WO2023184702A1 - 滚筒采煤机摇臂断轴故障在线识别方法 - Google Patents

滚筒采煤机摇臂断轴故障在线识别方法 Download PDF

Info

Publication number
WO2023184702A1
WO2023184702A1 PCT/CN2022/097057 CN2022097057W WO2023184702A1 WO 2023184702 A1 WO2023184702 A1 WO 2023184702A1 CN 2022097057 W CN2022097057 W CN 2022097057W WO 2023184702 A1 WO2023184702 A1 WO 2023184702A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting motor
rocker arm
broken shaft
current
time
Prior art date
Application number
PCT/CN2022/097057
Other languages
English (en)
French (fr)
Inventor
庄德玉
赵国瑞
刘博�
刘宏睿
罗昆
郭岱
Original Assignee
天地上海采掘装备科技有限公司
中煤科工集团上海有限公司
中国煤炭科工集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天地上海采掘装备科技有限公司, 中煤科工集团上海有限公司, 中国煤炭科工集团有限公司 filed Critical 天地上海采掘装备科技有限公司
Priority to AU2022279410A priority Critical patent/AU2022279410A1/en
Publication of WO2023184702A1 publication Critical patent/WO2023184702A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/04Safety devices

Definitions

  • the invention relates to a shearer rocker arm fault diagnosis method, in particular to a coal shearer rocker arm gearbox broken shaft fault identification method.
  • rocker arm is the main power transmission component of the shearer when cutting coal.
  • the power consumption of the cutting part accounts for 80%-90% of the power of the entire shearer.
  • rocker arm failures in the cutting section of shearers have accounted for an average of 34.2% of shearer failure rates, among which rocker arm transmission system failures account for more than 80% of all rocker arm failures.
  • the diagnosis method for coal mining machine transmission system faults in coal mining production enterprises is mainly to regularly extract gearbox lubricating oil and determine the working status trend of the gearbox through ferrogram analysis, which is a delayed diagnosis.
  • Some mines have added oil quality detection or vibration detection sensing equipment to conduct online fault monitoring of the rocker gearbox.
  • the underground working conditions are harsh, and the additional sensor device is installed outside the fuselage, making it difficult to protect and achieve long-term reliable operation. .
  • the purpose of this invention is to provide an online identification method for a rocker arm broken shaft fault of a drum shearer, which utilizes the existing cutting motor current and traction speed real-time monitoring conditions to efficiently and accurately identify the fault without adding hardware devices. Broken shaft failure.
  • An online identification method for rocker arm broken shaft faults of drum shearers including the following steps:
  • S102 Perform clock synchronization to obtain the sampling time count tn synchronized with the three-phase currents Icr, Ics, Ict and the traction speed Vt;
  • S104 Based on the three-phase current Icr, Ics, Ict and the change rate ⁇ Ic/ ⁇ tn of the three-phase current effective value, determine whether the cutting motor is in a current drop state at this time;
  • the power supply cycle of the cutting motor is used as the fixed time step ⁇ tn.
  • the real-time three-phase currents Icr, Ics, and Ict of the cutting motor are obtained through the three-phase current sensor arranged on the main circuit of the cutting motor.
  • the sampling rate is preferably not less than 500 Hz.
  • step S101 the real-time traction speed Vt of the shearer is obtained through a speed detection sensor arranged at the rotating shaft of the traction motor.
  • the sampling rate is preferably greater than or equal to 100 Hz.
  • the three-phase current sensor may be a three-phase current transformer, and the speed detection sensor may be an encoder.
  • the three-phase current Icr, Ics, Ict and the traction speed Vt are synchronously sampled into the data acquisition module through the system clock signal, and the phase-locked loop in the data acquisition module To obtain the sampling zero point, the first sampling zero point after the collection starts is used as the counting reference zero position.
  • step S104 the conditions for determining the current drop state are that the effective value of the three-phase current is in a declining state, the current drop amplitude exceeds the drop threshold in multiple consecutive analysis cycles, and the cutting motor itself does not malfunction.
  • the absolute value of the vector sum of the three-phase currents Icr, Ics, and Ict is less than 0.04 times the rated current of the cutting motor during multiple consecutive analysis cycles, indicating that the cutting motor itself does not malfunction.
  • the judgment condition for the current drop state in step S104 is that the following formula is satisfied simultaneously in multiple consecutive analysis cycles:
  • Inom is the rated current of the cutting motor
  • Id is the drop threshold
  • n is a natural number
  • the drop threshold Id is preferably the no-load current Inlaod of the cutting motor.
  • step S105 when the following formula is satisfied simultaneously in multiple consecutive analysis cycles, it is determined that a rocker arm broken shaft failure has occurred:
  • the online identification method of the present invention is based on the judgment of the shearer cutting motor current and traction speed signals. These two sensing signals are the basic monitoring signals of the shearer. There is no need to add redundant hardware devices, so it is easy to implement and Features of high recognition rate.
  • Figure 1 is a flow chart of an embodiment of the online identification method of a broken shaft fault of the present invention.
  • the present invention discloses an online identification method for a broken shaft fault of a drum shearer rocker arm (which can be referred to as an online identification method for a broken shaft fault), which includes the following steps:
  • S102 Perform clock synchronization to obtain the sampling time count tn synchronized with the three-phase currents Icr, Ics, Ict and the traction speed Vt;
  • S104 Based on the three-phase current Icr, Ics, Ict and the change rate ⁇ Ic/ ⁇ tn of the three-phase current effective value, determine whether the cutting motor is in a current drop state at this time;
  • the power supply cycle of the cutting motor is used as the fixed time step ⁇ tn.
  • the fixed time step ⁇ tn is 20 ms.
  • step S101 the real-time three-phase currents Icr, Ics, and Ict of the cutting motor are obtained through the three-phase current sensor arranged on the main circuit of the cutting motor in the electric control box of the coal shearer.
  • the sampling rate is preferably no less than 500Hz.
  • the three-phase current sensor may use a three-phase current transformer.
  • the real-time traction speed Vt of the coal shearer is obtained through the speed detection sensor arranged at the rotating shaft of the traction motor, and the sampling rate is greater than or equal to 100 Hz.
  • the speed detection sensor may use an encoder.
  • the real-time three-phase current of the cutting motor and the real-time traction speed of the shearer are basic physical quantities monitored on the shearer, which can be extracted directly without the need to add additional hardware devices for additional detection.
  • the three-phase current Icr, Ics, Ict and the traction speed Vt are synchronously sampled into the data acquisition module through the system clock signal, and the phase-locked loop in the data acquisition module
  • the first sampling zero point after the start of collection is used as the counting reference zero.
  • Subsequent sampling times can be recorded as t1, t2..., tn, or uniformly as ti, i is a natural number starting from 1 .
  • the standard of current drop can be defined by oneself.
  • the conditions for judging the current drop state are preferably that the effective value of the three-phase current is in a declining state, the current drop amplitude exceeds the drop threshold in multiple consecutive analysis cycles, and the cutting motor itself does not malfunction.
  • the effective value of the three-phase current is in a declining state and the current falling amplitude exceeds the falling threshold in multiple consecutive analysis periods, which is a symptom of the current falling state, but the premise is to ensure that the cutting motor itself is still in a normal state at this time.
  • the absolute value of the vector sum of the three-phase currents Icr, Ics, and Ict is less than 0.04 times the rated current of the cutting motor during multiple consecutive analysis periods as the judgment condition 1.
  • judgment condition 1 it means that there is no fault in the cutting motor itself.
  • the specific formula of judgment condition 1 is expressed as:
  • judgment condition 2 is that the following three formulas are satisfied simultaneously in multiple consecutive analysis cycles:
  • the drop threshold Id is preferably the no-load current Inlaod of the cutting motor. Further, the no-load current Inlaod can be estimated as 0.3 ⁇ Inom.
  • step S105 Since the causes of the current drop state include sudden changes in the load of the rocker arm, traction deceleration, and broken shaft of the rocker arm gearbox, excluding the cutting motor fault state, it is determined in step S105 that a rocker arm breakage has occurred. For shaft faults, it is necessary to eliminate non-shaft failure that can lead to a current drop state, that is, to eliminate sudden changes in rocker load and traction deceleration.
  • the change rate of the traction speed ⁇ Vt/ ⁇ tn is divided into four typical states: acceleration, uniform speed, deceleration and emergency stop. When ⁇ Vt/ ⁇ tn ⁇ 0, the shearer does not enter the deceleration and emergency stop state, that is, Traction deceleration is excluded, which is judgment condition 3.
  • the first three formulas are judgment conditions 2. Based on the above situation, when it is determined that the cutting motor is in a current drop state in step S104, step S105 should be entered to use judgment condition 3: ⁇ Vt/ ⁇ tn ⁇ 0 and judgment condition 4: Ic ⁇ Inload to further rule out traction deceleration and The load on the rocker arm suddenly changes, and it is determined that a rocker arm broken shaft failure has occurred. Judgment condition 4 indicates that the cutting motor is in idling operation.
  • the no-load current Inlaod is preferably estimated as 0.32 ⁇ Inom, but may also be estimated as other multiples of the rated current.
  • the present invention utilizes the cutting transmission system of the rocker arm of the drum shearer to perform a joint analysis based on the current mutation state and the shearer traction state.
  • the current of the cutting motor will undergo regular mutations.
  • this method can not only accurately determine whether a broken shaft fault occurs at this time, but also has a high recognition rate. Since the two sensing signals of current and traction speed are the basic monitoring signals of the shearer, there is no need to add Redundant devices are readily available, making implementation easier without increasing hardware costs.

Abstract

本发明涉及一种滚筒采煤机摇臂断轴故障在线识别方法,包括获取采煤机截割电机的实时三相电流和采煤机的实时牵引速度数据,进行时钟同步,获得与三相电流及牵引速同步的采样时间计数;以固定时间步距实时且同步计算截割电机的实时三相电流有效值及其变化率以及牵引速度的变化率;依据三相电流及三相电流有效值的变化率,判断此时截割电机是否处于电流跌落状态;当判定截割电机处于电流跌落状态时,再结合牵引速度的变化率进行判断,如果进一步排除了能导致电流跌落状态的非断轴故障,则判定为发生了摇臂断轴故障。本发明能利用现有的截割电机电流和牵引速度实时监测条件,在不增加硬件装置的情况下高效、准确地识别出断轴故障。

Description

滚筒采煤机摇臂断轴故障在线识别方法 技术领域
本发明涉及一种采煤机摇臂故障诊断方法,特别是采煤机摇臂齿轮箱断轴故障识别方法。
背景技术
采煤机作为现代化矿井安全、高效生产的主要机械设备,其可靠性直接影响着整个采煤面的正常工作,特别是在自动化工作面,设备的可靠安全工作是确保工作面减员增效的关键指标。
摇臂是采煤机割煤工作时的主要动力传动部件,所处的截割部消耗功率占整个采煤机功率的80%-90%。据统计,某现代化亿吨矿区近年来采煤机截割部摇臂故障占采煤机故障率平均为34.2%,其中摇臂传动系统故障占所有摇臂故障的80%以上。
煤矿生产企业针对采煤机传动系统故障的诊断方法主要是通过定期提取齿轮箱润滑油,通过铁谱分析,判断齿轮箱工作状态趋势,属于滞后诊断。部分矿井通过增配油质检测或振动检测传感设备对摇臂齿轮箱进行在线故障监测,但井下工况恶劣,增配的传感器装置安装在机身外,防护困难,很难实现长期可靠工作。
发明内容
本发明的目的是提供一种滚筒采煤机摇臂断轴故障在线识别方法,利用现有的截割电机电流和牵引速度实时监测条件,在不增加硬件装置的情况下高效、准确地识别出断轴故障。
本发明的主要技术方案有:
一种滚筒采煤机摇臂断轴故障在线识别方法,包括如下步骤:
S101:获取采煤机截割电机的实时三相电流Icr、Ics、Ict和采煤机的实时牵引速度Vt;
S102:进行时钟同步,获得与所述三相电流Icr、Ics、Ict及所述牵引速度Vt同步的采样时间计数tn;
S103:以固定时间步距△tn实时且同步计算截割电机的实时三相电流有效值Ic及其变化率△Ic/△tn以及所述牵引速度的变化率△Vt/△tn;
S104:依据所述三相电流Icr、Ics、Ict及所述三相电流有效值的变化率△Ic/△tn,判断此时截割电机是否处于电流跌落状态;
S105:当判定截割电机处于电流跌落状态时,再结合所述牵引速度的变化率△Vt/△tn作进一步判断,如果进一步排除了能导致电流跌落状态的非断轴故障,则判定为发生了摇臂 断轴故障。
优选以截割电机的供电周期作为所述固定时间步距△tn。
所述步骤S101中,通过布置在截割电机主回路上的三相电流传感器获取截割电机的实时三相电流Icr、Ics、Ict,采样率优选不低于500Hz。
所述步骤S101中,通过布置在牵引电机的转轴处的速度检测传感器,获取采煤机的实时牵引速度Vt,采样率优选大于或等于100Hz。
所述三相电流传感器可以采用三相电流互感器,所述速度检测传感器可以采用编码器。
所述步骤S102中,通过系统时钟信号,将所述三相电流Icr、Ics、Ict及所述牵引速度Vt这两组数据同步采样至数采模块中,通过所述数采模块中锁相环获得取样零点,以采集开始后的第一个取样零点做为计数基准零位。
所述步骤S104中,电流跌落状态的判断条件是所述三相电流有效值处于下降状态、连续多个分析周期内电流跌落幅值超过了跌落阈值,且截割电机自身未出现故障。
所述三相电流Icr、Ics、Ict的矢量和的绝对值在连续多个分析周期内小于所述截割电机的额定电流的0.04倍,表明截割电机自身未出现故障。
所述步骤S104中电流跌落状态的判断条件是连续多个分析周期内同时满足如下公式:
(1)|Icr+Ics+Ict|<0.04×Inom;
(2)
Figure PCTCN2022097057-appb-000001
(3)△Ic/△tn<0;
其中Inom为截割电机的额定电流,Id为所述跌落阈值,n为自然数。
所述跌落阈值Id优选取截割电机的空载电流Inlaod。
所述步骤S105中,当连续多个分析周期内同时满足如下公式时,则判定为发生了摇臂断轴故障:
△Vt/△tn≥0;和Ic<Inload。
本发明的有益效果是:
本发明的在线识别方法是基于采煤机截割电机电流及牵引速度信号进行的判断,这两种传感信号是采煤机的基础监控信号,无需增加多余的硬件装置,因此具有实施方便且识别率高的特点。
附图说明
图1为本发明的断轴故障在线识别方法的一个实施例的流程图。
具体实施方式
如图1所示,本发明公开了一种滚筒采煤机摇臂断轴故障在线识别方法(可简称为断轴故障在线识别方法),包括如下步骤:
S101:获取采煤机截割电机的实时三相电流Icr、Ics、Ict和采煤机的实时牵引速度Vt;
S102:进行时钟同步,获得与所述三相电流Icr、Ics、Ict及所述牵引速度Vt同步的采样时间计数tn;
S103:以固定时间步距△tn实时且同步计算截割电机的实时三相电流有效值Ic及其变化率△Ic/△tn以及所述牵引速度的变化率△Vt/△tn;
S104:依据所述三相电流Icr、Ics、Ict及所述三相电流有效值的变化率△Ic/△tn,判断此时截割电机是否处于电流跌落状态;
S105:当判定截割电机处于电流跌落状态时,再结合所述牵引速度的变化率△Vt/△tn作进一步判断,如果进一步排除了能导致电流跌落状态的非断轴故障,则判定为发生了摇臂断轴故障。
优选以截割电机的供电周期作为所述固定时间步距△tn,本实施例中所述固定时间步距△tn为20ms。
所述步骤S101中,通过布置在采煤机电控箱内的截割电机主回路上的三相电流传感器获取截割电机的实时三相电流Icr、Ics、Ict,采样率优选为不低于500Hz。所述三相电流传感器可以采用三相电流互感器。
所述步骤S101中,通过布置在牵引电机的转轴处的速度检测传感器,获取采煤机的实时牵引速度Vt,采样率大于或等于100Hz。所述速度检测传感器可以采用编码器。截割电机的实时三相电流和采煤机的实时牵引速度都是采煤机上被监控的基础物理量,直接提取即可,不需要增加额外的硬件装置进行另外的检测。
所述步骤S102中,通过系统时钟信号,将所述三相电流Icr、Ics、Ict及所述牵引速度Vt这两组数据同步采样至数采模块中,通过所述数采模块中锁相环获得取样零点,以采集开始后的第一个取样零点做为计数基准零位,后续各采样时刻可依次记为t1、t2……、tn,或者统一记为ti,i为从1开始的自然数。相邻两个采样时刻之间的时间间隔为一个时间步距,记为△tn。本实施例中每20ms计数一次,即△tn=20ms。
所述步骤S104中,电流跌落的标准可以自行定义。本实施例中,电流跌落状态的判断条件优选是所述三相电流有效值处于下降状态、连续多个分析周期内电流跌落幅值超过了跌 落阈值,且截割电机自身未出现故障。其中所述三相电流有效值处于下降状态和连续多个分析周期内电流跌落幅值超过了跌落阈值是电流跌落状态的表象,但前提是需要确保此时截割电机自身仍处于正常状态。
一个分析周期即为一个固定时间步距。本实施例取连续50个分析周期即50×20ms=1s的时间(下同)。
所述三相电流Icr、Ics、Ict的矢量和的绝对值在连续多个分析周期内大于所述截割电机的额定电流的0.04倍,则可以判定截割电机自身出现了故障。如果截割电机自身发生了故障,则无需进入下一步骤的判断流程。
本发明的在线识别方法中将所述三相电流Icr、Ics、Ict的矢量和的绝对值在连续多个分析周期内小于所述截割电机的额定电流的0.04倍作为判断条件1,当满足判断条件1时,代表截割电机自身未出现故障。判断条件1的具体公式表达为:|Icr+Ics+Ict|<0.04×Inom,其中Inom为截割电机的额定电流。
所述三相电流有效值处于下降状态的具体公式表达为:△Ic/△tn<0。
连续多个分析周期内电流跌落幅值超过了跌落阈值的具体公式表达为:
Figure PCTCN2022097057-appb-000002
其中Id为所述跌落阈值,n为自然数。
综上,所述步骤S104中电流跌落状态的判断条件(即判断条件2)是连续多个分析周期内同时满足如下三个公式:
(1)|Icr+Ics+Ict|<0.04×Inom;
(2)
Figure PCTCN2022097057-appb-000003
(3)△Ic/△tn<0。
本实施例中,所述跌落阈值Id优选为截割电机的空载电流Inlaod。进一步地,所述空载电流Inlaod可以按0.3×Inom估算。
由于所述电流跌落状态的诱因包括:摇臂负载突变、牵引降速、摇臂齿轮箱断轴这三种状态,不包含截割电机故障状态,所述步骤S105中要判定发生了摇臂断轴故障,需要排除能导致电流跌落状态的非断轴故障,即排除摇臂负载突变和牵引降速。所述牵引速度的变化率△Vt/△tn分为四种典型状态:加速、匀速、减速和急停,当△Vt/△tn≥0时,采煤机未进入减速及急停状态,即排除了牵引降速,此为判断条件3。
判定摇臂负载突变需要满足如下几个公式:
(1)|Icr+Ics+Ict|<0.04×Inom;
(2)
Figure PCTCN2022097057-appb-000004
(3)△Ic/△tn<0;
(4)△Vt/△tn≥0;
(5)Ic≥Inload。
其中前三个公式即为判断条件2。综合上述情况,当在S104步骤中已经判定截割电机处于了电流跌落状态,应进入S105步骤利用判断条件3:△Vt/△tn≥0和判断条件4:Ic<Inload进一步排除牵引降速和摇臂负载突变,进而判定发生了摇臂断轴故障。其中判断条件4表示截割电机处于空转运行状态。
对于判断条件4,本实施例中,所述空载电流Inlaod优选按0.32×Inom估算,也可以按额定电流的其他倍数值估算。
本发明利用滚筒采煤机摇臂的截割传动系统当出现断轴故障时截割电机的电流会出现有规律突变这一现象,根据该电流突变状态与采煤机牵引状态进行联合分析。实践证明,该方法不仅能较为准确地判断此时是否出现了断轴故障,具有较高的识别率,而且由于电流和牵引速度这两种传感信号是采煤机的基础监控信号,不需要增加多余的装置即可获得,因此实施起来更加方便,且不增加硬件成本。

Claims (10)

  1. 一种滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:包括如下步骤:
    S101:获取采煤机截割电机的实时三相电流Icr、Ics、Ict和采煤机的实时牵引速度Vt;
    S102:进行时钟同步,获得与所述三相电流Icr、Ics、Ict及所述牵引速度Vt同步的采样时间计数tn;
    S103:以固定时间步距△tn实时且同步计算截割电机的实时三相电流有效值Ic及其变化率△Ic/△tn以及所述牵引速度的变化率△Vt/△tn;
    S104:依据所述三相电流Icr、Ics、Ict及所述三相电流有效值的变化率△Ic/△tn,判断此时截割电机是否处于电流跌落状态;
    S105:当判定截割电机处于电流跌落状态时,再结合所述牵引速度的变化率△Vt/△tn作进一步判断,如果进一步排除了能导致电流跌落状态的非断轴故障,则判定为发生了摇臂断轴故障。
  2. 如权利要求1所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:以截割电机的供电周期作为所述固定时间步距△tn。
  3. 如权利要求2所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:所述步骤S101中,通过布置在截割电机主回路上的三相电流传感器获取截割电机的实时三相电流Icr、Ics、Ict,采样率不低于500Hz。
  4. 如权利要求3所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:所述步骤S101中,通过布置在牵引电机的转轴处的速度检测传感器,获取采煤机的实时牵引速度Vt,采样率大于或等于100Hz。
  5. 如权利要求1、2、3或4所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:所述步骤S102中,通过系统时钟信号,将所述三相电流Icr、Ics、Ict及所述牵引速度Vt这两组数据同步采样至数采模块中,通过所述数采模块中锁相环获得取样零点,以采集开始后的第一个取样零点做为计数基准零位。
  6. 如权利要求1、2、3、4或5所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:所述步骤S104中,电流跌落状态的判断条件是所述三相电流有效值处于下降状态、连续多个分析周期内电流跌落幅值超过了跌落阈值,且截割电机自身未出现故障。
  7. 如权利要求6所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:所述三相电流Icr、Ics、Ict的矢量和的绝对值在连续多个分析周期内小于所述截割电机的额定 电流的0.04倍,表明截割电机自身未出现故障。
  8. 如权利要求7所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:所述步骤S104中电流跌落状态的判断条件是连续多个分析周期内同时满足如下公式:
    (1)|Icr+Ics+Ict|<0.04×Inom;
    (2)
    Figure PCTCN2022097057-appb-100001
    (3)△Ic/△tn<0;
    其中Inom为截割电机的额定电流,Id为所述跌落阈值,n为自然数。
  9. 如权利要求8所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:所述跌落阈值Id取截割电机的空载电流Inlaod。
  10. 如权利要求8或9所述的滚筒采煤机摇臂断轴故障在线识别方法,其特征在于:所述步骤S105中,当连续多个分析周期内同时满足如下公式时,则判定为发生了摇臂断轴故障:
    △Vt/△tn≥0;和
    Ic<Inload。
PCT/CN2022/097057 2022-03-28 2022-06-06 滚筒采煤机摇臂断轴故障在线识别方法 WO2023184702A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022279410A AU2022279410A1 (en) 2022-03-28 2022-06-06 Online identification method for the fault of drive shaft fracture in the rocker arm of a drum-type shearer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210312823.2 2022-03-28
CN202210312823.2A CN114813115A (zh) 2022-03-28 2022-03-28 滚筒采煤机摇臂断轴故障在线识别方法

Publications (1)

Publication Number Publication Date
WO2023184702A1 true WO2023184702A1 (zh) 2023-10-05

Family

ID=82531889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097057 WO2023184702A1 (zh) 2022-03-28 2022-06-06 滚筒采煤机摇臂断轴故障在线识别方法

Country Status (3)

Country Link
CN (1) CN114813115A (zh)
AU (1) AU2022279410A1 (zh)
WO (1) WO2023184702A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115949405B (zh) * 2023-03-14 2023-06-02 三一重型装备有限公司 采煤机控制方法、系统、采煤机、电子设备及计算机介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527194A (zh) * 2013-10-15 2014-01-22 淮北矿业(集团)有限责任公司 一种电牵引采煤机健康度实时监测与智能评价系统及其方法
CN106089202A (zh) * 2016-08-22 2016-11-09 西安科技大学 基于电流监测的综采工作面采煤机自动调高控制方法
CN110161897A (zh) * 2019-04-03 2019-08-23 临沂矿业集团有限责任公司 一种采煤机故障分析系统
CN113093693A (zh) * 2021-03-18 2021-07-09 北京天地玛珂电液控制系统有限公司 一种面向采煤机运行状态的在线故障诊断方法
WO2021184820A1 (zh) * 2020-03-18 2021-09-23 华中科技大学 一种两电平三相电压源逆变器桥臂开路故障诊断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527194A (zh) * 2013-10-15 2014-01-22 淮北矿业(集团)有限责任公司 一种电牵引采煤机健康度实时监测与智能评价系统及其方法
CN106089202A (zh) * 2016-08-22 2016-11-09 西安科技大学 基于电流监测的综采工作面采煤机自动调高控制方法
CN110161897A (zh) * 2019-04-03 2019-08-23 临沂矿业集团有限责任公司 一种采煤机故障分析系统
WO2021184820A1 (zh) * 2020-03-18 2021-09-23 华中科技大学 一种两电平三相电压源逆变器桥臂开路故障诊断方法
CN113093693A (zh) * 2021-03-18 2021-07-09 北京天地玛珂电液控制系统有限公司 一种面向采煤机运行状态的在线故障诊断方法

Also Published As

Publication number Publication date
AU2022279410A1 (en) 2023-10-12
CN114813115A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN102707232B (zh) 电动机设备状态在线监测装置及其监测方法
CN115130702B (zh) 一种基于大数据分析的纺织机故障预测系统
CN106372735B (zh) 一种继电保护状态评估方法
WO2023184702A1 (zh) 滚筒采煤机摇臂断轴故障在线识别方法
CN108154166A (zh) 一种风机智能故障诊断系统及方法
CN108412660A (zh) 一种通过轴心轨迹分析水轮发电机组轴瓦状态的方法
CN201835985U (zh) 嵌入式监测仪表及其风力发电机组
CN109405889B (zh) 用于掘进机工作臂减速器故障预测的系统与方法
CN108803569A (zh) 电站锅炉诊断专家系统及其故障诊断方法
CN105928653A (zh) 一种刮板输送机链条张力监测装置及方法
CN103901330A (zh) 一种xlpe电缆局部放电在线监测方法
CN107939577A (zh) 一种水轮机调速器比例伺服阀在线故障诊断方法
CN110285045B (zh) 一种核电厂rcp主泵振动相位监测系统和方法
CN104111391B (zh) 一种基于三相瞬时功率的电主轴故障监测诊断方法
CN106930934A (zh) 一种主输泵故障诊断方法和系统
CN104459556B (zh) 电池系统故障诊断方法及装置
CN106641045A (zh) 联合循环电厂同步离合器的安全监测系统和方法
CN103163402B (zh) 基于二次回路的继电保护设备状态监测装置及监测方法
CN208847455U (zh) 基于传感数据的设备故障监测装置及系统
CN201444189U (zh) 备援电源供应系统的异常辨识架构
CN111986469A (zh) 一种现场终端故障智能化诊断的方法
CN210376538U (zh) 一种驼峰信号设备在线监测系统
CN208026375U (zh) 自动扶梯驱动轮振动检测装置
CN105603631A (zh) 电脑横机的探针检测装置
CN112742544A (zh) 一种中速磨煤机动态分离器的调试方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022279410

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022279410

Country of ref document: AU

Date of ref document: 20220606

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934527

Country of ref document: EP

Kind code of ref document: A1