WO2023184627A1 - 半导体光刻补偿方法 - Google Patents

半导体光刻补偿方法 Download PDF

Info

Publication number
WO2023184627A1
WO2023184627A1 PCT/CN2022/088744 CN2022088744W WO2023184627A1 WO 2023184627 A1 WO2023184627 A1 WO 2023184627A1 CN 2022088744 W CN2022088744 W CN 2022088744W WO 2023184627 A1 WO2023184627 A1 WO 2023184627A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
machine
measurement
photolithography
compensation
Prior art date
Application number
PCT/CN2022/088744
Other languages
English (en)
French (fr)
Inventor
陈恩浩
胡志勇
孙金萍
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2023184627A1 publication Critical patent/WO2023184627A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching

Definitions

  • Embodiments of the present disclosure relate to the field of semiconductor manufacturing technology, and in particular, to a semiconductor photolithography compensation method.
  • embodiments of the present disclosure provide a semiconductor photolithography compensation method, including:
  • a wafer and perform photolithography on the wafer through a machine combination, the machine combination at least including a first machine and a second machine,
  • the first exposure structure is obtained by performing photolithography on the first machine
  • the initial delivery value of the second machine is compensated based on the first measurement value.
  • compensating the delivery value of the second machine based on the first measurement value includes:
  • the first delivery value of the second machine is obtained according to the first compensation value and the initial delivery value of the second machine.
  • the second machine obtains a second exposure structure according to the first delivery value, and obtains a second measurement value of the overlay error of the second exposure structure. If the second exposure structure is The second measurement value exceeds the specification range of the second exposure structure, and a second compensation value is obtained based on the first measurement value and the second measurement value;
  • the unloading values of the remaining machines in the machine combination are compensated according to the second compensation value.
  • the second compensation value is an average of the first measurement value and the second measurement value.
  • the method further includes: when the process parameters of any machine change, resetting the delivery values of all machines running within a preset time, and sending a forced delivery after obtaining the first exposure structure.
  • a measurement command the forced measurement command is used to obtain a first measurement value of the overlay error of the first exposure structure.
  • the method further includes: within a preset time, if the second measurement values of all other machines except the first machine do not exceed the corresponding specification range, the machine will not be changed. The value of goods dropped from the platform;
  • the unloading value of the machine that is not performing measurement operation among the remaining machines is adjusted according to the second compensation value.
  • a possible implementation method also includes: after the preset time has elapsed, all machines that have not released goods will restore measurement marks, re-measure the overlay error, and calculate the value of the goods based on the new measurement values. compensate.
  • embodiments of the present disclosure also provide a semiconductor photolithography compensation method, including:
  • photolithography processing includes a first process and a second process
  • a first measurement value of the overlay error of the first process is obtained, and photolithography compensation is performed on the second process according to the first measurement value.
  • the overlay error of the first process is forced to be measured to obtain the first measurement value
  • the first compensation value is obtained according to the overlay error
  • the first compensation value is fed back to the second process.
  • photolithography compensation is performed on the second process, including:
  • the initial delivery value of the second process is compensated according to the first compensation value.
  • the online lithography process in the non-measurement operating state, is sampled and measured, and the second measured value of the overlay error of the first process in the online lithography process is obtained respectively. , and a third measured value of the overlay error of the second process, and when measuring the operating state, the second measured value and the third measured value are fed back to the second process.
  • feeding back the second measurement value and the third measurement value to the second process includes:
  • the sum of the second compensation value and the third compensation value is the photolithography compensation value of the second process when measuring the operating state.
  • the photolithography process includes: setting the first process and the second process to be aligned with the same previous process when performing overlay error measurement.
  • the first process and the second process use the same type of alignment mark.
  • Embodiments of the present disclosure provide a semiconductor photolithography compensation method, which includes: providing a wafer, and performing photolithography on the wafer through a machine combination, which at least includes a first machine tool and a second machine tool; Perform photolithography to obtain a first exposure structure; obtain a first measurement value of an overlay error of the first exposure structure; and compensate the initial delivery value of the second machine based on the first measurement value.
  • the overlay error of the first exposed structure formed by processing on the first machine can be measured, and the first measurement value can be compensated for the initial delivery value of the second machine, so as to obtain the second The optimal loading value of the machine.
  • the second machine When the second machine subsequently performs photolithography, the second machine will perform photolithography processing according to its optimal loading value, which will help ensure the conformity of the exposed structure formed by subsequent processing on the second machine. Engraving error accuracy, thereby reducing the number of reworks.
  • Figure 1 is a step flow chart 1 of a semiconductor photolithography compensation method provided by an embodiment of the present disclosure
  • FIG. 2 is a step flow chart 2 of a semiconductor photolithography compensation method provided by an embodiment of the present disclosure.
  • different machines in the machine combination can be used for photolithography processing.
  • different machines are used for each photolithography process. Since the machines There is a mechanical deviation inherent in it, and the deviation is amplified after multiple photolithography processes, which may cause the measured value of the final overlay error to exceed the specification value and increase the number of reworks.
  • embodiments of the present disclosure provide a semiconductor photolithography compensation method.
  • the overlay error of the first exposure structure formed by processing on the first machine can be measured.
  • the first measurement value compensates the initial loading value of the second machine to obtain the optimal loading value of the second machine.
  • the second machine will use its optimal loading value.
  • the value of photolithography processing will help ensure the accuracy of the overlay error of the exposed structure formed by subsequent processing on the second machine, thereby reducing the number of reworks.
  • embodiments of the present disclosure also provide a semiconductor photolithography compensation method.
  • the photolithography process includes a first process and a second process. By compensating the deviation obtained during the first process to the second process, the subsequent second process can be improved.
  • the process performs photolithography based on the first batch value, the accuracy of the overlay error of the formed exposed structure is improved, thereby reducing the number of reworks.
  • an embodiment of the present disclosure provides a semiconductor photolithography compensation method, which specifically includes:
  • Step S101 Provide a wafer, and perform photolithography on the wafer through a machine combination, which at least includes a first machine tool and a second machine tool.
  • both the first tool and the second tool in the tool combination can be used to perform photolithography processing on the wafer.
  • both the first machine and the second machine have different initial delivery values. This initial delivery value is what can currently be obtained by using this machine.
  • the optimal delivery value can be understood as the optimal parameters set by the machine when performing photolithography. The exposure structure obtained after processing using these optimal parameters has the highest photolithography error accuracy.
  • Step S102 Perform photolithography on the first machine to obtain the first exposure structure.
  • the first machine obtains the first exposure structure based on its initial delivery value.
  • a photoresist layer needs to be coated on the wafer, and the photoresist layer needs to be exposed, developed, and etched to obtain the first exposed structure.
  • the process includes:
  • Align the overlay mark set on the first machine with the overlay mark of the previous exposure structure Align the overlay mark set on the first machine with the overlay mark of the previous exposure structure. It is worth mentioning that during the manufacturing process of semiconductor structures, alignment marks will be formed on that layer after each layer is exposed, and the alignment marks are also overlay marks. Specifically, before the wafer is exposed, it is necessary to align the overlay mark set by the first machine with the overlay mark of the previous exposure structure, so as to obtain the first exposure structure within the specification range.
  • Step S103 Obtain the first measured value of the overlay error of the first exposure structure.
  • the first measurement value is the overlay accuracy or overlay error value.
  • the overlay error is the deviation between the overlay mark of the current layer and the previous layer. When measured, the deviation value between the overlay mark of the current layer and the overlay mark of the previous layer is tested. If the deviation value exceeds the specification range of the first exposure structure, the current layer will be washed out, the exposure will be reworked (that is, reworked), and the difference between the generated overlay mark of the current layer and the overlay mark of the previous layer will be measured again. Deviation value until the deviation value is within the specification range of the first exposure structure. In this embodiment, the first measurement value is within the specification range of the first exposure structure. Under normal circumstances, the measurement of the overlay error is performed on the overlay measuring machine.
  • Step S104 Compensate the initial delivery value of the second machine based on the first measurement value.
  • the new optimal cargo discharging value of the second machine can be obtained after the initial loading value of the second machine is compensated.
  • the second machine performs photolithography processing according to its optimal lower value, which is helpful to ensure the accuracy of the overlay error of the exposed structure formed by subsequent second machine processing, thereby reducing Number of reworks.
  • compensating the delivery value of the second machine based on the first measured value includes: obtaining the first compensation value based on the difference between the first measured value and the initial delivery value of the first machine; The first delivery value of the second machine is obtained based on the first compensation value and the initial delivery value of the second machine.
  • the first compensation value may be equal to the initial delivery value of the first machine minus the first measurement value.
  • the first delivery value of the second machine is obtained based on the first compensation value and the initial delivery value of the second machine.
  • the first unloading value of the second machine can be equal to the initial unloading value of the second machine minus the first compensation value, thereby compensating the first compensation value to the second machine. So that the first delivery value of the second machine is the new optimal delivery value that can be obtained by the second machine. In order to improve the accuracy of the overlay error of the formed exposure structure when the second machine performs photolithography based on the first batch value, thereby reducing the number of reworks.
  • compensating the deviation obtained by the first machine to the second machine can also help improve the utilization rate and production capacity of the machine in the photolithography process, thereby improving the production efficiency of the product.
  • Embodiments of the present disclosure provide a semiconductor photolithography compensation method, which includes: providing a wafer, and performing photolithography on the wafer through a machine combination, which at least includes a first machine tool and a second machine tool; Perform photolithography to obtain a first exposure structure; obtain a first measurement value of an overlay error of the first exposure structure; and compensate the initial delivery value of the second machine based on the first measurement value.
  • the overlay error of the first exposed structure formed by processing on the first machine can be measured, and the first measurement value can be compensated for the initial delivery value of the second machine, so as to obtain the second The optimal loading value of the machine.
  • the second machine When the second machine subsequently performs photolithography, the second machine will perform photolithography processing according to its optimal loading value, which will help ensure the conformity of the exposed structure formed by subsequent processing on the second machine. Engraving error accuracy, thereby reducing the number of reworks.
  • the method further includes: the second machine is based on the first delivery value.
  • the second exposure structure is obtained, and a second measurement value of the overlay error of the second exposure structure is obtained. If the second measurement value exceeds the specification range of the second exposure structure, a second compensation is obtained based on the first measurement value and the second measurement value. value.
  • the second machine obtains the second exposure structure based on the first delivery value.
  • a photoresist layer needs to be coated on the wafer, and the photoresist layer needs to be exposed, developed, and After etching, a second exposed structure is obtained.
  • the process before performing photolithography on the second machine to obtain the second exposure structure, includes: aligning the overlay mark set on the second machine with the overlay mark of the previous exposure structure, so as to obtain the overlay mark within the specification. Second exposure structure within range.
  • the wafer can be overlay measured after exposure and development, and the overlay error can be measured on the overlay measuring machine.
  • the second measurement value if the second measurement value exceeds the specification range of the second exposure structure, it means that the first loading value of the second machine is not the optimal loading value, and the compensation value needs to be recalculated.
  • the second compensation value can be the average of the first measurement value and the second measurement value, so that the two measurement values can be compensated into the second machine, so that the subsequent second machine can process products within the specification range. Expose the structure and avoid having to rework it again.
  • the method further includes: compensating the delivery values of other machines in the machine combination according to the second compensation value.
  • the second compensation value is obtained from the first tool and the second tool that have undergone photolithography processing.
  • the tool combination may also include, for example
  • the third and fourth machines that have not yet performed photolithography processing are the so-called "remaining machines in the machine combination.”
  • the loading values of the remaining machines in the machine combination are compensated according to the second compensation value. For example, the difference between the initial loading value of the third machine and the second compensation value can be obtained. value, thereby obtaining the second drop value of the third machine.
  • the second drop value of the third machine is the optimal drop value that the third machine can obtain, so that the subsequent third machine can follow the second drop.
  • the loading values of all machines running within the preset time are reset, and a forced measurement command is sent after the first exposure structure is obtained.
  • the forced measurement command is used for A first measurement of the overlay error of the first exposed structure is obtained.
  • the preset time may be, for example, 14 days.
  • the initial wafer value of the machine needs to be compensated again.
  • the delivery values of all running machines are reset within the preset time, that is, the delivery values of the machines are reset to the initial delivery values.
  • the overlay error of the first exposure structure is forcedly measured to obtain the first measurement value.
  • the initial loading values of the remaining machines in the machine combination are compensated based on the first measurement value.
  • the remaining machines are compensated based on the compensated loading values.
  • the wafer is photolithographed so that the overlay error accuracy of the formed exposed structure is improved, thereby reducing the number of reworks.
  • the compensated loading value is the optimal loading value, which is beneficial to ensuring the accuracy of the overlay error of the exposed structure and does not require further adjustment.
  • the delivery value of the remaining machines that are not in measurement operation needs to be adjusted.
  • the second compensation value is obtained based on the average of the first measurement value and the second measurement value, and the unloading value of the remaining machines that are not in measurement operation is adjusted based on the second compensation value.
  • other machines can subsequently process the exposure structure within the specification range, thereby avoiding rework.
  • all machines that have not released goods will restore the measurement marks, re-measure the overlay error, and compensate the value of the goods based on the new measurement value.
  • the machine that is not running during the period may produce new mechanical deviations.
  • an embodiment of the present disclosure also provides a semiconductor photolithography compensation method, including:
  • Step S201 Provide a substrate, and perform photolithography processing on the substrate.
  • the photolithography processing includes a first process and a second process.
  • the original layer of photolithography patterns is usually split into two or more masks, and multiple exposures and etching are used to achieve The original one-layer design graphics.
  • the photolithography process includes a first process and a second process. The first process requires a first exposure of the substrate to form a first exposed structure, and the second process requires a second exposure of the first exposed structure. exposure to form a second exposed structure.
  • the photolithography process may include: setting the first process and the second process to be aligned with the same previous process when performing overlay error measurement.
  • alignment marks will be formed on the current layer, and the alignment marks are also overlay marks. Specifically, before the wafer is exposed, it is necessary to align the overlay mark set by the first machine with the overlay mark of the previous exposure structure, so as to obtain the first exposure structure within the specification range. Aligning the overlay mark set in the first process with the overlay mark of the previous exposure structure is beneficial to obtaining the first exposure structure within the specification range. Similarly, aligning the overlay mark set in the second process with the overlay mark of the previous exposure structure is beneficial to obtaining the second exposure structure within the specification range.
  • the first process and the second process can use the same type of alignment mark to improve the exposure accuracy of the second process, thereby improving the overlay error accuracy of the formed second exposure structure and preventing the second exposure structure from The overlay error exceeds the specification value to avoid rework.
  • Step S202 Obtain a first measured value of the overlay error of the first process, and perform photolithography compensation for the second process according to the first measured value.
  • the first measurement value is the overlay accuracy or overlay error value of the first process.
  • the overlay error is the deviation between the overlay mark of the current layer and the previous layer. When measured, the deviation value between the overlay mark of the current layer and the overlay mark of the previous layer is tested. If the deviation value exceeds the specification range of the first process, the current layer will be washed out, the exposure will be done again, and the deviation value of the generated overlay mark of the current layer and the overlay mark of the previous layer will be measured again until the deviation value is at the first level.
  • the first measurement value is within the specification range of the first process. Under normal circumstances, the measurement of the overlay error is performed on the overlay measuring machine.
  • the overlay error of the first process is forced to be measured to obtain the first measurement value, the first compensation value is obtained according to the overlay error, and the first compensation value is fed back to the second process.
  • the overlay error of the first exposed structure needs to be measured, and the second process is compensated based on the obtained first measurement value, so that The second process obtains the first placement value based on the first compensation value and the initial placement value, and the subsequent second process performs exposure based on the first placement value.
  • the accuracy of the overlay error of the obtained second exposure structure is improved, and overlaying is avoided.
  • the error exceeds the specification range, thus avoiding rework.
  • photolithography compensation is performed for the second process, including: obtaining a first compensation value based on the difference between the initial batch value of the first process and the first measured value; and calculating the initial batch value of the second process based on the first compensation value. Compensation will be made for the value of the goods.
  • the first compensation value may be equal to the initial delivery value of the first process minus the first measurement value.
  • the first shipment value of the second process is obtained based on the first compensation value and the initial shipment value of the second process.
  • the first delivery value of the second process may be equal to the initial delivery value of the second process minus the first compensation value, thereby compensating the first compensation value to the second process, so that the second The first batch value of the process is the optimal batch value that can be obtained by the second process. This is so that when the subsequent second process performs photolithography based on the first batch value, the accuracy of the overlay error of the formed exposed structure will be improved, thereby reducing the number of reworks.
  • the measurement of the overlay error after the second process can also be gradually canceled, and only a small amount of random inspections can be performed to verify that the second process has no A new deviation occurs. This will help improve the utilization rate and production capacity of machines in the photolithography process, thereby improving product production efficiency.
  • Embodiments of the present disclosure also provide a semiconductor photolithography compensation method, which includes: providing a substrate, performing photolithography processing on the substrate, and the photolithography processing includes a first process and a second process; and obtaining a first measurement of the overlay error of the first process. value, and perform photolithography compensation on the second process according to the first measurement value.
  • a semiconductor photolithography compensation method which includes: providing a substrate, performing photolithography processing on the substrate, and the photolithography processing includes a first process and a second process; and obtaining a first measurement of the overlay error of the first process. value, and perform photolithography compensation on the second process according to the first measurement value.
  • sampling measurement can be performed on the first process to obtain the measurement value of the overlay error of the first exposure structure, that is, the second measurement value, and then the second measurement value can be obtained.
  • the second process performs sampling measurement to obtain the measurement value of the overlay error of the second exposure structure, that is, the third measurement value.
  • feeding back the second measurement value and the third measurement value to the second process may include: calculating the difference between the initial delivery value of the first process and the second measurement value as the second compensation value; calculate the difference between the initial delivery value of the second process and the third measured value as the third compensation value; the sum of the second compensation value and the third compensation value is the second value when measuring the operating status.
  • the photolithography compensation value of the process By compensating the sum of the second compensation value and the third compensation value to the second process, the timeliness of feedback is improved, the accuracy of the overlay error of the exposed structure is further improved, and it is beneficial to further reduce the number of reworks.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本公开实施例属于半导体制造技术领域,具体涉及一种半导体光刻补偿方法,包括:通过机台组合对晶圆进行光刻,机台组合至少包括第一机台和第二机台;通过第一机台进行光刻得到第一曝光结构;获取第一曝光结构的套刻误差的第一测量值;根据第一测量值对第二机台的初始下货值进行补偿。在进行半导体结构的制作过程中,可以通过测量第一机台加工形成的第一曝光结构的套刻误差,将第一测量值对第二机台的初始下货值进行补偿,以便得到第二机台的最优下货值,后续第二机台进行光刻时,第二机台根据其最优下货值进行光刻加工,有利于保证后续第二机台加工形成的曝光结构的套刻误差准确性,从而减少重工次数。

Description

半导体光刻补偿方法
本公开要求于2022年04月02日提交中国专利局、申请号为202210346507.7、申请名称为“半导体光刻补偿方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及半导体制造技术领域,尤其涉及一种半导体光刻补偿方法。
背景技术
在半导体结构的制作中,通常需要对卡盘上的基底进行光刻制程,以使掩膜板上的图形转移到基底上。晶圆在光刻制程过程中,曝光显影后的图形(当层),必须与晶圆衬底上的已有图形(前层)对准,才能保证各器件之间的连接正确;曝光图形的当层和前层之间的相对位置称为套刻误差(Overlay)。相关技术中,在当层光刻制程完成后,需要使用测量机台测量套刻误差,当套刻误差超过产品规格线时,需要对晶圆的当层进行重工;当套刻误差满足规格线时,可以进行下货并送至下一道工序。然而,相关技术的半导体结构制作过程中,存在重工次数较多的问题。
发明内容
第一方面,本公开实施例提供一种半导体光刻补偿方法,包括:
提供晶圆,通过机台组合对所述晶圆进行光刻,所述机台组合至少包括第一机台和第二机台,
通过所述第一机台进行光刻得到第一曝光结构;
获取所述第一曝光结构的套刻误差的第一测量值;
根据所述第一测量值对所述第二机台的初始下货值进行补偿。
在一种可能的实现方式中,根据所述第一测量值对所述第二机台的下货值进行补偿,包括:
根据所述第一测量值和所述第一机台的初始下货值之间的差值获取第一补偿值;
根据所述第一补偿值和所述第二机台的初始下货值得到所述第二机台的第一下货值。
在一种可能的实现方式中,所述第二机台根据所述第一下货值得到第二曝光结构,获取所述第二曝光结构的套刻误差的第二测量值,若所述第二测量值超过所述第二曝光结构的规格范围,根据所述第一测量值和所述第二测量值获取第二补偿值;
根据所述第二补偿值对所述机台组合中其余机台的下货值进行补偿。
在一种可能的实现方式中,所述第二补偿值为所述第一测量值和所述第二测量值的平均值。
在一种可能的实现方式中,通过所述第一机台进行光刻得到第一曝光结构之前, 包括:
将所述第一机台设定的套刻标记与前层曝光结构的套刻标记对准。
在一种可能的实现方式中,还包括:任一机台制程参数发生改变时,将预设时间内运行的所有机台的下货值重置,在得到所述第一曝光结构后发送强制量测命令,所述强制量测命令用于获取所述第一曝光结构的套刻误差的第一测量值。
在一种可能的实现方式中,还包括:在预设时间内,若除所述第一机台外的其余机台的所述第二测量值均未超过相应的规格范围,则不改变机台的下货值;
若其余机台中任一机台的所述第二测量值超过规格范围,根据所述第一测量值和所述第二测量值的平均值获取第二补偿值;
根据所述第二补偿值调整所述其余机台中未进行量测运行的机台的下货值。
在一种可能的实现方式中,还包括:超过预设时间后,所有未下货的机台恢复测量标记,重新进行套刻误差的量测,并根据新的量测值对下货值进行补偿。
第二方面,本公开实施例还提供一种半导体光刻补偿方法,包括:
提供基底,对所述基底进行光刻处理,所述光刻处理包括第一制程和第二制程;
获取所述第一制程的套刻误差的第一测量值,根据所述第一测量值对所述第二制程进行光刻补偿。
在一种可能的实现方式中,在测量运行状态,强制量测所述第一制程的套刻误差,以获取所述第一测量值,根据所述套刻误差获取第一补偿值,并将所述第一补偿值反馈给所述第二制程。
在一种可能的实现方式中,对所述第二制程进行光刻补偿,包括:
根据所述第一制程的初始下货值和所述第一测量值之差获取所述第一补偿值;
根据所述第一补偿值对所述第二制程的初始下货值进行补偿。
在一种可能的实现方式中,在非测量运行状态,对线上光刻制程进行采样量测,分别获取所述线上光刻制程中所述第一制程的套刻误差的第二测量值,以及所述第二制程的套刻误差的第三测量值,并在测量运行状态时,将所述第二测量值和第三测量值反馈给所述第二制程。
在一种可能的实现方式中,将所述第二测量值和第三测量值反馈给所述第二制程,包括:
计算所述第一制程的初始下货值与所述第二测量值之间的差值,作为第二补偿值;
计算所述第二制程的初始下货值与所述第三测量值之间的差值,作为第三补偿值;
所述第二补偿值和所述第三补偿值之和,即为在测量运行状态时,所述第二制程的光刻补偿值。
在一种可能的实现方式中,所述光刻处理包括:设定所述第一制程和所述第二制程在进行套刻误差量测时对准同一道在前制程。
在一种可能的实现方式中,所述第一制程和所述第二制程使用相同类型的对准标记。
本公开实施例提供一种半导体光刻补偿方法,包括:提供晶圆,通过机台组合对晶圆进行光刻,机台组合至少包括第一机台和第二机台;通过第一机台进行光刻得到第一曝光结构;获取第一曝光结构的套刻误差的第一测量值;根据第一测量值对第二 机台的初始下货值进行补偿。在进行半导体结构的制作过程中,可以通过测量第一机台加工形成的第一曝光结构的套刻误差,将第一测量值对第二机台的初始下货值进行补偿,以便得到第二机台的最优下货值,后续第二机台进行光刻时,第二机台根据其最优下货值进行光刻加工,有利于保证后续第二机台加工形成的曝光结构的套刻误差准确性,从而减少重工次数。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种半导体光刻补偿方法的步骤流程图一;
图2为本公开实施例提供的一种半导体光刻补偿方法的步骤流程图二。
具体实施方式
为了清楚理解本公开的技术方案,首先对相关技术的方案进行详细介绍。
在半导体结构的制作过程中,在当层光刻制程完成后,需要使用测量机台测量套刻误差,当套刻误差超过产品规格线时,需要对晶圆的当层进行重工;当套刻误差满足规格线时,可以进行下货并送至下一道工序。
在半导体结构制作过程中,可以使用机台组合中的不同机台进行光刻加工,当需要对晶圆进行多次光刻工艺时,每次进行光刻工艺使用的机台不同,由于机台本身存在机械偏差,多次光刻工艺后偏差被放大,可能导致最终套刻误差的测量值超过规格值,重工次数增加。
在半导体结构制作过程中,为提高光刻处理的精度,通常利用多次制程来实现原来一层设计的图形,每次制程结束后都需要进行套刻误差的量测,套刻误差的测量值超过当次制程的规格值,则需要进行重工,导致重工次数增加。可见,上述情况都容易导致重工次数增加,影响生产效率。
有鉴于此,第一方面,本公开实施例提供一种半导体光刻补偿方法,在进行半导体结构的制作过程中,可以通过测量第一机台加工形成的第一曝光结构的套刻误差,将第一测量值对第二机台的初始下货值进行补偿,以便得到第二机台的最优下货值,后续第二机台进行光刻时,第二机台根据其最优下货值进行光刻加工,有利于保证后续第二机台加工形成的曝光结构的套刻误差准确性,从而减少重工次数。
第二方面,本公开实施例还提供一种半导体光刻补偿方法,光刻处理包括第一制程和第二制程,通过将第一制程过程中得到的偏差补偿给第二制程,以便后续第二制程根据第一下货值进行光刻时,形成的曝光结构的套刻误差准确性提高,进而减少重工次数。
为了使本公开实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中 的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本公开保护的范围。
参照图1,本公开实施例提供的一种半导体光刻补偿方法,具体包括:
步骤S101、提供晶圆,通过机台组合对晶圆进行光刻,机台组合至少包括第一机台和第二机台。
值得说明的是,在对晶圆进行光刻加工的过程中,可以使用机台组合中的不同机台进行光刻加工。例如,在机台组合至少包括第一机台和第二机台的实施例中,机台组合中的第一机台和第二机台均能够用于对晶圆进行光刻加工。然而,由于第一机台和第二机台本身存在机械偏差,第一机台和第二机台均存在不同的初始下货值,该初始下货值即为使用该机台当前所能得到的最优下货值。这里的“最优下货值”可以理解为机台在进行光刻时设定的最优参数,使用该最优参数加工后得到的曝光结构的光刻误差准确性最高。
步骤S102、通过第一机台进行光刻得到第一曝光结构。
值得说明的是,通过第一机台进行光刻时,第一机台根据其初始下货值得到第一曝光结构。在进行光刻的过程中,需要在晶圆上涂布光刻胶层,并对光刻胶层进行曝光、显影以及蚀刻以后,从而得到第一曝光结构。
可选地,通过第一机台进行光刻得到第一曝光结构之前,包括:
将第一机台设定的套刻标记与前层曝光结构的套刻标记对准。值得说明的是,半导体结构的制作过程中,每层做完曝光后都会在当层形成对准标记,该对准标记也即为套刻标记。具体来说,需要在晶圆进行曝光之前,将第一机台设定的套刻标记与前层曝光结构的套刻标记对准,以便得到位于规格范围内的第一曝光结构。
步骤S103、获取第一曝光结构的套刻误差的第一测量值。
晶圆在进行曝光和显影后进行套刻测量,以获得晶圆的套刻精度或套刻误差值,本实施例中,第一测量值即为套刻精度或者套刻误差值。套刻误差是当层与前层之间套刻标记的偏差,测量时是测试当层套刻标记与前层套刻标记之间的偏差值。如果这个偏差值超过第一曝光结构的规格范围,会把当层洗掉,重新再做一次(rework)曝光(也即重工),再次测量生成的当层套刻标记与前层套刻标记的偏差值,直至偏差值位于第一曝光结构的规格范围内。本实施例中,第一测量值位于第一曝光结构的规格范围内。一般情况下,套刻误差的测量在套刻测量机台上进行。
步骤S104、根据第一测量值对第二机台的初始下货值进行补偿。
本实施例中,通过将第一机台得到的第一测量值提前补偿给第二机台,使第二机台的初始下货值补偿后能够得到第二机台的新的最优下货值,后续第二机台进行光刻时,第二机台根据其最优下货值进行光刻加工,有利于保证后续第二机台加工形成的曝光结构的套刻误差准确性,从而减少重工次数。
本实施例中,根据第一测量值对第二机台的下货值进行补偿,包括:根据第一测量值和第一机台的初始下货值之间的差值获取第一补偿值;根据第一补偿值和第二机台的初始下货值得到第二机台的第一下货值。
在一种具体的实现方式中,第一补偿值可以等于第一机台的初始下货值减去第一测量值。在得到第一补偿值之后,根据第一补偿值和第二机台的初始下货值得到第二 机台的第一下货值。在一种具体的实现方式中,第二机台的第一下货值可以等于第二机台的初始下货值减去第一补偿值,从而将第一补偿值补偿到第二机台,使得第二机台的第一下货值即为第二机台所能得到的新的最优下货值。以便后续第二机台根据第一下货值进行光刻时,形成的曝光结构的套刻误差准确性提高,进而减少重工次数。
在一些实施例中,将第一机台得到的偏差补偿到第二机台,还有利于提高光刻工艺中机台的利用率和产能,进而提升产品的生产效率。
本公开实施例提供一种半导体光刻补偿方法,包括:提供晶圆,通过机台组合对晶圆进行光刻,机台组合至少包括第一机台和第二机台;通过第一机台进行光刻得到第一曝光结构;获取第一曝光结构的套刻误差的第一测量值;根据第一测量值对第二机台的初始下货值进行补偿。在进行半导体结构的制作过程中,可以通过测量第一机台加工形成的第一曝光结构的套刻误差,将第一测量值对第二机台的初始下货值进行补偿,以便得到第二机台的最优下货值,后续第二机台进行光刻时,第二机台根据其最优下货值进行光刻加工,有利于保证后续第二机台加工形成的曝光结构的套刻误差准确性,从而减少重工次数。
本实施例中,在根据第一测量值对第二机台的初始下货值进行补偿,以得到第二机台的第一下货值以后,还包括:第二机台根据第一下货值得到第二曝光结构,获取第二曝光结构的套刻误差的第二测量值,若第二测量值超过第二曝光结构的规格范围,根据第一测量值和第二测量值获取第二补偿值。
相似地,第二机台根据第一下货值得到第二曝光结构,在进行光刻的过程中,需要在晶圆上涂布光刻胶层,并对光刻胶层进行曝光、显影以及蚀刻以后,从而得到第二曝光结构。在一些实施例中,通过第二机台进行光刻得到第二曝光结构之前,包括:将第二机台设定的套刻标记与前层曝光结构的套刻标记对准,以便得到位于规格范围内的第二曝光结构。
相似地,获取第二曝光结构的套刻误差的第二测量值。晶圆可以在进行曝光和显影后进行套刻测量,套刻误差的测量可以在套刻测量机台上进行。
在一些实施例中,若第二测量值超过第二曝光结构的规格范围,说明第二机台的第一下货值并不是最优下货值,需要重新计算补偿值。第二补偿值可以为第一测量值和第二测量值的平均值,以便将两次的测量值折中补偿进第二机台内,便于后续第二机台能够加工出位于规格范围内的曝光结构,从而避免再次重工。
例如,在获取第二补偿值以后,还包括:根据第二补偿值对机台组合中其余机台的下货值进行补偿。在机台组合至少包括第一机台和第二机台的实施例中,第二补偿值由已经进行过光刻加工的第一机台和第二机台得到,机台组合例如还可以包括还没有进行光刻加工的第三机台、第四机台等,这些机台即为所谓的“机台组合中其余机台”。在获取第二补偿值以后,根据第二补偿值对机台组合中其余机台的下货值进行补偿,举例来说,可以获取第三机台的初始下货值与第二补偿值的差值,从而得到第三机台的第二下货值,第三机台的第二下货值即为第三机台所能得到的最优下货值,以便后续第三机台根据第二下货值进行光刻时,形成的曝光结构的套刻误差准确性提高,进而减少重工次数。
可选地,任一机台制程参数发生改变时,将预设时间内运行的所有机台的下货值 重置,在得到第一曝光结构后发送强制量测命令,强制量测命令用于获取第一曝光结构的套刻误差的第一测量值。本实施例中,预设时间例如可以为14天。
可选地,在任一机台制程参数发生改变时,为防止机台继续使用旧制程参数的下货值对晶圆进行加工,需要重新对机台的初始下货值进行补偿。在预设时间内所有在运行的机台的下货值进行重置,也即,使得机台的下货值均重置为初始下货值。在使用第一机台得到第一曝光结构以后,响应于该强制量测命令,对第一曝光结构的套刻误差进行强制量测,以获取第一测量值。
值得说明的是,在获取第一测量值以后,根据第一测量值对机台组合中的其余机台的初始下货值进行补偿,在后续加工的过程中,其余机台根据补偿后的下货值对晶圆进行光刻,以便形成的曝光结构的套刻误差准确性提高,进而减少重工次数。
在预设时间内,若除第一机台外的其余机台的第二测量值均未超过相应的规格范围,则不改变机台的下货值。在对除第一机台外的其余机台的初始下货值进行补偿后,继续进行光刻加工以形成曝光结构,并对这些曝光结构的套刻误差进行测量,以得到第二测量值。若第二测量值均未超过相应的规格范围,说明补偿后的下货值即为最优下货值,有利于保证曝光结构的套刻误差准确性,不需要进一步调整。
若其余机台中任一机台的第二测量值超过规格范围,则需要对其余机台中未进行量测运行的机台的下货值进行调整。在一种具体的实现方式中,根据第一测量值和第二测量值的平均值获取第二补偿值,根据第二补偿值调整其余机台中未进行量测运行的机台的下货值。以便将两次的测量值折中补偿进其余机台内,便于后续其余机台能够加工出位于规格范围内的曝光结构,从而避免再次重工。
可选地,超过预设时间后,所有未下货的机台恢复测量标记,重新进行套刻误差的量测,并根据新的量测值对下货值进行补偿。当超过预设时间后,期间未运行的机台可能会产生新的机械偏差,通过对机台光刻加工的曝光结构进行套刻误差的量测,得到新的量测值,然后根据新的量测值对其他机台的初始下货值进行补偿。
参照图2,本公开实施例还提供一种半导体光刻补偿方法,包括:
步骤S201、提供基底,对基底进行光刻处理,光刻处理包括第一制程和第二制程。
值得说明的是,在半导体结构的制作过程中,为提高光刻处理的精度,通常将原来一层光刻图形拆分到两个或多个掩膜上,利用多次曝光和刻蚀来实现原来一层设计的图形。本实施例中,光刻处理包括第一制程和第二制程,其中,第一制程需要对基底进行第一次曝光,以形成第一曝光结构,第二制程需要对第一曝光结构进行第二次曝光,以形成第二曝光结构。
本实施例中,光刻处理可以包括:设定第一制程和第二制程在进行套刻误差量测时对准同一道在前制程。
值得说明的是,第一制程时,会在当层形成对准标记,该对准标记也即为套刻标记。具体来说,需要在晶圆进行曝光之前,将第一机台设定的套刻标记与前层曝光结构的套刻标记对准,以便得到位于规格范围内的第一曝光结构。将第一制程设定的套刻标记与前层曝光结构的套刻标记对准,有利于得到位于规格范围内的第一曝光结构。相同地,将第二制程设定的套刻标记与前层曝光结构的套刻标记对准,有利于得到位 于规格范围内的第二曝光结构。
本实施例中,第一制程和第二制程可以使用相同类型的对准标记,以便提高第二制程的曝光精度,进而提高形成的第二曝光结构的套刻误差准确性,防止第二曝光结构的套刻误差超出规格值,避免重工。
步骤S202、获取第一制程的套刻误差的第一测量值,根据第一测量值对第二制程进行光刻补偿。
晶圆在进行曝光和显影后进行套刻测量,以获得晶圆的套刻精度或套刻误差值,本实施例中,第一测量值即为第一制程的套刻精度或者套刻误差值。套刻误差是当层与前层之间套刻标记的偏差,测量时是测试当层套刻标记与前层套刻标记之间的偏差值。如果这个偏差值超过第一制程的规格范围,会把当层洗掉,重新再做一次曝光,再次测量生成的当层套刻标记与前层套刻标记的偏差值,直至偏差值位于第一制程的规格范围内。本实施例中,第一测量值位于第一制程的规格范围内。一般情况下,套刻误差的测量在套刻测量机台上进行。
可选地,强制量测第一制程的套刻误差,以获取第一测量值,根据套刻误差获取第一补偿值,并将第一补偿值反馈给第二制程。
本实施例中,在处于测量运行状态时,在第一制程进行曝光以后,需要对第一曝光结构进行套刻误差的量测,并根据得到的第一测量值对第二制程进行补偿,使第二制程根据第一补偿值和初始下货值得到第一下货值,后续第二制程根据第一下货值进行曝光,得到的第二曝光结构的套刻误差准确性提高,避免套刻误差超过规格范围,进而避免重工。
本实施例中,对第二制程进行光刻补偿,包括:根据第一制程的初始下货值和第一测量值之差获取第一补偿值;根据第一补偿值对第二制程的初始下货值进行补偿。
在一种具体的实现方式中,第一补偿值可以等于第一制程的初始下货值减去第一测量值。在得到第一补偿值之后,根据第一补偿值和第二制程的初始下货值得到第二制程的第一下货值。在一种具体的实现方式中,第二制程的第一下货值可以等于第二制程的初始下货值减去第一补偿值,从而将第一补偿值补偿到第二制程,使得第二制程的第一下货值即为第二制程所能得到的最优下货值。以便后续第二制程根据第一下货值进行光刻时,形成的曝光结构的套刻误差准确性提高,进而减少重工次数。
在一些实施例中,后续在第二制程的套刻误差的准确性提高的前提下,还可以逐步取消第二制程后套刻误差的量测,可以只进行少量的抽检以验证第二制程没有发生新的偏差。进而有利于提高光刻工艺中机台的利用率和产能,进而提升产品的生产效率。
本公开实施例还提供一种半导体光刻补偿方法,包括:提供基底,对基底进行光刻处理,光刻处理包括第一制程和第二制程;获取第一制程的套刻误差的第一测量值,根据第一测量值对第二制程进行光刻补偿。通过将第一制程过程中得到的偏差补偿给第二制程,以便后续第二制程根据第一下货值进行光刻时,形成的曝光结构的套刻误差准确性提高,进而减少重工次数。
可选地,在非测量运行状态,对线上光刻制程进行采样量测,分别获取线上光刻制程中第一制程的套刻误差的第二测量值,以及第二制程的套刻误差的第三测量值, 并在测量运行状态时,将第二测量值和第三测量值反馈给第二制程。本实施例中,在非量测运行状态时,可以对第一制程进行采样量测,以获取第一曝光结构的套刻误差的量测值,也即第二量测值,然后可以对第二制程进行采样量测,以获取第二曝光结构的套刻误差的量测值,也即第三量测值。
在量测运行状态时,将第二测量值和第三测量值反馈给第二制程,可以包括:计算第一制程的初始下货值与第二测量值之间的差值,作为第二补偿值;计算第二制程的初始下货值与第三测量值之间的差值,作为第三补偿值;第二补偿值和第三补偿值之和,即为在测量运行状态时,第二制程的光刻补偿值。通过将第二补偿值和第三补偿值之和补偿给第二制程,提高了反馈的及时性,进一步提高了曝光结构的套刻误差准确性,有利于进一步减少重工次数。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (15)

  1. 一种半导体光刻补偿方法,包括:
    提供晶圆,通过机台组合对所述晶圆进行光刻,所述机台组合至少包括第一机台和第二机台,
    通过所述第一机台进行光刻得到第一曝光结构;
    获取所述第一曝光结构的套刻误差的第一测量值;
    根据所述第一测量值对所述第二机台的初始下货值进行补偿。
  2. 根据权利要求1所述的半导体光刻补偿方法,其中,根据所述第一测量值对所述第二机台的下货值进行补偿,包括:
    根据所述第一测量值和所述第一机台的初始下货值之间的差值获取第一补偿值;
    根据所述第一补偿值和所述第二机台的初始下货值得到所述第二机台的第一下货值。
  3. 根据权利要求2所述的半导体光刻补偿方法,其中,
    所述第二机台根据所述第一下货值得到第二曝光结构,获取所述第二曝光结构的套刻误差的第二测量值,若所述第二测量值超过所述第二曝光结构的规格范围,根据所述第一测量值和所述第二测量值获取第二补偿值;
    根据所述第二补偿值对所述机台组合中其余机台的下货值进行补偿。
  4. 根据权利要求3所述的半导体光刻补偿方法,其中,所述第二补偿值为所述第一测量值和所述第二测量值的平均值。
  5. 根据权利要求1所述的半导体光刻补偿方法,其中,通过所述第一机台进行光刻得到第一曝光结构之前,包括:
    将所述第一机台设定的套刻标记与前层曝光结构的套刻标记对准。
  6. 根据权利要求1所述的半导体光刻补偿方法,其中还包括:
    任一机台制程参数发生改变时,将预设时间内运行的所有机台的下货值重置,在得到所述第一曝光结构后发送强制量测命令,所述强制量测命令用于获取所述第一曝光结构的套刻误差的第一测量值。
  7. 根据权利要求3所述的半导体光刻补偿方法,其中,还包括:在预设时间内,若除所述第一机台外的其余机台的所述第二测量值均未超过相应的规格范围,则不改变机台的下货值;
    若其余机台中任一机台的所述第二测量值超过规格范围,根据所述第一测量值和所述第二测量值的平均值获取第二补偿值;
    根据所述第二补偿值调整所述其余机台中未进行量测运行的机台的下货值。
  8. 根据权利要求1所述的半导体光刻补偿方法,其中,还包括:超过预设时间后,所有未下货的机台恢复测量标记,重新进行套刻误差的量测,并根据新的量测值对下货值进行补偿。
  9. 一种半导体光刻补偿方法,包括:
    提供基底,对所述基底进行光刻处理,所述光刻处理包括第一制程和第二制程;
    获取所述第一制程的套刻误差的第一测量值,根据所述第一测量值对所述第二制程进行光刻补偿。
  10. 根据权利要求9所述的半导体光刻补偿方法,其中,在测量运行状态,强制量测所述第一制程的套刻误差,以获取所述第一测量值,根据所述套刻误差获取第一补偿值,并将所述第一补偿值反馈给所述第二制程。
  11. 根据权利要求10所述的半导体光刻补偿方法,其中,对所述第二制程进行光刻补偿,包括:
    根据所述第一制程的初始下货值和所述第一测量值之差获取所述第一补偿值;
    根据所述第一补偿值对所述第二制程的初始下货值进行补偿。
  12. 根据权利要求9所述的半导体光刻补偿方法,其中,在非测量运行状态,对线上光刻制程进行采样量测,分别获取所述线上光刻制程中所述第一制程的套刻误差的第二测量值,以及所述第二制程的套刻误差的第三测量值,并在测量运行状态时,将所述第二测量值和第三测量值反馈给所述第二制程。
  13. 根据权利要求12所述的半导体光刻补偿方法,其中,将所述第二测量值和第三测量值反馈给所述第二制程,包括:
    计算所述第一制程的初始下货值与所述第二测量值之间的差值,作为第二补偿值;
    计算所述第二制程的初始下货值与所述第三测量值之间的差值,作为第三补偿值;
    所述第二补偿值和所述第三补偿值之和,即为在测量运行状态时,所述第二制程的光刻补偿值。
  14. 根据权利要求9所述的半导体光刻补偿方法,其中,所述光刻处理包括:设定所述第一制程和所述第二制程在进行套刻误差量测时对准同一道在前制程。
  15. 根据权利要求9所述的半导体光刻补偿方法,其中,所述第一制程和所述第二制程使用相同类型的对准标记。
PCT/CN2022/088744 2022-04-02 2022-04-24 半导体光刻补偿方法 WO2023184627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210346507.7A CN114675505A (zh) 2022-04-02 2022-04-02 半导体光刻补偿方法
CN202210346507.7 2022-04-02

Publications (1)

Publication Number Publication Date
WO2023184627A1 true WO2023184627A1 (zh) 2023-10-05

Family

ID=82075355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088744 WO2023184627A1 (zh) 2022-04-02 2022-04-24 半导体光刻补偿方法

Country Status (2)

Country Link
CN (1) CN114675505A (zh)
WO (1) WO2023184627A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369101A (zh) * 2007-08-15 2009-02-18 上海宏力半导体制造有限公司 光刻工序中套刻精度的控制方法
CN101458456A (zh) * 2007-12-13 2009-06-17 中芯国际集成电路制造(上海)有限公司 套刻精度的控制方法和装置
CN102809900A (zh) * 2011-05-31 2012-12-05 无锡华润上华半导体有限公司 半导体元件套刻系统及半导体元件套刻方法
CN103869638A (zh) * 2014-03-21 2014-06-18 武汉新芯集成电路制造有限公司 一种穿透晶圆的光刻对准方法
CN106154758A (zh) * 2015-04-10 2016-11-23 无锡华润上华科技有限公司 不同光刻机之间的套刻匹配方法
CN106325001A (zh) * 2015-07-10 2017-01-11 中芯国际集成电路制造(上海)有限公司 套刻精度补偿方法及装置
CN107045267A (zh) * 2017-03-27 2017-08-15 上海华力微电子有限公司 套刻精度补正的优化方法及系统
CN108089412A (zh) * 2017-11-10 2018-05-29 上海华力微电子有限公司 光刻套刻精度量测准确性的评估方法
CN111580345A (zh) * 2019-02-18 2020-08-25 长鑫存储技术有限公司 光刻回馈系统及方法
CN112180690A (zh) * 2020-09-30 2021-01-05 上海华力集成电路制造有限公司 提升器件关键尺寸面内均一性的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369101A (zh) * 2007-08-15 2009-02-18 上海宏力半导体制造有限公司 光刻工序中套刻精度的控制方法
CN101458456A (zh) * 2007-12-13 2009-06-17 中芯国际集成电路制造(上海)有限公司 套刻精度的控制方法和装置
CN102809900A (zh) * 2011-05-31 2012-12-05 无锡华润上华半导体有限公司 半导体元件套刻系统及半导体元件套刻方法
CN103869638A (zh) * 2014-03-21 2014-06-18 武汉新芯集成电路制造有限公司 一种穿透晶圆的光刻对准方法
CN106154758A (zh) * 2015-04-10 2016-11-23 无锡华润上华科技有限公司 不同光刻机之间的套刻匹配方法
CN106325001A (zh) * 2015-07-10 2017-01-11 中芯国际集成电路制造(上海)有限公司 套刻精度补偿方法及装置
CN107045267A (zh) * 2017-03-27 2017-08-15 上海华力微电子有限公司 套刻精度补正的优化方法及系统
CN108089412A (zh) * 2017-11-10 2018-05-29 上海华力微电子有限公司 光刻套刻精度量测准确性的评估方法
CN111580345A (zh) * 2019-02-18 2020-08-25 长鑫存储技术有限公司 光刻回馈系统及方法
CN112180690A (zh) * 2020-09-30 2021-01-05 上海华力集成电路制造有限公司 提升器件关键尺寸面内均一性的方法

Also Published As

Publication number Publication date
CN114675505A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
TW525254B (en) Method and apparatus for performing final critical dimension control
CN110531591B (zh) 套刻精度修正方法
US20030054642A1 (en) Production method of semiconductor device and production system of semiconductor device
US20150140693A1 (en) Misalignment/alignment compensation method, semiconductor lithography system, and method of semiconductor patterning
WO2023184627A1 (zh) 半导体光刻补偿方法
CN114371602B (zh) 套刻精度的控制方法和装置
US8234602B2 (en) Semiconductor-device manufacturing method
US20100104962A1 (en) Patterning method, exposure system, computer readable storage medium, and method of manufacturing device
CN116203808A (zh) 套刻误差的量测方法及套刻标记
JP5058667B2 (ja) 露光装置およびデバイス製造方法
CN115453828A (zh) 补偿高阶套刻误差的方法
CN110928136B (zh) 减小关键尺寸漂移的方法
JP2002057103A (ja) 半導体装置の製造のための露光方法
CN102623302B (zh) 返工控制方法及其控制系统
KR102297364B1 (ko) 리소그래피 장치 및 물품의 제조 방법
US8288063B2 (en) Defense system in advanced process control
US20230063001A1 (en) Control method and system for critical dimension (cd)
CN114995075B (zh) 套刻误差的补偿方法
WO2023015596A1 (zh) 一种半导体器件制作方法、设备、半导体曝光方法及系统
WO2022057735A1 (zh) 一种提高半导体晶圆平边精准度的方法及激光器芯片
CN118859634A (zh) 套刻补偿方法及装置、存储介质、电子设备
US20230375914A1 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method thereof
CN118607459B (zh) 引线框架制作图纸的设计方法
CN114518693A (zh) 套刻误差补偿方法及光刻曝光方法
CN115576173A (zh) 一种提高套刻精度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934453

Country of ref document: EP

Kind code of ref document: A1