WO2023184989A1 - 用于除湿的装置 - Google Patents

用于除湿的装置 Download PDF

Info

Publication number
WO2023184989A1
WO2023184989A1 PCT/CN2022/131369 CN2022131369W WO2023184989A1 WO 2023184989 A1 WO2023184989 A1 WO 2023184989A1 CN 2022131369 W CN2022131369 W CN 2022131369W WO 2023184989 A1 WO2023184989 A1 WO 2023184989A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
port
dehumidification
heat
opening
Prior art date
Application number
PCT/CN2022/131369
Other languages
English (en)
French (fr)
Inventor
张新朝
耿宝寒
田雪梅
闫长娟
胡志刚
孙帅辉
Original Assignee
海尔(深圳)研发有限责任公司
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔(深圳)研发有限责任公司, 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 海尔(深圳)研发有限责任公司
Publication of WO2023184989A1 publication Critical patent/WO2023184989A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature

Definitions

  • the present application relates to the technical field of dehumidification, and in particular to a device for dehumidification.
  • an indoor dehumidifier which has an evaporator inside for cooling and dehumidification.
  • the air flow after cooling and dehumidification is heated by heating components such as electric heating wires or condensers and then blown out.
  • the moisture in the air flow encounters the evaporator and is cooled and condensed, thus Circulating dehumidification of the air flow in the indoor environment.
  • Embodiments of the present disclosure provide a device for dehumidification to selectively adjust the temperature of the dehumidified airflow according to dehumidification needs, improve the user's physical comfort, and meet the user's diverse dehumidification needs.
  • a device for dehumidification includes: a shell, a first heat exchanger, a second heat exchanger and a third heat exchanger.
  • the shell has a dehumidification air inlet and a dehumidification air outlet;
  • the first heat exchanger is arranged in the shell and is located on the side of the dehumidification air inlet;
  • the second heat exchanger is arranged on the leeward side of the first heat exchanger;
  • the third heat exchanger is arranged On the leeward side of the second heat exchanger; where the air flow to be dehumidified flows into the housing through the dehumidification air inlet, flows through the first heat exchanger, the second heat exchanger and the third heat exchanger in sequence, and then flows from the dehumidification air outlet Blow out.
  • low-temperature and low-pressure liquid refrigerant can be circulated in the first heat exchanger and the third heat exchanger
  • high-temperature and high-pressure gaseous refrigerant can be circulated in the second heat exchanger
  • the liquid refrigerant can be circulated in the first heat exchanger. It evaporates and absorbs heat in the third heat exchanger, and the gaseous refrigerant condenses and releases heat in the second heat exchanger.
  • the airflow flowing in through the dehumidification air inlet is first cooled and dehumidified, then absorbs heat and heats up, cools again for secondary dehumidification, and then exits from the dehumidifier.
  • the air outlet blows out, so that the blown air flow is a cold air flow.
  • high-temperature and high-pressure gaseous refrigerant can flow in the first heat exchanger and the third heat exchanger
  • low-temperature and low-pressure gas refrigerant can flow in the second heat exchanger.
  • Liquid refrigerant and gaseous refrigerant condense and release heat in the first heat exchanger and the third heat exchanger.
  • the liquid refrigerant evaporates and absorbs heat in the second heat exchanger.
  • the air flow flowing in through the dehumidification air inlet first absorbs heat and heats up, and then cools down and dehumidifies.
  • the state of the refrigerant circulating in the first heat exchanger, the second heat exchanger and the third heat exchanger can be selectively adjusted according to the user's dehumidification needs. Adjust the temperature of the air blown out after dehumidification to improve the user's comfort and meet the user's diverse dehumidification needs.
  • Figure 1 is a schematic structural diagram of a device for dehumidification provided by an embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of another device for dehumidification provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of the communication between the four-way valve and the first heat exchanger, the second heat exchanger and the third heat exchanger provided by the embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of a second heat exchanger provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic structural diagram of another device for dehumidification provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic structural diagram of another device for dehumidification provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic structural diagram of the first heat-insulating air duct provided by an embodiment of the present disclosure.
  • the orientation or positional relationship indicated by the terms “upper”, “lower”, “inner”, “middle”, “outer”, “front”, “back”, etc. is based on the orientation or position shown in the drawings. Positional relationship. These terms are mainly used to better describe the embodiments of the present disclosure and its embodiments, and are not used to limit the indicated device, element or component to have a specific orientation, or to be constructed and operated in a specific orientation. Moreover, some of the above terms may also be used to express other meanings in addition to indicating orientation or positional relationships. For example, the term “upper” may also be used to express a certain dependence relationship or connection relationship in some cases. For those of ordinary skill in the art, the specific meanings of these terms in the embodiments of the present disclosure can be understood according to specific circumstances.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or two devices, components or Internal connections between components.
  • connection can be a fixed connection, a detachable connection, or an integral structure; it can be a mechanical connection, or an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or two devices, components or Internal connections between components.
  • embodiments of the present disclosure provide a device for dehumidification, including: a housing 100 , a first heat exchanger 200 , a second heat exchanger 300 and a third heat exchanger 400 .
  • the shell 100 has a dehumidification air inlet 110 and a dehumidification air outlet 120; the first heat exchanger 200 is disposed in the shell 100 and is located on the dehumidification air inlet 110 side; the second heat exchanger 300 is disposed on the first heat exchanger 200.
  • the third heat exchanger 400 is disposed on the leeward side of the second heat exchanger 300; the air flow that needs to be dehumidified flows into the housing 100 through the dehumidification air inlet 110, and flows through the first heat exchanger 200, the second heat exchanger 200, and the second heat exchanger 300. After the heat exchanger 300 and the third heat exchanger 400, it is blown out from the dehumidification air outlet 120.
  • low-temperature and low-pressure liquid refrigerant can be circulated in the first heat exchanger 200 and the third heat exchanger 400
  • high-temperature and high-pressure gaseous refrigerant can be circulated in the second heat exchanger 300.
  • Refrigerant the liquid refrigerant evaporates and absorbs heat in the first heat exchanger 200 and the third heat exchanger 400
  • the gaseous refrigerant condenses and releases heat in the second heat exchanger 300.
  • the airflow flowing in through the dehumidification air inlet 110 is first cooled and dehumidified, and then It absorbs heat to raise the temperature, cools down again to perform secondary dehumidification, and then blows it out from the dehumidification outlet 120, so that the blown air flow is a cold air flow.
  • the first heat exchanger 200 and the third heat exchanger 400 can be A high-temperature and high-pressure gaseous refrigerant circulates, and a low-temperature and low-pressure liquid refrigerant circulates in the second heat exchanger 300.
  • the gaseous refrigerant condenses and releases heat in the first heat exchanger 200 and the third heat exchanger 400, and the liquid refrigerant circulates in the second heat exchanger. 300 evaporates and absorbs heat.
  • the air flow flowing in through the dehumidification air inlet 110 first absorbs heat and heats up, then cools down and dehumidifies, absorbs heat again and heats up before blowing out, so that the blown air flow is hot air flow.
  • the first exchanger is selectively adjusted according to the user's dehumidification needs.
  • the state of the refrigerant circulating in the heater 200, the second heat exchanger 300 and the third heat exchanger 400 can adjust the temperature of the air blown out after dehumidification, improve the user's physical comfort, and meet the user's diverse dehumidification needs.
  • a circulation chamber 130 is defined inside the housing 100.
  • the dehumidification air inlet 110 and the dehumidification air outlet 120 are respectively located on both sides of the circulation chamber 130.
  • the first heat exchanger 200, the second heat exchanger 300 and the third heat exchanger The devices 400 are sequentially arranged inside the flow chamber 130 along the air inlet direction. In this way, the air flow flowing into the circulation chamber 130 through the dehumidification air inlet 110 flows through the first heat exchanger 200, the second heat exchanger 300 and the third heat exchanger 400 in sequence.
  • the state of the refrigerant in the heat exchanger 300 and the third heat exchanger 400 causes the airflow to absorb heat, heat up or cool down and dehumidify, and then flows out through the dehumidification outlet 120.
  • the flow direction of the airflow remains consistent, reducing the pressure loss of the airflow. Increase the air volume and air outlet distance.
  • a fan 140 is also provided inside the flow chamber 130 .
  • the rotation of the fan 140 generates negative pressure in the circulation chamber 130 , so that the dehumidification air inlet 110 sucks airflow and then blows it out from the dehumidification air outlet 120 .
  • the fan 140 is disposed between the third heat exchanger 400 and the dehumidification air outlet 120 .
  • the airflow flowing through the fan 140 is cooled and dehumidified airflow, which reduces the humidity of the airflow flowing through the fan 140, reduces the erosion of water vapor on the fan 140, improves the electrical safety of the fan 140, and extends the service life.
  • the fan 140 is an axial flow fan 140 .
  • the air inlet direction and the air outlet direction of the axial flow fan 140 are both axial, and the air flow direction will not change when flowing through the axial flow fan 140.
  • the air inlet area and air outlet area of the axial flow fan 140 are large. It can be better adapted to the use of the flow chamber 130.
  • the second heat exchanger 300 is connected with the first heat exchanger 200 and the third heat exchanger 400 respectively.
  • the refrigerants in the second heat exchanger 300, the first heat exchanger 200, and the third heat exchanger 400 can circulate with each other.
  • the refrigerant supply of the first heat exchanger 200 and the third heat exchanger 400 is selectively adjusted according to the user's dehumidification needs, so as to selectively adjust the state of the refrigerant circulating in the first heat exchanger 200, the second heat exchanger 300 and the third heat exchanger 400. Adjusting the temperature of the air flow blown out after dehumidification simplifies the structure of the device for dehumidification.
  • the device for dehumidification further includes: a compressor 500 and a four-way valve 600 .
  • the compressor 500 has an output pipe 510 and an input pipe 520;
  • the four-way valve 600 has a first opening 610, a second opening 620, a third opening 630 and a fourth opening 640; wherein the first opening 610 is connected to the output pipe 510, and the second opening 640 is connected to the output pipe 510.
  • the opening 620 is connected to the input pipe 520
  • the third opening 630 is connected to the second heat exchanger 300
  • the fourth opening 640 is connected to the first heat exchanger 200 and the third heat exchanger 400 .
  • the cooperation of the compressor 500 and the four-way valve 600 can adjust the flow direction of the refrigerant in the first heat exchanger 200, the second heat exchanger 300 and the third heat exchanger 400, thereby adjusting the flow direction of the refrigerant in the first heat exchanger. 200.
  • the conditions in the second heat exchanger 300 and the third heat exchanger 400 are used to cool, dehumidify and heat the air flow passing through.
  • the refrigerant flows out through the output pipe 510 after being compressed by the compressor 500. Since the output pipe 510 is connected to The first opening 610 of the four-way valve 600 is connected, and the refrigerant flows into the four-way valve 600 through the output pipe 510.
  • the compressed high-temperature and high-pressure refrigerant passes through the third opening 630 or the fourth opening 640.
  • the high-temperature and high-pressure gaseous refrigerant flows into the second heat exchanger 300 for condensation and heat release.
  • the refrigerant after condensation and heat release becomes a low-temperature and low-pressure liquid refrigerant, and then flows into the second heat exchanger 300 respectively.
  • the first heat exchanger 200 and the third heat exchanger 400 evaporate and absorb heat, and the airflow passing through is cooled and dehumidified, so that the airflow first flows through the first heat exchanger 200 for cooling and dehumidification, and then flows through the second heat exchanger 300 to absorb heat.
  • the air flow blown out through the dehumidification outlet 120 is cold air.
  • the refrigerant flows out through the fourth opening 640 the high-temperature and high-pressure gaseous refrigerant flows into the first Condensation heat is released in the heat exchanger 200 and the third heat exchanger 400.
  • the refrigerant after condensation and heat release becomes a liquid refrigerant in a low-temperature and low-pressure state, and then flows into the second heat exchanger 300 to evaporate and absorb heat, so that the airflow flows first It absorbs heat and heats up through the first heat exchanger 200, then flows through the second heat exchanger 300 for cooling and dehumidification, and finally flows through the third heat exchanger 400 to absorb heat and heat up again.
  • the air flow blown out through the dehumidification outlet 120 is hot air.
  • the four-way valve 600 has a first communication state and a second communication state.
  • the first opening 610 and the third opening 630 of the four-way valve 600 are connected, and the second opening 620 and the fourth opening 640 are connected.
  • the second communication state the first opening 610 of the four-way valve 600 communicates with the fourth opening 640, and the second opening 620 communicates with the third opening 630.
  • the communication state of the four-way valve 600 is controlled according to the dehumidification demand.
  • the first opening 610 and the third opening 630 are connected.
  • the high-temperature and high-pressure gas output by the compressor 500 The refrigerant flows to the third opening 630 through the first opening 610, and then flows into the second heat exchanger 300 through the third opening 630 to condense and release heat.
  • the liquid refrigerant after condensation and heat release flows into the first heat exchanger 200 and the third heat exchanger respectively.
  • the evaporated refrigerant absorbs heat in the refrigerant 400, and the evaporated gaseous refrigerant flows into the four-way valve 600 again through the fourth opening 640, and then flows into the compressor 500 again through the second opening 620 for compression, completing a complete refrigerant cycle; in the four-way
  • the first opening 610 is connected to the fourth opening 640.
  • the high-temperature and high-pressure gaseous refrigerant output by the compressor 500 flows to the fourth opening 640 through the first opening 610, and then passes through the fourth opening.
  • 640 flows into the first heat exchanger 200 and the third heat exchanger 400 to condense and release heat.
  • the liquid refrigerant after condensation and heat release flows into the second heat exchanger 300 to evaporate and absorb heat.
  • the evaporated gaseous refrigerant passes through the third opening 630 It flows into the four-way valve 600 and finally flows into the compressor 500 again through the second opening 620 for compression.
  • an installation cavity 150 is also provided in the housing 100 .
  • the installation cavity 150 and the circulation cavity 130 are separated by a partition.
  • the compressor 500 and the four-way valve 600 are disposed in the installation cavity 150 .
  • the first heat exchanger 200, the second heat exchanger 300 and the third heat exchanger 400 are arranged in the flow chamber 130, and the compressor 500 and the four-way valve 600 are arranged in the installation chamber 150, so that the heat exchange of the air flow is It does not interfere with the operation of the compressor 500, thereby improving the working stability of the device for dehumidification.
  • the first heat exchanger 200 has a first port 210 and a second port 220
  • the second heat exchanger 300 has a third port 310 and a fourth port 320
  • the third heat exchanger 400 has a third port.
  • Five ports 410 and a sixth port 420, the first port 210 and the fifth port 410 are connected to the fourth opening 640 through a first pipeline 641
  • the third port 310 is connected to the fourth opening 640 through a second pipeline 631.
  • the third opening 630 is connected to the fourth port 320
  • the second port 220 and the sixth port 420 are connected to the fourth port 320 .
  • the refrigerant flowing out of the fourth opening 640 can flow to the first port 210 and the fifth port 410 respectively through the first pipe 641, thereby flowing into the first heat exchanger 200 through the first port 210, and flowing into the third heat exchanger through the fifth port 410.
  • first heat exchanger 200 and the third heat exchanger 400 Flow to the second port 220 and the sixth port 420 respectively, and then flow into the first heat exchanger 200 and the third heat exchanger 400.
  • the refrigerant in the first heat exchanger 200 and the third heat exchanger 400 passes through the first port 210. It flows together with the fifth port 410 to the first pipeline 641 , and then flows to the fourth opening 640 of the four-way valve 600 through the first pipeline 641 .
  • the second heat exchanger 300 includes: a first heat exchange flow path 330 and a second heat exchange flow path 340 .
  • the second heat exchange flow path 340 is arranged in parallel with the first heat exchange flow path 330 and is located on the leeward side of the first heat exchange flow path 330 .
  • the second heat exchanger 300 is composed of two parallel flow paths, the first heat exchange flow path 330 and the second heat exchange flow path 340, so that the airflow flowing through the second heat exchanger 300 flows through the first heat exchanger in sequence.
  • the heat flow path 330 and the second heat exchange flow path 340 enable the air flow to fully cool down, dehumidify or absorb heat to raise the temperature.
  • both the first heat exchanger 200 and the third heat exchanger 400 include a heat exchange flow path.
  • the first heat exchanger 200 and the third heat exchanger 400 include a heat exchange flow path.
  • the refrigerant state is opposite to the refrigerant state in the second heat exchanger 300 , that is, when the first heat exchanger 200 and the third heat exchanger 400 are gaseous refrigerants, the second heat exchanger 300 is liquid refrigerant.
  • the second heat exchanger 300 when the first heat exchanger 200 and the third heat exchanger 400 contain liquid refrigerant, the second heat exchanger 300 contains gaseous refrigerant, so the second heat exchanger 300 is configured with two flow paths, Match the flow rates of the first heat exchanger 200 and the third heat exchanger 400, so that the heat absorption or heat release effect of the second heat exchanger 300 is consistent with the heat release of the first heat exchanger 200 and the third heat exchanger 400. Or match the heat absorption effect to better control temperature and dehumidification.
  • the first heat exchange flow path 330 has a seventh port 331 and an eighth port 332
  • the second heat exchange flow path 340 has a ninth port 341 and a tenth port 342
  • the eighth port 332 is connected to the eighth port 332.
  • the tenth port 342 together forms the fourth port 320
  • the seventh port 331 and the ninth port 341 together form the third port 310
  • the eighth port 332 is connected to the second port 220.
  • the tenth port 342 is connected to the sixth port 420
  • both the seventh port 331 and the ninth port 341 are connected to the third opening 630 through the second pipeline 631 .
  • the second heat exchanger 300 is composed of the first heat exchange flow path 330 and the second heat exchange flow path 340, and the first heat exchange flow path 330 has the seventh port 331 and the eighth port 332, the second heat exchanger flow path 330 has the seventh port 331 and the eighth port 332.
  • the flow path 340 has a ninth port 341 and a tenth port 342, so the third port 310 of the second heat exchanger 300 is composed of the seventh port 331 and the ninth port 341, and the fourth port 320 of the second heat exchanger 300 is composed of The eighth port 332 and the tenth port 342 are composed of.
  • the eighth port 332 of the path 330 is connected to the second port 220 of the first heat exchanger 200
  • the tenth port 342 of the second heat exchange flow path 340 is connected to the sixth port 420 of the third heat exchanger 400, so that the The refrigerant in the second pipe 631 flows into the first heat exchange flow path 330 and the second heat exchange flow path 340 in the second heat exchanger 300 through the seventh port 331 and the ninth port 341 respectively, and then passes through the first heat exchange flow path 340 respectively.
  • the flow path 330 flows to the first heat exchanger 200 and flows to the third heat exchanger 400 through the second heat exchange flow path 340, or the refrigerant in the first heat exchanger 200 and the third heat exchanger 400 flows to the first heat exchanger respectively.
  • the heat flow path 330 and the second heat exchange flow path 340 then flow into the combined second pipe 631 through the seventh port 331 and the ninth port 341 respectively, thereby improving the stability of the refrigerant flow, thereby improving the efficiency of dehumidification.
  • the temperature control and dehumidification stability of the device are examples of the device.
  • throttling components such as electronic expansion valves and capillary tubes between the first heat exchange flow path 330 and the first heat exchanger 200 and between the second heat exchange flow path 340 and the third heat exchanger 400 .
  • throttling components such as electronic expansion valves and capillary tubes between the first heat exchange flow path 330 and the first heat exchanger 200 and between the second heat exchange flow path 340 and the third heat exchanger 400 .
  • the refrigerant flowing out of the first heat exchange flow path 330, the second heat exchange flow path 340 or the first heat exchanger 200 and the third heat exchanger 400 can be throttled and reduced through throttling components such as electronic expansion valves and capillary tubes. Pressure allows the refrigerant to evaporate and absorb heat better.
  • the device for dehumidification has a cold air blowing dehumidification mode, a hot air blowing dehumidification mode and a constant temperature dehumidification mode.
  • the user can choose the dehumidification device to operate in the cold air blowing dehumidification mode, the hot air blowing dehumidification mode or the constant temperature dehumidification mode according to the dehumidification needs to meet the users' diverse dehumidification needs. For example, in the hot summer, the user needs to blow cold air to adjust the indoor temperature while dehumidifying.
  • the device for dehumidification can be controlled to operate in the cold air dehumidification mode.
  • the device for dehumidification can be controlled to operate in the hot air dehumidification mode.
  • users need to reduce the temperature fluctuation of the outlet air flow while dehumidifying, and the device for dehumidification can be controlled to operate in the constant temperature dehumidification mode.
  • the first heat exchanger 200 and the third heat exchanger 400 is an evaporator
  • the second heat exchanger 300 is a condenser.
  • the gaseous refrigerant with high temperature and high pressure first flows into the second heat exchanger 300 to condense and release heat. After condensation and heat release, the refrigerant becomes liquid refrigerant after throttling and decompression and flows into the first heat exchanger respectively.
  • the evaporation in 200 and the third heat exchanger 400 absorbs heat, so the second heat exchanger 300 is a condenser, the first heat exchanger 200 and the third heat exchanger 400 are evaporators, and the airflow first flows through the evaporator for cooling and dehumidification. Then it flows through the condenser to absorb heat and heat up, and finally flows through the evaporator for cooling and dehumidification again. While improving the dehumidification effect, the dehumidified air flow blown out is turned into a cold air flow, which cools the indoor environment and better meets the user's dehumidification and cooling needs.
  • the first heat exchanger 200 and the third heat exchanger 400 is a condenser
  • the second heat exchanger 300 is an evaporator.
  • the gaseous refrigerant with high temperature and high pressure first flows into the first heat exchanger 200 and the third heat exchanger 400 to condense and release heat.
  • the refrigerant after condensation and heat release becomes liquid refrigerant after throttling and reducing pressure.
  • the air flows together into the second heat exchanger 300 for evaporation and heat absorption.
  • the first heat exchanger 200 and the third heat exchanger 400 are condensers, and the second heat exchanger 300 is an evaporator.
  • the airflow first flows through the condenser to absorb heat. It heats up, then flows through the evaporator for cooling and dehumidification, and finally flows through the condenser to absorb heat and heat up again, so that the blown out dehumidified air flow becomes a hot air flow, and by first heating the air flow, the temperature of the air flow increases, and the temperature rises.
  • the hot air flows through the evaporator, the moisture in the air condenses faster when it is cooled, and the dehumidification effect is better. While ensuring the dehumidification effect, hot air is blown indoors to heat the indoor environment.
  • the device for dehumidification further includes: a water collecting tray 700 .
  • the water receiving tray 700 is disposed in the housing 100 and located below the first heat exchanger 200 , the second heat exchanger 300 and the third heat exchanger 400 .
  • the first heat exchanger 200, the third heat exchanger 400 and the second heat exchanger 300 are respectively used as evaporators or condensers in different dehumidification modes, the first heat exchanger 200, the second heat exchanger 400 and the second heat exchanger 300 are A water receiving tray 700 is provided below the heater 300 and the third heat exchanger 400, which can receive the condensed water generated by dehumidification no matter what dehumidification mode it is in, and prevent the condensed water from dripping into the shell 100 and causing damage to the interior of the shell 100. corrosion and pollution.
  • the water collecting tray 700 is detachably disposed on the lower inner wall of the flow chamber 130 . In this way, the installation and disassembly of the water receiving pan 700 is facilitated. When the water receiving pan 700 is damaged or blocked, the water receiving pan 700 can be disassembled for repair and cleaning.
  • the lower side wall of the water collecting tray 700 is provided with a card holder
  • the lower inner wall of the flow chamber 130 is provided with a card slot adapted to the card holder.
  • the card holder is limited to slide in the card slot, and one end of the card slot has a Open your mouth.
  • the water receiving tray 700 and the lower inner wall of the flow chamber 130 are detachably connected through the structure of the holder and the slot, which improves the stability of the installation and disassembly of the water receiving tray 700 and makes the water receiving tray 700 less likely to be damaged. Tilt causes condensate leakage.
  • the lower area of the side wall of the water receiving tray 700 is provided with a drainage pipe, and the drainage pipe is connected to the outside world. In this way, the condensed water collected in the drain pan 700 can be discharged to the outside through the drain pipe.
  • the drain pipe is a flexible pipe.
  • the drain pipe has a certain degree of ductility to prevent the drain pipe from breaking.
  • the device for dehumidification further includes: a first insulating air duct 800 and a second insulating air duct 900 .
  • the first insulating air duct 800 is disposed between the first heat exchanger 200 and the second heat exchanger 300.
  • the leeward side of the first heat exchanger 200 and the windward side of the second heat exchanger 300 are connected by a first partition.
  • the hot air duct 800 is connected;
  • the second heat-insulating air duct 900 is provided between the second heat exchanger 300 and the third heat exchanger 400 , and the leeward side of the second heat exchanger 300 and the windward side of the third heat exchanger 400 They are connected through the second heat insulation air duct 900.
  • the first heat exchanger 200 and the second heat exchanger 300 are respectively used as evaporators or condensers in different dehumidification modes, the first heat exchanger 200 and the second heat exchanger are
  • the first heat-insulating air duct 800 is provided between the heat exchangers 300
  • the second heat-insulating air duct 900 is provided between the second heat exchanger 300 and the third heat exchanger 400, which can reduce the friction between the first heat exchanger 200 and the second heat exchanger 400.
  • the temperature influence between the heat exchangers 300 and between the second heat exchanger 300 and the third heat exchanger 400 can better control the temperature and dehumidification of the air flow.
  • the first heat-insulating air duct 800 includes: an air duct part 810, an air collecting hood 820 and an air outlet hood 830.
  • the air duct part 810 is arranged vertically and parallel to the first heat exchanger 200;
  • the air collecting hood 820 has a trumpet-shaped structure, and one end of the air collecting hood 820 is connected with the upper area of the side wall of the air duct part 810 facing the first heat exchanger 200 , the other end is disposed toward the first heat exchanger 200;
  • one end of the air outlet cover 830 is connected with the air duct portion 810 toward the lower area of the side wall of the second heat exchanger 300, and the other end is disposed toward the second heat exchanger 300.
  • the first insulated air duct 800 is formed into a Z-shaped channel structure as a whole, and the airflow on the leeward side of the first heat exchanger 200 flows into the air duct portion 810 through the air collecting hood 820 and then flows downward along the air duct portion 810 Finally, it is blown to the windward side of the second heat exchanger 300 through the air outlet hood 830.
  • Using the air duct portion 810 as isolation can reduce the heat conduction between the first heat exchanger 200 and the second heat exchanger 300, thereby reducing the The influence between the first heat exchanger 200 and the second heat exchanger 300.
  • the air duct portion 810 blocks the flow surface of the flow chamber 130 in the vertical direction. In this way, the isolation effect between the first heat exchanger 200 and the second heat exchanger 300 is further improved, thereby further reducing the influence between the first heat exchanger 200 and the second heat exchanger 300 .
  • the length of the air collecting hood 820 in the vertical direction is greater than or equal to the length of the first heat exchanger 200
  • the length of the air outlet hood 830 is greater than or equal to the length of the second heat exchanger 300 .
  • the airflow on the leeward side of the first heat exchanger 200 can completely enter the air duct portion 810 through the air collecting hood 820, and the airflow blown out from the air outlet hood 830 can be completely blown toward the second heat exchanger 300, thereby reducing the loss of airflow. , improve dehumidification efficiency.
  • the outer wall of the air duct portion 810 is coated with heat-insulating paint, for example, radiation-type heat-insulating paint.
  • heat-insulating paint for example, radiation-type heat-insulating paint.
  • the heat insulation effect of the air duct part 810 can be further improved, and the radiation-type heat-insulating paint can radiate the heat of the air duct part 810 outward, further reducing the distance between the first heat exchanger 200 and the second heat exchanger 300 heat conduction, thereby reducing the influence between the first heat exchanger 200 and the second heat exchanger 300 .
  • the structure of the second heat-insulating air duct 900 is the same as that of the first heat-insulating air duct 800 and will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)

Abstract

提供一种用于除湿的装置,包括:壳体(100)、第一换热器(200)、第二换热器(300)和第三换热器(400)。壳体(100)具有除湿进风口(110)和除湿出风口(120);第一换热器(200)设置于壳体(100)内,且位于除湿进风口(110)侧;第二换热器(300)设置于第一换热器(200)的背风侧;第三换热器(400)设置于第二换热器(300)的背风侧;需要除湿的气流经由除湿进风口(110)流入壳体(100)内,依次流经第一换热器(200)、第二换热器(300)与第三换热器(400)后,从除湿出风口(120)吹出。根据用户的除湿需求选择性地调节第一换热器(200)、第二换热器(300)和第三换热器(400)内流通的冷媒状态,调节除湿后吹出气流的温度,提高用户体感的舒适度,满足用户多样化的除湿需求。

Description

用于除湿的装置
本申请基于申请号为202210329865.7、申请日为2022年03月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及除湿技术领域,尤其涉及一种用于除湿的装置。
背景技术
目前,随着生活品质的提高,对室内环境的湿度要求也随之提高,在室内湿度较高时会导致用户体感舒适度较差,室内存放的物品也会出现返潮现象,严重影响用户的日常生活。
相关技术中存在一种室内除湿机,在内部设置蒸发器用于降温除湿,降温除湿后的气流经过电热丝或冷凝器等加热组件加热后吹出,通过气流中的水分遇到蒸发器降温凝结,从而对室内环境的气流进行循环除湿。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
室内湿度较高多发生于炎热的夏季,而除湿机除湿后吹出热气流会导致室内环境温度升高,造成用户体感的不适,难以满足用户多样化的除湿需求。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供一种用于除湿的装置,以根据除湿需求选择性地调节除湿后气流的温度,提高用户体感的舒适度,满足用户多样化的除湿需求。
在一些实施例中,用于除湿的装置,包括:壳体、第一换热器、第二换热器和第三换热器。壳体具有除湿进风口和除湿出风口;第一换热器设置于壳体内,且位于除湿进风口侧;第二换热器设置于第一换热器的背风侧;第三换热器设置于第二换热器的背风侧;其中,需要除湿的气流经由除湿进风口流入壳体内,依次流经第一换热器、第二换热器与第三换热器后,从除湿出风口吹出。
本公开实施例提供的用于除湿的装置,可以实现以下技术效果:
在炎热的夏季进行除湿时,可使第一换热器与第三换热器中流通低温低压的液态冷媒,第二换热器中流通高温高压的气态冷媒,液态冷媒在第一换热器与第三换热器中蒸发吸热,气态冷媒在第二换热器中冷凝放热,通过除湿进风口流入的气流先降温除湿,然后吸热升温,再次降温进行二次除湿后从除湿出风口吹出,使吹出的气流为冷气流,在寒冷的冬季进行除湿时,可使第一换热器与第三换热器中流通高温高压的气态冷媒,第二换热器中流通低温低压的液态冷媒,气态冷媒在第一换热器与第三换热器中冷凝放热,液态冷媒在第二换热器中蒸发吸热,通过除湿进风口流入的气流先吸热升温,然后降温除湿,再次吸热升温后吹出,使吹出的气流为热气流,根据用户的除湿需求选择性地调节第一换热器、第二换热器和第三换热器内流通的冷媒状态,即可调节除湿后吹出气流的温度,提高用户体感的舒适度,满足用户多样化的除湿需求。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于除湿的装置的结构示意图;
图2是本公开实施例提供的另一个用于除湿的装置的结构示意图;
图3是本公开实施例提供的四通阀与第一换热器、第二换热器以及第三换热器的连通示意图;
图4是本公开实施例提供的第二换热器的结构示意图;
图5是本公开实施例提供的另一个用于除湿的装置的结构示意图;
图6是本公开实施例提供的另一个用于除湿的装置的结构示意图;
图7是本公开实施例提供的第一隔热风道的结构示意图。
附图标记:
100、壳体;110、除湿进风口;120、除湿出风口;130、流通腔;140、风机;150、安装腔;200、第一换热器;210、第一端口;220、第二端口;300、第二换热器;310、第三端口;320、第四端口;330、第一换热流路;331、第七端口;332、第八端口;340、第二换热流路;341、第九端口;342、第十端口;400、第三换热器;410、第五端口;420、第六端口;500、压缩机;510、输出管;520、输入管;600、四通阀;610、第一开口; 620、第二开口;630、第三开口;631、第二管路;640、第四开口;641、第一管路;700、接水盘;800、第一隔热风道;810、风道部;820、集风罩;830、出风罩;900、第二隔热风道。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
除非另有说明,术语“多个”表示两个或两个以上。
需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
结合图1-7所示,本公开实施例提供一种用于除湿的装置,包括:壳体100、第一换热器200、第二换热器300和第三换热器400。壳体100具有除湿进风口110和除湿出风口120;第一换热器200设置于壳体100内,且位于除湿进风口110侧;第二换热器300 设置于第一换热器200的背风侧;第三换热器400设置于第二换热器300的背风侧;其中,需要除湿的气流经由除湿进风口110流入壳体100内,依次流经第一换热器200、第二换热器300与第三换热器400后,从除湿出风口120吹出。
在本公开实施例中,在炎热的夏季进行除湿时,可使第一换热器200与第三换热器400中流通低温低压的液态冷媒,第二换热器300中流通高温高压的气态冷媒,液态冷媒在第一换热器200与第三换热器400中蒸发吸热,气态冷媒在第二换热器300中冷凝放热,通过除湿进风口110流入的气流先降温除湿,然后吸热升温,再次降温进行二次除湿后从除湿出风口120吹出,使吹出的气流为冷气流,在寒冷的冬季进行除湿时,可使第一换热器200与第三换热器400中流通高温高压的气态冷媒,第二换热器300中流通低温低压的液态冷媒,气态冷媒在第一换热器200与第三换热器400中冷凝放热,液态冷媒在第二换热器300中蒸发吸热,通过除湿进风口110流入的气流先吸热升温,然后降温除湿,再次吸热升温后吹出,使吹出的气流为热气流,根据用户的除湿需求选择性地调节第一换热器200、第二换热器300和第三换热器400内流通的冷媒状态,即可调节除湿后吹出气流的温度,提高用户体感的舒适度,满足用户多样化的除湿需求。
可选地,壳体100内部限定出流通腔130,除湿进风口110和除湿出风口120分别位于流通腔130的两侧,第一换热器200、第二换热器300与第三换热器400沿进风方向依次排布于流通腔130内部。这样,使通过除湿进风口110流入流通腔130内的气流依次流经第一换热器200、第二换热器300与第三换热器400,根据第一换热器200、第二换热器300与第三换热器400中的冷媒状态,使气流吸热升温或降温除湿,然后经除湿出风口120流出,在气流流通的过程中气流的流向保持一致,降低气流的压力损失,提高出风量和出风距离。
可选地,流通腔130内部还设有风机140。这样,利用风机140的转动在流通腔130内产生负压,使除湿进风口110吸入气流然后从除湿出风口120吹出。
具体的,风机140设置于第三换热器400与除湿出风口120之间。这样,使流经风机140的气流均为被降温除湿的气流,降低流经风机140的气流的湿度,减少水汽对风机140的侵蚀,提高风机140的电气安全性,延长使用寿命。
具体的,风机140为轴流风机140。这样,轴流风机140的进风方向和出风方向均为轴向,气流在流经轴流风机140时流向不会发生改变,而且轴流风机140的进风面积和出风面积较大,能够更好地适配于流通腔130的使用。
可选地,第二换热器300分别与第一换热器200和第三换热器400连通。这样,使第二换热器300与第一换热器200、第三换热器400中的冷媒可以相互流通,通过设置一个 冷媒循环系统即可实现第二换热器300与第一换热器200、第三换热器400的冷媒供应,从而根据用户的除湿需求选择性地调节第一换热器200、第二换热器300和第三换热器400内流通的冷媒状态,来调节除湿后吹出气流的温度,简化了该用于除湿的装置的结构。
结合图2和图3所示,在一些实施例中,该用于除湿的装置还包括:压缩机500和四通阀600。压缩机500具有输出管510和输入管520;四通阀600具有第一开口610、第二开口620、第三开口630与第四开口640;其中,第一开口610连通输出管510,第二开口620连通输入管520,第三开口630连通第二换热器300,第四开口640连通第一换热器200与第三换热器400。这样,利用压缩机500和四通阀600的配合能够调节冷媒在第一换热器200、第二换热器300和第三换热器400中的流向,从而调节冷媒在第一换热器200、第二换热器300和第三换热器400中的状态,来对流经的气流进行降温除湿和加热升温,冷媒在经过压缩机500压缩后通过输出管510流出,由于输出管510与四通阀600的第一开口610连通,冷媒经输出管510流入四通阀600内,根据四通阀600内部的连通状态,被压缩的高温高压的冷媒通过第三开口630或第四开口640流出,在冷媒通过第三开口630流出的情况下,高温高压的气态冷媒流入第二换热器300中进行冷凝放热,冷凝放热后的冷媒变为低温低压状态的液态冷媒,然后分别流入第一换热器200与第三换热器400中蒸发吸热,对流经的气流进行降温除湿,使气流先流经第一换热器200降温除湿,再流经第二换热器300吸热升温,最终流经第三换热器400再次降温除湿,此时通过除湿出风口120吹出的气流为冷风,在冷媒通过第四开口640流出的情况下,高温高压的气态冷媒分别流入第一换热器200与第三换热器400中冷凝放热,冷凝放热后的冷媒变为低温低压状态的液态冷媒,然后汇集流入第二换热器300中进行蒸发吸热,使气流先流经第一换热器200吸热升温,然后流经第二换热器300降温除湿,最终流经第三换热器400再次吸热升温,此时通过除湿出风口120吹出的气流为热风。
具体的,四通阀600具有第一连通状态与第二连通状态,在第一连通状态下,四通阀600的第一开口610与第三开口630连通,第二开口620与第四开口640连通,在第二连通状态下,四通阀600的第一开口610与第四开口640连通,第二开口620与第三开口630连通。这样,根据除湿需求控制四通阀600的连通状态,在四通阀600处于第一连通状态的情况下,第一开口610与第三开口630连通,此时压缩机500输出的高温高压的气态冷媒经第一开口610流向第三开口630,然后经第三开口630流入第二换热器300中冷凝放热,冷凝放热后的液态冷媒分别流入第一换热器200和第三换热器400中蒸发吸热,蒸发后的气态冷媒通过第四开口640再次流入四通阀600内,然后经第二开口620再次流入压缩机500中进行压缩,完成一次完整的冷媒循环;在四通阀600处于第二连通状态的情况 下,第一开口610与第四开口640连通,此时压缩机500输出的高温高压的气态冷媒经第一开口610流向第四开口640,然后经第四开口640流入第一换热器200和第三换热器400中冷凝放热,冷凝放热后的液态冷媒汇集流入第二换热器300中蒸发吸热,蒸发后的气态冷媒通过第三开口630流入四通阀600内,最终经第二开口620再次流入压缩机500中进行压缩。
可选地,壳体100内还设有安装腔150,安装腔150与流通腔130之间通过隔板分隔,压缩机500与四通阀600设置于安装腔150内。这样,将第一换热器200、第二换热器300和第三换热器400设置于流通腔130内,压缩机500与四通阀600设置于安装腔150内,使气流的换热与压缩机500运转互不干扰,提高了该用于除湿的装置的工作稳定性。
可选地,第一换热器200具有第一端口210和第二端口220,所述第二换热器300具有第三端口310和第四端口320,所述第三换热器400具有第五端口410和第六端口420,所述第一端口210与所述第五端口410通过第一管路641与所述第四开口640连通,所述第三端口310通过第二管路631与所述第三开口630连通,所述第二端口220与所述第六端口420均与所述第四端口320连通。这样,使第四开口640流出的冷媒可通过第一管路641分别流向第一端口210和第五端口410,从而通过第一端口210流入第一换热器200,通过第五端口410流入第三换热器400,而第一换热器200与第三换热器400中的冷媒分别通过第二端口220和第六端口420汇集流向第二换热器300的第四端口320,然后进入第二换热器300中,第二换热器300中的冷媒最终通过第三端口310流向第二管路631,最终通过第二管路631流向四通阀600的第三开口630;或者使第三开口630流出的冷媒可通过第二管路631流向第二换热器300的第三端口310然后进入第二换热器300中,第二换热器300中的冷媒通过第四端口320分别流向第二端口220和第六端口420,然后流入第一换热器200和第三换热器400中,第一换热器200和第三换热器400中的冷媒通过第一端口210和第五端口410汇集流向第一管路641,然后通过第一管路641流向四通阀600的第四开口640。
结合图4所示,在一个具体的实施例中,第二换热器300包括:第一换热流路330和第二换热流路340。第二换热流路340与第一换热流路330平行设置,且位于第一换热流路330的背风侧。这样,第二换热器300由第一换热流路330和第二换热流路340两条平行设置的流路组成,使流经第二换热器300的气流依次流经第一换热流路330和第二换热流路340,使气流充分的降温除湿或吸热升温。
具体的,第一换热器200和第三换热器400均包括一条换热流路。这样,由于气流在流通腔130内流通时依次流经第一换热器200、第二换热器300和第三换热器400,而第 一换热器200与第三换热器400中的冷媒状态与第二换热器300中的冷媒状态相反,即在第一换热器200与第三换热器400中为气态冷媒的情况下,第二换热器300中就为液态冷媒,在第一换热器200与第三换热器400中为液态冷媒的情况下,第二换热器300中就为气态冷媒,因此将第二换热器300设置为两条流路,与第一换热器200和第三换热器400的流量相匹配,使第二换热器300的吸热或放热效果与第一换热器200、第三换热器400的放热或吸热效果相适配,更好地进行控温除湿。
可选地,第一换热流路330具有第七端口331与第八端口332,所述第二换热流路340具有第九端口341与第十端口342,所述第八端口332与所述第十端口342共同组成所述第四端口320,所述第七端口331与所述第九端口341共同组成所述第三端口310,所述第八端口332与所述第二端口220连通,所述第十端口342与所述第六端口420连通,所述第七端口331与所述第九端口341均通过所述第二管路631与所述第三开口630连通。这样,由于第二换热器300由第一换热流路330和第二换热流路340组成,而第一换热流路330具有第七端口331和第八端口332,第二换热流路340具有第九端口341和第十端口342,因此第二换热器300的第三端口310由第七端口331和第九端口341组成,第二换热器300的第四端口320由第八端口332和第十端口342组成,在第二换热器300与四通阀600的第三开口630以及第一换热器200和第三换热器400连通时,第一换热流路330的第八端口332与第一换热器200的第二端口220连通,第二换热流路340的第十端口342与第三换热器400的第六端口420连通,从而使第二管路631中的冷媒分别通过第七端口331和第九端口341流入第二换热器300中的第一换热流路330和第二换热流路340,然后分别通过第一换热流路330流向第一换热器200,通过第二换热流路340流向第三换热器400,或者使第一换热器200与第三换热器400中的冷媒分别流向第一换热流路330和第二换热流路340,然后分别通过第七端口331与第九端口341流入汇集的流入第二管路631中,提高了冷媒流动的稳定性,从而提高该用于除湿的装置的控温除湿稳定性。
具体的,第一换热流路330与第一换热器200之间、第二换热流路340与第三换热器400之间均具有电子膨胀阀和毛细管等节流组件。这样,通过电子膨胀阀和毛细管等节流组件能够将第一换热流路330、第二换热流路340或第一换热器200、第三换热器400流出的冷媒进行节流降压,使冷媒能够更好的蒸发吸热。
在一些实施例中,该用于除湿的装置具有吹冷风除湿模式、吹热风除湿模式和恒温除湿模式。这样,用户可根据除湿需求选择该用于除湿的装置运行在吹冷风除湿模式、吹热风除湿模式或恒温除湿模式,满足用户多样化的除湿需求。例如,在炎热的夏季,用户需要在除湿的同时吹冷风调节室内温度,可控制该用于除湿的装置运行在吹冷风除湿模式, 在寒冷的冬季,用户需要在除湿的同时吹热风调节室内温度,可控制该用于除湿的装置运行在吹热风除湿模式,在温和的春秋季,用户需要在除湿的同时降低出风气流的温度波动,可控制该用于除湿的装置运行在恒温除湿模式。
可以理解的,通过调节第二换热器300与第一换热器200、第三换热器400之间的冷媒流量,从而达到吹冷风除湿、吹热风除湿和恒温除湿的效果。
在该用于除湿的装置运行在吹冷风除湿模式的实施例中,在所述用于除湿的装置运行在吹冷风除湿模式下,所述第一换热器200与所述第三换热器400为蒸发器,所述第二换热器300为冷凝器。这样,在吹冷风除湿模式下,高温高压的气态冷媒先流入第二换热器300中冷凝放热,冷凝放热后的冷媒在节流降压后变为液态冷媒分别流入第一换热器200和第三换热器400中蒸发吸热,因此第二换热器300为冷凝器,第一换热器200和第三换热器400为蒸发器,气流先流经蒸发器降温除湿,然后流经冷凝器吸热升温,最终流经蒸发器进行再次降温除湿,在提高除湿效果的同时使吹出的除湿气流为冷气流,对室内环境降温,更好的满足用户的除湿降温需求。
在该用于除湿的装置运行在吹热风除湿模式的实施例中,在所述用于除湿的装置运行在吹热风除湿模式下,所述第一换热器200与所述第三换热器400为冷凝器,所述第二换热器300为蒸发器。这样,在吹热风除湿模式下,高温高压的气态冷媒先流入第一换热器200和第三换热器400中冷凝放热,冷凝放热后的冷媒在节流降压后变为液态冷媒汇集流入第二换热器300中进行蒸发吸热,因此第一换热器200和第三换热器400为冷凝器,第二换热器300为蒸发器,气流先流经冷凝器吸热升温,然后流经蒸发器降温除湿,最终流经冷凝器进行再次吸热升温,使吹出的除湿气流为热气流,而且通过先对气流加热的方式,使气流的温度升高,温度升高的热气流在流经蒸发器时气流中的水分遇冷凝结得更快,除湿效果更好,在保障除湿效果的同时向室内吹出热风,对室内环境进行加热。
结合图5所示,在一些实施例中,该用于除湿的装置还包括:接水盘700。接水盘700设置于壳体100内,且位于第一换热器200、第二换热器300以及第三换热器400下方。这样,由于在不同的除湿模式下第一换热器200、第三换热器400和第二换热器300分别用作蒸发器或冷凝器,因此在第一换热器200、第二换热器300以及第三换热器400的下方设置接水盘700,无论处于何种除湿模式下均能够盛接除湿产生的冷凝水,防止冷凝水滴落到壳体100内,造成壳体100内部的腐蚀和污染。
可选地,接水盘700可拆卸地设置于流通腔130的下侧内壁。这样,便于接水盘700的安装与拆卸,在接水盘700出现损坏或堵塞时,能够将接水盘700拆卸进行维修和清理。
可选地,接水盘700的下侧壁具有卡座,流通腔130的下侧内壁设有与卡座适配的卡 槽,卡座被限定在卡槽内滑动,在卡槽的一端具有开口。这样,接水盘700与流通腔130的下侧内壁之间通过卡座和卡槽的结构配合可拆卸的连接,提高了接水盘700安装与拆卸的稳定性,使接水盘700不易发生倾斜导致冷凝水泄露。
可选地,接水盘700的侧壁的下部区域具有排水管,排水管连通外界。这样,通过排水管能够将接水盘700中盛接的冷凝水排出到外界。
可选地,排水管为柔性管。这样,在接水盘700拆卸的过程中,使排水管具有一定的延展性,避免排水管破裂。
结合图6和图7所示,在一些实施例中,该用于除湿的装置还包括:第一隔热风道800和第二隔热风道900。第一隔热风道800设置于第一换热器200与第二换热器300之间,第一换热器200的背风侧与第二换热器300的迎风侧之间通过第一隔热风道800连通;第二隔热风道900设置于第二换热器300与第三换热器400之间,第二换热器300的背风侧与第三换热器400的迎风侧之间通过第二隔热风道900连通。这样,由于在不同的除湿模式下第一换热器200、第三换热器400和第二换热器300分别用作蒸发器或冷凝器,因此在第一换热器200和第二换热器300之间设置第一隔热风道800,在第二换热器300和第三换热器400之间设置第二隔热风道900,能够降低第一换热器200与第二换热器300之间、第二换热器300与第三换热器400之间的温度影响,更好地对气流进行控温除湿。
可选地,第一隔热风道800包括:风道部810、集风罩820和出风罩830。风道部810垂直设置且与第一换热器200平行;集风罩820为喇叭形结构,集风罩820的一端与风道部810朝向第一换热器200的侧壁的上部区域连通,另一端朝向第一换热器200设置;出风罩830的一端与风道部810朝向第二换热器300侧壁的下部区域连通,另一端朝向第二换热器300设置。这样,使第一隔热风道800的整体为Z形通道结构,第一换热器200的背风侧的气流经集风罩820流入风道部810内,然后沿风道部810向下流动最终经出风罩830吹向第二换热器300的迎风侧,利用风道部810作为隔绝能够减小第一换热器200与第二换热器300之间的热量传导,从而降低第一换热器200与第二换热器300之间的影响。
可选地,风道部810沿竖直方向上封堵流通腔130的过流面。这样,进一步提高第一换热器200与第二换热器300之间的隔绝效果,从而进一步降低第一换热器200与第二换热器300之间的影响。
可选地,沿竖直方向上集风罩820的长度大于或等于第一换热器200的长度,出风罩830的长度大于或等于第二换热器300的长度。这样,使第一换热器200背风侧的气流能够完全通过集风罩820进入风道部810内,从出风罩830吹出的气流能够完全吹向第二换热器300,降低气流的损失,提高除湿效率。
可选地,风道部810的外壁涂覆有隔热涂料,例如,辐射型隔热涂料。这样,能够进一步提高风道部810的隔热效果,而且辐射型隔热涂料能够将风道部810的热量向外辐射,进一步减小第一换热器200与第二换热器300之间的热量传导,从而降低第一换热器200与第二换热器300之间的影响。
可以理解的,第二隔热风道900的结构与第一隔热风道800相同,在此不做赘述。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开的实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种用于除湿的装置,其特征在于,包括:
    壳体(100),具有除湿进风口(110)和除湿出风口(120);
    第一换热器(200),设置于所述壳体(100)内,且位于所述除湿进风口(110)侧;
    第二换热器(300),设置于所述第一换热器(200)的背风侧;
    第三换热器(400),设置于所述第二换热器(300)的背风侧;
    其中,需要除湿的气流经由所述除湿进风口(110)流入所述壳体(100)内,依次流经所述第一换热器(200)、所述第二换热器(300)与所述第三换热器(400)后,从所述除湿出风口(120)吹出。
  2. 根据权利要求1所述的用于除湿的装置,其特征在于,所述第二换热器(300)分别与所述第一换热器(200)和所述第三换热器(400)连通。
  3. 根据权利要求2所述的用于除湿的装置,其特征在于,还包括:
    压缩机(500),具有输出管(510)和输入管(520);
    四通阀(600),具有第一开口(610)、第二开口(620)、第三开口(630)与第四开口(640);
    其中,所述第一开口(610)连通所述输出管(510),所述第二开口(620)连通所述输入管(520),所述第三开口(630)连通所述第二换热器(300),所述第四开口(640)连通所述第一换热器(200)与所述第三换热器(400)。
  4. 根据权利要求3所述的用于除湿的装置,其特征在于,所述第一换热器(200)具有第一端口(210)和第二端口(220),所述第二换热器(300)具有第三端口(310)和第四端口(320),所述第三换热器(400)具有第五端口(410)和第六端口(420),所述第一端口(210)与所述第五端口(410)通过第一管路(641)与所述第四开口(640)连通,所述第三端口(310)通过第二管路(631)与所述第三开口(630)连通,所述第二端口(220)与所述第六端口(420)均与所述第四端口(320)连通。
  5. 根据权利要求4所述的用于除湿的装置,其特征在于,所述第二换热器(300)包括:
    第一换热流路(330);
    第二换热流路(340),与所述第一换热流路(330)平行设置,且位于所述第一换热流路(330)的背风侧。
  6. 根据权利要求5所述的用于除湿的装置,其特征在于,所述第一换热流路(330) 具有第七端口(331)与第八端口(332),所述第二换热流路(340)具有第九端口(341)与第十端口(342),所述第八端口(332)与所述第十端口(342)共同组成所述第四端口(320),所述第七端口(331)与所述第九端口(341)共同组成所述第三端口(310),所述第八端口(332)与所述第二端口(220)连通,所述第十端口(342)与所述第六端口(420)连通,所述第七端口(331)与所述第九端口(341)均通过所述第二管路(631)与所述第三开口(630)连通。
  7. 根据权利要求1至6任一项所述的用于除湿的装置,其特征在于,在所述用于除湿的装置运行在吹冷风除湿模式下,所述第一换热器(200)与所述第三换热器(400)为蒸发器,所述第二换热器(300)为冷凝器。
  8. 根据权利要求1至6任一项所述的用于除湿的装置,其特征在于,在所述用于除湿的装置运行在吹热风除湿模式下,所述第一换热器(200)与所述第三换热器(400)为冷凝器,所述第二换热器(300)为蒸发器。
  9. 根据权利要求1至6任一项所述的用于除湿的装置,其特征在于,还包括:
    接水盘(700),设置于所述壳体(100)内,且位于所述第一换热器(200)、所述第二换热器(300)以及所述第三换热器(400)下方。
  10. 根据权利要求1至6任一项所述的用于除湿的装置,其特征在于,还包括:
    第一隔热风道(800),设置于所述第一换热器(200)与所述第二换热器(300)之间,所述第一换热器(200)的背风侧与所述第二换热器(300)的迎风侧之间通过所述第一隔热风道(800)连通;
    第二隔热风道(900),设置于所述第二换热器(300)与所述第三换热器(400)之间,所述第二换热器(300)的背风侧与所述第三换热器(400)的迎风侧之间通过所述第二隔热风道(900)连通。
PCT/CN2022/131369 2022-03-31 2022-11-11 用于除湿的装置 WO2023184989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210329865.7 2022-03-31
CN202210329865.7A CN114857681A (zh) 2022-03-31 2022-03-31 用于除湿的装置

Publications (1)

Publication Number Publication Date
WO2023184989A1 true WO2023184989A1 (zh) 2023-10-05

Family

ID=82629614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131369 WO2023184989A1 (zh) 2022-03-31 2022-11-11 用于除湿的装置

Country Status (2)

Country Link
CN (1) CN114857681A (zh)
WO (1) WO2023184989A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114857681A (zh) * 2022-03-31 2022-08-05 海尔(深圳)研发有限责任公司 用于除湿的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203928149U (zh) * 2014-05-28 2014-11-05 广东美的集团芜湖制冷设备有限公司 除湿机
CN109682045A (zh) * 2019-01-30 2019-04-26 山东格瑞德集团有限公司 带有动力源的新风热管能量回收利用结构
CN111998452A (zh) * 2020-09-23 2020-11-27 合肥天鹅制冷科技有限公司 一种低温高效除湿机
CN112254209A (zh) * 2020-11-05 2021-01-22 南京天加环境科技有限公司 一种两管制冷凝再热新风系统及其控制方法
CN114857681A (zh) * 2022-03-31 2022-08-05 海尔(深圳)研发有限责任公司 用于除湿的装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118871A1 (ja) * 2013-01-29 2014-08-07 三菱電機株式会社 除湿装置
CN108489136A (zh) * 2018-05-21 2018-09-04 上海伯涵热能科技有限公司 一种湿度独立调节的空气调节器
CN112443899B (zh) * 2019-09-04 2022-02-25 广东美的制冷设备有限公司 空调系统及其控制方法
CN113776136A (zh) * 2021-10-18 2021-12-10 南京天加环境科技有限公司 一种整体式新风除湿机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203928149U (zh) * 2014-05-28 2014-11-05 广东美的集团芜湖制冷设备有限公司 除湿机
CN109682045A (zh) * 2019-01-30 2019-04-26 山东格瑞德集团有限公司 带有动力源的新风热管能量回收利用结构
CN111998452A (zh) * 2020-09-23 2020-11-27 合肥天鹅制冷科技有限公司 一种低温高效除湿机
CN112254209A (zh) * 2020-11-05 2021-01-22 南京天加环境科技有限公司 一种两管制冷凝再热新风系统及其控制方法
CN114857681A (zh) * 2022-03-31 2022-08-05 海尔(深圳)研发有限责任公司 用于除湿的装置

Also Published As

Publication number Publication date
CN114857681A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
JP6494765B2 (ja) 空気調和システム
EP1304529A2 (en) Air conditioner
CN106196380A (zh) 一种制冷剂过冷热量再利用热回收空气处理机组
CN213395606U (zh) 一种空调器
WO2023184989A1 (zh) 用于除湿的装置
US8261571B2 (en) Multifunctional ventilating fan
US10393392B2 (en) Air conditioner
WO2018076461A1 (zh) 一种无水加湿空调及加湿方法
CN208222769U (zh) 一种除湿系统及新风除湿机
EP3457038B1 (en) Self-contained air conditioning system and use method
JPH0814389B2 (ja) 直膨型熱交換器を用いたクリーンルーム
CN108443960A (zh) 一种带新风功能的多联式空调机组
TWI269016B (en) Movable multi-functional air-conditioner and its using method
JP5239959B2 (ja) 空調システム
CN103836742B (zh) 多联热管机房空调系统
CN216203824U (zh) 空调器
KR100728590B1 (ko) 절전형 고효율 히트펌프 환기장치
KR100946381B1 (ko) 하이브리드 히트펌프식 냉난방장치
CN111006336B (zh) 一种复合空调系统及空调房
JP7285409B2 (ja) 除湿機能付き熱交換形換気装置
JP2018054255A (ja) 空気調和装置
CN207936356U (zh) 一种除湿机
JP2006153321A (ja) ヒートポンプ式空調機
KR100341927B1 (ko) 공기흐름전환식 냉난방겸용 공기조화기
CN217952526U (zh) 一种一体式新风热回收机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934807

Country of ref document: EP

Kind code of ref document: A1