WO2023185477A1 - 热成像模组和电子设备 - Google Patents

热成像模组和电子设备 Download PDF

Info

Publication number
WO2023185477A1
WO2023185477A1 PCT/CN2023/081644 CN2023081644W WO2023185477A1 WO 2023185477 A1 WO2023185477 A1 WO 2023185477A1 CN 2023081644 W CN2023081644 W CN 2023081644W WO 2023185477 A1 WO2023185477 A1 WO 2023185477A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
lens
thermal imaging
imaging module
infrared detector
Prior art date
Application number
PCT/CN2023/081644
Other languages
English (en)
French (fr)
Inventor
蒋红卫
胡长伟
Original Assignee
杭州微影软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州微影软件有限公司 filed Critical 杭州微影软件有限公司
Publication of WO2023185477A1 publication Critical patent/WO2023185477A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time

Definitions

  • the present application relates to the technical field of imaging equipment, and in particular to a thermal imaging module and electronic equipment.
  • Thermal imaging equipment usually includes a shell and a lens assembly.
  • the lens assembly generally includes a lens mount and a lens.
  • the lens is installed on the lens mount.
  • the shell is reused to provide installation and protection functions for the lens mount.
  • this kind of imaging device has a large number of components, and there are large cumulative tolerances during the assembly process, which will have a greater adverse impact on the accuracy of the imaging device.
  • the thermal imaging module has a relatively small number of components, a small cumulative tolerance, and high precision.
  • an embodiment of the present application discloses a thermal imaging module, which includes:
  • the lens assembly includes a lens barrel and a lens
  • the lens barrel includes a mounting part and an extension part
  • the extension part is connected to one side of the mounting part
  • the mounting part is provided with a light hole
  • the The lens is installed on the mounting part, and the lens is arranged to cover the light hole in the axial direction of the light hole;
  • a base plate, the base plate is connected to the side of the extension part away from the mounting part, and the base plate and the extension part enclose a receiving cavity;
  • the infrared detector is located in the accommodation cavity and is fixed on the substrate facing To one side of said lens;
  • a correction shutter assembly is located on the light incident side of the infrared detector, and is installed on the lens barrel.
  • the correction shutter assembly includes a correction block and a correction block movement mechanism, so The correction block is installed on the correction block movement mechanism, and the correction block movement mechanism is configured to drive the correction block to avoid or block the light hole.
  • an embodiment of the present application discloses an electronic device including the above thermal imaging module.
  • the embodiment of the present application discloses a thermal imaging module, which includes a lens assembly, a substrate, an infrared detector and a correction shutter assembly, wherein the lens barrel in the lens assembly includes a mounting part and an extension part, and the lens in the lens assembly is installed on the mounting part, the extension part is connected to one side of the mounting part, and the base plate is connected to the side of the extension part away from the mounting part, so that the extension part and the base plate form a receiving cavity for accommodating the infrared detector, and the infrared detector is fixed on the base plate facing One side of the lens enables the infrared detector to provide imaging.
  • the correction shutter assembly is located on the light incident side of the infrared detector, and the correction shutter assembly is installed on the lens barrel to use the correction shutter assembly to provide correction for the infrared detector to ensure that the imaging accuracy of the infrared detector is always relatively high.
  • the correction shutter assembly includes a correction shutter and a correction shutter motion mechanism.
  • the correction shutter is installed on the correction shutter motion mechanism.
  • the correction shutter motion mechanism can drive the correction shutter to move so that the correction shutter avoids or blocks the light. hole, thereby enabling the thermal imaging module to switch between normal working state and calibration state.
  • the lens barrel of the lens assembly is directly connected to the substrate and serves as the "shell" of the entire thermal imaging module.
  • the structure of the lens holder is no longer needed, which can reduce the overall The number of components in the thermal imaging module can thereby reduce the cumulative tolerance during the production and assembly process of the thermal imaging module and improve the imaging accuracy of the thermal imaging module.
  • Figure 1 is a schematic structural diagram of a thermal imaging module disclosed in an embodiment of the present application.
  • FIG. 2 is another structural schematic diagram of the thermal imaging module disclosed in the embodiment of the present application.
  • FIG. 3 is another structural schematic diagram of the thermal imaging module disclosed in the embodiment of the present application.
  • FIG. 4 is another structural schematic diagram of the thermal imaging module disclosed in the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a thermal imaging module in related art.
  • Infrared detector an optically sensitive component used to sense infrared radiation and output infrared images
  • Thermal imaging that is, infrared thermal imaging technology, which uses the spectral radiation emitted by the observation object itself to obtain target images. It mainly works in two atmospheric windows of 3 ⁇ m ⁇ 5 ⁇ m and 8 ⁇ m ⁇ 14 ⁇ m. The infrared thermal imaging core involved in this patent works in the range of 8 ⁇ m ⁇ 14 ⁇ m. Atmospheric window, long-wave radiation;
  • Thermal imaging module A product that fixedly connects infrared detectors, substrates, lenses, structural parts, etc. and can be directly sold externally for customer integration is called a detector module;
  • FPA Focal Plane Array
  • Non-uniformity of infrared focal plane arrangement When the target object is radiated from a uniform radiating surface, due to differences in materials used in components, manufacturing processes and radiation from other structural devices, the output of each detection unit of the detector is not completely consistent;
  • Non-uniformity correction Use a uniform reference object to correct the response characteristics of each pixel on the focal plane of the detector as uniformly as possible to eliminate defects in the image caused by non-uniform factors;
  • Shutter A mechanism that provides a uniform reference object.
  • Infrared detectors are packaged in metal packages or ceramic shell packages, and the infrared detector and the circuit board are connected by gold wires.
  • This packaging method does not require a metal shell and a ceramic shell, so the volume can be made very small and is suitable for miniaturization and integration.
  • a highly integrated miniaturized infrared camera module was born that integrates infrared lenses, shutter components, infrared detectors, substrates, etc.
  • the focal plane inside the infrared detector is relatively close to the infrared window, if there is dust on the infrared window, spots will be formed on the image, affecting the image quality.
  • the main structural components of the infrared module in the related technology are shown in Figure 5.
  • the infrared lens is installed on the upper end of the lens holder, and the shutter is installed on the lower end of the lens holder to form a lens assembly (including lens, lens holder, and shutter); the infrared detector is installed on the
  • the circuit board is electrically connected to the circuit board through gold wires to form a circuit board assembly (including infrared detectors and circuit boards); since the lens and shutter are independent functional components, the size of the protective shell needs to be increased, which will cause the entire lens assembly to The size is increased; in addition, because the lens, lens holder, and shutter are all produced independently and then assembled together, they have the disadvantages of large cumulative errors, low overall accuracy, difficult dust control, and high production costs.
  • thermal imaging module which can be used in electronic equipment.
  • the thermal imaging module includes a lens assembly, a substrate 200, an infrared detector 310 and a correction shutter assembly.
  • the lens assembly includes a lens barrel and a lens 120.
  • the lens barrel is the installation basis of the lens 120, and the lens barrel can provide protection for the lens 120 and increase the service life of the lens 120. More specifically, as shown in FIGS. 1 to 4 , the lens barrel includes a mounting portion 111 and an extension portion 112 .
  • the mounting portion 111 is provided with a light hole 111 a to ensure that both ends of the mounting portion 111 can communicate with each other.
  • the lens 120 is installed on the mounting part 111.
  • the lens 120 can be installed in the light hole 111a of the mounting part 111 by embedding, or the lens 120 can also be installed by bonding. It is installed on one end surface of the mounting part 111 by other methods, that is, the lens 120 can also be located outside the light hole 111a.
  • the lens 120 covers the light hole 111a and is arranged in the axial direction of the light hole 111a.
  • the area of the lens 120 is equal to or larger than the area of the light aperture 111a, and any part of the edge of the lens 120 is located outside the corresponding part of the edge of the light aperture 111a (or in other words, any part of the edge of the lens 120 are coincident with the corresponding parts of the edge of the light hole 111a); in other words, the projection of the edge of the lens 120 in the axial direction of the light hole 111a covers the light
  • the hole 111a allows light and thermal radiation on one side of the light hole 111a to pass through the lens 120 in the light hole 111a when incident on the other side of the light hole 111a.
  • the lens barrel can be made of materials such as plastic or metal, and the lens 120 can be made of light-transmitting materials such as plastic or glass. Furthermore, selecting the material of the lens 120 as a material with poor heat absorption and release properties can improve thermal imaging. The imaging accuracy of the module.
  • the lens 120 may be a single lens, or the number of lenses 120 may be multiple to form a lens group, thereby improving the shooting performance of the thermal imaging module.
  • the extension part 112 is connected to one side of the mounting part 111 , and the extension part 112 is an annular structural member. Specifically, it may be an annular structural member or a ring with a rectangular cross-section or other shapes. -shaped structural member, so that the extension part 112 and the base plate 200 mentioned below can enclose the accommodation cavity 101.
  • the mounting part 111 and the extension part 112 can be regarded as the "shell" of the lens 120, and the mounting part 111 and the extension part 112 also serve as part of the "shell” of the entire thermal imaging module. Together with the substrate 200 mentioned below, an accommodation space is provided for devices such as the infrared detector 310 .
  • the mounting part 111 and the extension part 112 are integrally formed structural parts. That is to say, the mounting part 111 and the extension part 112 can The mounting part 111 and the extension part 112 are formed by integral molding. Specifically, the mounting part 111 and the extension part 112 are integrally molded using materials such as plastic or metal.
  • the overall accuracy of the mounting part 111 and the extension part 112 can be improved, and the processing difficulty of both can be reduced; in addition, when the mounting part 111 and the extension part 112 are integrally formed structural parts , it can also reduce the number of components in the entire thermal imaging module, thereby reducing the installation process and improving processing efficiency.
  • the base plate 200 is the installation basis of the infrared detector 310.
  • the base plate 200 can be a flat structure member.
  • the base plate 200 is connected to the side of the extension portion 112 away from the mounting portion 111, so that the base plate 200 and the extension portion 112 enclose the accommodation cavity 101.
  • the shape and size of the substrate 200 correspond to the shape and size of the extension 112 so that the overall size of the thermal imaging module is relatively small. More specifically, the substrate 200 can be embedded inside the extension portion 112 , or the substrate 200 can also be provided on the end surface of the extension portion 112 away from the mounting portion 111 .
  • the mounting part 111 is provided with a light hole 111a, so that the mounting part 111 is actually an annular structural member.
  • the structure is similar in structure to extension 112 .
  • the size of the light hole 111a needs to correspond to the size of the lens 120
  • the inner size of the extension part 112 also needs to correspond to the size of the infrared detector 310.
  • the size corresponds to ensure that the infrared detector 310 and other structures can be installed into the accommodation cavity 101 .
  • the wall thickness of the extension part 112 can be made relatively small, so as to reduce the processing cost of the extension part 112 and the thermal imaging module.
  • the infrared detector 310 is installed in the accommodation cavity 101, and the infrared detector 310 is fixed on the side of the substrate 200 facing the lens 120, so that the infrared detector 310 can receive the light and heat incident from the other side of the lens 120. Radiation, etc., and form corresponding images.
  • the infrared detector 310 can be connected to the processor and other devices through the electrical connector 320, so that the signal received by the infrared detector 310 can be transmitted to the processor, and the processor can be used to The signal is processed, etc., or the processor is used to output an image contained in the signal received by the infrared detector 310 .
  • the substrate 200 may be formed of a conductive material such as metal, or the substrate 200 may include a circuit board, so that the imaging signal 310 may be electrically connected to the processor indirectly through the substrate 200 .
  • the lens 120 and the infrared detector 310 are set correspondingly to ensure that the light or thermal radiation energy incident from the lens 120 can pass through the lens 120 to the infrared detector 310. More specifically, the center of the lens 120 and the center of the infrared detector 310 can be located on the same straight line, and the aforementioned straight line can be the axis of the light hole 111a. In this case, the imaging quality of the thermal imaging module can be ensured. higher.
  • the thermal imaging module disclosed in the embodiment of the present application includes a correction shutter assembly, and the correction shutter assembly is located on the light incident side of the infrared detector 310 , the correction shutter assembly includes a correction block 410, so as to use the correction block 410 to calibrate the imaging result of the infrared detector 310, so that when there is an error in the imaging result of the infrared detector 310, the imaging result of the infrared detector 310 can be calibrated.
  • the process is adaptively corrected to ensure that the imaging result of the infrared detector 310 is always relatively accurate.
  • the thermal imaging module disclosed in the embodiment of the present application includes a correction shutter assembly.
  • the correction shutter assembly includes a correction block 410.
  • the thermal radiation generated everywhere on the correction block 410 is consistent, so that the thermal imaging module During the working process, the correction block 410 can be used to calibrate the imaging results of the infrared detector 310, so that the imaging results on the infrared detector 310 When there are differences in signals received at different locations, the imaging uniformity of the infrared detector 310 can be corrected based on the aforementioned differences.
  • the imaging result of the infrared detector 310 can be corrected by using the correction block in the correction shutter assembly every preset time period; or, it can also be set in the thermal imaging module Sensor, the sensor can specifically be a temperature sensor, etc., so that when the temperature of the infrared detector 310 or the lens 120 and other components in the thermal imaging module meets the preset range, the correction block 410 of the correction shutter assembly is used to detect infrared
  • the imaging result of the thermal imaging module 310 is corrected to ensure that the imaging accuracy of the thermal imaging module is always relatively high.
  • the correction block 410 is a component for correcting the operating parameters of the infrared detector 310. Therefore, it is necessary to ensure that the correction block 410 will not affect the thermal imaging module's process of photographing objects other than the thermal imaging module. hinder. Based on this, in the process of configuring the correction block 410, the correction block 410 needs to have the ability to avoid and block the light hole 111a, and then in the process of calibrating the imaging parameters of the infrared detector 310 , so that the correction block 410 can be located in the light hole 111a, so that the thermal radiation generated by the correction block 410 can be acquired by the infrared detector 310; and during the working process of the thermal imaging module shooting objects other than itself, etc.
  • the correction block can be made to avoid the light hole 111a, so that the thermal radiation outside the thermal imaging module can pass through the light hole 111a and be acquired by the infrared detector 310, without the thermal radiation being blocked by the correction block 410. Case.
  • the correction shutter assembly may include a correction shutter motion mechanism and the above-mentioned correction shutter 410.
  • the correction shutter 410 is installed on the correction shutter motion mechanism.
  • the correction shutter motion mechanism is configured to drive the correction shutter 410 to avoid. Or block the light hole 111a.
  • the correction block movement mechanism can be a translation movement mechanism or a swing movement mechanism, which drives the correction block 410 to move relative to the light hole 111a through translation or swing, so that the correction block 410 has the ability to avoid or block the light. capabilities of hole 111a.
  • the embodiment of the present application discloses a thermal imaging module, which includes a lens assembly, a substrate 200, an infrared detector 310 and a correction shutter assembly.
  • the lens barrel in the lens assembly includes a mounting part 111 and an extension part 112.
  • the lens 120 is installed on the mounting part 111, the extending part 112 is connected to one side of the mounting part 111, and the base plate 200 is connected to the side of the extending part 112 away from the mounting part 111, so that the extending part 112 and the base plate 200 are enclosed to accommodate infrared detection.
  • the infrared detector 310 is fixed on the side of the substrate 200 facing the lens 120, so that the infrared detector 310 can provide imaging.
  • the correction shutter assembly is located on the light incident side of the infrared detector 310, and the correction shutter assembly is installed on the lens barrel, The correction shutter assembly is used to provide correction for the infrared detector 310 to ensure that the imaging accuracy of the infrared detector 310 is always relatively high.
  • the correction shutter assembly includes a correction shutter 410 and a correction shutter motion mechanism.
  • the correction shutter 410 is installed on the correction shutter motion mechanism.
  • the correction shutter motion mechanism can drive the correction shutter 410 to move, so that the correction shutter 410 avoids or Blocking the light hole 111a enables the thermal imaging module to switch between the normal working state and the correction state.
  • the lens barrel of the lens assembly is directly connected to the substrate 200 and serves as the "shell" of the entire thermal imaging module, which can reduce the number of components in the entire thermal imaging module. quantity, thereby reducing the cumulative error during the production and assembly process of the thermal imaging module and improving the imaging accuracy of the thermal imaging module.
  • the correction shutter assembly also includes a correction shutter housing 420.
  • the correction shutter housing 420 is installed on the lens barrel, and the correction shutter movement mechanism is installed
  • the correction shutter housing 420 is used to form the correction shutter assembly into an integral component, and the correction shutter housing 420 is used to install the correction block 410 and the correction block movement mechanism on the lens barrel to complete the installation of the correction shutter assembly.
  • the correction shutter movement mechanism is configured to drive the correction shutter 410 to move relative to the correction shutter housing 420, so that the correction shutter 410 avoids or blocks the light hole 111a, and also That is to say, in the process of providing its own function, the correction shutter assembly may not rely on other structural components in the thermal imaging module, but use the correction shutter housing 420 in the correction shutter assembly as a driving reference to correct the movement mechanism of the shutter. Driven by , the correction baffle 410 is driven to move. More intuitively, in the embodiment of the present application, the correction shutter assembly may be an independent finished part.
  • the correction shutter housing 420 can be made of hard materials such as plastic or metal.
  • the correction shutter movement mechanism is installed on the correction shutter housing 420.
  • the correction shutter housing 420 is provided with perforations, and the correction shutter 410 is installed in the perforations and is connected with the correction shutter housing 420.
  • the baffle motion mechanism is connected to enable the perforation to be blocked by the correction baffle 410 when the correction baffle 410 is driven and moved by the correction baffle motion mechanism.
  • the correction baffle motion mechanism moves in the opposite direction. , it is also possible that at least a part of the perforation can be avoided by the correction block 410 .
  • the correction shutter housing 420 is located on the light exit side of the lens 120 .
  • the light and thermal radiation outside the thermal imaging module pass through the lens 120 and then are corrected.
  • the lens barrel and the substrate 200 can be used to provide protection for the correction block 410 , thereby preventing the correction block 410 from being easily contaminated by the external environment and affecting the calibration accuracy of the correction block 410 .
  • structures such as mounting grooves can be provided in the mounting portion 111 of the lens barrel to provide an installation space for the correction shutter housing 420 so that the correction shutter assembly can be installed on the mounting portion 111 .
  • the correction shutter housing 420 can be located in the accommodation cavity 101 .
  • the correction shutter housing 420 and the correction block 410 are both located on the light exit side of the lens 120 .
  • the correction shutter housing 420 can be sent into the accommodation cavity 101 from the side of the extension part 112 away from the mounting part 111, and the correction shutter housing 420 can be connected to the inner wall of the lens barrel or the surface of the base plate 200 , which can reduce the difficulty of assembly between the correction shutter assembly and the lens barrel.
  • the thermal imaging module in this embodiment is applicable to most optical field of view angles, including but not limited to the following field of view angles (horizontal field of view): 25°, 50°, 90°, and 120°.
  • the correction shutter housing 420 can be fixed on the side wall of the extension part 112, and not on the substrate 200 . More specifically, the correction shutter housing 420 can be fixed to the inner wall of the accommodating cavity 101 , that is, the inner wall of the extension 112 through bonding or other methods, so that the correction shutter housing 420 can form a stable fixed connection relationship with the lens barrel.
  • the correction shutter housing 420 and the substrate 200 may be separated by a preset distance greater than zero, and the correction shutter housing 420 may be further provided with a preset distance from the mounting part 111 .
  • the correction shutter housing 420 and the mounting portion 111 are disposed in contact with the surface of the substrate 200 . That is, the distance between the correction shutter housing 420 and the mounting part 111 is basically zero, which maximizes the distance between the correction shutter housing 420 and the substrate 200 (or the infrared detector 310), thereby minimizing the noise generated by the correction shutter assembly. Thermal radiation interferes with the normal operation of the infrared detector 310. Moreover, when the above technical solution is adopted, the distance between the correction block 410 and the lens 120 is relatively small, which in turn makes the temperature difference between the correction block 410 and the lens 120 relatively small.
  • the imaging result of the infrared detector 310 for the thermal radiation passing through the lens 120 whose temperature is substantially consistent with that of the correction block 410 can be more accurate.
  • the correction shutter housing 420 can be The correction shutter housing 420 can also be fixedly connected to the mounting portion 111 through threaded connectors and other components to achieve a fixed connection between the correction shutter housing 420 and the lens barrel.
  • the correction shutter housing 420 is located on the light incident side of the lens 120 , and the correction shutter housing 420 is installed on the mounting part 111 . That is, the correction shutter housing 420 is fixed at an end of the mounting portion 111 away from the extension portion 112 , and light and thermal radiation first pass through the position of the correction shutter assembly, and then pass through the lens 120 and are incident on the infrared detector 310 middle.
  • the correction shutter housing 420 can also form a fixed connection relationship with the mounting portion 111 through bonding or threaded connection.
  • the correction block 410 is located outside the accommodation cavity 101 of the thermal imaging module, and the lens 120 is blocked between the correction block 410 and the infrared detector 310. This can prevent particles, dust and other components from falling on the infrared detector 310 when the correction shutter movement mechanism drives the correction shutter 410 because there is no obstruction between the correction shutter 410 and the infrared detector 310 . This can prevent the infrared detector 310 from appearing image defects such as dark spots and circles, thereby greatly reducing the failure rate of the thermal imaging module.
  • the thermal imaging module in this embodiment can be applied to a smaller optical field of view, such as a field of view within a horizontal field of view of 50°.
  • the technical solution disclosed in this embodiment can further reduce the size of the accommodation cavity 101 (and the extension part 112) in the direction perpendicular to the axial direction of the light hole 111a, which The overall size of the entire thermal imaging module can be further reduced, allowing the thermal imaging module to better develop towards miniaturization.
  • the correction shutter assembly can also be installed based on other structural parts in the thermal imaging module.
  • the purpose of controlling the movement of the correction block 410 relative to the light hole 111a is installed on the lens barrel, and the correction block movement mechanism is configured to drive the correction block 410 to move relative to the lens barrel, so that the correction block movement mechanism can be driven by the lens barrel.
  • the correction block 410 is driven to move relative to the light hole 111a to avoid or block the light hole 111a.
  • the correction shutter assembly in the process of providing its own function, needs to rely on other structural components such as the lens barrel in the thermal imaging module, so that the lens barrel is used as a driving reference to correct the movement of the shutter.
  • the correction shutter 410 is driven to move relative to the lens barrel.
  • the correction shutter component is essentially a non-independent component.
  • the technical solution disclosed in the embodiment of the present application can further eliminate the correction shutter used to install the correction shutter motion mechanism.
  • the shell 420 can further reduce the component cost of the thermal imaging module on the one hand, and can further reduce the number of components in the thermal imaging module on the other hand, thus reducing the number of assembly processes between components, thereby reducing the cost of the thermal imaging module. The purpose of accumulated errors generated during the production process.
  • the overall size of the lens barrel and the thermal imaging module can be relatively smaller, making the thermal imaging Modules can better develop toward miniaturization.
  • the correction shutter assembly can be located on the light incident side of the lens 120 .
  • the correction shutter assembly 410 and the infrared detector 310 are isolated from each other by the lens 120 , thereby preventing the correction shutter assembly 410 from being Components such as particles and dust that may be generated during the operation can fall on the infrared detector 310, which can prevent the infrared detector 310 from appearing image defects such as dark spots and circles, which can greatly reduce the occurrence of thermal imaging module failures. Rate.
  • the thermal imaging module in this implementation can be applied to a smaller optical field of view, such as a field of view within a horizontal field of view of 50°.
  • multiple step structures can be set on the light incident side of the lens barrel based on the respective sizes of the correction shutter assembly and the lens 120, and the lens 120 and the correction shutter assembly can be assembled sequentially. Install to the step structure; at the same time, use bonding or clamping to ensure that the lens 120 and the correction shutter assembly can form a stable fixed cooperation relationship with the lens barrel, so that the lens 120 and the correction shutter assembly are both in contact with the lens barrel. relatively fixed purpose.
  • the correction shutter assembly is located on the light exit side of the lens 120 .
  • the correction shutter assembly is located surrounded by the lens barrel, the lens 120 and the substrate 200 .
  • the correction shutter assembly can be protected by the lens barrel, the lens 120 and the substrate 200 to prevent the correction shutter assembly from being easily contaminated by the external environment and affecting the calibration accuracy of the correction shutter assembly.
  • the correction shutter assembly may be installed on the inner wall of the extension part 112 .
  • the correction shutter assembly is installed on the mounting part 111 , which makes the distance between the correction shutter assembly and the lens 120 relatively close, so that the correction shutter assembly can be The temperature difference between the shutter assembly and the lens 120 is relatively small.
  • a plurality of step structures can be formed on the mounting portion 111 correspondingly, and from the side where the extension portion 112 is located Install the lens 120 and the correction shutter assembly to the corresponding stepped structures in the mounting part 111 respectively.
  • the lens 120 and the correction shutter assembly can be fixed at the corresponding position of the mounting portion 111 in the lens barrel through adhesion or clamping.
  • this application also discloses an electronic device.
  • the electronic device includes any of the above thermal imaging modules.
  • the electronic device includes a display module and a processor. Both the infrared detector 310 and the display module can be connected to the processor.
  • the processor can perform processing on the optical signals and/or thermal radiation signals received by the infrared detector 310. Process and form corresponding images to display on the display module.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种热成像模组和电子设备,热成像模组包括镜头组件,镜头组件包括镜筒和镜片,镜筒包括安装部和连接于安装部的一侧的延伸部,安装部设有通光孔,镜片安装于安装部,且镜片在通光孔的轴向上覆盖通光孔设置;基板,连接于延伸部背离安装部的一侧,且基板和延伸部围成容纳腔;红外探测器,位于容纳腔内,且固定于基板朝向镜片的一侧;校正快门组件,校正快门组件位于红外探测器的入光侧,且校正快门组件安装于镜筒,校正快门组件包括校正挡片和校正挡片运动机构,校正挡片安装于校正挡片运动机构,校正挡片运动机构配置为驱动校正挡片避让或封堵通光孔。本申请实施例公开的热成像模组的部件数量相对较少,累积公差较小,精度较高。

Description

热成像模组和电子设备
本申请要求于2022年3月28日提交中国专利局、申请号为202210311007.X发明名称为“热成像模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及成像设备技术领域,尤其涉及一种热成像模组和电子设备。
背景技术
随着科学技术的进步,越来越多的高科技产品开始进入量产阶段,并被广大用户普遍使用。以热成像设备为例,越来越多的民用相机等设备上配设有热成像设备。热成像设备通常包括壳体和镜头组件,镜头组件一般包括镜头座和镜片,镜片安装在镜头座上,在组装成像设备的过程中,再利用壳体为镜头座提供安装和保护功能。但是,这种成像设备中部件数量较多,进而在组装过程中存在累积公差较大的情况,对成像设备的精度会产生较大的不利影响。
发明内容
本申请公开一种热成像模组和电子设备,热成像模组的部件数量相对较少,累积公差较小,精度较高。
为了解决上述问题,本申请采用下述技术方案:
第一方面,本申请实施例公开一种热成像模组,其包括:
镜头组件,所述镜头组件包括镜筒和镜片,所述镜筒包括安装部和延伸部,所述延伸部连接于所述安装部的一侧,所述安装部设有通光孔,所述镜片安装于所述安装部,且所述镜片在所述通光孔的轴向上覆盖所述通光孔设置;
基板,所述基板连接于所述延伸部背离所述安装部的一侧,且所述基板和所述延伸部围成容纳腔;
红外探测器,所述红外探测器位于所述容纳腔内,且固定于所述基板朝 向所述镜片的一侧;
校正快门组件,所述校正快门组件位于所述红外探测器的入光侧,且所述校正快门组件安装于所述镜筒,所述校正快门组件包括校正挡片和校正挡片运动机构,所述校正挡片安装于所述校正挡片运动机构,所述校正挡片运动机构配置为驱动所述校正挡片避让或封堵所述通光孔。
第二方面,本申请实施例公开一种电子设备,其包括上述热成像模组。
本申请采用的技术方案能够达到以下有益效果:
本申请实施例公开一种热成像模组,其包括镜头组件、基板、红外探测器和校正快门组件,其中,镜头组件中的镜筒包括安装部和延伸部,镜头组件中的镜片安装于安装部,延伸部连接在安装部的一侧,且基板连接在延伸部背离安装部的一侧,使延伸部和基板围成用以容纳红外探测器的容纳腔,且红外探测器固定在基板朝向镜片的一侧,使红外探测器能够提供成像作用。校正快门组件位于红外探测器的入光侧,且校正快门组件安装于镜筒,以利用校正快门组件为红外探测器提供校正作用,保证红外探测器的成像精度始终相对较高。同时,校正快门组件包括校正挡片和校正挡片运动机构,校正挡片安装于校正挡片运动机构,校正挡片运动机构能够驱动校正挡片运动,以使校正挡片避让或封堵通光孔,进而使热成像模组能够在正常工作状态和校正状态之间相互切换。
如上所述,在本申请实施例公开的热成像模组中,镜头组件的镜筒直接与基板连接,作为整个热成像模组的“壳体”,不再需要镜头座的结构,可以减少整个热成像模组中的部件的数量,从而降低热成像模组生产组装过程中的累积公差,提升热成像模组的成像精度。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的热成像模组的一种结构示意图;
图2是本申请实施例公开的热成像模组的另一种结构示意图;
图3是本申请实施例公开的热成像模组的再一种结构示意图;
图4是本申请实施例公开的热成像模组的又一种结构示意图;
图5是相关技术中的热成像模组的一种结构示意图。
附图标记说明:
101-容纳腔、111-安装部、111a-通光孔、112-延伸部、120-镜片、
200-基板、
310-红外探测器、320-电连接件、
410-校正挡片、420-校正快门外壳。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先,对本申请实施例中的术语进行介绍:
红外探测器:用于感应红外辐射并输出红外图像的光学敏感元器件;
热成像:即红外热成像技术,利用观测对象自身发射的光谱辐射获得目标图像,主要工作于3μm~5μm和8μm~14μm两个大气窗口,本专利涉及的红外热成像机芯工作于8μm~14μm大气窗口,属长波辐射;
热成像模组:将红外探测器,基板,镜头、结构件等固定连接在一起的能直接外售的,用于客户集成的产品,称为探测器模组;
FPA:焦平面阵列(Focal Plane Array);
红外焦平面陈列的非均匀性:目标物是均匀辐射面的辐射下,由于元器件所用材质差异、制造工艺及其它结构器件的辐射,使其探测器各个探测单元输出并不完全一致的图像;
非均匀性校正:通过均匀参考物体将探测器焦平面上各像元的响应特征尽可能校正一致,消除图像上由于非均匀因素造成的瑕疵;
快门:提供均匀参考物体的机构。
红外探测器在封装形式上有金属封装,陶瓷管壳封装,红外探测器和电路板之间靠金线连接。这种封装方式,不需要金属外壳和陶瓷管壳,因此体积可以做的很小,适合小型化,集成化。于是诞生了将红外镜头、快门组件、红外探测器、基板等集成在一起的高度集成的微型化红外摄像头模组。但由于红外探测器内部的焦平面离红外窗口比较近,因此若红外窗口上有灰尘,在图像上会形成斑点,影响图像的质量。相关技术中的红外模组主要结构组成如图5所示,红外镜头安装在镜头座上端面,快门安装在镜头座下端面形成镜头组件(包含镜头、镜头座、快门);红外探测器安装在电路板上,通过金线与电路板电连接,形成电路板组件(包含红外探测器、电路板);由于镜头及快门都是独立功能部件,需要外壳保护尺寸加大,因此会导致整个镜头组件尺寸加大;另外由于镜头、镜头座、快门都是独立生产后再组装到一起,带来累积误差大、综合精度低、灰尘管控难度大、生产成本高的缺点。
为了解决上述问题中的至少一项,本申请实施例提供了一种热成像模组和电子设备,以下结合附图,详细说明本申请各个实施例公开的技术方案。
如图1-图4所示,本申请实施例公开一种热成像模组,热成像模组可以应用在电子设备中。热成像模组包括镜头组件、基板200、红外探测器310和校正快门组件。
其中,镜头组件包括镜筒和镜片120,镜筒为镜片120的安装基础,且镜筒可以为镜片120提供防护作用,提升镜片120的使用寿命。更具体地,如图1-图4所示,镜筒包括安装部111和延伸部112,安装部111设有通光孔111a,以保证安装部111两端能够相互连通。
在组装镜头组件的过程中,镜片120安装在安装部111上,具体地,镜片120可以通过嵌设的方式安装在安装部111的通光孔111a之内,或者,镜片120还可以通过粘接等方式安装在安装部111的一端表面,也即,镜片120亦可以位于通光孔111a之外。同时,镜片120覆盖在通光孔111a上,并设置在通光孔111a的轴向上。具体来说,镜片120的面积等于或大于通光孔111a的面积,且镜片120的边缘的任一部分均位于通光孔111a的边缘的对应部分之外(或者说,镜片120的边缘的任一部分均与通光孔111a的边缘的对应部分重合);换句话说,镜片120的边缘在通光孔111a的轴向上的投影遮盖通光 孔111a,使通光孔111a一侧的光线和热辐射等在射入至通光孔111a的另一侧时,能够穿过通光孔111a内的镜片120。
具体地,镜筒可以采用塑料或金属等材料制成,镜片120可以采用塑料或玻璃等透光材料形成,并且,将镜片120的材质选择为吸放热性能较差的材料,可以提升热成像模组的成像精度。镜片120可以为单个镜片,或者,镜片120的数量亦可以为多个,形成镜片组,从而使热成像模组的拍摄性能得到提升。
同时,如图1-图4所示,延伸部112连接在安装部111的一侧,且延伸部112为环状结构件,具体可以为圆环状结构件或截面为矩形等其他形状的环状结构件,以使延伸部112能够与下文提及的基板200围成容纳腔101。通俗地说,安装部111和延伸部112可以被看作是镜片120的“壳体”,且安装部111和延伸部112还作为整个热成像模组的“壳体”的一部分,二者通过与下文提及的基板200一并为红外探测器310等器件提供容纳空间。考虑到部件间的额外组装过程会对整个热成像模组的精度产生不利影响,可选地,安装部111和延伸部112为一体成型结构件,也就是说,安装部111和延伸部112可以采用一体成型的方式形成,具体地,利用塑料或金属等材料经一体成型的方式形成安装部111和延伸部112。在采用这种技术方案的情况下,可以提升安装部111和延伸部112的整体精度,且可以降低二者的加工难度;另外,在安装部111和延伸部112为一体成型结构件的情况下,还可以减少整个热成像模组中部件的数量,进而减少安装工序,提升加工效率。
基板200为红外探测器310的安装基础,基板200可以为平板状结构件,基板200连接在延伸部112背离安装部111的一侧,进而使基板200和延伸部112围成容纳腔101。基板200的形状和尺寸与延伸部112的形状和尺寸对应,以使热成像模组的整体尺寸相对较小。更具体地,基板200可以嵌设于延伸部112的内侧,或者,基板200也可以设置在延伸部112背离安装部111的端面。
需要说明的是,延伸部112与安装部111在物理结构上并无明显的界限,其中,安装部111设有通光孔111a,使得安装部111实际上也是环状结构件,安装部111的结构与延伸部112在结构上相似。当然,通光孔111a的尺寸需要与镜片120的尺寸对应,延伸部112的内侧尺寸亦需要与红外探测器310 的尺寸对应,保证红外探测器310等结构能够被安装至容纳腔101内。并且,在保证延伸部112具备满足需求的容纳能力以及结构强度的前提下,可以使延伸部112的壁厚相对较小,以降低延伸部112和热成像模组的加工成本。
如上所述,红外探测器310安装在容纳腔101内,并且,红外探测器310固定在基板200朝向镜片120的一侧,以利用红外探测器310接收自镜片120另一侧入射的光线和热辐射等,且形成对应的图像。当然,在热成像模组的使用过程中,可以使红外探测器310通过电连接件320与处理器等器件连接,使红外探测器310接收到的信号能够传输至处理器处,利用处理器对信号进行加工等,或者,利用处理器输出红外探测器310接收到的信号所包含的图像。另外,基板200可以采用金属等导电材料形成,或者基板200可以包括电路板,从而使得成像信号310可以通过与基板200间接地与处理器实现电性连接关系。
需要说明的是,在布设热成像模组中的部件的过程中,需要保证镜片120和红外探测器310对应设置,进而保证自镜片120入射的光线或热辐射能量等,能够穿过镜片120入射至红外探测器310上。更具体地,可以使镜片120的中心与红外探测器310的中心位于同一直线上,且可以使前述直线为通光孔111a的轴线,在这种情况下,可以保证热成像模组的成像质量更高。
为了保证热成像模组的成像精度相对较高,如图1-图4所示,本申请实施例公开的热成像模组中包括校正快门组件,校正快门组件位于红外探测器310的入光侧,校正快门组件包括校正挡片410,以利用校正挡片410对红外探测器310的成像结果进行标定,进而在红外探测器310的成像结果存在误差的情况下,能够对红外探测器310的成像过程进行适应性地修正,保证红外探测器310的成像结果始终相对精准。
详细地说,受制造材质的差异,以及红外探测器310的制造工艺影响,会存在FPA的非均匀性,也就是红外平面陈列的非均匀性,这时就要进行非均匀性校正,以防止红外探测器310上不同位置处对于同种输出参数的热辐射的检测值可能会存在些许误差。基于此,如上所述,本申请实施例公开的热成像模组包括校正快门组件,校正快门组件包括校正挡片410,校正挡片410上各处产生的热辐射一致,从而在热成像模组的工作过程中,可以利用校正挡片410对红外探测器310的成像结果进行标定,以在红外探测器310上 不同位置处接收到的信号存在差异的情况下,可以根据前述差异对红外探测器310的成像均匀性进行校正。
另外,在热成像模组的使用过程中,可以每隔预设时长即利用校正快门组件中的校正挡片对红外探测器310的成像结果进行校正;或者,还可以在热成像模组中设置传感器,传感器具体可以是温度传感器等,从而在热成像模组中的红外探测器310或镜片120等部件的温度满足预设范围的情况下,即利用校正快门组件的校正挡片410对红外探测器310的成像结果进行校正,保证热成像模组的成像精度始终相对较高。
当然,如上所述,校正挡片410为校正红外探测器310的工作参数的部件,因而,需要保证校正挡片410不会对热成像模组在拍摄热成像模组之外的物体的过程产生妨碍。基于此,在配置校正挡片410的过程中,需要使校正挡片410具备能够避让,且能够封堵通光孔111a的能力,进而在需要对红外探测器310的成像参数进行标定的过程中,使校正挡片410能够位于通光孔111a内,使校正挡片410产生的热辐射能够被红外探测器310所获取;而在热成像模组拍摄自身之外的物体等工作过程中,则可以使校正挡片避让通光孔111a,使热成像模组之外的热辐射能够穿过通光孔111a且被红外探测器310所获取,而不会出现热辐射被校正挡片410所阻挡的情况。
一种具体的实施例是,校正快门组件可以包括校正挡片运动机构和上述校正挡片410,校正挡片410安装于校正挡片运动机构,校正挡片运动机构配置为驱动校正挡片410避让或封堵通光孔111a。具体地,校正挡片运动机构可以为平移运动机构或摆动运动机构等,以通过平移或摆动的方式驱动校正挡片410相对通光孔111a运动,使校正挡片410具备避让或封堵通光孔111a的能力。
本申请实施例公开一种热成像模组,其包括镜头组件、基板200、红外探测器310和校正快门组件,其中,镜头组件中的镜筒包括安装部111和延伸部112,镜头组件中的镜片120安装于安装部111,延伸部112连接在安装部111的一侧,且基板200连接在延伸部112背离安装部111的一侧,使延伸部112和基板200围成用以容纳红外探测器310的容纳腔101,且红外探测器310固定在基板200朝向镜片120的一侧,使红外探测器310能够提供成像作用。校正快门组件位于红外探测器310的入光侧,且校正快门组件安装于镜筒, 以利用校正快门组件为红外探测器310提供校正作用,保证红外探测器310的成像精度始终相对较高。同时,校正快门组件包括校正挡片410和校正挡片运动机构,校正挡片410安装于校正挡片运动机构,校正挡片运动机构能够驱动校正挡片410运动,以使校正挡片410避让或封堵通光孔111a,进而使热成像模组能够在正常工作状态和校正状态之间相互切换。
如上所述,在本申请实施例公开的热成像模组中,镜头组件的镜筒直接与基板200连接,作为整个热成像模组的“壳体”,可以减少整个热成像模组中的部件的数量,从而降低热成像模组生产组装过程中的累积误差,提升热成像模组的成像精度。
可选地,如图1和图2所示,本申请实施例公开的热成像模组中,校正快门组件还包括校正快门外壳420,校正快门外壳420安装于镜筒,校正挡片运动机构安装于校正快门外壳420,使校正快门组件形成一整体式组件,且利用校正快门外壳420将校正挡片410和校正挡片运动机构安装在镜筒上,完成校正快门组件的安装工作。同时,在本申请实施例公开的热成像模组中,校正挡片运动机构配置为驱动校正挡片410相对校正快门外壳420运动,以使校正挡片410避让或封堵通光孔111a,也就是说,校正快门组件在提供自身作用的过程中,可以不依靠热成像模组中的其他结构件,而是利用校正快门组件中的校正快门外壳420作为驱动基准,以在校正挡片运动机构的驱动下,驱动校正挡片410运动。更直观地,在本申请实施例中,校正快门组件可以为独立的成品件。
具体地,校正快门外壳420可以采用塑料或金属等硬质材料形成,校正挡片运动机构安装于校正快门外壳420,校正快门外壳420设有穿孔,校正挡片410安装于穿孔中,且与校正挡片运动机构连接,以在校正挡片410被校正挡片运动机构驱动而动作的情况下,使穿孔能够被校正挡片410封闭,对应地,在校正挡片运动机构反向动作的情况下,亦可以使穿孔的至少一部分能够被校正挡片410所避让。对应地,在组装校正快门外壳420和镜筒的过程中,还需要使前述穿孔和通光孔111a相对设置,保证校正挡片410仍具备避让和封堵通光孔111a的能力。
可选地,如图1所示,校正快门外壳420位于镜片120的出光侧,在这种情况下,热成像模组之外的光线和热辐射经过镜片120之后,再经过校正 快门组件所在的位置处。在这种情况下,可以利用镜筒和基板200对校正挡片410提供防护作用,从而防止校正挡片410容易受外界环境污染而影响校正挡片410的标定精度。
具体地,可以在镜筒的安装部111中设置安装槽等结构,以为校正快门外壳420提供安装空间,使校正快门组件可以被安装在安装部111上。在本申请的另一实施例中,如图1所示,可以使校正快门外壳420位于容纳腔101内,在这种情况下,校正快门外壳420和校正挡片410均位于镜片120的出光侧。采用这种技术方案,可以自延伸部112背离安装部111的一侧,将校正快门外壳420送入至容纳腔101内,且使校正快门外壳420连接在镜筒的内壁上或基板200的表面,这可以降低校正快门组件与镜筒之间的组装难度。本实施例中的热成像模组可适用绝大部分光学视场角,包含但不限于以下视场角(水平视场):25°、50°、90°、120°。
可选地,在固定校正快门外壳420的过程中,为了尽量防止校正快门组件的设置对红外探测器310的正常工作产生干扰,可以使校正快门外壳420固定在延伸部112的侧壁上,而非基板200上。更具体地,可以通过粘接等方式将校正快门外壳420固定在容纳腔101的内壁,也即,延伸部112的内侧壁上,使校正快门外壳420能够与镜筒形成稳定的固定连接关系。另外,在设置校正快门外壳420的过程中,可以使校正快门外壳420与基板200之间间隔大于零的预设距离,且可以使校正快门外壳420还与安装部111设有预设距离。
在本申请的另一实施例中,可选地,如图1所示,校正快门外壳420与安装部111朝向基板200的表面贴合设置。也即,校正快门外壳420与安装部111之间的间距基本为零,这使得校正快门外壳420与基板200(或红外探测器310)之间的间距达到最大,从而尽量降低校正快门组件产生的热辐射对红外探测器310的正常工作产生干扰。并且,在采用上述技术方案的情况下,校正挡片410与镜片120之间的间距相对较小,进而使得校正挡片410与镜片120之间的温差相对较小,从而在利用校正挡片410对红外探测器310的成像结果的准确性进行标定之后,使得红外探测器310对于穿过温度与校正挡片410基本一致的镜片120的热辐射的成像结果可以更精准。
另外,在采用上述技术方案的情况下,校正快门外壳420既可以通过粘 接的方式固定在安装部111和延伸部112上,也可以通过螺纹连接件等部件将校正快门外壳420固定连接在安装部111上,实现校正快门外壳420与镜筒之间固定连接的目的。
如图2所示,在本申请的另一实施例中,校正快门外壳420位于镜片120的入光侧,且校正快门外壳420安装于安装部111。也即,校正快门外壳420固定在安装部111背离延伸部112的一端,光线和热辐射等均先自校正快门组件所在的位置处穿过,之后才通过镜片120,且入射至红外探测器310中。
在本实施例中,校正快门外壳420亦可以通过粘接或螺纹连接件连接的方式与安装部111形成固定连接关系。并且,在采用本实施例公开的技术方案的情况下,使得校正挡片410位于热成像模组的容纳腔101之外,进而使镜片120阻挡于校正挡片410和红外探测器310之间,从而可以防止因校正挡片410与红外探测器310之间无遮挡物,而在校正挡片运动机构驱动校正挡片410动作过程中可能发生颗粒和粉尘等部件掉落在红外探测器310上的情况,进而可以防止红外探测器310出现如暗斑和圆圈等图像不良现象,从而极大地降低热成像模组的故障发生率。本实施例中的热成像模组可适用角度较小的光学视场角,如水平视场50°以内的视场角。
同时,在采用本申请实施例公开的热成像模组时,由于校正快门组件均位于容纳腔101之外,在校正快门组件的尺寸不变的情况下,相较于校正快门组件均安装于容纳腔101内的技术方案而言,采用本实施例公开的技术方案,可以使容纳腔101(和延伸部112)在垂直于通光孔111a的轴向的方向上的向尺寸进一步减小,这可以进一步降低整个热成像模组的外形尺寸,使热成像模组能够更好地向微型化发展。
为了进一步降低热成像模组在组装过程中产生的累积误差,可选地,如图3和图4所示,还可以使校正快门组件以热成像模组中的其他结构件为安装基础,实现控制校正挡片410相对通光孔111a运动的目的。具体地,在本申请实施例中,校正挡片运动机构安装于镜筒,且校正挡片运动机构配置为驱动校正挡片410相对镜筒运动,使校正挡片运动机构能够以镜筒为驱动基础,驱动校正挡片410相对通光孔111a运动,以避让或封堵通光孔111a。在本实施例中,校正快门组件在提供自身作用的过程中,需要依靠热成像模组中的镜筒等其他结构件,从而利用镜筒作为驱动基准,以在校正挡片运动机 构的驱动下,驱动校正挡片410相对镜筒运动,在本申请实施例中,校正快门组件实质上为一非独立式组件。
相比于上述实施例公开的校正挡片运动机构通过校正快门外壳420间接安装在镜筒上的技术方案,本申请实施例公开的技术方案可以进一步去除用以安装校正挡片运动机构的校正快门外壳420这一部件,一方面可以进一步降低热成像模组的部件成本,另一方面可以进一步减少热成像模组中部件的数量,从而减少部件间的组装工序的数量,达到降低热成像模组生产过程中产生的累积误差的目的。另外,在采用本申请实施例公开的技术方案的情况下,由于校正挡片运动机构直接安装在镜筒上,从而可以使镜筒和热成像模组的整体尺寸均相对更小,使热成像模组能够更好地向微型化发展。
进一步地,如图3所示,可以使校正快门组件位于镜片120的入光侧,在这种情况下,校正快门组件410与红外探测器310通过镜片120相互隔绝,从而可以防止校正快门组件410动作过程中可能产生的颗粒和粉尘等部件掉落在红外探测器310上,进而可以防止红外探测器310出现如暗斑和圆圈等图像不良现象,这可以极大地降低热成像模组的故障发生率。本实施中的热成像模组可适用角度较小的光学视场角,如水平视场50°以内的视场角。具体地,在组装校正快门组件和镜筒的过程中,可以基于校正快门组件和镜片120各自的尺寸,分别在镜筒的入光侧设置多个台阶结构,且依次将镜片120和校正快门组件安装至台阶结构处;同时,利用粘接或卡持件卡持等方式,保证镜片120和校正快门组件均能够与镜筒形成稳定的固定配合关系,实现镜片120和校正快门组件均与镜筒相对固定的目的。
在本申请的另一实施例中,可选地,如图4所示,校正快门组件位于镜片120的出光侧,在这种情况下,校正快门组件位于被镜筒、镜片120和基板200围成的腔室中,从而使校正快门组件可以被镜筒、镜片120和基板200所保护,防止校正快门组件容易受外界环境污染而影响校正快门组件的标定精度。
在校正快门组件位于镜片120的出光侧的情况下,校正快门组件可以安装在延伸部112的内侧壁上。在本申请的另一实施例中,可选地,如图4所示,校正快门组件安装在安装部111上,这使得校正快门组件与镜片120之间的间距相对较近,从而可以使校正快门组件与镜片120的温差相对较小, 以在利用校正快门组件对红外探测器310的成像结果的准确性进行标定之后,使红外探测器310对穿过温度与校正快门组件基本一致的镜片120的热辐射的成像结果可以更精准;并且,在采用本申请实施例公开的技术方案的情况下,可以使校正快门组件与红外探测器310之间的间距相对较远,防止校正快门组件产生的辐射对红外探测器310的正常工作产生干扰,以保证红外探测器310具备较高的成像精度。本实施例中的热成像模组可适用绝大部分光学视场角,包含但不限于以下视场角(水平视场):25°、50°、90°、120°。
相似地,在校正快门组件位于镜片120的出光侧的情况下,亦可以基于镜片120和校正快门组件的尺寸,对应地在安装部111上形成多个台阶结构,且自延伸部112所在一侧将镜片120和校正快门组件分别安装至安装部111中对应的台阶结构处。另外,通过粘接或卡持件卡持等方式,亦可以保证镜片120和校正快门组件能够被固定在镜筒中安装部111的对应位置处。
基于上述任一实施例公开的热成像模组,本申请还公开一种电子设备,电子设备包括上述任一热成像模组。可选地,电子设备中包括显示模组和处理器,红外探测器310和显示模组均可以与处理器连接,处理器可以对红外探测器310接收到的光信号和/或热辐射信号进行处理,且形成对应的图像展示在显示模组上。
本申请上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (10)

  1. 一种热成像模组,其特征在于,包括:
    镜头组件,所述镜头组件包括镜筒和镜片,所述镜筒包括安装部和延伸部,所述延伸部连接于所述安装部的一侧,所述安装部设有通光孔,所述镜片安装于所述安装部,且所述镜片在所述通光孔的轴向上覆盖所述通光孔设置;
    基板,所述基板连接于所述延伸部背离所述安装部的一侧,且所述基板和所述延伸部围成容纳腔;
    红外探测器,所述红外探测器位于所述容纳腔内,且固定于所述基板朝向所述镜片的一侧;
    校正快门组件,所述校正快门组件位于所述红外探测器的入光侧,且所述校正快门组件安装于所述镜筒,所述校正快门组件包括校正挡片和校正挡片运动机构,所述校正挡片安装于所述校正挡片运动机构,所述校正挡片运动机构配置为驱动所述校正挡片避让或封堵所述通光孔。
  2. 根据权利要求1所述的热成像模组,其特征在于,所述校正快门组件还包括校正快门外壳,所述校正快门外壳安装于所述镜筒,所述校正挡片运动机构安装于所述校正快门外壳,且所述校正挡片运动机构配置为驱动所述校正挡片相对所述校正快门外壳运动,以避让或封堵所述通光孔。
  3. 根据权利要求2所述的热成像模组,其特征在于,所述校正快门外壳位于所述镜片的出光侧。
  4. 根据权利要求3所述的热成像模组,其特征在于,所述校正快门外壳位于所述容纳腔内;
    所述校正快门外壳与所述安装部朝向所述基板的表面贴合。
  5. 根据权利要求2所述的热成像模组,其特征在于,所述校正快门组件位于所述镜片的入光侧,且所述校正快门外壳安装于所述安装部。
  6. 根据权利要求1所述的热成像模组,其特征在于,所述校正挡片运动机构安装于所述镜筒,且所述校正挡片运动机构配置为驱动所述校正挡片相对所述镜筒运动,以避让或封堵所述通光孔。
  7. 根据权利要求6所述的热成像模组,其特征在于,所述校正快门组件位于所述镜片的出光侧。
  8. 根据权利要求6所述的热成像模组,其特征在于,所述校正快门组件位于所述镜片的入光侧。
  9. 根据权利要求4所述的热成像模组,其特征在于,所述安装部和所述延伸部为一体成型结构件。
  10. 一种电子设备,其特征在于,包括权利要求1-9任意一项所述的热成像模组。
PCT/CN2023/081644 2022-03-28 2023-03-15 热成像模组和电子设备 WO2023185477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210311007.X 2022-03-28
CN202210311007.XA CN114697503A (zh) 2022-03-28 2022-03-28 热成像模组和电子设备

Publications (1)

Publication Number Publication Date
WO2023185477A1 true WO2023185477A1 (zh) 2023-10-05

Family

ID=82141313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081644 WO2023185477A1 (zh) 2022-03-28 2023-03-15 热成像模组和电子设备

Country Status (2)

Country Link
CN (1) CN114697503A (zh)
WO (1) WO2023185477A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114697503A (zh) * 2022-03-28 2022-07-01 杭州微影软件有限公司 热成像模组和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091808A (zh) * 2011-11-03 2013-05-08 昆山西钛微电子科技有限公司 免调焦光学摄像头模组
CN108152910A (zh) * 2017-11-22 2018-06-12 上海鼎州光电科技有限公司 一种镜头免调焦系统
CN111147699A (zh) * 2018-11-02 2020-05-12 南昌欧菲光电技术有限公司 电子设备和摄像装置及其安装座
CN113376788A (zh) * 2020-02-25 2021-09-10 大立光电股份有限公司 成像镜头模块与电子装置
CN113566978A (zh) * 2021-07-23 2021-10-29 杭州微影软件有限公司 一种红外热成像快门及红外热成像装置
CN114697503A (zh) * 2022-03-28 2022-07-01 杭州微影软件有限公司 热成像模组和电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118547A (ja) * 2011-12-05 2013-06-13 Tamron Co Ltd 赤外線カメラ
CN208313441U (zh) * 2018-06-29 2019-01-01 深圳市景阳信息技术有限公司 用于热成像探测的封闭式腔体装置
CN211927103U (zh) * 2018-11-27 2020-11-13 深圳市华盛昌科技实业股份有限公司 小型化磁感应红外热成像模组
CN210781069U (zh) * 2019-12-12 2020-06-16 合肥芯福传感器技术有限公司 一种沁入式红外热成像机芯模组
CN213041380U (zh) * 2020-08-24 2021-04-23 浙江大华技术股份有限公司 热成像机芯及热成像设备
CN111866358A (zh) * 2020-09-02 2020-10-30 深圳市软筑信息技术有限公司 一种红外热成像摄像头保护装置
CN213632412U (zh) * 2020-09-25 2021-07-06 浙江大华技术股份有限公司 热成像机芯组件及具有热成像机芯组件的热成像设备
CN213932840U (zh) * 2020-12-14 2021-08-10 北京红谱威视图像技术有限公司 长波非制冷红外热成像系统及其外校正装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091808A (zh) * 2011-11-03 2013-05-08 昆山西钛微电子科技有限公司 免调焦光学摄像头模组
CN108152910A (zh) * 2017-11-22 2018-06-12 上海鼎州光电科技有限公司 一种镜头免调焦系统
CN111147699A (zh) * 2018-11-02 2020-05-12 南昌欧菲光电技术有限公司 电子设备和摄像装置及其安装座
CN113376788A (zh) * 2020-02-25 2021-09-10 大立光电股份有限公司 成像镜头模块与电子装置
CN113566978A (zh) * 2021-07-23 2021-10-29 杭州微影软件有限公司 一种红外热成像快门及红外热成像装置
CN114697503A (zh) * 2022-03-28 2022-07-01 杭州微影软件有限公司 热成像模组和电子设备

Also Published As

Publication number Publication date
CN114697503A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN109698894B (zh) 基于金属支架的感光组件和摄像模组
TWI735232B (zh) 光發射器或光偵測器模組及製造一光發射器或光偵測器模組之方法
US10827106B2 (en) Camera module
US7733408B2 (en) Optical device module, optical path fixing device, and method for manufacturing optical device module
EP0872718A2 (en) Infrared video camera system with uncooled focal plane array and radiation shield
EP2574037B1 (en) Image pickup apparatus having imaging sensor package
WO2023185477A1 (zh) 热成像模组和电子设备
JP2007184801A (ja) カメラモジュール
US20090096047A1 (en) Imaging module package
WO2005003835A1 (ja) 撮像装置、該撮像装置を備えた携帯端末及び撮像装置の製造方法
JP7205486B2 (ja) 撮像装置
JP2011100056A (ja) レンズモジュール及び撮像ユニット
JP2009232159A (ja) 固体撮像装置及びカメラ、並びにそれらの製造方法
CN112839144B (zh) 一种摄像装置、终端设备及摄像装置的装配方法
JPH0574270B2 (zh)
JP2009071631A (ja) カメラモジュール
JP2006128755A (ja) レンズ一体型撮像ユニットおよびこれを備えた撮像装置
JP2012083556A (ja) カメラモジュール
JP4194449B2 (ja) 固体撮像素子の保持構造
TWI506351B (zh) 攝影模組
US20140118609A1 (en) Camera module
KR102500032B1 (ko) 렌즈 어셈블리 및 이를 포함하는 카메라 모듈
JP2008148020A (ja) カメラモジュール、カメラモジュールの製造方法、および撮像装置
JP2007065650A (ja) 赤外線フィルタ及びウィンドウ一体型カメラモジュール装置
WO2021206027A1 (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777852

Country of ref document: EP

Kind code of ref document: A1