WO2023184910A1 - 用于自动调谐电感耦合等离子体质谱仪的方法和系统 - Google Patents

用于自动调谐电感耦合等离子体质谱仪的方法和系统 Download PDF

Info

Publication number
WO2023184910A1
WO2023184910A1 PCT/CN2022/122612 CN2022122612W WO2023184910A1 WO 2023184910 A1 WO2023184910 A1 WO 2023184910A1 CN 2022122612 W CN2022122612 W CN 2022122612W WO 2023184910 A1 WO2023184910 A1 WO 2023184910A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
flow rate
preset
response value
target object
Prior art date
Application number
PCT/CN2022/122612
Other languages
English (en)
French (fr)
Inventor
谢远国
井蓝天
许梦祥
张会永
梁炎
Original Assignee
瑞莱谱(杭州)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞莱谱(杭州)医疗科技有限公司 filed Critical 瑞莱谱(杭州)医疗科技有限公司
Publication of WO2023184910A1 publication Critical patent/WO2023184910A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas

Definitions

  • the invention belongs to the technical field of inductively coupled plasma mass spectrometry analysis, and specifically relates to a method and system for automatically tuning an inductively coupled plasma mass spectrometer.
  • ICP-MS Inductively coupled plasma mass spectrometry
  • ICP-MS Inductively coupled plasma mass spectrometry
  • inductively coupled plasma mass spectrometer uses inductively coupled plasma as the ion source and mass spectrometry for detection.
  • Inorganic multi-element analysis technology Because it can simultaneously measure dozens of trace inorganic elements, it has a prominent position in inorganic laboratories.
  • ICP-MS in medical treatment is mainly used to measure the content of trace elements in the human body to diagnose some occupational diseases. Because ICP-MS can measure almost all samples, collect and measure multiple elements at one time, and provide isotope information at the same time, it can also be widely used in various other fields such as metallurgy, environment, biology, geology, microelectronics, and food safety.
  • ICP-MS will be subject to various mass spectrometry and non-mass spectrometry interferences during the analysis process.
  • Polyatomic molecular ion interference is a serious type of mass spectrometry interference. Its existence greatly reduces the accuracy of the analysis results and affects ICP-MS. The detection capability of the instrument limits the application scope of ICP-MS.
  • the methods that can be used to solve the interference of polyatomic molecular ions include: mathematical correction; using flow injection, electrothermal evaporation, chromatography and other technologies to separate interfering ions; changing the ionization conditions of the plasma source part through cold plasma and shielded torch technology to reduce the number of polyatomic molecules. Atom formation; and collision/reaction cell technology.
  • collision/reaction cell technology is currently the most important and effective means to solve this interference.
  • Collision/reaction cell technology improves the ability of ICP-MS to detect trace and ultra-trace elements and perform isotope analysis and speciation analysis, broadening the application scope of ICP-MS.
  • the parameters of the mass spectrometer should be optimized before sample analysis. This process is the tuning of the mass spectrometer. During tuning, the parameters of the ion source components will be set; to obtain a good degree of ionization, the voltage of the ion optical components will be set to obtain a good ion transmission rate.
  • Tune instrument operating conditions through instrument tuning For multi-element analysis, compromise conditions are generally adopted.
  • the main indicators of tuning are sensitivity, stability, and interference levels such as oxides.
  • Mixed solutions containing elements in light, medium and heavy mass ranges (such as Li, Be, Co, In, Rh, Ce, Th, Bi, U, the concentration range is generally 1 to 10ng/mL) are usually used for optimal tuning. experiment.
  • Tuned instrument parameters include lens group voltage, plasma sampling position (up, down, left and right positioning), carrier gas flow rate, collision gas flow rate, etc.
  • the manual tuning process can be slow and requires a significant amount of time dedicated to performing manual tuning. This is valuable time that could be used to analyze the analysis sample, and manual tuning requires high expertise on the part of the operator. As a result, some users may skip performing manual tuning, or perform the manual tuning process with unsatisfactory results.
  • an object of the present invention is to provide a method and system for automatically tuning an inductively coupled plasma mass spectrometer.
  • the automatic tuning method of the present invention can replace manual tuning of the instrument and optimize the instrument to a good state for analysis.
  • the present invention can be customized and edited, and different users can adjust according to their own needs, and can meet the different needs of different users.
  • embodiments of the present invention provide a method for automatically tuning an inductively coupled plasma mass spectrometer, including:
  • Step 101 Adjust the relative position of the plasma flame and the sampling cone so that the center of the plasma is aligned with the sampling cone hole;
  • Step 102 Adjust the atomization gas flow rate to the optimal atomization gas flow rate so that different elements can reach the desired ionization degree, and the atomization gas carries the sample;
  • Step 103 Adjust the extraction lens
  • Step 104 Adjust the focusing lens
  • Step 105 Adjust the deflection lens
  • Step 106 Adjust the atomizing gas flow rate again.
  • step 101 includes:
  • the position of the plasma corresponding to the maximum response value of the target object is used as the adjusted position.
  • step 102 includes:
  • the preset target object includes a first target object and a second target object.
  • the flow rate of the atomized gas is as Adjusted optimal atomizing gas flow rate.
  • the response value of the first target meets a preset condition, and the ratio of double charges in the oxide is not higher than the preset value, and the response value of the second target
  • the atomizing gas flow rate when reaching the maximum value is used as the adjusted optimal atomizing gas flow rate.
  • step 103 includes:
  • the preset target object includes a third target object and a fourth target object.
  • the extraction lens voltage is used as the adjustment The optimal extracted lens voltage after.
  • step 104 includes:
  • the focusing lens voltage is used as the adjusted optimal focusing lens voltage.
  • the preset target in step 104 is a low mass element.
  • step 105 includes:
  • the deflection lens voltage is used as the adjusted optimal deflection lens voltage.
  • step 106 includes:
  • the preset target object includes a first target object and a second target object.
  • the atomized gas flow rate when the response value of the second target object reaches the maximum value is used as the adjusted optimal atomized gas flow rate.
  • step 102 between step 102 and step 103, it further includes:
  • Step 102A Adjust the temperature of the atomization chamber to change the amount of aerosol introduced into the plasma.
  • the method includes:
  • Step 201 Adjust the collision air flow rate
  • Step 202 adjust the deflection lens group
  • Step 203 Adjust the collision air flow rate again.
  • step 201 includes:
  • the preset target includes a fifth target and a sixth target.
  • the response values of the fifth target and the sixth target both meet the preset conditions, and the responses of the fifth target and the sixth target are
  • the collision air flow rate when the ratio of values reaches the maximum value is regarded as the optimal collision air flow rate after adjustment;
  • the step 202 includes:
  • the preset target includes a fifth target and a sixth target.
  • the response values of the fifth target and the sixth target both meet the preset conditions, and the responses of the fifth target and the sixth target are
  • the deflection lens group voltage when the ratio of values reaches the maximum value is regarded as the optimal deflection lens group voltage after adjustment;
  • the step 203 includes:
  • the preset target includes a fifth target and a sixth target.
  • the response values of the fifth target and the sixth target both meet the preset conditions, and the responses of the fifth target and the sixth target are
  • the collision air flow rate when the ratio of the values reaches the maximum value is regarded as the optimal collision air flow rate after adjustment.
  • the fifth target is Co
  • the sixth target is ArO
  • embodiments of the present invention provide a system for automatically tuning an inductively coupled plasma mass spectrometer, including:
  • the executable instructions when executed by the processor, the method for automatically tuning an inductively coupled plasma mass spectrometer as described above is executed.
  • automatic tuning can completely replace manual tuning.
  • Computer-controlled automatic tuning optimizes the instrument more precisely and accurately than manual tuning, allowing the instrument to achieve optimal performance.
  • Figure 1 is a flow chart of an automatic tuning method in standard mode provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of the judgment flow of each stage in the automatic tuning method provided by the embodiment of the present invention.
  • Figure 3 is a schematic diagram of the principle of ICP flame formation in the automatic tuning method provided by the embodiment of the present invention.
  • Figure 4 is a schematic diagram of the X-Y tuning result display interface provided by the embodiment of the present invention.
  • Figure 5 is a schematic diagram of the carrier gas flow rate tuning interface provided by an embodiment of the present invention.
  • Figure 6 is a schematic diagram of the extraction lens tuning interface provided by an embodiment of the present invention.
  • Figure 7 is a schematic diagram of the focusing lens tuning interface provided by an embodiment of the present invention.
  • Figure 8 is a schematic diagram of the deflection lens tuning interface provided by an embodiment of the present invention.
  • Figure 9 is a schematic diagram of the interface for retuning the carrier gas flow rate provided by an embodiment of the present invention.
  • Figure 10 is a flow chart of another automatic tuning method in standard mode provided by an embodiment of the present invention.
  • Figure 11 is a flow chart of the automatic tuning method in collision mode provided by an embodiment of the present invention.
  • Figure 12 is a schematic diagram of the collision gas flow rate tuning interface provided in this embodiment.
  • Figure 13 is a schematic diagram of the deflection lens tuning interface provided in this embodiment.
  • Figure 14 is a schematic diagram of the re-collision air flow rate tuning interface provided in this embodiment.
  • Figure 15 is a schematic structural block diagram of a system for automatically tuning an inductively coupled plasma mass spectrometer provided in this embodiment.
  • This embodiment provides a method for automatically tuning an inductively coupled plasma mass spectrometer in standard mode.
  • FIG. 1 is a flow chart of the standard mode automatic tuning method provided in this embodiment.
  • the inductively coupled plasma mass spectrometer (hereinafter also referred to as the "instrument") is stable for at least 15 minutes after ignition. During this period, the inductively coupled plasma mass spectrometer (hereinafter referred to as the "instrument") is heated with 1 ng/mL of Li, Be, Mg, Co, Y, In, Ce, Tl, and U. Tuning solutions are used to optimize instrument parameters.
  • the judgment conditions include one main condition (maximum value, minimum value), and several secondary conditions (greater than, less than).
  • the judgment process includes:
  • Step (1) Obtain all scan data at this stage
  • Step (2) Start judging from the first set of data
  • Step (3) Determine whether the main conditions are passed
  • Step (4) Determine whether the first condition is passed or not
  • Step (5) Select the best data from the passed data group according to the settings of the main conditions.
  • step (5) During the actual operation, if the automatic tuning is successful, it is judged that the execution of step (5) is completed;
  • Case 2 Some data satisfy part of the conditions in step (4) of the judgment process, and some data satisfy another part of the conditions in step (4) of the judgment process, and output secondary condition conflicts and several sets of possible best values.
  • coarse adjustment and fine adjustment settings are also performed.
  • some parameters were set for multiple iterations to streamline the parameter step range step by step. Normally, 2-3 iterations are set up in one stage. The first one is coarse adjustment, using a wider parameter step size and fewer sweeps. The second one is fine adjustment, with a narrower parameter step size and fewer scans. The number of times is relatively high.
  • 4 to 9 exemplarily illustrate a progress window for presenting the automatic tuning status of an inductively coupled plasma mass spectrometer.
  • “Yes” in the last column of the target judgment result indicates that the current result meets the judgment conditions.
  • Some windows also set the calculation result RSD (standard deviation) on the left side of "Yes” to represent the degree of fluctuation of the response value. The smaller the RSD, the more stable the response value is. The example given in this embodiment displays 0 because this calculation is not enabled.
  • these progress windows are also provided with dialog boxes or command areas to allow the user to command to skip a certain step at any time during automatic tuning, or to stop after completing the current step, or to stop the automatic tuning process immediately.
  • the method may include the following steps:
  • Step 101 Adjust the relative position of the plasma flame and the sampling cone.
  • the first step of automatic tuning is to optimize the position of the transverse motor and the longitudinal motor, that is, "X-Y tuning".
  • X-Y on the instrument corresponds to the relative position (horizontal and longitudinal) of the plasma flame and the sampling cone mouth.
  • ICP-MS has a two-dimensional module.
  • the main body of the entire module is a movable mounting plate with a total of two motors, which respectively control the movement in the X-Y direction.
  • the X motor controls the movement of the two-dimensional module in the X direction
  • the Y motor controls the movement of the two-dimensional module in the Y direction.
  • ICP-MS uses inductively coupled plasma as the ion source.
  • ICP flame There are three conditions for the formation of ICP flame: high-frequency electromagnetic field, working gas, and quartz torch that can maintain stable gas discharge.
  • high-frequency electromagnetic field As shown in Figure 3, a water-cooled induction coil is surrounded on the upper part of the tube.
  • High-frequency sparks and other methods are used to ionize the working gas flowing in the middle.
  • the generated ions and electrons then interact with the undulating magnetic field generated by the induction coil. This interaction causes the ions and electrons in the coil to follow the closed loop as shown in the figure. flow. Their resistance to this movement results in ohmic heating.
  • the high temperature generated by the powerful current heats the gas, forming a torch-like plasma.
  • the sample is carried by the atomizing gas in the form of aerosol, and is heated and ionized through the center of the plasma. Therefore, the ions generated by the ionization of the sample mainly exist in the center of the plasma.
  • the interface is the most critical part of the entire ICP-MS system. Its function is to efficiently transfer ions in the plasma to the mass spectrometer.
  • the interface is usually composed of a sampling cone and a intercepting cone.
  • the sampling cone is in direct contact with the plasma.
  • the function of the sampling cone is to suck most of the carrier gas flow, that is, the ion flow, from the plasma center channel into the cone hole and enter the first stage vacuum. room.
  • the cone hole of the sampling cone is very small, usually around 1mm.
  • the interface of a typical inductively coupled plasma mass spectrometer is a vacuum interface module, which includes at least a sampling cone, a skimmer cone, and an extraction lens from the upstream to the downstream of the plasma flow.
  • the sampling cone has an upstream tapered outer surface and a downstream tapered inner surface, and a sampling hole is provided at the intersection between the outer surface and the inner surface.
  • the skimmer cone includes a generally conical portion and a generally cylindrical portion.
  • the tapered portion has an upstream tapered outer surface and a downstream tapered inner surface, and a cutout hole is provided at the intersection of the two.
  • the tapered part and the cylindrical part form a channel for the plasma to continue flowing to the downstream extraction lens. Extraction lenses are used to extract sample ions from the plasma for downstream analysis.
  • the instrument When X-Y tuning is started, the instrument will gradually change the X-Y position of the plasma according to the set X-Y range and step size, and at the same time detect the response value of the In element of the set target. As shown in Figure 4, the response value of the measured target object will be displayed in real time on the graph, and the point with the largest response value of the target object will be selected as the optimized value. At the same time, users can also customize the X-Y range (default -2-2mm), step length (default 0.02mm) and the target object used as needed. Since X-Y tuning has the same impact on all elements, only the In element with a medium mass number is selected here.
  • Step 102 Adjust the flow rate of atomizing gas.
  • the nebulizer gas passes through the nebulizer to convert the liquid sample into an aerosol state.
  • Atomization means that when the liquid passes through the atomizer, the mechanical force of the atomization gas overcomes the surface tension between the liquid molecules and separates them into smaller particles, thereby producing an atomization effect.
  • the carrier gas carries the sample through the center of the plasma, causing the sample to be heated and ionized.
  • the size of the carrier gas flow rate directly affects the final response value. If the carrier gas flow rate is too high, the sample will stay in the plasma for a shorter time, resulting in a lower ionization degree. If the carrier gas flow rate is too small, the sample cannot pass through the plasma, causing the sampling cone to be unable to collect sample ions.
  • Figure 5 is a schematic diagram of the carrier gas flow rate tuning interface.
  • the instrument When the carrier gas flow rate adjustment is started, the instrument will gradually change the carrier gas flow rate according to the set carrier gas flow rate range step, and at the same time detect the response value of the set target object. Since the carrier gas flow rate has different effects on elements with different mass numbers, the optimal gas flow rates required for different elements are different. Therefore, according to the needs, this embodiment sets the detection values of a total of four elements with different mass numbers, such as low, medium and high. . The staged results are shown in Figure 5.
  • this embodiment adjusts the atomization gas and other parameters for a second time.
  • the two adjustments are The adjustment is set to coarse adjustment and fine adjustment, and the fine adjustment percentage is set at the same time, which not only ensures the results, but also saves time.
  • Step 103 Adjust the extraction lens.
  • Adjusting the extraction lens means extracting ions into subsequent components by adjusting the voltage of the extraction lens.
  • the extraction lens follows the skimmer cone and is located directly on the skimmer cone base.
  • the function of the extraction lens is to extract the ions passing through the skimmer cone and accelerate them into the deflection lens. Because the ions to be measured have a single positive charge, applying negative pressure on the extraction lens can accelerate the positive ions while repelling the electrons, causing the electrons to collide with the skimmer cone or the wall of the vacuum chamber, while neutral particles and photons are not extracted. The effects of a lens continue into subsequent lenses.
  • the entrance of the extraction lens is a channel with a diameter of 10 mm, and then gradually changes to a channel with a diameter of 25 mm.
  • the outer surface of the entrance is a conical surface, which is used to extract ions and accelerate the ions.
  • Figure 6 is a schematic diagram of the extraction lens tuning display interface provided in this embodiment.
  • this embodiment sets the detection values of a total of four elements with different mass numbers, such as low, medium and high. .
  • the display interface is shown in Figure 6.
  • Step 104 Adjust the focusing lens.
  • Adjusting the focusing lens means focusing the ions into subsequent components by adjusting the voltage of the focusing lens.
  • the focusing lens is located immediately after the collision reaction cell and before the differential hole.
  • the function of this focusing lens is to focus the ions passing through the collision reaction cell so that they enter the differential hole. Because the ions to be measured carry a single positive charge, applying positive pressure to the focusing lens can attract electrons while focusing the positive ions.
  • the "mass discrimination" caused by the "space charge effect” is an important factor that directly affects the ion transmission efficiency and the uniformity of ion transmission within the entire mass range. This effect is particularly severe when the mass of the matrix ion is greater than that of the analyte ion.
  • the ion flow is balanced by an equal electron flow, so the entire ion beam is essentially electrically neutral. But after the ion flow leaves the skimmer cone, the electric field established by the lens will collect ions and repel electrons, and the electrons will no longer exist. As a result, the ions are trapped in a very narrow ion beam.
  • the ion beam is not quasi-neutral at the moment, but the ion density is still very high.
  • Mutual repulsion between similarly charged ions limits the total number of ions in the ion beam.
  • the space charge effect in ICP-MS is significant, which means that the higher the matrix concentration and the greater the number of heavy ions, the more significant the space charge effect will be. If the same space charge force acts on all ions, the light ions will be most affected and deflected (discriminated) the most, so the sensitivity will be low.
  • Space charge effect is the main source of matrix effect in ICP-MS.
  • Figure 7 is a schematic diagram of the focusing lens tuning interface provided in this embodiment.
  • the instrument When the focus lens adjustment is started, the instrument will gradually change the focus voltage according to the set focus lens range step, and at the same time detect the response value of the set target object.
  • the effect of the focusing lens on elements with different mass numbers is different, and the optimal focusing lens voltage required for different elements is different.
  • the transmission efficiency of higher mass elements is high, while the transmission efficiency of lower mass elements is low. Therefore, according to actual needs, in this embodiment, the element Co at low and medium mass is set as the detection value, which not only ensures a high response value at medium and high quality, but also prevents the response value of the element at low mass from being low.
  • Step 105 Adjust the deflection lens.
  • Adjusting the deflection lens means adjusting the deflection voltage to deflect the ions into subsequent components while eliminating or reducing neutrons and photons in the ion flow.
  • the deflection lens consists of two sets of four lenses. By applying different voltages to the two sets of deflection lenses, the trajectory of ions in the deflection lens is deflected. Neutrons and photons are not affected by the electric field and are thus removed.
  • the deflection lens The voltage on the ionizer affects the results of interference removal and affects the efficiency of ion transmission.
  • Figure 8 is a schematic diagram of the deflection lens tuning interface.
  • the instrument When the deflection lens adjustment is started, the instrument will gradually change the deflection lens voltage according to the set deflection lens range step, and at the same time detect the response value of the set target object. Due to the effect of the deflection lens on different elements, three elements at low, medium and high quality are set as detection values. Since the two sets of lenses in the deflection lens are interactive and interrelated, the tuning of the deflection lens needs to be iterated to achieve the best results. Good value. During the tuning of the deflection lens, first make a rough adjustment to the deflection lens 1 and the deflection lens 2 in sequence, and then narrow the range according to the adjustment value, and then make a fine adjustment to the deflection lens 1 and the deflection lens 2.
  • Step 106 Adjust the atomizing gas flow rate again.
  • the last step of the automatic tuning method in standard mode is to perform atomization gas tuning again.
  • Figure 9 is a schematic diagram of the interface for adjusting the carrier gas flow rate for the second time.
  • this embodiment sets the detection values of a total of four elements with different mass numbers, such as low, medium and high. .
  • the user display interface is shown in Figure 9.
  • this embodiment adjusts the atomization gas and other parameters for a second time.
  • the two adjustments are The adjustment is set to coarse adjustment and fine adjustment, and the fine adjustment percentage is set at the same time, which not only ensures the results, but also saves time.
  • This embodiment provides an optimal automatic tuning method in standard mode.
  • a step 102A of adjusting the temperature of the atomizing chamber is added.
  • the process is shown in Figure 10, specifically as follows:
  • Step 102A Adjust the temperature of the spray chamber.
  • the amount of aerosol introduced into the plasma is changed.
  • adjusting the temperature of the spray chamber is to reduce the amount of water vapor introduced, that is, to reduce the load of water in the plasma, thereby achieving the purpose of reducing the interference of polyatomic ions and oxide ions, while ensuring the response value of the elements.
  • the instrument When starting to adjust the temperature of the spray chamber, the instrument will gradually change the temperature of the spray chamber according to the set step size of the spray chamber temperature range, and at the same time detect the response value of the set target object. Since the temperature of the spray chamber has different effects on elements with different mass numbers, this embodiment sets the detection values of a total of four elements with different mass numbers, including low, medium and high, as needed.
  • the purpose of adjusting the temperature of the spray chamber is to reduce the impact of interference on the detection results.
  • the polyatomic ion interference formed by elements such as H and O has a greater impact on the accuracy of the ICP-MS detection results.
  • interference indicators need to be considered when adjusting the temperature of the spray chamber. When the element response value reaches the standard, the lower the interference value, the better.
  • This embodiment provides an automatic tuning method in collision mode.
  • Figure 11 is a flow chart of the collision mode automatic tuning method provided in this embodiment.
  • these progress windows can also be set up with dialog boxes or command areas to allow the user to command to skip a certain step at any time during automatic tuning, or to stop after completing the current step, or to stop the automatic tuning process immediately.
  • the method includes the following steps:
  • Step 201 Adjust the collision air flow rate.
  • the first step of automatic tuning in KED mode is to adjust the collision gas flow rate. By adjusting the collision gas flow rate, the kinetic energy of the ions to be measured and the interfering ions is changed.
  • KED mode works based on the following basic principles.
  • All molecular ions contain more than two atoms, and their collision cross sections are larger than those of monoatomic ions.
  • the number of collisions between ions with a large collision cross section and the collision gas is greater than that of ions with a small collision cross section.
  • the potential energy of the mass spectrometer quadrupole mass analyzer to be higher than the potential energy of the collision/reaction cell.
  • the potential energy barrier is higher than the kinetic energy of the molecular ions, they will not be able to enter the quadrupole and thus cannot cause interference; and the kinetic energy
  • the higher ions to be measured can cross the potential energy difference and enter the quadrupole mass analyzer, where they can be detected by the instrument.
  • Figure 12 is a schematic diagram of the collision gas flow rate tuning interface provided in this embodiment.
  • the instrument When the collision gas flow rate adjustment is started, the instrument will gradually change the collision gas flow rate according to the set collision gas flow rate range step, and at the same time, it will detect the response value of the set target object and the response value of the interference. Since the impact of the collision gas on the element to be measured and the interference object are different, the response values of the target object and the interference object are set separately. Among them, when Co>30000 is satisfied, the larger the ratio of Co/ArO, the better.
  • Step 202 Adjust the deflection lens group.
  • the lens voltage in the standard mode is no longer suitable for ion transmission in the KED mode.
  • new neutral particles may be produced in the ion flow due to violent collisions or other reactions. Therefore, it is necessary to re-optimize the voltage of the deflection lens group to improve ion transmission efficiency and reduce interference.
  • Figure 13 is a schematic diagram of the deflection lens tuning interface provided in this embodiment.
  • the instrument When starting to adjust the deflection lens, the instrument will gradually change the extraction lens voltage according to the set deflection lens range step. Since in collision mode, we pay more attention to the response value of Co and the Co/ArO ratio, we will set it as needed. When Co>30000, the larger the Co/ArO ratio, the better. Since the two sets of lenses in a deflection lens are interactively related, the tuning of the deflection lens requires iteration to achieve the optimal value. During the tuning of the deflection lens, first make a rough adjustment to the deflection lens 1 and the deflection lens 2 in sequence, and then narrow the range according to the adjustment value, and then make a fine adjustment to the deflection lens 1 and the deflection lens 2.
  • Step 203 Adjust the collision air flow rate again.
  • the collision gas flow rate is adjusted again because the collision gas makes the response value fluctuate to a certain extent. By adjusting the collision gas flow rate again, it is ensured that the collision air flow rate reaches the optimal value.
  • Figure 14 is a schematic diagram of the re-collision air flow rate tuning interface provided in this embodiment.
  • the instrument When the collision gas flow rate adjustment is started, the instrument will gradually change the collision gas flow rate according to the set collision gas flow rate range step, and at the same time, it will detect the response value of the set target object and the response value of the interference. Since the impact of the collision gas on the element to be measured and the interference object are different, the response values of the target object and the interference object are set separately. Among them, when Co>30000 is satisfied, the larger the ratio of Co/ArO, the better.
  • This embodiment provides a system for automatically tuning an inductively coupled plasma mass spectrometer. It serves as a host computer to control the inductively coupled plasma mass spectrometer, and is suitable for completing automatic tuning of the mass spectrometer in standard mode and collision mode.
  • FIG. 15 shows a schematic structural block diagram of a system 100 for automatically tuning an inductively coupled plasma mass spectrometer according to an exemplary implementation of this embodiment.
  • System 100 for automatically tuning an inductively coupled plasma mass spectrometer includes a processor 110 and a memory 130 .
  • Processor 110 includes hardware elements 120 that may be configured as processing units, functional blocks, and the like. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. Hardware element 120 is not limited by the materials from which it is formed or the processing mechanisms employed therein.
  • processor 110 may be composed of semiconductor(s) and/or transistors.
  • Processor 110 may include a single processing unit or multiple processing units, and all processing units may include single or multiple computing units or multiple cores.
  • Processor 110 may be implemented as one or more microprocessors, microcomputers, microcontrollers, digital signal processors, central processing units, and/or any device that manipulates signals based on operating instructions.
  • the processor 110 may be configured to obtain and execute executable instructions stored in the memory 130 to perform the aforementioned method for automatically tuning an inductively coupled plasma mass spectrometer.
  • Memory 130 includes a computer-readable storage medium 140 that may be configured to store executable instructions that, when executed by processor 110, may implement the methods for automatically tuning an inductively coupled plasma mass spectrometer described above.
  • Computer-readable storage media 140 may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable executable instructions , data, etc.
  • Computer-readable storage medium 140 may include, without limitation, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD), or other optical storage device, magnetic cartridge, tape, disk storage device or other Magnetic storage device, or any other storage medium that can be used to store information.
  • system 100 for automatically tuning an inductively coupled plasma mass spectrometer may also include a system bus or other data and command transfer system to connect processor 110 and memory 130 to each other.
  • the system bus may include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or processor utilizing any of the various bus architectures. local bus.
  • the system 100 for automatically tuning an inductively coupled plasma mass spectrometer establishes a wired and/or wireless communication connection with the inductively coupled plasma mass spectrometer, so that when the processor 110 executes the aforementioned method for automatically tuning an inductively coupled plasma mass spectrometer , to achieve actual control of each component of the inductively coupled plasma mass spectrometer.
  • the instructions stored in the memory 130 of the system 100 for automatically tuning an inductively coupled plasma mass spectrometer when executed, cause the processor 110 to: receive information about automating the inductively coupled plasma mass spectrometer ICP-MS.
  • User data input for tuning where user data input includes the selection of the operating mode of the inductively coupled plasma mass spectrometer, and the selection of the type, detection range, threshold and other parameters of the target (various elements, compounds involved in automatic tuning, etc.) Settings allow users to edit according to their own needs and meet users' needs in different scenarios. Operating modes include standard mode and collision mode. User input may include one or a combination of mouse clicks, keystrokes, and selection of graphical user interface components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

本发明提供一种用于自动调谐电感耦合等离子体质谱仪的方法和系统。标准模式下的所述方法包括:步骤101、调节等离子体火焰与采样锥口的相对位置;步骤102、调节雾化气流速;步骤103、调节提取透镜;步骤104、调节聚焦透镜;步骤105、调节偏转透镜;步骤106、再次调节雾化气流速。本发明的自动调谐能完全替代手动调谐;自动调谐完全自动化,将根据设定好的流程自动执行,无需人工干涉,极大的降低了对操作人员的专业需求,使初学者也能很好的使用仪器;同时本发明的自动调谐采用开放式设计,能够使用户根据自身需求来编辑,能够用户在不同场景下的使用需求。

Description

用于自动调谐电感耦合等离子体质谱仪的方法和系统
相关申请的交叉引用
本申请基于申请号为202210336717.8、申请日为2022年3月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明属于电感耦合等离子体质谱分析技术领域,具体涉及一种用于自动调谐电感耦合等离子体质谱仪的方法和系统。
背景技术
人体微量元素的多与少都会对人体健康构成显著的影响,目前的研究已证明部分元素的缺乏或过量与多种疾病有直接关系。同时,微量元素在人体内是一个动态平衡的过程。因此,准确、快速、方便的检测人体微量元素无论对健康管理及对临床疾病诊疗均具有重要意义。ICP-MS(Inductively coupled plasma mass spectrometry)是一种将ICP技术和质谱结合在一起的分析仪器,全称为电感耦合等离子体质谱仪,其采用以电感耦合等离子体作为离子源、以质谱进行检测的无机多元素分析技术。由于其能同时测定几十种痕量无机元素,在无机实验室地位斐然。目前医疗中的ICP-MS主要用来测人体内微量元素含量,从而做一些职业病的诊断。由于ICP-MS能测量几乎所有的样品,并且能够一次采集、测定多元素,同时提供同位素的信息,还可广泛应用于冶金、环境、生物、地质、微电子和食品安全等其他各个领域。
但是ICP-MS在分析过程中会受到各种质谱和非质谱干扰,其中多原子分子离子干扰是比较严重的一种质谱干扰,它的存在大大降低了分析结果的准确性,影响了ICP-MS仪器的检测能力,限制了ICP-MS的应用范围。目前,可用于解决多原子分子离子干扰的方法有:数学校正;采用流动注射、电热蒸发、色谱等技术分离干扰离子;通过冷等离子体、屏蔽炬技术改变等离子体源部分的电离条 件以减少多原子形成;以及碰撞/反应池技术。其中碰撞/反应池技术是目前解决这种干扰的最主要最有效的手段。碰撞/反应池技术提高了ICP-MS检测痕量超痕量元素以及进行同位素分析和形态分析的能力,拓宽ICP-MS的应用范围。
为得到好的质谱数据,在进行样品分析前应对质谱仪的参数进行优化,该过程就是质谱仪的调谐。调谐中将设定离子源部件的参数;得到良好的电离度,设定离子光学部件的电压,得到较好的离子传输率。
通过调谐达到最佳化响应值(最大信号、最小噪音)、最小化干扰(氧化物、双电荷、多原子离子干扰)以及检查离子比率是否正确(氧化率、双电荷率)的目的。
通过仪器调谐将仪器工作条件最佳化。对于多元素分析,一般是采取折中条件。调谐的主要指标是灵敏度、稳定性、氧化物等干扰水平。通常采用含有轻、中、重质量范围的元素的混合溶液(例如Li,Be,Co,In,Rh,Ce,Th,Bi,U,浓度范围一般为1~10ng/mL)进行最佳化调谐实验。调谐的仪器参数包括透镜组电压,等离子体采样位置(上下左右定位),载气流速、碰撞气流速等。
然而,手动调谐过程可能较慢并且需要大量时间专门用于执行手动调谐。这是本可以用于分析分析样品的宝贵时间,且手动调谐对于操作人员有较高的专业要求。导致某些用户可能跳过执行手动调谐,或者执行手动调谐过程的效果不理想。
发明内容
有鉴于此,本发明的目的在于提供一种用于自动调谐电感耦合等离子体质谱仪的方法和系统。本发明自动调谐的方法能够代替手动去调谐仪器,将仪器优化至一个良好的状态以供分析。另外本发明可以自定义编辑,不同的用户可以根据自己的需要进行调整,能够满足不同用户的不同需求。
第一方面,本发明实施例提供一种用于自动调谐电感耦合等离子体质谱仪的方法,包括:
步骤101、调节等离子体火焰与采样锥的相对位置,以使等离子体中心对准 采样锥锥孔;
步骤102、调节雾化气流速至最佳雾化气流速,使不同的元素达到期望的电离程度,所述雾化气携带样品;
步骤103、调节提取透镜;
步骤104、调节聚焦透镜;
步骤105、调节偏转透镜;
步骤106、再次调节雾化气流速。
根据本发明的一些示例性实施例,其中:所述步骤101包括:
逐步改变等离子体的横向位置和/或纵向位置,
检测该步骤预设目标物的响应值,
将所述目标物的响应值最大时对应的等离子体的位置作为调节后的位置。
根据本发明的一些示例性实施例,其中:所述步骤102包括:
逐步改变雾化气流速,检测该步骤的预设目标物的响应值;
所述预设目标物包括第一目标物和第二目标物,当所述第一目标物的响应值满足预设条件,且第二目标物的响应值达到最大值时的雾化气流速作为调整后的最佳雾化气流速。
根据本发明的一些示例性实施例,其中:当所述第一目标物的响应值满足预设条件,且在氧化物双电荷的比率不高于预设值、以及第二目标物的响应值达到最大值时的雾化气流速作为调整后的最佳雾化气流速。
根据本发明的一些示例性实施例,其中:所述步骤103包括:
逐步改变提取透镜电压,检测该步骤预设目标物的响应值;
所述预设目标物包括第三目标物和第四目标物,当所述第三目标物的响应值满足预设条件,且第四目标物的响应值达到最大值时的提取透镜电压作为调整后的最佳提取透镜电压。
根据本发明的一些示例性实施例,其中:所述步骤104包括:
逐步改变聚焦透镜电压,同时会检测该步骤预设目标物的响应值;
当该步骤预设目标物的响应值达到最大值时的聚焦透镜电压作为调整后的最佳聚焦透镜电压。
根据本发明的一些示例性实施例,其中:所述步骤104中的预设目标物为低质量数元素。
根据本发明的一些示例性实施例,其中:所述步骤105包括:
逐步改变偏转透镜电压,同时会检测该步骤预设目标物的响应值;
当该步骤预设目标物的响应值达到最大值时的偏转透镜电压作为调整后的最佳偏转透镜电压。
根据本发明的一些示例性实施例,其中:步骤106包括:
逐步改变雾化气流速,检测该步骤的预设目标物的响应值;
所述预设目标物包括第一目标物和第二目标物,在氧化物双电荷的比率不高于预设值的情况下,当所述第一目标物的响应值满足预设条件,且第二目标物的响应值达到最大值时的雾化气流速作为调整后的最佳雾化气流速。
根据本发明的一些示例性实施例,其中:在所述步骤102和步骤103之间还包括:
步骤102A、调节雾化室温度,以改变进入等离子体中的气溶胶的引入量。
根据本发明的一些示例性实施例,其中:在所述电感耦合等离子体质谱仪的碰撞模式下,所述方法包括:
步骤201、调节碰撞气流速;
步骤202、调节偏转透镜组;
步骤203、再次调节碰撞气流速。
根据本发明的一些示例性实施例,其中:所述步骤201包括:
逐步改变碰撞气流速,检测碰撞模式预设目标物的响应值;
所述预设目标物包括第五目标物和第六目标物,当所述第五目标物和第六目标物的响应值均满足预设条件,且第五目标物和第六目标物的响应值的比值达到最大值时的碰撞气流速作为调节后的最佳碰撞气流速;
所述步骤202包括:
逐步调节偏转透镜组电压,检测碰撞模式预设目标物的响应值;
所述预设目标物包括第五目标物和第六目标物,当所述第五目标物和第六目标物的响应值均满足预设条件,且第五目标物和第六目标物的响应值的比值达到最大值时的偏转透镜组电压作为调节后的最佳偏转透镜组电压;
所述步骤203包括:
逐步改变碰撞气流速,检测碰撞模式预设目标物的响应值;
所述预设目标物包括第五目标物和第六目标物,当所述第五目标物和第六目标物的响应值均满足预设条件,且第五目标物和第六目标物的响应值的比值达到最大值时的碰撞气流速作为调节后的最佳碰撞气流速。
根据本发明的一些示例性实施例,其中:所述第五目标物是Co,所述第六目标物是ArO。
第二方面,本发明实施例提供一种用于自动调谐电感耦合等离子体质谱仪的系统,包括:
处理器;
以及存储器,其存储有可执行指令;
其中,当所述可执行指令由所述处理器执行时,执行如上所述的用于自动调谐电感耦合等离子体质谱仪的方法。
相较于现有技术,本发明取得以下有益技术效果:
第一、自动调谐能完全替代手动调谐。由计算机控制的自动调谐对仪器进行的优化,较之手动调谐要更精细更准确,能够使仪器的性能达到更佳的状态。
第二、自动调谐完全自动化,将根据设定好的流程自动执行,无需人工干涉,极大的降低了对操作人员的专业需求,使初学者也能很好的使用仪器。
第三、自动调谐的开放式设计,能够使用户根据自身需求来编辑,能够用户在不同场景下的使用需求。
附图说明
图1是本发明实施例提供的标准模式下自动调谐的方法流程图;
图2是本发明实施例提供的自动调谐方法中每个阶段的判断流程示意图;
图3是本发明实施例提供的自动调谐方法中ICP火焰形成原理示意图;
图4是本发明实施例提供的X-Y调谐结果显示界面示意图;
图5是本发明实施例提供的载气流速调谐界面示意图;
图6是本发明实施例提供的提取透镜调谐界面示意图;
图7是本发明实施例提供的聚焦透镜调谐界面示意图;
图8是本发明实施例提供的偏转透镜调谐界面示意图;
图9是本发明实施例提供的再次进行载气流速调谐界面示意图;
图10是本发明实施例提供的标准模式下又一种自动调谐的方法流程图;
图11是本发明实施例提供的碰撞模式下自动调谐的方法流程图;
图12为本实施例提供的碰撞气流速调谐界面示意图;
图13为本实施例提供的偏转透镜调谐界面示意图;
图14为本实施例提供的再次碰撞气流速调谐界面示意图;
图15为本实施例提供的用于自动调谐电感耦合等离子体质谱仪的系统的结构示意框图。
具体实施方式
以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
除非另有定义,本说明书中使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域的普通技术人员所通常理解的相同含义。还要理解的是,在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
需要说明的是,在本说明书的描述中,参考表述“一个实施例”、“一些实施例”、“示例性实施例”、“具体示例”、或“一些示例”等的描述,意指结合该实 施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。因此,在本文中,针对上述表述的示意性描述不必仅针对相同的实施例或示例。而是,所描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
实施例一
本实施例提供用于标准模式下自动调谐电感耦合等离子体质谱仪的方法。
图1为本实施例提供的标准模式自动调谐的方法流程图。电感耦合等离子体质谱仪(以下也简称为“仪器”)点燃后至少稳定15min,期间用含1ng/mL的Li、Be、Mg、Co,Y、In、Ce、Tl、U中的各个元素的调谐溶液进行仪器参数最佳化调试。
自动调谐过程中,各个条件的判断原理如下:
自动调谐每个阶段都需要设置判断条件,判断成功后进入下一个阶段。判断条件包括一个主要条件(最大值、最小值),和若干个次要条件(大于、小于)。
如图2所示,判断过程包括:
步骤(1)获取此阶段所有扫描数据;
步骤(2)从第一组数据依次开始判断;
步骤(3)判断主要条件是否通过;
步骤(4)从第一次要条件依次判断是否通过;
步骤(5)依照主要条件的设置从通过的数据组中选出最佳数据。
实际操作过程中,如果自动调谐成功,即判断过程步骤(5)执行完成;
也可能存在自动调谐失败的情况,包括:
情况1:所有数据不满足判断过程步骤(3)或者步骤(4),输出判断条件不满足。
情况2:一些数据满足判断过程步骤(4)中的一部分条件,一些数据满足 判断过程步骤(4)中的另一部分条件,输出次要条件冲突和几组可能的最佳值。
情况3:所有数据均未达到最低要求值,输出扫描数据不准确。
本实施例中,还进行了粗调和精调的设置。在收集扫描数据的过程中,为了缩短调谐时间,部分参数设置多次迭代来一步一步精简参数步长范围。通常情况下,一个阶段会设置2-3次迭代,第一次为粗调,使用的参数步长比较宽,扫次数比较少,从第二次开始为精调,参数步长比较窄,扫描次数比较多。
图4至图9示例性地展示了用于呈现电感耦合等离子体质谱仪自动调谐状态的进度窗口。进度窗口中,目标判断结果的最后一列“是”表示当前结果符合判断条件。有些窗口在“是”左侧还设置了表征响应值波动程度的计算结果RSD(标准差),RSD越小,说明响应值越稳定。本实施例中给出的示例由于未启用该项计算,显示为0。
在一些实施方式中,这些进度窗口还设置有对话框或命令区,以允许用户在自动调谐期间随时命令跳过某个步骤、或者完成当前步骤后停止、或者立即停止自动调谐过程。
如图1所示,该方法可以包括如下步骤:
步骤101、调节等离子体火焰与采样锥口的相对位置。
自动调谐第一步先进行横向电机和纵向电机位置优化,即“X-Y调谐”,X-Y在仪器上对应于等离子体火焰与采样锥口的相对位置(横向与纵向)。
ICP-MS具有二维模块,整个模块主体是移动安装板,共两个电机,分别控制X-Y两个方向的移动。X电机控制二维模块X方向的移动,Y电机控制二维模块Y方向的移动。
ICP-MS是以电感耦合等离子体作为离子源。ICP火焰的形成有三个条件:高频电磁场、工作气体、能维持气体稳定放电的石英炬管。如图3所示,在管子的上部环绕着一水冷感应线圈,当高频发生器供电时,线圈轴线方向上产生强烈振荡的磁场。用高频火花等方法使中间流动的工作气体电离,产生的离子和电子再与感应线圈所产生的起伏磁场作用,这一相互作用使线圈内的离子和电子沿图 示所示的封闭环路流动。它们对这一运动的阻力则导致欧姆加热作用。由于强大的电流产生的高温,使气体加热,从而形成火炬状的等离子体。而样品通过气溶胶的形式由雾化气承载,通过等离子体的中心被加热电离,因此样品电离所产生的离子主要存在于等离子体的中心部分。
接口是整个ICP-MS系统最关键的部分。其功能是将等离子体中的离子有效传出到质谱。接口通常是由采样锥与截取锥组成,与等离子体直接接触的为采样锥,采样锥的作用是把来自等离子体中心通道的载气流,即离子流大部分吸入锥孔,进入第一级真空室。为了降低仪器的真空负担,采样锥的锥孔很小,通常在1mm左右。
一台典型的电感耦合等离子体质谱仪(例如ICP-MS Inspector SQ60,浙械注准20212220150)的接口为真空接口模块,从等离子体流的上游到下游至少包括采样锥、截取锥、以及提取透镜。一般而言,采样锥具有处于上游的锥形外表面以及处于下游的锥形内表面,并且外表面和内表面之间的相交处设置有一个采样孔。截取锥包括大致呈锥形的部分和大致呈圆柱形的部分。锥形的部分具有处于上游的锥形外表面以及处于下游的锥形内表面,在二者相交处设置有截取孔。锥形部分和圆柱形部分组成供等离子体流向下游的提取透镜继续流动的通道。提取透镜用于为从等离子体中取出样品离子用于下游分析。
因此为了更好的将样品采集到质谱中进行检测,需要进行X-Y调谐,使得等离子体中心对准采样锥锥孔。
当开始进行X-Y调谐,仪器将根据所设定的X-Y范围及步长来逐步改变等离子体的X-Y位置,同时会检测所设定目标物In元素的响应值。如图4所示,图上会实时显示所测定目标物的响应值,将选取目标物响应值最大的点作为优化后的值。同时用户也可以根据需要自定义X-Y范围(默认-2-2mm)、步长(默认0.02mm)及所采用的目标物。由于X-Y调谐对所有元素的影响是相同的,所以此处仅选取中质量数的In元素即可。
步骤102、调节雾化气流速。
通过改变雾化气流速,使不同的元素达到良好的电离程度。
雾化气通过雾化器将液体样品转变成气溶胶的状态。雾化就是液体在通过雾化器时,雾化气的机械力克服液体分子之间的表面张力,以较小的颗粒状分离开,从而产生雾化的效果。
载气携带样品穿过等离子体的中心,使样品被加热从而发生电离。载气流速的大小直接影响着最终的响应值。载气流速过高,样品在等离子体中停留的时间将较短导致电离度降低,载气流速过小,样品无法穿过等离子体,导致采样锥无法采集到样品离子。
图5为载气流速调谐界面示意图。当开始进行载气流速调节,仪器将根据所设定的载气流速范围步长来逐步改变载气流速,同时会检测所设定目标物的响应值。由于载气流速对不同质量数的元素的影响有所不同,不同元素所需的最佳气体流速不同,因此根据需要,本实施例设定了低中高等不同质量数共四个元素的检测值。阶段性结果如图5所示。
同时氧化物双电荷等干扰也会影响ICP-MS检测结果的准确度,为了尽量减少氧化物与双电荷对检测结果的影响,在进行雾化气流速调节时需要考虑氧化物与双电荷的影响。在氧化物双电荷的比率不高于3%的情况下,所检测元素的响应值越高越好。
由于雾化气对仪器最终性能的重要性及对元素的影响不同,本实施例对雾化气及其他部分参数进行了第二次调节,同时为了降低自动调谐的时间,将调节中的两次调节设置为粗调和精调,同时设置精调百分比,在保证结果的同时,也节约了时间。
步骤103、调节提取透镜。
调节提取透镜即通过调节提取透镜的电压,提取离子进入后续部件。
提取透镜紧跟在截取锥之后,直接位于截取锥基座上,提取透镜的作用是提取通过截取锥的离子并使它们加速进入偏转透镜。因为被测离子带有单个正电荷,所以在提取透镜上施加负压,可以在加速正离子的同时排斥电子,使得电子 碰撞到截取锥或真空室壁上,而中性粒子和光子不受提取透镜的影响会继续进入后续透镜中。如前所述的一台典型的电感耦合等离子体质谱仪中,提取透镜入口为直径10mm的通道,然后渐变至直径25mm的通道,入口外表面为圆锥面,作用为提取离子并加速离子。
图6是本实施例提供的提取透镜调谐显示界面示意图。
当开始进行提取透镜调节,仪器将根据所设定的提取透镜范围步长来逐步改变提取透镜电压,同时会检测所设定目标物的响应值。由于提取透镜对不同质量数的元素的影响有所不同,不同元素所需的最佳提取透镜电压不同,因此根据需要,本实施例设定了低中高等不同质量数共四个元素的检测值。显示界面如图6所示。
步骤104、调节聚焦透镜。
调节聚焦透镜即通过调节聚焦透镜的电压,聚焦离子进入后续部件。
聚焦透镜透紧跟在碰撞反应池之后,位于差分孔之前,这聚焦透镜的作用是聚焦通过碰撞反应池的离子使它们进入差分孔。因为被测离子带有单个正电荷,所以在聚焦透镜上施加正压,可以在聚焦正离子的同时吸引电子。
在离子聚集系统中,“空间电荷效应”(space charge effect)导致的“质量歧视”是直接影响离子传输效率以及整个质量范围内离子传输均匀性的重要因素。这种效应在基体离子的质量大于分析离子时尤为严重。在等离子体和超声射流中,离子流被一个相等的电子流所平衡,因此整个离子束基本上呈电中性。但离子流离开截取锥后,透镜建立起的电场将收集离子而排斥电子,电子将不再存在。从而使离子被束缚在一个很窄的离子束中,离子束在瞬间不是准中性的,但离子密度仍然非常高。同电荷离子间的相互排斥使离子束中的离子总数受到限制。在总离子电流1μA时,ICP-MS中的空间电荷效应是显著的,这意味着基体浓度越高,重离子数越多,空间电荷效应就越显著。若以同样的空间电荷力作用在所有离子上,则轻离子受影响最大,被偏转(歧视)最严重,故灵敏度偏低。空间电荷效应是ICP-MS基体效应的主要根源,如果不采取任何方式补 偿的话,较高质荷比的离子将会在离子束中占优势,而较轻质荷比的离子则遭排斥。高动能的离子(重质量元素)传输效率高于中质量以及轻质量元素。
图7为本实施例提供的聚焦透镜调谐界面示意图。
当开始进行聚焦透镜调节,仪器将根据所设定的聚焦透镜范围步长来逐步改变聚焦电压,同时会检测所设定目标物的响应值。聚焦透镜对不同质量数的元素的影响有所不同,不同元素所需的最佳聚焦透镜电压不同。另外由于空间电荷效应的影响,较高质量的元素传输效率高,较低质量的元素传输效率低。因此根据实际需要,本实施例中设定低中质量处的元素Co作为检测值,既保证了中高质量的高响应值,也使得低质量处元素响应值不会低。
步骤105、调节偏转透镜。
调节偏转透镜即通过调节偏转的电压,使离子偏转后进入后续部件,同时消除或降低离子流中的中子与光子。
在ICP-MS中,通常产生的1000,000个离子中,只有1个能够最终到达检测器,这是由于每级的效率决定的,在这样低效率的传输下,去除各种干扰就变得更加重要了,偏转的主要目的是去除电子和中性微粒的影响。偏转透镜由两组共四个透镜组成,通过在两组偏转透镜上施加不同的电压,使离子在偏转透镜中的轨迹发生偏转,而中子与光子不受电场影响从而被去除,而偏转透镜上的电压影响着去干扰的结果,并影响离子传输的效率。
图8为偏转透镜调谐界面示意图。
当开始进行偏转透镜调节,仪器将根据所设定的偏转透镜范围步长来逐步改变偏转透镜电压,同时会检测所设定目标物的响应值。由于偏转透镜对不同元素的作用,因此设定低中高质量处三个元素作为检测值,由于偏转透镜中的两组透镜是相互作用相互关联的,因此偏转透镜的调谐需要进行迭代,从而达到最佳值。偏转透镜的调谐中先依次对偏转透镜1、偏转透镜2进行一次粗调,之后根据调节的值,缩小范围后,再对偏转透镜1、偏转透镜2进行一次精调。
步骤106、再次调节雾化气流速。
标准模式下自动调谐方法的最后一步,将再次进行雾化气调谐。
图9为第二次进行载气流速调谐的界面示意图。
当开始进行载气流速调节,仪器将根据所设定的载气流速范围步长来逐步改变载气流速,同时会检测所设定目标物的响应值。由于载气流速对不同质量数的元素的影响有所不同,不同元素所需的最佳气体流速不同,因此根据需要,本实施例设定了低中高等不同质量数共四个元素的检测值。用户显示界面如图9所示。
同时氧化物双电荷等干扰也会影响ICP-MS检测结果的准确度,为了尽量减少氧化物与双电荷对检测结果的影响,在进行雾化气流速调节时需要考虑氧化物与双电荷的影响。在氧化物双电荷的比率不高于3%的情况下,所检测元素的响应值越高越好。
由于雾化气对仪器最终性能的重要性及对元素的影响不同,本实施例对雾化气及其他部分参数进行了第二次调节,同时为了降低自动调谐的时间,将调节中的两次调节设置为粗调和精调,同时设置精调百分比,在保证结果的同时,也节约了时间。
实施例二
本实施例提供标准模式下一种优选的自动调谐方法。
在实施例一提供的自动调谐方法的基础上,在步骤102调节雾化气流速之后增加调节雾化室温度的步骤102A,流程如图10所示,具体如下:
步骤102A、调节雾化室温度。
通过改变雾化室温度,改变进入等离子体中的气溶胶的引入量。
目前的ICP-MS几乎全部采用了气动雾化进样技术。当然气动雾化进样方式除了其简单、方便的优点外,存在元素测定受溶剂影响严重,特别是多原子离子和氧化物离子干扰明显。因此调节雾化室温度就是减少水蒸气的引入量,即减小等离子体中水的负载量,从而达到减少多原子离子和氧化物离子干扰的目的,同时保证元素的响应值。
当开始进行雾化室温度调节,仪器将根据所设定的雾化室温度范围步长来逐步改变雾化室温度,同时会检测所设定目标物的响应值。由于雾化室温度对不同质量数的元素的影响程度有所不同,因此根据需要,本实施例设定了低中高等不同质量数共四个元素的检测值。
雾化室温度调节的目的是降低干扰对检测结果的影响,尤其是H、O等元素形成的多原子离子干扰对ICP-MS检测结果的准确度影响较大,为了尽量这些多原子离子干扰对检测结果的影响,在进行雾化室温度调节时需要考虑干扰的指标。在元素响应值达标的情况下,干扰值越低越好。
通过增加以上步骤,进一步减少干扰,提供ICP-MS检测结果的准确度。
实施例三
本实施例提供碰撞模式下自动调谐的方法。
ICP-MS检测过程中会受到多原子离子产生的质谱干扰,分析准确度受到很大影响,一般可以用来消除多原子离子干扰的方法:冷等离子体、前处理、校正方程、高分辨等,上述去除多原子离子干扰的方法都有一定的局限性,比如干扰校正方程适用的样品有限,屏蔽炬技术对操作者的经验和技巧要求较高,并且大大降低分析灵敏度等,碰撞/反应池技术是目前解决多原子离子干扰的最有力的手段,该技术不需要改变离子源的工作状态,能有效去除各种多原子离子干扰,大大提升ICP-MS仪器检测性能。而碰撞反应池的性能与其参数息息相关,通过自动调谐将碰撞反应池的性能优化至最佳。
图11为本实施例提供的碰撞模式自动调谐的方法流程图。
图12至图14示例性地展示了用于呈现电感耦合等离子体质谱仪自动调谐状态的进度窗口。优选地,这些进度窗口还可以设置对话框或命令区,以允许用户在自动调谐期间随时命令跳过某个步骤、或者完成当前步骤后停止、或者立即停止自动调谐过程。
如图11所示,该方法包括如下步骤:
步骤201、调节碰撞气流速。
KED模式(动能歧视模式,Kinetic Energy Discrimination)下自动调谐的第一步将调节碰撞气流速,通过调节碰撞气流速,改变待测离子与干扰离子的动能。
KED模式是基于以下基本原理进行工作。
(1)所有分子离子包含两个以上原子,其碰撞截面比单原子离子的碰撞截面大。在相同条件下与相同气体发生碰撞时,碰撞截面大的离子与碰撞气体的碰撞次数大于碰撞截面小的离子。
(2)假设碰撞均为弹性碰撞,离子将动能转移给气体分子。碰撞次数多的分子离子比碰撞次数少的待测离子失去更多动能。
将质谱仪四极杆质量分析器的电位势能设置成比碰撞/反应池的电位势能高,当势能壁垒高于分子离子的动能时,它们将无法进入四极杆,从而不能形成干扰;而动能较高的待测离子可以穿越势能差进入四极杆质量分析器,可以被仪器检测。
图12为本实施例提供的碰撞气流速调谐界面示意图。
当开始进行碰撞气流速调节,仪器将根据所设定的碰撞气流速范围步长来逐步改变碰撞气流速,同时会检测所设定目标物的响应值、干扰的响应值。由于碰撞气对待测元素与干扰物的影响不同,因此分别设定目标物与干扰的响应值。其中在满足Co>30000的情况下,Co/ArO的比值越大越好。
步骤202、调节偏转透镜组。
自动调节偏转透镜组,即通过调节碰撞反应池后的偏转透镜组,优化Co的响应值,从而改善Co/ArO比值。
在碰撞反应池中,离子会与碰撞反应池中通入的气体发生碰撞,从而动能发生变化,因此标准模式下的透镜电压已经不太适合KED模式下的离子传输。另外由于剧烈的碰撞或者其他反应,离子流中可能产生新的中性粒子。因此需要重新优化偏转透镜组的电压,提升离子传输效率且降低干扰。
图13为本实施例提供的偏转透镜调谐界面示意图。
当开始进行偏转透镜调节,仪器将根据所设定的偏转透镜范围步长来逐步改变提取透镜电压,由于碰撞模式下,我们更加关注Co的响应值以及Co/ArO比值,因此将根据需要设定Co>30000的情况下,Co/ArO的比值越大越好。由于偏转透镜中的两组透镜是相互作用相互关联的,因此偏转透镜的调谐需要进行迭代,从而达到最佳值。偏转透镜的调谐中先依次对偏转透镜1、偏转透镜2进行一次粗调,之后根据调节的值,缩小范围后,再对偏转透镜1、偏转透镜2进行一次精调。
步骤203、再次调节碰撞气流速。
再次调节碰撞气流速,是由于碰撞气使得响应值具有一定波动性,通过再次调节碰撞气流速,确保碰撞气流速达到最佳值。
图14为本实施例提供的再次碰撞气流速调谐界面示意图。
当开始进行碰撞气流速调节,仪器将根据所设定的碰撞气流速范围步长来逐步改变碰撞气流速,同时会检测所设定目标物的响应值、干扰的响应值。由于碰撞气对待测元素与干扰物的影响不同,因此分别设定目标物与干扰的响应值。其中在满足Co>30000的情况下,Co/ArO的比值越大越好。
实施例四
本实施例提供用于自动调谐电感耦合等离子体质谱仪的系统,作为上位机控制电感耦合等离子体质谱仪,适用于标准模式、碰撞模式下完成质谱仪的自动调谐。
图15示出了根据本实施例的一个示例性实施方式提供的用于自动调谐电感耦合等离子体质谱仪的系统100的示意性结构框图。用于自动调谐电感耦合等离子体质谱仪的系统100包括处理器110和存储器130。
处理器110包括可被配置为处理单元、功能块等的硬件元件120。可以包括在硬件中实现作为专用集成电路或使用一个或多个半导体形成的其它逻辑器件。硬件元件120不受其形成的材料或其中采用的处理机构的限制。例如,处理器110可以由(多个)半导体和/或晶体管组成。处理器110可以包括单个处理单 元或多个处理单元,所有处理单元可以包括单个或多个计算单元或者多个核心。处理器110可以被实施成一个或多个微处理器、微型计算机、微控制器、数字信号处理器、中央处理单元和/或基于操作指令来操纵信号的任何设备。处理器110可以被配置成获取并且执行存储在存储器130中的可执行指令,以便执行前述用于自动调谐电感耦合等离子体质谱仪的方法。
存储器130包括可被配置成存储可执行指令的计算机可读存储介质140,所述可执行指令由处理器110执行时可以实施前面所描述的用于自动调谐电感耦合等离子体质谱仪的方法。计算机可读存储介质140可以包括通过用于存储信息的任何方法或技术实施的易失性和非易失性、可移除和不可移除介质,所述信息诸如是计算机可读的可执行指令、数据,等等。计算机可读存储介质140可以包括而不限于RAM、ROM、EEPROM、闪存或其他存储器技术,CD-ROM、数字通用盘(DVD)、或其他光学存储装置,磁盒、磁带、磁盘存储装置或其他磁性存储设备,或者可以被用来存储信息的任何其他存储介质。
类似地,用于自动调谐电感耦合等离子体质谱仪的系统100也可以包括系统总线或其他数据和命令传送系统,以将处理器110和存储器130彼此连接。系统总线可以包括不同总线结构的任何一个或组合,所述总线结构诸如存储器总线或存储器控制器、外围总线、通用串行总线、和/或利用各种总线架构中的任何一种的处理器或局部总线。
用于自动调谐电感耦合等离子体质谱仪的系统100与电感耦合等离子体质谱仪建立有线和/或无线的通信连接,从而当处理器110执行前述用于自动调谐电感耦合等离子体质谱仪的方法时,实现对电感耦合等离子体质谱仪各组件的实际控制。
在一些可行的实施例中,用于自动调谐电感耦合等离子体质谱仪的系统100的存储器130存储的指令被执行时致使处理器110:接收关于将对电感耦合等离子体质谱仪ICP-MS执行自动化调谐的用户数据输入,其中用户数据输入包括对电感耦合等离子体质谱仪操作模式的选定,以及对目标物(自动调谐涉及的各种 元素、化合物等)的种类、检测范围、阈值等参数的设定,从而能够使用户根据自身需求来编辑,能够用户在不同场景下的使用需求。操作模式包括标准模式和碰撞模式。用户输入方式可以包括鼠标单击、按键及图形用户接口组件选择之一或其组合。
以上所述内容仅为对本发明的示例性实施方式的说明和描述,但这样的说明和描述应当被认为是说明性的和示意性的,本发明的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开的教导下,可以轻易地想到各种变化或替换,这些变化和替换都应当被认为是落在本公开的范围之内。因此,本发明的保护范围应当以所附权利要求的范围为准。

Claims (14)

  1. 一种用于自动调谐电感耦合等离子体质谱仪的方法,其特征在于:
    在所述电感耦合等离子体质谱仪的标准模式下,所述方法包括:
    步骤101、调节等离子体火焰与采样锥的相对位置,以使等离子体中心对准采样锥锥孔;
    步骤102、调节雾化气流速至最佳雾化气流速,使不同的元素达到期望的电离程度,所述雾化气携带样品;
    步骤103、调节提取透镜;
    步骤104、调节聚焦透镜;
    步骤105、调节偏转透镜;
    步骤106、再次调节雾化气流速。
  2. 根据权利要求1所述的方法,其特征在于:
    所述步骤101包括:
    逐步改变等离子体的横向位置和/或纵向位置,
    检测该步骤预设目标物的响应值,
    将所述目标物的响应值最大时对应的等离子体的位置作为调节后的位置。
  3. 根据权利要求1所述的方法,其特征在于:
    所述步骤102包括:
    逐步改变雾化气流速,检测该步骤的预设目标物的响应值;
    所述预设目标物包括第一目标物和第二目标物,当所述第一目标物的响应值满足预设条件,且第二目标物的响应值达到最大值时的雾化气流速作为调整后的最佳雾化气流速。
  4. 根据权利要求3所述的方法,其特征在于:
    当所述第一目标物的响应值满足预设条件,且在氧化物双电荷的比率不高于预设值、以及第二目标物的响应值达到最大值时的雾化气流速作为调整后的最佳雾化气流速。
  5. 根据权利要求1所述的方法,其特征在于:
    所述步骤103包括:
    逐步改变提取透镜电压,检测该步骤预设目标物的响应值;
    所述预设目标物包括第三目标物和第四目标物,当所述第三目标物的响应值满足预设条件,且第四目标物的响应值达到最大值时的提取透镜电压作为调整后的最佳提取透镜电压。
  6. 根据权利要求1所述的方法,其特征在于:
    所述步骤104包括:
    逐步改变聚焦透镜电压,同时会检测该步骤预设目标物的响应值;
    当该步骤预设目标物的响应值达到最大值时的聚焦透镜电压作为调整后的最佳聚焦透镜电压。
  7. 根据权利要求6所述的方法,其特征在于:
    所述步骤104中的预设目标物为低质量数元素。
  8. 根据权利要求1所述的方法,其特征在于:
    所述步骤105包括:
    逐步改变偏转透镜电压,同时会检测该步骤预设目标物的响应值;
    当该步骤预设目标物的响应值达到最大值时的偏转透镜电压作为调整后的最佳偏转透镜电压。
  9. 根据权利要求1所述的方法,其特征在于:
    步骤106包括:
    逐步改变雾化气流速,检测该步骤的预设目标物的响应值;
    所述预设目标物包括第一目标物和第二目标物,在氧化物双电荷的比率不高于预设值的情况下,当所述第一目标物的响应值满足预设条件,且第二目标物的响应值达到最大值时的雾化气流速作为调整后的最佳雾化气流速。
  10. 根据权利要求1所述的方法,其特征在于:
    在所述步骤102和步骤103之间还包括:
    步骤102A、调节雾化室温度,以改变进入等离子体中的气溶胶的引入量。
  11. 根据权利要求1-10任一项所述的方法,其特征在于:
    在所述电感耦合等离子体质谱仪的碰撞模式下,所述方法包括:
    步骤201、调节碰撞气流速;
    步骤202、调节偏转透镜组;
    步骤203、再次调节碰撞气流速。
  12. 根据权利要求11所述的方法,其特征在于:
    所述步骤201包括:
    逐步改变碰撞气流速,检测碰撞模式预设目标物的响应值;
    所述预设目标物包括第五目标物和第六目标物,当所述第五目标物和第六目标物的响应值均满足预设条件,且第五目标物和第六目标物的响应值的比值达到最大值时的碰撞气流速作为调节后的最佳碰撞气流速;
    所述步骤202包括:
    逐步调节偏转透镜组电压,检测碰撞模式预设目标物的响应值;
    所述预设目标物包括第五目标物和第六目标物,当所述第五目标物和第六目标物的响应值均满足预设条件,且第五目标物和第六目标物的响应值的比值达到最大值时的偏转透镜组电压作为调节后的最佳偏转透镜组电压;
    所述步骤203包括:
    逐步改变碰撞气流速,检测碰撞模式预设目标物的响应值;
    所述预设目标物包括第五目标物和第六目标物,当所述第五目标物和第六目标物的响应值均满足预设条件,且第五目标物和第六目标物的响应值的比值达到最大值时的碰撞气流速作为调节后的最佳碰撞气流速。
  13. 根据权利要求12所述的方法,其特征在于:
    所述第五目标物是Co,所述第六目标物是ArO。
  14. 一种用于自动调谐电感耦合等离子体质谱仪的系统,其特征在于,包括:
    处理器;
    以及存储器,其存储有可执行指令;
    其中,当所述可执行指令由所述处理器执行时,执行根据权利要求1至13中任一项所述的用于自动调谐电感耦合等离子体质谱仪的方法。
PCT/CN2022/122612 2022-03-31 2022-09-29 用于自动调谐电感耦合等离子体质谱仪的方法和系统 WO2023184910A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210336717.8A CN114755290A (zh) 2022-03-31 2022-03-31 用于自动调谐电感耦合等离子体质谱仪的方法和系统
CN202210336717.8 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023184910A1 true WO2023184910A1 (zh) 2023-10-05

Family

ID=82329704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122612 WO2023184910A1 (zh) 2022-03-31 2022-09-29 用于自动调谐电感耦合等离子体质谱仪的方法和系统

Country Status (2)

Country Link
CN (1) CN114755290A (zh)
WO (1) WO2023184910A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114755290A (zh) * 2022-03-31 2022-07-15 瑞莱谱(杭州)医疗科技有限公司 用于自动调谐电感耦合等离子体质谱仪的方法和系统
CN116593570A (zh) * 2023-06-15 2023-08-15 瑞莱谱(杭州)医疗科技有限公司 微量元素分析仪检出限性能测试方法、装置与电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162651A (en) * 1990-10-26 1992-11-10 Hitachi, Ltd. Mass spectrometer
US5838002A (en) * 1996-08-21 1998-11-17 Chem-Space Associates, Inc Method and apparatus for improved electrospray analysis
US8481923B1 (en) * 2012-06-29 2013-07-09 Agilent Technologies, Inc. Atmospheric pressure plasma mass spectrometer
CN104576289A (zh) * 2014-12-31 2015-04-29 聚光科技(杭州)股份有限公司 一种可调真空压力的电感耦合等离子体质谱仪
CN106463329A (zh) * 2014-02-14 2017-02-22 珀金埃尔默健康科学公司 用于多模式电感耦合等离子体质谱仪的自动化优化的系统及方法
FI20165251A (fi) * 2016-03-24 2017-09-25 Univ Helsinki Menetelmä ja järjestely partikkelidetektorin verifioimiseksi, optimoimiseksi tai kalibroimiseksi
WO2019210233A1 (en) * 2018-04-27 2019-10-31 Fluidigm Canada Inc. Reagents and methods for elemental mass spectrometry of biological samples
CN112946056A (zh) * 2021-01-29 2021-06-11 山东省食品药品检验研究院 一种丙氨酰谷氨酰胺注射液中铝元素的检测方法
CN114755290A (zh) * 2022-03-31 2022-07-15 瑞莱谱(杭州)医疗科技有限公司 用于自动调谐电感耦合等离子体质谱仪的方法和系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162651A (en) * 1990-10-26 1992-11-10 Hitachi, Ltd. Mass spectrometer
US5838002A (en) * 1996-08-21 1998-11-17 Chem-Space Associates, Inc Method and apparatus for improved electrospray analysis
US8481923B1 (en) * 2012-06-29 2013-07-09 Agilent Technologies, Inc. Atmospheric pressure plasma mass spectrometer
CN106463329A (zh) * 2014-02-14 2017-02-22 珀金埃尔默健康科学公司 用于多模式电感耦合等离子体质谱仪的自动化优化的系统及方法
CN104576289A (zh) * 2014-12-31 2015-04-29 聚光科技(杭州)股份有限公司 一种可调真空压力的电感耦合等离子体质谱仪
FI20165251A (fi) * 2016-03-24 2017-09-25 Univ Helsinki Menetelmä ja järjestely partikkelidetektorin verifioimiseksi, optimoimiseksi tai kalibroimiseksi
WO2019210233A1 (en) * 2018-04-27 2019-10-31 Fluidigm Canada Inc. Reagents and methods for elemental mass spectrometry of biological samples
CN112946056A (zh) * 2021-01-29 2021-06-11 山东省食品药品检验研究院 一种丙氨酰谷氨酰胺注射液中铝元素的检测方法
CN114755290A (zh) * 2022-03-31 2022-07-15 瑞莱谱(杭州)医疗科技有限公司 用于自动调谐电感耦合等离子体质谱仪的方法和系统

Also Published As

Publication number Publication date
CN114755290A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2023184910A1 (zh) 用于自动调谐电感耦合等离子体质谱仪的方法和系统
CN104241076B (zh) 轴向磁离子源及相关电离方法
CN106711011B (zh) 电感耦合等离子体质谱分析方法及质谱仪
JP6202103B2 (ja) 質量分析装置及び質量分析方法
JP2016115674A (ja) ソフト電子イオン化のためのイオン源ならびに関連するシステムおよび方法
US20180240657A1 (en) Collision cell having an axial field
US8796620B2 (en) Mass spectrometry for gas analysis with a one-stage charged particle deflector lens between a charged particle source and a charged particle analyzer both offset from a central axis of the deflector lens
US11873219B2 (en) Process for producing hydrogen and carbon products
EP3518274A1 (en) Mass spectrometer
US8450681B2 (en) Mass spectrometry for gas analysis in which both a charged particle source and a charged particle analyzer are offset from an axis of a deflector lens, resulting in reduced baseline signal offsets
JP2021524664A (ja) 放電チャンバ、ならびにそれを用いたイオン化デバイス、イオン化方法及びイオン化システム
US20210151310A1 (en) Method and Apparatus for Operating a Vacuum Interface of a Mass Spectrometer
JP6649642B2 (ja) 質量分析装置及び質量分析装置用プログラム
WO2021069882A1 (en) Automatically standardising spectrometers
JP2024064706A (ja) 質量分析装置および分析条件の設定方法
US20210242006A1 (en) Ion interfaces and systems and methods using them
US20230230822A1 (en) Collision cell having an axial field
KR101887169B1 (ko) 편향기 렌즈의 중심 축으로부터 둘 모두 오프셋된 하전 입자 소스와 하전 입자 분석기 사이의 2-단 하전 입자 편향기 렌즈에 의한 가스 분석을 위한 질량 분석법
Balcaen 4 Inductively coupled plasma–mass spectrometry
CN117321730A (zh) 用于使用ms灵敏度改进技术的按需/动态实施定量的增益校准
Kivel Systematic study of instrumental mass discrimination in multi-collector inductively coupled plasma-mass spectrometry
JPH0465059A (ja) 高周波誘導結合プラズマ質量分析装置
Course How to Select an ICP Mass Spectrometer: The Most Important Analytical Considerations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934728

Country of ref document: EP

Kind code of ref document: A1