WO2023184973A1 - 一种固体氧化物燃料电池系统及控制方法 - Google Patents

一种固体氧化物燃料电池系统及控制方法 Download PDF

Info

Publication number
WO2023184973A1
WO2023184973A1 PCT/CN2022/129134 CN2022129134W WO2023184973A1 WO 2023184973 A1 WO2023184973 A1 WO 2023184973A1 CN 2022129134 W CN2022129134 W CN 2022129134W WO 2023184973 A1 WO2023184973 A1 WO 2023184973A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
oxidant
solid oxide
fuel cell
compressor
Prior art date
Application number
PCT/CN2022/129134
Other languages
English (en)
French (fr)
Inventor
王秋宁
林羲栋
侯逸文
杨涛
刘清侠
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Publication of WO2023184973A1 publication Critical patent/WO2023184973A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of solid oxide fuel cells, and specifically relates to a solid oxide fuel cell system and a control method.
  • Solid oxide fuel cell is an energy conversion device that can directly convert chemical energy stored in fuel and oxidizer into electrical energy in an efficient and environmentally friendly manner. Because the entire power generation process is an electrochemical reaction without fuel combustion, there is no restriction of the Carnot cycle, and the theoretical conversion efficiency can reach more than 85%-90%. Compared with other fuel cells, solid oxide fuel cells also have the advantages of high power density, strong fuel adaptability, all-solid structure, and simple equipment. It is generally believed that they will be as widely used as proton exchange membrane fuel cells in the future. A fuel cell.
  • the existing solid oxide fuel cell system has a complicated structure for supplying fuel and air to the anode and cathode of the power generation mechanism, which is not conducive to transportation. As a result, the electrochemical reaction in the power generation mechanism cannot be carried out stably and the stability is poor.
  • the object of the present invention is to provide a solid oxide fuel that can smoothly supply fuel and oxidant to the anode and cathode of the power generation mechanism respectively, so that the electrochemical reaction can proceed stably, and the system structure is simplified and stable. Battery system, and control method of the solid oxide fuel cell system.
  • the invention provides a solid oxide fuel cell system, including a solid oxide fuel cell assembly, a combustion chamber, an oxidant supply device and a fuel supply device; wherein,
  • the solid oxide fuel cell assembly includes a solid oxide fuel cell.
  • the solid oxide fuel cell includes a base, an upper cover, a connecting plate and a power generation mechanism.
  • the upper cover, connecting plate and base are arranged in sequence from top to bottom.
  • the power generation mechanism is installed between the base and the connecting plate and between the upper cover and the connecting plate.
  • the lower surface of the upper cover and the lower surface of the connecting plate are provided with fuel channels.
  • the upper surface of the plate and the upper surface of the base are both provided with oxidant channels; the fuel output end of the fuel supply device is connected to the fuel channel and supplies fuel to the anode of the power generation mechanism through the fuel channel to perform electrochemical reactions; the oxidant supply device The oxidant output end is connected to the oxidant channel, and supplies oxidant to the cathode of the power generation mechanism through the oxidant channel to perform an electrochemical reaction; the outlet end of the anode is connected to the combustion chamber.
  • the power generation mechanism includes an anode, an electrolyte and a cathode, the anode, electrolyte and cathode are arranged in sequence from top to bottom, and both ends of the fuel channel of the upper cover and the connecting plate are respectively connected with the fuel supply device.
  • the fuel output end is connected to the anode, and the outlet end of the anode is connected to a combustion chamber; both ends of the oxidant channel of the connecting plate and the base are respectively connected to the oxidant output end and the cathode of the oxidant supply device.
  • the oxidant supply device includes an oxidant chamber and an oxidant compressor.
  • the outlet end of the oxidant chamber is connected to the input end of the oxidant compressor.
  • the output end of the oxidant compressor is connected to the connecting plate and the base.
  • the oxidant channel is connected and is connected to the inlet end of the cathode of the power generation mechanism in the solid oxide fuel cell assembly through the oxygen channel.
  • the fuel supply device includes a fuel chamber, a fuel compressor, an air compressor and a mixing chamber.
  • the outlet end of the fuel chamber is connected to the input end of the fuel compressor, and the output end of the fuel compressor is connected to the mixing chamber.
  • the inlet end of the mixing chamber is connected to the air compressor, the outlet end of the mixing chamber is connected to the fuel channel of the upper cover and the connecting plate, and is connected to the fuel channel through the fuel channel.
  • the inlet end of the anode of the power generation mechanism in the solid oxide fuel cell assembly is connected.
  • an air preheating chamber is provided between the mixing chamber and the air compressor, and a fuel preheating chamber is provided between the mixing chamber and the fuel compressor.
  • a filter box is provided at the air inlet end of the air compressor, and a filter screen is installed in the filter box.
  • outlet end of the cathode of the power generation mechanism in the solid oxide fuel cell assembly is connected to a recovery device, and the output end of the recovery device is connected to the oxidant channel of the connecting plate and the base to collect a portion of the unused oxidant. Recycled and transported to the cathode of the power generation unit.
  • outlet end of the cathode of the power generation mechanism in the solid oxide fuel cell assembly is also connected to a delivery device, and the output end of the delivery device is connected to the combustion chamber to deliver a portion of the unused oxidant to the combustion chamber.
  • the combustion chamber is connected to an energy-saving device, and the output end of the energy-saving device is connected to the oxidant compressor of the oxidant supply device and the fuel compressor and air compressor of the fuel supply device to burn the fuel in the combustion chamber.
  • the generated exhaust gas is sent to the oxidizer compressor, fuel compressor and air compressor.
  • the invention also provides a control method for the above-mentioned solid oxide fuel cell system, which includes the following steps:
  • the fuel supply device and the oxidant supply device respectively deliver the fuel-air mixed gas to the anode of the power generation mechanism and the oxidant to the cathode through the fuel channel and oxidant channel of the solid oxide fuel cell. , perform electrochemical reactions;
  • the present invention can facilitate the supply of fuel and oxidant to the fuel supply device by arranging fuel channels on the lower surface of the upper cover and the lower surface of the connecting plate, and arranging oxidant channels on the upper surface of the connecting plate and the upper surface of the base.
  • the oxidant of the device is supplied to the anode and cathode of the power generation mechanism respectively, so that the electrochemical reaction in the power generation mechanism can be carried out better, and it can also effectively simplify the system structure and improve the stability of the system; at the same time, it also passes through the anode of the power generation mechanism.
  • the outlet end is connected to the combustion chamber to prevent excess fuel-air mixture from entering the outside air, which not only causes waste but also pollutes the environment.
  • the present invention achieves the purpose of preheating by connecting an energy-saving device to the combustion chamber to transport the exhaust gas (high-temperature gas) generated by combustion to the oxidant compressor, fuel compressor and air compressor, thereby reducing the energy consumption in the subsequent preheating process. Electricity consumption.
  • a recycling device is connected to the outlet end of the cathode of the power generation mechanism and/or a conveying device connected to the combustion chamber, so as to recycle part of the unused oxidant, thus saving energy and protecting the environment.
  • Figure 1 is a schematic structural diagram of an embodiment of a solid oxide fuel cell system according to the present invention.
  • Figure 2 is a schematic structural diagram of an upper cover in an embodiment of a solid oxide fuel cell system according to the present invention
  • Figure 3 is a schematic structural diagram of a connecting plate in an embodiment of a solid oxide fuel cell system according to the present invention.
  • Figure 4 is a schematic structural diagram of a base in an embodiment of a solid oxide fuel cell system according to the present invention.
  • Figure 5 is a schematic diagram of the electrochemical reaction principle of an embodiment of a solid oxide fuel cell system according to the present invention.
  • Figure 6 is a schematic flow chart of a control method of a solid oxide fuel cell system according to the present invention.
  • it can be fixedly connected or set, or it can be Detachably connected and set, or integrally connected and set.
  • a solid oxide fuel cell system and its operating method include a solid oxide fuel cell assembly 1, a combustion chamber 20, an oxidant supply device and a fuel supply device.
  • the solid oxide fuel cell assembly 1 includes a solid oxide fuel cell 2.
  • the solid oxide fuel cell 2 includes a base 5, an upper cover 3, a connecting plate 4 and a power generation mechanism.
  • the upper cover 3, connecting plate 4 and the base 5 are arranged in sequence from top to bottom, and the power generation mechanism is installed between the base 5 and the connecting plate 4 and between the upper cover 3 and the connecting plate 4.
  • the lower part of the upper cover 3 The surface and the lower surface of the connecting plate 4 are both provided with fuel channels 7.
  • the upper surface of the connecting plate 4 and the upper surface of the base 5 are both provided with oxidant channels 6.
  • the fuel channels 7 and oxidant channels 6 are preferably linear grooves. (See Figure 2-4);
  • the fuel output end of the fuel supply device is connected to the fuel channel 7, and supplies fuel to the anode 8 of the power generation mechanism through the fuel channel 7 to perform an electrochemical reaction;
  • the oxidant output of the oxidant supply device The end of the anode 8 is connected to the oxidant channel 6, and supplies oxidant to the cathode 10 of the power generation mechanism through the oxidant channel 6 to perform an electrochemical reaction;
  • the outlet end of the anode 8 is connected to the combustion chamber 20.
  • the specific structure of the present invention may be: the power generation mechanism includes an anode 8, an electrolyte 9 and a cathode 10, the anode 8, the electrolyte 9 and the cathode 10 are arranged in sequence from top to bottom, and the Both ends of the fuel channel 7 of the upper cover 3 and the connecting plate 4 are respectively connected to the fuel output end of the fuel supply device and the anode 8, and the outlet end of the anode 8 is connected to the combustion chamber 20; the connecting plate 4 and Both ends of the oxidant channel 6 of the base 5 are respectively connected to the oxidant output end of the oxidant supply device and the cathode 10 .
  • the oxidant supply device includes an oxidant chamber 15 and an oxidant compressor 16.
  • the outlet end of the oxidant chamber 15 is connected to the input end of the oxidant compressor 16, and the output end of the oxidant compressor 16 is connected to the connecting plate 4 It is connected to the oxidant channel 6 of the base 5 and connected to the inlet end of the cathode 10 of the power generation mechanism in the solid oxide fuel cell assembly 1 through the oxygen channel 6 .
  • the fuel supply device includes a fuel chamber 11, a fuel compressor 12, an air compressor 14 and a mixing chamber 19.
  • the outlet end of the fuel chamber 11 is connected to the input end of the fuel compressor 12.
  • the output of the fuel compressor 12 The other end of the mixing chamber 19 is connected to the air compressor 14 , and the outlet end of the mixing chamber 19 is connected to the upper cover 3 and the fuel connecting plate 4 channel 7, and is connected to the inlet end of the anode 8 of the power generation mechanism in the solid oxide fuel cell assembly 1 through the fuel channel 7.
  • control method of the solid oxide fuel cell system of the present invention includes the following steps:
  • Step S1. Prepare a fuel-air mixed gas, and uniformly mix the fuel and air through a fuel supply device to obtain a fuel-air mixed gas;
  • Step S2 Supply the fuel-air mixed gas and oxidant to the power generation mechanism.
  • the fuel supply device and the oxidant supply device respectively deliver the fuel-air mixed gas to the anode 8 of the power generation mechanism through the fuel channel 7 and the oxidant channel 6 of the solid oxide fuel cell 2. and transporting the oxidant to the cathode 10 to perform an electrochemical reaction;
  • Step S3 Burn the fuel, and deliver the unreacted fuel-air mixture that is delivered to the anode 8 for electrochemical reaction to the combustion chamber 20 for combustion.
  • the control method of the solid oxide fuel cell system of the present invention is: first, the fuel enters the mixing chamber 19 through the fuel compressor 12, and at the same time, the air enters the mixing chamber 19 through the air compressor 14. The air and fuel are in the mixing chamber 19 Mix evenly to obtain a fuel-air mixed gas; then the fuel supply device delivers the fuel-air mixed gas to the anode 8 of the power generation mechanism through the fuel channel 7 of the solid oxide fuel cell 2 to perform an electrochemical reaction, and at the same time, the oxidant supply device passes through the solid oxide fuel cell 2 The oxidant channel 6 of the fuel cell 2 transports the oxidant to the cathode 10 of the power generation mechanism, performs an electrochemical reaction, and generates electric energy.
  • the fuel-air mixed gas is adsorbed and decomposed into positive ions and negative ions at the porous structure anode 8, and the electrolyte acts as negative ions ( Electrons) insulator, only positive ions flow from the anode 8 to the cathode 10.
  • the free electrons are recombined outside the electrolyte membrane and transported to the cathode 10 through an external circuit to generate electrical energy.
  • the electrons (negative ions) decomposed by the anode 8 are reacted with the oxidant at the cathode 10.
  • Oxygen reduction as shown in Figure 5, takes reformed gas as an example.
  • the reaction chemical formula is as follows:
  • the fuel-air mixed gas that is delivered to the anode 8 without undergoing electrochemical reaction is delivered to the combustion chamber 20 for combustion.
  • the solid oxide fuel cell system of the present invention adopts the method of providing fuel channels 7 on the lower surface of the upper cover 3 of the solid oxide fuel cell 2 and the lower surface of the connecting plate 4, and on the upper surface of the connecting plate 4 and the base 5.
  • An oxidant channel 6 is provided on the upper surface. On the one hand, it can facilitate the supply of fuel from the fuel supply device and the oxidant from the oxidant supply device to the anode 8 and cathode 10 of the power generation mechanism respectively, so that the electrochemical reaction in the power generation mechanism can be carried out better.
  • the system structure is effectively simplified and the stability of the system is effectively improved; at the same time, by connecting the combustion chamber 20 at the outlet end of the anode 8 of the power generation mechanism, excess fuel-air mixture gas can be prevented from entering the outside air, which causes waste. , and pollute the environment.
  • an air preheating chamber 17 is provided between the mixing chamber 19 and the air compressor 14, and a fuel preheating chamber 17 is provided between the mixing chamber 19 and the fuel compressor 12.
  • Preheating chamber 18 The air and fuel entering the mixing chamber 19 can be preheated respectively by the air preheating chamber 17 and the fuel preheating chamber 18, thereby increasing the air temperature and fuel temperature entering the mixing chamber 19, thereby improving the efficiency of the fuel-air mixed gas.
  • the temperature increases the electrochemical reaction effect and rate of the fuel-air mixture in the anode 8, and the higher the electrical energy converted.
  • control method of the present invention also includes: in preparing the fuel-air mixed gas in S1, before the fuel supply device uniformly mixes the fuel and air, the fuel and air need to be preheated, specifically, before supplying the fuel and air to the mixing chamber. 19 Before the air and fuel are input, the air and fuel are preheated through the air preheating chamber 17 and the fuel preheating chamber 18 respectively.
  • the air inlet end of the air compressor 14 is provided with a filter box 13, and a filter screen is installed in the filter box 13.
  • a filter box 13 filter net
  • the filter box 13 effectively filters impurities in the air, thereby improving the purity of the fuel-air mixed gas, ensuring the stability and effectiveness of the electrochemical reaction, and further improving the electrical energy conversion rate.
  • the outlet end of the cathode 10 of the power generation mechanism in the solid oxide fuel cell assembly 1 is connected to a recovery device 22, and the output end of the recovery device 22 is connected to the outlet end of the cathode 10 of the power generation mechanism in the solid oxide fuel cell assembly 1.
  • the connecting plate 4 is connected to the oxidant channel 6 of the base 5 to recover and transport part of the unused oxidant to the cathode 10 of the power generation mechanism (that is, the oxidant channel 6 transported to the connecting plate 4 and the base 5) for recycling, energy saving and environmental protection. .
  • control method of the present invention also includes: recycling the oxidant at the outlet end of the cathode 10 to perform an electrochemical reaction. Specifically, controlling the recovery device 22 to recover a part of the unused oxidant and transporting it to the connecting plate 4 and the base 5 The oxidant channel 6 is then transported to the cathode 10 of the power generation mechanism for electrochemical reaction.
  • the combustion chamber 20 is connected to an energy-saving device 21, and the output end of the energy-saving device 21 is connected to the oxidant compressor 16 of the oxidant supply device and the fuel supply device.
  • the fuel compressor 12 and the air compressor 14 are connected; when the fuel-air mixture is in the combustion chamber 20, the exhaust gas (high-temperature gas) generated by combustion can be transported to the oxidant compressor 16, the fuel compressor 12 and the air compressor through the energy-saving device 21 Machine 14 to achieve the purpose of preheating, thereby reducing the power consumption in the subsequent preheating process.
  • control method of the present invention also includes: recovering the high-temperature gas generated by S3 combustion fuel, and preheating the air and fuel. Specifically, controlling the energy-saving device 21 to transport the waste gas (high-temperature gas) generated by combustion to the oxidant compressed air. machine 16, fuel compressor 12 and air compressor 14 to preheat the air and fuel.
  • the outlet end of the cathode 10 of the power generation mechanism in the solid oxide fuel cell assembly 1 is also connected to a conveying device 23, and the output end of the conveying device 23 is connected to the combustion chamber 20, so as to A part of the unused oxidant is transported to the combustion chamber 20, burned with the unreacted fuel-air mixture of the anode 8, and recycled.
  • control method of the present invention also includes: recycling the oxidant at the outlet end of the cathode 10 and burning it with the fuel-air mixed gas.
  • control transport device 23 will transport a part of the unused oxidant to the combustion chamber. 20.
  • the fuel-air mixed gas that has not reacted with the anode 8 is burned, and then the energy-saving device 21 is controlled to transport the exhaust gas (high-temperature gas) generated by the combustion to the oxidant compressor 16, the fuel compressor 12 and the air compressor 14 to control the air. and fuel preheating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种固体氧化物燃料电池系统及控制方法,该系统包括固体氧化物燃料电池组件、燃烧室、氧化剂供应装置和燃料供应装置,其中固体氧化物燃料电池组件的固体氧化物燃料电池包括底座、上盖、连接板和发电机构,而且所述底座与连接板之间和所述上盖与连接板之间均安装有所述发电机构;所述燃料供应装置通过上盖的下表面和连接板的下表面设有的燃料通道向发电机构的阳极供给燃料,所述氧化剂供应装置通过连接板的上表面和底座的上表面设有的氧化剂通道向发电机构的阴极供给氧化剂,使发电机构中的电化学反应能够更好地进行,还能够有效简化了系统结构,提升了系统的稳定性。

Description

一种固体氧化物燃料电池系统及控制方法 技术领域
本发明属于固体氧化物燃料电池技术领域,具体涉及一种固体氧化物燃料电池系统及控制方法。
背景技术
固体氧化物燃料电池是一种可直接将储存在燃料和氧化剂中的化学能高效、环境友好地转化为电能的能量转化装置。因其整个发电过程为电化学反应,无需经过燃料燃烧,因此无卡诺循环的限制,理论上转化效率可以达到85%-90%以上。与其他燃料电池相比,固体氧化物燃料电池还具有功率密度高、燃料适应性强、全固态结构、设备简单等优点,被普遍认为是在未来会与质子交换膜燃料电池一样得到广泛普及应用的一种燃料电池。
但是申请人发现:现有的固体氧化物燃料电池系统因向发电机构的阳极和阴极供给燃料和空气结构复杂、不利于输送,造成发电机构中的电化学反应无法稳定进行,稳定性不佳。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种能够顺畅向发电机构的阳极和阴极分别供给燃料和氧化剂,使电化学反应能够稳定进行,且系统结构简化、稳定的固体氧化物燃料电池系统,以及该固体氧化物燃料电池系统的控制方法。
为解决上述问题,本发明所采用的技术方案如下:
本发明提供了一种固体氧化物燃料电池系统,包括固体氧化物燃料电池组件、燃烧室、氧化剂供应装置和燃料供应装置;其中,
所述固体氧化物燃料电池组件包括固体氧化物燃料电池,所述固体氧化物燃料电池包括底座、上盖、连接板和发电机构,所述上盖、连接板和底座从上往下依次设置,而且所述底座与连接板之间和所述上盖与连接板之间均安装有所述发电机构,同时所述上盖的下表面和连接板的下表面均设置有燃料通道,所述连接板的上表面和底座的上表面均设置有氧化剂通道;所述燃料供应装置的燃料输出端与燃料通道连接并经燃料通道向发电机构的阳极供给燃料,进行电化学反应;所述氧化剂供应装置的氧化剂输出端与氧化剂通道连接,并经氧化剂通道向发电机构的阴极供给氧化剂,进行电化学反应;所述阳极的出口端与燃烧室连接。
进一步地,所述发电机构包括阳极、电解质和阴极,所述阳极、电解质和阴极从上到下依次设置,而且所述上盖和连接板的燃料通道的两端分别与所述燃料供应装置的燃料输出端和阳极连接,所述阳极的出口端连接有燃烧室;所述连接板和底座的氧化剂通道的两端分别与所述氧化剂供应装置的氧化剂输出端和阴极连接。
进一步地,所述氧化剂供应装置包括氧化剂室和氧化剂压气机,所述氧化剂室的出口端与所述氧化剂压气机的输入端连接,所述氧化剂压气机的输出端与所述连接板和底座的氧化剂通道连接,并经所述氧剂通道与所述固体氧化物燃料电池组件中发电机构的阴极的入口端连接。
进一步地,所述燃料供应装置包括燃料室、燃料压气机、空气压气机和混合室,所述燃料室的出口端与燃料压气机的输入端连接,所述燃料压气机的输出端与混合室的入口端连接,所述混合室的另一入口端连接有所述空气压气机, 所述混合室的出口端连接于所述上盖和连接板的燃料通道,并经所述燃料通道与所述固体氧化物燃料电池组件中发电机构的阳极的入口端连接。
进一步地,所述混合室与空气压气机之间设置有空气预加热室,所述混合室与燃料压气机之间设置有燃料预加热室。
进一步地,所述空气压气机的进气端设置有过滤箱,所述过滤箱中安装有过滤网。
进一步地,所述固体氧化物燃料电池组件中发电机构的阴极的出口端连接有回收装置,所述回收装置的输出端与所述连接板和底座的氧化剂通道连接,以将一部分未使用的氧化剂回收并输送至发电机构的阴极。
进一步地,所述固体氧化物燃料电池组件中发电机构的阴极的出口端还连接有输送装置,所述输送装置的输出端连接于燃烧室,以将一部分未使用的氧化剂输送至燃烧室。
进一步地,所述燃烧室连接有节能装置,所述节能装置的输出端与所述氧化剂供应装置的氧化剂压气机以及燃料供应装置燃料压气机和空气压气机连接,以将燃烧室中燃料燃烧后产生的废气输送到氧化剂压气机、燃料压气机和空气压气机。
本发明还提供了一种上述的固体氧化物燃料电池系统的控制方法,包括以下步骤:
S1.制备燃料-空气混合气体,通过燃料供给装置将燃料和空气进行均匀混合,得到燃料-空气混合气体;
S2.向发电机构供给燃料-空气混合气体和氧化剂,燃料供给装置和氧化剂供应装置分别通过固体氧化物燃料电池的燃料通道和氧化剂通道向发电机构的阳极输送燃料-空气混合气体和向阴极输送氧化剂,进行电化学反应;
S3.燃烧燃料,将输送至阳极进行电化学反应而未反应的燃料-空气混合气体输送至燃烧室进行燃烧。
相比现有技术,本发明的有益效果在于:
1、本发明通过采用在上盖的下表面和连接板的下表面设置燃料通道,以及在连接板的上表面和底座的上表面设置氧化剂通道,既能够有利于燃料供应装置的燃料和氧化剂供应装置的氧化剂分别供给至发电机构的阳极和阴极,使发电机构中的电化学反应能够更好地进行,还能够有效简化了系统结构,提升了系统的稳定性;同时还通过在发电机构的阳极出口端连接燃烧室,能够避免多余的燃料-空气混合气体进入到外界空气,既造成浪费,又污染环境。
2、本发明通过在燃烧室连接有节能装置,将燃烧产生的废气(高温气体)输送到氧化剂压气机、燃料压气机和空气压气机,达到预热的目的,从而减少后续预热过程中的电能消耗。
3、本发明通过在发电机构阴极的出口端连接有回收装置和/或连接燃烧室的输送装置,以将一部分未使用的氧化剂回收回收利用,节能环保。
附图说明
图1为本发明所述的一种固体氧化物燃料电池系统实施例的结构示意图;
图2为本发明所述的一种固体氧化物燃料电池系统实施例中上盖的结构示意图;
图3为本发明所述的一种固体氧化物燃料电池系统实施例中连接板的结构示意图;
图4为本发明所述的一种固体氧化物燃料电池系统实施例中底座的结构示意图;
图5为本发明所述的一种固体氧化物燃料电池系统实施例的电化学反应的原理示意图;
图6为本发明所述的一种固体氧化物燃料电池系统的控制方法的流程示意图;
附图标记说明:1、固体氧化物燃料电池组件;2、固体氧化物燃料电池;3、上盖;4、连接板;5、底座;6、氧化剂通道;7、燃料通道;8、阳极;9、电解质;10、阴极;11、燃料室;12、燃料压气机;13、过滤箱;14、空气压气机;15、氧化剂室;16、氧化剂压气机;17、空气预加热室;18、燃料预加热室;19、混合室;20、燃烧室;21、节能装置;22、回收装置;23、输送装置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“设置”应做广义理解,例如,可以是固定相连、设置,也可以是可拆卸连接、设置,或一体地连接、设置。
参照图1-4,本发明实施例所述的一种固体氧化物燃料电池系统及其操作方 法,包括固体氧化物燃料电池组件1、燃烧室20、氧化剂供应装置和燃料供应装置。其中,所述固体氧化物燃料电池组件1包括固体氧化物燃料电池2,所述固体氧化物燃料电池2包括底座5、上盖3、连接板4和发电机构,所述上盖3、连接板4和底座5从上往下依次设置,而且所述底座5与连接板4之间和所述上盖3与连接板4之间均安装有所述发电机构,同时所述上盖3的下表面和连接板4的下表面均设置有燃料通道7,所述连接板4的上表面和底座5的上表面均设置有氧化剂通道6,所述燃料通道7和氧化剂通道6优选采用直线凹槽(参见图2-4);所述燃料供应装置的燃料输出端与燃料通道7连接,并经燃料通道7向发电机构的阳极8供给燃料,进行电化学反应;所述氧化剂供应装置的氧化剂输出端与氧化剂通道6连接,并经氧化剂通道6向发电机构的阴极10供给氧化剂,进行电化学反应;所述阳极8的出口端与燃烧室20连接。
在一种可能实施的方案中,本发明的具体结构可以为:所述发电机构包括阳极8、电解质9和阴极10,所述阳极8、电解质9和阴极10从上到下依次设置,而且所述上盖3和连接板4的燃料通道7的两端分别与所述燃料供应装置的燃料输出端和阳极8连接,所述阳极8的出口端连接有燃烧室20;所述连接板4和底座5的氧化剂通道6的两端分别与所述氧化剂供应装置的氧化剂输出端和阴极10连接。
所述氧化剂供应装置包括氧化剂室15和氧化剂压气机16,所述氧化剂室15的出口端与所述氧化剂压气机16的输入端连接,所述氧化剂压气机16的输出端与所述连接板4和底座5的氧化剂通道6连接,并经所述氧剂通道6与所述固体氧化物燃料电池组件1中发电机构的阴极10的入口端连接。
所述燃料供应装置包括燃料室11、燃料压气机12、空气压气机14和混合室19,所述燃料室11的出口端与燃料压气机12的输入端连接,所述燃料压气 机12的输出端与混合室19的入口端连接,所述混合室19的另一入口端连接有所述空气压气机14,所述混合室19的出口端连接于所述上盖3和连接板4的燃料通道7,并经所述燃料通道7与所述固体氧化物燃料电池组件1中发电机构的阳极8的入口端连接。
本发明所述固体氧化物燃料电池系统的控制方法,如图6所示,包括以下步骤:
步骤S1.制备燃料-空气混合气体,通过燃料供给装置将燃料和空气进行均匀混合,得到燃料-空气混合气体;
步骤S2.向发电机构供给燃料-空气混合气体和氧化剂,燃料供给装置和氧化剂供应装置分别通过固体氧化物燃料电池2的燃料通道7和氧化剂通道6向发电机构的阳极8输送燃料-空气混合气体和向阴极10输送氧化剂,进行电化学反应;
步骤S3.燃烧燃料,将输送至阳极8进行电化学反应而未反应的燃料-空气混合气体输送至燃烧室20进行燃烧。
具体地,本发明所述固体氧化物燃料电池系统的控制方法为:首先燃料通过燃料压气机12进入混合室19,同时空气通过空气压气机14进入混合室19,空气和燃料在混合室19中均匀混合,得到燃料-空气混合气体;然后燃料供给装置通过固体氧化物燃料电池2的燃料通道7向发电机构的阳极8输送燃料-空气混合气体,进行电化学反应,同时氧化剂供应装置通过固体氧化物燃料电池2的氧化剂通道6向发电机构的阴极10输送氧化剂,进行电化学反应,产生电能,具体过程为:燃料-空气混合气体在多孔结构阳极8吸附分解成正离子和负离子,电解质充当负离子(电子)绝缘体,只有正离子从阳极8流向阴极10,自由电子在电解质膜外重新组合通过外电路输送到阴极10,产生电能,而这些阳极8 分解出来的电子(负离子)在阴极10与氧化剂进行氧还原,例如图5,以重整气为例反应,反应化学式如下:
H 2+O 2-→H 2O+2e -
CO+O 2-→CO 2+2e -
最后将输送至阳极8而未进行电化学反应的燃料-空气混合气体输送至燃烧室20进行燃烧。
本发明所述固体氧化物燃料电池系统通过采用在固体氧化物燃料电池2的上盖3的下表面和连接板4的下表面设置燃料通道7,以及在连接板4的上表面和底座5的上表面设置氧化剂通道6,一方面能够有利于燃料供应装置的燃料和氧化剂供应装置的氧化剂分别供给至发电机构的阳极8和阴极10,使发电机构中的电化学反应能够更好地进行,另一方面有效简化了系统结构,有效提升了系统的稳定性;同时还通过在发电机构的阳极8出口端连接燃烧室20,能够避免多余的燃料-空气混合气体进入到外界空气,既造成浪费,,又污染环境。
在一种可能实施的方案中,如图1所示,所述混合室19与空气压气机14之间设置有空气预加热室17,所述混合室19与燃料压气机12之间设置有燃料预加热室18。通过空气预加热室17和燃料预加热室18能够分别对进行混合室19的空气和燃料进行预加热,从而提高进入混合室19内的空气温度和燃料温度,进而提高了燃料-空气混合气体的温度,提升燃料-空气混合气体在阳极8中的电化学反应效果和速率,转化的电能越高。
相应地,本发明所述控制方法还包括:在S1制备燃料-空气混合气体中,燃料供给装置将燃料和空气进行均匀混合之前,需要对燃料和空气进行预加热,具体为,在向混合室19输入空气和燃料之前,先通过空气预加热室17和燃料预加热室18分别对空气和燃料进行预加热。
在一种可能实施的方案中,又如图1所示,所述空气压气机14的进气端设置有过滤箱13,所述过滤箱13中安装有过滤网,通过该过滤箱13(过滤网)有效过滤空气中的杂质,从而提高燃料-空气混合气体的纯净度,确保了电化学反应稳定性和效果,进一步提高电能转化率。
在一种可能实施的方案中,再如图1所示,所述固体氧化物燃料电池组件1中发电机构的阴极10的出口端连接有回收装置22,所述回收装置22的输出端与所述连接板4和底座5的氧化剂通道6连接,以将一部分未使用的氧化剂回收并输送至发电机构的阴极10(即输送至连接板4和底座5的氧化剂通道6),回收利用,节能环保。
相应地,本发明所述控制方法还包括:将阴极10的出口端的氧化剂回收利用,进行电化学反应,具体为,控制回收装置22将一部分未使用的氧化剂回收并输送至连接板4和底座5的氧化剂通道6,再输送至发电机构的阴极10,以进行电化学反应。
在一种可能实施的方案中,再如图1所示,所述燃烧室20连接有节能装置21,所述节能装置21的输出端与所述氧化剂供应装置的氧化剂压气机16以及燃料供应装置燃料压气机12和空气压气机14连接;当燃料-空气混合气体在燃烧室20时,燃烧产生的废气(高温气体)能够通过节能装置21输送到氧化剂压气机16、燃料压气机12和空气压气机14,达到预热的目的,从而减少后续预热过程中的电能消耗。
相应地,本发明所述控制方法还包括:将S3燃烧燃料产生的高温气体回收,对空气和燃料进行预热,具体为,控制节能装置21将燃烧产生的废气(高温气体)输送到氧化剂压气机16、燃料压气机12和空气压气机14,以对对空气和燃料进行预热。
在一种可能实施的方案中,所述固体氧化物燃料电池组件1中发电机构的阴极10的出口端还连接有输送装置23,所述输送装置23的输出端连接于燃烧室20,以将一部分未使用的氧化剂输送至燃烧室20,与阳极8未反应的燃料-空气混合气体燃烧,回收利用。
相应地,本发明所述控制方法还包括:将阴极10的出口端的氧化剂回收利用,与燃料-空气混合气体进行燃烧,具体为,控制输送装置23将以将一部分未使用的氧化剂输送至燃烧室20,与阳极8未反应的燃料-空气混合气体燃烧,再控制节能装置21将燃烧产生的废气(高温气体)输送到氧化剂压气机16、燃料压气机12和空气压气机14,以对对空气和燃料进行预热。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种固体氧化物燃料电池系统,其特征在于,包括固体氧化物燃料电池组件(1)、燃烧室(20)、氧化剂供应装置和燃料供应装置;其中,
    所述固体氧化物燃料电池组件(1)包括固体氧化物燃料电池(2),所述固体氧化物燃料电池(2)包括底座(5)、上盖(3)、连接板(4)和发电机构,所述上盖(3)、连接板(4)和底座(5)从上往下依次设置,而且所述底座(5)与连接板(4)之间和所述上盖(3)与连接板(4)之间均安装有所述发电机构,同时所述上盖(3)的下表面和连接板(4)的下表面均设置有燃料通道(7),所述连接板(4)的上表面和底座(5)的上表面均设置有氧化剂通道(6);所述燃料供应装置的燃料输出端与燃料通道(7)连接,并经燃料通道(7)向发电机构的阳极(8)供给燃料,进行电化学反应;所述氧化剂供应装置的氧化剂输出端与氧化剂通道(6)连接,并经氧化剂通道(6)向发电机构的阴极(10)供给氧化剂,进行电化学反应;所述阳极(8)的出口端与燃烧室(20)连接。
  2. 根据权利要求1所述的固体氧化物燃料电池系统,其特征在于,所述发电机构包括阳极(8)、电解质(9)和阴极(10),所述阳极(8)、电解质(9)和阴极(10)从上到下依次设置,而且所述上盖(3)和连接板(4)的燃料通道(7)的两端分别与所述燃料供应装置的燃料输出端和阳极(8)连接,所述阳极(8)的出口端连接有燃烧室(20);所述连接板(4)和底座(5)的氧化剂通道(6)的两端分别与所述氧化剂供应装置的氧化剂输出端和阴极(10)连接。
  3. 根据权利要求2所述的固体氧化物燃料电池系统,其特征在于,所述氧化剂供应装置包括氧化剂室(15)和氧化剂压气机(16),所述氧化剂室(15)的出口端与所述氧化剂压气机(16)的输入端连接,所述氧化剂压气机(16)的输出端与所述连接板(4)和底座(5)的氧化剂通道(6)连接,并经所述氧 剂通道(6)与所述固体氧化物燃料电池组件(1)中发电机构的阴极(10)的入口端连接。
  4. 根据权利要求2所述的固体氧化物燃料电池系统,其特征在于,所述燃料供应装置包括燃料室(11)、燃料压气机(12)、空气压气机(14)和混合室(19),所述燃料室(11)的出口端与燃料压气机(12)的输入端连接,所述燃料压气机(12)的输出端与混合室(19)的入口端连接,所述混合室(19)的另一入口端连接有所述空气压气机(14),所述混合室(19)的出口端连接于所述上盖(3)和连接板(4)的燃料通道(7),并经所述燃料通道(7)与所述固体氧化物燃料电池组件(1)中发电机构的阳极(8)的入口端连接。
  5. 根据权利要求4所述的固体氧化物燃料电池系统,其特征在于,所述混合室(19)与空气压气机(14)之间设置有空气预加热室(17),所述混合室(19)与燃料压气机(12)之间设置有燃料预加热室(18)。
  6. 根据权利要求4所述的固体氧化物燃料电池系统,其特征在于,所述空气压气机(14)的进气端设置有过滤箱(13),所述过滤箱(13)中安装有过滤网。
  7. 根据权利要求2或3或4或5或6所述的固体氧化物燃料电池系统,其特征在于,所述固体氧化物燃料电池组件(1)中发电机构的阴极(10)的出口端连接有回收装置(22),所述回收装置(22)的输出端与所述连接板(4)和底座(5)的氧化剂通道(6)连接,以将一部分未使用的氧化剂回收并输送至发电机构的阴极(10)。
  8. 根据权利要求7所述的固体氧化物燃料电池系统,其特征在于,所述固体氧化物燃料电池组件(1)中发电机构的阴极(10)的出口端还连接有输送装置(23),所述输送装置(23)的输出端连接于燃烧室(20),以将一部分未使 用的氧化剂输送至燃烧室(20)。
  9. 根据权利要求1至6中任一或8所述的固体氧化物燃料电池系统,其特征在于,所述燃烧室(20)连接有节能装置(21),所述节能装置(21)的输出端与所述氧化剂供应装置的氧化剂压气机(16)以及燃料供应装置燃料压气机(12)和空气压气机(14)连接,以将燃烧室(20)中燃料燃烧后产生的废气输送到氧化剂压气机(16)、燃料压气机(12)和空气压气机(14)。
  10. 一种如权利要求1-9中任意一项所述的固体氧化物燃料电池系统的控制方法,其特征在于:包括以下步骤:
    S1.制备燃料-空气混合气体,通过燃料供给装置将燃料和空气进行均匀混合,得到燃料-空气混合气体;
    S2.向发电机构供给燃料-空气混合气体和氧化剂,燃料供给装置和氧化剂供应装置分别通过固体氧化物燃料电池(2)的燃料通道(7)和氧化剂通道(6)向发电机构的阳极(8)输送燃料-空气混合气体和向阴极(10)输送氧化剂,进行电化学反应;
    S3.燃烧燃料,将输送至阳极(8)进行电化学反应而未反应的燃料-空气混合气体输送至燃烧室(20)进行燃烧。
PCT/CN2022/129134 2022-03-29 2022-11-02 一种固体氧化物燃料电池系统及控制方法 WO2023184973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210315973.9 2022-03-29
CN202210315973.9A CN114899465A (zh) 2022-03-29 2022-03-29 一种固体氧化物燃料电池系统及控制方法

Publications (1)

Publication Number Publication Date
WO2023184973A1 true WO2023184973A1 (zh) 2023-10-05

Family

ID=82715283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129134 WO2023184973A1 (zh) 2022-03-29 2022-11-02 一种固体氧化物燃料电池系统及控制方法

Country Status (2)

Country Link
CN (1) CN114899465A (zh)
WO (1) WO2023184973A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114899465A (zh) * 2022-03-29 2022-08-12 深圳技术大学 一种固体氧化物燃料电池系统及控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499534A (zh) * 2008-01-31 2009-08-05 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池分布式热电联产系统
CN102089914A (zh) * 2008-07-10 2011-06-08 瓦锡兰芬兰有限公司 增强燃料电池系统的预热的方法和结构
CN103236555A (zh) * 2012-11-05 2013-08-07 华中科技大学 一种固体氧化物燃料电池系统及热电协同控制方法
CN105261771A (zh) * 2015-10-20 2016-01-20 华中科技大学 一种固体氧化物燃料电池系统
CN106058287A (zh) * 2016-06-27 2016-10-26 南京特亿达新能源科技有限公司 一种带天然气重整制氢的sofc独立发电系统
CN107706437A (zh) * 2017-09-29 2018-02-16 中国矿业大学 一种固体氧化物燃料电池电堆及加热启动方法
CN211829033U (zh) * 2020-04-27 2020-10-30 晋中学院 一种改进的固体氧化物燃料电池装置
CN112542602A (zh) * 2020-12-22 2021-03-23 天津大学 一种热电比可调的sofc热电联供系统及其调控方法
CN114899465A (zh) * 2022-03-29 2022-08-12 深圳技术大学 一种固体氧化物燃料电池系统及控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921596B2 (en) * 2002-06-24 2005-07-26 Delphi Technologies, Inc. Solid-oxide fuel cell system having an integrated reformer and waste energy recovery system
GB2486001B (en) * 2010-12-01 2012-11-21 Rolls Royce Fuel Cell Systems Ltd A solid oxide fuel cell system and a method of operating a solid oxide fuel cell system
CN212642906U (zh) * 2020-07-17 2021-03-02 深圳技术大学 一种车载电解水制氢装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499534A (zh) * 2008-01-31 2009-08-05 中国科学院宁波材料技术与工程研究所 一种固体氧化物燃料电池分布式热电联产系统
CN102089914A (zh) * 2008-07-10 2011-06-08 瓦锡兰芬兰有限公司 增强燃料电池系统的预热的方法和结构
CN103236555A (zh) * 2012-11-05 2013-08-07 华中科技大学 一种固体氧化物燃料电池系统及热电协同控制方法
CN105261771A (zh) * 2015-10-20 2016-01-20 华中科技大学 一种固体氧化物燃料电池系统
CN106058287A (zh) * 2016-06-27 2016-10-26 南京特亿达新能源科技有限公司 一种带天然气重整制氢的sofc独立发电系统
CN107706437A (zh) * 2017-09-29 2018-02-16 中国矿业大学 一种固体氧化物燃料电池电堆及加热启动方法
CN211829033U (zh) * 2020-04-27 2020-10-30 晋中学院 一种改进的固体氧化物燃料电池装置
CN112542602A (zh) * 2020-12-22 2021-03-23 天津大学 一种热电比可调的sofc热电联供系统及其调控方法
CN114899465A (zh) * 2022-03-29 2022-08-12 深圳技术大学 一种固体氧化物燃料电池系统及控制方法

Also Published As

Publication number Publication date
CN114899465A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN215578650U (zh) 使用氨气为燃料的固体氧化物燃料电池与质子交换膜燃料电池混合系统
CN102290589B (zh) 一种阴极支撑型直接碳燃料电池
JP2007538379A5 (zh)
CN111525166B (zh) 一种混合高温燃料电池发电系统和方法
CN1516310A (zh) 带有再循环空气和燃料流的集成燃料电池混合发电厂
US11728502B2 (en) Electrolyte replenishment method for molten carbonate fuel cell stack
WO2023184973A1 (zh) 一种固体氧化物燃料电池系统及控制方法
Zhou et al. A promising direct carbon fuel cell based on the cathode-supported tubular solid oxide fuel cell technology
DE69931171D1 (de) Stromerzeugungssystem
CN105154907A (zh) 一种基于固体氧化物电解质的电解水制氧系统与方法
CN103490087A (zh) 便携式电源用管式固体氧化物燃料电池堆及其组装方法
CN114725428B (zh) 一种以氨气为载体的零碳排放固体氧化物燃料电池与可再生能源联合发电系统
CN100588017C (zh) 一种中低温复合电解质及其制备方法和利用这种电解质的燃料电池
CN206685472U (zh) 一种大功率熔融碳酸盐燃料电池堆
CN212011147U (zh) 一种混合高温燃料电池发电系统
CN105024446A (zh) 供电方法
CN117558933A (zh) 可逆固体氧化物电池一体式热管理系统
CN109944700A (zh) 燃气轮机与燃料电池联合发电方法
CN114243067B (zh) 直接碳燃料电池
KR101133543B1 (ko) 탄소 수증기 개질장치를 포함한 연료전지 열병합 발전 시스템
CN113890091A (zh) 一种利用储氢系统解决建筑光伏消纳问题的方法
CN112164817A (zh) 一种固体氧化物燃料电池发电系统
CN210736903U (zh) 一种氨电解制氢装置
CN100379075C (zh) 一种带自起动装置的燃料电池发电系统
CN115172803B (zh) 一种新型可控温氨气燃料电池-转子发动机混动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934791

Country of ref document: EP

Kind code of ref document: A1