keying. control, frequency shift keying, Gaussian frequency shift keying, multi-frequency shift keying, binary phase shift keying, quadrature phase shift keying, pulse amplitude modulation, pulse width modulation, pulse position modulation, pulse density modulation, or pulse Coding modulation.
  • the modulation methods of the first signal and the second signal may be the same or different.
  • the antenna ports of the first signal and the second signal are the same.
  • the cyclic prefix lengths of the first signal and the second signal are the same.
  • the subcarrier spacing of the first signal and the second signal is the same.
  • the waveform of the first signal and/or the second signal is OFDM using CP.
  • the waveform of the first signal and/or the second signal is OFDM using CP, and DFT spreading is performed.
  • the first device may send a first signal at a first frequency and a second signal at a second frequency,
  • the second device receives the first signal and the second signal through envelope detection, and can distinguish the signal at the DC carrier from the interference signal.
  • interference changes dynamically. If, in the absence of interference, the first device still sends the first signal at the first frequency and the second signal at the second frequency, resource overhead will obviously increase. Therefore, in this embodiment of the present application, if there is no interference, the first device can also send a signal at a frequency position, thereby saving resource overhead. But for the second device, it is not known whether the first device sends two signals or one signal.
  • the reception performance of the second device cannot be guaranteed.
  • the reception performance of the second device cannot be guaranteed.
  • the first device can indicate to the second device how to receive signals, so that the first device and the second device have a consistent understanding of how to receive signals, ensuring the reception performance of the second device.
  • the first device sends the second instruction information to the second device.
  • the second device receives the second instruction information sent by the first device.
  • the second indication information may indicate a manner in which the second device receives the signal.
  • the manner in which the second device receives the signal includes a first receiving manner and a second receiving manner.
  • the second indication information may instruct the second device to receive the signal in the first receiving mode or the second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving the signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency. It can be understood that the first device sends the first signal and the second signal. For the second device, if there is an interference signal, the second device can receive it at the frequency position obtained by subtracting the second frequency from the first frequency. Signal. If there is no interference signal, then the second device can not only receive the signal at the frequency position obtained by subtracting the second frequency from the first frequency, but also receive the low-frequency signal near the DC carrier. Therefore, the first device can inform the second device to receive the signal. way to ensure the reception performance of the second device as much as possible.
  • the second indication information may directly indicate the first receiving method or the second receiving method.
  • the second indication information is 1-bit information, and the value of this 1-bit is "0" to indicate the first reception mode.
  • the value of this 1-bit is "1" to indicate the second reception mode.
  • the value of this 1 bit is "1" to indicate the first reception mode, and correspondingly, the value of this 1 bit is "0" to indicate the second reception mode.
  • the second indication information may indirectly indicate the first receiving method or the second receiving method.
  • the second indication information may indicate a deployment mode of the signal, and the deployment mode includes transmission band deployment or guard band deployment.
  • Transmission band deployment refers to the frequency of signals being sent on the transmission band
  • guard band deployment refers to the frequency of signals being sent on the guard band.
  • the first device can send two signals by default, indirectly indicating the second reception mode.
  • the signal deployment mode is transmission belt deployment
  • the first device may send a signal by default to indirectly indicate the first receiving mode.
  • the second indication information may indicate a frequency difference value if the frequency difference value satisfies the aforementioned specific condition that the absolute value of the difference between the first frequency and the second frequency needs to satisfy. Then the second indication information indirectly indicates the second receiving mode. If the frequency difference does not meet the specific conditions that the absolute value of the difference between the first frequency and the second frequency needs to meet, then the second indication information indirectly indicates the first reception mode.
  • the first receiving mode and the second receiving mode are illustrated below with reference to the accompanying drawings.
  • the signal output by the envelope detector in the second device includes a DC carrier component and an intermediate frequency component, and the high frequency component is not shown.
  • the high frequency component is not shown.
  • Figure 21 is a schematic diagram of a first device sending a signal and a second device receiving a signal.
  • Figure 21 shows that in the case of interference, the first device sends the first signal at f1 and the second signal at f2; in the case of no interference, the first device The device sends the first signal at f1 as an example.
  • the second device receives the first signal and the second signal in an envelope detection manner, and can obtain the signal at the frequency difference between the first frequency and the second frequency, that is, the target signal. It can also be understood that the frequency carrying the target signal is the absolute value of the difference between the first frequency and the second frequency.
  • the signal received by the second device is near the DC carrier. It can be seen from Figure 21 that when there is interference, the interference signal is near the DC carrier. Therefore, the interference signal can be suppressed by a band-pass filter. In the absence of interference, filtering can be performed with a low-pass filter.
  • Figure 22 is another schematic diagram of a first device sending a signal and a second device receiving a signal.
  • Figure 22 takes as an example that in the case of interference, the first device sends the first signal at f1 and the second signal at f2; in the case of no interference, the first device sends the first signal at f1 and the second signal at f2.
  • the second device receives the first signal and the second signal in an envelope detection manner, and can obtain the signal at the frequency difference position between the first frequency and the second frequency, that is, the target signal.
  • the signal received by the second device includes, in addition to the signal near the DC carrier, the signal at the frequency difference between the first frequency and the second frequency.
  • the interference signal when there is interference, the interference signal is near the DC carrier. Therefore, the interference signal can be suppressed by a band-pass filter. In the absence of interference, the signal at the DC carrier and the signal at ⁇ f both carry useful information, so the second device can receive the signal at the DC carrier and the signal at ⁇ f, and then filter it through a low-pass filter , which can ensure the reception performance of the first signal and the second signal.
  • the second device receives the first signal and the second signal through envelope detection.
  • the second device receives signals in the envelope detection mode
  • the second device obtains the target signal from the received signal.
  • the second device can receive signals at which frequency positions according to the second indication information. It can also be considered that the second device can determine the parameters of the filter according to the second indication information to filter the signal output by the envelope detector to obtain the target signal.
  • the filter scheme after the envelope detector has been introduced, and will not be described again here.
  • the following is an introduction to how the second device receives the first signal and the second signal and obtains the target signal in the case of no interference.
  • x sig2 (t) A sig1 (t) ⁇ cos (2 ⁇ f c, sig1 t)
  • x sig2 (t) A sig2 (t) ⁇ cos (2 ⁇ f c, sig2 t)
  • a sig1 (t) and A sig2 (t) represent the first signal and the second signal respectively, f c, sig1 and f c, sig2 are used for the first signal respectively. signal and the carrier frequency of the second signal.
  • the output y(t) of the envelope detector includes high-frequency components with frequencies 2f c, sig1 , 2f c, sig2 and f c, sig2 + f c, sig1 .
  • a sig1 (t)A sig2 (t) ⁇ cos(2 ⁇ (f c, sig2 -f c, sig1 )t) is an intermediate frequency component.
  • the second device can pass The band-pass filter filters the intermediate frequency component, and then the intermediate frequency component that passes through the band-pass filter is further down-converted to obtain a baseband signal.
  • the embodiments of this application do not limit the implementation method of frequency down conversion.
  • the second device may implement the down-conversion operation through an envelope detector, or may implement the down-conversion operation through a low-frequency crystal oscillator and mixer.
  • the transmitting end device can send two signals at two frequency positions, and the receiving end device receives the two signals in an envelope detection manner, without increasing the design and implementation of the radio frequency filter. aspects of complexity.
  • the intermediate frequency component output by the envelope detector in the second device can be considered as the signal that the second device needs to obtain.
  • the interference exists in the high-frequency component, and the intermediate-frequency component does not include interference. Therefore, only the intermediate-frequency component passes through the intermediate-frequency filter, so that the signal at the DC carrier and the interference signal can be distinguished. Since the frequency of the intermediate frequency is lower than that of the radio frequency, the intermediate frequency filter is easier to design and implement under the same Q value requirements. Therefore, through the solution of the embodiment of the present application, it is not only easier to distinguish the target signal and interference through the intermediate frequency filter after envelope detection, but it also does not increase the complexity of the design and implementation of the radio frequency filter.
  • the methods provided by the embodiments of the present application are introduced from the perspective of interaction between terminal equipment, access network equipment, or core network equipment.
  • the terminal equipment, the access network equipment and the core network equipment may include a hardware structure and/or a software module, in the form of a hardware structure, a software module, or a hardware structure plus a software module. form to achieve the above functions. Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the embodiment of the present application also provides a communication device.
  • the communication device used to implement the above method in the embodiment of the present application will be introduced below with reference to the accompanying drawings.
  • FIG. 23 is a schematic block diagram of a communication device 2300 provided by an embodiment of the present application.
  • the communication device 2300 may include a processing module 2310 and a transceiver module 2320.
  • a storage unit may also be included, which may be used to store instructions (code or programs) and/or data.
  • the processing module 2310 and the transceiver module 2320 can be coupled with the storage unit.
  • the processing module 2310 can read the instructions (code or program) and/or data in the storage unit to implement the corresponding method.
  • Each of the above modules can be set up independently or partially or fully integrated.
  • the communication device 2300 can correspondingly implement the behaviors and functions of the first device in the above method embodiments.
  • the communication device 2300 can be the first device, or can be a component (such as a chip or a device) used in the first device. circuit), or it may be a chip or a chipset in the first device or a part of the chip used to perform related method functions.
  • the communication device 2300 may perform steps S1401, S1402, S1403, etc. in FIG. 14 .
  • the processing module 2310 is used to determine the first signal and the second signal.
  • the transceiver module 2320 is configured to send a first signal in a first frequency domain unit and a second signal in a second frequency domain unit to the second device.
  • the first frequency domain unit The first frequency is included, and the second frequency domain unit includes the second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is related to one or more of: the first bandwidth, the second bandwidth, or the third bandwidth.
  • the first bandwidth is the bandwidth occupied by the first frequency domain unit in the frequency domain
  • the second bandwidth is the bandwidth occupied by the second frequency domain unit in the frequency domain.
  • the third bandwidth is the bandwidth occupied by the third frequency domain unit in the frequency domain, and the third frequency domain unit is used by the first device to send the third signal to the third device.
  • the first signal, the second signal and the third signal are located within a working frequency band.
  • the transceiver module 2320 is also configured to send first indication information to the second device, where the first indication information indicates the absolute value of the difference between the first frequency and the second frequency.
  • the transceiving module 2320 is also configured to send second indication information to the second device, where the second indication information instructs the second device to receive the signal in the first receiving mode or the second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving the signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • the processing module 2310 is used to determine the first signal and the second signal.
  • the transceiver module 2320 is configured to send a first signal in a first frequency domain unit and a second signal in a second frequency domain unit to the second device. Wherein, the first signal and the second signal are located within a working frequency band.
  • the first frequency domain unit includes a first frequency
  • the second frequency domain unit includes a second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value.
  • the transceiver module 2320 is further configured to send the absolute value of the difference between the first frequency and the second frequency to the second device.
  • the transceiving module 2320 is also configured to send second indication information to the second device, where the second indication information instructs the second device to receive the signal in the first receiving mode or the second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving the signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • the communication device 2300 can correspondingly implement the behaviors and functions of the second device in the above method embodiment.
  • the communication device 2300 can be the second device, or can be a component applied in the second device (for example, Chip or circuit), it may also be a chip or chipset in the second device or a part of the chip used to perform related method functions.
  • the communication device 2300 may perform steps S1401, S1402, S1403, S1404, S1405, etc. in FIG. 14 .
  • the transceiver module 2320 is configured to receive the first signal and the second signal through envelope detection.
  • the processing module 2310 is configured to obtain the target signal, wherein the frequency carrying the target signal includes the absolute value of the difference between the first frequency carrying the first signal and the second frequency carrying the second signal.
  • the transceiver module 2320 is configured to receive the first signal and the second signal through envelope detection.
  • the processing module 2310 is configured to obtain the target signal, wherein the frequency carrying the target signal includes the absolute value of the difference between the first frequency carrying the first signal and the second frequency carrying the second signal.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value, or the absolute value of the difference between the first frequency and the second frequency is obtained from the first device.
  • the processing module 2310 is also used to determine the receiving method used to obtain the target signal.
  • the receiving mode includes a first receiving mode or a second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving a signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • the transceiving module 2320 is also configured to receive second indication information sent by the first device, where the second indication information indicates the first receiving method or the second receiving method.
  • processing module 2310 in the embodiment of the present application can be implemented by a processor or processor-related circuit components
  • transceiver module 2320 can be implemented by a transceiver or transceiver-related circuit components or a communication interface.
  • FIG 24 is a schematic block diagram of a communication device 2400 provided by an embodiment of the present application.
  • the communication device 2400 may be the first device and can implement the first function in the method provided by the embodiment of the present application.
  • the communication device 2400 may also be a device that can support the first device to implement the corresponding function in the method provided by the embodiment of the present application, wherein the communication device 2400 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 2400 may also be a second device, capable of realizing the functions of the second device in the method provided by the embodiments of this application.
  • the communication device 2400 may also be a device that can support the second device to implement the corresponding function in the method provided by the embodiment of the present application, wherein the communication device 2400 may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices. For specific functions, please refer to the description in the above method embodiment.
  • the communication device 2400 includes one or more processors 2401, which can be used to implement or support the communication device 2400 to implement the function of the first device in the method provided by the embodiment of the present application. For details, please refer to the detailed description in the method example and will not be repeated here.
  • One or more processors 2401 may also be used to implement or support the communication device 2400 in implementing the functions of the second device in the method provided by the embodiments of this application. For details, please refer to the detailed description in the method example and will not be repeated here.
  • the processor 2401 can also be called a processing unit or processing module, and can implement certain control functions.
  • the processor 2401 may be a general-purpose processor or a special-purpose processor, or the like.
  • central processing unit For example, include: central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or neural network processor wait.
  • the central processing unit may be used to control the communication device 2400, execute software programs and/or process data.
  • Different processors may be independent devices, or may be integrated in one or more processors, for example, integrated on one or more application specific integrated circuits.
  • the communication device 2400 includes one or more memories 2402 to store instructions 2404, which can be executed on the processor 2401, so that the communication device 2400 executes the method described in the above method embodiment.
  • the memory 2402 and the processor 2401 may be provided separately or integrated together, or the memory 2402 and the processor 2401 may be considered coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 2401 may cooperate with memory 2402. At least one of the at least one memory may be included in the processor. It should be noted that the memory 2402 is not necessary, so it is illustrated with a dotted line in FIG. 24 .
  • the memory 2402 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the memory 2402 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or it may be a volatile memory (volatile memory).
  • volatile memory volatile memory
  • RAM random-access memory
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the communication device 2400 may include instructions 2403 (sometimes also referred to as codes or programs), and the instructions 2403 may be executed on the processor, causing the communication device 2400 to perform the methods described in the above embodiments.
  • Data can be stored in processor 2401.
  • the communication device 2400 may also include a transceiver 2405 and an antenna 2406.
  • the transceiver 2405 can It is called a transceiver unit, transceiver module, transceiver, transceiver circuit, transceiver, input/output interface, etc., and is used to realize the transceiver function of the communication device 2400 through the antenna 2406.
  • the processor 2401 and transceiver 2405 described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency identification (RFID), mixed signal ICs, ASICs, printed circuit boards (printed circuit boards) board, PCB), or electronic equipment, etc.
  • the communication device that implements the communication described in this article can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices).
  • ICs integrated circuits
  • RFID radio frequency identification
  • ASICs integrated circuits
  • PCB printed circuit boards
  • the communication device 2400 can correspondingly implement the behaviors and functions of the first device in the above method embodiment.
  • the communication device 2400 can be the first device, or can be a component (such as a chip or a device) used in the first device. circuit), or it may be a chip or a chipset in the first device or a part of the chip used to perform related method functions.
  • the communication device 2400 may perform steps S1401, S1402, S1403, etc. in FIG. 14 .
  • the processor 2401 is used to determine the first signal and the second signal.
  • the transceiver 2405 is configured to send a first signal in a first frequency domain unit and a second signal in a second frequency domain unit to the second device.
  • the first frequency domain unit includes a first frequency
  • the second frequency domain unit includes a second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is related to one or more of: the first bandwidth, the second bandwidth, or the third bandwidth.
  • the first bandwidth is the bandwidth occupied by the first frequency domain unit in the frequency domain
  • the second bandwidth is the bandwidth occupied by the second frequency domain unit in the frequency domain.
  • the third bandwidth is the bandwidth occupied by the third frequency domain unit in the frequency domain
  • the third frequency domain unit is used by the first device to send the third signal to the third device.
  • the first signal, the second signal and the third signal are located within a working frequency band.
  • the transceiver 2405 is also configured to send first indication information to the second device, where the first indication information indicates the absolute value of the difference between the first frequency and the second frequency.
  • the transceiver 2405 is also configured to send second indication information to the second device, where the second indication information instructs the second device to receive the signal in the first receiving mode or the second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving the signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • the processor 2401 is used to determine the first signal and the second signal.
  • the transceiver 2405 is configured to send a first signal in a first frequency domain unit and a second signal in a second frequency domain unit to the second device. Wherein, the first signal and the second signal are located within a working frequency band.
  • the first frequency domain unit includes a first frequency
  • the second frequency domain unit includes a second frequency.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value.
  • the transceiver 2405 is further configured to also send the absolute value of the difference between the first frequency and the second frequency to the second device.
  • the transceiver 2405 is also configured to send second indication information to the second device, where the second indication information instructs the second device to receive the signal in the first receiving mode or the second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving the signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • the communication device 2400 can correspondingly implement the behaviors and functions of the second device in the above method embodiments.
  • the communication device 2400 can be the second device, or can be a component applied in the second device (for example, Chip or circuit), it may also be a chip or chipset in the second device or a part of the chip used to perform related method functions.
  • the communication device 2400 may perform S1401, S1402, S1403, S1404, and S1405 in FIG. 14 Wait for steps.
  • the transceiver 2405 is configured to receive the first signal and the second signal through envelope detection.
  • the processing module 2310 is configured to obtain the target signal, wherein the frequency carrying the target signal includes the absolute value of the difference between the first frequency carrying the first signal and the second frequency carrying the second signal.
  • the transceiver 2405 is configured to receive the first signal and the second signal through envelope detection.
  • the processor 2401 is configured to obtain the target signal, wherein the frequency carrying the target signal includes the absolute value of the difference between the first frequency carrying the first signal and the second frequency carrying the second signal.
  • the absolute value of the difference between the first frequency and the second frequency is a preset value, or the absolute value of the difference between the first frequency and the second frequency is obtained from the first device.
  • the processor 2401 is also used to determine a receiving method for obtaining the target signal.
  • the receiving mode includes a first receiving mode or a second receiving mode.
  • the first reception mode indicates receiving a signal according to the absolute value of the difference between the first frequency and the second frequency.
  • the second receiving mode indicates receiving a signal according to the frequency of the DC carrier and according to the absolute value of the difference between the first frequency and the second frequency.
  • the transceiver 2405 is also configured to receive second indication information sent by the first device, where the second indication information indicates the first receiving method or the second receiving method.
  • the communication device 2400 may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (USB) interface, a power management module, and an antenna. Speakers, microphones, input and output modules, sensor modules, motors, cameras, or displays, etc. It can be understood that in some embodiments, the communication device 2400 may include more or fewer components, or some components may be integrated, or some components may be separated. These components may be implemented in hardware, software, or a combination of software and hardware.
  • the communication device in the above embodiments may be a terminal device (or network device) or a circuit, or may be a chip applied in the terminal device (or network device) or other devices having the above terminal functions (or network device).
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit, and the processing module may be a processor.
  • the communication device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (system on chip) , SoC), it can also be a CPU, it can be a network processor (network processor, NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or it can be a microcontroller (micro controller unit, MCU) , it can also be a programmable logic device (PLD) or other integrated chip.
  • the processing module may be a processor of a chip system.
  • the transceiver module or communication interface may be the input/output interface or interface circuit of the chip system.
  • the interface circuit may be a code/data read and write interface circuit.
  • the interface circuit can be used to receive code instructions (code instructions are stored in the memory and can be read directly from the memory, or can also be read from the memory through other devices) and transmitted to the processor; the processor can be used to run all The code instructions are used to execute the methods in the above method embodiments.
  • the interface circuit may also be a signal transmission interface circuit between the communication processor and the transceiver.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and/or a communication interface;
  • the processing unit may be an integrated processor or microprocessor or an integrated circuit.
  • the embodiment of the present application also provides a communication system.
  • the communication system includes at least one first device and at least A second device.
  • the communication system includes a first device and a second device used to implement the relevant functions of any one or more of the above-mentioned figures 14-22.
  • the relevant descriptions in the above method embodiments which will not be described again here.
  • An embodiment of the present application also provides a computer-readable storage medium, which includes instructions that, when run on a computer, cause the computer to execute the method executed by the first device in Figure 14. Or, when it is run on the computer, the computer is caused to execute the method executed by the second device in FIG. 14 .
  • An embodiment of the present application also provides a computer program product, which includes instructions that, when run on a computer, cause the computer to execute the method executed by the first device in Figure 14 . Or, when it is run on the computer, the computer is caused to execute the method executed by the second device in FIG. 14 .
  • Embodiments of the present application provide a chip system.
  • the chip system includes a processor and may also include a memory for realizing the functions of the first device in the foregoing method; or for realizing the functions of the second device in the foregoing method.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), RAM, magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种信号发送方法、信号接收方法及通信装置,该方法包括:第一设备向第二设备在第一频域单元发送第一信号,在第二频域单元发送第二信号。第一频域单元包括第一频率,第二频率单元包括第二频率。第一频率和第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽。第一带宽为第一频域单元在频域上占用的带宽。第二带宽为第二频域单元在频域上占用的带宽。第三带宽为第三频域单元在频域上占用的带宽。该第三频域单元用于第一设备向第三设备发送第三信号。第一信号和第二信号以及第三信号位于一个工作频带内。通过该方法可以在不增加射频滤波器的复杂度的情况下,抑制干扰。

Description

一种信号发送方法、信号接收方法及通信装置
相关申请的交叉引用
本申请要求在2022年04月02日提交中华人民共和国知识产权局、申请号为202210351628.0、申请名称为“一种信号发送方法、信号接收方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及射频技术领域,尤其涉及一种信号发送方法、信号接收方法及通信装置。
背景技术
为了进一步降低接收机的功耗,可以使用幅度调制和包络检测的方式处理所接收的信号,从而可避免使用功率较大的射频模块。然而由于包络检测是非线性器件且噪声较大,因此需要在包络检测器之前设置射频放大器,以能够正确解调所接收的信号。另外,接收机需要对接收的信号进行滤波,这就需要在射频放大器之前设置射频滤波器,且要求该射频滤波器的Q值较高,以达到较好的滤波效果。然而通常,片上射频滤波器的Q值较低,如果想要片上射频滤波器的Q值较高,需要外接体表面波(bulk acoustic wave,BAW)或声表面波(surface acoustic wave,SAW),显然接收机集成度较低,无法满足接收机尺寸小的需求。
发明内容
本申请提供一种信号发送方法、信号接收方法及通信装置,在不需要增加接收机中射频滤波器的复杂度的基础上,可以降低信号之间的干扰。
第一方面,本申请实施例提供一种信号发送方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备是第一设备为例进行描述。示例性地,所述第一通信装置为第一设备,或者为设置在第一设备中的芯片,或者为用于实现第一设备的功能的其他部件。该方法包括:第一设备确定第一信号和第二信号,并向第二设备在第一频域单元发送第一信号,在第二频域单元发送第二信号。第一频域单元包括第一频率,第二频率单元包括第二频率。第一频率和第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽。其中,第一带宽为第一频域单元在频域上占用的带宽。第二带宽为第二频域单元在频域上占用的带宽。第三带宽为第三频域单元在频域上占用的带宽。该第三频域单元用于第一设备向第三设备发送第三信号。第一信号和第二信号以及第三信号位于一个工作频带内。
在本申请实施例中,第一设备作为发送端设备可以在两个频率位置(例如,第一频率和第二频率)上发送2个信号(例如第一信号和第二信号)。例如,第一设备可在第一频率位置上发送第一信号,在第二频率位置上发送第二信号。对于作为接收端的第二设备来说,第二设备的射频滤波器应当使得第一信号和第二信号通过,即该射频滤波器的通带应 该包含第一频率和第二频率。可以理解的是,第一频率和第二频率之间的间隔越大,对该第二设备的射频滤波器的Q值要求越低,即无需要求更高Q值的射频滤波器。因此,通过本申请实施例的方法可以不增加射频滤波器在设计和实现方面的复杂度。另外,考虑到干扰信号的存在,第二设备可以通过包络检波的方式接收第一信号和第二信号,经过包络检波之后,包含第一频率和第二频率之间的差值的绝对值对应的中频分量应该是第二设备需要获得的信号,也可以称为目标信号。这种情况下,第二设备可以通过中频带通滤波器可以获取目标信号,抑制其它包含干扰的频率成分。可以理解的是,中频的频率相比于射频的频率更低,相同Q值需求下,中频滤波器更容易设计和实现。因此,通过本申请实施例的方案,第二设备可以在包络检波之后通过中频滤波器较为容易地区分出目标信号和干扰,且不会增加射频滤波器在设计和实现方面的复杂度。
在可能的实现方式中,第一设备在第二设备的信道带宽对应的频率范围内发送第一信号和第二信号,第一频率和第二频率之间的差值的绝对值大于或等于1/2第二设备的信道带宽。通过该方案,第二设备包络检波的方式接收第一信号和第二信号所得到的中频分量(即目标信号)所在频率与干扰信号所在频率不同。即目标信号和干扰信号在频谱上没有交叠,从而可以通过中频滤波器可以较为容易地过滤干扰信号,对射频滤波器的要求较低,无需增加射频滤波器在设计和实现方面的复杂度。
在可能的实现方式中,第一频率和第二频率之间的差值的绝对值大于或等于第三带宽与第四带宽之和。其中,第四带宽为第一带宽和第二带宽之和的2倍,第三信号在频域上位于第一频率和第二频率之间。可以理解的是,第一频率和第二频率之间的差值越大,目标信号所在频率和干扰信号所在频率之间的差值越大。通过该方案,可使得目标信号所在频率和干扰信号所在频率之间的差值较大,从而较为容易区分干扰信号和目标信号,也就较为容易通过中频滤波器过滤干扰信号,对射频滤波器的要求更低,更加不需要增加射频滤波器在设计和实现方面的复杂度。
在可能的实现方式中,第一频率和第二频率之间的差值的绝对值为预设值。例如,该预设值与如下的一项或多项相关:工作频带、第一信号的子载波间隔,或第二信号的子载波间隔。工作频带用于第一设备和第二设备之间通信的工作频带。由于第一频率和第二频率之间的差值的绝对值为预设值,因此,可适用于无需第一设备告知第二设备第一频率和第二频率之间的差值的绝对值的场景。例如,第一设备和第二设备建立通信连接之后,第一设备使用第一频率和第二频率向第二设备发送第一设备和第二设备之间的第一条信令。
在可能的实现方式中,方法还包括:第一设备向第二设备发送第一指示信息,该第一指示信息指示第一频率和第二频率之间的差值的绝对值。第一设备可将第一频率和第二频率之间的差值的绝对值告知第二设备,较为灵活。
在可能的实现方式中,第一信号和第二信号中至多有一个用于为第二设备的上行传输提供载波。一个信号用于为传输提供载波,也可以认为,该信号用于反射(backscatter)通信,可称为载波信号。相较于载波信号来说,有数据信号,指携带调制信息的信号。第一信号和第二信号可以都是数据信号,或者,第一信号为数据信号,第二信号为载波信号。可以理解的是,第一信号为数据信号,第二信号为载波信号,可以降低第一设备的资源开销。第一信号和第二信号都是数据信号,可以提高数据传输的可靠性。
在可能的实现方式中,第一信号的功率和第二信号的功率相同。或者,第一信号的功率和第二信号的功率也可以不相同。例如,第一信号的功率和第二信号的功率相同,第一 信号和第二信号可以均不是载波信号,即第一信号和第二信号都是数据信号。又例如,第一信号的功率大于第二信号的功率,第一信号为数据信号,第二信号为载波信号。由于数据信号承载有用信息,因此采用较高的功率可以保证数据传输的可靠性。相对来说,第二信号为载波信息,不承载有用信息,采用较低的功率可以节约第一设备的功耗。例如,第一信号和第二信号均不用于为第二设备的上行传输提供载波,第一信号的功率和第二信号的功率可相同。又例如,第一信号和第二信号中有一个信号为第二设备的上行传输提供载波,第一信号和第二信号的功率可以不相同,既可以保证数据传输的可靠性,又可以节约第一设备的功耗。
在可能的实现方式中,第一信号和第二信号中至少一个信号位于一个第一载波的保护带内,和/或,第一频率和第二频率之间的差值的绝对值大于或等于一个第一载波的传输带宽。其中,第一载波为新无线(new radio,NR)载波或长期演进(long term evolution,LTE)载波。当第一设备和第二设备的工作频带都位于NR的工作频带内,第一信号和第二信号中至少一个信号位于NR载波的保护带内,可以降低对NR载波的传输带的影响。
在可能的实现方式中,第一信号和第二信号均位于第二载波的传输带宽,其中,第一频域单元的最小值与所述传输带宽的最低频率之间的差值小于或等于第一取值,第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于或等于第二取值。第一取值可为0,第二取值也可为0。当第一信号和第二信号位于NR载波的传输带宽内,第一信号的工作频带(即第一频域单元)和第二信号的工作频带(即第二频域单元)可以分别位于NR载波的传输带宽的两端,以尽量保证第一信号和第二信号的抗干扰性能。
在可能的实现方式中,所述方法还包括:第一设备向第二设备发送第二指示信息,该第二指示信息指示第二设备以第一接收方式或第二接收方式接收信号。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率,以及根据第一频率和第二频率之间的差值的绝对值接收信号。可以理解的是,第一设备发送了第一信号和第二信号,对于第二设备来说,如果存在干扰信号,那么第二设备可在第一频率和第二频率差值的绝对值对应的频率位置处接收信号。如果不存在干扰信号,那么第二设备除了在第一频率和第二频率的差值的绝对值对应的频率位置处接收信号,还可以接收直流载波附近的低频信号,因此,第一设备可告知第二设备接收信号的方式,以尽量保证第二设备的接收性能。
在可能的实现方式中,第一信号和/或第二信号的调制方式为开关键控(on-off keying,OOK),多载波开关键控(multicarrier on-off keying,MC-OOK),双边带幅移键控(double-sideband amplitude-shift keying,DSB-ASK),单边带幅移键控(single-sideband amplitude-shift keying,SSB-ASK),相位反转幅移键控(phase-reversal amplitude shift keying,PR-ASK),多幅移键控(multiple amplitude-shift keying,MASK),频移键控(frequency-shift keying,FSK),高斯频移键控(gauss frequency shift keying,GFSK),多频移键控(multiple frequency-shift keying,MFSK),二进制相移键控(binary phase shift keying,BPSK),四相相移键控(quadrature phase shift keying,QPSK),脉冲幅度调制(pulse amplitude modulation,PAM),脉冲宽度调制(pulse-width modulation,PWM),脉冲位置调制(pulse position modulation,PPM),脉冲密度调制(pulse density modulation,PDM),或脉冲编码调制(Pulse-code modulation,PCM)。
在可能的实现方式中,第一信号和第二信号的调制方式相同。
在可能的实现方式中,第一信号和第二信号的调制方式不同。
在可能的实现方式中,第一信号或第二信号为单载波信号;或者,第一信号或第二信号在频域上占用一个子载波;或者,第一信号或第二信号是由一个携带能量的子载波构成的信号。
在可能的实现方式中,第一信号和/或第二信号为多载波信号;或者,第一信号和/或第二信号在频域上占用多个子载波;或者,第一信号和/或第二信号是由多个携带能量的子载波构成的信号。
在可能的实现方式中,第一信号和第二信号的天线端口相同。
在可能的实现方式中,第一信号和第二信号的循环前缀长度相同。
在可能的实现方式中,第一信号和第二信号的子载波间隔相同。
在可能的实现方式中,第一信号和/或第二信号的波形为使用循环前缀(cyclic prefix,CP)的正交频分复用(orthogonal frequency division multiplexing,OFDM)。
在可能的实现方式中,第一信号和/或第二信号的波形为使用CP的OFDM,且执行离散傅里叶变换(discrete fourier transform,DFT)扩展。
第二方面,本申请实施例提供一种信号接收方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如,芯片系统。下面以所述通信设备是第二设备为例进行描述。示例性地,所述第二通信装置为第二设备,或者为设备在第二设备中的芯片,或者为用于实现第二设备的功能的气体部件。该方法包括:
第二设备通过包络检波的方式接收第一信号和第二信号,并获取目标信号。其中,第一信号和第二信号位于一个工作频带内。承载目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。
在可能的实现方式中,承载目标信号的频率还包括直流载波所在的频率。
在可能的实现方式中,在第二设备获取目标信号之前,所述方法还包括:第二设备确定用于获取目标信号的接收方式,所述接收方式包括第一接收方式或第二接收方式。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率以及根据第一频率和第二频率之间的差值的绝对值接收信号。
在可能的实现方式中,第二设备确定第一接收方式或第二接收方式,包括:第二设备接收第一设备发送的第二指示信息,该第二指示信息指示第一接收方式或第二接收方式。
在可能的实现方式中,第一频率和所述第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽。第一带宽为第一频域单元在频域占用的带宽,第一频域单元包括第一频率。第二带宽为第二频域在频域占用的带宽,第二频域单元包括第二频率。第三带宽为第三频域单元在频域占用的带宽,第三频域单元用于第一设备向第三设备发送第三信号,第三信号位于工作频带内。
在可能的实现方式中,第一信号和第二信号是在第二设备的信道带宽对应的频率范围内发送的。第一频率和第二频率之间的差值的绝对值大于或等于1/2第二设备的信道带宽。
在可能的实现方式中,第一频率和第二频率之间的差值的绝对值大于或等于第三带宽与第四带宽之和。第四带宽为第一带宽和第二带宽之和的2倍。其中,第三信号在频域上位于第一频率和第二频率之间。
在可能的实现方式中,第一频率和第二频率之间的差值的绝对值为预设值。该预设值 与如下的一项或多项相关:所述工作频带、第一信号的子载波间隔,或第二信号的子载波间隔相关。
在可能的实现方式中,所述方法还包括:第二设备接收第一设备发送的第一指示信息,该第一指示信息指示所述绝对值。
在可能的实现方式中,第一信号和第二信号中至多有一个用于为第二设备的上行传输提供载波。
在可能的实现方式中,第一信号的功率和第二信号的功率相同。
在可能的实现方式中,第一信号的功率和第二信号的功率相同,第一信号和第二信号均不用于为第二设备的上行传输提供载波。
在可能的实现方式中,第一信号和第二信号中至少一个信号位于一个第一载波的保护带内,和/或,第一频率和第二频率之间的差值的绝对值大于或等于一个第一载波的传输带宽。第一载波为新无线NR载波或LTE载波。
在可能的实现方式中,第一信号和第二信号均位于第二载波的传输带宽,第一频率单元的最小值与所述传输带宽的最低频率之间的差值小于第一取值,第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于第二取值。
在可能的实现方式中,第一信号和/或第二信号的调制方式为OOK,MC-OOK,DSB-ASK,SSB-ASK,PR-ASK,MASK,FSK,GFSK,MFSK,BPSK,QPSK,PAM,PWM,PPM,PDM,或PCM。
在可能的实现方式中,第一信号和第二信号的调制方式相同。
在可能的实现方式中,第一信号和第二信号的调制方式不同。
在可能的实现方式中,第一信号或第二信号为单载波信号;或者,第一信号或第二信号在频域上占用一个子载波;或者,第一信号或第二信号是由一个携带能量的子载波构成的信号。
在可能的实现方式中,第一信号和/或第二信号为多载波信号;或者,第一信号和/或第二信号在频域上占用多个子载波;或者,第一信号和/或第二信号是由多个携带能量的子载波构成的信号。
在可能的实现方式中,第一信号和第二信号的天线端口相同。
在可能的实现方式中,第一信号和第二信号的循环前缀长度相同。
在可能的实现方式中,第一信号和第二信号的子载波间隔相同。
在可能的实现方式中,第一信号和/或第二信号的波形为使用CP的OFDM。
在可能的实现方式中,第一信号和/或第二信号的波形为使用CP的OFDM,且执行DFT扩展。
关于第二方面以及第二方面的各个可能的实现方式所带来的技术效果,可以参考对第一方面以及第一方面的各个可能的实现方式的技术效果的介绍。
第三方面,本申请实施例提供一种信号发送方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备是第一设备为例进行描述。示例性地,所述第一通信装置为第一设备,或者为设置在第一设备中的芯片,或者为用于实现第一设备的功能的其他部件。该方法包括:
第一设备确定第一信号和第二信号,向第二设备在第一频域单元上发送第一信号,在 第二频域单元上发送第二信号,第一信号和第二信号位于同一个工作频带。第一频域单元包括第一频率,第二频域单元包括第二频率。其中,第一频率和第二频率之间的差值的绝对值为预设值。或者,第一设备还向第二设备发送第一频率和第二频率之间的差值的绝对值。
在可能的实现方式中,第一设备向第二设备发送第一频率和第二频率之间的差值的绝对值,包括:第一设备向第二设备发送指示信息,该指示信息指示第一频率和第二频率之间的差值的绝对值。
在可能的实现方式中,第一频率和第二频率之间的差值的绝对值为预设值,该预设值与如下的一项或多项相关:所述工作频带、第一信号的子载波间隔,或第二信号的子载波间隔。
在可能的实现方式中,第一信号和第二信号是在第二设备的信道带宽对应的频率范围内发送的。第一频率和第二频率之间的差值的绝对值大于或等于l/2第二设备的信道带宽。
在可能的实现方式中,第一频率和第二频率之间的差值的绝对值大于或等于第三带宽与第四带宽之和。第四带宽为第一带宽和第二带宽之和的2倍。其中,第三带宽为第三频域单元在频域占用的带宽,该第三频域单元用于第一设备向第三设备发送第三信号,第三信号在频域上位于第一频率和第二频率之间。
在可能的实现方式中,第一信号和第二信号中至多有一个用于为第二设备的上行传输提供载波。
在可能的实现方式中,第一信号的功率和第二信号的功率相同。
在可能的实现方式中,第一信号的功率和第二信号的功率相同,第一信号和第二信号均不用于为第二设备的上行传输提供载波。
在可能的实现方式中,第一信号和第二信号中至少一个信号位于一个第一载波的保护带内,和/或,第一频率和第二频率之间的差值的绝对值大于或等于一个第一载波的传输带宽。第一载波为新无线NR载波或LTE载波。
在可能的实现方式中,第一信号和第二信号均位于第二载波的传输带宽,第一频率单元的最小值与所述传输带宽的最低频率之间的差值小于第一取值,第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于第二取值。
在可能的实现方式中,所述方法还包括:第一设备向第二设备发送第二指示信息,该第二指示信息指示第二设备以第一接收方式或第二接收方式接收信号。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率,以及根据第一频率和第二频率之间的差值的绝对值接收信号。
第四方面,本申请实施例提供一种信号接收方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备是第二设备为例进行描述。示例性地,所述第二通信装置为第一设备,或者为设置在第二设备中的芯片,或者为用于实现第二设备的功能的其他部件。该方法包括:
第二设备通过包络检波的方式接收第一信号和第二信号,其中,第一信号和第二信号位于一个工作频带内;第二设备获取目标信号,其中,承载目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。第一频率和所述第二频率之间的差值的绝对值为预设值,或者,第一频率和所述第二频率之间的差值的绝对值是 从第一设备获得的。
在可能的实现方式中,所述方法还包括:第二设备接收第一设备发送的第一指示信息,该第一指示信息指示所述绝对值。
在可能的实现方式中,承载目标信号的频率还包括直流载波所在的频率。
在可能的实现方式中,在第二设备获取目标信号之前,所述方法还包括:第二设备确定用于获取目标信号的接收方式,所述接收方式包括第一接收方式或第二接收方式。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率以及根据第一频率和第二频率之间的差值的绝对值接收信号。
在可能的实现方式中,第二设备确定第一接收方式或第二接收方式,包括:第二设备接收第一设备发送的第二指示信息,该第二指示信息指示第一接收方式或第二接收方式。
在可能的实现方式中,第一频率和所述第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽。第一带宽为第一频域单元在频域占用的带宽,第一频域单元包括第一频率。第二带宽为第二频域在频域占用的带宽,第二频域单元包括第二频率。第三带宽为第三频域单元在频域占用的带宽,第三频域单元用于第一设备向第三设备发送第三信号,第三信号位于工作频带内。
在可能的实现方式中,第一信号和第二信号是在第二设备的信道带宽对应的频率范围内发送的。第一频率和第二频率之间的差值的绝对值大于或等于l/2第二设备的信道带宽。
在可能的实现方式中,第一频率和第二频率之间的差值的绝对值大于或等于第三带宽与第四带宽之和。第四带宽为第一带宽和第二带宽之和的2倍。其中,第三信号在频域上位于第一频率和第二频率之间。
在可能的实现方式中,第一频率和第二频率之间的差值的绝对值为预设值。该预设值与如下的一项或多项相关:所述工作频带、第一信号的子载波间隔,或第二信号的子载波间隔相关。
在可能的实现方式中,所述方法还包括:第二设备接收第一设备发送的第一指示信息,该第一指示信息指示所述绝对值。
在可能的实现方式中,第一信号和第二信号中至多有一个用于为第二设备的上行传输提供载波。
在可能的实现方式中,第一信号的功率和第二信号的功率相同。
在可能的实现方式中,第一信号的功率和第二信号的功率相同,第一信号和第二信号均不用于为第二设备的上行传输提供载波。
在可能的实现方式中,第一信号和第二信号中至少一个信号位于一个第一载波的保护带内,和/或,第一频率和第二频率之间的差值的绝对值大于或等于一个第一载波的传输带宽。第一载波为新无线NR载波或LTE载波。
在可能的实现方式中,第一信号和第二信号均位于第二载波的传输带宽,第一频率单元的最小值与所述传输带宽的最低频率之间的差值小于第一取值,第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于第二取值。
第五方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第一方面的方法实施例中行为的功能,有益效果可以参见第一方面的描述,此处不再赘述。该通信装置可以是第一方面中的第一设备,或者,该通信装置可以是能够实现第一方面提供的方法的装置,例如芯片或芯片系统。
在一个可能的设计中,该通信装置包括用于执行第一方面方法的相应手段(means)或模块。例如,所述通信装置包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。这些单元(模块)可以执行第一方面方法示例中的相应功能。
例如,处理模块可用于确定第一信号和第二信号。收发模块可用于向第二设备在第一频域单元发送第一信号,在第二频域单元发送第二信号。第一频域单元包括第一频率,第二频率单元包括第二频率。第一频率和第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽。其中,第一带宽为第一频域单元在频域上占用的带宽。第二带宽为第二频域单元在频域上占用的带宽。第三带宽为第三频域单元在频域上占用的带宽。该第三频域单元用于第一设备向第三设备发送第三信号。第一信号和第二信号以及第三信号位于一个工作频带内。具体参见方法示例中的详细描述,此处不作赘述。
第六方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第二方面的方法实施例中行为的功能,有益效果可以参见第二方面的描述,此处不再赘述。该通信装置可以是第二方面中的第二设备,或者该通信装置可以是能够实现第二方面提供的方法的装置,例如芯片或芯片系统。
在一个可能的设计中,该通信装置包括用于执行第二方面方法的相应手段(means)或模块。例如,所述通信装置包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。这些单元(模块)可以执行第二方面方法示例中的相应功能。
例如,收发模块通过包络检波的方式接收第一信号和第二信号,该第一信号和第二信号位于一个工作频带内。处理模块用于获取目标信号,其中,承载目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。具体参见方法示例中的详细描述,此处不做赘述。
第七方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第三方面的方法实施例中行为的功能,有益效果可以参见第三方面的描述,此处不再赘述。该通信装置可以是第三方面中的第一设备,或者,该通信装置可以是能够实现第三方面提供的方法的装置,例如芯片或芯片系统。
在一个可能的设计中,该通信装置包括用于执行第三方面方法的相应手段(means)或模块。例如,所述通信装置包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。这些单元(模块)可以执行第三方面方法示例中的相应功能。
例如,处理模块可用于确定第一信号和第二信号。收发模块可用于向第二设备在第一频域单元发送第一信号,在第二频域单元发送第二信号。第一频域单元包括第一频率,第二频率单元包括第二频率。第一频率和第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽。其中,第一带宽为第一频域单元在频域上占用的带宽。第二带宽为第二频域单元在频域上占用的带宽。第三带宽为第三频域单元在频域上占用的带宽。该第三频域单元用于第一设备向第三设备发送第三信号。第一信号和第二信号以及第三信号位于一个工作频带内。具体参见方法示例中的详细描述,此处不作赘述。
第八方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第四方面的方法实施例中行为的功能,有益效果可以参见第四方面的描述,此处不再赘述。该通信装置可以是第四方面中的第二设备,或者该通信装置可以是能够实现第四方面提供的方法的装置,例如芯片或芯片系统。
在一个可能的设计中,该通信装置包括用于执行第四方面方法的相应手段(means)或模块。例如,所述通信装置包括处理单元(有时也称为处理模块或处理器)和/或收发单元(有时也称为收发模块或收发器)。这些单元(模块)可以执行第四方面方法示例中的相应功能。
例如,收发模块通过包络检波的方式接收第一信号和第二信号,该第一信号和第二信号位于一个工作频带内。处理模块用于获取目标信号,其中,承载目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。具体参见方法示例中的详细描述,此处不做赘述。
第九方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第一方面至第四方面中的任意方面中的通信装置,或者为设置在第一方面至第四方面中的任意方面中的通信装置中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述方法实施例中由第一设备或第二设备所执行的方法。
其中,第九方面的通信装置中的通信接口可以是通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在通信装置中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第十方面,本申请实施例提供了一种通信装置,该通信装置包括输入输出接口和逻辑电路。输入输出接口用于输入和/或输出信息。逻辑电路用于执行第一方面至第四方面中的任意方面中所述的方法。
第十一方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器和/或通信接口,用于实现第一方面至第四方面中的任意方面中所述的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存计算机程序。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请实施例提供了一种通信系统,所述通信系统包括第一设备和第二设备,其中,第一设备用于执行上述第一方面中由第一设备所执行的方法,第二设备用于执行上述第二方面中由第二设备所执行的方法。或者,第一设备用于执行上述第三方面中由第一设备所执行的方法,第二设备用于执行上述第四方面中由第二设备所执行的方法。或者,该通信系统还可以包括更多个第一设备和/或更多个第二设备。
第十三方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面至第四方面中的任意方面中的方法。
第十四方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述第一方面至第四方面中的任意方面中的方法被执行。
上述第五方面至第十四方面及其实现方式的有益效果可以参考对第一方面至第四方 面的方法及其实现方式的有益效果的描述。
附图说明
图l为本申请实施例适用的网络架构示意图;
图2为采用包络检波器的接收机的结构示意图;
图3为包络检波器的电路结构示意图;
图4为没有干扰的情况下,包络检波器的输入信号的频谱示意图;
图5为没有干扰的情况下,包络检波器的输出信号的频谱示意图;
图6为没有干扰的情况下,包络检波器之后的基带信号的频谱示意图;
图7为有干扰的情况下,包络检波器的输入信号的频谱示意图;
图8为有干扰的情况下,包络检波器的输出信号的频谱示意图;
图9为有干扰的情况下,包络检波器之后的基带信号的频谱示意图;
图10为本申请实施例提供的有干扰的情况下,包络检波器的输入信号的频谱示意图;
图11为本申请实施例提供的有干扰的情况下,包络检波器的输出信号的频谱示意图;
图12为本申请实施例提供的有干扰的情况下,包络检波器之后的基带信号的频谱示意图;
图13为信道带宽、传输带以及保护带之间的关系示意图;
图14为本申请实施例提供的信号发送以及信号接收的流程示意图;
图15为本申请实施例提供的目标信号和干扰信号所在频率位置的示意图(第一频率和第二频率之间的差值的绝对值等于1/2载波带宽);
图16为本申请实施例提供的目标信号和干扰信号所在频率位置的示意图(第一频率和第二频率之间的差值的绝对值大于1/2载波带宽);
图17为本申请实施例提供的第一信号、第二信号和第三信号的频率相对位置示意图;
图18为本申请实施例提供的第一信号和第二信号在NR载波的一种位置示意图;
图19为本申请实施例提供的第一信号和第二信号在NR载波的另一种位置示意图;
图20为本申请实施例提供的第一信号和第二信号在NR载波的又一种位置示意图;
图2l为本申请实施例提供的第一设备发送信号以及第二设备接收信号的一示意图;
图22为本申请实施例提供的第一设备发送信号以及第二设备接收信号的另一示意图;
图23为本申请实施例提供的通信装置的一种结构示意图;
图24为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
本申请的实施例提供的技术方案可以应用于5G移动通信系统,例如NR系统,或者应用于LTE系统中,或者还可以应用于下一代移动通信系统或其他类似的通信系统。本申请的实施例提供的技术方案也可以应用于物联网(internet of things,IoT)系统,窄带物联网(narrow band internet ofthings,NB-IoT)系统等,例如基于无线保真(wireless fidelity,WiFi)的IoT或可穿戴式WiFi网络。其中,可穿戴式WiFi网络可为将终端设备(例如手机)作为虚拟接入点和所关联的可穿戴设备组成的WiFi网络。其中,物联网设备和可穿戴式WiFi网络设备是由小容量电池供电,并且有超低功耗和长时间续航需求。物联网设备,例 如包括智能水表、智能家居、工业传感器等等。
请参考图l,为本申请实施例适用的通信系统的一示例性的架构图,该通信系统可包括网络设备和6个终端设备,这6个终端设备可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、个人数字助理(personal digital assistant,PDA)和/或用于在无线通信系统上通信的任意其它适合设备,且均可以与网络设备连接。这六个终端设备均能够与网络设备通信。当然图l中的终端设备的数量只是举例,还可以更少或更多。另外,图l中的终端设备也是示意,例如终端设备也可以是智能水表等物联网设备。
本申请实施例中,网络设备是终端设备通过无线方式接入到移动通信系统中的接入设备,例如包括接入网(access network,AN)设备,例如基站。网络设备也可以是指在空口与终端设备通信的设备。网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B)(也简称为eNB或e-NodeB);网络设备也可以包括5G NR系统中的下一代节点B(next generation node B,gNB);或者,网络设备也可以包括无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;或者网络设备可以为中继站、车载设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)设备、D2D网络中的设备、机器到机器(machine to machine,M2M)网络中的设备、物联网(internet of things,IoT)网络中的设备或者PLMN网络中的网络设备等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
另外,本申请实施例中的基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。在该网络架构中,CU产生的信令可以通过DU发送给终端设备,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给UE或CU。在该网络架构中,将CU划分为无线接入网(radio access network,RAN)侧的网络设备,此外,也可以将CU划分作为核心网(core network,CN)侧的网络设备,本申请对此不做限制。
所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以向网络设备发送信号,或接收来自网络设备的信号。终端设备可包括用户设备(user equipment,UE),有时也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、 D2D、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet ofthings,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景的终端设备。例如,所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、VR终端、AR终端、工业控制中的无线终端、无人驾驶中的无线终端、IoT网络中智能音箱、远程医疗中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备,或智慧家庭中的无线终端设备等等。
作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
下面对本申请实施例中的部分用语进行解释说明。
1)信道带宽,UE的信道带宽在UE的上行链路或下行链路中支持单个NR射频载波。从基站的角度来看,不同的UE的信道带宽可以在相同的频谱内被支持,以用于向连接到基站的UE发送信息和/或接收信息。可以支持在基站的信道带宽内向同一UE(载波)传输多个载波或向不同UE传输多个载波。从UE的角度来看,UE可配置有一个或多个带宽部分(bandwidth part,BWP)/载波,每个载波都有自己的UE信道带宽。UE不需要知道基站信道带宽或基站如何将带宽分配给不同的UE。
每个UE载波的UE信道带宽是灵活配置的,但只能完全在基站信道带宽内。示例性的,信道带宽、保护带和最大传输带宽配置的关系,如图13所示。
2)工作频带,是指设备支持的频段,例如900M,1.8G等。一个工作频带可以包括多个载波,一个载波可以包括一个传输带和至少两个保护带。该传输带可以用于设备传输信号。
3)频域单元,是指频域上一段连续的频域资源。例如,一个传输带可以包括多个频域单元。
4)载波信号,可用于反射(backscatter)通信,为接收设备的上行传输提供载波,也可以为接收设备提供能量。相较于载波信号来说,有数据信号。数据信号可认为是承载调制信息的信号。在本申请实施例中,载波信号对应的波形可以是给定频率下的正弦波或余弦波,或者,载波信号对应的波形没有经过幅度和/或相位调制。或者,载波信号对应的波形经过幅度和/或相位调制,但整体的幅度不足以被接收设备认为是数据信号。相对而言,数 据信号对应的波形经过幅度和/或相位调制,整体的幅度足以被接收设备认为数据信号。
5)本申请实施例中的术语“系统”和“网络”可被互换使用。本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如第一设备和第二设备,只是为了区分不同的设备,而并不是限制两个设备的功能、优先级或重要程度等。在本申请实施例中,“如果”和“若”可替换,如无特殊说明,“当…时”与“在…的情况”可替换。
本申请实施例旨在不增加接收机中滤波器的复杂度的基础上,降低信号之间的干扰。为了更好地理解本申请实施例提供的方案,首先介绍关于接收机的一些相关概念。
接收机可以使用幅度调制和包络检测的方式处理所接收的信号,以避免使用功率较大的射频模块,例如高线性度的混频器,从而达到低功耗的目的。接收机中用于完成包络检测的模块可称为包络检波器。请参见图2,为采用包络检波器的接收机的结构示意图。如图2所示,接收机主要包括射频放大器、包络检波器和基带放大器。由于包络检波器是非线性器件且噪声较大,为了正确解调接收的信号,需要在包络检波器之前,通过射频放大器对所接收的信号进行放大。包络检波器输出基带信号之后,可通过基带放大器对该基带信号放大并输出。接收机需要较高的通带选择性,因此需要在射频放大器之前,通过滤波器对所接收的射频信号进行滤波。可以理解的是,滤波器是由电容、电感和电阻组成的滤波电路,主要用于对信号频率进行滤波。滤波器允许符合特定频率的信号通过,同时抑制其他不需要的频率信号,可解决不同频段之间的信号干扰问题。需要说明的是,图2仅是接收机组成的一种示意,本申请实施例对接收机的具体组成不作限制,例如,接收机也可以包括多个包络检波器。
请参见图3,为包络检波器的电路结构示意图。包络检波器主要由电容和电阻组成的振荡电路以及二极管组成。包络检波器为非线性器件,利用二极管的单向导通性进行工作。如图3所示,正向电压信号(如图粗箭头方向)输入二极管,二极管左右两边的电位差高于导通电压时,二极管打开,电流通过电阻R流到地,电充C两端存在电位差,电容工作在充电状态。当反向电压信号(如图细箭头方向)输入二极管,二极管处于断开状态,即二极管未导通,此时电容处于放电状态,电流通过电阻R流到地。
在没有干扰信号的情况下,假设包络检波器的输入信号xsig(t)满足:
xsig(t)=Asig(t)×cos(2πfc,sigt),其中,Asig(t)表示有用信号,fc,sig为用于承载有用信号的载波频率。xsig(t)的频谱示意图,如图4所示。
包络检波器的输出信号ysig(t)满足:
ysig(t)=(xsig(t))2=(Asig(t))2×(1+cos(2π×2fc,sigt))/2;
其中,ysig(t)的频谱示意图,如图5所示。可知,频率为2fc,sig的分量为高频分量。通过一个低通滤波器滤除该高频分量,即可获得基带信号的频谱,如图6所示。从图4-图6中可以看出,当没有干扰信号时,的频谱集中在直 流(direct current,DC)附近。
在有干扰信号的情况下,例如干扰信号输入包络检波器为xinf(t)满足:xinf(t)=Ainf(t)×cos(2πfc,inft),其中,Ainf(t)表示干扰信号,fc,inf为用于承载干扰信号的载波频率。此时,包络检波器的输入信号x(t)满足:x(t)=xsig(t)+xinf(t),其频谱如图7所示。
包络检波器的输出信号y(t)满足:
y(t)=(x(t))2=(xsig(t)+xinf(t))2
将xsig(t)和xinf(t)代入上式,有y(t)满足:
y(t)=(Asig(t))2×(1+cos(2π·2fc,sigt))/2
+(Ainf(t))2×(1+cos(2π×2fc,inft))/2
+Asig(t)Ainf(t)×cos(2π(fc,inf+fc,sig)t)
+Asig(t)Ainf(t)×cos(2π(fc,inf-fc,sig)t)
y(t)中频率为2fc,sig,2fc,inf和fc,inf+fc,sig的分量为高频分量,y(t)的频谱示意图,如图8所示。通过一个低通滤波器滤除后,即可获得基带信号满足:
的频谱如图9所示。可见,中的(Asig(t))2/2和(Ainf(t))2/2都位于DC附近,但是低通滤波器并不能过滤DC附近的干扰信号。
另外,滤波器性能的优劣直接影响通信质量,衡量滤波器性能的指标包括Q值、带宽、阻带抑制度、插入损耗、延迟时间等。其中,Q值和插入损耗是最主要的性能指标。Q值是指滤波器品质因数,表示滤波器分离信号中相邻频率成分的能力。Q值越高,通频带宽度越窄,对于频段选择性越好,滤波效果也越好。插入损耗是指由于滤波器的引入对电路中原有信号带来的损耗,以dB表示,插入损耗数值越大其衰减程度也越大。例如,若插入损耗为3dB,信号功率则会衰减50%。因此,接收机要求Q值较高的滤波器,以达到较好的滤波效果。然而通常,片上滤波器的Q值较低,如果想要片上滤波器的Q值较高,需要外接体表面波(bulk acoustic wave,BAW)或声表面波(surface acoustic wave,SAW),显然接收机集成度较低,无法满足接收机尺寸小的需求。
鉴于此,提供本申请实施例的方案。在本申请实施例中,发送端设备可以在两个频率位置(例如,第一频率和第二频率)上发送2个信号(例如第一信号和第二信号)。例如,发送端设备在第一频率位置上发送第一信号,在第二频率位置上发送第二信号。对于接收端设备来说,其射频滤波器应当使得第一信号和第二信号通过,即该射频滤波器的通带应该包含第一频率和第二频率。可以理解的是,第一频率和第二频率之间的间隔越大,对射频滤波器的Q值要求越低,即无需要求更高Q值的射频滤波器。因此,通过本申请实施例的方法可以不增加射频滤波器的设计和实现的复杂度。另外,第二设备可以通过包络检波的方式接收第一信号和第二信号,经过包络检波之后,包含第一频率和第二频率之间的差值的绝对值对应的中频分量应该是接收端设备需要获得的信号(本文中称为目标信号)。从而,接收端设备可以通过中频滤波器获得目标信号,抑制其他包含干扰的信号。由于中频的频率相比于射频的频率更低,相同Q值需求下,中频滤波器更容易设计和实现。因此,通过本申请实施例的方案,第二设备可以在包络检波之后通过中频滤波器较为容易地区分出目标信号和干扰,且不会增加射频滤波器在设计和实现方面的复杂度。
为了方便理解,以第一设备向第二设备在第一频率上发送第一信号,在第二频率上发 送第二信号为例,说明本申请实施例提供的方案如何实现抑制干扰。
在有干扰信号的情况下,包络检波器的输入x(t)满足:x(t)=xsig1(t)+xsig2(t)+xinf(t)。其中,xinf(t)=Ainf(t)×cos(2πfc,inft),Ainf(t)表示干扰信号,fc,inf为用于承载干扰信号的载波频率。xsig1(t)=Asig1(t)×cos(2πfc,sig1t),Asig1(t)表示第一信号,fc,sig1为用于承载第一信号的载波频率。xsig2(t)=Asig2(t)×cos(2πfc,sig2t),Asig2(t)表示第二信号,fc,sig2为用于承载第二信号的载波频率。x(t)的频谱示意图,如图10所示。图10中的信号1为第一信号,信号2为第二信号。
包络检波器的输出信号y(t)满足:
y(t)=(x(t))2=(xsig1(t)+xsig2(t)+xinf(t))2
将xsig1(t),xsig2(t)和xinf(t)代入上式,可得:
y(t)=(Asig1(t))2×(1+cos(2π×2fc,sig1t))/2
+(Asig2(t))2×(1+cos(2π×2fc,sig2t))/2
+(Ainf(t))2×(1+cos(2π×2fc,inft))/2
+Asig1(t)Ainf(t)×cos(2π(fc,inf+fc,sig1)t)
+Asig1(t)Ainf(t)×cos(2π(fc,inf-fc,sig1)t)
+Asig2(t)Ainf(t)×cos(2π(fc,sig2+fc,inf)t)
+Asig2(t)Ainf(t)×cos(2π(fc,sig2-fc,inf)t)
+Asig1(t)Asig2(t)×cos(2π(fc,sig2+fc,sig1)t)
+Asig1(t)Asig2(t)×cos(2π(fc,sig2-fc,sig1)t)
从上式可以看出,包络检波器的输出信号包括高频分量、中频分量和DC分量。高频分量的频率包括2fc,sig1,2fc,sig2,2fc,inf,fc,inf+fc,sig1,fc,sig2+fc,inf和fc,sig2+fc,sig1。中频分量的频率包括fc,inf-fc,sig1,fc,sig2-fc,inf和fc,sig2-fc,sig1。中频分量中只有频率为fc,sig2-fc,sig1的分量不包含干扰。因此可以通过一个带通滤波器,保证只有频率为fc,sig2-fc,sig1的分量通过,抑制其它频率分量。如图11所示,通过中频带通滤波器可过滤干扰信号,获得目标信号
可以理解的是,Asig1(t)Asig2(t)×cos(2π(fc,sig2-fc,sig1)t)为中频分量,中频处理的复杂度和功耗较大。为了降低处理复杂度和功耗,第二设备可以通过带通滤波器对中频分量进行滤波,再将经过带通滤波器的中频分量进一步作下变频处理,获得基带信号,如图12所示。本申请实施例对下变频的实现方式不作限制。例如,第二设备可以通过包络检波器实现下变频操作,也可以通过一个低频的晶振和混频器实现下变频操作。
以第二设备可以通过包络检波器实现下变频操作为例,例如,包络检波器的输入信号为包络检波器的输出信号z(t)满足:
其中,包络检波器的输出信号中包括频率为2(fc,sig2-fc,sig1)的高频分量,因此,通过一个低通滤波器可滤除该高频分量,即可获得基带信号满足:
从而第二设备可根据恢复出第一信号和/或第二信号携带的信息。
以第二设备通过混频器实现下变频操作为例,混频器的一路输入信号为另一路输入信号来自低频晶振,假设低频晶振产生的信号为c(t),c(t)满足:
c(t)=cos(2π(fc,sig2-fc,sig1)t)
那么混频器的输出信号z(t)满足:
包络检波器的输出信号中包括频率为2(fc,sig2-fc,sig1)的高频分量,因此,通过一个低通滤波器可滤除该高频分量,即可获得基带信号满足:
从而第二设备可根据恢复出第一信号和/或第二信号携带的信息。
在一个示例中,Asig1(t)和Asig2(t)可以都是数据信号,也就是承载有用信息的信号。假设Asig1(t)和Asig2(t)的调制方式为ASK或OOK,在t时刻,Asig1(t)和Asig2(t)承载的信息比特均为“1”,第二设备对进行检测可以获取到信息比特“1”。例如,第二设备从(Asig1(t)Asig2(t))2/2或(Asig1(t)Asig2(t))/2中获取信息比特“1”,即获得有用信息。或者,在t时刻,假设Asig1(t)和Asig2(t)承载的信息比特均为“0”,第二设备对进行检测可以获取到信息比特“0”。例如,第二设备从(Asig1(t)Asig2(t))2/2或(Asig1(t)Asig2(t))/2中获取信息比特“0”,即获得有用信息。
在另一个示例中,如果Asig1(t)和Asig2(t)中一个信号是数据信号,一个是载波信号,例如,Asig1(t)是数据信号,假设Asig1(t)的调制方式为ASK或OOK,Asig2(t)是载波信号,不承载有用信息,Asig2(t)可以为一个恒定值,比如Asig2(t)恒为1,此时,这种情况下,第二设备只需要关注Asig1(t)即可获得有用信息。在t时刻,Asig1(t)承载的信息比特均为“1”,第二设备对进行检测可以获取到信息比特“1”。例如,第二设备从(Asig1(t)Asig2(t))2/2或(Asig1(t)Asig2(t))/2中获取信息比特“1”,即获得有用信息。或者,在t时刻,Asig1(t)承载的信息比特均为“0”,第二设备对进行检测可以获取到信息比特“0”。例如,第二设备从(Asig1(t)Asig2(t))2/2或(Asig1(t)Asig2(t))/2中获取信息比特“0”,即获得有用信息。
下面结合附图详细介绍本申请实施例提供的方案。请参见图14,为本申请实施例提供的信号发送方法以及信号接收方法的流程示意图。下文以发送端是第一设备,接收端是第二设备为例。第一设备可以是终端设备,第二设备可以是接入网设备。
S1401、第一设备向第二设备在第一频域单元发送第一信号,在第二频域单元上发送第二信号。
可以理解的是,对于射频滤波器,对较窄频率范围的信号进行滤波,对射频滤波器的要求较高。在本申请实施例中,第一设备向第二设备发送信号时,可以通过在两个频率位置上发送两个信号降低对射频滤波器的要求。例如,第一设备确定(生成)第一信号和第二信号,可在第一频域单元上的第一频率上发送第一信号,在第二频域单元上的第二频率上发送第二信号。其中,第一频域单元可认为是用于发送第一信号的频域资源,第二频域单元可认为是用于发送第二信号的频域资源。需要说明的是,第一频率可以是第一频域单元的中心频率,对应的,第二频率为第二频域单元的中心频率。或者,第一频率可以是第一频域单元中的最低频率,对应的,第二频率为第二频域单元的最低频率。或者,第一频 率可以是第一频域单元中的最高频率,对应的,第二频率为第二频域单元的最高频率。需要说明的是,第一频率单元可以包括两个子频率单元,即第一子频率单元和第二子频率单元,其中第一子频率单元所在的频率高于第二子频率单元所在的频率。第二频率单元可以包括两个子频率单元,即第三子频率单元和第四子频率单元,其中第三子频率单元所在的频率高于第四子频率单元所在的频率。此时,第一频率可以是第一子频域单元的中心频率,对应的,第二频率为第三子频域单元的中心频率。或者,第一频率可以是第一子频域单元中的最低频率,对应的,第二频率为第三子频域单元的最低频率。或者,第一频率可以是第一子频域单元中的最高频率,对应的,第二频率为第三子频域单元的最高频率。或者,第一频率可以是第二子频域单元的中心频率,对应的,第二频率为第四子频域单元的中心频率。或者,第一频率可以是第二子频域单元中的最低频率,对应的,第二频率为第四子频域单元的最低频率。或者,第一频率可以是第二子频域单元中的最高频率,对应的,第二频率为第四子频域单元的最高频率。
第一设备发送第一信号和第二信号,相应的,第二设备的射频滤波器的通带可包含第一频率和第二频率。可以理解的是,第一频率和第二频率之间的差值越大,对射频滤波器设计和实现的复杂度要求越低。因此,第一设备在第一频率发送第一信号,在第二频率发送第二信号,不会增加第二设备的射频滤波器在设计和实现方面的复杂度。需要说明的是,第一频率和第二频率之间的差值指的是第一频率和第二频率之间的差值的绝对值。举例来说,第一频率大于第二频率,第一频率和第二频率之间的差值为第一频率减去第二频率。如果第一频率小于第二频率,那么第一频率和第二频率之间的差值为第二频率减去第一频率。
另外,考虑到干扰信号的存在,第二设备可以通过包络检波的方式接收第一信号和第二信号,经过包络检波之后,包含第一频率和第二频率之间的差值的绝对值对应的中频分量为第二设备需要获得的目标信号。这种情况下,第二设备可以通过中频带通滤波器可以获取目标信号,抑制其它包含干扰的频率成分。可以理解的是,中频的频率相比于射频的频率更低,相同Q值需求下,中频滤波器更容易设计和实现。因此,第二设备在包络检波之后通过中频滤波器可以较为容易地区分出目标信号和干扰。
在本申请实施例中,第一频率和第二频率之间的差值的绝对值需要满足特定条件,以尽量降低对射频滤波器的要求,同时尽量提高干扰抑制效果。
在可能的实现方式中,第一设备可根据第一频域单元在频域占用的带宽、第二频域单元在频域占用的带宽,或者第一设备向除第二设备之外的其他设备发送信号所使用的频域单元在频域占用的带宽中的一项或多项确定。为方便描述,本文中将第一频域单元在频域占用的带宽称为第一带宽,第二频域单元在频域占用的带宽称为第二带宽,除第二设备之外的其他设备(例如第三设备)发送信号所使用的频域单元(例如称为第三频域单元)在频域占用的带宽称为第三带宽。也可以理解为,第一频率和第二频率之间的差值的绝对值与第一带宽、第二带宽或者第三带宽中的一项或多项相关。可以理解的是,第一信号、第二信号和第三信号位于一个工作频带内。该工作频带为用于第一设备和第二设备之间通信的频带,可以是NR工作频带。需要说明的是,第三设备可以是一个设备,也可以是多个设备。
作为一示例,第一设备在第二设备的信道带宽对应的频率范围内发送第一信号和第二信号,那么第一频率和第二频率之间的差值的绝对值大于或等于1/2第二设备的信道带宽。 可以理解的是,第一频率和第二频率之间的差值的绝对值小于或等于第二设备的信道带宽。第二设备的信道带宽可以是第二设备发送给第一设备的。由于第一频率和第二频率之间的差值的绝对值大于或等于1/2第二设备的信道带宽,那么第二设备包络检波的方式接收第一信号和第二信号所得到的中频分量(即目标信号)所在频率与干扰信号所在频率不同。也就是说,目标信号和干扰信号在频谱上没有交叠,从而通过中频滤波器可以较为容易地过滤干扰信号,对射频滤波器的要求较低。为方便理解,下面以图例示意。
请参见图15,为第一频率和第二频率之间的差值的绝对值等于1/2载波带宽的情况下,目标信号和干扰信号所在频率位置的示意图。需要说明的是,载波带宽(BW)小于或等于第二设备的信道带宽。图15中,f1为第一频率,f2为第二频率,f3为干扰信号所在的频率(称为第三频率)。且图15中,f1以为BW的最高频率,f2为1/2BW,f3为BW的最低频率。如图15所示,当第一设备在f1发送第一信号,在f2发送第二信号,在f3发送干扰信号。那么第二设备通过包络检波方式接收第一信号和第二信号,第二设备可获取f1-f2处的信号,即目标信号。由于第一频率和第二频率之间的差值的绝对值等于1/2BW,因此,目标信号所在的频率在1/2BW,干扰信号所在的频率在1/2BW。即干扰信号和目标信号在频谱上存在交叠,通过滤波器较难过滤掉干扰信号,对射频滤波器的要求较高。
相对而言,请参见图16,为第一频率和第二频率之间的差值的绝对值大于1/2载波带宽的情况下,目标信号和干扰信号所在频率位置的示意图。图16与图15的不同之处在于,f2为1/3BW。第二设备通过包络检波方式接收第一信号和第二信号,第二设备可获取f1-f2处的信号,即目标信号。由于第一频率和第二频率之间的差值的绝对值为2/3BW大于1/2BW,因此,目标信号所在的频率f1-f2为1/3BW,干扰信号的频率为2/3BW。即干扰信号和目标信号在频谱上没有交叠,通过中频滤波器较容易滤掉干扰信号,对射频滤波器的要求较低。
需要说明的是,图15和图16以第一频率和第二频率位于第三频率的一侧为例。本申请实施例对于第一频率和第二频率,与第三频率的相对位置关系不作限定。例如,第一频率和第二频率可以位于第三频率两侧。另外,第一设备可配置载波带宽,例如,第一设备根据第二设备的信道带宽配置载波带宽。从而,第一设备发送第一信号和第二信号之前,可确定第一频率和第二频率。
作为另一示例,第一频率和第二频率之间的差值的绝对值大于或等于第三带宽与第四带宽之和,其中,第四带宽为第一带宽和所述第二带宽之和的2倍,且第三信号在频域上位于第一频率和第二频率之间。即第一频率和第二频率之间的差值的绝对值大于或等于第三带宽+2×(第一带宽+第二带宽)。可以理解的是,当第一频率和第二频率之间的差值的绝对值大于或等于第三带宽+2×(第一带宽+第二带宽),目标信号所在频率和干扰信号所在频率之间的差值较大,较为容易区分干扰信号和目标信号。从而较为容易通过中频滤波器过滤干扰信号,对射频滤波器的要求更低。为方便理解,下面以图例示意。
请参见图17,为第一信号、第二信号和第三信号的频率相对位置示意图。图17以第一频率(f1)是第一频域单元的最低频率,第二频率(f2)是第二频域单元的最低频率为例。从图17可以看出,当第一频率和第二频率之间的差值的绝对值大于或等于第三带宽+2×(第一带宽+第二带宽)时,目标信号和干扰信号在频谱上没有交叠,从而能够区分目标信号和干扰信号。可以理解的是,第一频率和第二频率之间的差值的绝对值越大,目标信号和干扰信号在频谱上的距离越大,也就是图17中,干扰信号的频率边界和目标信号 的频率边界之间的距离越远。这样第二设备越容易通过中频滤波器提取目标信号。
第一设备在发送第一信号和第二信号之前,可确定第一频率和第二频率。例如第一设备确定了第一频率,可根据第一频率和第二频率之间的差值的绝对值,确定第二频率。或者,第一设备确定第二频率,再根据第一频率和第二频率之间的差值的绝对值,确定第一频率。对于第二设备来说,需要知道第一频率和第二频率之间的差值的绝对值,这样第二设备才会知道在哪个频率位置上获取目标信号。
在可能的实现方式中,可预先定义或者预配置第一频率和第二频率之间的差值的绝对值。例如,第一频率和第二频率之间的差值的绝对值为预设值。示例性的,可根据第一信号和第二信号的工作频带,第一信号的子载波间隔,或者第二信号的子载波间隔中的一项或多项确定该预设值。也可以理解为,该预设值与如下的一项或多项相关:第一信号和第二信号的工作频带,第一信号的子载波间隔,或者第二信号的子载波间隔。或者,该预设值与如下的一项或多项:第一信号和第二信号的工作频带,第一信号的子载波间隔,或者第二信号的子载波间隔具有对应关系。由于第一频率和第二频率之间的差值的绝对值为预设值,第一设备和第二设备建立通信连接之后,第一设备使用第一频率和第二频率向第二设备发送第一设备和第二设备之间的第一条信令。即预设第一频率和第二频率之间的差值的绝对值,可适用于无需第一设备告知第二设备第一频率和第二频率之间的差值的绝对值的场景。当然,第一频率和第二频率之间的差值的绝对值为预设值也可以用于第一设备向第二设备发送第一设备和第二设备之间除第一条信令以外的其他信令。
当第一频率和第二频率之间的差值的绝对值为预设值,第一设备可根据该预设值在第一频率发送第一信号,在第二频率发送第二信号。相应的,第二设备也可以根据该预设值获取第一频率和第二频率之间的差值的绝对值对应的频率位置处的信号。
在另一种可能的实现方式中,第一频率和第二频率之间的差值的绝对值可以是第一设备通知给第二设备的。
S1402、第一设备向第二设备发送第一指示信息,相应的,第二设备接收第一设备发送的第一指示信息,该第一指示信息指示第一频率和第二频率之间差值的绝对值。
第一设备通过第一指示信息可以动态地指示第一频率和第二频率之间差值的绝对值,更为灵活。例如,第一设备在确定第一频率和第二频率之间差值的绝对值时,可参考第二设备的最大传输带宽能力,从而对于不同的接收设备来说,第一设备可适应性调整第一频率和第二频率之间差值的绝对值,以尽量降低对各个接收设备的射频滤波器的要求。对于第二设备来说,根据第一指示信息指示的绝对值获取第一频率和第二频率之间的差值的绝对值对应的频率位置处的信号。
本申请实施例对第一指示信息指示第一频率和第二频率之间差值的绝对值的具体实现形式不作限制。示例性的,第一指示信息可直接指示第一频率和第二频率之间的差值的绝对值,简单直接。例如,第一指示信息可包括第一频率和第二频率之间差值的绝对值。
示例性的,第一指示信息可间接指示第一频率和第二频率之间差值的绝对值。例如,第一指示信息可包括第一频率和第二频率之间差值。第二设备根据第一频率和第二频率之间差值可确定第一频率和第二频率之间差值的绝对值。又例如,第一指示信息可包括第一频率和第二频率。第二设备根据第一频率和第二频率之间差值可确定第一频率和第二频率之间差值的绝对值。再例如,第一指示信息可包括用于确定第一频率和第二频率之间差值的绝对值的一些参数,第二设备可根据这些参数确定第一频率和第二频率之间差值的绝对 值。这些参数,例如包括第一信号和第二信号的工作频带,第一信号的子载波间隔,或者第二信号的子载波间隔中的一种或多种。举例来说,第一指示信息包括第一信号和第二信号的工作频带,间接指示第一频率和第二频率之间差值的绝对值。第二设备根据工作频带和第一频率和第二频率之间差值的绝对值的对应关系,以及第一信号和第二信号的工作频带,可确定第一频率和第二频率之间差值的绝对值。又例如,第一指示信息包括第一信号的子载波间隔,第二设备根据子载波间隔和第一频率和第二频率之间差值的绝对值的对应关系,以及第一信号的子载波间隔,可确定第一频率和第二频率之间差值的绝对值。
需要说明的是,由于第一频率和第二频率之间差值的绝对值可以是预设值,因此S1402不是必须执行的步骤,即可选的步骤,在图14中以虚线进行示意。另外,本申请实施例对S1401和S1402的执行顺序不作限制,即S1402可以在S1401之前执行,也可以在S1401之后执行,或者与S1401同时执行。
在可能的实现方式中,第一信号和第二信号中至多有一个用于为第二设备的上行传输提供载波。也就是,第一信号和第二信号中至多有一个是载波信号。例如,第一信号为数据信号,第二信号为载波信号;或者,第一信号为载波信号,第二信号为数据信号;或者,第一信号和第二信号均为数据信号。可以理解的是,相较于载波信号来说,数据信号携带调制信息。当第一信号和第二信号中一个信号为数据信号,另一个信号为载波信号,可以降低第一设备的资源开销。第一信号和第二信号都是数据信号,可以提高数据传输的可靠性。
在可能的实现方式中,第一信号的功率和第二信号的功率相同。或者,第一信号的功率和第二信号的功率也可以不相同。
示例性的,在第一信号的功率和第二信号的功率相同的情况下,第一信号和第二信号可以均不是载波信号,即第一信号和第二信号都是数据信号。在第一信号的功率大于第二信号的功率的情况下,第一信号为数据信号,第二信号可为载波信号,从而节约资源开销。也可以理解为,第一设备确定第一信号和第二信号的功率相同,第一设备可确定第一信号和第二信号都是数据信号。或者,第一设备确定第一信号的功率大于第二信号的功率,第一设备可确定第一信号是数据信号,第二信号是载波信号。可以理解的是,载波信号不承载有用信息,可以采用较低功率发送,从而节约设备的能耗。因此,在一些示例中,第一信号是数据信号,第二信号是载波信号,第一信号的发射功率大于第二信号的发射功率。也可以理解为,第一设备确定第一信号是数据信号,第二信号是载波信号,第一设备确定第一信号的发射功率大于第二信号的发射功率,尽量保证数据传输的可靠性。当然,第一信号和第二信号都是数据信号,那么第一信号的发射功率和第二信号的发射功率可相同。也可以理解为,第一设备确定第一信号和第二设备都是数据信号,第一设备确定第一信号的发射功率和第二信号的发射功率相同。
在可能的实现方式中,载波信号可以是单载波信号。例如,第一信号为载波信号,那么第一信号为单载波信号。又例如,第二信号为载波信号,那么第一信号为单载波信号。或者,第一信号或第二信号在频域上占用一个子载波。或者,第一信号或第二信号是由一个携带能量的子载波构成的信号。
在可能的实现方式中,第一信号和/或第二信号为多载波信号。或者,第一信号和/或第二信号在频域上占用多个子载波。第一信号和/或第二信号是由多个携带能量的子载波构成的信号。
考虑到第一设备和第二设备之间通信所使用的频域资源可能是NR载波,也可能是LTE载波。为了降低对NR载波的工作频带的影响,第一信号所在频率位置和第二信号所在频率位置应满足特定条件。也可以认为,第一频域单元和第二频域单元应满足特定条件,包括如下两种情况。
第一种情况,第一信号和第二信号中至少一个信号位于一个NR载波或LTE载波的保护带内。和/或,第一频率和第二频率之间的差值的绝对值大于或等于一个NR载波或LTE载波的传输带宽。为方便理解,下面以图例示意。
请参见图18,为第一信号和第二信号在NR载波的位置示意图。图18以第一频域单元位于NR载波的保护带内,第二频域单元位于NR载波的传输带内为例。也就是,以第一信号位于NR载波的保护带内,第二信号位于NR载波的传输带。例如,当第一信号为载波信号时,第一信号可位于NR载波的保护带内。或者,如果第一信号位于NR载波的保护带内,可认为第一信号是载波信号。由于第一信号位于NR载波的保护带内,所以第一信号的传输不会影响NR载波的传输带内的传输。
请参见图19,为第一信号和第二信号在NR载波的位置示意图。图19以第一频域单元位于NR载波的一个保护带内,第二频域单元位于NR载波的另一个保护带内为例。也就是,以第一信号位于NR载波的保护带内,第二信号位于NR载波的另一个保护带。由于第一信号和第二信号都位于NR载波的保护带内,所以第一信号和第二信号的传输不会影响NR载波的传输带内的传输。
第二种情况,第一信号和第二信号均位于NR载波的传输带宽,其中,第一频域单元的最小值与所述传输带宽的最低频率之间的差值小于或等于第一取值,第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于或等于第二取值。第一取值可为0,第二取值也为0。例如,第一频域单元的最小值与所述传输带宽的最低频率之间的差值可为0,第二频域单元的最大值与所述传输带宽的最高频率之间的差值可为0。当第一信号和第二信号位于NR载波的传输带宽内,第一频域单元和第二频域单元可以分别位于NR载波的传输带宽的两端,以尽量保证第一信号和第二信号的抗干扰性能。为方便理解,下面以图例示意。
请参见图20,为第一信号和第二信号在NR载波的位置示意图。图20以第一频域单元位于NR载波的传输带的一端,第二频域单元位于NR载波的传输带的另一端为例。由于第一信号和第二信号分别位于NR载波的两端,且第一信号和第二信号的频率位置靠近NR载波的保护带,所以可以尽量保证第一信号和第二信号的抗干扰性能。
本申请实施例对第一信号和第二信号的调制方式不作限制。第一信号和/或第二信号的调制方式为开关键控、多载波开关键控、双边带幅移键控、单边带幅移键控、相位反转幅移键控、多幅移键控、频移键控、高斯频移键控、多频移键控、二进制相移键控、四相相移键控、脉冲幅度调制、脉冲宽度调制、脉冲位置调制、脉冲密度调制,或脉冲编码调制。其中,第一信号和第二信号的调制方式可以相同,也可以不相同。
在可能的实现方式中,第一信号和第二信号的天线端口相同。第一信号和第二信号的循环前缀长度相同。第一信号和第二信号的子载波间隔相同。第一信号和/或第二信号的波形为使用CP的OFDM。第一信号和/或第二信号的波形为使用CP的OFDM,且执行DFT扩展。
可以理解的是,第一设备可以在第一频率发送第一信号,在第二频率发送第二信号, 这样第二设备通过包络检波方式接收第一信号和第二信号,能够区分直流载波处的信号和干扰信号。然而,干扰是动态变化的,如果在没有干扰的情况下,第一设备仍然在第一频率发送第一信号,在第二频率发送第二信号,显然会增加资源开销。因此,本申请实施例中,在无干扰的情况下,第一设备也可以在一个频率位置发送一个信号,从而节省资源开销。但是对于第二设备,并不知道第一设备发送两个信号,还是发送一个信号。如果第一设备发送两个信号,第二设备按照第一设备发送一个信号的情况接收信号,无法保证第二设备的接收性能。同样,如果第一设备发送一个信号,第二设备按照第一设备发送两个信号的情况接收信号,也无法保证第二设备的接收性能。
因此,第一设备可以向第二设备指示接收信号的方式,从而使得第一设备和第二设备对接收信号的方式理解一致,保证第二设备的接收性能。
S1403、第一设备向第二设备发送第二指示信息,相应的,第二设备接收第一设备发送的第二指示信息。
该第二指示信息可指示第二设备接收信号的方式。在本申请实施例中,第二设备接收信号的方式包括第一接收方式和第二接收方式。相应的,第二指示信息可指示第二设备以第一接收方式或第二接收方式接收信号。
第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率,以及根据第一频率和第二频率之间的差值的绝对值接收信号。可以理解的是,第一设备发送了第一信号和第二信号,对于第二设备来说,如果存在干扰信号,那么第二设备可在第一频率减去第二频率所得的频率位置处接收信号。如果不存在干扰信号,那么第二设备除了在第一频率减去第二频率所得的频率位置处接收信号,还可以接收直流载波附近的低频信号,因此,第一设备可告知第二设备接收信号的方式,以尽量保证第二设备的接收性能。
本申请实施例对第二指示信息的具体实现形式不作限制。示例性的,第二指示信息可直接指示第一接收方式或第二接收方式。例如,第二指示信息为1bit信息,该1bit的取值为“0”指示第一接收方式,相应的,该1bit的取值为“1”指示第二接收方式。或者,该1bit的取值为“1”指示第一接收方式,相应的,该1bit的取值为“0”指示第二接收方式。
示例性的,第二指示信息可间接指示第一接收方式或第二接收方式。例如,第二指示信息可指示信号的部署模式,该部署模式包括传输带部署或保护带部署。传输带部署指信号在传输带上的频率发送,保护带部署指信号在保护带上的频率发送。如果信号的部署模式是保护带部署,可默认第一设备发送两个信号,间接指示第二接收方式。如果信号的部署模式是传输带部署,可默认第一设备发送一个信号,间接指示第一接收方式。又例如,第二指示信息可指示频率差值,如果该频率差值满足前述第一频率和第二频率之间的差值的绝对值需要满足的特定条件。那么第二指示信息间接指示第二接收方式。如果该频率差值不满足前述第一频率和第二频率之间的差值的绝对值需要满足的特定条件,那么第二指示信息间接指示第一接收方式。
为方便理解,下面结合附图示意第一接收方式和第二接收方式。在如下的图21和图22中以第二设备中的包络检波器输出的信号包括直流载波分量和中频分量为例,高频分量没有示意。具体可参考前述包络检波原理的相关内容,此处不再赘述。
请参见图21,为第一设备发送信号以及第二设备接收信号的一示意图。图21以在有干扰情况下,第一设备在f1发送第一信号,在f2发送第二信号;在无干扰情况下,第一 设备在f1发送第一信号为例。第二设备以包络检波的方式接收第一信号和第二信号,可获取在第一频率和第二频率的频率差位置处的信号,即目标信号。也可以理解为,承载目标信号的频率为第一频率和第二频率之间的差值的绝对值。无干扰的情况下,第二设备所接收的信号在直流载波附近。从图21中可以看出,当有干扰的情况下,干扰信号在直流载波附近,因此,可以通过带通滤波器抑制干扰信号。在无干扰的情况下,可以通过低通滤波器进行滤波。
请参见图22,为第一设备发送信号以及第二设备接收信号的另一示意图。图22以在有干扰情况下,第一设备在f1发送第一信号,在f2发送第二信号;在无干扰情况下,第一设备在f1发送第一信号,在f2发送第二信号为例。与图21类似,第二设备以包络检波的方式接收第一信号和第二信号,可获取在第一频率和第二频率的频率差位置处的信号,即目标信号。无干扰的情况下,第二设备所接收的信号除了直流载波附近的信号,还包括第一频率和第二频率的频率差位置处的信号。从图22中可以看出,当有干扰的情况下,干扰信号在直流载波附近,因此,可以通过带通滤波器抑制干扰信号。在无干扰的情况下,直流载波处的信号,以及Δf处的信号都承载了有用信息,因此第二设备可接收直流载波处的信号,以及Δf处的信号,再通过低通滤波器进行滤波,可以保证第一信号和第二信号的接收性能。
S1404、第二设备通过包络检波方式接收第一信号和第二信号。
关于第二设备如何以包络检波方式接收信号可参考前述包络检波器的原理介绍,此处不再赘述。
S1405、第二设备从接收的信号中获取目标信号。
第二设备可根据第二指示信息接收哪些频率位置处的信号,也可以认为,第二设备可根据第二指示信息确定滤波器的参数以过滤包络检波器输出的信号,获得目标信号。
针对有干扰的情况,前述介绍本申请实施例如何能够更好地抑制干扰时,已经介绍了包络检波器之后的滤波器方案,此处不再赘述。下面针对无干扰的情况,对第二设备如何接收第一信号和第二信号,并获取目标信号进行介绍。
假设无干扰情况下,包络检波器的输入信号x(t)满足:
x(t)=xsig1(t)+xsig2(t)
其中,xsig2(t)=Asig1(t)×cos(2πfc,sig1t),xsig2(t)=Asig2(t)×cos(2πfc,sig2t)
包络检波器的输出信号y(t)满足:
y(t)=(x(t))2=(xsig1(t)+xsig2(t))2
将xsig1(t)和xsig2(t)代入上式,可得:
y(t)=(Asig1(t))2×(1+cos(2π×2fc,sig1t))/2
+(Asig2(t))2×(1+cos(2π×2fc,sig2t))/2
+Asig1(t)Asig2(t)×cos(2π(fc,sig2+fc,sig1)t)
+Asig1(t)Asig2(t)×cos(2π(fc,sig2-fc,sig1)t)
其中Asig1(t)和Asig2(t)分别表示第一信号和第二信号,fc,sig1和fc,sig2分别为用于第一 信号和第二信号的载波频率。包络检波器的输出y(t)中包括频率为2fc,sig1,2fc,sig2和fc,sig2+fc,sig1的高频分量。y(t)通过低通滤波器滤除后,即可获得目标信号满足:
可以理解的是,Asig1(t)Asig2(t)×cos(2π(fc,sig2-fc,sig1)t)为中频分量,为了降低处理复杂度和功耗,第二设备可以通过带通滤波器对中频分量进行滤波,再将经过带通滤波器的中频分量进一步作下变频处理,获得基带信号。本申请实施例对下变频的实现方式不作限制。例如,第二设备可以通过包络检波器实现下变频操作,也可以通过一个低频的晶振和混频器实现下变频操作。关于第二设备下变频操作之后,如何恢复Asig1(t)和/或Asig2(t)携带的信息可参考前述通过包络检波器实现下变频操作的情况下,恢复Asig1(t)和/或Asig2(t)携带的信息的相关内容,或者,参考前述通过一个低频的晶振和混频器实现下变频操作,的情况下,恢复Asig1(t)和/或Asig2(t)携带的信息的相关内容,此处不再赘述。
通过本申请实施例提供的方案,即发送端设备可以在两个频率位置上发送两个信号,接收端设备以包络检波的方式接收这两个信号,不会增加射频滤波器在设计和实现方面的复杂度。另外,第二设备中的包络检波器输出的中频分量可认为是第二设备需要获得的信号。有干扰的情况下,干扰存在于高频分量,中频分量并不包括干扰,因此,通过中频滤波器使得只有中频分量通过,从而可以区分直流载波处的信号和干扰信号。由于中频的频率相比于射频的频率更低,相同Q值需求下,中频滤波器更容易设计和实现。因此,通过本申请实施例的方案,不仅在包络检波之后通过中频滤波器较为容易地区分出目标信号和干扰,还不会增加射频滤波器在设计和实现方面的复杂度。
所述本申请提供的实施例中,分别从终端设备、接入网设备,或者核心网设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备、接入网设备和核心网设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例还提供通信装置。下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。
图23为本申请实施例提供的通信装置2300的示意性框图。该通信装置2300可以包括处理模块2310和收发模块2320。可选地,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块2310和收发模块2320可以与该存储单元耦合,例如,处理模块2310可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个模块可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置2300能够对应实现上述方法实施例中第一设备的行为和功能,通信装置2300可以为第一设备,也可以为应用于第一设备中的部件(例如芯片或者电路),也可以是第一设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。例如,通信装置2300可以执行图14中的S1401、S1402、S1403等步骤。
示例性的,处理模块2310用于确定第一信号和第二信号。收发模块2320用于向第二设备在第一频域单元发送第一信号,在第二频域单元发送第二信号。其中,第一频域单元 包括第一频率,第二频域单元包括第二频率。第一频率和第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽。第一带宽为第一频域单元在频域占用的带宽,第二带宽为第二频域单元在频域占用的带宽。第三带宽为第三频域单元在频域占用的带宽,第三频域单元用于第一设备向第三设备发送第三信号。第一信号、第二信号和第三信号位于一个工作频带内。
作为一种可选的实现方式,收发模块2320还用于向第二设备发送第一指示信息,该第一指示信息指示第一频率和第二频率之间的差值的绝对值。
作为一种可选的实现方式,收发模块2320还用于向第二设备发送第二指示信息,该第二指示信息指示第二设备以第一接收方式或第二接收方式接收信号。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率,以及根据第一频率和第二频率之间的差值的绝对值接收信号。
具体可参考前述图14-图22任意实施例的相关内容,此处不再赘述。
示例性的,处理模块2310用于确定第一信号和第二信号。收发模块2320用于向第二设备在第一频域单元发送第一信号,在第二频域单元发送第二信号。其中,第一信号和第二信号位于一个工作频带内。第一频域单元包括第一频率,第二频域单元包括第二频率。第一频率和第二频率之间的差值的绝对值为预设值。或者,收发模块2320还用于还向第二设备发送第一频率和第二频率之间的差值的绝对值。
作为一种可选的实现方式,收发模块2320还用于向第二设备发送第二指示信息,该第二指示信息指示第二设备以第一接收方式或第二接收方式接收信号。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率,以及根据第一频率和第二频率之间的差值的绝对值接收信号。
具体可参考前述图14-图22任意实施例的相关内容,此处不再赘述。
在另一些可能的实施方式中,通信装置2300能够对应实现上述方法实施例中第二设备的行为和功能,通信装置2300可以为第二设备,也可以为应用于第二设备中的部件(例如芯片或者电路),也可以是第二设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。例如,通信装置2300可以执行图14中的S1401、S1402、S1403、S1404、S1405等步骤。
示例性的,收发模块2320用于通过包络检波方式接收第一信号和第二信号。处理模块2310用于获取目标信号,其中,承载目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。又例如,收发模块2320用于通过包络检波方式接收第一信号和第二信号。处理模块2310用于获取目标信号,其中,承载目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。第一频率和第二频率之间的差值的绝对值为预设值,或者,第一频率和所述第二频率之间的差值的绝对值是从第一设备获得的。
作为一种可选的实现方式,处理模块2310还用于确定用于获取目标信号的接收方式。该接收方式包括第一接收方式或第二接收方式。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率以及根据第一频率和第二频率之间的差值的绝对值接收信号。
作为一种可选的实现方式,收发模块2320还用于接收第一设备发送的第二指示信息,该第二指示信息指示第一接收方式或第二接收方式。
具体可参考前述图14-图22任意实施例的相关内容,此处不再赘述。
应理解,本申请实施例中的处理模块2310可以由处理器或处理器相关电路组件实现,收发模块2320可以由收发器或收发器相关电路组件或者通信接口实现。
图24为本申请实施例提供的通信装置2400的示意性框图。其中,通信装置2400可以是第一设备,能够实现本申请实施例提供的方法中第一的功能。通信装置2400也可以是能够支持第一设备实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置2400可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。通信装置2400也可以是第二设备,能够实现本申请实施例提供的方法中第二设备的功能。通信装置2400也可以是能够支持第二设备实现本申请实施例提供的方法中对应的功能的装置,其中,该通信装置2400可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。具体的功能可以参见上述方法实施例中的说明。
通信装置2400包括一个或多个处理器2401,可用于实现或用于支持通信装置2400实现本申请实施例提供的方法中第一设备的功能。具体参见方法示例中的详细描述,此处不做赘述。一个或多个处理器2401也可以用于实现或用于支持通信装置2400实现本申请实施例提供的方法中第二设备的功能。具体参见方法示例中的详细描述,此处不做赘述。处理器2401也可以称为处理单元或处理模块,可以实现一定的控制功能。处理器2401可以是通用处理器或者专用处理器等。例如,包括:中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。所述中央处理器可以用于对通信装置2400进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选地,通信装置2400中包括一个或多个存储器2402,用以存储指令2404,所述指令可在所述处理器2401上被运行,使得通信装置2400执行上述方法实施例中描述的方法。存储器2402和处理器2401可以单独设置,也可以集成在一起,也可以认为存储器2402和处理器2401耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2401可能和存储器2402协同操作。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器2402不是必须的,所以在图24中以虚线进行示意。
可选地,所述存储器2402中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。在本申请实施例中,存储器2402可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
可选地,通信装置2400可以包括指令2403(有时也可以称为代码或程序),所述指令2403可以在所述处理器上被运行,使得所述通信装置2400执行上述实施例中描述的方法。处理器2401中可以存储数据。
可选地,通信装置2400还可以包括收发器2405以及天线2406。所述收发器2405可 以称为收发单元,收发模块、收发机、收发电路、收发器,输入输出接口等,用于通过天线2406实现通信装置2400的收发功能。
本申请中描述的处理器2401和收发器2405可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、ASIC、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备,以及网络设备的说明,在此不再赘述。
在可能的实现方式中,通信装置2400能够对应实现上述方法实施例中第一设备的行为和功能,通信装置2400可以为第一设备,也可以为应用于第一设备中的部件(例如芯片或者电路),也可以是第一设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。例如,通信装置2400可以执行图14中的S1401、S1402、S1403等步骤。
示例性的,处理器2401用于确定第一信号和第二信号。收发器2405用于向第二设备在第一频域单元发送第一信号,在第二频域单元发送第二信号。其中,第一频域单元包括第一频率,第二频域单元包括第二频率。第一频率和第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽。第一带宽为第一频域单元在频域占用的带宽,第二带宽为第二频域单元在频域占用的带宽。第三带宽为第三频域单元在频域占用的带宽,第三频域单元用于第一设备向第三设备发送第三信号。第一信号、第二信号和第三信号位于一个工作频带内。
作为一种可选的实现方式,收发器2405还用于向第二设备发送第一指示信息,该第一指示信息指示第一频率和第二频率之间的差值的绝对值。
作为一种可选的实现方式,收发器2405还用于向第二设备发送第二指示信息,该第二指示信息指示第二设备以第一接收方式或第二接收方式接收信号。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率,以及根据第一频率和第二频率之间的差值的绝对值接收信号。
具体可参考前述图14-图22任意实施例的相关内容,此处不再赘述。
示例性的,处理器2401用于确定第一信号和第二信号。收发器2405用于向第二设备在第一频域单元发送第一信号,在第二频域单元发送第二信号。其中,第一信号和第二信号位于一个工作频带内。第一频域单元包括第一频率,第二频域单元包括第二频率。第一频率和第二频率之间的差值的绝对值为预设值。或者,收发器2405还用于还向第二设备发送第一频率和第二频率之间的差值的绝对值。
作为一种可选的实现方式,收发器2405还用于向第二设备发送第二指示信息,该第二指示信息指示第二设备以第一接收方式或第二接收方式接收信号。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率,以及根据第一频率和第二频率之间的差值的绝对值接收信号。
具体可参考前述图14-图22任意实施例的相关内容,此处不再赘述。
在另一些可能的实施方式中,通信装置2400能够对应实现上述方法实施例中第二设备的行为和功能,通信装置2400可以为第二设备,也可以为应用于第二设备中的部件(例如芯片或者电路),也可以是第二设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。例如,通信装置2400可以执行图14中的S1401、S1402、S1403、S1404、S1405 等步骤。
示例性的,收发器2405用于通过包络检波方式接收第一信号和第二信号。处理模块2310用于获取目标信号,其中,承载目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。又例如,收发器2405用于通过包络检波方式接收第一信号和第二信号。处理器2401用于获取目标信号,其中,承载目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。第一频率和第二频率之间的差值的绝对值为预设值,或者,第一频率和所述第二频率之间的差值的绝对值是从第一设备获得的。
作为一种可选的实现方式,处理器2401还用于确定用于获取目标信号的接收方式。该接收方式包括第一接收方式或第二接收方式。第一接收方式指示根据第一频率和第二频率之间的差值的绝对值接收信号。第二接收方式指示根据直流载波所在频率以及根据第一频率和第二频率之间的差值的绝对值接收信号。
作为一种可选的实现方式,收发器2405还用于接收第一设备发送的第二指示信息,该第二指示信息指示第一接收方式或第二接收方式。
具体可参考前述图14-图22任意实施例的相关内容,此处不再赘述。
可选地,通信装置2400还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,通信装置2400可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
需要说明的是,上述实施例中的通信装置可以是终端设备(或网络设备)也可以是电路,也可以是应用于终端设备(或网络设备)中的芯片或者其他具有上述终端功能(或网络设备)的组合器件、部件等。当通信装置是终端设备(或网络设备)时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端设备(或网络设备)功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。处理模块可以是芯片系统的处理器。收发模块或通信接口可以是芯片系统的输入输出接口或接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至处理器;处理器可以用于运行所述代码指令以执行上述方法实施例中的方法。又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括至少一个第一设备和至少 一个第二设备。示例性的,通信系统包括用于实现上述图14-图22任意一个或多个图的相关功能的第一设备和第二设备。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图14中第一设备执行的方法。或者,当其在计算机上运行时,使得计算机执行图14中第二设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图14中第一设备执行的方法。或者,当其在计算机上运行时,使得计算机执行图14中第二设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一设备的功能;或者用于实现前述方法中第二设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (54)

  1. 一种信号发送方法,其特征在于,包括:
    第一设备确定第一信号和第二信号;
    所述第一设备向第二设备在第一频域单元上发送所述第一信号,在第二频域单元上发送所述第二信号,所述第一频域单元包括第一频率,所述第二频域单元包括第二频率,所述第一频率和所述第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽,其中,所述第一带宽为所述第一频域单元在频域占用的带宽,所述第二带宽为所述第二频域单元在频域占用的带宽,所述第三带宽为第三频域单元在频域占用的带宽,所述第三频域单元用于所述第一设备向第三设备发送第三信号,所述第一信号、所述第二信号和所述第三信号位于一个工作频带内。
  2. 如权利要求1所述的方法,其特征在于,所述第一设备在所述第二设备的信道带宽对应的频率范围内发送所述第一信号和所述第二信号,所述第一频率和所述第二频率之间的差值的绝对值大于或等于1/2所述第二设备的信道带宽。
  3. 如权利要求1所述的方法,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值大于或等于所述第三带宽与第四带宽之和,所述第四带宽为所述第一带宽和所述第二带宽之和的2倍,其中,所述第三信号在频域上位于所述第一频率和所述第二频率之间。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值为预设值;或者,所述方法还包括:所述第一设备向所述第二设备发送第一指示信息,所述第一指示信息指示所述绝对值。
  5. 如权利要求4所述的方法,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值为所述预设值,所述预设值与如下的一项或多项相关:所述工作频带、所述第一信号的子载波间隔,或所述第二信号的子载波间隔。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一信号和所述第二信号中至多有一个用于为所述第二设备的上行传输提供载波。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一信号的功率和所述第二信号的功率相同。
  8. 如权利要求7所述的方法,其特征在于,所述第一信号和所述第二信号均不用于为所述第二设备的上行传输提供载波。
  9. 如权利要求1-8任一项所述的方法,其特征在于,所述第一信号和所述第二信号中至少一个信号位于一个第一载波的保护带内,和/或,所述第一频率和所述第二频率之间的差值的绝对值大于或等于一个第一载波的传输带宽,其中,所述第一载波为新无线NR载波或长期演进LTE载波。
  10. 如权利要求9所述的方法,其特征在于,所述第一信号和所述第二信号均位于第二载波的传输带宽,所述第一频域单元的最小值与所述传输带宽的最低频率之间的差值小于第一取值,所述第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于第二取值。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第二指示信息,所述第二指示信息指示所述第二设 备以第一接收方式或第二接收方式接收信号;其中,所述第一接收方式指示根据所述第一频率和所述第二频率之间的差值的绝对值接收信号,所述第二接收方式指示根据直流载波所在频率,以及根据所述第一频率和所述第二频率之间的差值的绝对值接收信号。
  12. 一种信号接收方法,其特征在于,包括:
    第二设备通过包络检波的方式接收第一信号和第二信号,所述第一信号和所述第二信号位于一个工作频带内;
    所述第二设备获取目标信号,其中,承载所述目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。
  13. 如权利要求12所述的方法,其特征在于,承载所述目标信号的频率还包括直流载波所在的频率。
  14. 如权利要求12或13所述的方法,其特征在于,在所述第二设备获取目标信号之前,所述方法还包括:
    所述第二设备确定用于获取所述目标信号的接收方式,所述接收方式包括第一接收方式或第二接收方式,其中,所述第一接收方式指示根据所述第一频率和所述第二频率之间的差值的绝对值接收信号,所述第二接收方式指示根据直流载波所在频率以及根据所述第一频率和所述第二频率之间的差值的绝对值接收信号。
  15. 如权利要求14所述的方法,其特征在于,所述第二设备确定所述第一接收方式或所述第二接收方式,包括:
    所述第二设备接收所述第一设备发送的第二指示信息,所述第二指示信息指示所述第一接收方式或所述第二接收方式。
  16. 如权利要求12-15任一项所述的方法,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽,其中,所述第一带宽为第一频域单元在频域占用的带宽,所述第一频域单元包括所述第一频率,所述第二带宽为第二频域在频域占用的带宽,所述第二频域单元包括所述第二频率,所述第三带宽为第三频域单元在频域占用的带宽,所述第三频域单元用于所述第一设备向第三设备发送第三信号,所述第三信号位于所述工作频带内。
  17. 如权利要求16所述的方法,其特征在于,所述第一信号和所述第二信号是在所述第二设备的信道带宽对应的频率范围内发送的,所述第一频率和所述第二频率之间的差值的绝对值大于或等于1/2所述第二设备的信道带宽。
  18. 如权利要求16所述的方法,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值大于或等于所述第三带宽与第四带宽之和,所述第四带宽为所述第一带宽和所述第二带宽之和的2倍,其中,所述第三信号在频域上位于所述第一频率和所述第二频率之间。
  19. 如权利要求12-18任一项所述的方法,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值为预设值;或者,所述方法还包括:所述第二设备接收所述第一设备发送的第一指示信息,所述第一指示信息指示所述绝对值。
  20. 如权利要求19所述的方法,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值为所述预设值,所述预设值与如下的一项或多项相关:所述工作频带、所述第一信号的子载波间隔,或所述第二信号的子载波间隔相关。
  21. 如权利要求12-20任一项所述的方法,其特征在于,所述第一信号和所述第二信号 中至多有一个用于为所述第二设备的上行传输提供载波。
  22. 如权利要求12-21任一项所述的方法,其特征在于,所述第一信号的功率和所述第二信号的功率相同。
  23. 如权利要求22所述的方法,其特征在于,所述第一信号和所述第二信号均不用于为所述第二设备的上行传输提供载波。
  24. 如权利要求12-23任一项所述的方法,其特征在于,所述第一信号和所述第二信号中至少一个信号位于一个第一载波的保护带内,和/或,所述第一频率和所述第二频率之间的差值的绝对值大于或等于一个第一载波的传输带宽,其中,所述第一载波为新无线NR载波或LTE载波。
  25. 如权利要求16所述的方法,其特征在于,所述第一信号和所述第二信号均位于第二载波的传输带宽,所述第一频率单元的最小值与所述传输带宽的最低频率之间的差值小于第一取值,所述第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于第二取值。
  26. 一种通信装置,其特征在于,包括处理模块和收发模块;其中,所述处理模块用于确定第一信号和第二信号;
    所述收发模块用于向第二设备在第一频域单元上发送所述第一信号,在第二频域单元上发送所述第二信号,所述第一频域单元包括第一频率,所述第二频域单元包括第二频率,所述第一频率和所述第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽,其中,所述第一带宽为所述第一频域单元在频域占用的带宽,所述第二带宽为所述第二频域单元在频域占用的带宽,所述第三带宽为第三频域单元在频域占用的带宽,所述第三信号为所述第一设备在第三频域单元向第三设备发送的信号,所述第一信号、所述第二信号和所述第三信号位于一个工作频带内。
  27. 如权利要求26所述的装置,其特征在于,所述收发模块在所述第二设备的信道带宽对应的频率范围内发送所述第一信号和所述第二信号,所述第一频率和所述第二频率之间的差值的绝对值大于或等于1/2所述第二设备的信道带宽。
  28. 如权利要求26所述的装置,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值大于或等于所述第三带宽与第四带宽之和,所述第四带宽为所述第一带宽和所述第二带宽之和的2倍,其中,所述第三信号在频域上位于所述第一频率和所述第二频率之间。
  29. 如权利要求26-28任一项所述的装置,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值为预设值;或者,所述收发模块还用于向所述第二设备发送第一指示信息,所述第一指示信息指示所述绝对值。
  30. 如权利要求29所述的装置,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值为所述预设值,所述预设值与如下的一项或多项相关:所述工作频带、所述第一信号的子载波间隔,或所述第二信号的子载波间隔。
  31. 如权利要求26-29任一项所述的装置,其特征在于,所述第一信号和所述第二信号中至多有一个用于为所述第二设备的上行传输提供载波。
  32. 如权利要求26-31任一项所述的装置,其特征在于,所述第一信号的功率和所述第二信号的功率相同。
  33. 如权利要求32所述的装置,其特征在于,所述第一信号和所述第二信号均不用于 为所述第二设备的上行传输提供载波。
  34. 如权利要求26-33任一项所述的装置,其特征在于,所述第一信号和所述第二信号中至少一个信号位于一个第一载波的保护带内,和/或,所述第一频率和所述第二频率之间的差值的绝对值大于或等于一个第一载波的传输带宽,其中,所述第一载波为新无线NR载波或长期演进LTE载波。
  35. 如权利要求34所述的装置,其特征在于,所述第一信号和所述第二信号均位于第二载波的传输带宽,所述第一频域单元的最小值与所述传输带宽的最低频率之间的差值小于第一取值,所述第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于第二取值。
  36. 如权利要求26-35任一项所述的装置,其特征在于,所述收发模块还用于:
    向所述第二设备发送第二指示信息,所述第二指示信息指示所述第二设备以第一接收方式或第二接收方式接收信号;其中,所述第一接收方式指示根据所述第一频率和所述第二频率之间的差值的绝对值接收信号,所述第二接收方式指示根据直流载波所在频率,以及根据所述第一频率和所述第二频率之间的差值的绝对值接收信号。
  37. 一种通信装置,其特征在于,包括处理模块和收发模块,其中,所述收发模块用于通过包络检波的方式接收第一信号和第二信号,所述第一信号和所述第二信号位于一个工作频带内;
    所述处理模块用于获取目标信号,其中,承载所述目标信号的频率包括承载第一信号的第一频率和承载第二信号的第二频率之间的差值的绝对值。
  38. 如权利要求37所述的装置,其特征在于,承载所述目标信号的频率还包括直流载波所在的频率。
  39. 如权利要求37或38所述的装置,其特征在于,在所述处理模块获取目标信号之前,所述处理模块还用于:确定用于获取所述目标信号的接收方式,所述接收方式包括第一接收方式或第二接收方式,其中,所述第一接收方式指示根据所述第一频率和所述第二频率之间的差值的绝对值接收信号,所述第二接收方式指示根据直流载波所在频率以及根据所述第一频率和所述第二频率之间的差值的绝对值接收信号。
  40. 如权利要求37或38所述的装置,其特征在于,所述收发模块具体用于:
    接收所述第一设备发送的第二指示信息,所述第二指示信息指示所述第一接收方式或所述第二接收方式。
  41. 如权利要求37-40任一项所述的装置,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值与如下的一项或多项相关:第一带宽、第二带宽,或者第三带宽,其中,所述第一带宽为第一频域单元在频域占用的带宽,所述第一频域单元包括所述第一频率,所述第二带宽为第二频域在频域占用的带宽,所述第二频域单元包括所述第二频率,所述第三带宽为第三频域单元在频域占用的带宽,所述第三频域单元用于所述第一设备向第三设备发送第三信号,所述第三信号位于所述工作频带内。
  42. 如权利要求41所述的装置,其特征在于,所述第一信号和所述第二信号是在所述通信装置的信道带宽对应的频率范围内发送的,所述第一频率和所述第二频率之间的差值的绝对值大于或等于1/2所述通信装置的信道带宽。
  43. 如权利要求41所述的装置,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值大于或等于所述第三带宽与第四带宽之和,所述第四带宽为所述第一带宽和所 述第二带宽之和的2倍,其中,所述第三信号在频域上位于所述第一频率和所述第二频率之间。
  44. 如权利要求37-43任一项所述的装置,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值为预设值;或者,所述收发模块还用于接收所述第一设备发送的第一指示信息,所述第一指示信息指示所述绝对值。
  45. 如权利要求44所述的装置,其特征在于,所述第一频率和所述第二频率之间的差值的绝对值为所述预设值,所述预设值与如下的一项或多项相关:所述工作频带、所述第一信号的子载波间隔,或所述第二信号的子载波间隔相关。
  46. 如权利要求37-45任一项所述的装置,其特征在于,所述第一信号和所述第二信号中至多有一个用于为所述通信装置的上行传输提供载波。
  47. 如权利要求37-46任一项所述的装置,其特征在于,所述第一信号的功率和所述第二信号的功率相同。
  48. 如权利要求37-47任一项所述的装置,其特征在于,所述第一信号和所述第二信号均不用于为所述通信装置的上行传输提供载波。
  49. 如权利要求37-48任一项所述的装置,其特征在于,所述第一信号和所述第二信号中至少一个信号位于一个第一载波的保护带内,和/或,所述第一频率和所述第二频率之间的差值的绝对值大于或等于一个第一载波的传输带宽,其中,所述第一载波为新无线NR载波或LTE载波。
  50. 如权利要求41所述的装置,其特征在于,所述第一信号和所述第二信号均位于第二载波的传输带宽,所述第一频率单元的最小值与所述传输带宽的最低频率之间的差值小于第一取值,所述第二频域单元的最大值与所述传输带宽的最高频率之间的差值小于第二取值。
  51. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行存储在所述存储器上的计算机程序,使得所述通信装置执行如权利要求1~11中任一项所述的方法,或者,使得所述通信装置执行如权利要求12~25中任一项所述的方法。
  52. 如权利要求51所述的通信装置,其特征在于,所述通信装置为芯片或芯片系统。
  53. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~11中任一项所述的方法,或者,使所述计算机执行如权利要求12~25中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,所述计算机程序产品存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~11中任一项所述的方法,或者,使所述计算机执行如权利要求12~25中任一项所述的方法。
PCT/CN2023/081859 2022-04-02 2023-03-16 一种信号发送方法、信号接收方法及通信装置 WO2023185489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210351628.0A CN116938268A (zh) 2022-04-02 2022-04-02 一种信号发送方法、信号接收方法及通信装置
CN202210351628.0 2022-04-02

Publications (1)

Publication Number Publication Date
WO2023185489A1 true WO2023185489A1 (zh) 2023-10-05

Family

ID=88199074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081859 WO2023185489A1 (zh) 2022-04-02 2023-03-16 一种信号发送方法、信号接收方法及通信装置

Country Status (2)

Country Link
CN (1) CN116938268A (zh)
WO (1) WO2023185489A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102951A1 (en) * 2000-12-13 2002-08-01 Fujitsu Quantum Devices Limited Transmitter, receiver, and radio communications system and method
JP2011188413A (ja) * 2010-03-11 2011-09-22 Alps Electric Co Ltd 信号強度測定装置
CN110741588A (zh) * 2017-03-24 2020-01-31 诺基亚技术有限公司 独立NB-IoT载波的频谱利用
CN110858979A (zh) * 2018-08-24 2020-03-03 泰雷兹控股英国有限公司 干扰和谐波的消除
US20200204931A1 (en) * 2018-12-20 2020-06-25 Gn Hearing A/S Hearing device having dual band radio using image frequency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102951A1 (en) * 2000-12-13 2002-08-01 Fujitsu Quantum Devices Limited Transmitter, receiver, and radio communications system and method
JP2011188413A (ja) * 2010-03-11 2011-09-22 Alps Electric Co Ltd 信号強度測定装置
CN110741588A (zh) * 2017-03-24 2020-01-31 诺基亚技术有限公司 独立NB-IoT载波的频谱利用
CN110858979A (zh) * 2018-08-24 2020-03-03 泰雷兹控股英国有限公司 干扰和谐波的消除
US20200204931A1 (en) * 2018-12-20 2020-06-25 Gn Hearing A/S Hearing device having dual band radio using image frequency

Also Published As

Publication number Publication date
CN116938268A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US11949606B2 (en) Increased utilization of wireless frequency channels partially occupied by incumbent systems
EP3353935B1 (en) Determination of number of physical uplink control channel repetitions for machine type communications
CN111615816B (zh) 一种用于载波聚合的方法、装置及系统
WO2018071105A1 (en) Null data packet feedback report protocol
CN113691358A (zh) 能力信息上报方法及其装置
EP3626021A1 (en) Downlink control information (dci) format for grant-less uplink transmission (gul)
WO2018144074A1 (en) Null data packet feedback reports
CN114885431A (zh) 一种通信方法及装置
CN112469025B (zh) 一种通信方法及装置
CN111132324B (zh) 一种旁链路资源的配置方法及装置
WO2023185489A1 (zh) 一种信号发送方法、信号接收方法及通信装置
CN113517948A (zh) 数据处理方法、装置及系统
WO2021098713A1 (en) Resource allocation method and related product
CN116235450A (zh) 一种上行控制信息的发送方法、接收方法及通信装置
CN110149191B (zh) 一种参数配置方法和装置
CN116057867A (zh) 上报直流载波位置的方法、终端设备和网络设备
CN108282279B (zh) 通信方法、通信设备和终端
CN109314618B (zh) 下行链路控制信息(dci)配置
US11533754B2 (en) Control channel transmission method and device, and storage medium
WO2023078422A1 (zh) 一种通信方法及装置
WO2024114563A1 (zh) 一种通信方法及装置
WO2023207271A1 (zh) 一种信号传输方法及装置
TW201733329A (zh) 於極高頻率系統中的排程請求技術
CN116582884A (zh) 信息传输方法和装置
CN115942487A (zh) 资源配置方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777864

Country of ref document: EP

Kind code of ref document: A1