WO2023185201A1 - 手术机器人运动精度的测量方法、装置及手术机器人系统 - Google Patents

手术机器人运动精度的测量方法、装置及手术机器人系统 Download PDF

Info

Publication number
WO2023185201A1
WO2023185201A1 PCT/CN2023/071145 CN2023071145W WO2023185201A1 WO 2023185201 A1 WO2023185201 A1 WO 2023185201A1 CN 2023071145 W CN2023071145 W CN 2023071145W WO 2023185201 A1 WO2023185201 A1 WO 2023185201A1
Authority
WO
WIPO (PCT)
Prior art keywords
sphere
surgical robot
center
steel ball
ball
Prior art date
Application number
PCT/CN2023/071145
Other languages
English (en)
French (fr)
Inventor
张逸凌
刘星宇
Original Assignee
北京长木谷医疗科技有限公司
张逸凌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京长木谷医疗科技有限公司, 张逸凌 filed Critical 北京长木谷医疗科技有限公司
Publication of WO2023185201A1 publication Critical patent/WO2023185201A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present application relates to the technical field of surgical robots, and in particular to a method and device for measuring the movement accuracy of surgical robots, and a surgical robot system.
  • the surgical robot is positioned through the optical positioning system, and the main control system outputs instructions according to the computer, so that the surgical robot moves to the designated position to implement the surgical plan; and the most important indicator of the surgical robot is the accuracy of the surgical robot system. Therefore, accurate measurement of the surgical robot The accuracy of robotic systems is critical.
  • This application provides a method, device and surgical robot system for measuring the movement accuracy of a surgical robot, so as to measure the movement accuracy of the surgical robot.
  • this application provides a method for measuring the movement accuracy of a surgical robot.
  • a first measuring device is connected to the end of the surgical robot, and a first steel ball and a second steel ball are provided on the first measuring device.
  • the robot drives the first measurement device to move relative to the second measurement device, wherein a plurality of uprights are provided on opposite sides of the second measurement device, and a sphere is provided on each of the uprights.
  • the method includes :
  • the surgical robot is controlled to drive the first steel ball and the second steel ball through the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively.
  • the surgical robot When the second steel ball When moving to the coordinate position of the center of the second sphere, determine the actual coordinates of the first center of the first steel ball and the actual coordinates of the second center of the second steel ball respectively;
  • the method is based on the actual coordinates of the first sphere center, the actual coordinates of the second sphere center, and the sphere centers of the first sphere and the second sphere.
  • the first straight line where the coordinate line is located determines the movement accuracy of the surgical robot, including:
  • the movement accuracy of the surgical robot is determined.
  • determining the movement accuracy of the surgical robot based on the distance includes:
  • the movement accuracy of the surgical robot is determined.
  • the first sphere and the second sphere are located on the same side or on the opposite side of the second measurement device.
  • this application also provides a device for measuring the movement accuracy of a surgical robot.
  • a first measuring device is connected to the end of the surgical robot.
  • the first measuring device is provided with a first steel ball and a second steel ball.
  • the surgical robot drives the first measurement device to move relative to the second measurement device, wherein a plurality of uprights are provided on opposite sides of the second measurement device, and a sphere is provided on each of the uprights.
  • the device include:
  • the acquisition module is configured to obtain the coordinates of the center of each sphere, and use the coordinate position of the first sphere and the coordinate position of the second sphere among the plurality of spheres as the starting point of the movement of the surgical robot respectively. and end point;
  • a control module configured to control the surgical robot to drive the first steel ball and the second steel ball through the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively, in When the second steel ball moves to the coordinate position of the center of the second sphere, the actual coordinates of the first center of the first steel ball and the actual coordinates of the second center of the second steel ball are determined respectively;
  • the determination module is configured to determine based on the actual coordinates of the first sphere center, the actual coordinates of the second sphere center and the first straight line connecting the sphere center coordinates of the first sphere and the second sphere. Movement accuracy of the surgical robot.
  • the present application also provides a surgical robot system, which is characterized in that it includes: a surgical robot, a surgical robot laser tracker system, a surgical robot main control system, and a first measurement device and a second measurement device as described in the first aspect. Measuring device; wherein,
  • the surgical robot laser tracker system is used to track and locate the positions of the first measurement device and the second measurement device;
  • the surgical robot main control system is used to control the movement of the surgical robot, obtain the spherical center coordinates of the first steel ball and the second steel ball of the first measuring device, and the ball center coordinates of the spherical body of the second measuring device. center coordinates.
  • the second measuring device includes: a base, a reflective ball bracket, a reflective ball, a registration point, a first column, a second column, a third column, a fourth column, a fifth column and a sixth column;
  • the first upright column, the second upright column, the third upright column, the fourth upright column, the fifth upright column and the sixth upright column respectively correspond to the mounting holes installed on the upper surface of the base;
  • the reflective ball bracket is installed in front of the base; the reflective ball is installed on the upper surface of the reflective ball bracket; the registration point is located on the upper surface of the base;
  • the first measuring device includes: a first steel ball, a second steel ball, a reflective ball bracket, a support column and a connecting flange;
  • the first steel ball and the second steel ball are installed at both ends of the bottom of the support column; the reflective ball bracket is installed in the middle of the support column; a reflective ball is installed on the reflective ball bracket; The support column is connected to the connecting flange.
  • the spheres on the first upright, the second upright, the third upright, the fourth upright, the fifth upright and the sixth upright are The heights of the center of the ball and the upper surface of the base are different; the first upright column, the second upright column, the third upright column, the fourth upright column, the fifth upright column and the sixth upright column, Each mounting hole on the upper surface of the base can be freely combined.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program, the following is implemented: On the one hand, the steps of the method for measuring the movement accuracy of a surgical robot are described.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps of the method for measuring the movement accuracy of the surgical robot as described in the first aspect are implemented.
  • the method for measuring the movement accuracy of a surgical robot is to obtain the coordinates of the center of the sphere on each column on the second measuring device, and sum the coordinates of the center of the first sphere among the plurality of spheres with the position of the center of the second sphere.
  • the coordinate positions of the center of the sphere are respectively used as the starting point and the end point of the movement of the surgical robot, and the surgical robot is controlled to drive the first steel ball and the second steel ball to pass the coordinate position of the center of the sphere of the first sphere and the coordinate position of the sphere center of the second sphere respectively,
  • the surgical robot is controlled to drive the first steel ball and the second steel ball to pass the coordinate position of the center of the sphere of the first sphere and the coordinate position of the sphere center of the second sphere respectively.
  • the actual coordinates of the first center of the first steel ball and the actual coordinates of the second center of the second steel ball are determined respectively; and then according to the first ball
  • the actual coordinates of the center, the actual coordinates of the second sphere center, and the first straight line connecting the sphere center coordinates of the first sphere and the second sphere determine the movement accuracy of the surgical robot. This application realizes the measurement of the movement accuracy of the surgical robot.
  • Figure 1 is one of the flow diagrams of the method for measuring the movement accuracy of the surgical robot provided by this application;
  • Figure 2 is the second schematic flow chart of the method for measuring the movement accuracy of the surgical robot provided by this application;
  • Figure 3 is the third schematic flow chart of the method for measuring the movement accuracy of the surgical robot provided by this application.
  • FIG. 4 is a structural diagram of the surgical robot system provided by this application.
  • Figure 5 is a schematic structural diagram of a device for measuring the movement accuracy of a surgical robot provided by this application;
  • Figure 6 is a schematic module diagram of a device for measuring the movement accuracy of a surgical robot provided by this application.
  • Figure 7 is a schematic diagram of the physical structure of the electronic device provided by this application.
  • the method for measuring the movement accuracy of a surgical robot provided by the embodiment of the present application can be applied to the application scenario of measuring the movement accuracy of the surgical robot.
  • the end of the surgical robot is connected to a first measuring device, and the first measuring device is provided with a first measuring device.
  • Steel balls and second steel balls the surgical robot drives the first measuring device to move relative to the second measuring device, wherein a plurality of uprights are provided on opposite sides of the second measuring device, each of the Spheres are provided on the uprights, and the coordinates of the center of each sphere are obtained, and the coordinates of the center of the first sphere and the coordinates of the second sphere among the plurality of spheres are used as the movements of the surgical robot respectively.
  • the starting point and end point control the surgical robot to drive the first steel ball and the second steel ball to pass the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively, at the
  • the actual coordinates of the first center of the ball of the first steel ball and the actual coordinates of the second center of the second ball of the second steel ball are determined respectively; based on The actual coordinates of the first sphere center, the actual coordinates of the second sphere center and the first straight line connecting the sphere center coordinates of the first sphere and the second sphere determine the movement accuracy of the surgical robot. .
  • This application achieves the purpose of measuring the movement accuracy of the surgical robot.
  • Figure 1 is one of the flow diagrams of a method for measuring the movement accuracy of a surgical robot provided by this application.
  • a first measuring device is connected to the end of the surgical robot, and a first steel ball is provided on the first measuring device. and a second steel ball, the surgical robot drives the first measuring device to move relative to the second measuring device, wherein a plurality of uprights are provided on opposite sides of the second measuring device, and each upright is Both are provided with spheres, and the method includes steps 110 to 130, wherein:
  • Step 110 Obtain the coordinates of the center of each sphere, and use the coordinates of the first sphere and the coordinates of the second sphere among the plurality of spheres as the starting point and the end point of the movement of the surgical robot respectively.
  • the method for measuring the movement accuracy of a surgical robot provided by this application can be applied to scenarios of measuring the movement accuracy of a surgical robot.
  • the execution subject of the method for measuring the movement accuracy of the surgical robot provided by the present application may be a device for measuring the movement accuracy of the surgical robot, such as an electronic device, or a part of the device for measuring the movement accuracy of the surgical robot that is used to perform the method for measuring the movement accuracy of the surgical robot. control module.
  • the first sphere and the second sphere are located on the same side or opposite sides of the second measuring device.
  • the plurality of uprights provided on opposite sides of the second measuring device are divided into multiple groups, each group includes two uprights, and the sphere on each upright serves as the first sphere or the second sphere.
  • the coordinates of the center of each sphere are obtained through a three-dimensional coordinate instrument.
  • the three-dimensional coordinate instrument establishes a coordinate system that coincides with the origin of the surgical robot system, thereby obtaining the coordinates of the center of each sphere, and converting the coordinates of each sphere to The coordinates of the center of the sphere are used as theoretical coordinates.
  • the coordinate position of the center of the first sphere and the coordinate position of the center of the second sphere of each group of columns are respectively used as the starting point and end point of the movement of the surgical robot.
  • the first The column where the sphere and the second sphere are located is removed so that the first steel ball and the second steel ball can pass the coordinate position of the center of the sphere of the first sphere and the coordinate position of the sphere center of the second sphere respectively.
  • Step 120 Control the surgical robot to drive the first steel ball and the second steel ball to pass the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively.
  • the two steel balls move to the coordinate position of the center of the second sphere, the actual coordinates of the first center of the ball of the first steel ball and the actual coordinates of the second center of the second ball of the second steel ball are determined respectively.
  • the surgical robot is controlled to drive the first steel ball and the second steel ball on the first measurement device, along the coordinate position of the first sphere center of the first sphere and the sphere center coordinate of the second sphere of each group of columns on the second measurement device.
  • the direction of the position passes through the coordinate position of the center of the first sphere and the coordinate position of the center of the second sphere respectively; when the second steel ball passes the coordinate position of the center of the second sphere, use a three-dimensional coordinate instrument to measure the coordinate position of the first steel ball.
  • the actual coordinates of the first sphere center and the actual coordinates of the second sphere center of the second steel ball are measured to obtain the actual coordinates of the first sphere center of the first steel ball and the actual coordinates of the second sphere center of the second steel ball.
  • Step 130 Determine the operation procedure based on the actual coordinates of the first sphere center, the actual coordinates of the second sphere center and the first straight line connecting the sphere center coordinates of the first sphere and the second sphere. Robot movement accuracy.
  • the center coordinates of the first sphere and the second sphere are connected, and the connection line is used as the first straight line; and then based on the actual coordinates of the first sphere center, the actual coordinates of the second sphere center and the first straight line, determine Movement accuracy of surgical robots.
  • the method for measuring the movement accuracy of a surgical robot is to obtain the coordinates of the center of each sphere, and use the coordinates of the first sphere and the coordinates of the second sphere among the plurality of spheres as respectively The starting point and end point of the movement of the surgical robot; controlling the surgical robot to drive the first steel ball and the second steel ball through the coordinate position of the center of the first sphere and the center of the second sphere respectively Coordinate position, when the second steel ball moves to the coordinate position of the center of the second sphere, determine the actual coordinates of the first center of the first steel ball and the second center of the second steel ball respectively.
  • the actual coordinates of the center based on the actual coordinates of the first sphere center, the actual coordinates of the second sphere center and the first straight line connecting the sphere center coordinates of the first sphere and the second sphere, determine the Movement accuracy of surgical robots. This application realizes the measurement of the movement accuracy of the surgical robot.
  • Figure 2 is the second schematic flow chart of the method for measuring the movement accuracy of a surgical robot provided by this application. As shown in Figure 2, the method includes steps 210 to 240, wherein:
  • Step 210 Obtain the coordinates of the center of each sphere, and use the coordinate position of the first sphere and the coordinate position of the second sphere among the plurality of spheres as the starting point and the end point of the movement of the surgical robot respectively.
  • Step 220 Control the surgical robot to drive the first steel ball and the second steel ball through the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively.
  • the two steel balls move to the coordinate position of the center of the second sphere, the actual coordinates of the first center of the ball of the first steel ball and the actual coordinates of the second center of the second ball of the second steel ball are determined respectively.
  • steps 210-220 you can refer to the description and explanation of this part in the above-mentioned steps 110-120, and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • Step 230 Based on the actual coordinates of the first sphere center and the actual coordinates of the second sphere center, respectively calculate the distances between the first sphere center actual coordinates and the second sphere center actual coordinates and the first straight line. .
  • the distance between the actual coordinates of the first sphere center and the first straight line and the distance between the actual coordinates of the second sphere center and the first straight line calculate the distance between the actual coordinates of the first sphere center and the first straight line and the distance between the actual coordinates of the second sphere center and the first straight line, and obtain Two distance values, where the distance between the actual coordinates of the first sphere center and the first straight line is the distance between the actual coordinates of the first sphere center and the vertical line segment of the first straight line, and the distance between the actual coordinates of the second sphere center and the first straight line is The distance of the line is the distance from the actual coordinates of the second sphere center to the vertical segment of the first straight line.
  • the plurality of columns provided on opposite sides of the second measuring device are divided into multiple groups, and two distance values are calculated for each group.
  • Step 240 Determine the movement accuracy of the surgical robot based on the distance.
  • the method for measuring the movement accuracy of the surgical robot calculates the distance between the actual coordinates of the first sphere center and the actual coordinates of the second sphere center and the first straight line, and then determines the movement accuracy of the surgical robot based on the obtained distance, achieving To measure the movement accuracy of the surgical robot.
  • Figure 3 is the third schematic flow chart of the method for measuring the movement accuracy of a surgical robot provided by this application. As shown in Figure 3, the method includes steps 310 to 350, wherein:
  • Step 310 Obtain the coordinates of the center of each sphere, and use the coordinate position of the first sphere and the coordinate position of the second sphere among the plurality of spheres as the starting point and the end point of the movement of the surgical robot respectively.
  • Step 320 Control the surgical robot to drive the first steel ball and the second steel ball to pass the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively.
  • the two steel balls move to the coordinate position of the center of the second sphere, the actual coordinates of the first center of the ball of the first steel ball and the actual coordinates of the second center of the second ball of the second steel ball are determined respectively.
  • Step 330 Based on the actual coordinates of the first sphere center and the actual coordinates of the second sphere center, respectively calculate the distances between the first sphere center actual coordinates and the second sphere center actual coordinates and the first straight line. .
  • Step 340 Based on the distance, determine the maximum distance between the actual coordinates of the first sphere center and the actual coordinates of the second sphere center and the first straight line.
  • the maximum distance among the two calculated distance values in each group is determined.
  • Step 350 Determine the movement accuracy of the surgical robot based on the maximum distance.
  • the maximum distance among the two distance values is calculated according to each group, and the maximum distance value among the maximum distances of each group is determined, thereby determining the movement accuracy of the surgical robot.
  • the method for measuring the movement accuracy of a surgical robot determines the actual coordinates of the first sphere center and the actual coordinates of the second sphere center by calculating the distance between the actual coordinates of the first sphere center and the actual coordinates of the second sphere center and the first straight line. The maximum distance from the first straight line, and then based on the maximum distance, the movement accuracy of the surgical robot is determined, thereby achieving the measurement of the movement accuracy of the surgical robot.
  • This application also provides a surgical robot system, including: a surgical robot, a surgical robot laser tracker system, a surgical robot main control system, and the first measurement device and the second measurement device described in the above embodiments; wherein, the surgical robot laser tracking system
  • the instrument system is used to track and locate the positions of the first measuring device and the second measuring device;
  • the surgical robot main control system is used to control the movement of the surgical robot and obtain the centers of the first steel ball and the second steel ball of the first measuring device. coordinates, and the coordinates of the center of the sphere of the second measuring device.
  • the surgical robot laser tracker system and the surgical robot main control system can communicate.
  • the surgical robot laser tracker system will track and locate the positions of the first measurement device and the second measurement device and send them to the surgical robot main control system.
  • the surgical robot main control system controls the movement of the surgical robot according to the positions of the first measuring device and the second measuring device, and obtains the center coordinates of the first steel ball and the second steel ball on the first measuring device, and the second measurement
  • the center coordinates of the sphere on the device are used to measure the movement accuracy of the surgical robot.
  • FIG 4 is a schematic structural diagram of the surgical robot system provided by this application.
  • the surgical robot system includes: a surgical robot laser tracker system 16, a surgical robot main control system 17, a surgical robot 18, and a first measurement device 19 and a second measuring device 20 .
  • the surgical robot laser tracker system 16 tracks and locates the positions of the first measurement device 19 and the second measurement device 20 ; the surgical robot main control system 17 obtains the position of the surgical robot laser tracker system 16 on the first measurement device 19
  • the center coordinates of the first steel ball and the second steel ball and the center coordinates of the sphere on the second measuring device 20 are used to control the movement of the surgical robot 18; the movement of the surgical robot 18 is controlled by the surgical robot main control system 17.
  • the first measuring device 19 is driven to move to a designated position, thereby measuring the movement accuracy of the surgical robot.
  • Figure 5 is a schematic structural diagram of a device for measuring the movement accuracy of a surgical robot provided by this application.
  • the device 500 for measuring the movement accuracy of a surgical robot includes: a second measurement device 20 and a first measurement device 19; wherein:
  • the second measuring device 20 includes: base 1, reflective ball bracket 2, reflective ball 3, registration point 4, first column 5, second column 6, third column 7, fourth column 8, fifth column 9 and Sixth Pillar 10;
  • the first upright column 5, the second upright column 6, the third upright column 7, the fourth upright column 8, the fifth upright column 9 and the sixth upright column 10 are respectively installed on the base 1 correspondingly.
  • the mounting holes on the upper surface; the reflective ball bracket 2 is installed in front of the base 1; the reflective ball 3 is installed on the upper surface of the reflective ball bracket 2; the registration point 4 is located on the upper side of the base 1 surface;
  • the first measuring device 19 includes: a first steel ball 11, a second steel ball 12, a reflective ball bracket 13, a support column 14 and a connecting flange 15;
  • the first steel ball 11 and the second steel ball 12 are installed at both ends of the bottom of the support column 14; the reflective ball bracket 13 is installed in the middle of the support column 14; the reflective ball bracket 13 is A reflective ball 3 is installed; the support column 14 is connected to the connecting flange 15 .
  • the center of the sphere on the first column 5, the second column 6, the third column 7, the fourth column 8, the fifth column 9 and the sixth column 10 are different from the height of the upper surface of the base 1;
  • the first upright column 5, the second upright column 6, the third upright column 7, the fourth upright column 8, the fifth upright column 9 and the sixth upright column 10 can be freely combined with the respective mounting holes on the upper surface of the base 1.
  • the heights of the center of the column spheres on the first column 5 , the second column 6 , the third column 7 , the fourth column 8 , the fifth column 9 and the sixth column 10 are different from the upper surface of the base 1 , and the difference in height can be Achieve measurement of different spatial orientations; the positions of each mounting hole on the upper surface of the base 1 can be arbitrarily installed on the first column 5, the second column 6, the third column 7, the fourth column 8, the fifth column 9 and the sixth column 10 , that is, the positions of the first column 5, the second column 6, the third column 7, the fourth column 8, the fifth column 9 and the sixth column 10 are not fixed and can be combined according to the actual situation.
  • the surface of the reflective ball bracket 2 is inclined at an angle of 45°; the reflective ball 3 is installed on the plane inclined at an angle of 45° of the reflective ball bracket 2; the reflective ball 3 is installed on the plane inclined at an angle of 45° of the reflective ball bracket 2.
  • the reflective ball bracket 2 is installed in front of the base 1.
  • the registration points 4 include 6, and the depth of each registration point 4 is different.
  • the number of registration points 4 on the upper surface of the base 1 is 6, and the depths of each registration point are different.
  • the registration points 4 with different depths and different positions are used to accurately position the second measurement device 20 .
  • the device for measuring the movement accuracy of the surgical robot provided in this application cooperates with the surgical robot laser tracker system 16 , the surgical robot main control system 17 and the surgical robot 18 to measure the movement accuracy of the surgical robot.
  • the device for measuring the movement accuracy of a surgical robot includes a second measuring device and a first measuring device; wherein the second measuring device includes a base, a reflective ball bracket, a reflective ball, a registration point, a first upright column, a second upright column, The third column, the fourth column, the fifth column and the sixth column; the first column, the second column, the third column, the fourth column, the fifth column and the sixth column respectively correspond to the mounting holes installed on the upper surface of the base;
  • the reflective ball bracket is installed in front of the base; the reflective ball is installed on the upper surface of the reflective ball bracket; the registration point is located on the upper surface of the base;
  • the first measurement device includes a first steel ball, a second steel ball, a reflective ball bracket, and a support column.
  • the first steel ball and the second steel ball are installed at both ends of the bottom of the support column; the reflective ball bracket is installed in the middle of the support column; the reflective ball bracket is equipped with a reflective ball; the support column is connected to the connecting flange.
  • the cooperation process between the surgical robot movement accuracy measurement device provided by the present application and the surgical robot laser tracker system 16, the surgical robot main control system 17 and the surgical robot 18 is described below, so as to realize the movement accuracy of the surgical robot.
  • the measurement process is described in detail.
  • Step 1 The surgical robot laser tracker system 16 of the surgical robot system tracks the reflective ball 3 on the reflective ball holder 2 of the second measurement device 20, and feeds back the tracking results to the surgical robot main control system 17; the surgical robot main control system The system 17 performs rough positioning on the second measuring device 20 based on the tracking results of the surgical robot laser tracker system 16 on the reflective ball 3 on the reflective ball holder 2 of the second measuring device 20 .
  • Step 2 Measure the six registration points 4 on the upper surface of the second measuring device 20 sequentially through the probe holder, insert the probe holder into the six registration points at different depths in sequence, and each time a registration point is inserted, the surgical robot laser tracker
  • the system 16 tracks the reflective ball on the probe holder and feeds back the tracking results to the surgical robot main control system 17.
  • the surgical robot main control system 17 positions the six registration points 4 on the upper surface of the second measurement device 20 in sequence.
  • the second measuring device 20 is accurately positioned and the coordinate system of the surgical robot system is established.
  • the surgical robot main control system 17 locates the tracking result of the reflective ball 3 on the reflective ball bracket 2 through the surgical robot laser tracker system 16, and obtains the position of the reflective ball 3 on the reflective ball bracket 2, and the surgical robot.
  • the laser tracker system 16 locates the tracking results of the reflective ball on the probe holder and obtains the positions of the six registration points 4; the surgical robot main control system 17 determines the position of the reflective ball 3 on the reflective ball holder 2 and the six registration points.
  • the position of the quasi-point 4 enables precise positioning of the second measuring device 20 .
  • Step 3 Use a three-coordinate instrument to establish a coordinate system that coincides with the origin of the coordinate system of the surgical robot system, and use a three-coordinate instrument to measure the spatial coordinates of the spherical centers of the first column 5 and the second column 6 of the second measuring device 20, and obtain Theoretical sphere center coordinates, and then remove the first column 5 and the second column 6 on the second measuring device 20 .
  • Step 4 The surgical robot laser tracker system 16 feeds back the tracking results to the surgical robot main control system 17 by tracking the position of the reflective ball 3 on the reflective ball holder 13 on the first measurement device 19.
  • the surgical robot main control system 17 The actual position of the first measuring device 19 is determined.
  • Step 5 The surgical robot main control system 17 drives the surgical robot 18 to move according to the spatial coordinates of the spherical centers of the first column 5 and the second column 6.
  • the surgical robot 18 drives the first measurement device 19 to move the first measurement device 19 along the first column.
  • the spherical center coordinate positions of the upright column 5 and the second upright column 6 move, and the first measuring device 19 is stopped at the spherical center coordinate position of the second upright column 6 .
  • Step 6 Measure the center coordinates of the first steel ball 11 and the second steel ball 13 with a three-dimensional coordinate instrument, and measure the center coordinates of the first steel ball 11 and the second steel ball 13 with the surgical robot main control system 17 The positions are connected to obtain the first straight line where the axes connecting the centers of the first steel ball 11 and the second steel ball 13 are located.
  • Step 7 Calculate the distance between the coordinate positions of the sphere centers of the first column 5 and the second column 6 and the first straight line where the axes connecting the sphere centers of the first steel ball 11 and the second steel ball 13 are located, respectively, to obtain a set of distances of data, take the maximum value in the set of distance data.
  • Step 8 According to the above steps 3 to 7, calculate the distances between the third column 7 and the fourth column 8, the fifth column 9 and the sixth column 10 respectively, and obtain two sets of distance data respectively; take each set of distance data. the maximum value in .
  • Step 9 Based on the maximum value in each set of distance data, select the maximum value among the three sets of maximum distance data as the movement accuracy of the surgical robot.
  • the device for measuring the motion accuracy of the surgical robot provided by the embodiment of the present application is described below.
  • the device for measuring the motion accuracy of the surgical robot described below and the method for measuring the motion accuracy of the surgical robot described above can correspond to each other.
  • Figure 6 is a schematic module diagram of a device for measuring the movement accuracy of a surgical robot provided by an embodiment of the present application.
  • a first measuring device is connected to the end of the surgical robot, and a first steel ball is provided on the first measuring device. and a second steel ball, the surgical robot drives the first measuring device to move relative to the second measuring device, wherein a plurality of uprights are provided on opposite sides of the second measuring device, and each upright is Both are provided with a sphere.
  • the measuring device 600 for the movement accuracy of the surgical robot includes: an acquisition module 601, a control module 602 and a determination module 603; wherein,
  • the acquisition module 601 is configured to obtain the sphere center coordinates of each of the spheres, and use the sphere center coordinate positions of the first sphere and the sphere center coordinate position of the second sphere among the plurality of spheres as the movement parameters of the surgical robot. starting point and end point;
  • the control module 602 is configured to control the surgical robot to drive the first steel ball and the second steel ball to pass the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively, When the second steel ball moves to the coordinate position of the center of the second sphere, the actual coordinates of the first sphere center of the first steel ball and the actual coordinates of the second sphere center of the second steel ball are respectively determined. ;
  • the determination module 603 is configured to be based on the actual coordinates of the first sphere center, the actual coordinates of the second sphere center, and the first straight line connecting the sphere center coordinates of the first sphere and the second sphere, Determine the movement accuracy of the surgical robot.
  • the device for measuring the movement accuracy of the surgical robot obtains the coordinates of the center of each sphere, and sets the coordinates of the first sphere and the coordinates of the second sphere among the plurality of spheres as respectively The starting point and end point of the movement of the surgical robot; the surgical robot is controlled to drive the first steel ball and the second steel ball to pass the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively, and when the second steel ball moves to the second
  • the coordinate position of the center of the sphere is determined, the actual coordinates of the first sphere center of the first steel ball and the actual coordinates of the second sphere center of the second steel ball are determined respectively; based on the actual coordinates of the first sphere center, the actual coordinates of the second sphere center and the The first straight line connecting the center coordinates of the first sphere and the second sphere determines the movement accuracy of the surgical robot.
  • This application realizes the measurement of the movement accuracy of the surgical robot.
  • the determination module 603 is specifically configured as:
  • the movement accuracy of the surgical robot is determined.
  • the determination module 603 is specifically configured as:
  • the movement accuracy of the surgical robot is determined.
  • the first sphere and the second sphere are located on the same side or opposite sides of the second measuring device.
  • Figure 7 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present application.
  • the electronic device 700 may include: a processor (processor) 710, a communications interface (Communications Interface) 720, and a memory (memory) 730. and a communication bus 740, wherein the processor 710, the communication interface 720, and the memory 730 complete communication with each other through the communication bus 740.
  • the processor 710 can call the logical instructions in the memory 730 to perform the following method of measuring the movement accuracy of the surgical robot. The method includes: obtaining the coordinates of the center of each sphere, and adding the sphere of the first sphere among the plurality of spheres.
  • the center coordinate position and the center coordinate position of the second sphere are respectively used as the starting point and the end point of the movement of the surgical robot; the surgical robot is controlled to drive the first steel ball and the second steel ball through the first sphere respectively.
  • the first ball of the first steel ball is determined respectively.
  • the actual coordinates of the center and the actual coordinates of the second center of the second steel ball; the ball based on the actual coordinates of the first center of the ball, the actual coordinates of the second center of the ball and the first sphere and the second sphere The first straight line connecting the center coordinates determines the movement accuracy of the surgical robot.
  • the above-mentioned logical instructions in the memory 730 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • embodiments of the present application also provide a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the following method for measuring the movement accuracy of a surgical robot is implemented.
  • the method includes: : Obtain the sphere center coordinates of each sphere, and use the sphere center coordinate position of the first sphere and the sphere center coordinate position of the second sphere among the plurality of spheres as the starting point and end point of the movement of the surgical robot respectively; control all The surgical robot drives the first steel ball and the second steel ball to pass through the center coordinate position of the first sphere and the center coordinate position of the second sphere respectively.
  • the actual coordinates of the first sphere center of the first steel ball and the actual coordinates of the second sphere center of the second steel ball are respectively determined; based on the actual coordinates of the first sphere center
  • the coordinates, the actual coordinates of the second sphere center, and the first straight line connecting the sphere center coordinates of the first sphere and the second sphere determine the movement accuracy of the surgical robot.
  • inventions of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions When executed by a computer, the following method for measuring the movement accuracy of a surgical robot is implemented. The method includes: obtaining the coordinates of the center of each sphere, and combining the coordinates of the center of the first sphere and the coordinates of the second sphere among the plurality of spheres.
  • the sphere center coordinate position is respectively used as the starting point and the end point of the movement of the surgical robot; the surgical robot is controlled to drive the first steel ball and the second steel ball to pass through the sphere center coordinate position of the first sphere and the The coordinate position of the center of the second sphere.
  • the actual coordinates of the first center of the first sphere and the second actual coordinate of the first steel ball are determined respectively.
  • the actual coordinates of the second sphere center of the steel ball based on the actual coordinates of the first sphere center, the actual coordinates of the second sphere center and the first line connecting the sphere center coordinates of the first sphere and the second sphere.
  • a straight line determines the movement accuracy of the surgical robot.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

一种手术机器人运动精度的测量方法、装置及手术机器人系统,其中,方法包括:获取每个球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为手术机器人运动的起点和终点(110);控制手术机器人驱动第一钢球和第二钢球分别经过第一球体的球心坐标位置和第二球体的球心坐标位置,在第二钢球运动至第二球体的球心坐标位置时,分别确定第一钢球的第一球心实际坐标和第二钢球的第二球心实际坐标(120);基于第一球心实际坐标、第二球心实际坐标以及第一球体和第二球体的球心坐标连线所在的第一直线,确定手术机器人的运动精度(130)。该测量方法实现了测量手术机器人的运动精度。

Description

手术机器人运动精度的测量方法、装置及手术机器人系统
相关申请的交叉引用
本申请要求于2022年03月29日提交的申请号为202210323817.7,名称为“手术机器人运动精度的测量方法、装置及手术机器人系统”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及手术机器人技术领域,尤其涉及一种手术机器人运动精度的测量方法、装置及手术机器人系统。
背景技术
近年来,随着医疗机器人技术的发展,手术机器人在临床医学手术领域被广泛应用。
手术机器人通过光学定位系统定位,通过主控系统根据计算机输出指令,使得手术机器人移动到指定位置,实现手术计划;而手术机器人最重要的一项指标是手术机器人系统的精度,因此,精确测量手术机器人系统的精度至关重要。
发明内容
本申请提供一种手术机器人运动精度的测量方法、装置及手术机器人系统,以实现测量手术机器人的运动精度。
具体地,本申请实施例提供了以下技术方案:
第一方面,本申请提供一种手术机器人运动精度的测量方法,手术机器人的末端连接有第一测量装置,所述第一测量装置上设置有第一钢球和第二钢球,所述手术机器人带动所述第一测量装置相对于第二测量装置移动,其中,所述第二测量装置的相对两侧分别设置有多个立柱,每个所述立柱上均 设置有球体,所述方法包括:
获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;
控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;
基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
根据本申请提供的一种手术机器人运动精度的测量方法,所述基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度,包括:
基于所述第一球心实际坐标和所述第二球心实际坐标,分别计算所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的距离;
基于所述距离,确定所述手术机器人的运动精度。
根据本申请提供的一种手术机器人运动精度的测量方法,所述基于所述距离,确定所述手术机器人的运动精度,包括:
基于所述距离,确定所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的最大距离;
基于所述最大距离,确定所述手术机器人的运动精度。
根据本申请提供的一种手术机器人运动精度的测量方法,所述第一球体和所述第二球体位于所述第二测量装置的同侧或对侧。
第二方面,本申请还提供一种手术机器人运动精度的测量装置,手术机器人的末端连接有第一测量装置,所述第一测量装置上设置有第一钢球和第二钢球,所述手术机器人带动所述第一测量装置相对于第二测量装置移动,其中,所述第二测量装置的相对两侧分别设置有多个立柱,每个所述立柱上均设置有球体,所述装置包括:
获取模块,被配置为获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器 人运动的起点和终点;
控制模块,被配置为控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;
确定模块,被配置为基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
第三方面,本申请还提供一种手术机器人系统,其特征在于,包括:手术机器人、手术机器人激光追踪仪系统、手术机器人主控系统以及如第一方面所述的第一测量装置和第二测量装置;其中,
所述手术机器人激光追踪仪系统,用于追踪定位所述第一测量装置和所述第二测量装置的位置;
所述手术机器人主控系统,用于控制所述手术机器人运动、获取所述第一测量装置的第一钢球和第二钢球的球心坐标,以及所述第二测量装置的球体的球心坐标。
根据本申请提供的手术机器人系统,
所述第二测量装置包括:底座、反光球支架、反光球、配准点、第一立柱、第二立柱、第三立柱、第四立柱、第五立柱和第六立柱;
所述第一立柱、所述第二立柱、所述第三立柱、所述第四立柱、所述第五立柱和所述第六立柱,分别对应安装于所述底座上表面的安装孔;所述反光球支架安装于所述底座的前方;所述反光球安装于所述反光球支架的上表面;所述配准点位于所述底座的上表面;
所述第一测量装置包括:第一钢球、第二钢球、反光球支架、支撑柱和连接法兰;
所述第一钢球与所述第二钢球安装于所述支撑柱底部的两端;所述反光球支架安装于所述支撑柱的中部;所述反光球支架上安装有反光球;所述支撑柱与所述连接法兰连接。
根据本申请提供的一种手术机器人系统,所述第一立柱、所述第二立柱、所述第三立柱、所述第四立柱、所述第五立柱和所述第六立柱上的球体的球 心与所述底座上表面的高度均有差异;所述第一立柱、所述第二立柱、所述第三立柱、所述第四立柱、所述第五立柱和所述第六立柱,与所述底座上表面的各个安装孔可自由组合。
第四方面,本申请还提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面所述手术机器人运动精度的测量方法的步骤。
第五方面,本申请还提供非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述手术机器人运动精度的测量方法的步骤。
本申请提供的手术机器人运动精度的测量方法,通过获取第二测量装置上每个立柱上的球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点,控制手术机器人驱动第一钢球和第二钢球分别经过第一球体的球心坐标位置和第二球体的球心坐标位置,在第二钢球运动至第二球体的球心坐标位置时,分别确定第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;再根据第一球心实际坐标、第二球心实际坐标以及第一球体和第二球体的球心坐标连线所在的第一直线,确定手术机器人的运动精度。本申请实现了测量手术机器人的运动精度。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的手术机器人运动精度的测量方法的流程示意图之一;
图2是本申请提供的手术机器人运动精度的测量方法的流程示意图之二;
图3是本申请提供的手术机器人运动精度的测量方法的流程示意图之三;
图4是本申请提供的手术机器人系统的结构图;
图5是本申请提供的手术机器人运动精度的测量装置的结构示意图;
图6是本申请提供的手术机器人运动精度的测量装置的模块示意图;
图7是本申请提供的电子设备的实体结构示意图;
附图标记:
1:底座;2:反光球支架;3:反光球;4:配准点;
5:第一立柱;6:第二立柱;7:第三立柱;8:第四立柱;
9:第五立柱;10:第六立柱;11:第一钢球;12:第二钢球;
13:反光球支架;14:支撑柱;15:连接法兰;
16:手术机器人激光追踪仪系统;17:手术机器人主控系统;
18:手术机器人;19:第一测量装置;20:第二测量装置。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图,通过一些实施例及其应用场景对本申请提供的手术机器人运动精度的测量方法进行详细地说明。
本申请实施例提供的手术机器人运动精度的测量方法,可以适用于测量手术机器人的运动精度的应用场景中,手术机器人的末端连接有第一测量装置,所述第一测量装置上设置有第一钢球和第二钢球,所述手术机器人带动所述第一测量装置相对于第二测量装置移动,其中,所述第二测量装置的相对两侧分别设置有多个立柱,每个所述立柱上均设置有球体,通过获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球 心坐标连线所在的第一直线,确定所述手术机器人的运动精度。本申请实现了测量手术机器人的运动精度的目的。
图1是本申请提供的手术机器人运动精度的测量方法的流程示意图之一,如图1所示,手术机器人的末端连接有第一测量装置,所述第一测量装置上设置有第一钢球和第二钢球,所述手术机器人带动所述第一测量装置相对于第二测量装置移动,其中,所述第二测量装置的相对两侧分别设置有多个立柱,每个所述立柱上均设置有球体,方法包括步骤110-步骤130,其中:
步骤110,获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点。
需要说明的是,本申请提供的手术机器人运动精度的测量方法,可应用于测量手术机器人的运动精度的场景中。本申请提供的手术机器人运动精度的测量方法的执行主体可以为手术机器人运动精度的测量装置,例如电子设备、或者该手术机器人运动精度的测量装置中的用于执行手术机器人运动精度的测量方法的控制模块。
可选地,第一球体和第二球体位于第二测量装置的同侧或对侧。
可以理解的是,将第二测量装置的相对两侧分别设置的多个立柱分成多个组,每组包括两个立柱,每个立柱上的球体作为第一球体或者第二球体。
具体地,通过三坐标仪获取每个球体的球心坐标;其中,三坐标仪建立与手术机器人系统的原点重合的坐标系,从而获取到每个球体的球心坐标,并将每个球体的球心坐标作为理论坐标。
实际中,将每组立柱的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为手术机器人运动的起点和终点,在确定好手术机器人运动的起点和终点之后,将第一球体和第二球体所在的立柱拆除,以使第一钢球和第二钢球能够分别经过第一球体的球心坐标位置和第二球体的球心坐标位置。
步骤120,控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标。
具体地,控制手术机器人驱动第一测量装置上的第一钢球和第二钢球,沿着第二测量装置上每组立柱的第一球体的球心坐标位置和第二球体的球心坐标位置的方向,分别经过第一球体的球心坐标位置和第二球体的球心坐标位置;当第二钢球经过第二球体的球心坐标位置时,使用三坐标仪对第一钢球的第一球心实际坐标和第二钢球的第二球心实际坐标进行测量,得到第一钢球的第一球心实际坐标和第二钢球的第二球心实际坐标。
步骤130,基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
具体地,将第一球体和第二球体的球心坐标进行相连,并将连线作为第一直线;再根据第一球心实际坐标、第二球心实际坐标及第一直线,确定手术机器人的运动精度。
本申请提供的手术机器人运动精度的测量方法,通过获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。本申请实现了测量手术机器人的运动精度。
图2是本申请提供的手术机器人运动精度的测量方法的流程示意图之二,如图2所示,方法包括步骤210-步骤240,其中:
步骤210,获取每个所述球体的球心坐标,并将多个球体中的第一球 体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点。
步骤220,控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标。
可选地,关于步骤210-220的说明和解释,可以参照上述步骤110-120中对该部分的说明和解释,且能达到相同的技术效果,为避免重复,这里不再赘述。
步骤230,基于所述第一球心实际坐标和所述第二球心实际坐标,分别计算所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的距离。
具体地,根据第一球心实际坐标和第二球心实际坐标,计算第一球心实际坐标与第一直线的距离及第二球心实际坐标与所述第一直线的距离,得到两个距离值,其中,第一球心实际坐标与第一直线的距离为第一球心实际坐标至第一直线的垂直线段的距离,第二球心实际坐标与所述第一直线的距离为第二球心实际坐标至第一直线的垂直线段的距离。
需要说明的是,将第二测量装置的相对两侧分别设置的多个立柱分成多个组,每组计算得到两个距离值。
步骤240,基于所述距离,确定所述手术机器人的运动精度。
本申请提供的手术机器人运动精度的测量方法,通过计算第一球心实际坐标和第二球心实际坐标与第一直线的距离,再根据得到的距离,确定出手术机器人的运动精度,实现了测量手术机器人的运动精度。
图3是本申请提供的手术机器人运动精度的测量方法的流程示意图之三,如图3所示,方法包括步骤310-步骤350,其中:
步骤310,获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点。
步骤320,控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标。
步骤330,基于所述第一球心实际坐标和所述第二球心实际坐标,分别计算所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的距离。
步骤340,基于所述距离,确定所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的最大距离。
具体地,根据计算的第一球心实际坐标和第二球心实际坐标与第一直线的距离,确定每组计算得到两个距离值中的最大距离。
步骤350,基于所述最大距离,确定所述手术机器人的运动精度。
具体地,根据每组计算得到两个距离值中的最大距离,确定出各个组的最大距离中最大的距离值,从而确定手术机器人的运动精度。
本申请提供的手术机器人运动精度的测量方法,通过计算的第一球心实际坐标和第二球心实际坐标与第一直线的距离,确定第一球心实际坐标和第二球心实际坐标与第一直线的最大距离,再根据最大距离,确定出手术机器人的运动精度,实现了测量手术机器人的运动精度。
本申请还提供一种手术机器人系统,包括:手术机器人、手术机器人激光追踪仪系统、手术机器人主控系统以及上述实施例所述的第一测量装置和第二测量装置;其中,手术机器人激光追踪仪系统,用于追踪定位第一测量装置和第二测量装置的位置;手术机器人主控系统,用于控制手术机器人运动、获取第一测量装置的第一钢球和第二钢球的球心坐标,以及第二测量装置的球体的球心坐标。
需要说明的是,手术机器人激光追踪仪系统与手术机器人主控系统之间能够进行通信,手术机器人激光追踪仪系统将追踪定位第一测量装置和第二测量装置的位置发送给手术机器人主控系统;手术机器人主控系统根据第一测量装置和第二测量装置的位置,控制手术机器人运动,并获取第 一测量装置上的第一钢球和第二钢球的球心坐标,以及第二测量装置上的球体的球心坐标,从而实现测量手术机器人的运动精度。
图4是本申请提供的手术机器人系统的结构示意图,如图4所示,该手术机器人系统包括:手术机器人激光追踪仪系统16、手术机器人主控系统17、手术机器人18、第一测量装置19和第二测量装置20。
具体地,手术机器人激光追踪仪系统16,追踪定位第一测量装置19和第二测量装置20的位置;手术机器人主控系统17,获取手术机器人激光追踪仪系统16对第一测量装置19上的第一钢球和第二钢球的球心坐标和第二测量装置20上的球体的球心坐标,以及控制手术机器人18运动;手术机器人18,被手术机器人主控系统17控制其移动,在移动的过程中带动第一测量装置19移动到指定位置,从而实现测量手术机器人的运动精度。
图5是本申请提供的手术机器人运动精度的测量装置的结构示意图,如图5所示,该手术机器人运动精度的测量装置500,包括:第二测量装置20、第一测量装置19;其中:
所述第二测量装置20包括:底座1、反光球支架2、反光球3、配准点4、第一立柱5、第二立柱6、第三立柱7、第四立柱8、第五立柱9和第六立柱10;
所述第一立柱5、所述第二立柱6、所述第三立柱7、所述第四立柱8、所述第五立柱9和所述第六立柱10,分别对应安装于所述底座1上表面的安装孔;所述反光球支架2安装于所述底座1的前方;所述反光球3安装于所述反光球支架2的上表面;所述配准点4位于所述底座1的上表面;
所述第一测量装置19包括:第一钢球11、第二钢球12、反光球支架13、支撑柱14和连接法兰15;
所述第一钢球11与所述第二钢球12安装于所述支撑柱14底部的两端;所述反光球支架13安装于所述支撑柱14的中部;所述反光球支架13上安装有反光球3;所述支撑柱14与所述连接法兰15连接。
可选地,第一立柱5、第二立柱6、第三立柱7、第四立柱8、第五立 柱9和第六立柱10上的球体的球心与底座1上表面的高度均有差异;第一立柱5、第二立柱6、第三立柱7、第四立柱8、第五立柱9和第六立柱10,与底座1上表面的各个安装孔可自由组合。
具体地,第一立柱5、第二立柱6、第三立柱7、第四立柱8、第五立柱9和第六立柱10上的立柱球心与底座1上表面的高度不同,高度的差异可以实现不同空间方位的测量;底座1上表面的各个安装孔的位置,可以任意安装第一立柱5、第二立柱6、第三立柱7、第四立柱8、第五立柱9和第六立柱10,即第一立柱5、第二立柱6、第三立柱7、第四立柱8、第五立柱9和第六立柱10的位置并不固定,可以根据实际情况进行组合。
可选地,反光球支架2的表面呈45°角倾斜;反光球3安装于反光球支架2的45°角倾斜的平面上;反光球3安装于反光球支架2的45°角倾斜的平面上,反光球支架2安装于底座1的前方。
可选地,配准点4包括6个,各配准点4的深度不同。
具体地,底座1上表面的配准点4的数量为6,各配准点的深度不同,不同深度及不同位置的配准点4用于对第二测量装置20进行精准定位。
需要说明的是,本申请提供的手术机器人运动精度的测量装置,通过与手术机器人激光追踪仪系统16、手术机器人主控系统17和手术机器人18配合,实现测量手术机器人的运动精度。
本申请提供的手术机器人运动精度的测量装置,包括第二测量装置及第一测量装置;其中,第二测量装置包括底座、反光球支架、反光球、配准点、第一立柱、第二立柱、第三立柱、第四立柱、第五立柱和第六立柱;第一立柱、第二立柱、第三立柱、第四立柱、第五立柱和第六立柱分别对应安装于底座上表面的安装孔;反光球支架安装于底座的前方;反光球安装于反光球支架的上表面;配准点位于述底座的上表面;第一测量装置包括第一钢球、第二钢球、反光球支架、支撑柱和连接法兰;第一钢球、第二钢球安装于支撑柱底部的两端;反光球支架安装于支撑柱的中部;反光球支架上安装有反光球;支撑柱与连接法兰连接,通过第一测量装置和第二测量装置,实现测量手术机器人的运动精度。
下面结合一个具体的实施例,对本申请提供的手术机器人运动精度的 测量装置与手术机器人激光追踪仪系统16、手术机器人主控系统17和手术机器人18的配合过程,以实现手术机器人的运动精度的测量过程进行详细描述。
步骤1,手术机器人系统的手术机器人激光追踪仪系统16对第二测量装置20的反光球支架2上的反光球3进行追踪,将追踪的结果反馈给手术机器人主控系统17;手术机器人主控系统17通过手术机器人激光追踪仪系统16对第二测量装置20的反光球支架2上的反光球3的追踪结果对第二测量装置20进行粗定位。
步骤2,通过探针支架对第二测量装置20上表面的6个配准点4依次进行测量,将探针支架依次插入不同深度的6个配准点,每插入一个配准点,手术机器人激光追踪仪系统16对探针支架上的反光球进行追踪,并将追踪结果反馈给手术机器人主控系统17,手术机器人主控系统17对第二测量装置20上表面的6个配准点4依次进行定位,从而实现第二测量装置20的精确定位,并建立手术机器人系统坐标系。
具体地,手术机器人主控系统17通过手术机器人激光追踪仪系统16对反光球支架2上的反光球3进行追踪的结果进行定位,获得反光球支架2上的反光球3的位置,以及手术机器人激光追踪仪系统16对探针支架上的反光球追踪的结果进行定位,获得6个配准点4的位置;手术机器人主控系统17根据反光球支架2上的反光球3的位置及6个配准点4的位置,实现对第二测量装置20的精确定位。
步骤3,通过三坐标仪建立与手术机器人系统坐标系的原点重合的坐标系,使用三坐标仪对第二测量装置20的第一立柱5、第二立柱6球心的空间坐标进行测量,得到理论球心坐标,再移除第二测量装置20上的第一立柱5、第二立柱6。
步骤4,手术机器人激光追踪仪系统16通过追踪第一测量装置19上的反光球支架13上的反光球3的位置,将追踪的结果反馈给手术机器人主控系统17,手术机器人主控系统17确定第一测量装置19的实际位置。
步骤5,手术机器人主控系统17根据第一立柱5、第二立柱6球心的空间坐标驱动手术机器人18运动,手术机器人18带动第一测量装置19, 将第一测量装置19沿着第一立柱5、第二立柱6的球心坐标位置移动,并将第一测量装置19停止在第二立柱6的球心坐标位置。
步骤6,通过三坐标仪对第一钢球11和第二钢球13的球心坐标位置进行测量,通过手术机器人主控系统17将第一钢球11和第二钢球13的球心坐标位置进行连接,得到第一钢球11和第二钢球13的球心连接的轴线所在的第一直线。
步骤7,分别计算第一立柱5、第二立柱6的球心坐标位置与第一钢球11和第二钢球13的球心连接的轴线所在的第一直线的距离,得到一组距离的数据,取该组距离数据中的最大值。
步骤8,根据以上步骤3至步骤7,分别对第三立柱7与第四立柱8、第五立柱9与第六立柱10进行距离的计算,分别得到两组距离数据;取其每组距离数据中的最大值。
步骤9,根据每组距离数据中的最大值,再选择三组最大距离数据中的最大值作为手术机器人的运动精度。
下面对本申请实施例提供的手术机器人运动精度的测量装置进行描述,下文描述的手术机器人运动精度的测量装置与上文描述的手术机器人运动精度的测量方法可互相对应按照。
图6是本申请实施例提供的手术机器人运动精度的测量装置的模块示意图,如图6所示,手术机器人的末端连接有第一测量装置,所述第一测量装置上设置有第一钢球和第二钢球,所述手术机器人带动所述第一测量装置相对于第二测量装置移动,其中,所述第二测量装置的相对两侧分别设置有多个立柱,每个所述立柱上均设置有球体,该手术机器人运动精度的测量装置600,包括:获取模块601、控制模块602和确定模块603;其中,
获取模块601,被配置为获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;
控制模块602,被配置为控制所述手术机器人驱动所述第一钢球和所 述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;
确定模块603,被配置为基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
本申请提供的手术机器人运动精度的测量装置,通过获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为手术机器人运动的起点和终点;控制手术机器人驱动第一钢球和第二钢球分别经过第一球体的球心坐标位置和第二球体的球心坐标位置,在第二钢球运动至第二球体的球心坐标位置时,分别确定第一钢球的第一球心实际坐标和第二钢球的第二球心实际坐标;基于第一球心实际坐标、第二球心实际坐标以及第一球体和第二球体的球心坐标连线所在的第一直线,确定手术机器人的运动精度。本申请实现了测量手术机器人的运动精度。
可选地,确定模块603,具体被配置为:
基于所述第一球心实际坐标和所述第二球心实际坐标,分别计算所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的距离;
基于所述距离,确定所述手术机器人的运动精度。
可选地,确定模块603,具体被配置为:
基于所述距离,确定所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的最大距离;
基于所述最大距离,确定所述手术机器人的运动精度。
可选地,所述第一球体和所述第二球体位于所述第二测量装置的同侧或对侧。
图7是本申请实施例提供的电子设备的实体结构示意图,如图7所示,该电子设备700,可以包括:处理器(processor)710、通信接口 (Communications Interface)720、存储器(memory)730和通信总线740,其中,处理器710,通信接口720,存储器730通过通信总线740完成相互间的通信。处理器710可以调用存储器730中的逻辑指令,以执行如下手术机器人运动精度的测量方法,该方法包括:获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
此外,上述的存储器730中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时,实现如下手术机器人运动精度的测量方法,该方法包括:获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;基于所述第一球心实际坐标、所述第二球心实际坐标 以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
又一方面,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,实现如下手术机器人运动精度的测量方法,该方法包括:获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种手术机器人运动精度的测量方法,手术机器人的末端连接有第一测量装置,所述第一测量装置上设置有第一钢球和第二钢球,所述手术机器人带动所述第一测量装置相对于第二测量装置移动,其中,所述第二测量装置的相对两侧分别设置有多个立柱,每个所述立柱上均设置有球体,,所述方法包括:
    获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;
    控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;
    基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
  2. 根据权利要求1所述的手术机器人运动精度的测量方法,其中,所述基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度,包括:
    基于所述第一球心实际坐标和所述第二球心实际坐标,分别计算所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的距离;
    基于所述距离,确定所述手术机器人的运动精度。
  3. 根据权利要求2所述的手术机器人运动精度的测量方法,其中,所述基于所述距离,确定所述手术机器人的运动精度,包括:
    基于所述距离,确定所述第一球心实际坐标和所述第二球心实际坐标与所述第一直线的最大距离;
    基于所述最大距离,确定所述手术机器人的运动精度。
  4. 根据权利要求1所述的手术机器人运动精度的测量方法,其中,所述第一球体和所述第二球体位于所述第二测量装置的同侧或对侧。
  5. 一种手术机器人运动精度的测量装置,手术机器人的末端连接有第一 测量装置,所述第一测量装置上设置有第一钢球和第二钢球,所述手术机器人带动所述第一测量装置相对于第二测量装置移动,其中,所述第二测量装置的相对两侧分别设置有多个立柱,每个所述立柱上均设置有球体,其中,所述装置包括:
    获取模块,被配置为获取每个所述球体的球心坐标,并将多个球体中的第一球体的球心坐标位置和第二球体的球心坐标位置分别作为所述手术机器人运动的起点和终点;
    控制模块,被配置为控制所述手术机器人驱动所述第一钢球和所述第二钢球分别经过所述第一球体的球心坐标位置和所述第二球体的球心坐标位置,在所述第二钢球运动至所述第二球体的球心坐标位置时,分别确定所述第一钢球的第一球心实际坐标和所述第二钢球的第二球心实际坐标;
    确定模块,被配置为基于所述第一球心实际坐标、所述第二球心实际坐标以及所述第一球体和所述第二球体的球心坐标连线所在的第一直线,确定所述手术机器人的运动精度。
  6. 一种手术机器人系统,包括:手术机器人、手术机器人激光追踪仪系统、手术机器人主控系统以及如权利要求1所述的第一测量装置和第二测量装置;其中,
    所述手术机器人激光追踪仪系统,用于追踪定位所述第一测量装置和所述第二测量装置的位置;
    所述手术机器人主控系统,用于控制所述手术机器人运动、获取所述第一测量装置的第一钢球和第二钢球的球心坐标,以及所述第二测量装置的球体的球心坐标。
  7. 根据权利要求6所述的手术机器人系统,其中,所述第二测量装置包括:底座、反光球支架、反光球、配准点、第一立柱、第二立柱、第三立柱、第四立柱、第五立柱和第六立柱;
    所述第一立柱、所述第二立柱、所述第三立柱、所述第四立柱、所述第五立柱和所述第六立柱,分别对应安装于所述底座上表面的安装孔;所述反光球支架安装于所述底座的前方;所述反光球安装于所述反光球支架的上表面;所述配准点位于所述底座的上表面;
    所述第一钢球与所述第二钢球安装于所述支撑柱底部的两端;所述反光 球支架安装于所述支撑柱的中部;所述反光球支架上安装有反光球;所述支撑柱与所述连接法兰连接。
  8. 根据权利要求7所述的手术机器人系统,其中,所述第一立柱、所述第二立柱、所述第三立柱、所述第四立柱、所述第五立柱和所述第六立柱上的球体的球心与所述底座上表面的高度均有差异;所述第一立柱、所述第二立柱、所述第三立柱、所述第四立柱、所述第五立柱和所述第六立柱,与所述底座上表面的各个安装孔可自由组合。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1至4任一项所述手术机器人运动精度的测量方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至4任一项所述手术机器人运动精度的测量方法的步骤。
PCT/CN2023/071145 2022-03-29 2023-01-08 手术机器人运动精度的测量方法、装置及手术机器人系统 WO2023185201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210323817.7 2022-03-29
CN202210323817.7A CN114732523B (zh) 2022-03-29 2022-03-29 手术机器人运动精度的测量方法、装置及手术机器人系统

Publications (1)

Publication Number Publication Date
WO2023185201A1 true WO2023185201A1 (zh) 2023-10-05

Family

ID=82276343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071145 WO2023185201A1 (zh) 2022-03-29 2023-01-08 手术机器人运动精度的测量方法、装置及手术机器人系统

Country Status (2)

Country Link
CN (1) CN114732523B (zh)
WO (1) WO2023185201A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114732523B (zh) * 2022-03-29 2023-04-07 北京长木谷医疗科技有限公司 手术机器人运动精度的测量方法、装置及手术机器人系统
CN115005991B (zh) * 2022-08-03 2022-12-13 北京壹点灵动科技有限公司 手术导航装置的精度检测方法及手术导航精度检测装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090076655A1 (en) * 2007-09-14 2009-03-19 Zimmer, Inc. Robotic calibration method
CN104858870A (zh) * 2015-05-15 2015-08-26 江南大学 基于末端编号靶球的工业机器人测量方法
CN110672049A (zh) * 2019-09-27 2020-01-10 江苏工大博实医用机器人研究发展有限公司 用于确定机器人坐标系与工件坐标系间关系的方法及系统
CN110664484A (zh) * 2019-09-27 2020-01-10 江苏工大博实医用机器人研究发展有限公司 一种机器人与影像设备的空间注册方法及系统
CN111110351A (zh) * 2020-01-10 2020-05-08 北京天智航医疗科技股份有限公司 用于检测关节置换手术机器人系统精度的组件和方法
CN111660295A (zh) * 2020-05-28 2020-09-15 中国科学院宁波材料技术与工程研究所 工业机器人绝对精度标定系统及标定方法
CN112006779A (zh) * 2020-09-27 2020-12-01 安徽埃克索医疗机器人有限公司 一种手术导航系统精度检测方法
CN113199510A (zh) * 2021-06-09 2021-08-03 杭州柳叶刀机器人有限公司 手术导航机器人精度检验方法
US20210275263A1 (en) * 2017-10-16 2021-09-09 Epica International, Inc Robot-assisted surgical guide system for performing surgery
CN114732523A (zh) * 2022-03-29 2022-07-12 北京长木谷医疗科技有限公司 手术机器人运动精度的测量方法、装置及手术机器人系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3256811B1 (en) * 2015-02-13 2021-09-15 Think Surgical, Inc. Laser gauge for robotic calibration and monitoring

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090076655A1 (en) * 2007-09-14 2009-03-19 Zimmer, Inc. Robotic calibration method
CN104858870A (zh) * 2015-05-15 2015-08-26 江南大学 基于末端编号靶球的工业机器人测量方法
US20210275263A1 (en) * 2017-10-16 2021-09-09 Epica International, Inc Robot-assisted surgical guide system for performing surgery
CN110672049A (zh) * 2019-09-27 2020-01-10 江苏工大博实医用机器人研究发展有限公司 用于确定机器人坐标系与工件坐标系间关系的方法及系统
CN110664484A (zh) * 2019-09-27 2020-01-10 江苏工大博实医用机器人研究发展有限公司 一种机器人与影像设备的空间注册方法及系统
CN111110351A (zh) * 2020-01-10 2020-05-08 北京天智航医疗科技股份有限公司 用于检测关节置换手术机器人系统精度的组件和方法
CN111660295A (zh) * 2020-05-28 2020-09-15 中国科学院宁波材料技术与工程研究所 工业机器人绝对精度标定系统及标定方法
CN112006779A (zh) * 2020-09-27 2020-12-01 安徽埃克索医疗机器人有限公司 一种手术导航系统精度检测方法
CN113199510A (zh) * 2021-06-09 2021-08-03 杭州柳叶刀机器人有限公司 手术导航机器人精度检验方法
CN114732523A (zh) * 2022-03-29 2022-07-12 北京长木谷医疗科技有限公司 手术机器人运动精度的测量方法、装置及手术机器人系统

Also Published As

Publication number Publication date
CN114732523A (zh) 2022-07-12
CN114732523B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2023185201A1 (zh) 手术机器人运动精度的测量方法、装置及手术机器人系统
CN109567942B (zh) 采用人工智能技术的颅颌面外科手术机器人辅助系统
US8297103B2 (en) Method and apparatus for measurement and/or calibration of position of an object in space
Foxlin et al. Constellation: A wide-range wireless motion-tracking system for augmented reality and virtual set applications
CN113334393B (zh) 一种机械臂控制方法、系统、机器人及存储介质
RU2466858C1 (ru) Способ контроля точности контурных перемещений промышленных роботов
WO2022199047A1 (zh) 机器人配准方法、装置、电子设备及存储介质
WO2022199296A1 (zh) 手术导航机器人误差消除方法、装置及电子设备
WO2022252676A1 (zh) 机械臂法兰物理原点的标定方法、装置及电子设备
CN112603542B (zh) 手眼标定方法、装置、电子设备和存储介质
Iwasaki et al. A face vector-the point instruction-type interface for manipulation of an extended body in dual-task situations
CN115922728A (zh) 机器人指向动作控制方法、装置、电子设备和存储介质
CN106643601B (zh) 工业机器人动态六维参数测量方法
JPS62218808A (ja) 三次元計測ロボットの計測精度補正方法
CN113524201A (zh) 机械臂位姿主动调节方法、装置、机械臂和可读存储介质
CN110900608B (zh) 基于最优测量构型选择的机器人运动学标定方法
CN110118571A (zh) 一种获取移动设备上的激光传感器的安装角度误差的方法
US6829558B2 (en) Method for reducing position uncertainty of a portable inertial navigation device
Furutani et al. Parameter calibration for non-cartesian CMM
CN116135169A (zh) 定位方法、装置、电子设备及计算机可读存储介质
CN115157322A (zh) 工业机器人空间位姿精度测试装置和方法
CN113752263A (zh) 一种基于激光传感器的工具标定方法、装置和电子设备
CN115493486A (zh) 机器人工具坐标系的标定方法、装置、设备及介质
RU2761923C1 (ru) Способ управления манипулятором
RU2761924C1 (ru) Способ управления манипулятором

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777580

Country of ref document: EP

Kind code of ref document: A1