WO2023184601A1 - 一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法 - Google Patents

一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法 Download PDF

Info

Publication number
WO2023184601A1
WO2023184601A1 PCT/CN2022/087118 CN2022087118W WO2023184601A1 WO 2023184601 A1 WO2023184601 A1 WO 2023184601A1 CN 2022087118 W CN2022087118 W CN 2022087118W WO 2023184601 A1 WO2023184601 A1 WO 2023184601A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
gas
photoacoustic
dust
nitrogen oxide
Prior art date
Application number
PCT/CN2022/087118
Other languages
English (en)
French (fr)
Inventor
靳华伟
王旭
王浩伟
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2023184601A1 publication Critical patent/WO2023184601A1/zh
Priority to US18/432,313 priority Critical patent/US12123825B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1704Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to the technical field of gas detection, and in particular to a synchronous detection system and detection method for trace nitrogen oxide compounds based on photoacoustic spectroscopy.
  • Nitrogen oxides are commonly found in NO and NO 2 in the atmosphere, and their content is in the ppb range. They are trace gases. There are three difficulties in detecting their content: 1) Trace gas detection is difficult; 2) NO and NO 2 are difficult to detect. The synchronization is not high; 3) It is greatly affected by dust, but synchronous detection of dust cannot be achieved.
  • the main purpose of the present invention is to provide a synchronous detection system and detection method for trace nitrogen oxides based on photoacoustic spectroscopy, aiming to solve the problem of low synchronization of NO and NO 2 detection in the existing technology and the inability to achieve synchronous detection of dust. technical issues.
  • the present invention provides a trace nitrogen oxide synchronous detection system based on photoacoustic spectrum, including a nitrogen oxide detection gas circuit, a dust detection gas circuit and a dual photoacoustic spectrum detection mechanism connected in parallel;
  • the dust detection air path includes a dust detection air pipe and a dust photoacoustic detection cavity connected with the dust detection air pipe;
  • the dual photoacoustic spectrum detection mechanism includes a laser for emitting laser to the nitrogen oxide photoacoustic detection cavity and the dust photoacoustic detection cavity, a signal modulator connected to the laser, and the signal modulator A connected lock-in amplifier, a computer connected to the lock-in amplifier, a microphone I installed on the nitrogen oxide photoacoustic detection cavity and connected to the lock-in amplifier, and a microphone I installed on the dust photoacoustic detection chamber. Microphone II on the cavity and connected to the lock-in amplifier.
  • the nitrogen oxide photoacoustic detection cavity and the dust photoacoustic detection cavity are arranged side by side, the laser is aligned with the nitrogen oxide photoacoustic detection cavity, and the dual photoacoustic spectrum detection mechanism also includes two Reflective mirrors are respectively provided on the rear side of the nitrogen oxide photoacoustic detection cavity and the dust photoacoustic detection cavity. The laser light emitted from the nitrogen oxide photoacoustic detection cavity can be injected into the two reflective mirrors.
  • the dust photoacoustic detection chamber is described.
  • the present invention also provides a gas substance content detection method using the above-mentioned trace nitrogen oxide synchronous detection system based on photoacoustic spectroscopy, which includes the following steps:
  • the gas to be measured is input simultaneously into the nitrogen oxide detection gas circuit and the dust detection gas circuit, and the dual photoacoustic spectrum detection mechanism is started.
  • the gas to be measured entering the nitrogen oxide detection gas circuit is controlled by the four-way control valve and undergoes background interference detection respectively.
  • the trachea, NO 2 detection trachea, and NO detection trachea enter the nitrogen oxide photoacoustic detection chamber.
  • the dual photoacoustic spectrum detection mechanism After detection by the dual photoacoustic spectrum detection mechanism, the local interfering gas content S background , NO 2 gas content S NO2 , and NO gas content S NO ; the gas to be measured entering the dust detection gas circuit enters the dust photoacoustic detection chamber, and is detected by the dual photoacoustic spectrum detection mechanism to obtain the dust content S dust in the gas to be measured.
  • a flow meter I is installed at the back end of the nitrogen oxide detection gas line for controlling the gas flow of the nitrogen oxide photoacoustic detection chamber
  • a flow meter II is installed at the back end of the dust detection gas line for controlling the dust light.
  • the gas flow rate in the acoustic detection chamber is measured
  • a flow meter III is installed on the NO detection gas pipe to control the gas flow rate flowing through the mercury lamp to participate in the reaction.
  • the detection process of S background in the gas to be measured includes the following steps:
  • Step 1 Start the sampling pump to pump air.
  • the gas to be measured is divided into two gas paths. One is controlled by flow meter I to control the gas flow of the nitrogen oxide photoacoustic detection chamber, and the other is controlled by flow meter II to control the gas flow of the dust photoacoustic detection chamber. ;
  • Step 3 Start the laser.
  • the laser emits a laser in the ultraviolet spectrum band through the signal modulator and enters the nitrogen oxide photoacoustic detection cavity.
  • the laser excites the local interfering gas based on the photoacoustic effect, generates a sound pressure band, and drives the microphone I to generate a photoacoustic signal.
  • P1 the local interfering gas based on the photoacoustic effect, generates a sound pressure band, and drives the microphone I to generate a photoacoustic signal.
  • Step 4 The photoacoustic signal P 1 is proportional to the local interference gas content S background . After being collected and amplified by the detection lock-in amplifier modulated by the same signal modulator, the local interference gas content S background is obtained and displayed on the computer after processing.
  • the detection process of S NO2 in the gas to be measured includes the following steps:
  • Step 2 Adjust the four-way control valve to allow the gas to be measured to enter the NO 2 detection air pipe, that is, the gas to be measured passes through the sampling tube, dust filter membrane, four-way control valve and NO 2 detection air pipe in sequence and enters the nitrogen oxide photoacoustic detection chamber.
  • the dust filter membrane filters out particulate dust, and the remaining local interfering gases and NO 2 enter the nitrogen oxide photoacoustic detection chamber;
  • the detection process of S NO in the gas to be measured includes the following steps:
  • Step 1 Start the sampling pump to pump air.
  • the gas to be measured is divided into two gas paths. One is controlled by flow meter I to control the gas flow of the nitrogen oxide photoacoustic detection chamber, and the other is controlled by flow meter II to control the gas flow of the dust photoacoustic detection chamber. ;
  • This invention uses a laser to output a square wave modulated signal through a signal modulator, and emits a specific band laser (405nm) in the ultraviolet spectrum to be injected into the nitrogen oxide photoacoustic detection cavity.
  • the laser in this band can excite local interfering gases based on the photoacoustic effect. and NO 2 , generate a sound pressure band, drive the microphone to generate a photoacoustic signal, and the content of the substance is proportional to the photoacoustic signal.
  • the embodiments of the present invention involve directional indications (such as up, down, left, right, front, back%), then the directional indications are only used to explain the position of a certain posture (as shown in the drawings). The relative positional relationship, movement conditions, etc. between the components under the display). If the specific posture changes, the directional indication will also change accordingly.
  • the nitrogen oxide photoacoustic detection cavity 108 and the dust photoacoustic detection cavity 202 are arranged side by side, the laser 301 is aligned with the nitrogen oxide photoacoustic detection cavity 108, and the dual photoacoustic detection cavity
  • the spectrum detection mechanism also includes two reflectors 307 respectively provided on the rear sides of the nitrogen oxide photoacoustic detection cavity 108 and the dust photoacoustic detection cavity 202.
  • the laser emitted from the nitrogen oxide photoacoustic detection cavity 108
  • the dust can be injected into the photoacoustic detection cavity 202 through the two reflecting mirrors 307 .
  • this design only one laser can be used to synchronously inject laser light into the nitrogen oxide photoacoustic detection cavity and the dust photoacoustic detection cavity. It is not only simple in structure, easy to operate, but also has high synchronization.
  • the front ends of the nitrogen oxide detection gas circuit and the dust detection gas circuit are connected to an air inlet pipe 308 through a tee pipe, and the rear ends of the nitrogen oxide detection gas circuit and the dust detection gas circuit are The end is connected to an air outlet pipe 309 through a tee pipe, and a sampling pump 310 is installed on the air outlet pipe 309.
  • the sampling pump is started to facilitate the simultaneous intake of air into the two detection air circuits.
  • the detection process of S NO2 in the gas to be measured includes the following steps:
  • Step 3 Start the laser 301.
  • the laser 301 emits a laser in the ultraviolet spectrum band through the signal modulator 302 and enters the nitrogen oxide photoacoustic detection cavity 108.
  • the laser excites local interfering gases and NO 2 based on the photoacoustic effect, generates a sound pressure band, and drives the micron oxide detector.
  • the sounder I 305 generates a photoacoustic signal P 2 , and P 2 subtracts the photoacoustic signal P 1 excited by the local interfering gas to obtain the photoacoustic signal P 3 excited by the NO 2 gas;
  • the detection process of S NO in the gas to be measured includes the following steps:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种基于光声光谱的痕量氮氧化合物同步检测系统,包括相互并联的氮氧化物检测气路、粉尘检测气路和双光声光谱检测机构;氮氧化物检测气路包括相互并联的本底干扰检测气管(103)、NO 2检测气管(104)和NO检测气管(105)以及氮氧化物光声检测腔(108);粉尘检测气路包括粉尘检测气管(201)以及与粉尘检测气管(201)连通的粉尘光声检测腔(202)。通过激光器(301)经信号调制器(302)输出方波调制信号,发出紫外光谱特定波段激光射入氮氧化物光声检测腔(108),根据吸收响应截面,特定波段激光基于光声效应可以激发本地干扰气体和NO 2,测得本地干扰气体和NO 2含量,再通过汞灯(111)发出的过量O 3与NO反应生成NO 2,通过差分检测检测其含量,再推导出NO含量,解决了紫外波段难以检测NO的难题。

Description

一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法 技术领域
本发明涉及气体检测技术领域,尤其涉及一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法。
背景技术
随着社会和经济的发展,环境污染已严重威胁人们的身心健康,实时掌握污染机理已迫在眉睫。作为化石燃料、人为燃烧、自然雷电和微生物排放主要产物的氮氧化物(NOx)在其中扮演着重要的角色,其不仅干扰大气氧化,还是光化学烟雾、呼吸道疾病、酸雨等严重污染的主要来源。
大气中氮氧化物常见于NO和NO 2,含量在ppb量级,属于痕量气体,在检测其含量时存在三个难题:1)痕量气体检测难度大;2)NO和NO 2检测的同步性不高;3)受粉尘影响大,但无法做到粉尘的同步检测。
发明内容
本发明的主要目的在于提供一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法,旨在解决现有技术NO和NO 2检测的同步性不高、无法做到粉尘的同步检测的技术问题。
为实现上述目的,本发明提供了一种基于光声光谱的痕量氮氧化合物同步检测系统,包括相互并联的氮氧化物检测气路、粉尘检测气路和双光声光谱检测机构;
所述氮氧化物检测气路包括前气管,通过四通控制阀与所述前气管连通且相互并联的本底干扰检测气管、NO 2检测气管和NO检测气管,通过四通管与所述本底干扰检测气管、所述NO 2检测气管和所述NO检测气管连通的后气管以及与所述后气管连通的氮氧化物光声检测腔,所述前气管上安装有过滤膜,所述本底干扰检测气管内填充有氮氧化物活性炭吸附剂,所述NO检 测气管上安装有汞灯;
所述粉尘检测气路包括粉尘检测气管以及与所述粉尘检测气管连通的粉尘光声检测腔;
所述双光声光谱检测机构包括用于向所述氮氧化物光声检测腔和所述粉尘光声检测腔发射激光的激光器,与所述激光器连接的信号调制器,与所述信号调制器连接的锁相放大器,与所述锁相放大器连接的计算机,安装在所述氮氧化物光声检测腔上并与所述锁相放大器连接的微音器Ⅰ以及安装在所述粉尘光声检测腔上并与所述锁相放大器连接的微音器Ⅱ。
进一步地,所述氮氧化物光声检测腔和所述粉尘光声检测腔并排布置,所述激光器对准所述氮氧化物光声检测腔,所述双光声光谱检测机构还包括两个分别设置在所述氮氧化物光声检测腔和所述粉尘光声检测腔后侧的反射镜,从所述氮氧化物光声检测腔射出的激光经两个所述反射镜可射入所述粉尘光声检测腔。
进一步地,所述氮氧化物检测气路和所述粉尘检测气路的前端通过三通管连接有进气管,所述氮氧化物检测气路和所述粉尘检测气路的后端通过三通管连接有出气管,所述出气管上安装有采样泵。
本发明还提供一种应用上述基于光声光谱的痕量氮氧化合物同步检测系统的气体物质含量检测方法,包括以下步骤:
向氮氧化物检测气路和粉尘检测气路同步输入待测气体,启动双光声光谱检测机构,进入氮氧化物检测气路的待测气体通过四通控制阀的控制分别经过本底干扰检测气管、NO 2检测气管、NO检测气管进入氮氧化物光声检测腔,经过双光声光谱检测机构的检测,分别得到待测气体中本地干扰气体含量S 本底、NO 2气体含量S NO2、NO气体含量S NO;进入粉尘检测气路的待测气体进入粉尘光声检测腔,经过双光声光谱检测机构的检测,得到待测气体中的粉尘含量S 粉尘
进一步地,氮氧化物检测气路的后端安装有流量计Ⅰ,用于控制氮氧化 物光声检测腔的气体流量,粉尘检测气路的后端安装有流量计Ⅱ,用于控制粉尘光声检测腔的气体流量,NO检测气管上安装有流量计Ⅲ,用于控制流过汞灯参与反应的气体流量。
进一步地,待测气体中的S 本底的检测过程包括如下步骤:
步骤1:启动采样泵抽气,待测气体分为两个气路,一路由流量计Ⅰ控制氮氧化物光声检测腔的气体流量,一路由流量计Ⅱ控制粉尘光声检测腔的气体流量;
步骤2:调节四通控制阀使待测气体进入本底干扰检测气管,即待测气体依次经过采样管、粉尘过滤膜、四通控制阀和氮氧化物活性炭吸附剂进入氮氧化物光声检测腔,此时,粉尘过滤膜过滤除去颗粒粉尘,氮氧化物活性炭吸附剂过滤除去氮氧化物,余下的本地干扰气体进入氮氧化物光声检测腔;
步骤3:启动激光器,激光器经信号调制器发出紫外光谱波段激光射入氮氧化物光声检测腔,激光基于光声效应激发本地干扰气体,产生声压波段,驱动微音器Ⅰ产生光声信号P 1
步骤4:光声信号P 1与本地干扰气体含量S 本底成正比,由同一信号调制器调制的检测锁相放大器采集放大后,在计算机上处理得到并显示本地干扰气体含量S 本底
进一步地,待测气体中的S NO2的检测过程包括如下步骤:
步骤1:启动采样泵抽气,待测气体分为两个气路,一路由流量计Ⅰ控制氮氧化物光声检测腔的气体流量,一路由流量计Ⅱ控制粉尘光声检测腔的气体流量;
步骤2:调节四通控制阀使待测气体进入NO 2检测气管,即待测气体依次经过采样管、粉尘过滤膜、四通控制阀和NO 2检测气管进入氮氧化物光声检测腔,此时,粉尘过滤膜过滤除去颗粒粉尘,余下的本地干扰气体和NO 2进入氮氧化物光声检测腔;
步骤3:启动激光器,激光器经信号调制器发出紫外光谱波段激光射入氮 氧化物光声检测腔,激光基于光声效应激发本地干扰气体和NO 2,产生声压波段,驱动微音器Ⅰ产生光声信号P 2,P 2减去本地干扰气体激发的光声信号P 1,得到NO 2气体激发的光声信号P 3
步骤4:光声信号P 3与NO 2的总含量S NO2成正比,由同一信号调制器调制的检测锁相放大器采集放大后,在计算机上处理得到并显示NO 2气体含量S NO2
进一步地,待测气体中的S NO的检测过程包括如下步骤:
步骤1:启动采样泵抽气,待测气体分为两个气路,一路由流量计Ⅰ控制氮氧化物光声检测腔的气体流量,一路由流量计Ⅱ控制粉尘光声检测腔的气体流量;
步骤2:调节四通控制阀使待测气体进入NO检测气管,即待测气体依次经过采样管、粉尘过滤膜、四通控制阀和汞灯进入氮氧化物光声检测腔,此时,粉尘过滤膜过滤除去颗粒粉尘,汞灯通电发生过量臭氧,与NO反应生产NO 2,进入氮氧化物光声检测腔的待测气体为本地干扰气体、反应生产的NO 2和原先存在的NO 2
步骤3:启动激光器,激光器经信号调制器发出紫外光谱波段激光射入氮氧化物光声检测腔,激光基于光声效应激发本地干扰气体和NO 2,产生声压波段,驱动微音器Ⅰ产生光声信号P 4,P 4减去原先存在的本地干扰气体和NO 2气体激发的光声信号P 1和P 2,得到NO 2气体激发的光声信号P 5
步骤4:光声信号P 5与NO的总含量S NO成正比,由同一信号调制器调制的检测锁相放大器采集放大后,在计算机上处理得到并显示NO气体含量S NO
进一步地,待测气体中的S 粉尘的检测过程包括如下步骤:
步骤1:启动采样泵抽气,待测气体分为两个气路,一路由流量计Ⅰ控制氮氧化物光声检测腔的气体流量,一路由流量计Ⅱ控制粉尘光声检测腔的气体流量;
步骤2:启动激光器,激光器经信号调制器发出紫外光谱波段激光射入粉 尘光声检测腔,激光基于光声效应激发本地干扰气体、NO 2和粉尘,产生声压波段,驱动微音器Ⅱ产生光声信号P 6,P 6减去原先存在的本地干扰气体和NO 2气体激发的光声信号P 1和P 2,得到气态粉尘激发的光声信号P 7
步骤3:光声信号P 7与粉尘含量S 粉尘成正比,由同一信号调制器调制的检测锁相放大器采集放大后,在计算机上处理得到并显示粉尘含量S 粉尘
本发明的有益效果体现在:
本发明通过激光器经信号调制器输出方波调制信号,发出紫外光谱特定波段激光(405nm)射入氮氧化物光声检测腔,根据吸收响应截面,该波段激光基于光声效应可以激发本地干扰气体和NO 2,产生声压波段,驱动微音器产生光声信号,而物质的含量和光声信号成正比,因此,能够反推得到本地干扰气体和NO 2含量,再通过汞灯发出的过量O 3与NO反应生成NO 2,通过差分检测检测其含量,再推导出NO含量,解决了紫外波段难以检测NO的难题;双光声光谱系统的设置,为NO和NO 2实时提供粉尘检测数据,对于分析其污染机理具有重要意义;NO和NO 2的气路切换检测,为同步得到两种气体提供方法,对于研究碳氧化合物的化学反应性质具有重要意义。
附图说明
图1为本发明一实施例基于光声光谱的痕量氮氧化合物同步检测系统的结构示意图。
附图标记说明:
101前气管、102四通控制阀、103本底干扰检测气管、104NO2检测气管、105NO检测气管、106四通管、107后气管、108氮氧化物光声检测腔、109过滤膜、110氮氧化物活性炭吸附剂、111汞灯、112流量计Ⅰ、113流量计Ⅲ;
201粉尘检测气管、202粉尘光声检测腔、203流量计Ⅱ;
301激光器、302信号调制器、303锁相放大器、304计算机、305微音器Ⅰ、306微音器Ⅱ、307反射镜、308进气管、309出气管、310采样泵。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。另外,“多个”指两个以上。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在。
参见图1:
本发明基于光声光谱的痕量氮氧化合物同步检测系统,包括相互并联的氮氧化物检测气路、粉尘检测气路和双光声光谱检测机构;
所述氮氧化物检测气路包括前气管101,通过四通控制阀102与所述前气管101连通且相互并联的本底干扰检测气管103、NO2检测气管104和NO检测气管105,通过四通管106与所述本底干扰检测气管103、所述NO2检测气管104和所述NO检测气管105连通的后气管107以及与所述后气管107 连通的氮氧化物光声检测腔108,所述前气管101上安装有过滤膜109,所述本底干扰检测气管103内填充有氮氧化物活性炭吸附剂110,所述NO检测气管105上安装有汞灯111;
所述粉尘检测气路包括粉尘检测气管201以及与所述粉尘检测气管201连通的粉尘光声检测腔202;
所述双光声光谱检测机构包括用于向所述氮氧化物光声检测腔108和所述粉尘光声检测腔202发射激光的激光器301,与所述激光器301连接的信号调制器302,与所述信号调制器302连接的锁相放大器303,与所述锁相放大器303连接的计算机304,安装在所述氮氧化物光声检测腔108上并与所述锁相放大器303连接的微音器Ⅰ305以及安装在所述粉尘光声检测腔202上并与所述锁相放大器303连接的微音器Ⅱ306。
在一实施例中,所述氮氧化物光声检测腔108和所述粉尘光声检测腔202并排布置,所述激光器301对准所述氮氧化物光声检测腔108,所述双光声光谱检测机构还包括两个分别设置在所述氮氧化物光声检测腔108和所述粉尘光声检测腔202后侧的反射镜307,从所述氮氧化物光声检测腔108射出的激光经两个所述反射镜307可射入所述粉尘光声检测腔202。这样设计,只需一个激光器就可以实现同步向氮氧化物光声检测腔和所述粉尘光声检测腔射入激光,不仅结构简洁,操作方便,而且同步性高。
在一实施例中,所述氮氧化物光声检测腔108和所述粉尘光声检测腔202均呈筒状设计,两端通过橡胶密封圈安装有石英窗片。这样设计有利于激光激发相应物质,两端的石英窗片用于透过激光。
在一实施例中,所述微音器Ⅰ305和所述微音器Ⅱ306插接安装在所述氮氧化物光声检测腔108和所述粉尘光声检测腔202的中部,并用橡胶密封圈密封。这样设计,微音器更容易采集声压波段,测试效果更好。
具体实施中,还设置有用于将微音器的信号进行放大的放大器,微音器的信号经过放大后再由锁相放大器采集。
在一实施例中,所述氮氧化物检测气路和所述粉尘检测气路的前端通过三通管连接有进气管308,所述氮氧化物检测气路和所述粉尘检测气路的后端通过三通管连接有出气管309,所述出气管309上安装有采样泵310。这样设计,启动采样泵,便于俩检测气路同步进气。
本发明通过激光器经信号调制器输出方波调制信号,发出紫外光谱特定波段激光(405nm)射入氮氧化物光声检测腔,根据吸收响应截面,该波段激光基于光声效应可以激发本地干扰气体和NO 2,产生声压波段,驱动微音器产生光声信号,而物质的含量和光声信号成正比,因此,能够反推得到本地干扰气体和NO 2含量,再通过汞灯发出的过量O 3与NO反应生成NO 2,通过差分检测检测其含量,再推导出NO含量,解决了紫外波段难以检测NO的难题;双光声光谱系统的设置,为NO和NO 2实时提供粉尘检测数据,对于分析其污染机理具有重要意义;NO和NO 2的气路切换检测,为同步得到两种气体提供方法,对于研究碳氧化合物的化学反应性质具有重要意义。
本发明应用如上述基于光声光谱的痕量氮氧化合物同步检测系统的气体物质含量检测方法,包括以下步骤:
向氮氧化物检测气路和粉尘检测气路同步输入待测气体,启动双光声光谱检测机构,进入氮氧化物检测气路的待测气体通过四通控制阀102的控制分别经过本底干扰检测气管103、NO2检测气管104、NO检测气管105进入氮氧化物光声检测腔108,经过双光声光谱检测机构的检测,分别得到待测气体中本地干扰气体含量S 本底、NO 2气体含量S NO2、NO气体含量S NO;进入粉尘检测气路的待测气体进入粉尘光声检测腔202,经过双光声光谱检测机构的检测,得到待测气体中的粉尘含量S 粉尘
在一实施例中,氮氧化物检测气路的后端安装有流量计Ⅰ112,用于控制氮氧化物光声检测腔108的气体流量,粉尘检测气路的后端安装有流量计Ⅱ203,用于控制粉尘光声检测腔202的气体流量,NO检测气管105上安装有流量计Ⅲ113,用于控制流过汞灯111参与反应的气体流量。
具体地,待测气体中的S 本底的检测过程包括如下步骤:
步骤1:启动采样泵310抽气,待测气体分为两个气路,一路由流量计Ⅰ112控制氮氧化物光声检测腔108的气体流量,一路由流量计Ⅱ203控制粉尘光声检测腔202的气体流量;
步骤2:调节四通控制阀102使待测气体进入本底干扰检测气管103,即待测气体依次经过采样管、粉尘过滤膜、四通控制阀102和氮氧化物活性炭吸附剂110进入氮氧化物光声检测腔108,此时,粉尘过滤膜过滤除去颗粒粉尘,氮氧化物活性炭吸附剂110过滤除去氮氧化物,余下的本地干扰气体进入氮氧化物光声检测腔108;
步骤3:启动激光器301,激光器301经信号调制器302发出紫外光谱波段激光射入氮氧化物光声检测腔108,激光基于光声效应激发本地干扰气体,产生声压波段,驱动微音器Ⅰ305产生光声信号P 1
步骤4:光声信号P 1与本地干扰气体含量S 本底成正比,由同一信号调制器302调制的检测锁相放大器303采集放大后,在计算机304上处理得到并显示本地干扰气体含量S 本底
待测气体中的S NO2的检测过程包括如下步骤:
步骤1:启动采样泵310抽气,待测气体分为两个气路,一路由流量计Ⅰ112控制氮氧化物光声检测腔108的气体流量,一路由流量计Ⅱ203控制粉尘光声检测腔202的气体流量;
步骤2:调节四通控制阀102使待测气体进入NO2检测气管104,即待测气体依次经过采样管、粉尘过滤膜、四通控制阀102和NO2检测气管104进入氮氧化物光声检测腔108,此时,粉尘过滤膜过滤除去颗粒粉尘,余下的本地干扰气体和NO 2进入氮氧化物光声检测腔108;
步骤3:启动激光器301,激光器301经信号调制器302发出紫外光谱波段激光射入氮氧化物光声检测腔108,激光基于光声效应激发本地干扰气体和NO 2,产生声压波段,驱动微音器Ⅰ305产生光声信号P 2,P 2减去本地干扰气 体激发的光声信号P 1,得到NO 2气体激发的光声信号P 3
步骤4:光声信号P 3与NO 2的总含量S NO2成正比,由同一信号调制器302调制的检测锁相放大器303采集放大后,在计算机304上处理得到并显示NO 2气体含量S NO2
待测气体中的S NO的检测过程包括如下步骤:
步骤1:启动采样泵310抽气,待测气体分为两个气路,一路由流量计Ⅰ112控制氮氧化物光声检测腔108的气体流量,一路由流量计Ⅱ203控制粉尘光声检测腔202的气体流量;
步骤2:调节四通控制阀102使待测气体进入NO检测气管105,即待测气体依次经过采样管、粉尘过滤膜、四通控制阀102和汞灯111进入氮氧化物光声检测腔108,此时,粉尘过滤膜过滤除去颗粒粉尘,汞灯111通电发生过量臭氧,与NO反应生产NO 2,进入氮氧化物光声检测腔108的待测气体为本地干扰气体、反应生产的NO 2和原先存在的NO 2
步骤3:启动激光器301,激光器301经信号调制器302发出紫外光谱波段激光射入氮氧化物光声检测腔108,激光基于光声效应激发本地干扰气体和NO 2,产生声压波段,驱动微音器Ⅰ305产生光声信号P 4,P 4减去原先存在的本地干扰气体和NO 2气体激发的光声信号P 1和P 2,得到NO 2气体激发的光声信号P 5
步骤4:光声信号P 5与NO的总含量S NO成正比,由同一信号调制器302调制的检测锁相放大器303采集放大后,在计算机304上处理得到并显示NO气体含量S NO
待测气体中的S 粉尘的检测过程包括如下步骤:
步骤1:启动采样泵310抽气,待测气体分为两个气路,一路由流量计Ⅰ112控制氮氧化物光声检测腔108的气体流量,一路由流量计Ⅱ203控制粉尘光声检测腔202的气体流量;
步骤2:启动激光器301,激光器301经信号调制器302发出紫外光谱波 段激光射入粉尘光声检测腔202,激光基于光声效应激发本地干扰气体、NO 2和粉尘,产生声压波段,驱动微音器Ⅱ306产生光声信号P 6,P 6减去原先存在的本地干扰气体和NO 2气体激发的光声信号P 1和P 2,得到气态粉尘激发的光声信号P 7
步骤3:光声信号P 7与粉尘含量S 粉尘成正比,由同一信号调制器302调制的检测锁相放大器303采集放大后,在计算机304上处理得到并显示粉尘含量S 粉尘
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种基于光声光谱的痕量氮氧化合物同步检测系统,其特征在于:包括相互并联的氮氧化物检测气路、粉尘检测气路和双光声光谱检测机构;
    所述氮氧化物检测气路包括前气管(101),通过四通控制阀(102)与所述前气管(101)连通且相互并联的本底干扰检测气管(103)、NO2检测气管(104)和NO检测气管(105),通过四通管(106)与所述本底干扰检测气管(103)、所述NO2检测气管(104)和所述NO检测气管(105)连通的后气管(107)以及与所述后气管(107)连通的氮氧化物光声检测腔(108),所述前气管(101)上安装有过滤膜(109),所述本底干扰检测气管(103)内填充有氮氧化物活性炭吸附剂(110),所述NO检测气管(105)上安装有汞灯(111);
    所述粉尘检测气路包括粉尘检测气管(201)以及与所述粉尘检测气管(201)连通的粉尘光声检测腔(202);
    所述双光声光谱检测机构包括用于向所述氮氧化物光声检测腔(108)和所述粉尘光声检测腔(202)发射激光的激光器(301),与所述激光器(301)连接的信号调制器(302),与所述信号调制器(302)连接的锁相放大器(303),与所述锁相放大器(303)连接的计算机(304),安装在所述氮氧化物光声检测腔(108)上并与所述锁相放大器(303)连接的微音器Ⅰ(305)以及安装在所述粉尘光声检测腔(202)上并与所述锁相放大器(303)连接的微音器Ⅱ(306)。
  2. 如权利要求1所述的基于光声光谱的痕量氮氧化合物同步检测系统,其特征在于:所述氮氧化物光声检测腔(108)和所述粉尘光声检测腔(202)并排布置,所述激光器(301)对准所述氮氧化物光声检测腔(108),所述双光声光谱检测机构还包括两个分别设置在所述氮氧化物光声检测腔(108)和所述粉尘光声检测腔(202)后侧的反射镜(307),从所述氮氧化物光声 检测腔(108)射出的激光经两个所述反射镜(307)可射入所述粉尘光声检测腔(202)。
  3. 如权利要求1或2所述的基于光声光谱的痕量氮氧化合物同步检测系统,其特征在于:所述氮氧化物检测气路和所述粉尘检测气路的前端通过三通管连接有进气管(308),所述氮氧化物检测气路和所述粉尘检测气路的后端通过三通管连接有出气管(309),所述出气管(309)上安装有采样泵(310)。
  4. 一种应用如权利要求1或2或3所述的基于光声光谱的痕量氮氧化合物同步检测系统的气体物质含量检测方法,其特征在于:包括以下步骤:
    向氮氧化物检测气路和粉尘检测气路同步输入待测气体,启动双光声光谱检测机构,进入氮氧化物检测气路的待测气体通过四通控制阀(102)的控制分别经过本底干扰检测气管(103)、NO2检测气管(104)、NO检测气管(105)进入氮氧化物光声检测腔(108),经过双光声光谱检测机构的检测,分别得到待测气体中本地干扰气体含量S 本底、NO 2气体含量S NO2、NO气体含量S NO;进入粉尘检测气路的待测气体进入粉尘光声检测腔(202),经过双光声光谱检测机构的检测,得到待测气体中的粉尘含量S 粉尘
  5. 如权利要求4所述的气体物质含量检测方法,其特征在于:氮氧化物检测气路的后端安装有流量计Ⅰ(112),用于控制氮氧化物光声检测腔(108)的气体流量,粉尘检测气路的后端安装有流量计Ⅱ(203),用于控制粉尘光声检测腔(202)的气体流量,NO检测气管(105)上安装有流量计Ⅲ(113),用于控制流过汞灯(111)参与反应的气体流量。
  6. 如权利要求5所述的气体物质含量检测方法,其特征在于:待测气体中的S 本底的检测过程包括如下步骤:
    步骤1:启动采样泵(310)抽气,待测气体分为两个气路,一路由流量计Ⅰ(112)控制氮氧化物光声检测腔(108)的气体流量,一路由流量计Ⅱ(203)控制粉尘光声检测腔(202)的气体流量;
    步骤2:调节四通控制阀(102)使待测气体进入本底干扰检测气管(103), 即待测气体依次经过采样管、粉尘过滤膜、四通控制阀(102)和氮氧化物活性炭吸附剂(110)进入氮氧化物光声检测腔(108),此时,粉尘过滤膜过滤除去颗粒粉尘,氮氧化物活性炭吸附剂(110)过滤除去氮氧化物,余下的本地干扰气体进入氮氧化物光声检测腔(108);
    步骤3:启动激光器(301),激光器(301)经信号调制器(302)发出紫外光谱波段激光射入氮氧化物光声检测腔(108),激光基于光声效应激发本地干扰气体,产生声压波段,驱动微音器Ⅰ(305)产生光声信号P 1
    步骤4:光声信号P 1与本地干扰气体含量S 本底成正比,由同一信号调制器(302)调制的检测锁相放大器(303)采集放大后,在计算机(304)上处理得到并显示本地干扰气体含量S 本底
  7. 如权利要求6所述的气体物质含量检测方法,其特征在于:待测气体中的S NO2的检测过程包括如下步骤:
    步骤1:启动采样泵(310)抽气,待测气体分为两个气路,一路由流量计Ⅰ(112)控制氮氧化物光声检测腔(108)的气体流量,一路由流量计Ⅱ(203)控制粉尘光声检测腔(202)的气体流量;
    步骤2:调节四通控制阀(102)使待测气体进入NO2检测气管(104),即待测气体依次经过采样管、粉尘过滤膜、四通控制阀(102)和NO2检测气管(104)进入氮氧化物光声检测腔(108),此时,粉尘过滤膜过滤除去颗粒粉尘,余下的本地干扰气体和NO 2进入氮氧化物光声检测腔(108);
    步骤3:启动激光器(301),激光器(301)经信号调制器(302)发出紫外光谱波段激光射入氮氧化物光声检测腔(108),激光基于光声效应激发本地干扰气体和NO 2,产生声压波段,驱动微音器Ⅰ(305)产生光声信号P 2,P 2减去本地干扰气体激发的光声信号P 1,得到NO 2气体激发的光声信号P 3
    步骤4:光声信号P 3与NO 2的总含量S NO2成正比,由同一信号调制器(302)调制的检测锁相放大器(303)采集放大后,在计算机(304)上处理 得到并显示NO 2气体含量S NO2
  8. 如权利要求6所述的气体物质含量检测方法,其特征在于:待测气体中的S NO的检测过程包括如下步骤:
    步骤1:启动采样泵(310)抽气,待测气体分为两个气路,一路由流量计Ⅰ(112)控制氮氧化物光声检测腔(108)的气体流量,一路由流量计Ⅱ(203)控制粉尘光声检测腔(202)的气体流量;
    步骤2:调节四通控制阀(102)使待测气体进入NO检测气管(105),即待测气体依次经过采样管、粉尘过滤膜、四通控制阀(102)和汞灯(111)进入氮氧化物光声检测腔(108),此时,粉尘过滤膜过滤除去颗粒粉尘,汞灯(111)通电发生过量臭氧,与NO反应生产NO 2,进入氮氧化物光声检测腔(108)的待测气体为本地干扰气体、反应生产的NO 2和原先存在的NO 2
    步骤3:启动激光器(301),激光器(301)经信号调制器(302)发出紫外光谱波段激光射入氮氧化物光声检测腔(108),激光基于光声效应激发本地干扰气体和NO 2,产生声压波段,驱动微音器Ⅰ(305)产生光声信号P 4,P 4减去原先存在的本地干扰气体和NO 2气体激发的光声信号P 1和P 2,得到NO 2气体激发的光声信号P 5
    步骤4:光声信号P 5与NO的总含量S NO成正比,由同一信号调制器(302)调制的检测锁相放大器(303)采集放大后,在计算机(304)上处理得到并显示NO气体含量S NO
  9. 如权利要求6所述的气体物质含量检测方法,其特征在于:待测气体中的S 粉尘的检测过程包括如下步骤:
    步骤1:启动采样泵(310)抽气,待测气体分为两个气路,一路由流量计Ⅰ(112)控制氮氧化物光声检测腔(108)的气体流量,一路由流量计Ⅱ(203)控制粉尘光声检测腔(202)的气体流量;
    步骤2:启动激光器(301),激光器(301)经信号调制器(302)发出紫外光谱波段激光射入粉尘光声检测腔(202),激光基于光声效应激发本地 干扰气体、NO 2和粉尘,产生声压波段,驱动微音器Ⅱ(306)产生光声信号P 6,P 6减去原先存在的本地干扰气体和NO 2气体激发的光声信号P 1和P 2,得到气态粉尘激发的光声信号P 7
    步骤3:光声信号P 7与粉尘含量S 粉尘成正比,由同一信号调制器(302)调制的检测锁相放大器(303)采集放大后,在计算机(304)上处理得到并显示粉尘含量S 粉尘
PCT/CN2022/087118 2022-03-29 2022-04-15 一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法 WO2023184601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/432,313 US12123825B2 (en) 2022-03-29 2024-02-05 Synchronous detection system and detection method for trace nitrogen-oxygen compound based on photoacoustic spectrometry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210324523.6A CN114739912B (zh) 2022-03-29 2022-03-29 一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法
CN202210324523.6 2022-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/432,313 Continuation US12123825B2 (en) 2022-03-29 2024-02-05 Synchronous detection system and detection method for trace nitrogen-oxygen compound based on photoacoustic spectrometry

Publications (1)

Publication Number Publication Date
WO2023184601A1 true WO2023184601A1 (zh) 2023-10-05

Family

ID=82278566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087118 WO2023184601A1 (zh) 2022-03-29 2022-04-15 一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法

Country Status (2)

Country Link
CN (1) CN114739912B (zh)
WO (1) WO2023184601A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163956A (zh) * 2005-04-26 2008-04-16 皇家飞利浦电子股份有限公司 用于含氮气体化合物检测的低成本设备
CN202404020U (zh) * 2011-12-30 2012-08-29 昆山和智电气设备有限公司 用于气体含量检测的光声光谱检测装置
CN104237154A (zh) * 2014-08-29 2014-12-24 浙江省计量科学研究院 基于光声光谱技术的大气温室气体中甲烷和二氧化碳的检测装置
US20150112221A1 (en) * 2013-10-17 2015-04-23 Robert Bosch Gmbh Method and device for measuring the concentration of nitrogen monoxide in the respiratory air of a patient
CN110441241A (zh) * 2019-07-31 2019-11-12 中国电力科学研究院有限公司 一种光声光谱多组分气体分析仪器的性能评价装置及方法
CN112730185A (zh) * 2021-01-22 2021-04-30 安徽理工大学环境友好材料与职业健康研究院(芜湖) 一种光声光谱检测粉尘浓度装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007014519A1 (de) * 2007-03-27 2008-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photoakustischer Detektor zur Messung von Feinstaub
CN110346296A (zh) * 2019-07-20 2019-10-18 大连理工大学 一种多腔式半开腔共振光声池及多种气体同时测量系统
CN112147076B (zh) * 2020-08-21 2022-08-23 西安电子科技大学 一种吸收光程增强型双谐振光声光谱痕量气体检测系统
CN215574610U (zh) * 2021-04-02 2022-01-18 浙江大学 同时检测多种气体的单共振腔光声光谱系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163956A (zh) * 2005-04-26 2008-04-16 皇家飞利浦电子股份有限公司 用于含氮气体化合物检测的低成本设备
CN202404020U (zh) * 2011-12-30 2012-08-29 昆山和智电气设备有限公司 用于气体含量检测的光声光谱检测装置
US20150112221A1 (en) * 2013-10-17 2015-04-23 Robert Bosch Gmbh Method and device for measuring the concentration of nitrogen monoxide in the respiratory air of a patient
CN104237154A (zh) * 2014-08-29 2014-12-24 浙江省计量科学研究院 基于光声光谱技术的大气温室气体中甲烷和二氧化碳的检测装置
CN110441241A (zh) * 2019-07-31 2019-11-12 中国电力科学研究院有限公司 一种光声光谱多组分气体分析仪器的性能评价装置及方法
CN112730185A (zh) * 2021-01-22 2021-04-30 安徽理工大学环境友好材料与职业健康研究院(芜湖) 一种光声光谱检测粉尘浓度装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 8 June 2020, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, CN, article JIN, HUAWEI: "Synchronous Detection Technology of Aerosol Absorption and Extinction Coefficient Based on Photoacoustic and Cavity Ring-down Spectroscopy", pages: 1 - 147, XP009549151, DOI: 10.27517/d.cnki.gzkju.2020.001124 *

Also Published As

Publication number Publication date
US20240175803A1 (en) 2024-05-30
CN114739912B (zh) 2022-11-18
CN114739912A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
US6635415B1 (en) Nitric oxide gas detector
CN101498690B (zh) 在线式电力变压器故障监测系统
CN111007058A (zh) 氮氧化物和臭氧一体化分析仪
US5531105A (en) Method and system for determining engine oil consumption
CN108225852A (zh) 一种大气过氧自由基进样装置及具有该装置的测量仪
WO2023184601A1 (zh) 一种基于光声光谱的痕量氮氧化合物同步检测系统及检测方法
CN219777484U (zh) 一种基于紫外吸收法的空气臭氧浓度分析仪
CN111157477A (zh) 总烃浓度检测仪及总烃浓度检测方法
CN212111147U (zh) 基于化学发光法的臭氧分析仪
CN209821059U (zh) 基于光谱技术的在位式烟气检测装置
US12123825B2 (en) Synchronous detection system and detection method for trace nitrogen-oxygen compound based on photoacoustic spectrometry
CN208736796U (zh) 一种直接测量式气态污染物排放监测装置
CN213455605U (zh) 一种烟气排放连续监测系统
CN109057929A (zh) 一种检测三元催化器堵塞的方法及装置
CN115615926A (zh) 一种氮氧化物分析仪
CN112630272A (zh) 一种具有多通路多探测器的气体检测仪及其检测方法
CN214150537U (zh) 一种具有多通路多探测器的气体检测仪
CN101738433A (zh) 用气池的共振频率检测气体浓度的装置及方法
Zhan et al. Fluorimetric determination of nitrogen oxides in the air by a novel red-region fluorescent reagent
JP4188096B2 (ja) 測定装置
CN208313817U (zh) 高精度臭氧浓度检测系统
CN220854649U (zh) 一种基于紫外荧光法的二氧化硫气体分析模块
CN217688555U (zh) 一种可自动校零的便携式co和co2分析仪
WO2023184610A1 (zh) 一种基于双光声光谱的矿井粉尘实时检测系统及检测方法
CN114324277B (zh) 多种气体的检测装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934427

Country of ref document: EP

Kind code of ref document: A1