WO2023185396A1 - 一种pvdf基碳纤维复合压电传感器及其制备方法 - Google Patents

一种pvdf基碳纤维复合压电传感器及其制备方法 Download PDF

Info

Publication number
WO2023185396A1
WO2023185396A1 PCT/CN2023/080016 CN2023080016W WO2023185396A1 WO 2023185396 A1 WO2023185396 A1 WO 2023185396A1 CN 2023080016 W CN2023080016 W CN 2023080016W WO 2023185396 A1 WO2023185396 A1 WO 2023185396A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber fabric
fabric layer
polyvinylidene fluoride
pvdf
Prior art date
Application number
PCT/CN2023/080016
Other languages
English (en)
French (fr)
Inventor
刘中祥
郭彤
任泓宇
吴文清
李川
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2023185396A1 publication Critical patent/WO2023185396A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the invention relates to a PVDF-based carbon fiber composite piezoelectric sensor and a preparation method thereof, and belongs to the technical field of sensing equipment.
  • the vibration, strain, deformation and other responses of a structure under the action of load or environment can effectively reflect the service performance and damage of the structure.
  • structural response monitoring and health status analysis structural damage and aging information can be obtained, which can provide early warning of structural damage or degradation and reference basis for maintenance and reinforcement, effectively avoiding the occurrence of disasters and accidents. Therefore, it is particularly important to monitor the response of the structure.
  • Sensing equipment that can stably obtain the effective response of the structure for a long time is the key.
  • the sensor is composed of sensitive components or internal conversion components. It converts external measured parameters (non-electricity) such as vibration, stress strain, temperature, etc. into measurable electrical signals according to its own conversion rules.
  • non-electricity such as vibration, stress strain, temperature, etc.
  • PVDF piezoelectric film is a new type of polymer piezoelectric material, and its thickness is generally in the micron range. Compared with traditional piezoelectric ceramics and quartz crystal piezoelectric materials, PVDF piezoelectric films have the advantages of good flexibility, good corrosion resistance, easy matching of acoustic impedance, wide frequency response range, etc., and are easy to be made into different thicknesses and larger Large-area sensing elements have good application prospects.
  • external metal electrodes need to be attached to the surface.
  • PVDF films have shortcomings such as small thickness, poor shear resistance, low strength, large deformation, slow response speed, and poor sensitivity, and cannot be used directly in engineering. Therefore, there is an urgent need to develop a new PVDF piezoelectric sensor with stable mechanical properties, high sensitivity, strong toughness, impact resistance, good durability, and easy production.
  • PVDF piezoelectric film sensors and preparation methods include:
  • Application number 202110652589.3 discloses a composite flexible sensor and a preparation method thereof.
  • the composite flexible sensor includes a conductive fabric layer, a first PDMS encapsulation layer, and a PDMS microchannel layer arranged in sequence.
  • PVDF piezoelectric film layer and the second PDMS encapsulation layer three sensing units are used to simultaneously characterize a strain behavior.
  • the strength and durability of the materials used are not high and there is no protective layer, so they cannot be directly used in the engineering field.
  • Application number 200510119116.8 discloses a polyvinylidene fluoride piezoelectric film sensor and its preparation method.
  • the substrate film is composed of a rectangular substrate film with ear-shaped electrodes on the side made of polyvinylidene fluoride material, and a zinc or aluminum layer on the substrate film.
  • the substrate film is bonded in a circular shape along both sides of the electrode side to form a polyvinylidene fluoride piezoelectric film sensor.
  • the electrodes need to be set and coated, which is suitable for electronic whiteboard sensors.
  • the application number is 20182163705.8, which discloses a pipeline micro-strain pressure sensor based on PVDF piezoelectric film. From bottom to top, it is a polyimide protective film, a stainless steel sensor fastening tape, and a PVDF piezoelectric film pasted between the two. It is composed of , elastic barrier tape and metal shielding net.
  • PVDF nanofiber/graphene/elastic fiber piezoelectric sensor the above sensor is composed of elastic fiber, PVDF nanofiber and graphene between the two, and its preparation method It mainly involves the natural coating of elastic fibers with graphene oxide dispersion, the reduction of coated graphene oxide, and the electrospinning of elastic fibers in polyvinylidene fluoride PVDF spinning liquid. It is suitable for medical and smart wear fields.
  • the technical problem to be solved by the present invention is to provide a PVDF-based carbon fiber composite piezoelectric sensor and a preparation method thereof, which combine the characteristics and advantages of carbon fiber materials, dielectric materials and piezoelectric materials, and have stable mechanical properties and high sensitivity. , strong toughness, impact resistance, good durability, easy production and other advantages.
  • a PVDF-based carbon fiber composite piezoelectric sensor includes a positive carbon fiber fabric layer, a negative carbon fiber fabric layer, a dielectric layer, and first to fourth polyvinylidene fluoride piezoelectric polymer layers.
  • the positive carbon fiber The upper and lower surfaces of the fabric layer are respectively provided with first and second polyvinylidene fluoride piezoelectric polymer layers, and the upper and lower surfaces of the negative carbon fiber fabric layer are respectively provided with third and fourth polyvinylidene fluoride piezoelectric polymer layers.
  • the dielectric layer is disposed between the second polyvinylidene fluoride piezoelectric polymer layer and the third polyvinylidene fluoride piezoelectric polymer layer, the first to fourth polyvinylidene fluoride piezoelectric polymers
  • the layer serves as a matrix to integrate the positive carbon fiber fabric layer, the negative carbon fiber fabric layer and the dielectric layer into a whole;
  • the material of the first to fourth polyvinylidene fluoride piezoelectric polymer layers is polyvinylidene fluoride film
  • the dielectric layer is an insulator with a hot melt coefficient higher than that of polyvinylidene fluoride film, and an elastic modulus and strength that are the same as those of carbon fiber;
  • the positive electrode carbon fiber fabric layer and the negative electrode carbon fiber fabric layer have the same area, and the area of the dielectric layer is larger than the area of the positive electrode carbon fiber fabric layer.
  • the dielectric layer is made of Kevlar fabric.
  • the positive carbon fiber fabric layer and the negative carbon fiber fabric layer serve as external positive and negative electrodes of the composite piezoelectric sensor respectively.
  • the positive carbon fiber fabric layer and the negative carbon fiber fabric layer are both made of micron-sized carbon fibers interwoven.
  • a method for preparing the PVDF-based carbon fiber composite piezoelectric sensor including the following steps:
  • Step 1 Determine the area of the polyvinylidene fluoride film based on the monitoring area of the composite piezoelectric sensor, arrange four layers of polyvinylidene fluoride films with the same area from top to bottom, and arrange them between the first and second layers of polyvinylidene fluoride films.
  • the positive carbon fiber fabric layer, the dielectric layer is arranged between the second and third polyvinylidene fluoride films, the negative carbon fiber fabric layer is arranged between the third and fourth polyvinylidene fluoride films, the positive carbon fiber fabric layer and the negative carbon fiber fabric
  • the areas of the layers are the same and larger than the area of the polyvinylidene fluoride film, and the area of the dielectric layer is larger than the area of the positive carbon fiber fabric layer;
  • Step 2 Use a hot-melt cooling method to form a polyvinylidene fluoride film into a polyvinylidene fluoride piezoelectric polymer layer, thereby integrating the positive carbon fiber fabric layer, the negative carbon fiber fabric layer and the dielectric layer into a whole to obtain a preliminary composite pressure. electrical sensors;
  • the hot melt cooling process is: using The hot press applies a pressure of 7kPa and maintains the ambient temperature at 200°C for 4 hours. The pressure and temperature are removed and allowed to cool to room temperature naturally to form a polyvinylidene fluoride piezoelectric polymer layer.
  • the polarization process includes: connecting the positive carbon fiber fabric layer to the polarized upper electrode of the AC power supply, and connecting the negative carbon fiber fabric layer to the polarized lower electrode of the AC power supply. , place the preliminary composite piezoelectric sensor between insulating glass fiber plates in a constant temperature liquid tank, fill the constant temperature liquid tank with silicone oil so that the preliminary composite piezoelectric sensor is completely immersed, heat the silicone oil and maintain the temperature at 75°C, controllable
  • the AC power supply applies an AC high voltage with an amplitude of 2000V and a frequency of 0.2Hz to the two electrodes for polarization.
  • the polarization time is maintained for 20 minutes, and then the temperature is cooled. After the temperature drops to normal temperature, the polarization electric field is removed, and the polarization process is completed.
  • the present invention adopts the above technical solution and has the following technical effects:
  • This invention combines the characteristics and advantages of carbon fiber materials, dielectric materials and piezoelectric materials. It can be used for long-term monitoring of dynamic responses such as strain and deformation of planes and complex curved surfaces. It can also be embedded in the structure in advance and has Wide range of applications.
  • the carbon fiber fabric layer in the present invention has conductive properties and can be used directly as an electrical sensor electrode without the process of preparing an external electrode to avoid damage to the PVDF matrix.
  • its lightweight and high-strength mechanical properties play a protective role as a structural layer of the composite piezoelectric sensor. It also enhances the mechanical performance stability, toughness, impact resistance, durability, etc. of the composite piezoelectric sensor, and has long-term stable service capabilities.
  • the present invention inherits the advantages of PVDF piezoelectric film such as good flexibility, good corrosion resistance, easy acoustic impedance matching, wide frequency response range, etc., and improves the excellent properties of carbon fiber, resulting in superior performance.
  • the present invention can be made into sensing elements with different thicknesses and larger areas according to monitoring needs, which can realize area monitoring and has good application prospects.
  • the preparation method of the present invention has strong operability, low cost, convenient installation, and good economic benefits.
  • Figure 1 is a structural side view of a PVDF-based carbon fiber composite piezoelectric sensor of the present invention
  • Figure 3 is an assembly layout diagram of each component of the present invention.
  • Figure 4 is a schematic diagram of the alternating electric field contact polarization of the present invention.
  • 1-positive carbon fiber fabric layer 2-negative carbon fiber fabric layer; 3-polyvinylidene fluoride piezoelectric polymer; 4-dielectric layer; 5-carbon fiber bundle; 6-polyvinylidene fluoride film; 7-AC power supply ; 8-Polarized upper electrode; 9-Polarized lower electrode; 10-Constant temperature liquid bath; 11-Insulating fiberglass plate; 12-Silicone oil.
  • the composite piezoelectric sensor has a laminated structure, which is composed of three materials: carbon fiber, dielectric material, and PVDF.
  • the positive carbon fiber (CFRP) fabric layer 1 and the negative carbon fiber fabric layer 2 are located at the upper and lower parts of the whole as structural layers respectively, and the dielectric layer 4 is located in the In the middle of the whole, the polyvinylidene fluoride (PVDF) piezoelectric polymer 3 is heated and cooled to form a matrix, which integrates the various components of the composite piezoelectric sensor into a whole. It has piezoelectric properties and can effectively sense the strain of the structural area. Dynamic response such as deformation, as shown in Figure 2.
  • the positive carbon fiber fabric layer 1 and the negative carbon fiber fabric layer 2 are interlaced with micron-level carbon fiber bundles 5, as shown in Figure 2.
  • the thickness is within a few hundred microns to control the overall thickness of the composite piezoelectric sensor, ensure flexibility and convenience For curved surface monitoring applications, the upper and lower parts of the composite piezoelectric sensor can be directly used as external positive and negative electrodes of the electric sensor. There is no process of preparing external electrodes to avoid damage to the PVDF matrix. At the same time, its lightweight and high-strength mechanical properties make it an ideal choice for composite piezoelectric sensors.
  • the structural layer enhances the mechanical performance stability, toughness, impact resistance, and durability of the composite piezoelectric sensor.
  • PVDF piezoelectric polymer 3 is a PVDF film 6 that is continuously heated at 200°C for 4 hours under a pressure of 7kPa, and then naturally cooled to room temperature to solidify and form.
  • the dielectric layer is located in the middle of the composite piezoelectric sensor. It is an insulator with a higher thermal melt coefficient than the PVDF film and an elastic modulus and strength similar to carbon fiber. Kevlar fabric can be selected to prevent the PVDF piezoelectric polymer 3 from being broken down by voltage. Composite piezoelectric sensor short circuit.
  • a hot press is used to apply a pressure of 7kPa, and the ambient temperature is maintained at 200°C for 4 hours.
  • the PVDF film 6 is melted by heating, and then the pressure and temperature are removed and naturally cooled to room temperature to form the PVDF piezoelectric polymer 3 to achieve composite Assembly of piezoelectric sensors.
  • the proportion of ⁇ -phase crystals in the PVDF piezoelectric polymer 3 is increased through alternating electric field contact polarization, which enhances the piezoelectric characteristics of the composite piezoelectric sensor and can effectively eliminate the influence of space charge and free charged particles on the polarization intensity.
  • Improve the consistency and stability of polarization intensity as shown in Figure 4; connect the positive carbon fiber fabric layer 1 and the negative carbon fiber fabric layer 2 of the composite piezoelectric sensor with the polarized upper electrode 8 and polarized lower electrode of the AC power supply 7 respectively. 9 are connected, and then placed between the insulating glass fiber plates 11 in the constant temperature liquid tank 10. Fill the constant temperature liquid tank 10 with silicone oil 12 and ensure that the composite piezoelectric sensor is completely immersed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Laminated Bodies (AREA)

Abstract

一种PVDF基碳纤维复合压电传感器及其制备方法,其中,复合压电传感器包括正极碳纤维织物层(1)、负极碳纤维织物层(2)、介电层(4)、聚偏氟乙烯(PVDF)压电聚合物层(3);制备方法包括热融冷却形成以PVDF为基质的碳纤维复合体、交变电场接触极化增强压电特性形成PVDF基碳纤维复合压电体、组装形成传感器。融合了碳纤维材料、介电材料及压电材料三者的特性和优势,具有力学性能稳定、灵敏度高、韧性强、抗冲击、耐久性好、制作简便等优点,无需额外安装电极,即可用于平面和复杂曲面应变、变形等动态响应的长期监测。

Description

一种PVDF基碳纤维复合压电传感器及其制备方法 技术领域
本发明涉及一种PVDF基碳纤维复合压电传感器及其制备方法,属于传感设备技术领域。
背景技术
结构在荷载或环境作用下的振动、应变、变形等响应能有效反映结构的服役性能和损伤情况。通过结构响应监测和健康状态分析,获得结构损伤和老化的信息,可提供结构损伤或退化的早期预警以及维护加固的参考依据,有效避免灾害和事故的发生。因此,对结构的响应进行监测尤为重要,其中能长期稳定获取结构有效响应的传感设备是关键。传感器是由灵敏元件或内部转换元件组成,按照自身的转化规律将振动、应力应变、温度等外部被测参量(非电量)转换可测量电信号的器件或装置。作为与计算机和通讯技术并称的三大现代信息技术,其在科技、生产及生活领域中发挥着重要作用。
然而,在复杂结构较长的服役过程中,目前的接触式传感器往往只能监测某点信息、面域监测潜力不足,且存在长期力学性能稳定性差、韧性不足、抗冲击性能差和服役寿命短等问题。因此,有必要开发服役寿命长、耐久性好、韧性较高、可测试局部面域的新型传感器,实现结构服役性能的长期连续监测,保障结构长期服役安全。
压电材料受到荷载作用时两端面间会出现成比例的电压,被广泛应用于传感器领域。聚偏氟乙烯(PVDF)压电薄膜是一种新型高分子压电材料,其厚度一般为微米级。与传统压电陶瓷和石英晶体两种压电材料相比,PVDF压电薄膜具有柔韧性好、耐腐蚀性好、声阻抗易匹配、频响范围宽等优点,而且易于制成不同厚度和较大面积的传感元件,应用前景良好。但是,目前PVDF薄膜制作传感器时需要在表面附着外接金属电极,制备方法繁琐且造价高,影响整体性能且使 用过程薄膜易破损。此外,PVDF薄膜存在厚度较小、抗剪能力差、强度低、变形大、响应速度慢、灵敏度差等不足,无法在工程中直接使用。因此,亟需开发一种力学性能稳定、灵敏度高、韧性强、抗冲击、耐久性好、制作简便的新型PVDF压电传感器。
目前,PVDF压电薄膜传感器及制备方法包括:申请号为202110652589.3公开了一种复合柔性传感器及其制备方法,其复合柔性传感器包括依次设置的导电织物层、第一PDMS封装层、PDMS微通道层、PVDF压电薄膜层和第二PDMS封装层,通过三种传感单元同时对一种应变行为进行表征,所用材料的强度和耐久性均不高且没有保护层,无法直接运用于工程领域。申请号200510119116.8公开了聚偏氟乙烯压电薄膜传感器及其制备方法,由聚偏氟乙烯材料制成侧面带耳状电极的长方形基片薄膜、基片薄膜上的镀锌或和铝层组成,基片薄膜沿电极侧的两边粘结成圆周状形成聚偏氟乙烯压电薄膜传感器,需设置电极并带镀层,适用于电子白板传感器。申请号为20182163705.8公开了一种基于PVDF压电薄膜的管道微应变压力传感器,由自下而上依次为聚酰亚胺保护膜、不锈钢传感器紧固带、粘贴于两者间的PVDF压电薄膜、弹性阻隔带、金属屏蔽网组成,但经裁切工序后易发生短路,需检测处理,制作工艺要求很高。申请号为201610710933.9公开了一种PVDF纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法,弹性纤维浸入氧化石墨烯分散液后取出烘干,还原烘干得到表面包覆石墨烯的弹性纤维,并置于聚偏氟乙烯PVDF纺丝液静电纺丝得到PVDF纳米纤维/石墨烯/弹性纤维压电传感器;上述传感器由弹性纤维、PVDF纳米纤维及两者中间的石墨烯组成,其制备方法主要涉及氧化石墨烯分散液自然包覆弹性纤维、包覆氧化石墨烯的还原、弹性纤维置于聚偏氟乙烯PVDF纺丝液内的静电纺丝,适用于医疗、智能穿戴领域。
发明内容
本发明所要解决的技术问题是:提供一种PVDF基碳纤维复合压电传感器及其制备方法,融合了碳纤维材料、介电材料及压电材料三者的特性和优势,具有力学性能稳定、灵敏度高、韧性强、抗冲击、耐久性好、制作简便等优点。
本发明为解决上述技术问题采用以下技术方案:
一种PVDF基碳纤维复合压电传感器,所述复合压电传感器包括正极碳纤维织物层、负极碳纤维织物层、介电层以及第一至第四聚偏氟乙烯压电聚合物层,所述正极碳纤维织物层的上、下表面分别设有第一和第二聚偏氟乙烯压电聚合物层,所述负极碳纤维织物层的上、下表面分别设有第三和第四聚偏氟乙烯压电聚合物层,所述介电层设置于第二聚偏氟乙烯压电聚合物层和第三聚偏氟乙烯压电聚合物层之间,第一至第四聚偏氟乙烯压电聚合物层作为基质将正极碳纤维织物层、负极碳纤维织物层以及介电层融为一个整体;
所述第一至第四聚偏氟乙烯压电聚合物层的材质均为聚偏氟乙烯薄膜;
所述介电层为热熔系数高于聚偏氟乙烯薄膜,且弹性模量和强度与碳纤维相同的绝缘体;
所述正极碳纤维织物层和负极碳纤维织物层的面积相同,所述介电层的面积大于所述正极碳纤维织物层的面积。
作为本发明传感器的一种优选方案,所述介电层的材质为凯夫拉织物。
作为本发明传感器的一种优选方案,所述正极碳纤维织物层、负极碳纤维织物层分别作为所述复合压电传感器的外接正、负电极。
作为本发明传感器的一种优选方案,所述正极碳纤维织物层、负极碳纤维织物层均由微米级碳纤维交叉编制而成。
一种所述的PVDF基碳纤维复合压电传感器的制备方法,包括如下步骤:
步骤1,根据复合压电传感器的监测面积确定聚偏氟乙烯薄膜的面积,从上到下布置四层面积相同的聚偏氟乙烯薄膜,第一和第二层聚偏氟乙烯薄膜之间布置正极碳纤维织物层,第二和第三层聚偏氟乙烯薄膜之间布置介电层,第三和第四层聚偏氟乙烯薄膜之间布置负极碳纤维织物层,正极碳纤维织物层和负极碳纤维织物层的面积相同,且大于聚偏氟乙烯薄膜的面积,介电层的面积大于正极碳纤维织物层的面积;
步骤2,采用热熔冷却方法使得聚偏氟乙烯薄膜形成聚偏氟乙烯压电聚合物层,从而将正极碳纤维织物层、负极碳纤维织物层以及介电层融为一个整体,得到初步的复合压电传感器;
步骤3,将步骤2得到的初步的复合压电传感器通过交变电场接触极化,形成强压电特性,得到最终的复合压电传感器。
作为本发明方法的一种优选方案,所述步骤2中,热熔冷却的过程为:采用 热压机施加7kPa压力,并保持环境温度200℃持续加热4小时,撤去压力和温度,自然冷却至室温,从而形成聚偏氟乙烯压电聚合物层。
作为本发明方法的一种优选方案,所述步骤3中,极化过程包括:将正极碳纤维织物层与交流电源的极化上电极相连,将负极碳纤维织物层与交流电源的极化下电极相连,将初步的复合压电传感器置于恒温液槽中的绝缘玻纤板之间,将恒温液槽内充满硅油使得初步的复合压电传感器完全浸入,加热硅油并保持温度为75℃,可控交流电源在两电极上施加幅值为2000V、频率为0.2Hz的交流高压进行极化,极化时间保持20min,之后进行降温,待降到常温后撤去极化电场,即完成极化过程。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1、本发明融合了碳纤维材料、介电材料及压电材料三者的特性和优势,可用于平面和复杂曲面应变、变形等动态响应的长期监测,也可,预先埋置于结构内部,具有广泛的应用范围。
2、本发明中的碳纤维织物层具有导电特性,直接作为电传感器电极,无制备外接电极过程,避免PVDF基质损坏;同时其轻质高强的力学性能,作为复合压电传感器结构层起保护作用,并增强了复合压电传感器力学性能稳定性、韧性、抗冲击能力、耐久性等,具有长期稳定服役能力。
3、本发明继承了PVDF压电薄膜柔韧性好、耐腐蚀性好、声阻抗易匹配、频响范围宽等优点,并得到碳纤维优良性能的改善,性能优越。
4、本发明可根据监测需要制成不同厚度和较大面积的传感元件,能够实现面域监测,应用前景良好。
5、本发明制备方法可操作性强,造价便宜,安装方便,具有良好的经济效益。
附图说明
图1是本发明一种PVDF基碳纤维复合压电传感器的构造侧视图;
图2是本发明一种PVDF基碳纤维复合压电传感器的正剖面图;
图3是本发明各组成部分组装布置图;
图4是本发明交变电场接触极化示意图。
其中,1-正极碳纤维织物层;2-负极碳纤维织物层;3-聚偏氟乙烯压电聚合物;4-介电层;5-碳纤维束;6-聚偏氟乙烯薄膜;7-交流电源;8-极化上电极;9-极化下电极;10-恒温液槽;11-绝缘玻纤板;12-硅油。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
一种PVDF基碳纤维复合压电传感器,包括正极碳纤维(CFRP)织物层1、负极碳纤维织物层2、聚偏氟乙烯(PVDF)压电聚合物3、介电层4,如图1所示。
复合压电传感器为层叠结构,由碳纤维、介电材料、PVDF三种材料组成,正极碳纤维(CFRP)织物层1和负极碳纤维织物层2作为结构层分别位于整体上部和下部,介电层4居于整体中间,聚偏氟乙烯(PVDF)压电聚合物3是经热熔冷却成为基质,将复合压电传感器各组成部分融合为整体,且具有压电特性,能够有效感知结构面域的应变、变形等动态响应,如图2所示。
正极碳纤维织物层1和负极碳纤维织物层2,由微米级碳纤维束5交叉编制而成,如图2所示,厚度在几百微米内以控制复合压电传感器的整体厚度、保证柔韧性、方便曲面监测应用,设置在复合压电传感器的上部和下部可直接作为电传感器外接正负电极,无制备外接电极过程,避免PVDF基质损坏,同时其轻质高强的力学性能,作为复合压电传感器的结构层起增强复合压电传感器力学性能稳定性、韧性、抗冲击能力、耐久性。
PVDF压电聚合物3是PVDF膜6在7kPa压力作用下200℃持续加热4小时,然后再自然冷却至室温固化成型。
介电层位于复合压电传感器中间,是热熔系数高于PVDF膜、弹性模量和强度与碳纤维相近的绝缘体,可选择凯夫拉织物,能防止PVDF压电聚合物3被电压击穿、复合压电传感器短路。
本发明的制备方法:将一层90μm厚凯夫拉织物作为介电层4布置在两层 180μm厚由碳纤维束5交叉编制而成的碳纤维织物之间,碳纤维织物分别作为正极碳纤维织物层1和负极碳纤维织物层2,再将四层80μm厚PVDF薄膜6间隔布置于正极碳纤维织物层1、介电层4和负极碳纤维织物层2之间,如图3所示。
组装前,对正极碳纤维织物层1、负极碳纤维织物层2、PVDF薄膜6和介电层4的尺寸和布置进行检查;PVDF薄膜6的面积根据复合压电传感器监测面积确定,正极碳纤维织物层1和负极碳纤维织物层2比PVDF薄膜6多伸出10mm,方便导线连接;介电层4大于正极碳纤维织物层1和负极碳纤维织物层2,将两碳纤维层完全隔开,防止发生短路且便于传感器固定。
组装时,采用热压机施加7kPa压力,并保持环境温度200℃持续加热4小时,通过加热熔化PVDF薄膜6,然后在撤去压力和温度,自然冷却至室温形成PVDF压电聚合物3,实现复合压电传感器的组装。
组装完成后,通过交变电场接触极化提高PVDF压电聚合物3中β相晶体比例,增强复合压电传感器压电特性,并可有效消除空间电荷和游离带电粒子对极化强度的影响,提高极化强度的一致性和稳定性,如图4所示;将复合压电传感器的正极碳纤维织物层1和负极碳纤维织物层2分别与交流电源7的极化上电极8和极化下电极9相连,然后置于恒温液槽10中的绝缘玻纤板11之间,将恒温液槽10内充满硅油12并保证复合压电传感器完全浸入,硅油12作为绝缘介质能避免电极边缘产生飞弧;通过恒温液槽10加热硅油12并保持温度为75℃,可控高压源在两电极上施加幅值为2000V、频率为0.2Hz的交流高压,保持20min后,对复合压电传感器进行降温,待降到常温后方撤去极化电场,即完成极化过程。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (7)

  1. 一种PVDF基碳纤维复合压电传感器,其特征在于,所述复合压电传感器包括正极碳纤维织物层、负极碳纤维织物层、介电层以及第一至第四聚偏氟乙烯压电聚合物层,所述正极碳纤维织物层的上、下表面分别设有第一和第二聚偏氟乙烯压电聚合物层,所述负极碳纤维织物层的上、下表面分别设有第三和第四聚偏氟乙烯压电聚合物层,所述介电层设置于第二聚偏氟乙烯压电聚合物层和第三聚偏氟乙烯压电聚合物层之间,第一至第四聚偏氟乙烯压电聚合物层作为基质将正极碳纤维织物层、负极碳纤维织物层以及介电层融为一个整体;
    所述第一至第四聚偏氟乙烯压电聚合物层的材质均为聚偏氟乙烯薄膜;
    所述介电层为热熔系数高于聚偏氟乙烯薄膜,且弹性模量和强度与碳纤维相同的绝缘体;
    所述正极碳纤维织物层和负极碳纤维织物层的面积相同,所述介电层的面积大于所述正极碳纤维织物层的面积。
  2. 根据权利要求1所述的一种PVDF基碳纤维复合压电传感器,其特征在于,所述介电层的材质为凯夫拉织物。
  3. 根据权利要求1所述的一种PVDF基碳纤维复合压电传感器,其特征在于,所述正极碳纤维织物层、负极碳纤维织物层分别作为所述复合压电传感器的外接正、负电极。
  4. 根据权利要求1所述的一种PVDF基碳纤维复合压电传感器,其特征在于,所述正极碳纤维织物层、负极碳纤维织物层均由微米级碳纤维交叉编制而成。
  5. 一种权利要求1-4任一项所述的PVDF基碳纤维复合压电传感器的制备方法,其特征在于,包括如下步骤:
    步骤1,根据复合压电传感器的监测面积确定聚偏氟乙烯薄膜的面积,从上到下布置四层面积相同的聚偏氟乙烯薄膜,第一和第二层聚偏氟乙烯薄膜之间布置正极碳纤维织物层,第二和第三层聚偏氟乙烯薄膜之间布置介电层,第三和第四层聚偏氟乙烯薄膜之间布置负极碳纤维织物层,正极碳纤维织物层和负极碳纤维织物层的面积相同,且大于聚偏氟乙烯薄膜的面积,介电层的面积大于正极碳纤维织物层的面积;
    步骤2,采用热熔冷却方法使得聚偏氟乙烯薄膜形成聚偏氟乙烯压电聚合物 层,从而将正极碳纤维织物层、负极碳纤维织物层以及介电层融为一个整体,得到初步的复合压电传感器;
    步骤3,将步骤2得到的初步的复合压电传感器通过交变电场接触极化,形成强压电特性,得到最终的复合压电传感器。
  6. 根据权利要求5所述的制备方法,其特征在于,所述步骤2中,热熔冷却的过程为:采用热压机施加7kPa压力,并保持环境温度200℃持续加热4小时,撤去压力和温度,自然冷却至室温,从而形成聚偏氟乙烯压电聚合物层。
  7. 根据权利要求5所述的制备方法,其特征在于,所述步骤3中,极化过程包括:将正极碳纤维织物层与交流电源的极化上电极相连,将负极碳纤维织物层与交流电源的极化下电极相连,将初步的复合压电传感器置于恒温液槽中的绝缘玻纤板之间,将恒温液槽内充满硅油使得初步的复合压电传感器完全浸入,加热硅油并保持温度为75℃,可控交流电源在两电极上施加幅值为2000V、频率为0.2Hz的交流高压进行极化,极化时间保持20min,之后进行降温,待降到常温后撤去极化电场,即完成极化过程。
PCT/CN2023/080016 2022-03-31 2023-03-07 一种pvdf基碳纤维复合压电传感器及其制备方法 WO2023185396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210336977.5A CN114812375B (zh) 2022-03-31 2022-03-31 一种pvdf基碳纤维复合压电传感器及其制备方法
CN202210336977.5 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185396A1 true WO2023185396A1 (zh) 2023-10-05

Family

ID=82533666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080016 WO2023185396A1 (zh) 2022-03-31 2023-03-07 一种pvdf基碳纤维复合压电传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN114812375B (zh)
WO (1) WO2023185396A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812375B (zh) * 2022-03-31 2024-03-26 东南大学 一种pvdf基碳纤维复合压电传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070314A1 (en) * 2001-11-28 2004-04-15 Yoon Kwang Joon Curved shape actuator device composed of electro active layer and fiber composite layers
US20100078090A1 (en) * 2008-09-29 2010-04-01 Gas Technology Institute Impact sensing multi-layered plastic material
CN111928893A (zh) * 2020-07-31 2020-11-13 华中科技大学 碳纤维复合材料全过程在线监测方法及监测装置
CN113831687A (zh) * 2021-09-26 2021-12-24 西安工程大学 一种压电纱线增强树脂基复合材料的制备方法
CN114812375A (zh) * 2022-03-31 2022-07-29 东南大学 一种pvdf基碳纤维复合压电传感器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3706874B2 (ja) * 2000-09-28 2005-10-19 独立行政法人科学技術振興機構 膜の歪測定器とそれを使用した歪測定方法
CN107478360B (zh) * 2017-08-18 2020-05-19 北京纳米能源与系统研究所 电容式柔性压力传感器及其制备方法
CN107505068A (zh) * 2017-08-18 2017-12-22 北京纳米能源与系统研究所 电容式柔性压力传感器及其制备方法
CN112587128B (zh) * 2020-11-16 2022-08-05 江南大学 一种基于氧化锌纳米棒结构的织物基底压电传感器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070314A1 (en) * 2001-11-28 2004-04-15 Yoon Kwang Joon Curved shape actuator device composed of electro active layer and fiber composite layers
US20100078090A1 (en) * 2008-09-29 2010-04-01 Gas Technology Institute Impact sensing multi-layered plastic material
CN111928893A (zh) * 2020-07-31 2020-11-13 华中科技大学 碳纤维复合材料全过程在线监测方法及监测装置
CN113831687A (zh) * 2021-09-26 2021-12-24 西安工程大学 一种压电纱线增强树脂基复合材料的制备方法
CN114812375A (zh) * 2022-03-31 2022-07-29 东南大学 一种pvdf基碳纤维复合压电传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GHAZALEH, HAGHIASHTIANI: "Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing", SMART MATERIALS AND STRUCTURES, vol. 24, no. 4, 10 March 2015 (2015-03-10), XP020282007, ISSN: 0964-1726, DOI: 10.1088/0964-1726/24/4/045038 *

Also Published As

Publication number Publication date
CN114812375B (zh) 2024-03-26
CN114812375A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Chung A review of multifunctional polymer-matrix structural composites
Liang et al. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances
WO2023185396A1 (zh) 一种pvdf基碳纤维复合压电传感器及其制备方法
WO2018014427A1 (zh) 摩擦摆隔震支座、智能支座以及支座监测系统
WO2018014430A1 (zh) 球形钢支座、智能支座以及支座监测系统
Groo et al. Laser induced graphene in fiberglass-reinforced composites for strain and damage sensing
WO2020253449A1 (zh) 混凝土受拉裂缝宽度监测和区域自定位装置及方法
Maung et al. Multifunctional integration of thin-film silicon solar cells on carbon-fiber-reinforced epoxy composites
US20230200247A1 (en) Method for preparing static/dynamic 3d microcrack propagation sensor, sensor and equipment
CN101672619A (zh) 碳纤维搭接式应变传感器
CN112266506B (zh) 一种纳米TiN导电橡胶复合材料以及一种传感器及其制备方法
CN112812342A (zh) 一种聚合物薄膜及其制备方法和应用
CN111928893B (zh) 碳纤维复合材料全过程在线监测方法及监测装置
Cortés et al. 3D printed anti-icing and de-icing system based on CNT/GNP doped epoxy composites with self-curing and structural health monitoring capabilities
CN110906858A (zh) 一种无纺复合材料、结构应变传感器、分布式监测系统及方法
CN108948398A (zh) 一种柔性压电复合薄膜及其制备方法
Slobodian et al. A coupled piezo-triboelectric nanogenerator based on the electrification of biaxially oriented polyethylene terephthalate food packaging films
WO2018014429A1 (zh) 盆式橡胶支座、智能支座以及支座监测系统
Gino et al. On the design of a piezoelectric self-sensing smart composite laminate
CN110863352B (zh) 一种基于双组份聚氨酯线的高可拉伸柔性应变传感器及其制备方法
WO2020140598A1 (zh) 一种振动状态可视化检测装置、制作方法及应用
WO2014181935A1 (ko) 압전재료를 이용한 스마트 페인트 및 스마트 페인트 소자
CN214937148U (zh) 一种聚合物薄膜及摩擦电压力传感器
CN209434353U (zh) 电池模组封装结构
Featherston et al. Harvesting vibration energy for structural health monitoring in aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777774

Country of ref document: EP

Kind code of ref document: A1