WO2023185240A1 - 电连接器、充电桩及充电系统 - Google Patents

电连接器、充电桩及充电系统 Download PDF

Info

Publication number
WO2023185240A1
WO2023185240A1 PCT/CN2023/073944 CN2023073944W WO2023185240A1 WO 2023185240 A1 WO2023185240 A1 WO 2023185240A1 CN 2023073944 W CN2023073944 W CN 2023073944W WO 2023185240 A1 WO2023185240 A1 WO 2023185240A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical connector
housing
liquid conduit
joint
receiving cavity
Prior art date
Application number
PCT/CN2023/073944
Other languages
English (en)
French (fr)
Inventor
张铱洪
Original Assignee
深圳市道通合创数字能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通合创数字能源有限公司 filed Critical 深圳市道通合创数字能源有限公司
Publication of WO2023185240A1 publication Critical patent/WO2023185240A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This application relates to the technical field of electric energy transmission, and in particular to an electrical connector, a charging pile and a charging system.
  • New energy vehicles refer to the use of unconventional vehicle fuels as power sources (or the use of conventional vehicle fuels and new vehicle power devices), integrating advanced technologies in vehicle power control and driving, forming advanced technical principles and features Cars with new technologies and new structures.
  • New energy vehicles include four major types of hybrid electric vehicles (HEV), pure electric vehicles (BEV, including solar vehicles), fuel cell electric vehicles (FCEV), and other new energy vehicles (such as supercapacitors, flywheels and other high-efficiency energy storage devices) vehicles wait.
  • HEV hybrid electric vehicles
  • BEV pure electric vehicles
  • FCEV fuel cell electric vehicles
  • Non-conventional automotive fuels refer to fuels other than gasoline and diesel. Taking electric-powered cars as an example, in order to ensure the vehicle's endurance and efficiency, the equipment that charges it is being developed in the direction of high power.
  • the inventor found that the process of electric energy transmission is inevitably accompanied by the generation and transfer of thermal energy. If the heat is not dissipated in time, it will greatly affect the charging efficiency of the vehicle.
  • embodiments of the present application aim to provide an electrical connector, a charging pile and a charging system to improve the current situation in which the cooling medium of the electrical connector cannot directly exchange heat with the connector, thus reducing the heat dissipation effect.
  • an electrical connector including: a housing, a connector, and a cooling medium.
  • the housing is provided with a receiving cavity and two opposite through holes, and the receiving cavity is connected to the outside world through the through holes.
  • the connector includes a first part and a second part, the second part is provided at both ends of the first part, the connector is plugged into the housing, the first part is located in the receiving cavity, and the The second part passes through the through hole and is exposed to the outer surface of the housing, and the first part undergoes insulation treatment and heat conduction treatment.
  • the cooling medium is contained in the containing cavity.
  • the insulation treatment and heat conduction treatment of the first part include: dip molding process, spray molding process, surface ceramicization and anodizing.
  • the electrical connector further includes a liquid change assembly, the liquid change assembly is installed on the housing, and the liquid change assembly communicates with the receiving cavity, and the liquid change assembly is used for the cooling circulation of media.
  • the liquid exchange assembly includes a first liquid conduit, both ends of the first liquid conduit are connected to the receiving cavity, and the cooling medium is between the first liquid conduit and the receiving cavity. Intraluminal circulation.
  • the liquid exchange assembly includes a second liquid conduit and a third liquid conduit, both of which are connected to the receiving cavity, and the cooling medium is supplied from the After the second catheter flows into the receiving chamber, it flows out from the third catheter.
  • the second liquid conduit and the third liquid conduit are connected to opposite ends of the housing.
  • the electrical connector further includes a locking piece, the locking piece is fixed between the connector and the housing, and the locking piece is used to fix the connection between the connector and the housing. .
  • the electrical connector further includes a sealing member, the sealing member is fixed at the through hole, and the sealing member is used to isolate the receiving cavity from the outside world.
  • an embodiment of the present application also provides a charging pile, which includes the above-mentioned electrical connector.
  • the charging system includes the above-mentioned electrical connector and/or the charging pile.
  • the beneficial effect of the embodiment of the present application is to provide an electrical connector.
  • the electrical connector includes a housing, a joint and a cooling medium.
  • the housing is provided with a receiving cavity and two opposite through holes.
  • the receiving cavity is connected to the outside world through the through holes.
  • the connector includes a first part and a second part, the second part is provided at both ends of the first part, the connector is plugged into the housing, the first part is located in the receiving cavity, and the The second part passes through the through hole and is exposed to the outside of the housing. Surface, the first part undergoes insulation treatment and heat conduction treatment.
  • the cooling medium is contained in the containing cavity.
  • the first part can obtain excellent insulation and thermal conductivity effects after surface treatment, so that after the joint generates heat, it can be directly dissipated through the cooling medium. At the same time, the joint can be effectively prevented from leaking electricity after insulation treatment. Thereby improving the transmission efficiency of electric energy.
  • FIG. 1 is a schematic diagram of a charging system provided by one embodiment of the present application.
  • FIG. 2 is a schematic diagram of a charging pile provided by one embodiment of the present application.
  • Figure 3 is a perspective view of an electrical connector provided by one embodiment of the present application.
  • Figure 4 is a perspective view of an electrical connector provided by another embodiment of the present application.
  • Figure 5 is an exploded view of an electrical connector provided by another embodiment of the present application.
  • Figure 6 is a schematic diagram of liquid flow simulation of the electrical connector provided by the comparative embodiment of the present application.
  • Figure 7 is a temperature distribution cloud diagram of the electrical connector provided by the comparative embodiment of the present application.
  • Figure 8 is a schematic diagram of liquid flow simulation of an electrical connector provided by another embodiment of the present application.
  • Figure 9 is a temperature distribution cloud diagram of an electrical connector provided by another embodiment of the present application.
  • installation includes welding, screwing, snapping, gluing, etc. to fix or restrict a certain component or device to a specific position or place.
  • the component or device can be maintained at a specific position or place. It can move within a limited range even if it does not move.
  • the component or device may or may not be disassembled after being fixed or restricted to a specific position or place, which is not limited in the embodiments of this application.
  • the "connection” includes a direct connection between one element and another element and an indirect connection between one element and another element and one or more other elements. Unless otherwise specified, there will be no specific limitation in the embodiments of this application.
  • FIG. 1 it shows a schematic diagram of a charging system 1 provided by one embodiment of the present application.
  • the charging system 1 includes a charging pile 1000, a power supply station 2000 and a control center 3000.
  • 2000 power supply stations and 3000 control centers are electrically connected to each other, so that the control center 3000 can monitor and control the operation of the power supply station 2000, and can also monitor and control the operation of the charging pile 1000.
  • the power supply station 2000 is used to supply power to the charging pile 1000
  • the control center 3000 is used to monitor and control the charging system 1.
  • FIG. 2 it shows a schematic diagram of a charging pile 1000 provided by one embodiment of the present application.
  • the charging pile 1000 includes an electrical connector 100 and a charging pile body 200.
  • the electrical connector 100 is installed on the charging pile body 200, and the electrical connector 100 can extend relative to the charging pile body 200 or be received in the charging pile body 200.
  • the electrical connector 100 It is used to connect the charging pile main body 200 with external electronic equipment, where the electronic equipment includes but is not limited to large, medium and small electronic equipment such as electric vehicles and electric mopeds.
  • FIGS. 3 to 5 they respectively show a perspective view of an electrical connector 100 provided by one embodiment of the present application, a perspective view of an electrical connector 100 provided by another embodiment of the present application, and another embodiment of the present application.
  • a perspective view of the electrical connector 100 is provided in conjunction with other figures.
  • the electrical connector 100 includes a housing 10, a connector 20 and a cooling medium (not shown).
  • the housing 10 is provided with a receiving cavity 11 and two opposite through holes 12 .
  • the receiving cavity 11 is connected to the outside world through the through hole 12 .
  • the housing 10 is cylindrical, and the receiving cavity 11 provided in the housing 10 has a cavity similar to the outer contour of the housing 10, so that the internal space of the housing 10 can be fully utilized, and the two-way The holes 12 are relatively arranged on the plane of the cylindrical housing 10, so that during production or assembly, the joint 20 can be directly extended into the receiving cavity 11 to facilitate storage, installation and disassembly.
  • the connector 20 includes a first part 21 and a second part 22.
  • the second part 22 is provided at both ends of the first part 21.
  • the connector 20 is inserted into the housing 10.
  • the first part 21 is located in the receiving cavity 11.
  • the second part 22 is formed through a through hole.
  • the first part 21 goes out and is exposed to the outer surface of the housing 10, and the first part 21 undergoes insulation treatment and heat conduction treatment.
  • the cooling medium is contained in the receiving cavity 11 . That is, surface treatment is performed on the first part 21 of the joint 20 that is inserted into the housing 10, so that when the thickness of the joint 20 remains unchanged, it has the insulation capability and thermal conductivity that meets the usage requirements.
  • the first part 21 has an increased As for the technical solution of the casing, this solution reduces the thermal resistance, directly conducts heat exchange between the cooling medium and the joint 20 in the receiving cavity 11, and improves the heat exchange efficiency.
  • the insulation treatment and heat conduction treatment of the first part 21 include but are not limited to dipping process, spraying process, surface ceramicization and anodizing.
  • the dip molding process is to preheat and soften the thermoplastic plastic, coat it on the surface of the first part 21, and then solidify it to form a film by cooling.
  • the plastic spraying process is to charge through high-voltage electrostatic equipment. Under the action of the electric field, plastic particles are sprayed onto the surface of the first part 21 to form a powdery coating. The powdery coating is baked at high temperature and then leveled and solidified, making the plastic particles Melts to form a dense protective coating.
  • Surface ceramicization involves overlaying a metal-based surfacing layer on the surface of the joint 20 by welding, and determines the number of welding passes based on the size of the joint 20 itself, and relies on the molten metal-based filler material in the joint 20
  • the surface is wetted and spread to form a connection.
  • the metal matrix composite is obtained by degreasing and washing with water. Then use insulating coating to protect the parts that do not require micro-arc oxidation, and then micro-arc oxidize the surface of the metal matrix composite to obtain metal oxide ceramics on the surface of the metal matrix composite. Finally, after washing and drying, the ceramic film layer Combined with the metal substrate, a joint 20 with a ceramic surface treatment is obtained.
  • Anodizing refers to the process in which metals and their alloys form an oxide film on the joint 20 serving as the anode under the action of an external current under the corresponding electrolyte and specific process conditions. These methods are to pretreat the surface of the first part 21 that is in direct contact with the cooling medium, so that the first part 21 of the joint 20 has physical properties of insulation and heat conduction. In order to facilitate production and actual use, the second part 22 can also be processed in the same manner as the first part 21 to reduce the impact of assembly errors on actual use. Compared with the prior art solution of installing the coolant in a sleeve and then arranging the sleeve around the joint, the above method greatly reduces the thermal resistance between the cooling medium and the joint 20 and improves the heat exchange efficiency.
  • the electrical connector 100 also includes a first liquid conduit 30 , both ends of the first liquid conduit 30 are connected with the receiving cavity 11 , and the cooling medium circulates in the first liquid conduit 30 and the receiving cavity 11 . Both ends of the first liquid conduit 30 may be connected to the same side or different sides of the housing 10 . It can be understood that the first liquid conduit 30 can be used not only to circulate the liquid medium in the cooling medium, but also to circulate the gas medium in the cooling medium, that is, to circulate the cooling fluid.
  • the material of the first liquid conduit 30 should be changed according to the physical and chemical properties of the cooling medium to prevent chemical reaction between the cooling medium and the first liquid conduit 30 , thereby reducing the heat exchange efficiency of the cooling medium. .
  • the connection between the first liquid conduit 30 and the shell 10 should be further sealed to prevent the cooling medium from overflowing and affecting the heat exchange efficiency. rate and the external environment.
  • the electrical connector 100 includes a second liquid conduit 40 and a third liquid conduit 50 .
  • the second liquid conduit 40 and the third liquid conduit 50 are both connected to the receiving cavity 11 . After the cooling medium flows into the receiving cavity 11 from the second liquid conduit 40 , it flows out from the third liquid conduit 50 .
  • the second liquid conduit 40 and the third liquid conduit 50 are connected to two opposite ends of the housing 10 , that is, the housing 10 is cylindrical, and the second liquid conduit 40 and the third liquid conduit 50 are connected to opposite ends of the housing 10 .
  • the tube 50 is disposed relative to the axis of the housing 10 and along the direction in which the electrical connector 100 is inserted into the external device, the connection between the second conduit 40 and the receiving cavity 11 and the connection between the third conduit 50 and the receiving cavity 11 Located at both ends of the housing 10. That is, in the direction in which the electrical connector 100 is inserted into the external device, there is a displacement difference where the two catheter tubes communicate with the receiving cavity 11 .
  • the connection between the second catheter 40 and the receiving chamber 11 and the connection between the third catheter 50 and the receiving chamber 11 can be any two points on the circumference of the housing 10 .
  • the connection between the second catheter 40 and the receiving chamber 11 and the connection between the third catheter 50 and the receiving chamber 11 Projections on the same plane are collinear.
  • the electrical connector 100 further includes a locking piece 60 , which is fixed between the connector 20 and the housing 10 .
  • the locking piece 60 is used to fix the connection between the connector 20 and the housing 10 .
  • the housing 10 and the joint 20 are provided with a locking structure that matches the locking member 60.
  • the locking member 60 and the locking structure may be in the form of an interference fit such as screw connection.
  • the locking member 60 is made of insulating material to prevent the connector 20 from leaking electricity.
  • Electrical connector 100 also includes seal 70 .
  • the sealing member 70 is fixed at the through hole 12 and is used to isolate the receiving cavity 11 from the outside world.
  • the sealing member 70 is a sealing ring.
  • the sealing ring is arranged at the through hole 12, and the sealing ring is squeezed by the locking member 60 to prevent the sealing ring from coming out, so that the sealing member 70 can easily isolate the accommodation cavity 11 from the outside world. It prevents the cooling medium from leaking or the external environment contaminating the cooling medium, and improves the stability of heat exchange.
  • the seal 70 may also be a sealant applied between the through hole 12 and the joint 20 to glue the housing 10 and the joint 20 together. It should be noted that this sealant needs to be heat-resistant.
  • FIG. 6 to 9 respectively show the liquid flow simulation diagram of the electrical connector provided by the comparative embodiment of the present application, the temperature distribution cloud diagram of the electrical connector provided by the comparative example of the present application, and the Another embodiment of the application provides a liquid flow simulation diagram of the electrical connector 100 and a temperature distribution cloud diagram of the electrical connector 100 provided by another embodiment of the application.
  • the embodiments of this application conducted further experimental research in comparison with the existing technology.
  • the prior art used as the experimental control group will now be briefly described.
  • the electrical connector in the prior art includes a connector, a shell, two sleeves and a manifold assembly. A receiving cavity is provided in the shell, and the connector is plugged into the receiving cavity.
  • the sleeves are arranged oppositely in the receiving cavity, and the two sleeves are arranged around the joint.
  • the manifold assembly injects the coolant into the two sleeves respectively, and through the flow of the coolant in the sleeves, the sleeve and the receiving cavity are lowered. temperature, and because the sleeve is in contact with the joint, the purpose of cooling the joint is achieved.
  • Test conditions Ambient temperature: 30°C. Coolant: pure water at 30°C, flow rate 0.05L/S. Altitude: 0m. Heating power of electrical connector: 250W.
  • Test materials the above-mentioned test control group and the test group of the embodiments of this application.
  • Test method Please refer to Figure 7.
  • five temperature monitoring points from (1) to (5) are set in sequence, which are the coolant inlet, the end of the joint close to the coolant inlet, the middle of the joint, The end of the joint close to the coolant outlet, the coolant outlet.
  • five temperature monitoring points from (6) to (10) are sequentially set, which are the coolant inlet, the end of the joint close to the coolant inlet, and the joint. The middle part, the end of the joint close to the coolant outlet, the coolant outlet.
  • the temperature at point (10) of the joint 20 in the embodiment of the present application is reduced by 10.7°C compared with the temperature at point (5) in the comparative example. °C, an average decrease of about 11.57 °C. That is, at this point, the joint temperature of the embodiment of the present application is lower than that of the comparative embodiment.
  • the embodiment of the present application has lower thermal resistance, higher heat exchange rate, and better heat dissipation effect.
  • the electrical connector 100 provided in the embodiment of the present application includes a housing 10, a connector 20 and a cooling medium housing 10.
  • the housing 10 is provided with a receiving cavity 11 and two opposite through holes 12.
  • the receiving cavity 11 is connected to the outside world through the through holes 12.
  • the connector 20 includes a first part 21 and a second part 22.
  • the second part 22 is provided at both ends of the first part 21.
  • the connector 20 is inserted into the housing 10.
  • the first part 21 is located in the receiving cavity 11.
  • the second part 22 is formed through a through hole. 12 goes out and is exposed to the outer surface of the housing 10, and the first part 21 undergoes insulation treatment and heat conduction treatment.
  • the cooling medium is contained in the receiving cavity 11 .
  • the first part 21 can obtain excellent insulation and thermal conductivity effects after surface treatment, so that after the joint 20 generates heat, it can be directly dissipated through the cooling medium. At the same time, terminal leakage can be effectively prevented after insulation treatment. Thereby improving the transmission efficiency of electric energy.
  • this application also provides a charging pile 1000, which includes the above-mentioned electrical connector 100.
  • the electrical connector 100 please refer to the above embodiments and will not be described again here.
  • the charging system 1 includes the above-mentioned charging pile 1000.
  • the structure and function of the charging pile 1000 please refer to the above embodiments and will not be described again here.

Abstract

一种电连接器、充电桩及充电系统。电连接器(100)包括壳体(10)、接头(20)和冷却介质。壳体(10)设有收容腔(11)和相对设置的两通孔(12),收容腔(11)通过通孔(12)与外界连通。接头(20)包括第一部分(21)和第二部分(22),第二部分(22)设置于第一部分(21)的两端,接头(20)插接于壳体(10),第一部分(21)位于收容腔(11)内,第二部分(22)自通孔(12)穿出,并暴露于壳体(10)的外表面,第一部分(21)经过绝缘处理和导热处理。冷却介质收容于收容腔内。通过上述结构,第一部分在经过表面处理后,可以获得优良的导热效果,从而使得接头产生热量后,通过冷却介质直接进行散热;同时,在绝缘处理后可以有效防止接头漏电,从而提高电能的传输效率。

Description

电连接器、充电桩及充电系统
本申请要求于2022年3月31日提交中国专利局、申请号为202210343910.4、申请名称为“电连接器、充电桩及充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电能传输技术领域,特别是涉及一种电连接器、充电桩及充电系统。
背景技术
新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括四大类型混合动力电动汽车(HEV)、纯电动汽车(BEV,包括太阳能汽车)、燃料电池电动汽车(FCEV)、其他新能源(如超级电容器、飞轮等高效储能器)汽车等。非常规的车用燃料指除汽油和柴油之外的燃料。以电能为动力的汽车为例,为了保证车辆的续航能力,以及使用效率,为其充电的设备朝着高功率的方向进行研发。
在发明人实现本申请实施例的过程中,发现:在电能传输的过程中,必然伴随着热能的产生和传递。如果不及时散热,则会大大影响车辆的充电效率。
发明内容
鉴于上述问题,本申请实施例旨在提供一种电连接器、充电桩及充电系统,以改善目前电连接器的冷却介质无法与接头直接进行热交换,降低散热效果的现状。
为解决上述问题,本申请实施例提供了一种电连接器,包括:壳体、接头以及冷却介质。所述壳体设有收容腔和相对设置的两通孔,所述收容腔通过所述通孔与外界连通。所述接头包括第一部分和第二部分,所述第二部分设置于所述第一部分的两端,所述接头插接于所述壳体,所述第一部分位于所述收容腔内,所述第二部分自所述通孔穿出,并暴露于所述壳体的外表面,所述第一部分经过绝缘处理和导热处理。所述冷却介质收容于所述收容腔内。
可选地,所述第一部分的绝缘处理和导热处理包括:浸塑工艺、喷塑工艺、表面陶瓷化和阳极氧化。
可选地,所述电连接器还包括换液组件,所述换液组件安装于所述壳体,并且所述换液组件与所述收容腔连通,所述换液组件用于所述冷却介质的流通。
可选地,所述换液组件包括第一导液管,所述第一导液管的两端均与所述收容腔连通,所述冷却介质在所述第一导液管和所述收容腔内循环。
可选地,所述换液组件包括第二导液管和第三导液管,所述第二导液管和第三导液管的均与所述收容腔连通,所述冷却介质自所述第二导液管流入所述收容腔后,从所述第三导液管流出。
可选地,所述第二导液管和第三导液管连接于所述壳体相对的两端。
可选地,所述电连接器还包括锁定件,所述锁定件固定于所述接头和所述壳体之间,所述锁定件用于固定所述接头和所述壳体之间的连接。
可选地,所述电连接器还包括密封件,所述密封件固定于所述通孔处,所述密封件用于将所述收容腔与外界隔开。
为解决上述问题,本申请实施例还提供了一种充电桩,所述充电桩包括上述电连接器。
为解决上述问题,本申请实施例又提供了一种充电系统,所述充电系统包括上述电连接器,和/或所述充电桩。
本申请实施例的有益效果是:提供一种电连接器。所述电连接器包括壳体、接头和冷却介质所述壳体设有收容腔和相对设置的两通孔,所述收容腔通过所述通孔与外界连通。所述接头包括第一部分和第二部分,所述第二部分设置于所述第一部分的两端,所述接头插接于所述壳体,所述第一部分位于所述收容腔内,所述第二部分自所述通孔穿出,并暴露于所述壳体的外 表面,所述第一部分经过绝缘处理和导热处理。所述冷却介质收容于所述收容腔内。通过上述结构,所述第一部分在经过表面处理后,可以获得优良的绝缘以及导热效果,从而使得所述接头产生热量后,通过所述冷却介质直接进行散热。同时,在绝缘处理后可以有效防止所述接头漏电。从而提高电能的传输效率。
附图说明
为了更清楚地说明本申请具体实施例或现有技术中的技术方案,下面将对具体实施例作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1是本申请其中一实施例提供的充电系统的示意图;
图2是本申请其中一实施例提供的充电桩的示意图;
图3是本申请其中一实施例提供的电连接器的立体图;
图4是本申请另一实施例提供的电连接器的立体图;
图5是本申请另一实施例提供的电连接器的分解图;
图6是本申请对比实施例提供的电连接器的液体流动模拟示意图;
图7是本申请对比实施例提供的电连接器的温度分布云图;
图8是本申请另一实施例提供的电连接器的液体流动模拟示意图;
图9是本申请另一实施例提供的电连接器的温度分布云图。
本申请实施例中附图标记
具体实施方式
为了便于理解本申请,下面结合附图和具体实施例,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
在本说明书中,所述“安装”包括焊接、螺接、卡接、粘合等方式将某一元件或装置固定或限制于特定位置或地方,所述元件或装置可在特定位置或地方保持不动也可在限定范围内活动,所述元件或装置固定或限制于特定位置或地方后可进行拆卸也可不能进行拆卸,在本申请实施例中不作限制。所述“连接”包括一个元件和另一个元件直接连接和一个元件和另一个元件之间还有一个或多个其他元件的间接连接,如非特别说明,在本申请实施例中不作具体限制。
如图1所示,其示出了本申请其中一实施例提供的充电系统1的示意图。充电系统1包括充电桩1000、供电站2000以及控制中心3000。充电桩1000、供电站2000和控制中心3000之 间互相电连接,从而使得控制中心3000可以监视和控制供电站2000的运行情况,并且还可以监视和控制充电桩1000的工作情况。供电站2000用于给充电桩1000供电,控制中心3000用于对充电系统1进行监视和控制。
如图2所示,其示出了本申请其中一实施例提供的充电桩1000的示意图。充电桩1000包括电连接器100以及充电桩主体200,电连接器100安装于充电桩主体200,并且电连接器100可以相对充电桩主体200伸出或者收容于充电桩主体200,电连接器100用于将充电桩主体200与外界的电子设备连接,其中电子设备包括但不限于电动汽车、电动助力车等大中小型电子设备。
如图3至图5所示,其分别示出了本申请其中一实施例提供的电连接器100的立体图、本申请另一实施例提供的电连接器100的立体图和本申请另一实施例提供的电连接器100的立体图,并结合其他附图。电连接器100包括壳体10、接头20和冷却介质(图未示)。其中,壳体10设有收容腔11和相对设置的两通孔12。收容腔11通过通孔12与外界连通。在本申请实施例中的壳体10呈圆柱体状,设置于壳体10内的收容腔11的腔体与壳体10的外轮廓相似,从而可以充分利用壳体10的内部空间,两通孔12相对设置于圆柱体状的壳体10的平面上,从而便于在生产或者装配时,接头20直接伸入收容腔11内,便于收纳、安装以及拆卸。接头20包括第一部分21和第二部分22,第二部分22设置于第一部分21的两端,接头20插接于壳体10,第一部分21位于收容腔11内,第二部分22自通孔12穿出,并暴露于壳体10的外表面,第一部分21经过绝缘处理和导热处理。冷却介质收容于收容腔11内。即是,对接头20插接于壳体10的第一部分21进行表面处理,使得在接头20厚度不变的情况下,具备满足使用要求的绝缘能力和导热率,相较于现有技术中增加套管的技术方案,本方案减少了热阻,将冷却介质和接头20在收容腔11内直接进行热交换,提高了换热效率。
值得一提的是,第一部分21的绝缘处理和导热处理包括但不限于浸塑工艺、喷塑工艺、表面陶瓷化和阳极氧化。浸塑工艺是将具有热塑性塑料预热软化,在第一部分21的表面涂覆后,再通过冷却固化成膜。喷塑工艺是通过高压静电设备充电,在电场的作用下,将塑料颗粒喷涂到第一部分21的表面,形成粉状的涂层,粉状涂层经过高温烘烤后流平固化,使得塑料颗粒融化形成致密的保护涂层。表面陶瓷化则是在接头20表面通过熔钎焊的方法堆焊一层金属基堆焊层,并根据接头20本身的尺寸决定使用的焊接道数,并依靠融化的金属基填充材料在接头20表面润湿铺展形成连接,根据接头20的实际要求,通过去油水洗得到金属基体复合体。再采用绝缘涂料将不需要微弧氧化的部分保护,然后对金属基体复合体的表面微弧氧化,在金属基体复合体表面得到金属氧化物陶瓷,最后经过水洗、烘干即可,陶瓷膜层与金属基体结合在一起得到表面陶瓷化处理的接头20。阳极氧化则是指金属及其合金在相应的电解液和特定的工艺条件下,由于外加电流的作用下,在作为阳极的接头20上形成一层氧化膜的过程。这些方式则是对第一部分21与冷却介质直接接触的表面进行预处理,从而使得接头20的第一部分21具有绝缘和导热的物理特性。为了便于生产和实际使用,第二部分22同样可以与第一部分21进行相同方式的处理,减少装配误差对实际使用产生的影响。相较于现有技术中将冷却液装在套筒中,再将套筒环绕接头设置的方案,上述方式大大减少了冷却介质与接头20之间的热阻,提高了换热效率。
在本申请的其他实施例中,请参阅图3,并结合其他附图。电连接器100还包括第一导液管30,第一导液管30的两端均与收容腔11连通,冷却介质在第一导液管30和收容腔11内循环。第一导液管30的两端可以连接在壳体10的同侧或者异侧。可以理解的是,第一导液管30不仅可以用于流通冷却介质中的液体介质,还可以流通冷却介质中的气体介质,即是用于冷却流体的流通。需要说明的是,第一导液管30的材料应根据冷却介质的物理和化学性质进行改变,防止冷却介质与第一导液管30之间产生化学反应,从而降低了冷却介质的换热效率。同样地,在第一导液管30与壳体10的连接处,应进一步进行密封处理,防止冷却介质溢出后,对换热效 率和外界环境产生影响。
在本申请实施例中,请参阅图4,并结合其他附图,电连接器100包括第二导液管40和第三导液管50。第二导液管40和第三导液管50均与收容腔11连通,冷却介质自第二导液管40流入收容腔11后,从第三导液管50流出。值得一提的是,第二导液管40和第三导液管50连接于壳体10相对的两端,即是,壳体10呈圆柱状,第二导液管40和第三导液管50相对壳体10的轴线相对设置,并且沿电连接器100插入外部设备的方向,第二导液管40与收容腔11的连接处和第三导液管50与收容腔11的连接处位于外壳10的两端。即是,在电连接器100插入外部设备的方向上,两导液管与收容腔11连通的地方存在位移差。可选的,第二导液管40与收容腔11的连接处和第三导液管50与收容腔11的连接处投影在同一平面时,可以是壳体10圆周上的任意两点。可选地,当壳体10呈长方体、立方体、圆台、锥体或者其他不规则形状时,第二导液管40与收容腔11的连接处和第三导液管50与收容腔11的连接处在同一平面上的投影共线。
在本申请实施例中,请参阅图5,并结合其他附图。电连接器100还包括锁定件60,锁定件60固定于接头20和壳体10之间,锁定件60用于固定接头20和壳体10之间的连接。可选地,壳体10和接头20上设有与锁定件60相匹配的锁定结构,锁定件60和锁定结构可以是螺接等过盈配合的形式。并且锁定件60为绝缘材料,防止接头20漏电。
在本申请实施例中,请参阅图5,并结合其他附图。电连接器100还包括密封件70。密封件70固定于通孔12处,密封件70用于将收容腔11与外界隔开。可选地,密封件70为密封圈,将密封圈设置于通孔12处,并通过锁定件60挤压密封圈,防止密封圈脱出,从而便于密封件70将收容腔11与外界隔开,防止冷却介质泄露,或者外部环境污染冷却介质,提高了换热的稳定性。密封件70还可以是涂覆于通孔12和接头20之间的密封胶,以使壳体10和接头20胶接。需要说明的是,这种密封胶需要具备耐热性能。
对于上述实施例,请参阅图6至图9,其分别示出了本申请对比实施例提供的电连接器的液体流动模拟示意图、本申请对比实施例提供的电连接器的温度分布云图、本申请另一实施例提供的电连接器100的液体流动模拟示意图和本申请另一实施例提供的电连接器100的温度分布云图。本申请实施例对照现有技术进行了进一步试验探究。现对作为试验对照组的现有技术进行简单描述,现有技术中的电连接器包括接头、外壳、两套筒以及歧管组件,外壳内设有收容腔,接头插接于收容腔,两套筒相对设置于收容腔内,并且两套筒环绕接头设置,歧管组件则是将冷却液分别注入两套筒中,通过冷却液在套筒中的流动,从而降低套筒及收容腔内的温度,并且由于套筒与接头接触,从而达到给接头降温的目的。
试验条件:环境温度:30℃。冷却液:30℃的纯水,流速0.05L/S。海拔高度:0m。电连接器的发热功率:250W。
试验材料:上述试验对照组和本申请实施例试验组。
试验方法:请参阅图7,在对比实施例中依次设置(1)至(5)的五个温度监测点,依次为冷却液入液口、接头靠近冷却液入液口的一端、接头中部、接头靠近冷却液出液口的一端、冷却液出液口。相应的,请参阅图9,在本申请实施例中依次设置(6)至(10的)的五个温度监测点,依次为冷却液入液口、接头靠近冷却液入液口的一端、接头中部、接头靠近冷却液出液口的一端、冷却液出液口。
试验结果:
表1
试验总结:
请一并参阅上述表1以及图6至图9,并结合其他附图。由表1中的试验数据对比可知:在(1)和(6)以及(2)和(7)处相对应的区域的冷却液温度基本相同,而对比表1中其他点位的数据,本申请实施例的冷却液温度则要低于对比实施例中冷却液的温度。即是,本申请实施例中的接头20上(8)点位的温度较对比实施例上(3)点位的温度降低了14.1℃;本申请实施例中的接头20上(9)点位的温度较对比实施例上(4)点位的温度降低了9.9℃;本申请实施例中的接头20上(10)点位的温度较对比实施例上(5)点位的温度降低了10.7℃,平均降低了约11.57℃。即是该点位处,本申请实施例的接头温度要低于对比实施例中的接头温度。综上,相比于对比实施例,本申请实施例具有更低的热阻,更高的热交换率,以及更加优良的散热效果。
本申请实施例提供的电连接器100包括壳体10、接头20和冷却介质壳体10设有收容腔11和相对设置的两通孔12,收容腔11通过通孔12与外界连通。接头20包括第一部分21和第二部分22,第二部分22设置于第一部分21的两端,接头20插接于壳体10,第一部分21位于收容腔11内,第二部分22自通孔12穿出,并暴露于壳体10的外表面,第一部分21经过绝缘处理和导热处理。冷却介质收容于收容腔11内。通过上述结构,第一部分21在经过表面处理后,可以获得优良的绝缘以及导热效果,从而使得接头20产生热量后,通过冷却介质直接进行散热。同时,在绝缘处理后可以有效防止端子漏电。从而提高电能的传输效率。
基于同一发明构思,本申请还提供一种充电桩1000,该充电桩1000包括上述的电连接器100。对于电连接器100的结构和功能请参阅上述实施例,此处不再一一赘述。
基于同一发明构思,本申请还提供一种充电系统1,该充电系统1包括上述的充电桩1000。对于充电桩1000的结构和功能请参阅上述实施例,此处不再一一赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种电连接器,其特征在于,包括:
    壳体,所述壳体设有收容腔和相对设置的两通孔,所述收容腔通过所述通孔与外界连通;
    接头,包括第一部分和第二部分,所述第二部分设置于所述第一部分的两端,所述接头插接于所述壳体,所述第一部分位于所述收容腔内,所述第二部分自所述通孔穿出,并暴露于所述壳体的外表面,所述第一部分经过绝缘处理和导热处理;以及
    冷却介质,收容于所述收容腔内。
  2. 根据权利要求1所述的电连接器,其特征在于,所述第一部分的绝缘处理和导热处理包括:浸塑工艺、喷塑工艺、表面陶瓷化和阳极氧化。
  3. 根据权利要求1所述的电连接器,其特征在于,所述电连接器还包括第一导液管,所述第一导液管的两端均与所述收容腔连通,所述冷却介质在所述第一导液管和所述收容腔内循环。
  4. 根据权利要求1所述的电连接器,其特征在于,所述电连接器还包括第二导液管和第三导液管,所述第二导液管和第三导液管的均与所述收容腔连通,所述冷却介质自所述第二导液管流入所述收容腔后,从所述第三导液管流出。
  5. 根据权利要求4所述的电连接器,其特征在于,所述第二导液管与所述第三导液管相对设置,并且所述第二导液管与所述壳体的连接处靠近所述接头的一端,所述第三导液管与所述壳体的连接处远离所述接头的一端。
  6. 根据权利要求5所述的电连接器,其特征在于,所述第二导液管和第三导液管连接于所述壳体相对的两端。
  7. 根据权利要求1所述的电连接器,其特征在于,所述电连接器还包括锁定件,所述锁定件固定于所述接头和所述壳体之间,所述锁定件用于固定所述接头和所述壳体之间的连接。
  8. 根据权利要求1所述的电连接器,其特征在于,所述电连接器还包括密封件,所述密封件固定于所述通孔处,所述密封件用于将所述收容腔与外界隔开。
  9. 一种充电桩,其特征在于,包括如权利要求1-8中任意一项所述的电连接器。
  10. 一种充电系统,其特征在于,包括如权利要求1-8中任意一项所述的电连接器,和/或权利要求9中所述的充电桩。
PCT/CN2023/073944 2022-03-31 2023-01-31 电连接器、充电桩及充电系统 WO2023185240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210343910.4 2022-03-31
CN202210343910.4A CN114590145B (zh) 2022-03-31 2022-03-31 电连接器、充电桩及充电系统

Publications (1)

Publication Number Publication Date
WO2023185240A1 true WO2023185240A1 (zh) 2023-10-05

Family

ID=81812614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073944 WO2023185240A1 (zh) 2022-03-31 2023-01-31 电连接器、充电桩及充电系统

Country Status (2)

Country Link
CN (1) CN114590145B (zh)
WO (1) WO2023185240A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590145B (zh) * 2022-03-31 2023-11-14 深圳市道通合创数字能源有限公司 电连接器、充电桩及充电系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207123768U (zh) * 2017-08-28 2018-03-20 郑州轻工业学院 一种带温度控制系统的电动汽车充电枪
CN208754008U (zh) * 2018-06-15 2019-04-16 深圳易瓦科技有限公司 液冷式电动汽车充电系统
EP3611738A1 (de) * 2018-08-14 2020-02-19 Gebauer & Griller Kabelwerke Gesellschaft m.b.H. Kühlmanschette für energieleitungen
CN111936347A (zh) * 2018-03-22 2020-11-13 特斯拉公司 液体冷却充电连接器
CN112153873A (zh) * 2020-09-30 2020-12-29 东莞市趣电智能科技有限公司 一种散热模块及包括其的充电枪和充电座
WO2021091216A1 (ko) * 2019-11-06 2021-05-14 엘에스전선 주식회사 전기차 충전용 케이블 어셈블리
CN113085608A (zh) * 2021-04-30 2021-07-09 四川永贵科技有限公司 一种散热效果好的端子的液冷结构
CN114024161A (zh) * 2021-12-02 2022-02-08 长春捷翼汽车零部件有限公司 一种含有冷却结构的充电枪和充电桩
CN114590145A (zh) * 2022-03-31 2022-06-07 深圳市道通合创新能源有限公司 电连接器、充电桩及充电系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022667B2 (en) * 2011-02-03 2011-09-20 Lawrence Everett Anderson Electric vehicle charging system
WO2012051510A2 (en) * 2010-10-14 2012-04-19 Gregory Thomas Mark Actively cooled electrical connection
CN110936830A (zh) * 2019-11-06 2020-03-31 深圳巴斯巴科技发展有限公司 一种充电桩系统
CN211075560U (zh) * 2019-11-26 2020-07-24 深圳易瓦科技有限公司 充电座和充电系统
EP3842280A1 (en) * 2019-12-26 2021-06-30 Aptiv Technologies Limited Inlet connector with cooler
CN113328288A (zh) * 2021-07-14 2021-08-31 浙江吉利控股集团有限公司 充电连接器、电动车以及充电桩

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207123768U (zh) * 2017-08-28 2018-03-20 郑州轻工业学院 一种带温度控制系统的电动汽车充电枪
CN111936347A (zh) * 2018-03-22 2020-11-13 特斯拉公司 液体冷却充电连接器
CN208754008U (zh) * 2018-06-15 2019-04-16 深圳易瓦科技有限公司 液冷式电动汽车充电系统
EP3611738A1 (de) * 2018-08-14 2020-02-19 Gebauer & Griller Kabelwerke Gesellschaft m.b.H. Kühlmanschette für energieleitungen
WO2021091216A1 (ko) * 2019-11-06 2021-05-14 엘에스전선 주식회사 전기차 충전용 케이블 어셈블리
CN112153873A (zh) * 2020-09-30 2020-12-29 东莞市趣电智能科技有限公司 一种散热模块及包括其的充电枪和充电座
CN113085608A (zh) * 2021-04-30 2021-07-09 四川永贵科技有限公司 一种散热效果好的端子的液冷结构
CN114024161A (zh) * 2021-12-02 2022-02-08 长春捷翼汽车零部件有限公司 一种含有冷却结构的充电枪和充电桩
CN114590145A (zh) * 2022-03-31 2022-06-07 深圳市道通合创新能源有限公司 电连接器、充电桩及充电系统

Also Published As

Publication number Publication date
CN114590145B (zh) 2023-11-14
CN114590145A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2023185240A1 (zh) 电连接器、充电桩及充电系统
US20160380247A1 (en) Battery Packs Having Single Stacks of Battery Cells
CN105914427B (zh) 应用于储能装置的均温结构及装置
US20150263397A1 (en) Side mounted traction battery thermal plate
US9490458B2 (en) Electric vehicle battery with temperature control
WO2019184883A1 (zh) 一种大功率充电桩的正负极液冷电缆串联冷却结构
CN207416560U (zh) 充电设备冷却系统
CN106299536A (zh) 一种用于电动汽车的可扩展式液冷电池模组
WO2022037143A1 (zh) 一种电池以及用电设备
CN109768194A (zh) 一种基于相变材料-翅片复合结构的锂离子电池模组热管理系统
CN103227352A (zh) 电动汽车/混合动力汽车单体电池的温度控制装置及方法
CN105870372A (zh) 一种圆柱电池组
CN108631024B (zh) 一种汽车的热管理电池系统、热管理方法及电池控制装置
CN108615957A (zh) 液体冷却/加热和翅片传热复合的形电池成组方法
CN205303622U (zh) 一种液体换热电池模块结构
CN206116564U (zh) 应用于储能装置的均温结构及装置
WO2023185244A1 (zh) 一种散热结构、高压盒、电池和用电装置
CN106785210A (zh) 一种方形电池的冷却/加热方法
CN102558654A (zh) 复合塑料及用其制造的锂离子电池和电池组及其组装方法
WO2023071056A1 (zh) 一种加热装置、电池及用电装置
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
CN205810930U (zh) 改良的锂电池隔膜
CN105449311A (zh) 一种液体换热电池模块结构
CN205790277U (zh) 一种电动汽车电池组热管理结构
CN216288617U (zh) 冷却结构、电池模组及电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777619

Country of ref document: EP

Kind code of ref document: A1