WO2023185139A1 - 干扰控制方法及相关装置 - Google Patents

干扰控制方法及相关装置 Download PDF

Info

Publication number
WO2023185139A1
WO2023185139A1 PCT/CN2022/141727 CN2022141727W WO2023185139A1 WO 2023185139 A1 WO2023185139 A1 WO 2023185139A1 CN 2022141727 W CN2022141727 W CN 2022141727W WO 2023185139 A1 WO2023185139 A1 WO 2023185139A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
screen
screen state
instruction
communication
Prior art date
Application number
PCT/CN2022/141727
Other languages
English (en)
French (fr)
Inventor
曾蓁
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023185139A1 publication Critical patent/WO2023185139A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7136Arrangements for generation of hop frequencies, e.g. using a bank of frequency sources, using continuous tuning or using a transform
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of terminal communication technology, and specifically to an interference control method and related devices.
  • This application provides an interference control method and related devices, in order to achieve frequency hopping on the basis of ensuring the stability of the OSC operating frequency, avoid interference to cellular communication modules, and improve user experience.
  • an interference control method which method includes:
  • the range is a first reference frequency subset, and the frequency range after amplification of the first reference frequency subset through frequency division and/or frequency multiplication is the first reference frequency set, and the second frequency of the crystal oscillator is in the
  • the frequency range under the constraint of the second frequency offset is a second reference frequency subset, and the frequency range amplified by frequency division and/or frequency doubling of the second reference frequency subset is a second reference frequency set, and
  • the intersection of the first reference frequency set and the second reference frequency set is an empty set, and the first frequency and the second frequency are preset for the crystal oscillator to perform frequency hopping to avoid the crystal oscillation.
  • a first frequency hopping instruction is generated.
  • the set is used to characterize frequency division and/or frequency multiplication of the first operating frequency, which belongs to the first reference frequency subset;
  • the first operating frequency is switched to the second frequency according to a screen state of the electronic device, where the screen state includes a screen off state and a screen on state.
  • embodiments of the present application provide an electronic device, including a processor, a memory, a communication interface, and one or more programs, the one or more programs are stored in the memory and configured by The processor executes, and the program includes instructions for executing the steps in the first aspect of the embodiment of the present application.
  • an interference control device which includes:
  • Adjustment unit configured to adjust the frequency offset of the operating frequency of the crystal oscillator from a first frequency offset to a second frequency offset, where the first frequency of the crystal oscillator is offset at the second frequency
  • the frequency range under quantitative constraints is the first reference frequency subset, and the frequency range amplified by frequency division and/or frequency multiplication of the first reference frequency subset is the first reference frequency set.
  • the first reference frequency set of the crystal oscillator The frequency range of the two frequencies under the second frequency offset constraint is the second reference frequency subset, and the frequency range of the second reference frequency subset after frequency division and/or frequency doubling is the second reference Frequency set, the intersection of the first reference frequency set and the second reference frequency set is an empty set, the first frequency and the second frequency are preset for the crystal oscillator to perform frequency hopping.
  • a reference frequency point to avoid communication interference of the crystal oscillator to the cellular communication module;
  • a generating unit configured to detect that at least one frequency in the first frequency set corresponding to the current first working frequency of the crystal oscillator is at the Within the current communication frequency range of the cellular communication module, a first frequency hopping instruction is generated.
  • the first frequency set is used to represent the frequency division and/or frequency multiplication of the first operating frequency.
  • the first operating frequency belongs to the the first reference frequency subset; a switching unit configured to respond to the first frequency hopping instruction and switch the first operating frequency to the second frequency according to the screen status of the electronic device, where the screen status includes Screen off state and screen on state.
  • embodiments of the present application provide a computer storage medium for storing a computer program for electronic data exchange, wherein the computer program causes the computer to execute the part described in the first aspect of this embodiment or All steps.
  • embodiments of the present application provide a computer program product, wherein the above-mentioned computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the above-mentioned computer program is operable to cause the computer to execute the implementation of the present application. Examples include some or all of the steps described in the first aspect.
  • this application adjusts the frequency offset of the OSC operating frequency from the first frequency offset to the second frequency offset to return the OSC frequency to the standard error range.
  • the two preset references The frequency ranges of the frequency points (the first frequency and the second frequency) under the constraints of the second frequency offset are respectively the first reference frequency subset and the second reference frequency subset, and the two reference frequency subsets are frequency divided and/or the frequency range after frequency doubling amplification is the first reference frequency set and the second reference frequency set respectively, and the intersection of the first reference frequency set and the second reference frequency set is the empty set, then when the OSC frequency is the first When the frequency causes interference to the cellular communication module, the frequency is jumped to the second frequency.
  • the frequency that causes interference to the cellular communication module is one of the frequencies in the first reference frequency set, and the first reference frequency set and the second reference frequency If the intersection of the sets is an empty set, it means that there is no frequency in the second reference frequency set that can interfere with the cellular communication module. That is, it can be guaranteed that after frequency hopping to the second frequency, it will not fall back to the original interference frequency, which will cause Invalid frequency hopping can ensure the effectiveness of frequency hopping, and based on the different screen states of electronic devices, an adapted frequency hopping strategy can be automatically selected to achieve effective frequency hopping in all scenarios. In this way, the user's comfort can be greatly improved. Use experience.
  • FIG. 1 is a schematic diagram of module interference provided by an embodiment of the present application.
  • FIG. 2a is a schematic diagram of an OSC interfering with GSM1900 provided by an embodiment of the present application
  • FIG. 2b is a schematic diagram of an OSC interfering with GSM1800 provided by an embodiment of the present application
  • Figure 3 is a structural block diagram of an electronic device provided by an embodiment of the present application.
  • Figure 4 is a schematic flowchart of an interference control method provided by an embodiment of the present application.
  • Figure 5 is a waveform diagram of an OSC frequency provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an OSC frequency tracking provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a spread spectrum image corresponding to a MIPI frequency provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of frequency hopping provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of frequency hopping in a static bright screen state provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of frequency hopping in a screen-off state provided by an embodiment of the present application.
  • Figure 11a is a functional unit block diagram of an interference control device provided by an embodiment of the present application.
  • Figure 11b is a functional unit block diagram of another interference control device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • GSM Global System for Mobile Communications
  • ETSI European Telecommunications Standards Organization
  • GSM plus numbers represent different GSM frequency bands, such as GSM1800 band.
  • Frequency chasing refers to the technical means of adjusting the original frequency to continuously approach it until it reaches the target frequency.
  • Frequency hopping refers to the technical means of switching the original frequency to the target frequency in order to avoid interference.
  • ARFCN Absolute Radio Frequency Channel Number
  • Traffic Channel (TCH): carries encoded voice or user data and is used to transmit voice and data.
  • Broadcast Channel An information channel that transmits information through broadcast.
  • the Liquid Crystal Display Module is a human-computer interaction system on a mobile phone. It integrates a crystal oscillator (OSC). When the functional module is working, the crystal oscillator will generate A working frequency. When the working frequency or the frequency division and/or multiplication of the working frequency is within the communication frequency range of the cellular communication module, the OSC module will affect the business sensitivity of the cellular communication module, causing interference to the mobile phone and module interference.
  • the schematic diagram is shown in Figure 1, which will affect the user experience.
  • Figure 2a is a schematic diagram of OSC interference of GSM1900 provided by an embodiment of this application.
  • Figure 2b is a schematic diagram of OSC interference provided by this embodiment of this application.
  • the numbers on the horizontal axis in the figure represent the channel numbers included in GSM1900
  • the vertical axis represents the degree of interference
  • the horizontal line segment 1 represents the reference line
  • the lines 2 other than the horizontal line segment 1 represent the actual test value of OSC for GSM1900 bright screen interference , when the actual test value is higher than the reference line, it indicates that under the corresponding channel, OSC will cause bright screen interference to GSM1900.
  • the OSC frequency of a certain product is 89.75M
  • the interference channel numbers of its OSC to GSM1900 are 725 to 743.
  • the corresponding frequency of the intermediate channel that interferes the most with GSM1900 is 1974.6M, that is, the GSM1900 screen is bright.
  • the interference frequency is 22 times the OSC frequency.
  • the product's OSC module will cause great interference to its communication module, affecting the user experience.
  • the interference channel numbers of the OSC of this product to GSM1800 are 512 ⁇ 530, 554 ⁇ 558.
  • the corresponding frequency of the middle channel with the greatest interference to GSM1800 is 1795M, that is, GSM1800 bright screen interference
  • the frequency is 20 times the OSC frequency.
  • the OSC module of this product will cause serious interference to GSM1800 and GSM1900, affecting the user experience.
  • embodiments of the present application provide an interference control method and related devices, which are applied to electronic equipment used by users.
  • This electronic device adjusts the frequency offset of the crystal oscillator OSC to achieve OSC frequency chasing, and then jumps out of the interference frequency point through frequency hopping, thereby avoiding interference to the cellular communication module.
  • This application can be applied to specific application scenarios where OSC interferes with cellular communication modules, including but not limited to the above-mentioned application scenarios.
  • FIG. 3 is a structural block diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 30 may include one or more of the following components: a processor 31 and a memory 32 coupled to the processor 31 , where the memory 32 may store one or more computer programs.
  • One or more computer programs The methods described in the following embodiments may be configured to be implemented when executed by one or more processors 31 .
  • the electronic device may be a mobile phone terminal, a tablet computer, a notebook computer and a wearable smart device.
  • Processor 31 may include one or more processing cores.
  • the processor 31 uses various interfaces and lines to connect various parts of the entire electronic device 30, and executes by running or executing instructions, programs, code sets or instruction sets stored in the memory 32, and calling data stored in the memory 32.
  • the processor 31 may use at least one of digital signal processing (Digital Signal Processing, DSP), field-programmable gate array (Field-Programmable Gate Array, FPGA), and programmable logic array (Programmable Logic Array, PLA).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PLA programmable logic array
  • the processor 31 may integrate one or a combination of a central processing unit (Central Processing Unit, CPU), a graphics processor (Graphics Processing Unit, GPU), a modem, etc.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • modem etc.
  • the CPU mainly handles the operating system, user interface, and applications; the GPU is responsible for rendering and drawing the display content; and the modem is used to handle wireless communications. It can be understood that the above-mentioned modem may not be integrated into the processor 31 and may be implemented solely through a communication chip.
  • the memory 32 may include random access memory (RAM) or read-only memory (Read-Only Memory, ROM). Memory 32 may be used to store instructions, programs, codes, sets of codes, or sets of instructions.
  • the memory 32 may include a program storage area and a data storage area, where the program storage area may store instructions for implementing an operating system and instructions for implementing at least one function (such as a touch function, a sound playback function, an image playback function, etc.) , instructions for implementing each of the above method embodiments, etc.
  • the storage data area may also store data created during use of the electronic device 30 and the like.
  • the electronic device 30 may include more or fewer structural elements than those in the above structural block diagram, for example, including power modules, physical buttons, Wi-Fi modules, speakers, Bluetooth modules, sensors, etc., which will not be discussed here. limited.
  • Figure 4 is a schematic flow chart of an interference control method provided by an embodiment of the present application.
  • the interference control method is applied to the electronic device 30 shown in Figure 3.
  • the interference control method Control methods include:
  • Step 401 Adjust the frequency offset of the operating frequency of the crystal oscillator from the first frequency offset to the second frequency offset.
  • the frequency range of the first frequency of the crystal oscillator under the constraint of the second frequency offset is a first reference frequency subset, and the first reference frequency subset is spread through frequency division and/or frequency multiplication.
  • the increased frequency range is the first reference frequency set
  • the frequency range of the second frequency of the crystal oscillator under the constraint of the second frequency offset is the second reference frequency subset
  • the second reference frequency subset The frequency range after the set is amplified by frequency division and/or frequency multiplication is a second reference frequency set
  • the intersection of the first reference frequency set and the second reference frequency set is an empty set
  • the second frequency is a preset reference frequency point for the crystal oscillator to perform frequency hopping to avoid communication interference of the crystal oscillator to the cellular communication module.
  • the operating frequency of OSC can be measured by the electronic device itself.
  • waveform A is the waveform of the OSC operating frequency measured by the electronic device
  • waveform B is the OSC operating frequency measured by the electronic device. From the waveform diagram of the doubling frequency, the operating frequency of the OSC can be obtained, and based on the theoretical value of the OSC frequency, the frequency offset of the operating frequency can be calculated.
  • OSC frequency accuracy error provided by the supplier is 1%, that is, as long as it is at 90.25M
  • the range of ⁇ 1% belongs to the normal operating frequency of OSC. Since this frequency range is the default frequency range when the product leaves the factory, the built-in frequency hopping algorithm is also adapted to this frequency range. Therefore, when the OSC frequency is at this frequency When hopping to the target frequency within the range, it will not fall back to the original interference frequency. However, there may be large errors in actual situations. For example, the actual accuracy error of the OSC frequency is 5%.
  • the built-in algorithm is still used to perform frequency hopping with an accuracy error of 1% as the frequency hopping benchmark of the OSC frequency. , the frequency point after frequency hopping may return to the interference frequency point again, and interference will still occur.
  • the first frequency offset is 5%
  • the second frequency offset is 1%
  • the first frequency is 90.25M
  • the first reference frequency subset is 90.25M ⁇ 1%
  • the first reference frequency set is (90.25M ⁇ 1%)/n
  • n is a positive integer or N (90.25M ⁇ 1%)
  • N is a positive integer
  • the second frequency is frequency hopping Target frequency point, considering that the frequency hopping span of the OSC frequency cannot be too large, in this example, the second frequency is 88.9M, then the second reference frequency subset is 88.9M ⁇ 1%
  • the second reference frequency set is (88.9M ⁇ 1%)/m
  • m is a positive integer or M (88.9M ⁇ 1%)
  • M is a positive integer
  • since the intersection of the first reference frequency set and the second reference frequency set is empty set, then after frequency hopping to the second frequency of the target frequency, it will not return to the interference frequency again, ensuring the effectiveness of frequency hopping.
  • adjusting the frequency offset of the working frequency of the crystal oscillator from the first frequency offset to the second frequency offset includes: obtaining the working component corresponding to the crystal oscillator.
  • the frequency of the mobile industry processor interface; the step value is calculated according to the first clock signal sequence corresponding to the frequency of the mobile industry processor interface and the second clock signal sequence corresponding to the operating frequency of the crystal oscillator; according to the The step value adjusts the first frequency offset to the second frequency offset.
  • the Mobile Industry Processor Interface (MIPI) frequency is another operating frequency in LCM.
  • MIPI Mobile Industry Processor Interface
  • the OSC frequency with the first frequency offset gradually reaches the standard range, that is, the first frequency offset is adjusted to the second frequency offset, thus realizing OSC frequency chasing. .
  • the step value can be determined in the following manner: when each frame is refreshed, at the first command of the frame refresh, the first clock signal sequence corresponding to the MIPI frequency is compared with the second clock signal corresponding to the OSC frequency. sequence to achieve signal sampling count comparison, thereby obtaining the specific offset of the product's current OSC frequency offset reference benchmark. If the specific offset exceeds the standard range, the step value is calculated and the step is adjusted. value to adjust the specific offset.
  • Figure 6 is a schematic diagram of an OSC frequency tracking provided by an embodiment of the present application.
  • the first clock signal sequence and the first clock signal sequence are executed at the first command of the current frame screen refresh. Compare the signal sampling counts of the two clock signal sequences. After the sampling count comparison, the frequency offset of the current OSC frequency of the product is 5%, which exceeds the standard range of 0 to 1%. Then a step value of 1% is calculated. This step value can be flexibly determined according to specific products and is not limited here. By adjusting the step value by 1%, the frequency offset of the adjusted OSC frequency becomes 4%.
  • the signal sampling count is compared, and it is detected that the frequency offset is 4%, which is still greater than the standard range. Therefore, continue to calculate and adjust the step value.
  • the step value recalculated here can be 1% of the above step value, or it can be other values, which can be flexibly determined according to different products. Repeat the above adjustment process until the frequency offset of the OSC frequency reaches the standard range.
  • the electronic device adjusts the frequency offset by adjusting the step value.
  • the frequency offset of the OSC frequency changes from the first frequency offset to the second frequency offset, so that the OSC The frequency is within the standard range and frequency tracking is achieved.
  • the method further includes: developing the frequency corresponding to the mobile industry processor interface.
  • the screen image expansion mode is modified to expand the screen to both sides.
  • the unfolding method of the screen image corresponding to the MIPI frequency includes: downward unfolding and unfolding the screen to both sides.
  • the default unfolding mode is downward unfolding. Since the OSC frequency refers to the frequency of MIPI as the center frequency, so The OSC frequency obtained in this screen display mode will be smaller. If the screen image corresponding to the MIPI frequency is changed to an off screen, as shown in the screen image 1 in Figure 7, all MIPI energy will be concentrated in the middle of the frequency point, which will cause serious interference to other components and further affect the user's performance. Use experience.
  • the unfolding method of the screen image corresponding to the MIPI frequency must be modified to spread the screen to both sides, as shown in the screen image 2 in Figure 7, so as to ensure that the obtained OSC frequency is precise and avoid interference with other components.
  • the electronic device changes the display mode of the display image corresponding to the MIPI frequency to expand the screen to both sides, which ensures the accuracy of the OSC frequency tracking based on the MIPI frequency and avoids interference with the frequency.
  • Other components create interference.
  • Step 402 When it is detected that at least one frequency in the first frequency set corresponding to the current first operating frequency of the crystal oscillator is within the current communication frequency range of the cellular communication module, generate a first frequency hopping instruction.
  • the first frequency set is used to represent frequency division and/or frequency multiplication of the first operating frequency
  • the first operating frequency belongs to the first reference frequency subset, that is, the first operating frequency is The result after adjusting the frequency offset. It should be noted that when adjusting the frequency offset to implement OSC frequency tracking, the adjustment process is ended when it is detected that the adjusted OSC frequency is in the first reference frequency subset, and the OSC frequency obtained at this time is the first operating frequency. .
  • the communication frequency range of the cellular communication module at this time includes at least one frequency of the frequency division and/or frequency multiplication of 89.75M, for example, the communication frequency of the cellular communication module at this time is 1974.6M, which is 22 integer multiplication of 89.75M.
  • the OSC will cause serious interference to the cellular communication module. At this time, it will report to the Wireless Access Point (AP) to generate the first frequency hopping command and trigger frequency hopping to avoid interference.
  • AP Wireless Access Point
  • Figure 8 is a schematic diagram of frequency hopping provided by an embodiment of the present application.
  • the electronic device first detects whether there is interference in the current cellular communication module. If so, it reports to the AP to generate frequency hopping.
  • the instruction triggers frequency hopping. If not, the detection state is maintained and the current cellular communication module is repeatedly detected for interference.
  • the first The frequency hopping instruction includes: when it is detected that at least one frequency in the first frequency set is within the communication frequency range corresponding to the absolute wireless channel number of the business channel, generating the first frequency hopping instruction; when it is detected that the first frequency hopping instruction The intersection of the frequency set and the communication frequency range corresponding to the absolute wireless channel number of the business channel is an empty set, and at least one frequency in the first frequency set is within the communication frequency range corresponding to the absolute wireless channel number of the broadcast channel, and the generated The first frequency hopping instruction; when it is detected that the intersection of the first frequency set and the communication frequency range corresponding to the absolute wireless channel number of the business channel is an empty set, and the first frequency set and the absolute wireless channel number of the broadcast channel The intersection of the communication frequency ranges corresponding to the channel numbers is an empty set, and at least one frequency in the first frequency set
  • TCH ARFCN channel absolute radio channel number
  • BCH ARFCN broadcast channel absolute radio channel number
  • Neighbor ARFCN neighbor absolute radio channel number
  • TCH ARFCN is in the target interference channel
  • frequency hopping is required to generate the first frequency hopping.
  • Instruction if TCH ARFCN is not in the target interference channel, detect whether BCH ARFCN is in the target interference channel. If BCH ARFCN is in the target interference channel, frequency hopping is required to generate the first frequency hopping instruction; if BCH ARFCN is not in the target interference channel If the target interference channel is the target interference channel, it is detected whether the Neighbor ARFCN is in the target interference channel. If the Neighbor ARFCN is in the target interference channel, frequency hopping is required and the first frequency hopping command is generated.
  • the electronic device prioritizes each channel type in the communication module to implement a priority anti-interference strategy for important channels, which can effectively stabilize the communication quality of the user equipment.
  • Step 403 In response to the first frequency hopping instruction, switch the first working frequency to the second frequency according to the screen status of the electronic device.
  • the screen state of the electronic device includes the bright screen state
  • the bright screen state is a dynamic bright screen state
  • Switching the first operating frequency to the second frequency in the state includes: when the screen state of the electronic device is the dynamic bright screen state, responding to the first frequency hopping instruction, switching the first operating frequency to the second frequency in response to the first frequency hopping instruction. The frequency is switched to the second frequency.
  • the screen status of the electronic device is a dynamically bright screen state
  • responding to the frequency hopping command can directly switch the operating frequency. Therefore, in this state, when the electronic device receives a message and needs to perform frequency hopping, it responds to the first hop.
  • the frequency command directly switches the first operating frequency to the second frequency without performing other redundant steps, thereby improving frequency hopping efficiency.
  • the screen state of the electronic device includes the bright screen state, the bright screen state is a static bright screen state, and in response to the first frequency hopping instruction, according to the screen of the electronic device
  • State switching the first operating frequency to the second frequency includes: when the screen state of the electronic device is the static on-screen state, generating a screen refresh instruction according to the first frequency hopping instruction; responding The screen brush frame instruction is used to obtain a frame brush result; the first operating frequency is switched to the second frequency according to the first frequency hopping instruction and the frame brush result.
  • Figure 9 is a schematic diagram of frequency hopping in a static bright screen state provided by an embodiment of the present application.
  • the electronic device first detects whether the current screen state is a static bright screen state. , if not, maintain the detection state and repeatedly detect the current screen status. If yes, detect whether there is a frequency hopping instruction. If it is detected that there is a frequency hopping instruction, the frame will be forced to refresh. If it is detected that there is no frequency hopping instruction, then return to detect the current screen state.
  • the screen state of the electronic device includes the screen-off state
  • the first operating frequency is switched to the first operating frequency according to the screen state of the electronic device.
  • the second frequency includes: when the screen state of the electronic device is the screen-off state, generating a data upload instruction according to the first frequency hopping instruction; in response to the data upload instruction, uploading the second frequency
  • the target storage node is used to indicate the data corresponding to the data upload instruction; if it is detected that the screen state of the electronic device changes from the off-screen state to the on-screen state, then call the The target storage node switches the first operating frequency to the second frequency.
  • the screen status of the electronic device when the screen status of the electronic device is off, it will cause interference to the cellular communication module. At this time, the screen is off and then on again, and the OSC frequency will return to the initialized OSC frequency, such as 90.25M. And no matter how you switch the frequency when the screen is off, the OSC frequency is always 90.25M when the screen is on again.
  • the screen state of the electronic device is the off-screen state and it is detected that the OSC needs frequency hopping
  • a first frequency hopping instruction is generated, and a data upload instruction is generated, and the target frequency point is also changed by responding to the data upload instruction. It is the second frequency, which is uploaded to the target storage node.
  • the target storage node is called to switch the first operating frequency to the second frequency to achieve frequency hopping.
  • Figure 10 is a schematic diagram of frequency hopping in the screen-off state provided by an embodiment of the present application.
  • the electronic device first detects whether the current screen state is the screen-off state. If If not, keep the detection state and repeatedly detect the current screen status. If yes, check whether there is a frequency hopping instruction; if it is detected that there is no frequency hopping instruction, go back to the step of detecting the current screen status. If it is detected that there is a frequency hopping instruction, command, upload the frequency of the target frequency point to the target storage node, and then detect whether the screen is on. If the screen is on, call the target storage node to complete the frequency hopping. If the screen is not on, return to detect whether the screen is on. screen steps.
  • the target frequency point is uploaded to the target storage node, and the target storage node is called to implement frequency switching after the screen changes from off to on.
  • the frequency hopping of electronic equipment from the screen-off state to the screen-on state solves the problem that existing frequency hopping solutions cannot achieve frequency hopping in the screen-off state.
  • the method further includes: when When a change in the communication frequency range of the cellular communication module is detected, the changed communication frequency range is obtained; and a second frequency hopping instruction is generated according to the second frequency set corresponding to the second frequency and the changed communication frequency range. , the second frequency set is used to represent the frequency division and/or frequency multiplication of the second frequency; in response to the second frequency hopping instruction, the second frequency is switched to the desired frequency according to the screen status of the electronic device. the first frequency.
  • the OSC frequency of the electronic device changes to the second frequency 88.9M, thus avoiding the interference of the cellular communication module.
  • Communication frequency range At this time, if the communication frequency range of the cellular communication module changes, and the changed communication frequency range includes at least one frequency point in the second frequency set corresponding to the second frequency 88.9M, then the OSC will cause interference to the cellular communication module. , then a second frequency hopping instruction is generated to jump the OSC frequency from the second frequency 88.9M to the first frequency 90.25M.
  • the electronic device detects that the frequency range of the cellular communication module has changed to a frequency range where the second frequency will cause interference, and then frequency hops to the first frequency to avoid interference with the cellular communication in time. module interference.
  • generating a second frequency hopping instruction based on a second frequency set corresponding to the second frequency and the changed communication frequency range includes: when detecting that there is a At least one frequency is within the updated communication frequency range corresponding to the absolute wireless channel number of the business channel, and the second frequency hopping instruction is generated; when it is detected that the second frequency set corresponds to the updated communication frequency range of the absolute wireless channel number of the business channel
  • the intersection of the subsequent communication frequency ranges is an empty set, and at least one frequency in the second frequency set is within the updated communication frequency range corresponding to the absolute wireless channel number of the broadcast channel, and the second frequency hopping instruction is generated; when It is detected that the intersection of the second frequency set and the updated communication frequency range corresponding to the absolute wireless channel number of the business channel is an empty set, and the updated communication frequency range corresponding to the second frequency set and the absolute wireless channel number of the broadcast channel is detected.
  • the intersection of the subsequent communication frequency ranges is an empty set, and at least one frequency in the second frequency set is within the updated communication frequency range corresponding to the neighbor's absolute wireless channel number, and the second frequency hopping instruction is generated; when it is detected
  • the intersection of the second frequency set with the updated communication frequency range corresponding to the absolute wireless channel number of the traffic channel, the intersection of the updated communication frequency range corresponding to the absolute wireless channel number of the broadcast channel, and the intersection with the The second frequency hopping instruction is generated when the intersection of the updated communication frequency ranges corresponding to the neighbor's absolute wireless channel numbers is an empty set.
  • the priority of TCH ARFCN must be Higher than BCH ARFCN is higher than Neighbor ARFCN. For example, if the interference channel corresponding to the current operating frequency of OSC, that is, the second frequency 88.9M, is the target interference channel, then it is first detected whether the TCH ARFCN is in the target interference channel. If the TCH ARFCN is in the target interference channel, frequency hopping is required.
  • Neighbor ARFCN is in the target interference channel, frequency hopping is required to generate a second frequency hopping instruction; if Neighbor ARFCN is not in the target interference channel either If the interference channels, that is, TCH ARFCN, BCH ARFCN, and Neighbor ARFCN are not in the target interference channel, that is, there is no interference to the cellular communication module, the second frequency hopping command is still generated, and the frequency is jumped to the first frequency 90.25M, because The first frequency 90.25M is the OSC theoretical value/standard value initialized when the product leaves the factory. The product has the greatest operating benefit at this OSC operating frequency. Therefore, if there is no interference at this time, it will jump back to the first frequency, which is beneficial to Improve product efficiency and user experience.
  • the electronic device implements a priority anti-interference strategy for important channels by prioritizing each channel type in the communication module, which can effectively stabilize the communication quality of the user equipment, and when there is no interference, the electronic device will Restoring the OSC frequency to the initial configured OSC theoretical value can improve the working efficiency of user equipment, increase operating smoothness, and enhance user experience.
  • the frequency offset of the OSC operating frequency is adjusted from the first frequency offset to the second frequency offset, so that the OSC frequency returns to the standard error range.
  • the two preset reference frequency points ( The frequency ranges of the first frequency and the second frequency) under the constraints of the second frequency offset are respectively the first reference frequency subset and the second reference frequency subset, and the two reference frequency subsets are frequency divided and/or
  • the frequency ranges after frequency multiplication amplification are respectively the first reference frequency set and the second reference frequency set, and the intersection of the first reference frequency set and the second reference frequency set is an empty set, then when the OSC frequency is the first frequency When interference occurs in the cellular communication module, the frequency jumps to the second frequency.
  • the frequency causing interference to the cellular communication module is a frequency in the first reference frequency set, and the intersection of the first reference frequency set and the second reference frequency set If it is an empty set, it means that there is no frequency in the second reference frequency set that can interfere with the cellular communication module, which means that it can ensure that after frequency hopping to the second frequency, it will not fall back to the original interference frequency, thereby causing invalid frequency hopping.
  • This can ensure the effectiveness of frequency hopping, and based on the different screen states of electronic devices, the adaptive frequency hopping strategy can be automatically selected to achieve effective frequency hopping in all scenarios. In this way, the user experience can be greatly improved.
  • Embodiments of the present application provide a navigation information processing device, which may be a first user equipment. Specifically, the navigation information processing device is used to perform the steps performed by the first user equipment in the above navigation information processing method.
  • the navigation information processing device provided by the embodiment of the present application may include modules corresponding to corresponding steps.
  • Embodiments of the present application can divide the navigation information processing device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the division of modules in the embodiments of this application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • Figure 11a is a functional unit block diagram of an interference control device provided by an embodiment of the present application. As shown in Figure 11a, the interference control device applies In the electronic device 30 shown in Figure 3, the interference control device 110 includes:
  • the adjustment unit 1101 is used to adjust the frequency offset of the operating frequency of the crystal oscillator from a first frequency offset to a second frequency offset.
  • the first frequency of the crystal oscillator is at the second frequency offset.
  • the frequency range under the shift constraint is the first reference frequency subset, and the frequency range after the first reference frequency subset is amplified by frequency division and/or frequency multiplication is the first reference frequency set.
  • the crystal oscillator The frequency range of the second frequency under the constraint of the second frequency offset is a second reference frequency subset, and the frequency range of the second reference frequency subset after amplification through frequency division and/or frequency doubling is the second Reference frequency set, the intersection of the first reference frequency set and the second reference frequency set is an empty set, the first frequency and the second frequency are preset for frequency hopping by the crystal oscillator A reference frequency point to avoid communication interference of the crystal oscillator on the cellular communication module;
  • Generating unit 1102 configured to generate a first frequency hopping instruction when it is detected that at least one frequency in the first frequency set corresponding to the current first operating frequency of the crystal oscillator is within the current communication frequency range of the cellular communication module.
  • the first frequency set is used to characterize the frequency division and/or frequency multiplication of the first operating frequency, and the first operating frequency belongs to the first reference frequency subset;
  • Switching unit 1103 configured to respond to the first frequency hopping instruction and switch the first operating frequency to the second frequency according to the screen status of the electronic device, where the screen status includes a screen-off state and a screen-on state.
  • the adjustment unit 1101 is specifically configured to: obtain the The frequency of the mobile industry processor interface corresponding to the working component corresponding to the crystal oscillator; the first clock signal sequence corresponding to the frequency of the mobile industry processor interface and the second clock signal corresponding to the working frequency of the crystal oscillator The sequence is calculated to obtain a step value; and the first frequency offset is adjusted to the second frequency offset according to the step value.
  • the generating unit 1102 is specifically configured to: when it is detected that at least one frequency in the first frequency set is within the communication frequency range corresponding to the absolute wireless channel number of the business channel, generate the first frequency hopping Instruction: When it is detected that the intersection of the communication frequency range corresponding to the first frequency set and the business channel absolute wireless channel number is an empty set, and there is at least one frequency in the first frequency set that is in the broadcast channel absolute wireless channel number Within the corresponding communication frequency range, the first frequency hopping instruction is generated; when it is detected that the intersection of the first frequency set and the communication frequency range corresponding to the absolute wireless channel number of the business channel is an empty set, and the first The intersection of the frequency set and the communication frequency range corresponding to the absolute wireless channel number of the broadcast channel is an empty set, and at
  • the screen state of the electronic device includes the bright screen state
  • the bright screen state is a dynamic bright screen state
  • the switching unit 1103 in response to the first frequency hopping instruction, according to the In terms of the screen state switching the first operating frequency to the second frequency, the switching unit 1103 is specifically configured to: when the screen state of the electronic device is the dynamic on-screen state, respond to the first jump frequency command to switch the first operating frequency to the second frequency.
  • the switching unit 1103 when the screen state of the electronic device includes the bright screen state, the bright screen state is a static bright screen state, and in response to the first frequency hopping instruction, according to the In terms of switching the first operating frequency to the second frequency in the screen state, the switching unit 1103 is specifically configured to: when the screen state of the electronic device is the static on-screen state, the switching unit 1103 switches the screen state according to the first jump.
  • the frequency command generates a screen frame brushing instruction; in response to the screen frame brushing instruction, a frame brushing result is obtained; and the first operating frequency is switched to the second frequency according to the first frequency hopping instruction and the frame brushing result.
  • the switching unit 1103 is specifically configured to: when the screen state of the electronic device is the screen-off state, generate a data upload instruction according to the first frequency hopping instruction; respond to the data upload Instruction to upload the second frequency to a target storage node, and the target storage node is used to indicate the data corresponding to the data upload instruction; if it is detected that the screen state of the electronic device changes from the screen-off state to If the screen is on, the target storage node is called to switch the first operating frequency to the second frequency.
  • the interference control device 110 after responding to the first frequency hopping instruction and switching the first operating frequency to the second frequency according to the screen status of the electronic device, the interference control device 110 further For: when detecting a change in the communication frequency range of the cellular communication module, obtain the changed communication frequency range; and generate a third frequency set according to the second frequency set corresponding to the second frequency and the changed communication frequency range.
  • the second frequency set is used to represent the frequency division and/or frequency multiplication of the second frequency
  • the second frequency hopping instruction is used to represent the frequency division and/or frequency multiplication of the second frequency according to the screen status of the electronic device.
  • the frequency is switched to the first frequency.
  • the interference control device 110 is specifically configured to: It is detected that at least one frequency in the second frequency set is within the updated communication frequency range corresponding to the absolute wireless channel number of the business channel, and the second frequency hopping instruction is generated; when it is detected that the second frequency set is consistent with the The intersection of the updated communication frequency ranges corresponding to the absolute wireless channel number of the business channel is an empty set, and at least one frequency in the second frequency set is within the updated communication frequency range corresponding to the absolute wireless channel number of the broadcast channel, Generate the second frequency hopping instruction; when it is detected that the intersection of the second frequency set and the updated communication frequency range corresponding to the absolute wireless channel number of the business channel is an empty set, and the second frequency set and the The intersection of the updated communication frequency ranges corresponding to the absolute wireless channel numbers of the broadcast channels is an empty set, and at least one frequency in the second frequency set is within the updated communication frequency range
  • Figure 11b is a functional unit block diagram of another interference control device provided by an embodiment of the present application.
  • the interference control device 111 includes: a processing module 1112 and a communication module 1111.
  • the processing module 1112 is used to control and manage the actions of the interference control device, for example, perform the steps of the adjustment unit 1101, the generation unit 1102 and the switching unit 1103, and/or other processes for performing the technology described herein.
  • the communication module 1111 is used to support interaction between the interference control device and other devices.
  • the interference control device may also include a storage module 1113, which is used to store program codes and data of the interference control device.
  • the processing module 1112 may be a processor or a controller, such as a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), ASIC, FPGA or other programmable processors. Logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 1111 may be a transceiver, an RF circuit, a communication interface, etc.
  • the storage module 1113 may be a memory.
  • the above-mentioned interference control device 111 can execute the above-mentioned interference control method shown in FIG. 4 .
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission by wired or wireless means to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server or a data center that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • Embodiments of the present application also provide a computer storage medium, wherein the computer storage medium stores a computer program for electronic data exchange, and the computer program causes the computer to execute part or all of the steps of any method described in the above method embodiments. .
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the computer program is operable to cause the computer to execute any of the methods described in the above method embodiments. Some or all steps of a method.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed methods, devices and systems can be implemented in other ways.
  • the device embodiments described above are only illustrative; for example, the division of the units is only a logical function division, and there may be other division methods during actual implementation; for example, multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present invention may be integrated into one processing unit, each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium and includes a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute some steps of the method described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, magnetic disk, optical disk, volatile memory or non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • Various media that can store program code such as synchlink DRAM, SLDRAM and direct memory bus random access memory (direct rambus RAM, DR RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)
  • Telephone Function (AREA)

Abstract

本申请提供了一种干扰控制方法及相关装置,包括:将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,晶体振荡器的第一频率在第二频率偏移量约束下的频率范围为第一参考频率子集;当检测到晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于蜂窝通信模块当前的通信频率范围内,生成第一跳频指令,第一工作频率属于第一参考频率子集;响应第一跳频指令,根据电子设备的屏幕状态将第一工作频率切换为第二频率。这样,能够在确保晶体振荡器的工作频率稳定的基础上实现跳频,避免对蜂窝通信模块的干扰,提升用户体验。

Description

干扰控制方法及相关装置 技术领域
本申请涉及终端通信技术领域,具体涉及一种干扰控制方法及相关装置。
背景技术
随着互联网的快速发展,手机更新速率日益增快,目前,用户在使用手机的过程中,当功能模块与蜂窝通信模块共同使用时,容易使手机受到干扰,影响蜂窝通信模块的业务灵敏度,降低用户的使用体验。
发明内容
本申请提供了一种干扰控制方法及相关装置,以期在确保OSC工作频率稳定的基础上实现跳频,避免对蜂窝通信模块的干扰,提升用户体验。
第一方面,本申请实施例提供了一种干扰控制方法,所述方法包括:
将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,所述晶体振荡器的第一频率在所述第二频率偏移量约束下的频率范围为第一参考频率子集,所述第一参考频率子集通过分频和/或倍频扩增后的频率范围为第一参考频率集合,所述晶体振荡器的第二频率在所述第二频率偏移量约束下的频率范围为第二参考频率子集,所述第二参考频率子集通过分频和/或倍频扩增后的频率范围为第二参考频率集合,所述第一参考频率集合和所述第二参考频率集合的交集为空集,所述第一频率和所述第二频率为预设的用于所述晶体振荡器进行跳频以避免所述晶体振荡器对蜂窝通信模块的通信干扰的参考频点;
当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令,所述第一频率集合用于表征所述第一工作频率的分频和/或倍频,所述第一工作频率属于所述第一参考频率子集;
响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,所述屏幕状态包括灭屏状态和亮屏状态。
第二方面,本申请实施例提供了一种电子设备,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面中的步骤的指令。
第三方面,本申请实施例提供了一种干扰控制装置,所述装置包括:
调整单元,用于将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,所述晶体振荡器的第一频率在所述第二频率偏移量约束下的频率范围为第一参考频率子集,所述第一参考频率子集通过分频和/或倍频扩增后的频率范围为第一参考频率集合,所述晶体振荡器的第二频率在所述第二频率偏移量约束下的频率范围为第二参考频率子集,所述第二参考频率子集通过分频和/或倍频扩增后的频率范围为第二参考频率集合,所述第一参考频率集合和所述第二参考频率集合的交集为空集,所述第一频率和所述第二频率为预设的用于所述晶体振荡器进行跳频以避免所述晶体振荡器对蜂窝通信模块的通信干扰的参考频点;生成单元,用于当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令,所述第一频率集合用于表征所述第一工作频率的分频和/或倍频,所述第一工作频率属于所述第一参考频率子集;切换单元,用于响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,所述屏幕状态包括灭 屏状态和亮屏状态。
第四方面,本申请实施例提供了一种计算机存储介质,用于存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本实施例第一方面中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,上述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如本申请实施例第一方面中所描述的部分或全部步骤。
可以看出,本申请通过将OSC工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,使OSC频率回归到标准误差范围内,此时预设的两个参考频点(第一频率和第二频率)在该第二频率偏移量的约束下的频率范围分别为第一参考频率子集和第二参考频率子集,两个参考频率子集经过分频和/或倍频扩增后的频率范围分别为第一参考频率集合和第二参考频率集合,且第一参考频率集合和第二参考频率集合的交集为空集,那么在OSC频率为第一频率会对蜂窝通信模块产生干扰时,跳频至第二频率,此时由于对蜂窝通信模块产生干扰的频率为第一参考频率集合中的一个频率、且第一参考频率集合和第二参考频率集合的交集为空集,则表明第二参考频率集合中不存在能够干扰蜂窝通信模块的频率,即可以保证跳频至第二频率后,不会发生回落到原干扰频点的情况,进而造成无效跳频,如此可以确保跳频的有效性,并且,基于电子设备屏幕状态的不同可以自动化选择适配的跳频策略,实现全场景状态下的有效跳频,如此,可以极大提高用户的使用体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种模块干扰的示意图;
图2a是本申请实施例提供的一种OSC干扰GSM1900的示意图;
图2b是本申请实施例提供的一种OSC干扰GSM1800的示意图;
图3是本申请实施例提供的一种电子设备的结构框图;
图4是本申请实施例提供的一种干扰控制方法的流程示意图;
图5是本申请实施例提供的一种OSC频率的波形图;
图6是本申请实施例提供的一种OSC追频示意图;
图7是本申请实施例提供的一种MIPI频率对应的展频图像示意图;
图8是本申请实施例提供的一种跳频示意图;
图9是本申请实施例提供的一种在静态亮屏状态下的跳频示意图;
图10是本申请实施例提供的一种在灭屏状态下的跳频示意图;
图11a是本申请实施例提供的一种干扰控制装置的功能单元组成框图;
图11b是本申请实施例提供的另一种干扰控制装置的功能单元组成框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不 同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面先对本申请涉及到的相关术语进行介绍。
全球移动通信系统(Global System for Mobile Communications,GSM):是由欧洲电信标准组织ETSI制订的一个数字移动通信标准,被看作是第二代(2G)移动电话系统。GSM加上数字表示不同的GSM频段,例如GSM1800频段。
追频:是指调整原频率不断接近直至达到目标频率的技术手段。
跳频:是指为避免干扰,将原频率切换为目标频率的技术手段。
绝对无线频道编号(Absolute Radio Frequency Channel Number,ARFCN):是指在GSM无线系统中用来鉴别特殊射频通道的编号方案。
业务信道(Traffic Channel,TCH):载有编码的话音或用户数据,用于传输话音和数据。
广播信道(Broadcast Channel,BCH):通过广播的方式传输信息的信息通道。
目前,用户在使用手机的过程中,当功能模块与蜂窝通信模块共同使用时,容易使手机受到干扰,影响蜂窝通信模块的业务灵敏度。具体来说,液晶显示器显示模组(Liquid Crystal Display Module,LCM)是手机上的人机交互系统,其内部集成有晶体振荡器(Oscillator,OSC),当功能模块工作时,晶体振荡器会产生一个工作频率,当该工作频率或该工作频率的分频和/或倍频处于蜂窝通信模块的通信频率范围内时,OSC模块会影响到蜂窝通信模块的业务灵敏度,对手机产生干扰,模块干扰示意图如图1所示,此时会影响用户使用体验。
举例来说,不同产品干扰的信道存在一定偏差,如图2a和图2b所示,图2a是本申请实施例提供的一种GSM1900的OSC干扰示意图,图2b是本申请实施例提供的一种GSM1800的OSC干扰示意图。以GSM1900为例,图中横轴数字代表GSM1900包括的信道编号,纵轴表示干扰程度,水平线段①代表参考线,除水平线段①之外的线条②代表OSC对GSM1900亮屏干扰的实际测试值,当实际测试值高于参考线时,表明在对应信道下,OSC会对GSM1900产生亮屏干扰。如图2a所示,某产品的OSC频率为89.75M,其OSC对GSM1900的干扰信道编号为725~743,其中查表可知对GSM1900干扰最大的中间信道对应的频率为1974.6M,即GSM1900亮屏干扰频率为OSC频率的22整倍频。此时,该产品的OSC模块会对其通信模块产生极大干扰,影响用户使用体验。同理,如图2b所示,该产品的OSC对GSM1800的干扰信道编号为512~530、554~558,其中查表可知对GSM1800干扰最大的中间信道对应的频率为1795M,即GSM1800亮屏干扰频率为OSC频率的20整倍频。此时,该产品的OSC模块会对GSM1800、GSM1900产生严重干扰,影响用户使用体验。
为解决上述问题,本申请实施例提供了一种干扰控制方法及相关装置,该方法应用于用户所使用的电子设备中。该电子设备通过调整晶体振荡器OSC的频偏,实现OSC的追频,再通过跳频跳出干扰频点,从而避免对蜂窝通信模块产生干扰。本申请可以适用于OSC对蜂窝通信模块产生干扰的具体应用场景,包括但不限于上述提到的应用场景。
请参阅图3,图3是本申请实施例提供的一种电子设备的结构框图。如图3所示,电 子设备30可以包括一个或多个如下部件:处理器31、与处理器31耦合的存储器32,其中存储器32可存储有一个或多个计算机程序,一个或多个计算机程序可以被配置为由一个或多个处理器31执行时实现下述实施例描述的方法。其中,所述电子设备可以是手机终端,平板电脑,笔记本电脑以及可穿戴智能设备。
处理器31可以包括一个或者多个处理核。处理器31利用各种接口和线路连接整个电子设备30内的各个部分,通过运行或执行存储在存储器32内的指令、程序、代码集或指令集,以及调用存储在存储器32内的数据,执行电子设备30的各种功能和处理数据。可选地,处理器31可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable LogicArray,PLA)中的至少一种硬件形式来实现。处理器31可集成中央处理器(CentralProcessing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器31中,单独通过一块通信芯片进行实现。
存储器32可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory,ROM)。存储器32可用于存储指令、程序、代码、代码集或指令集。存储器32可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于实现至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等。存储数据区还可以存储电子设备30在使用中所创建的数据等。
可以理解的是,电子设备30可包括比上述结构框图中更多或更少的结构元件,例如,包括电源模块、物理按键、Wi-Fi模块、扬声器、蓝牙模块、传感器等,在此不进行限定。
下面介绍本申请实施例提供的一种干扰控制方法。
请参阅图4,图4是本申请实施例提供的一种干扰控制方法的流程示意图,所述干扰控制方法应用于如图3所示的电子设备30中,如图4所示,所述干扰控制方法包括:
步骤401,将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量。
其中,所述晶体振荡器的第一频率在所述第二频率偏移量约束下的频率范围为第一参考频率子集,所述第一参考频率子集通过分频和/或倍频扩增后的频率范围为第一参考频率集合,所述晶体振荡器的第二频率在所述第二频率偏移量约束下的频率范围为第二参考频率子集,所述第二参考频率子集通过分频和/或倍频扩增后的频率范围为第二参考频率集合,所述第一参考频率集合和所述第二参考频率集合的交集为空集,所述第一频率和所述第二频率为预设的用于所述晶体振荡器进行跳频以避免所述晶体振荡器对蜂窝通信模块的通信干扰的参考频点。
其中,OSC的工作频率可由电子设备自行测量得到,示例性地,如图5所示,波形图A是电子设备测量得到的OSC工作频率的波形图,波形图B是电子设备测量得到的OSC两倍频频率的波形图,由此可以得到OSC的工作频率,并基于OSC频率的理论值,计算得到该工作频率的频率偏移量。
需要说明的是,不同产品出厂后的OSC的工作频率可能存在偏差,作为示例而非限定,OSC频率的理论值为90.25M,供应商提供的OSC频率精度误差为1%,即只要在90.25M±1%的范围内,都属于OSC正常的工作频率,由于该频率范围是产品出厂时的默认频率范围,在内置的跳频算法中也是适配该频率范围的,因此当OSC频率在该频率范围内跳频到目标频点时,不会发生回落到原干扰频点的情况。但实际情况中可能存在较大误差,如OSC频率的实际精度误差为5%,此时由于超出原频率范围,若仍按内置算法以1%的精度 误差为OSC频率的跳频基准进行跳频,跳频后的频点可能出现再次回到干扰频点的情况,仍会产生干扰。
示例性地,所述第一频率偏移量为5%,所述第二频率偏移量为1%,所述第一频率为90.25M,则所述第一参考频率子集为90.25M±1%,则所述第一参考频率集合为(90.25M±1%)/n,n为正整数或N(90.25M±1%),N为正整数;所述第二频率为跳频的目标频点,考虑到OSC频率的跳频跨度不能太大,本示例中记第二频率为88.9M,则第二参考频率子集为88.9M±1%,则所述第二参考频率集合为(88.9M±1%)/m,m为正整数或M(88.9M±1%),M为正整数,且由于所述第一参考频率集合和所述第二参考频率集合的交集为空集,那么在跳频到目标频点第二频率后,不会出现再次回到干扰频点的情况,确保了跳频的有效性。
在一个可能的示例中,所述将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,包括:获取所述晶体振荡器对应的工作组件对应的移动产业处理器接口的频率;根据所述移动产业处理器接口的频率对应的第一时钟信号序列和所述晶体振荡器的工作频率对应的第二时钟信号序列计算得到步进值;根据所述步进值将所述第一频率偏移量调整为所述第二频率偏移量。
其中,移动产业处理器接口(Mobile Industry Processor Interface,MIPI)频率是LCM中的另一个工作频率,通过测试发现不同机器的MIPI频率与出厂后标定的标准MIPI频率误差很小,在同一产品中以其MIPI频率作为参考基准,通过调整步进值使得具有第一频率偏移量的OSC频率逐渐达到标准范围,即将第一频率偏移量调整为第二频率偏移量,如此实现OSC的追频。
可选地,可以通过如下方式确定步进值:当每一帧画面刷新时,在帧画面刷新的第一个命令处比较MIPI频率对应的第一时钟信号序列与OSC频率对应的第二时钟信号序列,实现信号的采样计数比对,从而得到产品当前的OSC频率偏移参考基准的具体偏移量,若该具体偏移量超过了标准范围,则计算得到步进值并通过调整该步进值调整该具体偏移量。
示例性地,请参阅图6,图6是本申请实施例提供的一种OSC追频示意图,如图6所示,在当前帧画面刷新的第一个命令处执行第一时钟信号序列与第二时钟信号序列的信号采样计数比对,经过采样计数比对得到产品当前的OSC频率的频率偏移量为5%,超过了标准范围0~1%,则计算得到一个步进值1%,该步进值可根据具体产品灵活确定,在此并非进行限定。通过调整该步进值1%,使得调整后的OSC频率的频率偏移量变为4%,此时再进行信号的采样计数比对,检测到频率偏移量为4%,仍大于标准范围,因此继续计算得到并调整步进值,此处重新计算得到的步进值可以为上述步进值1%,也可以是其他值,具体可根据产品的不同灵活确定。重复上述调整过程,直到OSC频率的频率偏移量达到标准范围。
可见,本示例中,电子设备通过调整步进值进而调整频率偏移量,经过多次自动调节直到OSC频率的频率偏移量由第一频率偏移量变为第二频率偏移量,使OSC频率在标准范围内,实现追频。为后续跳频步骤的实现做好准备,确保了跳频的有效性。
在一个可能的示例中,在所述获取所述晶体振荡器对应的工作组件对应的移动产业处理器接口的频率后,所述方法还包括:将所述移动产业处理器接口的频率对应的展屏图像的展屏方式修改为向两边展屏。
其中,MIPI频率对应的展屏图像的开展屏方式包括:向下展屏和向两边展屏,其中,默认的开展屏方式为向下展屏,由于OSC频率参考MIPI的频率为中心频率,因此在该展屏方式下得到的OSC频率会偏小。而若将MIPI频率对应的展屏图像变为关展屏,如图7中展屏图像①所示,则会导致MIPI能量全部集中在频点中间,会对其他组件产生严重的 干扰,更加影响用户的使用体验。因此,在实现OSC追频的基础上,还要将MIPI频率对应的展屏图像的开展屏方式修改为向两边展屏,如图7中展屏图像②所示,从而确保得到的OSC频率是精确的,且避免对其他组件产生干扰。
可见,本示例中,电子设备通过将MIPI频率对应的展屏图像的开展屏方式修改为向两边展屏,保证了以MIPI频率为参考基准进行追频的OSC频率的精确度,且避免了对其他组件产生干扰。
步骤402,当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令。
其中,所述第一频率集合用于表征所述第一工作频率的分频和/或倍频,所述第一工作频率属于所述第一参考频率子集,即所述第一工作频率是经过调整频率偏移量得到的结果。需要说明的是,调整频率偏移量实现OSC追频时,当检测到所调整的OSC频率处于第一参考频率子集时就结束调整过程,此时得到的OSC频率即所述第一工作频率。示例性地,在一次调整过程结束后,该产品的OSC频率的第二频率偏移量为0.55%,即达到了OSC频率的频率偏移量标准范围,则结束调整过程,那么在该示例下,所述第一工作频率为90.25M*(1-0.55%)=89.75M。若此时蜂窝通信模块的通信频率范围内包括89.75M的分频和/或倍频中的至少一个频率,例如,此时蜂窝通信模块的通信频率为1974.6M,为89.75M的22整倍频,则OSC会对蜂窝通信模块产生严重干扰,此时会上报无线访问接入点(WirelessAccessPoint,AP)生成第一跳频指令,触发跳频,以避免干扰。
为辅助理解,请参阅图8,图8是本申请实施例提供的一种跳频示意图,如图8所示,电子设备首先检测当前蜂窝通信模块是否存在干扰,若是,则上报AP生成跳频指令触发跳频,若否,则保持检测状态,重复检测当前蜂窝通信模块是否存在干扰。
在一个可能的示例中,所述当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令,包括:当检测到所述第一频率集合中存在至少一个频率处于业务信道绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令;当检测到所述第一频率集合与所述业务信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合中存在至少一个频率处于广播信道绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令;当检测到所述第一频率集合与所述业务信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合与所述广播信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合中存在至少一个频率处于邻居绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令。
其中,由于在电子设备的蜂窝通信模块中,业务信道的重要程度要大于广播信道的重要程度大于其他通信信道的重要程度,因此,在利用跳频避开OSC对蜂窝通信模块的干扰时,业务信道绝对无线频道编号(TCH ARFCN)的优先级高于广播信道绝对无线频道编号(BCH ARFCN)高于邻居绝对无线频道编号(Neighbor ARFCN)。示例性地,记当前工作频率89.75M对应的干扰信道为目标干扰信道,则先检测TCH ARFCN是否处于该目标干扰信道,若TCH ARFCN处于该目标干扰信道,则需要跳频,生成第一跳频指令;若TCH ARFCN不处于该目标干扰信道,则检测BCH ARFCN是否处于该目标干扰信道,若BCH ARFCN处于该目标干扰信道,则需要跳频,生成第一跳频指令;若BCH ARFCN不处于该目标干扰信道,则检测Neighbor ARFCN是否处于该目标干扰信道,若Neighbor ARFCN处于该目标干扰信道,则需要跳频,生成第一跳频指令。
可见,本示例中,电子设备通过对通信模块中各个信道类型进行优先级排序,从而实现对重要信道的优先防干扰策略,可以有效地稳定用户设备的通信质量。
步骤403,响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频 率切换为所述第二频率。
在一个可能的示例中,所述电子设备的屏幕状态包括所述亮屏状态,所述亮屏状态为动态亮屏状态,所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,包括:当所述电子设备的屏幕状态为所述动态亮屏状态时,响应所述第一跳频指令,将所述第一工作频率切换为所述第二频率。
其中,当电子设备的屏幕状态为动态亮屏状态时,此时响应跳频指令可以直接实现工作频率的切换,因此在该状态下,当电子设备得到消息需要进行跳频时,响应第一跳频指令直接将第一工作频率切换为第二频率,不进行其他多余的步骤,提高跳频效率。
可见,本示例中,当电子设备的屏幕状态为动态亮屏状态时,直接响应第一跳频指令进行频率切换,可以有效地提高跳频效率。
在一个可能的示例中,所述电子设备的屏幕状态包括所述亮屏状态,所述亮屏状态为静态亮屏状态,所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,包括:当所述电子设备的屏幕状态为所述静态亮屏状态时,根据所述第一跳频指令生成屏幕刷帧指令;响应所述屏幕刷帧指令,得到刷帧结果;根据所述第一跳频指令和所述刷帧结果将所述第一工作频率切换为所述第二频率。
其中,当电子设备的屏幕状态为静态亮屏状态时,由于屏幕状态为静态,不会进行画面帧的刷新,此时即使将第一工作频率切换为第二频率也无法实现跳频。因此,在该应用场景下,当检测到需要跳频时,根据生成的第一跳频指令生成屏幕刷帧指令,根据该屏幕刷帧指令强制刷帧一次,从而保证触发跳频。
为辅助理解,请参阅图9,图9是本申请实施例提供的一种在静态亮屏状态下的跳频示意图,如图9所示,电子设备首先检测当前屏幕状态是否是静态亮屏状态,若否,则保持检测状态,重复检测当前的屏幕状态,若是,则检测是否存在跳频指令,若检测到存在跳频指令,则强制刷帧,若检测到不存在跳频指令,则回到检测当前的屏幕状态的步骤。
可见,本示例中,当电子设备的屏幕状态为静态亮屏状态时,直接切换频率无法实现跳频,通过加入强制刷帧的步骤,保证静态亮屏状态下有刷帧动作,从而保证触发跳频,解决了现有的跳频方案中无法实现静态亮屏状态下跳频的问题。
在一个可能的示例中,所述电子设备的屏幕状态包括所述灭屏状态,所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,包括:当所述电子设备的屏幕状态为所述灭屏状态时,根据所述第一跳频指令生成数据上传指令;响应所述数据上传指令,将所述第二频率上传到目标存储节点中,所述目标存储节点用于指示所述数据上传指令对应的数据;若检测到所述电子设备的屏幕状态由所述灭屏状态变为所述亮屏状态,则调用所述目标存储节点,将所述第一工作频率切换为所述第二频率。
其中,在现有技术中,当电子设备的屏幕状态为灭屏状态时对蜂窝通信模块产生干扰,此时灭屏后再亮屏,OSC频率会回到初始化配置的OSC频率,例如90.25M,并且在灭屏状态下无论如何切换频率,再亮屏时OSC频率总是90.25M。在本申请中,当所述电子设备的屏幕状态为灭屏状态时,检测到OSC需要跳频,则生成第一跳频指令,并生成数据上传指令,通过响应数据上传指令将目标频点也就是第二频率,上传到目标存储节点中,当检测到屏幕由灭屏状态变为亮屏状态时,调用目标存储节点,将第一工作频率切换为第二频率,实现跳频。
为辅助理解,请参阅图10,图10是本申请实施例提供的一种在灭屏状态下的跳频示意图,如图10所示,电子设备首先检测当前屏幕状态是否为灭屏状态,若否,则保持检测状态,重复检测当前的屏幕状态,若是,则检测是否存在跳频指令;若检测到不存在跳频指令,则回到检测当前的屏幕状态的步骤,若检测到存在跳频指令,则将目标频点的频 率上传至目标存储节点中,再检测屏幕是否亮屏,若屏幕亮屏,则调用目标存储节点完成跳频,若屏幕未亮屏,则回到检测屏幕是否亮屏的步骤。
可见,本示例中,当电子设备的屏幕状态为灭屏状态时,通过将目标频点上传至目标存储节点,在屏幕由灭屏变为亮屏后调用该目标存储节点实现频率切换,实现了电子设备由灭屏状态变为亮屏状态的跳频,解决了现有的跳频方案中无法实现灭屏状态下跳频的问题。
在一个可能的示例中,在所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率之后,所述方法还包括:当检测到所述蜂窝通信模块的通信频率范围发生变化时,获取变化后的通信频率范围;根据所述第二频率对应的第二频率集合和所述变化后的通信频率范围生成第二跳频指令,所述第二频率集合用于表征所述第二频率的分频和/或倍频;响应所述第二跳频指令,根据所述电子设备的屏幕状态将所述第二频率切换为所述第一频率。
其中,作为示例而非限定,当电子设备完成从第一工作频率89.75M跳频至第二频率88.9M后,电子设备的OSC频率变为第二频率88.9M,从而避开了蜂窝通信模块的通信频率范围。此时若蜂窝通信模块的通信频率范围发生改变,变化后的通信频率范围包括了第二频率88.9M对应的第二频率集合中的至少一个频点,此时OSC又会对蜂窝通信模块产生干扰,则生成第二跳频指令,将OSC频率由第二频率88.9M跳频至第一频率90.25M。
可见,本示例中,电子设备在跳频至第二频率后,检测到蜂窝通信模块的频率范围变为了第二频率会造成干扰的频率范围,则跳频至第一频率,及时避免对蜂窝通信模块的干扰。
在一个可能的示例中,所述根据所述第二频率对应的第二频率集合和所述变化后的通信频率范围生成第二跳频指令,包括:当检测到所述第二频率集合中存在至少一个频率处于业务信道绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合中存在至少一个频率处于广播信道绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合与所述广播信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合中存在至少一个频率处于邻居绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集、与所述广播信道绝对无线频道编号对应的更新后的通信频率范围的交集、以及与所述邻居绝对无线频道编号对应的更新后的通信频率范围的交集均为空集时,生成所述第二跳频指令。
其中,蜂窝通信模块的通信频率范围即使发生改变,但其中的通信信道类型依旧存在重要程度的优先级顺序,因此在利用跳频避开OSC对蜂窝通信模块的干扰时,TCH ARFCN的优先级要高于BCH ARFCN高于Neighbor ARFCN。示例性地,记当前OSC的工作频率即第二频率88.9M对应的干扰信道为目标干扰信道,则先检测TCH ARFCN是否处于该目标干扰信道,若TCH ARFCN处于该目标干扰信道,则需要跳频,生成第二跳频指令;若TCH ARFCN不处于该目标干扰信道,则检测BCH ARFCN是否处于该目标干扰信道,若BCH ARFCN处于该目标干扰信道,则需要跳频,生成第二跳频指令;若BCH ARFCN不处于该目标干扰信道,则检测Neighbor ARFCN是否处于该目标干扰信道,若Neighbor ARFCN处于该目标干扰信道,则需要跳频,生成第二跳频指令;若Neighbor ARFCN也不处于该目标干扰信道,即TCH ARFCN、BCH ARFCN、Neighbor ARFCN都不处于该目标干扰信道,即不存在对蜂窝通信模块干扰的情况,则仍生成第二跳频指令,跳频至第一频 率90.25M,因为第一频率90.25M是产品出厂时初始化配置的OSC理论值/标准值,产品在该OSC工作频率下的工作收益是最大的,因此若此时不存在干扰,则跳回第一频率,有利于提高产品的工作效率,提升用户使用体验。
可见,本示例中,电子设备通过对通信模块中各个信道类型进行优先级排序,从而实现对重要信道的优先防干扰策略,可以有效地稳定用户设备的通信质量,并且在不存在干扰时,将OSC频率恢复到初始化配置的OSC理论值,可以提高用户设备的工作效率,增加运行流畅度,提升用户使用体验。
可以看出,现有技术中,由于电子设备出厂后OSC实际工作的频率与标定的标准频率存在较大误差,频率偏移量超过了标准范围,使得电子设备在跳频至目标频点时,可能会发生回落到原干扰频点的情况,造成无效跳频。而本申请通过将OSC工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,使OSC频率回归到标准误差范围内,此时预设的两个参考频点(第一频率和第二频率)在该第二频率偏移量的约束下的频率范围分别为第一参考频率子集和第二参考频率子集,两个参考频率子集经过分频和/或倍频扩增后的频率范围分别为第一参考频率集合和第二参考频率集合,且第一参考频率集合和第二参考频率集合的交集为空集,那么在OSC频率为第一频率会对蜂窝通信模块产生干扰时,跳频至第二频率,此时由于对蜂窝通信模块产生干扰的频率为第一参考频率集合中的一个频率、且第一参考频率集合和第二参考频率集合的交集为空集,则表明第二参考频率集合中不存在能够干扰蜂窝通信模块的频率,即可以保证跳频至第二频率后,不会发生回落到原干扰频点的情况,进而造成无效跳频,如此可以确保跳频的有效性,并且,基于电子设备屏幕状态的不同可以自动化选择适配的跳频策略,实现全场景状态下的有效跳频,如此,可以极大提高用户的使用体验。
本申请实施例提供一种导航信息处理装置,该导航信息处理装置可以为第一用户设备。具体的,导航信息处理装置用于执行以上导航信息处理方法中第一用户设备所执行的步骤。本申请实施例提供的导航信息处理装置可以包括相应步骤所对应的模块。
本申请实施例可以根据上述方法示例对导航信息处理装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,请参阅图11a,图11a是本申请实施例提供的一种干扰控制装置的功能单元组成框图,如图11a所示,所述干扰控制装置应用于如图3所示的电子设备30中,所述干扰控制装置110包括:
调整单元1101,用于将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,所述晶体振荡器的第一频率在所述第二频率偏移量约束下的频率范围为第一参考频率子集,所述第一参考频率子集通过分频和/或倍频扩增后的频率范围为第一参考频率集合,所述晶体振荡器的第二频率在所述第二频率偏移量约束下的频率范围为第二参考频率子集,所述第二参考频率子集通过分频和/或倍频扩增后的频率范围为第二参考频率集合,所述第一参考频率集合和所述第二参考频率集合的交集为空集,所述第一频率和所述第二频率为预设的用于所述晶体振荡器进行跳频以避免所述晶体振荡器对蜂窝通信模块的通信干扰的参考频点;
生成单元1102,用于当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令,所述第一频率集合用于表征所述第一工作频率的分频和/或倍频,所述第一工作频率属于所述第一参考频率子集;
切换单元1103,用于响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,所述屏幕状态包括灭屏状态和亮屏状态。
在一个可能的示例中,在所述将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量方面,所述调整单元1101具体用于:获取所述晶体振荡器对应的工作组件对应的移动产业处理器接口的频率;根据所述移动产业处理器接口的频率对应的第一时钟信号序列和所述晶体振荡器的工作频率对应的第二时钟信号序列计算得到步进值;根据所述步进值将所述第一频率偏移量调整为所述第二频率偏移量。
在一个可能的示例中,在所述当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令方面,所述生成单元1102具体用于:当检测到所述第一频率集合中存在至少一个频率处于业务信道绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令;当检测到所述第一频率集合与所述业务信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合中存在至少一个频率处于广播信道绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令;当检测到所述第一频率集合与所述业务信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合与所述广播信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合中存在至少一个频率处于邻居绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令。
在一个可能的示例中,在所述电子设备的屏幕状态包括所述亮屏状态,所述亮屏状态为动态亮屏状态,所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率方面,所述切换单元1103具体用于:当所述电子设备的屏幕状态为所述动态亮屏状态时,响应所述第一跳频指令,将所述第一工作频率切换为所述第二频率。
在一个可能的示例中,在所述电子设备的屏幕状态包括所述亮屏状态,所述亮屏状态为静态亮屏状态,所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率方面,所述切换单元1103具体用于:当所述电子设备的屏幕状态为所述静态亮屏状态时,根据所述第一跳频指令生成屏幕刷帧指令;响应所述屏幕刷帧指令,得到刷帧结果;根据所述第一跳频指令和所述刷帧结果将所述第一工作频率切换为所述第二频率。
在一个可能的示例中,在所述电子设备的屏幕状态包括所述灭屏状态,所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率方面,所述切换单元1103具体用于:当所述电子设备的屏幕状态为所述灭屏状态时,根据所述第一跳频指令生成数据上传指令;响应所述数据上传指令,将所述第二频率上传到目标存储节点中,所述目标存储节点用于指示所述数据上传指令对应的数据;若检测到所述电子设备的屏幕状态由所述灭屏状态变为所述亮屏状态,则调用所述目标存储节点,将所述第一工作频率切换为所述第二频率。
在一个可能的示例中,在所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率之后,所述干扰控制装置110还用于:当检测到所述蜂窝通信模块的通信频率范围发生变化时,获取变化后的通信频率范围;根据所述第二频率对应的第二频率集合和所述变化后的通信频率范围生成第二跳频指令,所述第二频率集合用于表征所述第二频率的分频和/或倍频;响应所述第二跳频指令,根据所述电子设备的屏幕状态将所述第二频率切换为所述第一频率。
在一个可能的示例中,在所述根据所述第二频率对应的第二频率集合和所述变化后的通信频率范围生成第二跳频指令方面,所述干扰控制装置110具体用于:当检测到所述第二频率集合中存在至少一个频率处于业务信道绝对无线频道编号对应的更新后的通信频 率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合中存在至少一个频率处于广播信道绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合与所述广播信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合中存在至少一个频率处于邻居绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集、与所述广播信道绝对无线频道编号对应的更新后的通信频率范围的交集、以及与所述邻居绝对无线频道编号对应的更新后的通信频率范围的交集均为空集时,生成所述第二跳频指令。
可以理解的是,由于方法实施例与装置实施例为相同技术构思的不同呈现形式,因此,本申请中方法实施例部分的内容应同步适配于装置实施例部分,此处不再赘述。
在采用集成的单元的情况下,如图11b所示,图11b是本申请实施例提供的另一种干扰控制装置的功能单元组成框图。在图11b中,干扰控制装置111包括:处理模块1112和通信模块1111。处理模块1112用于对干扰控制装置的动作进行控制管理,例如,执行调整单元1101、生成单元1102和切换单元1103的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1111用于支持干扰控制装置与其他设备之间的交互。如图11b所示,干扰控制装置还可以包括存储模块1113,存储模块1113用于存储干扰控制装置的程序代码和数据。
其中,处理模块1112可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1111可以是收发器、RF电路或通信接口等。存储模块1113可以是存储器。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。上述干扰控制装置111均可执行上述图4所示的干扰控制方法。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储用于电子数据交换的计算机程序,该计算机程序使得计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,上述计算机程序产品包括存储了计算机程 序的非瞬时性计算机可读存储介质,上述计算机程序可操作来使计算机执行如上述方法实施例中记载的任一方法的部分或全部步骤。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、磁碟、光盘、易失性存储器或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)等各种可以存储程序代码的介质。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,可轻易想到变化或替换,均可作各种更动与修改,包含上述不同功能、实施步骤的组合,包含软件和硬件的实施方式,均在本发明的保护范围。

Claims (20)

  1. 一种干扰控制方法,其特征在于,应用于电子设备,所述方法包括:
    将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,所述晶体振荡器的第一频率在所述第二频率偏移量约束下的频率范围为第一参考频率子集,所述第一参考频率子集通过分频和/或倍频扩增后的频率范围为第一参考频率集合,所述晶体振荡器的第二频率在所述第二频率偏移量约束下的频率范围为第二参考频率子集,所述第二参考频率子集通过分频和/或倍频扩增后的频率范围为第二参考频率集合,所述第一参考频率集合和所述第二参考频率集合的交集为空集,所述第一频率和所述第二频率为预设的用于所述晶体振荡器进行跳频以避免所述晶体振荡器对蜂窝通信模块的通信干扰的参考频点;
    当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令,所述第一频率集合用于表征所述第一工作频率的分频和/或倍频,所述第一工作频率属于所述第一参考频率子集;
    响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,所述屏幕状态包括灭屏状态和亮屏状态。
  2. 根据权利要求1所述方法,其特征在于,所述将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,包括:
    获取所述晶体振荡器对应的工作组件对应的移动产业处理器接口的频率;
    根据所述移动产业处理器接口的频率对应的第一时钟信号序列和所述晶体振荡器的工作频率对应的第二时钟信号序列计算得到步进值;
    根据所述步进值将所述第一频率偏移量调整为所述第二频率偏移量。
  3. 根据权利要求2所述方法,其特征在于,在所述获取所述晶体振荡器对应的工作组件对应的移动产业处理器接口的频率之后,所述方法还包括:
    将所述移动产业处理器接口的频率对应的展屏图像的展屏方式修改为向两边展屏。
  4. 根据权利要求2所述方法,其特征在于,所述当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令,包括:
    当检测到所述第一频率集合中存在至少一个频率处于业务信道绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令;
    当检测到所述第一频率集合与所述业务信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合中存在至少一个频率处于广播信道绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令;
    当检测到所述第一频率集合与所述业务信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合与所述广播信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合中存在至少一个频率处于邻居绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令。
  5. 根据权利要求4所述方法,其特征在于,所述电子设备的屏幕状态包括所述亮屏状态,所述亮屏状态为动态亮屏状态,所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,包括:
    当所述电子设备的屏幕状态为所述动态亮屏状态时,响应所述第一跳频指令,将所述第一工作频率切换为所述第二频率。
  6. 根据权利要求4所述方法,其特征在于,所述电子设备的屏幕状态包括所述亮屏状态,所述亮屏状态为静态亮屏状态,所述响应所述第一跳频指令,根据所述电子设备的 屏幕状态将所述第一工作频率切换为所述第二频率,包括:
    当所述电子设备的屏幕状态为所述静态亮屏状态时,根据所述第一跳频指令生成屏幕刷帧指令;
    响应所述屏幕刷帧指令,得到刷帧结果;
    根据所述第一跳频指令和所述刷帧结果将所述第一工作频率切换为所述第二频率。
  7. 根据权利要求4所述方法,其特征在于,所述电子设备的屏幕状态包括所述灭屏状态,所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,包括:
    当所述电子设备的屏幕状态为所述灭屏状态时,根据所述第一跳频指令生成数据上传指令;
    响应所述数据上传指令,将所述第二频率上传到目标存储节点中,所述目标存储节点用于指示所述数据上传指令对应的数据;
    若检测到所述电子设备的屏幕状态由所述灭屏状态变为所述亮屏状态,则调用所述目标存储节点,将所述第一工作频率切换为所述第二频率。
  8. 根据权利要求1所述方法,其特征在于,在所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率之后,所述方法还包括:
    当检测到所述蜂窝通信模块的通信频率范围发生变化时,获取变化后的通信频率范围;
    根据所述第二频率对应的第二频率集合和所述变化后的通信频率范围生成第二跳频指令,所述第二频率集合用于表征所述第二频率的分频和/或倍频;
    响应所述第二跳频指令,根据所述电子设备的屏幕状态将所述第二频率切换为所述第一频率。
  9. 根据权利要求8所述方法,其特征在于,所述根据所述第二频率对应的第二频率集合和所述变化后的通信频率范围生成第二跳频指令,包括:
    当检测到所述第二频率集合中存在至少一个频率处于业务信道绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;
    当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合中存在至少一个频率处于广播信道绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;
    当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合与所述广播信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合中存在至少一个频率处于邻居绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;
    当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集、与所述广播信道绝对无线频道编号对应的更新后的通信频率范围的交集、以及与所述邻居绝对无线频道编号对应的更新后的通信频率范围的交集均为空集时,生成所述第二跳频指令。
  10. 一种电子设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所属程序包括用于执行如权利要求1-9任一项所述方法中的步骤的指令。
  11. 一种干扰控制装置,其特征在于,应用于电子设备,所述装置包括:
    调整单元,用于将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量,所述晶体振荡器的第一频率在所述第二频率偏移量约束下的频率范围为第一参考频率子集,所述第一参考频率子集通过分频和/或倍频扩增后的频率范围为第一参考频 率集合,所述晶体振荡器的第二频率在所述第二频率偏移量约束下的频率范围为第二参考频率子集,所述第二参考频率子集通过分频和/或倍频扩增后的频率范围为第二参考频率集合,所述第一参考频率集合和所述第二参考频率集合的交集为空集,所述第一频率和所述第二频率为预设的用于所述晶体振荡器进行跳频以避免所述晶体振荡器对蜂窝通信模块的通信干扰的参考频点;
    生成单元,用于当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令,所述第一频率集合用于表征所述第一工作频率的分频和/或倍频,所述第一工作频率属于所述第一参考频率子集;
    切换单元,用于响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率,所述屏幕状态包括灭屏状态和亮屏状态。
  12. 根据权利要求11所述的装置,其特征在于,在所述将晶体振荡器的工作频率的频率偏移量由第一频率偏移量调整为第二频率偏移量方面,所述调整单元具体用于:
    获取所述晶体振荡器对应的工作组件对应的移动产业处理器接口的频率;
    根据所述移动产业处理器接口的频率对应的第一时钟信号序列和所述晶体振荡器的工作频率对应的第二时钟信号序列计算得到步进值;
    根据所述步进值将所述第一频率偏移量调整为所述第二频率偏移量。
  13. 根据权利要求12所述的装置,其特征在于,所述调整单元在所述获取所述晶体振荡器对应的工作组件对应的移动产业处理器接口的频率之后,还用于:
    将所述移动产业处理器接口的频率对应的展屏图像的展屏方式修改为向两边展屏。
  14. 根据权利要求12所述的装置,其特征在于,在所述当检测到所述晶体振荡器当前的第一工作频率对应的第一频率集合中存在至少一个频率处于所述蜂窝通信模块当前的通信频率范围内,生成第一跳频指令方面,所述生成单元具体用于:
    当检测到所述第一频率集合中存在至少一个频率处于业务信道绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令;
    当检测到所述第一频率集合与所述业务信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合中存在至少一个频率处于广播信道绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令;
    当检测到所述第一频率集合与所述业务信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合与所述广播信道绝对无线频道编号对应的通信频率范围的交集为空集,且所述第一频率集合中存在至少一个频率处于邻居绝对无线频道编号对应的通信频率范围内,生成所述第一跳频指令。
  15. 根据权利要求14所述的装置,其特征在于,所述电子设备的屏幕状态包括所述亮屏状态,所述亮屏状态为动态亮屏状态;在所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率方面,所述切换单元具体用于:
    当所述电子设备的屏幕状态为所述动态亮屏状态时,响应所述第一跳频指令,将所述第一工作频率切换为所述第二频率。
  16. 根据权利要求14所述的装置,其特征在于,所述电子设备的屏幕状态包括所述亮屏状态,所述亮屏状态为静态亮屏状态;在所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率方面,所述切换单元具体用于:
    当所述电子设备的屏幕状态为所述静态亮屏状态时,根据所述第一跳频指令生成屏幕刷帧指令;
    响应所述屏幕刷帧指令,得到刷帧结果;根据所述第一跳频指令和所述刷帧结果将所述第一工作频率切换为所述第二频率。
  17. 根据权利要求14所述的装置,其特征在于,所述电子设备的屏幕状态包括所述灭屏状态;在所述响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率方面,所述切换单元具体用于:
    当所述电子设备的屏幕状态为所述灭屏状态时,根据所述第一跳频指令生成数据上传指令;
    响应所述数据上传指令,将所述第二频率上传到目标存储节点中,所述目标存储节点用于指示所述数据上传指令对应的数据;
    若检测到所述电子设备的屏幕状态由所述灭屏状态变为所述亮屏状态,则调用所述目标存储节点,将所述第一工作频率切换为所述第二频率。
  18. 根据权利要求11所述的装置,其特征在于,在所述切换单元响应所述第一跳频指令,根据所述电子设备的屏幕状态将所述第一工作频率切换为所述第二频率之后,所述切换单元还用于:
    当检测到所述蜂窝通信模块的通信频率范围发生变化时,获取变化后的通信频率范围;以及,根据所述第二频率对应的第二频率集合和所述变化后的通信频率范围生成第二跳频指令,所述第二频率集合用于表征所述第二频率的分频和/或倍频;以及,响应所述第二跳频指令,根据所述电子设备的屏幕状态将所述第二频率切换为所述第一频率。
  19. 根据权利要求18所述的装置,其特征在于,在所述切换单元根据所述第二频率对应的第二频率集合和所述变化后的通信频率范围生成第二跳频指令方面,所述切换单元具体用于:
    当检测到所述第二频率集合中存在至少一个频率处于业务信道绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合中存在至少一个频率处于广播信道绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合与所述广播信道绝对无线频道编号对应的更新后的通信频率范围的交集为空集,且所述第二频率集合中存在至少一个频率处于邻居绝对无线频道编号对应的更新后的通信频率范围内,生成所述第二跳频指令;当检测到所述第二频率集合与所述业务信道绝对无线频道编号对应的更新后的通信频率范围的交集、与所述广播信道绝对无线频道编号对应的更新后的通信频率范围的交集、以及与所述邻居绝对无线频道编号对应的更新后的通信频率范围的交集均为空集时,生成所述第二跳频指令。
  20. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-9任一项所述的方法中的步骤。
PCT/CN2022/141727 2022-03-29 2022-12-24 干扰控制方法及相关装置 WO2023185139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210320193.3 2022-03-29
CN202210320193.3A CN114584175B (zh) 2022-03-29 2022-03-29 干扰控制方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023185139A1 true WO2023185139A1 (zh) 2023-10-05

Family

ID=81782519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141727 WO2023185139A1 (zh) 2022-03-29 2022-12-24 干扰控制方法及相关装置

Country Status (2)

Country Link
CN (1) CN114584175B (zh)
WO (1) WO2023185139A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114584175B (zh) * 2022-03-29 2023-05-30 Oppo广东移动通信有限公司 干扰控制方法及相关装置
WO2024059991A1 (zh) * 2022-09-20 2024-03-28 京东方科技集团股份有限公司 振荡频率控制方法、系统和显示装置
CN117234137B (zh) * 2023-11-08 2024-02-02 深圳市航顺芯片技术研发有限公司 Mcu时钟频率切换电路、mcu和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947894A (zh) * 2017-12-15 2018-04-20 广东欧珀移动通信有限公司 电子设备的抗干扰方法及相关产品
CN109274833A (zh) * 2018-11-19 2019-01-25 Oppo广东移动通信有限公司 电磁干扰的调整方法及相关产品
CN109597597A (zh) * 2018-11-09 2019-04-09 Oppo广东移动通信有限公司 频率处理方法、装置、电子设备及计算机可读介质
CN111446986A (zh) * 2020-03-24 2020-07-24 维沃移动通信有限公司 帧率调节方法及电子设备
CN114584175A (zh) * 2022-03-29 2022-06-03 Oppo广东移动通信有限公司 干扰控制方法及相关装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778610B2 (en) * 2006-08-29 2010-08-17 Texas Instruments Incorporated Local oscillator with non-harmonic ratio between oscillator and RF frequencies using XOR operation with jitter estimation and correction
WO2019136639A1 (en) * 2018-01-10 2019-07-18 Qualcomm Incorporated Reducing user equipment radio frequency front end desensing caused by interference from other user equipment hardware
CN111601325B (zh) * 2018-10-23 2023-03-31 Oppo广东移动通信有限公司 电磁干扰控制方法及相关装置
CN110381544B (zh) * 2019-06-27 2023-10-20 维沃移动通信有限公司 一种数据传输控制方法、装置及终端设备
US20210105031A1 (en) * 2020-12-17 2021-04-08 Amichay Israel Mitigating receiver oscillator leakage between coexisting wireless technologies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947894A (zh) * 2017-12-15 2018-04-20 广东欧珀移动通信有限公司 电子设备的抗干扰方法及相关产品
CN109597597A (zh) * 2018-11-09 2019-04-09 Oppo广东移动通信有限公司 频率处理方法、装置、电子设备及计算机可读介质
CN109274833A (zh) * 2018-11-19 2019-01-25 Oppo广东移动通信有限公司 电磁干扰的调整方法及相关产品
CN111446986A (zh) * 2020-03-24 2020-07-24 维沃移动通信有限公司 帧率调节方法及电子设备
CN114584175A (zh) * 2022-03-29 2022-06-03 Oppo广东移动通信有限公司 干扰控制方法及相关装置

Also Published As

Publication number Publication date
CN114584175B (zh) 2023-05-30
CN114584175A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023185139A1 (zh) 干扰控制方法及相关装置
CN110913504B (zh) 一种网络连接方法、终端设备及存储介质
US10504466B2 (en) Method, device and non-transitory computer-readable medium for control of refresh frequency of display unit
RU2657862C2 (ru) Способ и аппаратура для сокращения потребления энергии в мобильном электронном устройстве
US8872836B2 (en) Detecting static images and reducing resource usage on an electronic device
WO2020192311A1 (zh) 主从服务器切换方法、装置、电子设备及存储介质
US7305569B2 (en) Apparatus, system and method for adjusting a set of actual power states according to a function depending on a set of desired power states
US9690364B2 (en) Systems and methods for dynamically adjusting memory state transition timers
US9921806B2 (en) Method and apparatus for switching audio output device
US20210250886A1 (en) Method, apparatus, and system for determining synchronization cycle
US11212748B2 (en) Method of monitoring RAR, method of sending RAR, devices thereof and system
EP4262254A1 (en) Communication method and apparatus, terminal device, and storage medium
WO2021196880A1 (zh) 一种harq反馈方法、终端及基站
CN111628801B (zh) 射频前端器件控制方法及用户设备
WO2024001907A1 (zh) 射频控制方法、装置及电子设备
WO2024060723A1 (zh) 通信方法、通信装置、通信设备、计算机设备及存储介质
JP2020519189A (ja) 同期信号ブロックのタイミング方法及び関連製品
CN109511139B (zh) Wifi控制方法、装置、移动设备、计算机可读存储介质
US11805475B2 (en) Access control barring method and apparatus
WO2020124541A1 (zh) 音频处理方法和装置、计算机可读存储介质、电子设备
CN114650334A (zh) 显示配置参数的配置方法和电子设备
CN112714494B (zh) 一种移动终端的控制方法、存储介质及移动终端
US11432169B2 (en) Channel sensing method and communication device
CN108736082B (zh) 提高终端电池续航能力的方法、装置、设备及存储介质
CN106802782A (zh) 穿戴式智能设备、音乐播放的控制方法及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934954

Country of ref document: EP

Kind code of ref document: A1