WO2023185361A1 - 一种天线、雷达和终端 - Google Patents

一种天线、雷达和终端 Download PDF

Info

Publication number
WO2023185361A1
WO2023185361A1 PCT/CN2023/079128 CN2023079128W WO2023185361A1 WO 2023185361 A1 WO2023185361 A1 WO 2023185361A1 CN 2023079128 W CN2023079128 W CN 2023079128W WO 2023185361 A1 WO2023185361 A1 WO 2023185361A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
sub
microstrip line
slot
antenna
Prior art date
Application number
PCT/CN2023/079128
Other languages
English (en)
French (fr)
Other versions
WO2023185361A9 (zh
Inventor
刘大庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185361A1 publication Critical patent/WO2023185361A1/zh
Publication of WO2023185361A9 publication Critical patent/WO2023185361A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/34Adaptation for use in or on ships, submarines, buoys or torpedoes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna, radar and terminal.
  • Circularly polarized waves can be received by various linearly polarized antennas and have wide applicability. Circularly polarized waves can suppress rain and fog interference and resist multipath reflection when used in mobile communications. Therefore, they are widely used in satellite communications, navigation and other fields. Circularly polarized waves are a constant-amplitude rotating field, which can be decomposed into two orthogonal linearly polarized waves of equal amplitude and 90° phase difference.
  • a waveguide slot antenna two mutually perpendicular slots are usually opened in the waveguide.
  • the electromagnetic waves in the waveguide can leak signals through the slots and propagate outward.
  • the leakage signals can be made to have equal amplitudes and a phase difference of 90°, thereby generating circularly polarized waves.
  • this structural arrangement is not conducive to controlling the phase and amplitude of the signal leaking from the gap, and cannot guarantee circular polarization performance.
  • the two gaps must be perpendicular to each other. This will cause greater disturbance to the electromagnetic waves propagating in the waveguide, and the leaked energy will be relatively large, which will accelerate the attenuation of the electromagnetic waves in the waveguide, and is not conducive to ensuring the gain of the antenna.
  • This application provides an antenna, radar and terminal that can effectively ensure circular polarization performance and help improve gain.
  • an antenna which may include a waveguide structure, a radiation unit and a microstrip structure.
  • the waveguide structure has a pair of slots for leaking electromagnetic waves.
  • the pair of slots includes a first slot and a second slot.
  • the length direction of the first slot is parallel to the length direction of the second slot.
  • the radiating unit is used to emit or receive electromagnetic waves.
  • the microstrip structure may include a first microstrip line and a second microstrip line.
  • the first microstrip line has a first feed portion
  • the second microstrip line has a second feed portion.
  • the first feed portion and the second feed portion The electrical parts are arranged orthogonally, and the phase difference between the electromagnetic wave of the first power feeding part and the electromagnetic wave of the second power feeding part is an odd multiple of 90°.
  • the first microstrip line is coupled with the first gap, and the first feed portion is feed-connected to the radiation unit;
  • the second microstrip line is coupled to the second gap, and the second feed portion is feed-connected to the radiation unit.
  • the amplitude and polarization direction of the leaked signal from the first gap and the second gap are the same.
  • the electrical sections are arranged in orthogonality, so the polarization directions of the two signals change from the same state to an orthogonal state.
  • the phase difference is 90°, which can excite the radiation unit to generate circularly polarized waves.
  • the first slit and the second slit have the same length direction, that is, the first slit and the second slit are parallel to each other, which can reduce the design difficulty and effectively reduce the impact of the first slit and the second slit on the waveguide.
  • the disturbance of the signal propagating in the structure is helpful to ensure the transmission quality of the signal.
  • the amplitude of signal leakage from the first gap and the second gap can be reduced, which is beneficial to improving the gain of the antenna.
  • the first power feeding part and the second power feeding part are exactly Cross setting, the polarization direction of electromagnetic waves can be adjusted through the microstrip structure, so that the directions of the two signals fed into the radiation unit can be perpendicular to each other, so that the radiation unit can generate circularly polarized waves.
  • the waveguide structure may include a sub-waveguide, and the first slot and the second slot in the pair of slots may both be located in the sub-waveguide.
  • the first slot and the second slot can be located in the same sub-waveguide.
  • the waveguide structure may include multiple sub-waveguides, and the multiple sub-waveguides may be arranged in parallel.
  • the waveguide structure may also include a main waveguide, the main waveguide has multiple output ends, and the input ends of the multiple sub-waveguides are coupled to the multiple output ends in a one-to-one correspondence.
  • Signals can be input into the main waveguide from one end of the main waveguide and propagated within the main waveguide. During the propagation process, the signal can propagate into the sub-waveguide through the output end.
  • the phase of the signal propagating into the sub-waveguide can be adjusted by adjusting the position of the output end.
  • the first slot and the second slot in the slot pair may be located in different sub-waveguides respectively.
  • two sub-waveguides in a plurality of sub-waveguides may form a sub-waveguide pair.
  • One sub-waveguide in the pair of sub-waveguides may be called a first sub-waveguide, and the other sub-waveguide may be called a second sub-waveguide.
  • the first slit is located in the first sub-waveguide, and the second slit is located in the second sub-waveguide.
  • the waveguide structure includes multiple sub-waveguide pairs, and the multiple sub-waveguide pairs are arranged in parallel.
  • the waveguide structure may further include a main waveguide, and the main waveguide includes a plurality of first output terminals and a plurality of second output terminals arranged in pairs.
  • the input terminals of the plurality of first sub-waveguides are coupled to the plurality of first output terminals in a one-to-one correspondence; the input terminals of the plurality of second sub-waveguides are coupled to the plurality of second output terminals in a one-to-one correspondence.
  • first output terminal and the second output terminal When arranging the first output terminal and the second output terminal, a plurality of first output terminals and second output terminals arranged in pairs are distributed on two sides of the main waveguide that are away from each other. In order to shorten the length of the main waveguide, it is beneficial to reduce the propagation path between the input end of the main waveguide and the input end of the sub-waveguide.
  • the first slit or the second slit may be shared between two adjacent slit pairs.
  • the gap setting method By sharing the gap setting method, the number of gaps can be effectively reduced. In addition, it also helps to increase the layout density of the antenna.
  • the waveguide structure, radiation unit and microstrip structure in the antenna can be stacked.
  • the relative positions of the waveguide structure, the radiation unit and the microstrip structure can be flexibly set according to actual conditions, and this application does not limit this.
  • the antenna may further include a phase shifter.
  • the phase shifter is connected to the first microstrip line or the second microstrip line and is used to adjust the phase of the electromagnetic wave fed to the radiation unit.
  • the feed can be adjusted by adjusting the positions of the first and second slots in the slot pair, the lengths of the first and second microstrip lines, and the relative position of the output end of the main waveguide.
  • the phase difference of the electromagnetic waves entering the corresponding radiation unit is an odd multiple of 90°, causing the radiation unit to form circularly polarized radiation.
  • this application also provides a radar, which may include a casing and any of the above antennas, and the antenna may be disposed in the casing.
  • the housing in terms of electrical performance, has good electromagnetic wave penetration, which will not affect the normal transmission and reception of electromagnetic waves between the antenna and the outside world.
  • the shell In terms of mechanical properties, the shell has good stress resistance and oxidation resistance, so it can withstand the erosion of the harsh external environment, thus providing good protection for the antenna. It can be understood that in specific applications, the specific shape and material of the housing can be reasonably set according to actual conditions, and this application does not limit this.
  • this application also provides a terminal, which may include a controller and the above-mentioned radar, and the controller may be connected with Antenna connection.
  • the controller can be connected to the waveguide structure in the antenna to control the working state of the antenna for effective control.
  • the terminal can be a vehicle, ship, satellite, aircraft or drone, etc. This application does not limit the specific application scenarios of the radar (or antenna).
  • Figure 1 is a schematic diagram of an application scenario of an antenna provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of an application scenario of another antenna provided by an embodiment of the present application.
  • Figure 3 is a planar structural diagram of a conventional antenna provided by an embodiment of the present application.
  • Figure 4 is a schematic three-dimensional structural diagram of a rectangular waveguide slot antenna provided by an embodiment of the present application.
  • Figure 5 is a schematic plan view of another rectangular waveguide slot antenna provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the electric field distribution when the signal propagates in the slot antenna of the rectangular waveguide shown in Figure 5;
  • Figure 7 is a schematic three-dimensional structural diagram of an antenna provided by an embodiment of the present application.
  • Figure 8 is a schematic cross-sectional structural diagram of an antenna provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a partial planar structure of an antenna provided by an embodiment of the present application.
  • Figure 10 is a partial planar structural diagram of another antenna provided by an embodiment of the present application.
  • Figure 11 is a schematic plan view of another antenna provided by an embodiment of the present application.
  • Figure 12 is a schematic plan view of another antenna provided by an embodiment of the present application.
  • Figure 13 is a partial three-dimensional structural diagram of another antenna provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of the electric field distribution when the signal propagates in the waveguide structure shown in Figure 13;
  • Figure 15 is another schematic diagram of electric field distribution when a signal propagates in the waveguide structure shown in Figure 13;
  • Figure 16 is a schematic plan view of another antenna provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of the electric field distribution when the signal propagates in the waveguide structure shown in Figure 16;
  • Figure 18 is a schematic plan view of another antenna provided by an embodiment of the present application.
  • Figure 19 is a schematic plan view of another antenna provided by an embodiment of the present application.
  • Figure 20 is a schematic diagram of the electric field distribution when the signal propagates in the waveguide structure shown in Figure 19;
  • Figure 21 is a schematic plan view of another antenna provided by an embodiment of the present application.
  • Figure 22 is a simulation data diagram of an antenna provided by an embodiment of the present application.
  • Figure 23 is a directional diagram of an antenna provided by an embodiment of the present application.
  • Figure 24 is a simulation data diagram of another antenna provided by the embodiment of the present application.
  • the antenna provided by the embodiment of the present application can be applied in scenarios such as satellite communication systems and ground communication systems.
  • the antenna can be used in long term evolution (LTE), fifth generation ( 5th generation, 5G) new radio (NR) communication systems, and future communication systems such as the sixth generation ( 6th generation, 6G) satellite-ground integrated communication system.
  • LTE long term evolution
  • 5th generation, 5G fifth generation
  • NR new radio
  • the present application may include satellites and aircraft, Satellite mobile vehicles, portable satellite stations, ships, etc.
  • the above-mentioned satellites, aircraft, satellite mobile vehicles, portable satellite stations and ships can all be equipped with antennas to achieve wireless communication between each device and the satellite.
  • the base station may include a base station and a terminal.
  • Wireless communication can be achieved between the base station and the terminal.
  • the base station can be located in the base bastion subsystem (BBS), terrestrial radio access network (UMTS terrestrial radio access network, UTRAN) or evolved universal terrestrial radio access network (E-UTRAN), Used for cell coverage of wireless signals to achieve communication between terminal equipment and wireless networks.
  • BSS base bastion subsystem
  • UMTS terrestrial radio access network UTRAN
  • E-UTRAN evolved universal terrestrial radio access network
  • the base station can be a base transceiver station (BTS) in the global system for mobile communication (GSM) or (code division multiple access, CDMA) system, or it can be a broadband code division multiple access station.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • NB NodeB
  • WCDMA wideband code division multiple access
  • eNB evolutionary NodeB
  • LTE long term evolution
  • the base station can also be a relay station, an access point, a vehicle-mounted device, a wearable device, a g-node (gNodeB or gNB) in a new radio (NR) system or a base station in a future evolved network, etc.
  • NR new radio
  • antennas can produce circularly polarized waves.
  • circularly polarized waves can be received by various linearly polarized antennas and have wide applicability.
  • Circularly polarized waves can suppress rain and fog interference and resist multipath reflection when used in mobile communications. Therefore, they are widely used in satellite communications, navigation and other fields.
  • Circularly polarized waves are a constant-amplitude rotating field, which can be decomposed into two orthogonal linearly polarized waves of equal amplitude and odd multiples of 90° phase difference.
  • two mutually perpendicular slots 012 and 013 are usually opened on the surface of the waveguide 011.
  • the signal (or electromagnetic wave) in the waveguide 011 can pass through the slots 012 and 013. leakage, forming a linearly polarized wave that propagates outward.
  • the polarization directions of the leakage signals can be perpendicular to each other, with equal amplitude and 90° phase difference, thereby forming a circularly polarized wave.
  • this structural arrangement is not conducive to controlling the phase and amplitude of electromagnetic waves leaked from gap 012 and gap 013, and cannot guarantee circular polarization performance.
  • gap 012 and gap 013 must be perpendicular to each other to generate linearly polarized waves with polarization directions perpendicular to each other. Therefore, high processing accuracy requirements are required.
  • the mutually perpendicular slots 012 and 013 cause greater disturbance to the electromagnetic waves propagating in the waveguide 011, and the leaked energy is relatively large, which will accelerate the attenuation of the electromagnetic waves in the waveguide 011, and is not conducive to ensuring the gain of the antenna 01.
  • embodiments of the present application provide an antenna that can effectively ensure circular polarization performance and is conducive to improving gain.
  • the working principle of the waveguide slot antenna is to open a gap on the surface of the waveguide to change the current distribution on the surface of the waveguide, so that the signal (or electromagnetic wave) propagated in the waveguide leaks out from the gap to form antenna radiation.
  • FIG. 4 a schematic three-dimensional structural diagram of a rectangular waveguide slot antenna 01 is shown.
  • the signal (or electromagnetic wave) can be fed into the waveguide 011 from one end of the waveguide 011, so that the signal can propagate along the length direction of the waveguide 011 to the other end, and since there is a gap 012 on the surface of the waveguide 011, the signal passes through the waveguide 011. During the propagation process within 011, it will continue to leak from the gap 012. Among them, the opening position of the slot 012 and the relative position between the slots 012 will affect the radiation performance of the waveguide slot antenna 01 .
  • FIG. 5 is a top view of FIG. 4 .
  • the dotted line represents the center line of the waveguide 011
  • the center line can also be understood as a virtual symmetry line along the length direction of the waveguide 011 .
  • the distance between the slot 012 and the center line of the waveguide is s.
  • the amplitude of the signal leakage from the slot 012 can be adjusted.
  • gap 012 will not change the current distribution on the surface of waveguide 011. At this time, the signal will not leak from gap 012.
  • the electric field distribution when the signal propagates in the waveguide 011 is shown.
  • the signal propagates from left to right in the waveguide. From the figure, the electric field intensity decreases from left to right. If you need to design a higher-gain waveguide slot antenna 01, you can appropriately reduce the distance between slot 12 and the center line, and increase the number of slots 012, so that the amplitude of the signal leaked by a single slot 012 becomes smaller, and more Many gaps 012 participate in radiation.
  • the distance d between two adjacent slots 012 ⁇ /2, where ⁇ is the wavelength of the electromagnetic wave propagating in the waveguide 011 . If the two slots 012 are located on the same side of the center line, the phase difference between the signals leaked from the two slots is 180°. At this time, the radiated signal will be radiated toward one end of the waveguide 011. If the two slots 012 are located on both sides of the center line, the phase difference of the signals leaked from the two slots 012 is zero. At this time, the radiated signal will radiate towards the normal direction of the waveguide 011.
  • the radiation direction of the electromagnetic waves is consistent with the length direction of the waveguide 011.
  • the phase difference of the electromagnetic waves leaked from the two gaps 012 is 0° or 360°
  • the radiation direction of the electromagnetic waves is consistent with the normal direction of the waveguide 011. Therefore, in practical applications, the radiation direction of the electric antenna 01 can be adjusted by adjusting the phase difference of the electromagnetic waves leaked from the two slits 011 .
  • the antenna 10 may include a waveguide structure 11 , a radiation unit 12 and a microstrip structure (not shown in the figure).
  • the waveguide structure 11 includes a pair of slots 110 for leaking electromagnetic waves of approximately the same amplitude.
  • the slot pair 110 includes a first slot 11a and a second slot 11b.
  • the length direction of the first slot 11a is parallel to the length direction of the second slot 11b, so that the disturbance caused when the signal propagates in the waveguide can be reduced to facilitate improvement.
  • the microstrip structure includes a first microstrip line 13 and a second microstrip line 14 .
  • the first microstrip line 13 is coupled to the first slot 11a so that the signal in the waveguide structure 11 can be coupled to the first microstrip line 13 through the first slot 11a.
  • the first microstrip line 13 has a first feed portion (Fig. (not shown in ), the first feeding part is electrically connected to the radiating unit 12, so that the radiating unit 12 can radiate signals outward.
  • the second microstrip line 14 is coupled to the second slot 11b so that the signal in the waveguide structure 11 can be coupled to the second microstrip line 14 through the second slot 11b.
  • the second microstrip line 14 has a second feed portion (Fig. (not shown in ), the second feeding part is electrically connected to the radiating unit 12, so that the radiating unit 12 can radiate signals outward.
  • the feeding radiation unit can be The polarization directions of the signals of element 12 are perpendicular to each other.
  • the phase difference between the electromagnetic wave of the first feeding part and the electromagnetic wave of the second feeding part is an odd multiple of 90°, so that the radiation unit 12 can generate circularly polarized waves.
  • the amplitude and polarization direction of the leaked signals from the first gap 11a and the second gap 11b are the same.
  • the polarization directions of the two signals will change from the same state to the orthogonal state.
  • the phase difference is 90°, so that the radiation unit 12 can be excited to generate circularly polarized waves.
  • the first slot 11a and the second slot 11b in the slot pair 110 have the same length direction, that is, the first slot 11a and the second slot 11b are parallel to each other, which can reduce the design difficulty and effectively reduce the cost of the antenna.
  • the disturbance of the signal propagated in the waveguide structure 11 by the first slit 11a and the second slit 11b is conducive to ensuring the transmission quality of the signal; in addition, the amplitude of signal leakage from the first slit 11a and the second slit 11b can be reduced, thereby ensuring It is beneficial to improve the gain of the antenna 10 .
  • the first feed part and the second feed part are arranged orthogonally, and the polarization direction of the electromagnetic wave can be adjusted through the microstrip structure, so that the polar directions of the two signals fed into the radiation unit 12 can be perpendicular to each other. , thereby enabling the radiation unit 12 to generate circularly polarized waves.
  • coupling refers to the effective connection of signals or energy between two components, and is not a specific limitation on the connection method. In practical applications, the coupling between the two components can be achieved through a variety of different connection structures, which is not limited in this application.
  • the waveguide structure 11 can be a metal waveguide, or a substrate integrated waveguide, etc. This application does not limit the specific type and shape of the waveguide structure 11.
  • the types of the first microstrip line 13 and the second microstrip line 14 can be the same to ensure that the signals in the first microstrip line 13 and the consistency when propagating in the second microstrip line 14.
  • the first feeding part and the second feeding part refer to the parts that feed power to the radiation unit 12 , and do not refer to specific structures on the first microstrip line 13 and the second microstrip line 14 .
  • the first microstrip line 13 and the radiating unit 12 may be connected by direct power feeding.
  • the first microstrip line 13 may be electrically connected to the radiation unit 12 .
  • the first microstrip line 13 and the radiation unit 12 may also be connected by indirect power feeding.
  • the first microstrip line 13 and the radiation unit 12 may not be in direct contact, and the signal in the first microstrip line 13 may be radiated to the radiation unit 12 .
  • the feed connection method between the second microstrip line 14 and the radiation unit 12 may be the same as or similar to the feed connection method between the first microstrip line 13 and the radiation unit 12, and will not be described again here.
  • first power feeding part and the second power feeding part are orthogonally arranged may also be diverse.
  • the linear first microstrip line 13 and the second microstrip line 14 may be bent so that the first power feeding part and the second power feeding part are spatially orthogonal.
  • the signals propagating in the first microstrip line 13 and the second microstrip line 14 are both linearly polarized electromagnetic waves, and the polarization of the signals leaks through the first gap 11a and the second gap 11b The directions are the same. Therefore, after the first feeding part and the second feeding part are arranged orthogonally, the polarization directions of the two signals fed into the radiation unit 12 by the first feeding part and the second feeding part are perpendicular to each other.
  • the first microstrip line 13 and the second microstrip line 14 can be bent at 45° respectively, so that the first power feeding part and the second power feeding part are orthogonal.
  • the first microstrip line 13 may be bent by 90°, and the second microstrip line 14 may not be bent.
  • the first microstrip line 13 can be bent by 30°, and the second microstrip line 14 can be bent by 60°. It can be understood that in actual applications, the specific shapes of the first microstrip line 13 and the second microstrip line 14 can be reasonably set according to actual needs, so that the first feeding part and the second feeding part are orthogonal. , this application does not specifically limit this.
  • the phase of the signal fed into the radiation unit 12 can also be adjusted by adjusting the lengths of the first microstrip line 13 and the second microstrip line 14 .
  • the lengths of the first microstrip line 13 and the second microstrip line 14 are the same, the signal in the first microstrip line 13 The distance propagated in line 13 and the second microstrip line 14 is the same, so there is no difference in the phase of the two signals.
  • the signal propagation distances in the first microstrip line 13 and the second microstrip line 14 are different. Therefore, the phases of the two signals are different. will make a difference.
  • first microstrip line 13 and the second microstrip line 14 are of the same structural type, and the length of the first microstrip line 13 is 3/4, and the length of the second microstrip line 14 is ⁇ , where , ⁇ is the wavelength of the electromagnetic wave propagating in the first microstrip line 13 or the second microstrip line 14 . If the phase of the signal when it is transmitted into the first microstrip line 13 and the second microstrip line 14 is both 0°, then the phase of the signal when it is transmitted from the first microstrip line 13 is 270°, and the signal is transmitted from the second microstrip line 13 to The phase coming out of line 14 is 360°, and the two signals will be 90° out of phase.
  • the phase difference of the signals fed into the radiation unit 12 can also be changed, so that the phase difference is 90°, so that the radiation unit 12 Can produce circularly polarized waves.
  • the radiating unit 12 is a unit that constitutes the basic structure of the antenna and can effectively radiate or receive electromagnetic waves.
  • the radiating unit 12 may be a patch antenna or a dipole antenna. This application does not limit the specific type of the radiating unit 12 .
  • the waveguide structure 11 , the microstrip structure and the radiation unit 12 can be stacked on the substrate to improve the integrity of the antenna 10 .
  • the substrate can be printed circuit boards (PCB) or flexible printed circuit board (FPC). This application does not limit the specific type and number of layers of the substrate.
  • the specific arrangement manner of the waveguide structure 11 may be diverse.
  • the first slot 11 a and the second slot 11 b in the slot pair 110 are located in the same waveguide 11 .
  • the positions of the first gap 11a and the second gap 11b can be reasonably set according to actual needs, so that the amplitudes of the electromagnetic waves leaked by the first gap 11a and the second gap 11b are the same.
  • the distances between the first slit 11a and the second slit 11b and the center line may be the same. Among them, the same refers to being roughly the same, not absolutely the same in a strict sense.
  • the first slit 11a and the second slit 11b may be located on the same side of the center line, or may be located on both sides of the center line.
  • the distance between the first slot 11a and the second slot 11b can also be reasonably set according to the required phase difference of the signal.
  • the distance between the first slit 11a and the second slit 11b may be 1/4 ⁇ .
  • is the wavelength of the signal propagating in the waveguide.
  • multiple slot pairs 110 may be provided to improve the radiation gain of the antenna 10 .
  • multiple (eight are shown in the figure) slot pairs 110 are provided along the length direction of the waveguide 11 .
  • the waveguide structure 11 includes a main waveguide 111 and a plurality of sub-waveguides arranged in parallel.
  • the main waveguide 111 has multiple output terminals 1111, and the input terminals and output terminals 1111 of the sub-waveguides are coupled in one-to-one correspondence.
  • the output ends 1111 of the main waveguide 111 are sequentially arranged along the length direction of the main waveguide 111 (from left to right in FIG. 11 ), and the multiple output ends 1111 are located at The same side of the main waveguide 111 (lower side in the figure).
  • the number of sub-waveguides is the same as the number of output ends 1111 of the main waveguide 111.
  • One end of each sub-waveguide i.e., the input end
  • the signal in the main waveguide 111 can pass through the output
  • the end 1111 propagates to each sub-waveguide, and then leaks outward through the gaps in each sub-waveguide.
  • the output end 1111 of the main waveguide 111 may be a gap.
  • the shape of the notch may be a rectangle, a circle, an ellipse or other polygonal shapes, and the specific shape of the notch is not specifically limited in this application.
  • the position of the output terminal 1111 can be reasonably set according to actual needs.
  • the distance between two adjacent output terminals 1111 may be 1/4 ⁇ .
  • is the wavelength of the signal propagating in the main waveguide 111. Therefore, the phase difference of the signals in two adjacent sub-waveguides is 90°. It can be understood that in specific applications, the relative distance between the output terminals 1111 can be reasonably set according to actual needs, and this application does not specifically limit this.
  • one slit can be shared between two adjacent slit pairs 110 .
  • the first gap 11a and the second gap 11b are a gap pair 110.
  • the first gap 11a feeds power to the radiation unit 12 through the first microstrip line 13, and the second gap 11b feeds power to the radiation unit 12 through the second microstrip line 14.
  • Unit 12 feeds power.
  • the first gap 11a' and the second gap 11b' are a gap pair 110'.
  • the first gap 11a' feeds the radiation unit 12' through the first microstrip line 13', and the second gap 11b' passes through the second microstrip line 14. 'Feeding power to the radiating unit 12'.
  • the first gap 11a feeds power to the radiation unit 12 through the first microstrip line 13
  • the second gap 11b feeds power to the radiation unit 12 through the second microstrip line 14
  • the second gap 11b feeds power to the radiation unit 12 through the first microstrip line 14.
  • the microstrip line 13' feeds power to the radiation unit 12'
  • the second gap 11b' feeds power to the radiation unit 12 through the second microstrip line 14'.
  • the first slit 11a' can be regarded as omitted, that is, one slit can be shared between two adjacent slit pairs 110.
  • the second gap 11b in Fig. 12 can also be regarded as the first gap 11a' in Fig. 11, and therefore, the second gap 11b can be regarded as being omitted.
  • the number of radiating units 12 can be effectively increased, thereby effectively increasing the layout density of the radiating units 12, which is beneficial to increasing the radiation gain of the antenna 10.
  • the two waveguides may form a sub-waveguide pair, that is, the first slot 11a and the second slot 11b in the slot pair 110 may be respectively located in the sub-waveguide pair.
  • the first sub-waveguide 112a and the second sub-waveguide 112b may form a sub-waveguide pair 1120, wherein the first sub-waveguide 112a has a first gap 11a, and the second sub-waveguide 112b has a second gap. 11b, the first slit 11a and the second slit 11b form a slit pair.
  • the first gap 11a is coupled with the first microstrip line 13
  • the second gap 11b is coupled with the second microstrip line 14
  • both the first microstrip line 13 and the second microstrip line 14 are fed with the radiation unit 12 connect.
  • the phases of the initial electromagnetic waves in the first sub-waveguide 112a or the second sub-waveguide 112b can be made different, so that the phase difference of the electromagnetic waves leaked from the first gap 11a and the second gap 11b can be adjusted.
  • the first sub-waveguide 112a and the second sub-waveguide 112b are connected to the same main waveguide 111.
  • Two output terminals 1111 are provided at intervals in the length direction of the main waveguide 111, namely an output terminal 1111a and an output terminal 1111b.
  • electromagnetic waves can propagate from one end (the lower left end in the figure) to the other end (the upper right end in the figure).
  • the electromagnetic wave in the main waveguide 111 , can also propagate from the other end (the upper right end in the figure) to one end (the lower left end in the figure).
  • the distance between the output end 1111a and the output end 1111b may be an odd multiple of 1/4 ⁇ , where ⁇ is the wavelength of the electromagnetic wave propagating in the main waveguide 111.
  • the phase difference between the electromagnetic waves of the first sub-waveguide 112a and the second sub-waveguide 112b may be 90°, the distance between the first slot 11a and the output end 1111a may be ⁇ , and the distance between the second slot 11b and the output end 1111b may be ⁇ . can be ⁇ , then the phase difference of the electromagnetic waves leaked from the first gap 11a and the second gap 11b is 90°.
  • the distance between the output terminal 1111a and the output terminal 1111b can be adjusted according to different needs, and the distance between the first gap 11a and the output terminal 1111a, and the distance between the second gap 11b and the output terminal 1111b can also be adjusted.
  • Reasonable adjustments should be made to the distance, which is not limited in this application.
  • the waveguide structure 11 may also include multiple sub-waveguide pairs 1120 , and the main waveguide 111 has multiple output ends for communicating with the first pair of sub-waveguides 1120 .
  • the sub-waveguide 112a or the second sub-waveguide 112b is coupled.
  • the output terminals in the main waveguide 111 will be described as the first output terminal 1111a and the second output terminal 1111b below.
  • the first output terminal 1111a is coupled with the input terminal of the first sub-waveguide 112a
  • the second output terminal 1111b is coupled with the input terminal of the second sub-waveguide 112b.
  • the first output end 1111a and the second output end 1111b of the main waveguide 111 are arranged in pairs and are arranged in pairs sequentially along the length direction of the main waveguide 111 , and, The first output terminal 1111a and the second output terminal 1111b are both located on the same side of the main waveguide 111.
  • the number of the first sub-waveguides 112a is the same as the number of the first output ends 1111a of the main waveguide 111.
  • Figure 17 shows the electric field intensity distribution of the signal in the waveguide structure 11.
  • the signal propagates from left to right.
  • the signal propagates from top to bottom.
  • one end (ie, the input end) of each first sub-waveguide 112a is coupled to the first output end 1111 of the main waveguide 111 in a one-to-one correspondence.
  • the signal in the main waveguide 111 can be propagated to each third sub-waveguide 111 through the first output end 1111.
  • One sub-waveguide 112a leaks outward from the first gap 11a of each first sub-waveguide 112a.
  • the number of second sub-waveguides 112b is the same as the number of second output ends 1111 of the main waveguide 111.
  • One end (ie, the input end) of each second sub-waveguide 112b is connected to the second output end 1111 of the main waveguide 111.
  • the signal in the main waveguide 111 can propagate to each second sub-waveguide 112b through the second output end 1111, and then leak outward through the second gap 11b of each second sub-waveguide 112b.
  • the first output end 1111 or the second output end 1111 of the main waveguide 111 may be a gap.
  • the shape of the notch may be a rectangle, a circle, an ellipse or other polygonal shapes, and the specific shape of the notch is not specifically limited in this application.
  • the positions of the first output terminal 1111 and the second output terminal 1111 can be reasonably set according to actual needs.
  • the distance between the first output terminal 1111 and the second output terminal 1111 may be 1/4 ⁇ .
  • is the wavelength of the electromagnetic wave propagating in the main waveguide 111. So that the phase difference of the electromagnetic waves in the first output terminal 1111 and the second output terminal 1111 is 90°. It can be understood that in specific applications, the relative distance between each output terminal 1111 can be reasonably set according to actual needs, and this application does not specifically limit this.
  • multiple output terminals 1111 can also be located on opposite sides of the main waveguide 111, wherein the first output terminal 1111 and the second output terminal 1111 arranged in pairs are located on the main waveguide. Same side of 111.
  • the sub-waveguides can be distributed in pairs on opposite sides of the main waveguide 111, thereby effectively reducing the input of the feed port (such as the main waveguide 111). end) to each radiating unit 12 (or each slot), thereby helping to reduce the insertion loss of the antenna 10.
  • two adjacent pairs of slits 110 share a slit.
  • the first gap 11a and the second gap 11b are a gap pair 110.
  • the first gap 11a feeds power to the radiation unit 12 through the first microstrip line 13, and the second gap 11b feeds power to the radiation unit 12 through the second microstrip line 14.
  • Unit 12 feeds power.
  • the first gap 11a' and the second gap 11b' are a gap pair 110'.
  • the first gap 11a' feeds the radiation unit 12' through the first microstrip line 13', and the second gap 11b' passes through the second microstrip line 14. 'Feeding power to the radiating unit 12'.
  • the first gap 11a feeds the radiation unit 12 through the first microstrip line 13
  • the second gap 11b feeds the radiation unit 12 and the radiation unit 12' through the second microstrip line 14, the second gap 11b '
  • the radiating element 12' is fed through the second microstrip line 14'.
  • Figure 19 By comparing Figure 16 and Figure 19, it can be seen that in Figure 19, it can be seen that in Figure 19, it can be seen that the first gap 11a' and the first microstrip line 13' are omitted, that is, one gap can be shared between two adjacent gap pairs. , In addition, a microstrip line can also be shared.
  • the second gap 11b in Figure 19 can also be regarded as the first gap 11a' in Figure 16; the second microstrip line 14 in Figure 19 can also be regarded as the first microstrip line 13' in Figure 16.
  • the number of radiating units 12 can be effectively increased, thereby effectively increasing the layout density of the radiating units 12, which is beneficial to increasing the radiation gain of the antenna 10.
  • each radiating unit 12 in order to improve the gain of the antenna 10, the radiation direction of each radiating unit 12 should be consistent.
  • the phases of each radiation unit 12 are equal (that is, the phase difference is 0°), or the phase difference is an integer multiple of 360°.
  • Figure 20 shows the electric field intensity distribution of the signal in the waveguide structure 11.
  • the signal propagates from left to right.
  • the signal propagates from top to bottom.
  • One end (i.e., the input end) of each first sub-waveguide 112a is coupled to the first output end 1111 of the main waveguide 111 in a one-to-one correspondence.
  • the signal in the main waveguide 111 can be propagated to each first sub-waveguide through the first output end 1111. 112a, and then leaks out through the first gap 11a of each first sub-waveguide 112a.
  • the number of second sub-waveguides 112b is the same as the number of second output ends 1111 of the main waveguide 111.
  • each second sub-waveguide 112b One end (ie, the input end) of each second sub-waveguide 112b is connected to the second output end 1111 of the main waveguide 111. With one-to-one coupling, the signal in the main waveguide 111 can propagate to each second sub-waveguide 112b through the second output end 1111, and then leak outward through the second gap 11b of each second sub-waveguide 112b.
  • the position of the first gap 11a and the second gap 11b in the gap pair, the length of the first microstrip line 13 and the second microstrip line 14, and the output end of the main waveguide 111 can be determined.
  • the relative position of 1111 is such that the phase difference of the electromagnetic waves fed into the corresponding radiation unit 12 is an odd multiple of 90°, so that the radiation unit 12 forms circularly polarized radiation.
  • the phase of the electromagnetic wave fed into the radiation unit 12 can also be adjusted through the phase shifter 15 .
  • a phase shifter 15a and a phase shifter 15b are included.
  • the first microstrip line 13 is connected to the radiation unit 12 through a phase shifter 15a
  • the second microstrip line 14 is connected to the radiation unit 12 through a phase shifter 15b.
  • the phase of the electromagnetic waves fed to the radiation unit 12 can be adjusted respectively by the phase shifter 15a and the phase shifter 15b, so that the phase difference of the electromagnetic waves fed into the radiation unit 12 is an odd multiple of 90°, so that the radiation unit 12 forms a circle. Polarized radiation.
  • FIG. 22 and FIG. 23 experimental simulation diagrams are respectively shown when the antenna 10 includes a single radiating unit.
  • the specific structure of the antenna 10 can be referred to FIG. 7 or FIG. 13 and will not be described again here.
  • the axial ratio bandwidth of the antenna is shown.
  • the abscissa represents frequency in GHz; the ordinate represents power in dB.
  • the operating bandwidth of the antenna is generally characterized by the frequency with a power below 3dB. It can be seen from the figure that the operating bandwidth of the antenna 10 is roughly between 28.05GHz and 30.45GHz. That is, the antenna has a larger working bandwidth and can meet actual use needs.
  • outline S1 represents the pattern pattern of the H plane (or magnetic plane).
  • the outline S2 represents the pattern pattern of the E plane (or electric plane). It can be seen from the figure that the antenna's pattern is well rounded and has good radiation gain in the angle range of -40° to 40°.
  • FIG. 24 an experimental simulation diagram is shown when the antenna 10 includes a plurality of radiation units.
  • the specific structure of the antenna 10 is shown in FIG. 16 and will not be described again here.
  • the abscissa represents frequency in GHz; the ordinate represents power in dB.
  • the operating bandwidth of the antenna is generally characterized by the frequency with a power below 3dB. It can be seen from the figure that the working bandwidth of the antenna 10 is roughly between 28.4GHz and 30.45GHz. That is, the antenna has a larger working bandwidth and can meet actual use needs.
  • the antenna 10 can be applied to many different types of communication devices.
  • the antenna 10 may be used in radar.
  • the radar may include a casing and any of the above-mentioned antennas 10 , and the antenna 10 may be disposed in the casing.
  • the housing in terms of electrical performance, has good electromagnetic wave penetration, so that it will not affect the normal transmission and reception of electromagnetic waves between the antenna 10 and the outside world.
  • the shell In terms of mechanical properties, the shell has good stress resistance and oxidation resistance, so that it can withstand the erosion of the harsh external environment, thereby providing good protection for the antenna 10 . It can be understood that in specific applications, the specific shape and material of the housing can be reasonably set according to actual conditions, and this application does not limit this.
  • radar can be applied in terminals such as vehicles, ships, satellites, flights or drones, so that functions such as wireless signal transmission or navigation can be realized.
  • This application does not limit the specific application scenarios of radar (or antenna).

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供了一种天线、雷达和终端,涉及通信技术领域,以解决高增益圆极化天线阵列的设计难题。本申请提供的天线包括波导结构、辐射单元和微带结构,波导结构具有第一缝隙和第二缝隙,第一缝隙的长度方向与第二缝隙的长度方向平行;微带结构可以包括第一微带线和第二微带线,第一微带线的第一馈电部与第二微带线的第二馈电部正交设置;第一微带线与第一缝隙耦合,第一馈电部与辐射单元馈电连接;第二微带线与第二缝隙耦合,第二馈电部与辐射单元馈电连接。本申请提供的天线中,第一缝隙和第二缝隙的长度方向相同,第一馈电部与第二馈电部正交设置,从而使辐射单元能够产生圆极化波,能够降低圆极化天线的设计难度,提高圆极化天线的增益。

Description

一种天线、雷达和终端
相关申请的交叉引用
本申请要求在2022年03月31日提交中国专利局、申请号为202210344863.5、申请名称为“一种天线、雷达和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线、雷达和终端。
背景技术
圆极化波可以被各种线极化天线所接收,具有广泛的适用性。圆极化波应用于移动通信时能抑制雨雾干扰和抗多径反射,因此,在卫星通信、导航等领域中被广泛应用。圆极化波是一种等幅旋转场,它可以分解为两个正交等幅、相位相差90°的线极化波。
在实际应用中,多种不同类型的天线均能产生圆极化波。例如,在波导缝隙天线中,通常是在波导上开设两个相互垂直的缝隙,波导内的电磁波能够通过缝隙泄露信号以向外传播。通过调整两个缝隙之间的距离能使泄露信号的幅度相等、且相位相差90°,从而产生圆极化波。但是,这种结构设置不利于控制从缝隙中泄露的信号的相位和幅度,不能保证圆极化性能。并且,两个缝隙必须相互垂直,这对波导内传播的电磁波的扰动较大,泄露的能量比较大,会加速波导内电磁波的衰减,不利于保证天线的增益。
发明内容
本申请提供了一种能有效保证圆极化性能,有利于提高增益的天线、雷达和终端。
一方面,本申请提供了一种天线,可以包括波导结构、辐射单元和微带结构。波导结构具有用于泄露电磁波的缝隙对,缝隙对包括第一缝隙和第二缝隙,第一缝隙的长度方向与第二缝隙的长度方向平行。辐射单元用于发射或接收电磁波。微带结构可以包括第一微带线和第二微带线,第一微带线具有第一馈电部,第二微带线具有第二馈电部,第一馈电部与第二馈电部正交设置,第一馈电部的电磁波与第二馈电部的电磁波的相位差为90°的奇数倍。其中,第一微带线与第一缝隙耦合,且第一馈电部与辐射单元馈电连接;第二微带线与第二缝隙耦合,且第二馈电部与辐射单元馈电连接。
概括来说,第一缝隙和第二缝隙泄露的信号的幅度和极化方向均相同,信号在第一微带线和第二微带线中传播时,由于第一馈电部和第二馈电部正交设置,因此,两个信号的极化方向会从相同的状态改变为正交状态。另外,两个信号在馈入辐射单元时,相位相差90°,从而能激发辐射单元产生圆极化波。
在本申请实施例提供的天线中,第一缝隙和第二缝隙的长度方向相同,即第一缝隙和第二缝隙相互平行,能够降低设计难度,可以有效降低第一缝隙和第二缝隙对波导结构中传播的信号的扰动,有利于保证信号的传输质量。另外,能够降低信号从第一缝隙和第二缝隙中泄露的幅度,从而有利于提升天线的增益。另一方面,第一馈电部与第二馈电部正 交设置,可以通过微带结构对电磁波的极化方向进行调整,以使馈入辐射单元的两个信号的方向能够相互垂直,从而使辐射单元能够产生圆极化波。
在一种示例中,波导结构可以包括子波导,缝隙对中的第一缝隙和第二缝隙可以均位于子波导。或者,也可以理解为,第一缝隙和第二缝隙可以位于同一个子波导中。
另外,在具体设置时,波导结构可以包括多个子波导,并且,多个子波导可以并列设置。
另外,在具体设置时,波导结构还可以包括主波导,主波导具有多个输出端,且多个子波导的输入端与多个输出端一一对应耦合。信号(或电磁波)可以由主波导的一端输入主波导,并在主波导内进行传播。在传播过程中,信号可以经输出端传播至子波导中。
在实际应用时,可以通过调整输出端的位置来调整传播至子波导中的信号的相位。
另外,当子波导的数量为多个时,缝隙对中的第一缝隙和第二缝隙可以分别位于不同的子波导中。
例如,在多个子波导中的两个子波导可以组成子波导对。子波导对中的一个子波导可以称为第一子波导,另一个子波导可以称为第二子波导。其中,第一缝隙位于第一子波导,第二缝隙位于第二子波导。
当然,波导结构包括多个子波导对,且多个子波导对并列设置。
另外,波导结构还可以包括主波导,主波导包括多个成对设置的第一输出端和第二输出端。多个第一子波导的输入端与多个第一输出端一一对应耦合;多个第二子波导的输入端与多个第二输出端一一对应耦合。
在对第一输出端和第二输出端进行设置时,多个成对设置的第一输出端和第二输出端分布在主波导的相互背离的两侧。以便于缩短主波导的长度,有利于降低主波导的输入端与子波导的输入端之间的传播路径。
另外,在具体设置时,在相邻的两个缝隙对中,可以共用第一缝隙或第二缝隙。通过共用缝隙的设置方式,可以有效降低缝隙的设置数量。另外,还有助于提升天线的布板密度。
在对天线的结构进行具体设置时,天线中的波导结构、辐射单元和微带结构可以层叠设置。当然,在具体实施时,波导结构、辐射单元和微带结构的相对位置可以根据实际情况进行灵活设置,本申请对此不作限定。
另外,在一种示例中,天线还可以包括移相器。移相器与第一微带线或第二微带线连接,用于调整馈电至辐射单元的电磁波的相位。
概括来说,在实际应用中,可以通过对缝隙对中的第一缝隙和第二缝隙的位置、第一微带线和第二微带线的长度、主波导的输出端的相对位置来使馈入对应的辐射单元的电磁波的相位差为90°的奇数倍,使辐射单元形成圆极化辐射。
另一方面,本申请还提供了一种雷达,可以包括壳体和上述任一种天线,天线可以设置在壳体内。
其中,在电气性能上,壳体具有良好的电磁波穿透性,从而不会影响到天线与外界之间电磁波的正常收发。在机械性能上,壳体具有良好的受力性和抗氧化等性能,从而能够经受外界恶劣环境的侵蚀,从而可以对天线起到良好的保护作用。可以理解的是,在具体应用时,壳体的具体形状和材质可以根据实际情况进行合理设置,本申请对此不作限定。
另一方面,本申请还提供了一种终端,可以包括控制器和上述的雷达,控制器可以与 天线连接。具体的,控制器可以与天线中的波导结构连接,以控制天线的工作状态进行有效控制。其中,终端可以是车辆、船舶、卫星、飞行或无人机等,本申请对雷达(或天线)的具体应用场景不作限制。
附图说明
图1为本申请实施例提供的一种天线的应用场景示意图;
图2为本申请实施例提供的另一种天线的应用场景示意图;
图3为本申请实施例提供的一种常规的天线的平面结构示图;
图4为本申请实施例提供的一种矩形波导的缝隙天线的立体结构示意图;
图5为本申请实施例提供的另一种矩形波导的缝隙天线的平面结构示意图;
图6为信号在图5中示出的矩形波导的缝隙天线中传播时的电场分布示意图;
图7为本申请实施例提供的一种天线的立体结构示意图;
图8为本申请实施例提供的一种天线的剖面结构示意图;
图9为本申请实施例提供的一种天线的局部平面结构示意图;
图10为本申请实施例提供的另一种天线的局部平面结构示意图;
图11为本申请实施例提供的另一种天线的平面结构示意图;
图12为本申请实施例提供的另一种天线的平面结构示意图;
图13为本申请实施例提供的另一种天线的局部立体结构示意图;
图14为信号在图13中示出的波导结构中传播时的电场分布示意图;
图15为信号在图13中示出的波导结构中传播时的另一种电场分布示意图;
图16为本申请实施例提供的另一种天线的平面结构示意图;
图17为信号在图16中示出的波导结构中传播时的电场分布示意图;
图18为本申请实施例提供的另一种天线的平面结构示意图;
图19为本申请实施例提供的另一种天线的平面结构示意图;
图20为信号在图19中示出的波导结构中传播时的电场分布示意图;
图21为本申请实施例提供的另一种天线的平面结构示意图;
图22为本申请实施例提供的一种天线的仿真数据图;
图23为本申请实施例提供的一种天线的方向图;
图24为本申请实施例提供的另一种天线的仿真数据图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的天线,下面首先介绍一下其应用场景。
本申请实施例提供的天线可以应用在卫星通信系统和地面通信系统等场景中。具体的,天线可以应用在长期演进系统(long termevolution,LTE),第五代(5th generation,5G)新空口(new radio,NR)通信系统,以及未来的如第六代(6th generation,6G)星地一体化通信系统中。
例如,如图1所示,在本申请实施例提供的一种应用场景中,可以包括卫星以及飞机、 卫星移动车、便携式卫星站、轮船等。在上述的卫星、飞机、卫星移动车、便携式卫星站及轮船中均可以配备天线,以实现各设备与卫星之间的无线通信。
或者,如图2所示,在本申请实施例提供另一种应用场景中,可以包括基站和终端。基站和终端之间可以实现无线通信。该基站可以位于基站子系统(base bastion subsystem,BBS)、陆地无线接入网(UMTS terrestrial radio access network,UTRAN)或者演进的陆地无线接入网(evolved universal terrestrial radio access,E-UTRAN)中,用于进行无线信号的小区覆盖以实现终端设备与无线网络之间的通信。具体来说,基站可以是全球移动通信系统(global system for mobile communication,GSM)或(code division multiple access,CDMA)系统中的基地收发台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的节点B(NodeB,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型节点B(evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。或者该基站也可以为中继站、接入点、车载设备、可穿戴设备以及新无线(new radio,NR)系统中的g节点(gNodeB或者gNB)或者未来演进的网络中的基站等,本申请实施例并不限定。
在实际应用中,天线可以产生圆极化波。其中,圆极化波可以被各种线极化天线所接收,具有广泛的适用性。圆极化波应用于移动通信时能抑制雨雾干扰和抗多径反射,因此,在卫星通信、导航等领域中被广泛应用。圆极化波是一种等幅旋转场,它可以分解为两个正交等幅、相位相差90°的奇数倍的线极化波。
在实际应用中,多种不同类型的天线均能产生圆极化波。
例如,如图3所示,在波导缝隙天线01中,通常是在波导011的表面开设两个相互垂直的缝隙012和缝隙013,波导011内的信号(或电磁波)能够通过缝隙012和缝隙013泄露,形成向外传播的线极化波。通过调整缝隙012和缝隙013的位置可以使泄露信号的极化方向相互垂直、幅度相等且相位相差90°,从而形成圆极化波。但是,在实际应用时,这种结构设置不利于控制从缝隙012和缝隙013中泄露的电磁波的相位和幅度,不能保证圆极化性能。并且,缝隙012和缝隙013必须相互垂直才能产生极化方向相互垂直的线极化波,因此,具有较高的加工精度要求。另外,相互垂直的缝隙012和缝隙013对波导011内传播的电磁波的扰动较大,泄露的能量比较大,会加速波导011内电磁波的衰减,不利于保证天线01的增益。
为此,本申请实施例提供了一种能有效保证圆极化性能,有利于提高增益的天线。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图和具体实施例对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”和“该”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施方式中”、“在另外的实施方式中”等不是必然都参 考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了便于理解本申请技术方案,下面将首先说明波导缝隙天线的辐射特性。
波导缝隙天线的工作原理是通过在波导表面开设缝隙,以改变波导表面的电流分布,使波导中传播的信号(或电磁波)从缝隙中泄露出来形成天线辐射。
如图4所示,示出了一种矩形波导的缝隙天线01的立体结构示意图。信号(或电磁波)可以从波导011的一端馈入波导011内,以使信号能够沿波导011的长度方向向另一端进行传播,并且,由于波导011的表面开设有缝隙012,因此,信号在波导011内传播的过程中会不断的从缝隙012泄露。其中,缝隙012的开设位置和缝隙012之间的相对位置会影响到波导缝隙天线01的辐射性能。
具体来说,图5为图4的俯视图。图5中,虚线表示的是波导011的中线,中线也可以理解为沿波导011的长度方向的虚拟对称线。以其中某一个缝隙012为例,缝隙012距离波导中线的距离为s,通过调整s的大小可以调整信号从缝隙012中泄露的幅度大小。一般s越大,泄露信号的幅度也越大;s越小,泄露信号的幅度也就越小。当s为零时,缝隙012不会改变波导011表面的电流分布,此时,信号不会从缝隙012中泄露。
如图6所示,示出了信号在波导011内传播时的电场分布情况,信号在波导中从左到右传播。从图中来看,电场强度由左到右依次衰减。如果需要设计更高增益的波导缝隙天线01,则可以适当的降低缝隙12与中线之间的距离,并增加缝隙012的设置数量,使单个的缝隙012泄露的信号的幅度变小,并让更多的缝隙012参与辐射。
另外,在图5中的示例中,相邻的两个缝隙012之间的距离d=λ/2,其中,λ为电磁波在波导011中传播的波长。如果两个缝隙012位于中线的同一侧,则两个缝隙泄露的信号的相位差为180°,此时,辐射的信号会朝向波导011的一端辐射。如果两个缝隙012位于中线的两侧,两个缝隙012泄露的信号的相位差为零,此时,辐射的信号会朝向波导011的法向辐射。概括来说,当两个缝隙012泄露的电磁波的相位差为180°的奇数倍时,电磁波的辐射方向与波导011的长度方向一致。当两个缝隙012泄露的电磁波的相位差为0°或360°时,电磁波的辐射方向与波导011的法向一致。因此,在实际应用中,可以通过调整两个缝隙011泄露电磁波的相位差来调整电天线01的辐射方向。
下面,将结合附图和实施例对本申请提供的天线进行详细说明。
如图7所示,在本申请提供的一种示例中,天线10可以包括波导结构11、辐射单元12和微带结构(图中未标示出)。波导结构11包括用于泄露幅度大致相同的电磁波的缝隙对110。具体的,缝隙对110包括第一缝隙11a和第二缝隙11b,第一缝隙11a的长度方向与第二缝隙11b的长度方向平行,从而可以降低信号在波导内传播时造成的扰动,以便于提升天线10的增益等性能。另外,微带结构包括第一微带线13和第二微带线14。第一微带线13与第一缝隙11a耦合,以使波导结构11中的信号能够通过第一缝隙11a耦合至第一微带线13,第一微带线13具有第一馈电部(图中未示出),第一馈电部与辐射单元12馈电连接,从而可以使辐射单元12向外辐射信号。第二微带线14与第二缝隙11b耦合,以使波导结构11中的信号能够通过第二缝隙11b耦合至第二微带线14,第二微带线14具有第二馈电部(图中未示出),第二馈电部与辐射单元12馈电连接,从而可以使辐射单元12向外辐射信号。另外,由于第一馈电部和第二馈电部正交设置,从而可以使馈入辐射单 元12的信号的极化方向相互垂直。另外,第一馈电部的电磁波与第二馈电部的电磁波的相位差为90°的奇数倍,以使辐射单元12能够产生圆极化波。概括来说,第一缝隙11a和第二缝隙11b泄露的信号的幅度和极化方向均相同,信号在第一微带线13和第二微带线14中传播时,由于第一馈电部和第二馈电部正交设置,因此,两个信号的极化方向会从相同的状态改变为正交状态。另外,两个信号在馈入辐射单元12时,相位相差90°,从而能激发辐射单元12产生圆极化波。
在本申请实施例提供的天线中,缝隙对110中的第一缝隙11a和第二缝隙11b的长度方向相同,即第一缝隙11a和第二缝隙11b相互平行,能够降低设计难度,可以有效降低第一缝隙11a和第二缝隙11b对波导结构11中传播的信号的扰动,有利于保证信号的传输质量;另外,能够降低信号从第一缝隙11a和第二缝隙11b中泄露的幅度,从而有利于提升天线10的增益。另一方面,第一馈电部与第二馈电部正交设置,可以通过微带结构对电磁波的极化方向进行调整,以使馈入辐射单元12的两个信号的极向能够相互垂直,从而使辐射单元12能够产生圆极化波。
需要说明的是,耦合指的是两个部件之间信号或能量的有效连接,而并不是对连接方式的具体限定。在实际应用中,可以通过多种不同的连接结构实现两个部件之间的耦合,本申请对此不作限定。
对于波导结构11,在实际应用时,波导结构11可以是金属波导,也可以是基片集成波导等类型,本申请对波导结构11的具体类型和形状不作限制。
对于第一微带线13和第二微带线14,在实际应用中,第一微带线13和第二微带线14的类型可以是相同的,以保证信号在第一微带线13和第二微带线14中进行传播时的一致性。另外,第一馈电部和第二馈电部指的是向辐射单元12进行馈电的部位,而并不是指第一微带线13和第二微带线14上的特定结构。在实际应用中,第一微带线13与辐射单元12之间可以采用直接馈电的方式进行连接。例如,第一微带线13可以与辐射单元12电连接。或者,第一微带线13与辐射单元12之间也可以采用间接馈电的方式进行连接。例如,第一微带线13与辐射单元12可以不直接接触,第一微带线13中的信号可以辐射至辐射单元12。另外,第二微带线14与辐射单元12之间实现馈电连接的方式可以与第一微带线13与辐射单元12之间的馈电连接方式相同或类似,在此不作赘述。
另外,第一馈电部与第二馈电部正交设置的具体方式也可以是多样的。
例如,可以将直线状的第一微带线13和第二微带线14进行弯折,以使第一馈电部和第二馈电部在空间上正交。或者,可以理解的是,由于第一微带线13和第二微带线14中传播的信号均为线极化电磁波,并且,信号由第一缝隙11a和第二缝隙11b泄露时的极化方向相同,因此,第一馈电部与第二馈电部正交设置后,第一馈电部和第二馈电部馈入辐射单元12的两个信号的极化方向相互垂直。
在具体设置时,可以将第一微带线13和第二微带线14分别弯折45°,以使第一馈电部与第二馈电部正交。或者,也可以将第一微带线13弯折90°,第二微带线14不进行弯折。或者,可以将第一微带线13弯折30°,将第二微带线14弯折60°。可以理解的是,在实际应用时,可以根据实际需求对第一微带线13和第二微带线14的具体形状进行合理设置,以使第一馈电部和第二馈电部正交,本申请对此不作具体限定。
另外,通过调整第一微带线13和第二微带线14的长度也可以调整馈入辐射单元12的信号的相位。例如,当第一微带线13和第二微带线14的长度相同时,信号在第一微带 线13和第二微带线14中传播的距离相同,因此,不会对两个信号的相位产生差异。当第一微带线13和第二微带线14的长度不相同时,则信号在第一微带线13的第二微带线14中传播的距离不相同,因此,两个信号的相位会产生差异。
具体来说,假设第一微带线13和第二微带线14为相同的结构类型,且第一微带线13的长度为3/4,第二微带线14的长度为λ,其中,λ为电磁波在第一微带线13或第二微带线14中传播的波长。若信号在传入第一微带线13和第二微带线14时的相位均为0°,则信号由第一微带线13传出时的相位为270°,信号由第二微带线14传出时的相位为360°,两个信号的相位会相差90°。因此,通过对第一微带线13和第二微带线14的长度进行合理设置,也可以改变馈入辐射单元12的信号的相位差,从而使相位差为90°,以使辐射单元12能够产生圆极化波。
对于辐射单元12,它是构成天线基本结构的单元,能够有效的辐射或接收电磁波。在具体应用时,辐射单元12可以是贴片天线或偶极子天线等类型,本申请对辐射单元12的具体类型不作限制。
另外,如图8所示,在具体设置时,波导结构11、微带结构和辐射单元12可以堆叠设置在基板上,以提升天线10的一体性。其中,基板可以是印制电路板(printed circuit boards,PCB)或柔性电路板(flexible printed circuit,FPC)等类型,本申请对基板的具体类型和层数不作限制。
在具体实施时,波导结构11的具体设置方式可以是多样的。
例如,如图9所示,在本申请提供的一种示例中。缝隙对110中的第一缝隙11a和第二缝隙11b位于同一个波导11中。
在具体设置时,可以根据实际需求对第一缝隙11a和第二缝隙11b的位置进行合理设置,以使第一缝隙11a和第二缝隙11b泄露的电磁波的幅度相同。例如,第一缝隙11a和第二缝隙11b与中线(图中的虚线)之间的距离可以相同。其中,该相同指的是大致相同,并不是严格意义上的绝对相同。另外,在具体设置时,第一缝隙11a和第二缝隙11b可以位于中线的同一侧,也可以位于中线的两侧。
另外,在波导11的长度方向上,第一缝隙11a和第二缝隙11b之间的距离也可以根据所需的信号的相位差进行合理设置。
例如,当需要第一缝隙11a和第二缝隙11b之间的相位差为90°时,第一缝隙11a和第二缝隙11b之间的距离可以是1/4λ。其中,λ为信号在波导中传播的波长。
另外,在实际应用时,缝隙对110可以设置多个,以便于提升天线10的辐射增益。
例如,如图10所示,在本申请提供的一种示例中,沿波导11的长度方向设有多个(图中示出有八个)缝隙对110。
另外,如图11所示,在本申请提供的另一种示例中,波导结构11包括主波导111和多个并列设置的子波导。主波导111具有多个输出端1111,并且,子波导的输入端与输出端1111一一对应耦合。
具体来说,在图11中示出的示例中,主波导111的输出端1111沿主波导111的长度方向(如图11中由左到右)依次设置,并且,多个输出端1111均位于主波导111的同一侧(如图中的下侧)。子波导的设置数量与主波导111的输出端1111的设置数量相同,每个子波导的一端(即输入端)与主波导111的输出端1111一一对应耦合,主波导111内的信号可以通过输出端1111传播至每个子波导,再由每个子波导的缝隙向外泄露。
在具体应用时,主波导111的输出端1111具体可以是缺口。其中,缺口的形状可以是矩形、圆形、椭圆形或其他的多边形,本申请对缺口的具体形状不作具体限定。
另外,输出端1111的位置可以根据实际需求进行合理设置。
例如,相邻的两个输出端1111之间的距离可以是1/4λ。其中,λ为信号在主波导111中传播的波长。以使,相邻的两个子波导中信号的相位相差90°。可以理解的是,在具体应用时,可以根据实际需求对输出端1111之间的相对距离进行合理设置,本申请对此不作具体限定。
另外,如图12所示,在本申请提供的另一个示例中,在相邻的两个缝隙对110中,可以共用一条缝隙。
具体来说,请结合参阅图11和图12。
在图11中,第一缝隙11a和第二缝隙11b为缝隙对110,第一缝隙11a通过第一微带线13向辐射单元12馈电,第二缝隙11b通过第二微带线14向辐射单元12馈电。第一缝隙11a’和第二缝隙11b’为缝隙对110’,第一缝隙11a’通过第一微带线13’向辐射单元12’馈电,第二缝隙11b’通过第二微带线14’向辐射单元12’馈电。
在图12中,第一缝隙11a通过第一微带线13向辐射单元12馈电,第二缝隙11b通过第二微带线14向辐射单元12馈电,并且,第二缝隙11b通过第一微带线13’向辐射单元12’馈电,第二缝隙11b’通过第二微带线14’向辐射单元12馈电。
通过对比图11和图12可以看出,在图12中,可以看作省略了第一缝隙11a’,即在相邻的两个缝隙对110中,可以共用一条缝隙。当然,图12中的第二缝隙11b也可以看作图11中的第一缝隙11a’,因此,可以看作省略了第二缝隙11b。
通过共用缝隙,可以有效提升辐射单元12的设置数量,从而可以有效提升辐射单元12的布板密度,有利于提升天线10的辐射增益。
当然,当波导结构11中包括至少两个子波导时,两个波导可以组成子波导对,即缝隙对110中的第一缝隙11a和第二缝隙11b可以分别位于子波导对中。
具体来说,如图13所示,第一子波导112a和第二子波导112b可以组成子波导对1120,其中,第一子波导112a具有第一缝隙11a,第二子波导112b具有第二缝隙11b,第一缝隙11a和第二缝隙11b组成缝隙对。
其中,第一缝隙11a与第一微带线13耦合,第二缝隙11b与第二微带线14耦合,并且,第一微带线13和第二微带线14均与辐射单元12馈电连接。
在具体应用时,可以使第一子波导112a或第二子波导112b中初始电磁波的相位不相同,从而可以调整从第一缝隙11a和第二缝隙11b中泄露的电磁波的相位差。
例如,如图13所示,在本申请提供的一种示例中,第一子波导112a和第二子波导112b与同一个主波导111连接。在主波导111的长度方向间隔设有两个输出端1111,分别为输出端1111a和输出端1111b。
如图14所示,在主波导111内,电磁波可以由一端(如图中的左下端)向另一端(如图中的右上端)传播。
或者,如图15所示,在主波导111内,电磁波也可以由另一端(如图中的右上端)向一端(如图中的左下端)传播。
输出端1111a和输出端1111b之间的距离可以是1/4λ的奇数倍,其中,λ为电磁波在主波导111中传播的波长。
第一子波导112a和第二子波导112b的电磁波的相位差可以是90°,第一缝隙11a与输出端1111a之间的距离可以为λ,第二缝隙11b与输出端1111b之间的距离也可以为λ,则从第一缝隙11a和第二缝隙11b中泄露的电磁波的相位差为90°。
在实际应用中,可以根据不同需求对输出端1111a和输出端1111b之间的距离进行调整,也可以对第一缝隙11a与输出端1111a之间的距离、第二缝隙11b与输出端1111b之间的距离进行合理调整,本申请对此不作限定。
另外,如图16所示,在本申请提供的另一个示例中,波导结构11还可以包括多个子波导对1120,主波导111具有多个输出端,用于与子波导对1120中的第一子波导112a或第二子波导112b耦合。
需要说明的是,为了便于理解本申请技术方案,以下将主波导111中的输出端描述为第一输出端1111a和第二输出端1111b。其中,第一输出端1111a与第一子波导112a的输入端耦合,第二输出端1111b与第二子波导112b的输入端耦合。
具体来说,在图16中示出的示例中,主波导111的第一输出端1111a和第二输出端1111b成对设置,并沿主波导111的长度方向成对的依次设置,并且,第一输出端1111a和第二输出端1111b均位于主波导111的同一侧。第一子波导112a的设置数量与主波导111的第一输出端1111a的设置数量相同。
图17示出信号在波导结构11中的电场强度分布。其中,在主波导111中,信号由左向右传播。在每个子波导中,信号由上向下传播。具体的,每个第一子波导112a的一端(即输入端)与主波导111的第一输出端1111一一对应耦合,主波导111内的信号可以通过第一输出端1111传播至每个第一子波导112a,再由每个第一子波导112a的第一缝隙11a向外泄露。相应的,第二子波导112b的设置数量与主波导111的第二输出端1111的设置数量相同,每个第二子波导112b的一端(即输入端)与主波导111的第二输出端1111一一对应耦合,主波导111内的信号可以通过第二输出端1111传播至每个第二子波导112b,再由每个第二子波导112b的第二缝隙11b向外泄露。
在具体应用时,主波导111的第一输出端1111或第二输出端1111具体可以是缺口。其中,缺口的形状可以是矩形、圆形、椭圆形或其他的多边形,本申请对缺口的具体形状不作具体限定。
另外,第一输出端1111和第二输出端1111的位置可以根据实际需求进行合理设置。
例如,在一个成对设置的第一输出端1111和第二输出端1111中,第一输出端1111与第二输出端1111之间的距离可以是1/4λ。其中,λ为电磁波在主波导111中传播的波长。以使第一输出端1111和第二输出端1111中电磁波的相位相差为90°。可以理解的是,在具体应用时,可以根据实际需求对每个输出端1111之间的相对距离进行合理设置,本申请对此不作具体限定。
另外,如图18所示,在具体设置时,多个输出端1111也可以位于主波导111的相对的两侧,其中,成对设置的第一输出端1111和第二输出端1111位于主波导111的同一侧。
当第一子波导112a和第二子波导112b与主波导111耦合后,子波导可以成对的分布在主波导111的相对的两侧,从而可以有效减少馈电端口(如主波导111的输入端)到每个辐射单元12(或每个缝隙)的平均距离,从而有利于降低天线10的插损。
另外,如图19所示,在本申请提供的另一个示例中,在相邻的两个缝隙对110中,共用一条缝隙。
具体来说,请结合参阅图16和图19。
在图16中,第一缝隙11a和第二缝隙11b为缝隙对110,第一缝隙11a通过第一微带线13向辐射单元12馈电,第二缝隙11b通过第二微带线14向辐射单元12馈电。第一缝隙11a’和第二缝隙11b’为缝隙对110’,第一缝隙11a’通过第一微带线13’向辐射单元12’馈电,第二缝隙11b’通过第二微带线14’向辐射单元12’馈电。
在图19中,第一缝隙11a通过第一微带线13向辐射单元12馈电,第二缝隙11b通过第二微带线14向辐射单元12和辐射单元12’馈电,第二缝隙11b’通过第二微带线14’向辐射单元12’馈电。
通过对比图16和图19可以看出,在图19中,可以看作省略了第一缝隙11a’以及第一微带线13’,即在相邻的两个缝隙对中,可以共用一条缝隙,另外,也可以共用一条微带线。当然,图19中的第二缝隙11b也可以看作图16中的第一缝隙11a’;图19中的第二微带线14也可以看作图16中的第一微带线13’。
通过共用缝隙和微带线,可以有效提升辐射单元12的设置数量,从而可以有效提升辐射单元12的布板密度,有利于提升天线10的辐射增益。
另外,在实际应用中,为了提高天线10的增益,每个辐射单元12的辐射方向应该保持一致。一般情况下,使辐射单元12产生的电磁波沿法向传播,这就要求每个辐射单元12的相位相等(即相位差为0°),或者,相位差为360°的整数倍。
图20示出信号在波导结构11中的电场强度分布。其中,在主波导111中,信号由左向右传播。在每个子波导中,信号由上向下传播。每个第一子波导112a的一端(即输入端)与主波导111的第一输出端1111一一对应耦合,主波导111内的信号可以通过第一输出端1111传播至每个第一子波导112a,再由每个第一子波导112a的第一缝隙11a向外泄露。相应的,第二子波导112b的设置数量与主波导111的第二输出端1111的设置数量相同,每个第二子波导112b的一端(即输入端)与主波导111的第二输出端1111一一对应耦合,主波导111内的信号可以通过第二输出端1111传播至每个第二子波导112b,再由每个第二子波导112b的第二缝隙11b向外泄露。
概括来说,在实际应用中,可以通过对缝隙对中的第一缝隙11a和第二缝隙11b的位置、第一微带线13和第二微带线14的长度、主波导111的输出端1111的相对位置来使馈入对应的辐射单元12的电磁波的相位差为90°的奇数倍,使辐射单元12形成圆极化辐射。
或者,在一些方式中,还可以通过移相器15来调整馈入辐射单元12的电磁波的相位。
具体的,如图21所示,在本申请提供的一种示例中,包括移相器15a和移相器15b。第一微带线13通过移相器15a与辐射单元12连接,第二微带线14通过移相器15b与辐射单元12连接。通过移相器15a和移相器15b可以分别调整馈电至所述辐射单元12的电磁波的相位,使馈入辐射单元12的电磁波的相位差为90°的奇数倍,使辐射单元12形成圆极化辐射。
另外,如图22和图23所示,分别示出了当天线10中包括单个辐射单元时的实验仿真图,其中,天线10的具体结构可以参考图7或图13,在此不作赘述。
如图22所示,示出了天线的轴比带宽。图中,横坐标表示频率,单位为GHz;纵坐标表示功率,单位为dB。在实际应用中,一般以功率为3dB以下的频率来表征天线的工作带宽。从图中可以看出,天线10的工作带宽大致为28.05GHz-30.45GHz之间。即天线具有较大的工作带宽,能满足实际使用需求。
另外,如图23所示,示出了天线的辐射方向图。图23中,轮廓S1表示H面(或磁面)的方向图图形。轮廓S2表示E面(或电面)的方向图图形。从图中可以看出,天线的方向图圆度较好,在-40°至40°的角度范围内具有较好的辐射增益。
另外,如图24所示,示出了当天线10中包括多个辐射单元时的实验仿真图。其中,天线10的具体结构看恶意参考图16,在此不作赘述。
图24中,横坐标表示频率,单位为GHz;纵坐标表示功率,单位为dB。在实际应用中,一般以功率为3dB以下的频率来表征天线的工作带宽。从图中可以看出,天线10的工作带宽大致为28.4GHz-30.45GHz之间。即天线具有较大的工作带宽,能满足实际使用需求。
另外,在实际应用中,天线10可以应用到多种不同类型的通信设备中。
例如,天线10可以应用到雷达中。雷达可以包括壳体和上述任一种天线10,天线10可以设置在壳体内。其中,在电气性能上,壳体具有良好的电磁波穿透性,从而不会影响到天线10与外界之间电磁波的正常收发。在机械性能上,壳体具有良好的受力性和抗氧化等性能,从而能够经受外界恶劣环境的侵蚀,从而可以对天线10起到良好的保护作用。可以理解的是,在具体应用时,壳体的具体形状和材质可以根据实际情况进行合理设置,本申请对此不作限定。
其中,雷达可以应用在车辆、船舶、卫星、飞行或无人机等终端中,从而可以实现无线信号传输或导航等功能,本申请对雷达(或天线)的具体应用场景不作限制。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种天线,其特征在于,包括:
    波导结构,具有用于泄露电磁波的缝隙对,所述缝隙对包括第一缝隙和第二缝隙,所述第一缝隙的长度方向与所述第二缝隙的长度方向平行;
    辐射单元,用于发射或接收电磁波;
    微带结构,包括第一微带线和第二微带线,所述第一微带线具有第一馈电部,所述第二微带线具有第二馈电部,所述第一馈电部与所述第二馈电部正交设置,所述第一馈电部的电磁波与所述第二馈电部的电磁波的相位差为90°的奇数倍;
    其中,所述第一微带线与所述第一缝隙耦合,且所述第一馈电部与所述辐射单元馈电连接;所述第二微带线与所述第二缝隙耦合,且所述第二馈电部与所述辐射单元馈电连接。
  2. 根据权利要求1所述的天线,其特征在于,所述波导结构包括子波导,所述缝隙对中的所述第一缝隙和所述第二缝隙均位于所述子波导。
  3. 根据权利要求1或2所述的天线,其特征在于,所述波导结构包括多个所述子波导,且多个所述子波导并列设置。
  4. 根据权利要求3所述的天线,其特征在于,所述波导结构还包括主波导,所述主波导具有多个输出端,且多个所述子波导的输入端与多个所述输出端一一对应耦合。
  5. 根据权利要求4所述的天线,其特征在于,所述输出端分布在所述主波导的相互背离的两侧。
  6. 根据权利要求1所述的天线,其特征在于,所述波导结构包括子波导对,所述子波导对包括第一子波导和第二子波导;
    其中,所述第一缝隙位于所述第一子波导,所述第二缝隙位于所述第二子波导。
  7. 根据权利要求6所述的天线,其特征在于,所述波导结构包括多个所述子波导对,且多个所述子波导对并列设置。
  8. 根据权利要求7所述的天线,其特征在于,所述波导结构还包括主波导,所述主波导包括多个成对设置的第一输出端和第二输出端;
    多个所述第一子波导的输入端与多个所述第一输出端一一对应耦合;
    多个所述第二子波导的输入端与多个所述第二输出端一一对应耦合。
  9. 根据权利要求8所述的天线,其特征在于,所述多个成对设置的所述第一输出端和所述第二输出端分布在所述主波导的相互背离的两侧。
  10. 根据权利要求1至9中任一项所述的天线,其特征在于,所述波导结构包括多个缝隙对,且在相邻的两个所述缝隙对中,共用所述第一缝隙或所述第二缝隙。
  11. 根据权利要求1至10中任一项所述的天线,其特征在于,所述波导结构、所述辐射单元和所述微带结构层叠设置。
  12. 根据权利要求1至11中任一项所述的天线,其特征在于,还包括移相器,所述移相器与所述第一微带线或所述第二微带线连接,用于调整馈电至所述辐射单元的电磁波的相位。
  13. 一种雷达,其特征在于,包括壳体和如权利要求1至12中任一项所述的天线,所述天线设置在所述壳体内。
  14. 一种终端,其特征在于,包括控制器和权利要求13所述的雷达,所述控制器与所 述天线连接。
PCT/CN2023/079128 2022-03-31 2023-03-01 一种天线、雷达和终端 WO2023185361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210344863.5A CN116937168A (zh) 2022-03-31 2022-03-31 一种天线、雷达和终端
CN202210344863.5 2022-03-31

Publications (2)

Publication Number Publication Date
WO2023185361A1 true WO2023185361A1 (zh) 2023-10-05
WO2023185361A9 WO2023185361A9 (zh) 2023-11-09

Family

ID=88199014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079128 WO2023185361A1 (zh) 2022-03-31 2023-03-01 一种天线、雷达和终端

Country Status (2)

Country Link
CN (1) CN116937168A (zh)
WO (1) WO2023185361A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158423A (ja) * 2001-11-21 2003-05-30 Mitsubishi Electric Corp アレーアンテナ装置
WO2004105177A2 (en) * 2003-05-22 2004-12-02 Microface Co., Ltd. Waveguide slot antenna
WO2009084050A1 (en) * 2007-12-28 2009-07-09 Selex Communications S.P.A. Slot antenna and method for operating the same
CN107086362A (zh) * 2017-04-28 2017-08-22 合肥工业大学 一种共形低副瓣波导缝隙阵列天线
CN108987903A (zh) * 2018-06-28 2018-12-11 西南电子技术研究所(中国电子科技集团公司第十研究所) 微带串馈线阵圆极化微带天线
CN110571517A (zh) * 2019-09-12 2019-12-13 上海航天测控通信研究所 宽角扫描双线极化相控阵天线
CN110854525A (zh) * 2019-12-23 2020-02-28 盛纬伦(深圳)通信技术有限公司 基于谐振模腔辐射的Ka波段双极化天线单元结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158423A (ja) * 2001-11-21 2003-05-30 Mitsubishi Electric Corp アレーアンテナ装置
WO2004105177A2 (en) * 2003-05-22 2004-12-02 Microface Co., Ltd. Waveguide slot antenna
WO2009084050A1 (en) * 2007-12-28 2009-07-09 Selex Communications S.P.A. Slot antenna and method for operating the same
CN107086362A (zh) * 2017-04-28 2017-08-22 合肥工业大学 一种共形低副瓣波导缝隙阵列天线
CN108987903A (zh) * 2018-06-28 2018-12-11 西南电子技术研究所(中国电子科技集团公司第十研究所) 微带串馈线阵圆极化微带天线
CN110571517A (zh) * 2019-09-12 2019-12-13 上海航天测控通信研究所 宽角扫描双线极化相控阵天线
CN110854525A (zh) * 2019-12-23 2020-02-28 盛纬伦(深圳)通信技术有限公司 基于谐振模腔辐射的Ka波段双极化天线单元结构

Also Published As

Publication number Publication date
CN116937168A (zh) 2023-10-24
WO2023185361A9 (zh) 2023-11-09

Similar Documents

Publication Publication Date Title
US11973280B2 (en) Antenna element and terminal device
US11552385B2 (en) Feed network of base station antenna, base station antenna, and base station
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
EP4053998A1 (en) Antenna module and electronic device
JP7239743B2 (ja) アンテナユニット及び端末機器
JP2022544808A (ja) アンテナモジュール及び電子機器
US10978811B2 (en) Slot antenna arrays for millimeter-wave communication systems
Wójcik et al. High port-to-port isolation dual-polarized antenna array dedicated for full-duplex base stations
WO2018028162A1 (zh) 一种去耦组件、多天线系统及终端
CN108598696A (zh) 一种高增益毫米波圆极化介质谐振器阵列天线
CN109755764B (zh) 毫米波多极化天线和终端
Su et al. 79-GHz wide-beam microstrip patch antenna and antenna array for millimeter-wave applications
US11201394B2 (en) Antenna device and electronic device
US20230208027A1 (en) Antenna structure and electronic device
Xia et al. Millimeter-wave±45° dual linearly polarized end-fire phased array antenna for 5G/B5G mobile terminals
CN113659325B (zh) 集成基片间隙波导阵列天线
CN116247428B (zh) 一种毫米波阵列天线
WO2023185361A1 (zh) 一种天线、雷达和终端
US11588243B2 (en) Antenna module and communication apparatus equipped with the same
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
CN218586353U (zh) 天线及电子设备
CN215418585U (zh) 微带阵列天线
CN114122736B (zh) 一种全向覆盖的宽带圆极化多波束天线阵列
KR20010010509A (ko) 평행선로 발룬을 이용한 야기 안테나

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777739

Country of ref document: EP

Kind code of ref document: A1