WO2023184388A1 - 背光模组、显示装置 - Google Patents

背光模组、显示装置 Download PDF

Info

Publication number
WO2023184388A1
WO2023184388A1 PCT/CN2022/084533 CN2022084533W WO2023184388A1 WO 2023184388 A1 WO2023184388 A1 WO 2023184388A1 CN 2022084533 W CN2022084533 W CN 2022084533W WO 2023184388 A1 WO2023184388 A1 WO 2023184388A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
circuit board
opening
backlight module
emitting unit
Prior art date
Application number
PCT/CN2022/084533
Other languages
English (en)
French (fr)
Inventor
赵雪梅
张斗庆
李虎
陈帮民
邵秀晨
雷阳阳
谢登玲
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/084533 priority Critical patent/WO2023184388A1/zh
Priority to CN202280000673.XA priority patent/CN117546080A/zh
Publication of WO2023184388A1 publication Critical patent/WO2023184388A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a backlight module and a display device.
  • Mini LED display technology uses mini LEDs (sub-millimeter light-emitting diodes) to form the backlight source of the liquid crystal display device.
  • mini LEDs sub-millimeter light-emitting diodes
  • it can achieve high contrast, wide color gamut, and high brightness display effects.
  • light leakage easily occurs between different backlight areas, thus affecting the display effect.
  • a backlight module includes: a circuit board, a plurality of light-emitting units, and a microstructure film layer.
  • a plurality of light-emitting unit arrays are distributed on the circuit board, a plurality of the light-emitting units form a plurality of light-emitting unit groups, each of the light-emitting unit groups includes at least one of the light-emitting units;
  • a microstructure film layer is located on the circuit board, And the light-emitting unit is located on the same side of the circuit board, and a first opening corresponding to the light-emitting unit group is formed on the microstructure film layer, and the light-emitting unit group is located on the corresponding third opening.
  • the microstructure film layer includes a reflective wall surrounding the first opening, and the reflective wall is used to reflect the light emitted by the light-emitting unit group surrounded by it.
  • the microstructure film layer includes: a foamed reflective layer, the foamed reflective layer is located on the circuit board, and is located on the same side of the circuit board as the light-emitting unit, so The foamed reflective layer is formed with a second opening corresponding to the light-emitting unit group, the light-emitting unit group is located in the corresponding second opening, and the side wall of the second opening forms the The reflective wall.
  • the microstructure film layer further includes: a first wavelength conversion layer, the first wavelength conversion layer is used to convert the wavelength of light passing through it, and the first wavelength conversion layer conforms to the covering on the side wall of the second opening.
  • the microstructure film layer further includes: a transparent protective layer conformably covering the side of the first wavelength conversion layer away from the foamed reflective layer.
  • the second opening includes: a gradual extension section, the opening area of the gradual extension section away from the circuit board is larger than the opening area of the gradual extension section close to the circuit board. side opening area.
  • the side wall of the gradual extension section forms a curved surface, and the tangent line at any position on the side wall of the gradual extension section is located where the side wall of the gradual extension section faces the circuit board. one side.
  • a groove is formed on a side of the foam reflective layer facing the circuit board.
  • the notch area of the groove facing the circuit board is larger than the notch area of the groove away from the circuit board; the side walls of the groove are on the side of the groove.
  • the orthographic projection on the circuit board intersects the orthographic projection of the side wall of the tapered extension on the circuit board.
  • the side wall of the groove forms a curved surface, and the tangent line at any position on the side wall of the groove is located on the side of the side wall of the groove facing the circuit board.
  • the maximum thickness of the foamed reflective layer between the groove side wall and the gradual extension side wall is X
  • the groove side wall and the gradual extension side wall The minimum thickness of the foamed reflective layer between them is Y, where (X-Y)/Y is greater than or equal to 0 and less than or equal to 1.8.
  • the first opening includes a first opening on a side facing away from the circuit board, and a second opening facing the side of the circuit board, and the first opening is circular.
  • the first opening is circular.
  • the second opening is any one of circular, polygonal and elliptical shapes.
  • a plurality of the light-emitting units are distributed in an array at equal intervals in a first direction and a second direction, and the first direction and the second direction intersect;
  • the first opening is a quadrilateral , the first opening includes intersecting first and second sides, the first side is parallel to the first direction, the second side is parallel to the second direction, and a plurality of The first openings are distributed in an array in the first direction and the second direction.
  • adjacent sides of two first openings adjacent in the first direction overlap, and adjacent sides adjacent in the second direction overlap.
  • the gradually extending section includes a third opening on a side facing away from the circuit board and a fourth opening on a side facing the circuit board.
  • the third opening and the fourth opening The distance of the opening in the direction perpendicular to the circuit board is S2; the edge of the third opening orthogonally projected on the circuit board and the edge of the fourth opening orthogonally projected on the circuit board are at the first level.
  • the minimum distance in the direction is S1, wherein the first horizontal direction is parallel to the circuit board, and the first horizontal direction passes through the centroid of the orthographic projection of the fourth opening on the circuit board; S1/ S2 is greater than or equal to 1 and less than or equal to 4.
  • the light-emitting unit includes: a light-emitting chip and a diffusion functional layer.
  • the diffusion functional layer includes a diffusion base material layer and diffusion particles located in the diffusion base material layer.
  • the diffusion functional layer encapsulates The side of the light-emitting chip away from the circuit board is used to diffuse the light passing through it.
  • a thickness of the diffusion functional layer on a side close to the circuit board is smaller than a thickness on a side away from the circuit board.
  • the concentration of diffusion particles on the side of the diffusion functional layer close to the circuit board is smaller than the concentration of diffusion particles on the side away from the circuit board.
  • the backlight module further includes: a second wavelength conversion layer located on a side of the microstructure film layer away from the circuit board, and the light-emitting unit supports Between the second wavelength conversion layer and the circuit board and between the circuit board.
  • the backlight module further includes: a second wavelength conversion layer, the second wavelength conversion layer is located on a side of the microstructure film layer away from the circuit board, and the light-emitting unit is connected to the circuit board. There is a preset gap between the second wavelength conversion layers.
  • the microstructure film layer further includes: a plurality of reflective particles distributed on at least part of the reflective surface of the reflective wall, and the reflective particles are used for diffuse reflection around the surrounding surface.
  • the light emitted by the light-emitting unit group in the reflective wall wherein, in the direction parallel to the circuit board, in the same reflective wall surrounding the light-emitting unit group, the reflection away from the light-emitting unit group
  • the distribution density of particles is smaller than the distribution density of the reflective particles close to the light-emitting unit group.
  • the circuit board includes: a control circuit configured to independently control the luminous brightness of each of the light-emitting unit groups.
  • a display device which includes: the above-mentioned backlight module.
  • Figure 1 is a schematic structural diagram of a display device in the related art
  • Figure 2 shows the display brightness diagram of different backlight areas under ideal conditions
  • Figure 3 shows the display brightness diagram of different backlight areas under actual conditions
  • Figure 4 is a rendering of the halo phenomenon
  • Figure 5 is a front view of an exemplary embodiment of the backlight module of the present disclosure.
  • Figure 6 is a cross-sectional view of the backlight module shown in Figure 5 along the dotted line AA;
  • Figure 7 is a perspective view of partial area B of the backlight module shown in Figure 5;
  • Figure 8 is an enlarged view of partial area C of the backlight module shown in Figure 6;
  • Figure 9 is a schematic structural diagram of another exemplary embodiment of the backlight module of the present disclosure.
  • Figure 10 is a schematic structural diagram of another exemplary embodiment of the backlight module of the present disclosure.
  • Figure 11 is a partial enlarged view of area D in Figure 10;
  • Figure 12 is a partial enlarged view of the local area E in Figure 10;
  • Figure 13 is a front view of another exemplary embodiment of the backlight module of the present disclosure.
  • Figure 14 is a partial cross-sectional view of the backlight module shown in Figure 13 along the dotted line BB;
  • Figure 15 is a front view of another exemplary embodiment of the backlight module of the present disclosure.
  • Figure 16 is a cross-sectional view of the backlight module shown in Figure 15 along the dotted line CC;
  • Figure 17 is a front view of another exemplary embodiment of the backlight module of the present disclosure.
  • Figure 18 is a cross-sectional view of the backlight module shown in Figure 17 along the dotted line DD;
  • Figure 19 is a schematic structural diagram of an exemplary embodiment of a display device of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the display device may include a backplane 11, double-sided tape 12, a circuit board 13, an LED chip 14, a lamp glue 16, a wavelength conversion layer 17, an average light film 18, an average light film 19, an average light film 20, and an average light film 21 , prism film 22, first polarizer 23, array substrate 24, color filter 25, second polarizer 26, seal glue 15, glue frame 27.
  • the LED chip 14 forms the backlight source of the display device.
  • the light emitted by the LED chip 14 is blue light
  • the wavelength conversion layer 17 can perform wavelength conversion on the blue light transmitted through it, so that the wavelength conversion layer 17 can The light changes to white light.
  • the blue light emitted by the LED chip 14 located at the edge of the circuit board 13 may be reflected by the plastic frame 27 and incident on the light exit side of the display device, eventually causing the edge of the display area of the display device to turn blue.
  • the blue edge problem can be improved by arranging phosphor on the edge of some diaphragms.
  • the above method cannot solve the blue edge problem from the source.
  • the control circuit in the circuit board 13 can drive the LED chips 14 in different areas to emit light with different brightnesses, so that the display device can achieve high contrast, wide color gamut, and high brightness display effects.
  • the display device The display device can also achieve refined dynamic rendering of highlights.
  • the abscissa represents the consecutively adjacent areas A, B, C, D, and E in the backlight area, and the ordinate represents the display brightness of different backlight areas.
  • FIG. 2 it is a display brightness diagram of different backlight areas under ideal conditions. Among them, the display brightness of area C is N, and the display brightness of areas A, B, D, and E are all 0. As shown in Figure 3, it is a display brightness diagram of different backlight areas under actual conditions. Since the light in area C leaks to areas A, B, D, and E, the areas A, B, D, and E that originally displayed black display a certain brightness, that is, a halo phenomenon occurs. As shown in Figure 4, it is the rendering of the halo phenomenon. Among them, the area F in FIG. 4 originally needs to display black. However, due to the light leakage from the area G to the area F, the area F displays a certain brightness.
  • this exemplary embodiment provides a backlight module, as shown in Figures 5, 6, and 7.
  • Figure 5 is a front view of an exemplary embodiment of the backlight module of the present disclosure
  • Figure 6 is as shown in Figure 5 A cross-sectional view of the backlight module along the dotted line AA.
  • Figure 7 is a perspective view of the partial area B of the backlight module shown in Figure 5.
  • the backlight module may include: a circuit board 3, a plurality of light-emitting units 41, and a microstructure film layer 5.
  • the plurality of light-emitting units 41 may be distributed in an array on the circuit board 3.
  • the plurality of light-emitting units 41 form a There are multiple light-emitting unit groups 4, and each of the light-emitting unit groups 4 may include at least one of the light-emitting units 41.
  • the microstructure film layer 5 is located on the circuit board 3 , and is located on the same side of the circuit board 3 as the light-emitting unit 41 .
  • a first layer corresponding to the light-emitting unit group 4 is formed on the microstructure film layer 5 .
  • Opening 51, the light-emitting unit group 4 is located in the corresponding first opening 51; the microstructure film layer 5 includes a reflective wall 52 surrounding the first opening, the reflective wall 52 is used for Reflect the light emitted by the light-emitting unit group 4 surrounded by it.
  • the reflective wall 52 can be used to reflect the light emitted by the light-emitting unit group 4 surrounded by it, so that the backlight area where each light-emitting unit group 4 is located is isolated into an independent space by the reflective wall 52.
  • the backlight area where each light-emitting unit group 4 is located will not leak light to other backlight areas.
  • the light-emitting units located at the edge of the circuit board 3 will not leak light to the edge of the display area of the display device. Therefore, the backlight module can improve the halo and halo of the display device. The problem of color cast at the edge of the display area.
  • the light-emitting unit may emit light of a first color, and the light of the first color may be blue light.
  • the backlight module may also include a second wavelength conversion layer 6 .
  • the second wavelength conversion layer 6 may convert the first color light into white light, so that the backlight module provides a white backlight source.
  • the second wavelength conversion layer 6 can be a quantum dot layer, a fluorescent layer, etc.
  • the quantum dot layer may include a transparent substrate and quantum dots encapsulated in the transparent substrate.
  • the quantum dot layer forming the second wavelength conversion layer may include red quantum dots and green quantum dots.
  • the red quantum dots can produce red light under blue light excitation, and the green quantum dots can produce green light under blue light excitation, so that the quantum dot layer including red quantum dots and green quantum dots can convert blue light into white light.
  • the fluorescent layer may include a fluorescent material that is stimulated to emit red light and a fluorescent material that is stimulated to emit green light.
  • the light-emitting unit 41 may include a light-emitting chip 411.
  • the light-emitting chip 411 may be a sub-millimeter light-emitting diode, and the size of the sub-millimeter light-emitting diode is between 50-200 ⁇ m.
  • the circuit board can be a flexible circuit board, a printed circuit board, etc.
  • the circuit board can be integrated with a control circuit for independently controlling the light emission of each light-emitting unit group 4, that is, the control circuit can control each light-emitting unit group 4 to emit light with the same or different brightness.
  • the microstructure film layer 5 may include: a foamed reflective layer 53, which is located on the circuit board 3 and located on the same side of the circuit board 3 as the light-emitting unit 41.
  • the foam reflective layer 53 is formed with a second opening 56 corresponding to the light-emitting unit group 4.
  • the light-emitting unit group 4 is located in the corresponding second opening 56.
  • the side walls may form the reflective wall 52 .
  • the foamed reflective layer 53 may include a foamed base material, in which a plurality of densely distributed bubbles are formed.
  • the base material of the foamed reflective layer can be polyethylene terephthalate.
  • the foamed reflective layer can also include a masterbatch encapsulated in the base material.
  • the foamed reflective layer can be formed by pulling the base material. , causing bubbles to form at the location of the masterbatch.
  • the masterbatch can be titanium oxide, barium sulfate, calcium carbonate and other materials.
  • the foamed reflective layer can achieve a reflectivity of 98%.
  • the microstructure film layer may also include: a first wavelength conversion layer 54.
  • the first wavelength conversion layer 54 may be used to convert the wavelength of light passing through it.
  • the third wavelength conversion layer 54 may be used to convert the wavelength of light passing through it.
  • a wavelength conversion layer 54 may conformally cover the sidewalls of the second opening 56 .
  • the first wavelength conversion layer 54 can be a quantum dot layer or a fluorescent layer.
  • the first wavelength conversion layer 54 can fine-tune the color of the light emitted by the backlight module. For example, when the color of the light emitted by the backlight module is bluish, the first wavelength can be converted.
  • Layer 54 is configured to convert blue light into red and green light.
  • the first wavelength conversion layer 54 can be configured to convert blue light into green light. As shown in FIG. 8 , the first wavelength conversion layer 54 can also cover the entire side of the foamed reflective layer 53 away from the circuit board 3 .
  • the microstructure film layer may also include: a transparent protective layer 55 , and the transparent protective layer 55 may conformally cover the first wavelength conversion layer 54 away from the foaming layer. one side of the reflective layer 53 .
  • the transparent protective layer 55 may be made of polyethylene terephthalate material. The transparent protective layer 55 may be used to protect the first wavelength conversion layer 54 .
  • the light-emitting unit 41 there are two transmission paths for the light emitted by the light-emitting unit 41 .
  • Part of the light emitted by the light-emitting unit 41 can directly pass through the second wavelength conversion layer 6 to form white light emitted from the second wavelength conversion layer 6 .
  • Part of the light emitted by the light-emitting unit 41 can pass through the transparent protective layer 55 and the first wavelength conversion layer 54, and be reflected on the side walls of the second opening 56, and then pass through the first wavelength conversion layer 54 and the transparent protective layer 55 to be incident on the second opening.
  • the wavelength conversion layer 6 then emits from the second wavelength conversion layer 6 .
  • the light-emitting unit 41 may also include a transparent glue 412 .
  • the transparent glue 412 is encapsulated on the side of the light-emitting chip 411 facing away from the circuit board 3 for fixing the light-emitting chip 411 to the circuit board 3 . on, and the transparent glue 412 can physically protect the light-emitting chip 411.
  • the second opening 56 may include: a gradual extension section 561 , and the opening area on the side of the gradual extension section 561 away from the circuit board 3 is larger than the gradual extension section 561 .
  • the extension section 561 is close to the opening area on one side of the circuit board 3 . That is, the opening area of the gradually extending section 561 gradually increases from the side of the circuit board 3 to the side away from the circuit board 3 .
  • This arrangement allows the microstructure film layer 5 to have a larger light outlet, thereby reducing the risk of dark areas forming in non-light outlet areas. As shown in FIG.
  • the side wall of the gradually changing extension section 561 can form a curved surface, and the tangent line D at any position on the side wall of the gradually changing extension section 561 can be located at the side wall of the gradually changing extension section 561 facing the On one side of the circuit board 3 , this arrangement can make the slope of the side wall of the gradual extension section 561 close to the light emitting unit 41 smaller than the slope far away from the light emitting unit 41 in a direction parallel to the circuit board 3 , so that in the direction parallel to the circuit board 3 In the direction, high-intensity light rays close to the light-emitting unit 41 can be reflected to a position far away from the light-emitting unit 41 through the side walls with a smaller slope, and low-intensity light rays far away from the light-emitting unit 41 can be reflected from the side walls with a large slope.
  • this arrangement can make the light emitted by the light-emitting unit 41 mix evenly in the first opening 51, thereby improving the uniformity of the light intensity at the light outlet of the first opening 51; on the other hand, this arrangement can improve the light emitted by the light-emitting unit 41.
  • the collimation of light can be made evenly in the first opening 51, thereby improving the uniformity of the light intensity at the light outlet of the first opening 51; on the other hand, this arrangement can improve the light emitted by the light-emitting unit 41. The collimation of light.
  • the first wavelength conversion layer 54 conformally covers the side walls of the second opening 56
  • the transparent protective layer 55 conformally covers the first wavelength conversion layer 54 is away from the side of the foamed reflective layer 53. Therefore, the first opening 51 and the second opening 56 may have the same shape.
  • the foam reflective layer 53 may be shaped by a mold.
  • the formed foam reflective layer 53 can be assembled on a circuit board equipped with a light emitting unit.
  • the first opening 51 includes a first opening 511 on a side facing away from the circuit board 3 and a second opening 512 on a side facing the circuit board 3 .
  • the minimum dimension of the orthographic projection of the second opening 512 on the circuit board 3 in the direction passing through its centroid is S3
  • the maximum dimension of the orthographic projection of the light-emitting unit 41 on the circuit board in the direction passing its centroid is S4, where, S3 is larger than S4.
  • the orthographic projection of the light-emitting unit 41 on the circuit board is a rectangle, then the maximum size of the orthographic projection of the light-emitting unit 41 on the circuit board in the direction passing through its centroid is the orthogonal projection of the light-emitting unit 41 on the circuit board.
  • the length of the projected diagonal, the orthographic projection of the second opening 512 on the circuit board is a circle, and the minimum size of the orthographic projection of the second opening 512 on the circuit board 3 in the direction passing through its centroid is the diameter of the circle .
  • S3 is set to be slightly larger than S4, so that a certain assembly error can be reserved when assembling the foamed reflective layer 53 to facilitate the assembly of the foamed reflective layer 53 .
  • S3-S4 may be 0.2mm-0.6mm.
  • S3-S4 may be 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, etc.
  • the first opening 511 may also be any one of a polygon, an ellipse, and a special shape
  • the second opening 512 may also be a polygon, an ellipse, or a special shape. any kind.
  • the gradually extending section 561 may include a third opening 5613 on a side facing away from the circuit board 3 and a fourth opening 5614 on a side facing the circuit board 3 .
  • the distance between the third opening 5613 and the fourth opening 5614 in the direction perpendicular to the circuit board is S2.
  • the minimum distance in the first horizontal direction between the edge of the third opening 5613 and the edge of the fourth opening 5614 being orthogonally projected on the circuit board is S1.
  • the first horizontal direction is parallel to the circuit board and is the direction of the orthographic projection centroid on the circuit board through the fourth opening 5614 .
  • the centroids of the orthographic projections of the third opening 5613 and the fourth opening 5614 on the circuit board may overlap, and the orthographic projections of the third opening 5613 and the fourth opening 5614 on the circuit board are both circular.
  • the minimum distance in the first horizontal direction between the edge of the third opening 5613's orthographic projection on the circuit board and the edge of the fourth opening 5614's orthographic projection on the circuit board is the orthographic projection of the third opening 5613 on the circuit board.
  • S1/S2 may be 1-4, for example, S1/S2 may be 1, 2, 3, 4, etc. Among them, S2 can be 0.15mm-0.3mm. For example, S2 can be 0.15mm, 0.18mm, 0.2mm, 0.25mm, 0.3mm.
  • the third opening 5613 can also be any one of a polygon, an ellipse, and a special shape
  • the fourth opening 5614 can also be a polygon, an ellipse, or a special shape.
  • the orthographic projections of the third opening 5613 and the fourth opening 5614 on the circuit board may be concentric squares, and one side of the third opening 5613 may be parallel to the orthographic projection of one side of the fourth opening 5614 on the circuit board.
  • the minimum distance in the first horizontal direction between the edge of the third opening 5613 and the edge of the fourth opening 5614 orthogonally projected on the circuit board is The distance between projections.
  • the thickness of the circuit board 3 is relatively thin.
  • the thickness of the circuit board 3 may be 0.12 mm, and the material of the circuit board 3 is relatively soft. This characteristic may easily cause the surface of the circuit board to be uneven. The unevenness of the circuit board surface will affect the flatness of the microstructure film layer 5, thereby affecting the display effect.
  • FIG. 9 it is a schematic structural diagram of another exemplary embodiment of the backlight module of the present disclosure.
  • a groove 7 is also formed on the side of the foam reflective layer 53 facing the circuit board 3; the area of the groove 7 close to the circuit board 3 is larger than the area of the groove 7 away from the circuit board. Side notch area.
  • the opening of the groove 7 gradually decreases from the side of the circuit board 3 to the side away from the circuit board 3 .
  • the orthographic projection of the side wall 71 of the groove 7 on the circuit board 3 intersects the orthographic projection of the side wall of the gradual extension section 561 on the circuit board.
  • the side wall 71 of the groove 7 can form a curved surface, and the tangent E at any position on the groove side wall 71 can be located on the side of the groove side wall 71 facing the circuit board 3 .
  • the foamed reflective layer 53 of this structure has a certain elastic deformation ability, thereby reducing the risk of damage to the foamed reflective layer.
  • the groove 7 and the second opening 56 are arranged in cooperation, so that the foamed reflective layer 53 can form a film layer with a relatively uniform thickness.
  • the maximum thickness of the foamed reflective layer between the groove sidewall 71 and the gradient extension sidewall is X
  • the maximum thickness of the foamed reflective layer between the groove sidewall and the gradient extension sidewall is Y
  • (X-Y)/Y can be greater than or equal to 0 and less than or equal to 1.8.
  • (X-Y)/Y can be 0, 0.5, 1, 1.5, 1.8, etc.
  • FIG. 10 is a schematic structural diagram of another exemplary embodiment of the backlight module of the present disclosure
  • FIG. 11 is a partial enlarged view of area D in FIG. 10
  • the light-emitting unit 41 may further include a diffusion functional layer 413.
  • the diffusion functional layer 413 may be encapsulated on the side of the transparent glue 412 facing away from the light-emitting chip 411.
  • the diffusion functional layer 413 may be used to diffuse light passing through it.
  • the diffusion functional layer 413 may include a diffusion base material layer 4132 and diffusion particles 4131 located in the diffusion base material layer 4132.
  • the diffusion base material layer 4132 and the diffusion particles 4131 have different refractive indexes, and the light incident on the diffusion function layer 413 will Many refraction, reflection, and scattering phenomena constantly occur in two media with different refractive indexes, so that the light incident on the diffusion functional layer 413 can be emitted from different directions.
  • the thickness h2 of the diffusion functional layer 413 on the side close to the circuit board 3 is smaller than the thickness h2 of the diffusion functional layer on the side far away from the circuit board 3 h1. Since the intensity of the light emitted by the light-emitting chip 411 upward is stronger than the intensity of the light emitted by the light-emitting chip 411 to the surroundings, the present application can increase the thickness of the diffusion functional layer on the side away from the circuit board 3 to make a thicker The diffusion function layer 413 more fully scatters light with high intensity, thereby improving the uniformity of light mixing in the first opening 51 .
  • the concentration of diffusion particles 4131 in the diffusion functional layer 413 on the side close to the circuit board 3 can be smaller than that in the diffusion functional layer 413 on the side far away from the circuit board 3.
  • the concentration of diffuse particles 4131. This arrangement allows the portion of the diffusion functional layer 413 with a larger concentration of diffusion particles to more fully scatter light with high intensity, thereby improving the uniformity of light mixing in the first opening 51 . It should be understood that the arrangement of the diffusion functional layer 413 can also be applied to the embodiments in FIGS. 5-9.
  • the light emitting unit 41 may be supported between the circuit board 3 and the second wavelength conversion layer 6 .
  • the light-emitting unit 41 can improve the stability of the second wavelength conversion layer 6 and the circuit board 3 . It should be understood that in other exemplary embodiments, there may also be a preset gap between the light-emitting unit 41 and the second wavelength conversion layer 6, and the light emitted by the light-emitting unit 41 may be scattered in the preset gap, thereby The uniformity of light mixing in the first opening 51 is improved.
  • the height h3 of the light-emitting chip 411 may be 0.12mm-0.15mm.
  • h3 may be 0.12mm, 0.13mm, or 0.15mm.
  • the distance h4 from the light-emitting chip 411 to the highest point of the diffusion functional layer 413 can be 0.25mm-0.3mm.
  • h4 can be 0.25mm, 0.28mm, or 0.3mm.
  • the microstructure film layer may also include: a plurality of reflective particles 8, which may be distributed on at least part of the reflective surface of the reflective wall, and the reflective particles 8 may be used for diffuse reflection surrounding the reflective wall.
  • the light emitted by the light-emitting unit group 4 in .
  • the distribution density of the reflective particles 8 far away from the light-emitting unit group 4 may be smaller than that close to the light-emitting unit.
  • this arrangement can diffusely reflect the light with greater intensity through denser reflective particles, thereby improving the light intensity in the first opening 51 Mixing uniformity. It should be understood that the arrangement of reflective particles 8 can also be applied to the embodiments in Figures 5-9.
  • the reflective particles 8 may be circular or elliptical, the reflective particles 8 may be integrally formed with the foamed reflective layer 53 through a mold, and the material of the reflective particles may be the same as the material of the foamed reflective layer 53 . In other exemplary embodiments, the reflective particles 8 may also be formed on the reflective wall of the foamed reflective layer 53 through a coating process.
  • the material of the reflective particles can be one of titanium oxide, zinc oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, and silicon.
  • Figure 13 is a front view of another exemplary embodiment of the backlight module of the present disclosure
  • Figure 14 is a partial cross-sectional view of the backlight module shown in Figure 13 along the dotted line BB.
  • a plurality of the light-emitting units 41 may be distributed in an equally spaced array in the first direction X and the second direction Y, and the first direction X and the second direction Y intersect.
  • Each light-emitting unit group 4 may include four light-emitting units distributed in a two-by-two array.
  • the first opening 511 may be in a quadrilateral shape.
  • the first opening 511 may be in a square shape.
  • the first opening 511 may include an intersecting first side C1 and a second side C2.
  • the first side C1 is parallel to the first direction X
  • the second side C2 is parallel to the second direction Y
  • a plurality of the first openings 511 can be arrayed in the first direction X and the second direction Y. distributed. This arrangement can result in a smaller non-light outlet area between adjacent first openings 511, thereby reducing the risk of forming a dark area in the non-light outlet area.
  • adjacent sides of two adjacent first openings 511 in the first direction X may overlap, and adjacent sides of the adjacent first openings 511 in the second direction Y Adjacent sides can overlap, that is, there is no gap between adjacent first openings 511.
  • This arrangement can greatly reduce the risk of forming a dark area in the non-light outlet area.
  • the minimum distances S8 and S9 in the second direction Y between the first side C1 and the light-emitting units 41 located on both sides thereof may be equal.
  • the minimum distances S5 and S6 in the first direction X between the second side C2 and the light-emitting units 41 located on both sides thereof may be equal.
  • the second opening 512 may also be square, and the second opening 512 may include a third side C3, and the third side C3 of the second opening 512 is parallel to the second side C2 of the first opening, where , the distance between the third side C3 and the second side C2 in the first direction X is S10, the distance between the third side C3 and its adjacent light-emitting unit in the first direction
  • the distance between the adjacent third sides C3 on both sides in the first direction X is S112, the size of the first opening 511 in the first direction X is L, and S11 can be 0.3 mm.
  • the light-emitting unit group may also include other numbers of light-emitting units, for example, as shown in Figures 15 and 16.
  • Figure 15 is another exemplary embodiment of the backlight module of the present disclosure.
  • 16 is a cross-sectional view of the backlight module shown in FIG. 15 along the dotted line CC.
  • the light-emitting unit group 4 in the backlight module may include two light-emitting units 41 .
  • FIGS. 17 and 18 FIG. 17 is a front view of another exemplary embodiment of the backlight module of the present disclosure
  • FIG. 18 is a cross-sectional view of the backlight module shown in FIG. 17 along the dotted line DD.
  • the light-emitting unit group 4 in the backlight module may include nine light-emitting units 41 .
  • the surface of the lamp glue 16 is relatively flat, and the lamp glue 16 will be locally adsorbed to the wavelength conversion layer 17, causing Newton rings to appear on the light exit side of the backlight module.
  • the contact area between the microstructure film layer 5 and the second wavelength conversion layer 6 is small, so that the above-mentioned Newton's ring problem can be avoided.
  • FIG. 19 is a schematic structural diagram of a display device according to an exemplary embodiment of the present disclosure.
  • the display device may include the above-mentioned backlight module and display module.
  • the backlight module can also include: backplane 11, double-sided tape 12, uniformity film 18, uniformity film 19, uniformity film 20, uniformity film 21, prism film 22, mouth tape 15, Plastic frame 27.
  • the display module may include: a first polarizer 23, an array substrate 24, a color filter 25, and a second polarizer 26. There may be a liquid crystal layer between the array substrate 24 and the color filter 25.
  • the display device can be a display device such as a mobile phone, a tablet computer, or a television.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组、显示装置,背光模组包括:电路板(3)、多个发光单元(41)、微结构膜层(5),多个发光单元(41)阵列分布于电路板(3)上,多个发光单元(41)形成多个发光单元组(4),每个发光单元组(4)包括至少一个发光单元(41);微结构膜层(5)位于电路板(3)上,且与发光单元(41)位于电路板(3)的同一侧,微结构膜层(5)上形成有与发光单元组(4)对应设置的第一开孔(51),发光单元组(4)位于与其对应的第一开孔(51)内;微结构膜层(5)包括环绕第一开孔(51)的反射壁(52),反射壁(52)用于反射被其环绕的发光单元组(4)发出的光线。该背光模组能够改善光晕和蓝边的技术问题。

Description

背光模组、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种背光模组、显示装置。
背景技术
相关技术中,Mini LED显示技术通过mini led(次毫米发光二极管)形成液晶显示装置的背光源,同时,通过控制不同背光区域的亮度,从而可以实现高对比度、广色域、高亮度的显示效果。然而,不同背光区域之间容易发生漏光,从而影响显示效果。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
根据本公开的一个方面,提供一种背光模组,其中,所述背光模组包括:电路板、多个发光单元、微结构膜层。多个发光单元阵列分布于所述电路板上,多个所述发光单元形成多个发光单元组,每个所述发光单元组包括至少一个所述发光单元;微结构膜层位于电路板上,且与所述发光单元位于所述电路板的同一侧,所述微结构膜层上形成有与所述发光单元组对应设置的第一开孔,所述发光单元组位于与其对应的所述第一开孔内;所述微结构膜层包括环绕所述第一开孔的反射壁,所述反射壁用于反射被其环绕的所述发光单元组发出的光线。
本公开一种示例性实施例中,所述微结构膜层包括:发泡反射层,所述发泡反射层位于电路板上,且与所述发光单元位于所述电路板的同一侧,所述发泡反射层上形成有与所述发光单元组对应设置的第二开孔,所述发光单元组位于与其对应的所述第二开孔内,所述第二开孔的侧壁形成所述反射壁。
本公开一种示例性实施例中,所述微结构膜层还包括:第一波长转换 层,第一波长转换层用于转换透过其光线的波长,所述第一波长转换层随形覆盖于所述第二开孔的侧壁。
本公开一种示例性实施例中,所述微结构膜层还包括:透明保护层,透明保护层随形覆盖于所述第一波长转换层背离所述发泡反射层的一侧。
本公开一种示例性实施例中,所述第二开孔包括:渐变延伸段,所述渐变延伸段远离所述电路板一侧的开孔面积大于所述渐变延伸段靠近所述电路板一侧的开孔面积。
本公开一种示例性实施例中,所述渐变延伸段的侧壁形成一曲面,所述渐变延伸段侧壁上任意位置的切线位于所述所述渐变延伸段侧壁面向所述电路板的一侧。
本公开一种示例性实施例中,所述发泡反射层面向所述电路板的一侧还形成有凹槽。
本公开一种示例性实施例中,所述凹槽面向所述电路板的槽口面积大于所述凹槽远离所述电路板一侧的槽口面积;所述凹槽的侧壁在所述电路板上的正投影与所述渐变延伸段的侧壁在所述电路板上的正投影相交。
本公开一种示例性实施例中,所述凹槽的侧壁形成一曲面,所述凹槽侧壁上任意位置的切线位于所述凹槽侧壁面向所述电路板的一侧。
本公开一种示例性实施例中,所述凹槽侧壁与所述渐变延伸段侧壁之间发泡反射层的最大厚度为X,所述凹槽侧壁与所述渐变延伸段侧壁之间发泡反射层的最小厚度为Y,其中,(X-Y)/Y大于等于0且小于等于1.8。
本公开一种示例性实施例中,所述第一开孔包括背离所述电路板一侧的第一开口,以及面向所述电路板一侧的第二开口,所述第一开口为圆形、多边形、椭圆形中的任意一种,所述第二开口为圆形、多边形、椭圆形中的任意一种。
本公开一种示例性实施例中,多个所述发光单元在第一方向和第二方向上等间距阵列分布,所述第一方向和所述第二方向相交;所述第一开口为四边形,所述第一开口包括相交的第一侧边和第二侧边,所述第一侧边与所述第一方向平行,所述第二侧边与所述第二方向平行,且多个所述第一开口在所述第一方向和第二方向上阵列分布。
本公开一种示例性实施例中,在所述第一方向上相邻的两所述第一开 口的相邻侧边重合,在所述第二方向上相邻的相邻侧边重合。
本公开一种示例性实施例中,所述渐变延伸段包括背离所述电路板一侧的第三开口和面向所述电路板一侧的第四开口,所述第三开口和所述第四开口在垂直于所述电路板方向上的距离为S2;所述第三开口在所述电路板上正投影的边沿和所述第四开口在所述电路板上正投影的边沿在第一水平方向上的最小距离为S1,其中,所述第一水平方向平行于所述电路板,且所述第一水平方向经过所述第四开口在所述电路板上正投影的形心;S1/S2大于等于1且小于等于4。
本公开一种示例性实施例中,所述发光单元包括:发光芯片、扩散功能层,扩散功能层包括扩散基材层和位于所述扩散基材层中的扩散粒子,所述扩散功能层封装于所述发光芯片背离所述电路板的一侧,用于扩散透过其的光线。
本公开一种示例性实施例中,所述扩散功能层靠近所述电路板一侧的的厚度小于远离所述电路板一侧的厚度。
本公开一种示例性实施例中,所述扩散功能层靠近所述电路板一侧的扩散粒子浓度小于远离所述电路板一侧的扩散粒子浓度。
本公开一种示例性实施例中,所述背光模组还包括:第二波长转换层,第二波长转换层位于所述微结构膜层背离所述电路板的一侧,所述发光单元支撑于所述第二波长转换层和所述电路板之间和所述电路板之间。
本公开一种示例性实施例中,所述背光模组还包括:第二波长转换层,第二波长转换层位于所述微结构膜层背离所述电路板的一侧,所述发光单元与所述第二波长转换层之间具有预设间隙。
本公开一种示例性实施例中,所述微结构膜层还包括:多个反射粒子,多个反射粒子分布于所述反射壁的至少部分反射面,所述反射粒子用于漫反射环绕于所述反射壁中的所述发光单元组发出的光线;其中,在与所述电路板平行的方向上,环绕所述发光单元组的同一反射壁中,远离所述发光单元组的所述反射粒子的分布密度小于靠近所述发光单元组的所述反射粒子的分布密度。
本公开一种示例性实施例中,所述电路板包括:控制电路,所述控制电路用于独立控制各个所述发光单元组的发光亮度。
根据本公开的一个方面,提供一种显示装置,其中,包括:上述的背光模组。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中一种显示装置的结构示意图;
图2为理想状况下不同背光区域的显示亮度图;
图3为实际状况下不同背光区域的显示亮度图;
图4为光晕现象的效果图;
图5为本公开背光模组一种示例性实施例的正视图;
图6为图5所示背光模组沿虚线AA的剖视图;
图7为图5所示背光模组局部区域B的立体图;
图8为图6所示背光模组局部区域C的放大图;
图9为本公开背光模组另一种示例性实施例的结构示意图;
图10为本公开背光模组另一种示例性实施例的结构示意图;
图11为图10中区域D的局部放大图;
图12为图10中局部区域E的局部放大图;
图13为本公开背光模组另一种示例性实施例的正视图;
图14为图13所示背光模组沿虚线BB的部分剖视图;
图15为本公开背光模组另一种示例性实施例的正视图;
图16为图15所示背光模组沿虚线CC的剖视图;
图17为本公开背光模组另一种示例性实施例的正视图;
图18为图17所示背光模组沿虚线DD的剖视图;
图19为本公开显示装置一种示例性实施例的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
如图1所示,为相关技术中一种显示装置的结构示意图。该显示装置可以包括背板11、双面胶12、电路板13、LED芯片14、灯胶16、波长转换层17、均光膜18、均光膜19、均光膜20、均光膜21、棱镜膜22、第一偏光片23、阵列基板24、彩膜25、第二偏光片26、口子胶15、胶框27。其中,LED芯片14形成该显示装置的背光源,相关技术中,LED芯片14发出的光线为蓝光,波长转换层17可以对透过其的蓝光进行波长转换,从而使得透过波长转换层17的光线变为白光。然而,如图1中箭头所示,位于电路板13边沿的LED芯片14发出的蓝光可以反射于胶框27从而入射到显示装置的出光侧,最终造成显示装置的显示区边沿发蓝。相关技术中,通常通过设置黄色胶框27、在口子胶15、灯胶16、波长转换层17、均光膜18、均光膜19、均光膜20、均光膜21、棱镜膜22、等部分膜片边沿上设置荧光粉的方式改善蓝边问题。然而,上述方法并不能从源头上解决蓝边问题。
此外,在该显示装置中,电路板13中的控制电路可以驱动不同区域的LED芯片14发出不同亮度的光,从而该显示装置可以实现高对比度、广色域、高亮度的显示效果,同时该显示装置还可以实现精细化的高光动态渲染。然而,当不同背光区域的亮度不同时,高亮度背光区域会漏光到低亮度的背光区域,从而导致光晕。如图2、3所示,为光晕产生的原理图,其中,横坐标表示背光区域中依次相邻的区域A、B、C、D、E,纵坐标表示不同背光区域的显示亮度。如图2所示,为理想状况下不同背光区域的显示亮度图。其中,区域C的显示亮度为N,区域A、B、D、E的显示 亮度均为0。如图3所示,为实际状况下不同背光区域的显示亮度图。由于区域C的光线漏光到区域A、B、D、E,从而使得原本显示黑色的区域A、B、D、E显示一定的亮度,即产生光晕现象。如图4所示,为光晕现象的效果图。其中,图4中的区域F原本需要显示黑色,然而由于区域G向区域F的漏光,从而使得区域F显示一定的亮度。
基于此,本示例性实施例提供一种背光模组,如图5、6、7所示,图5为本公开背光模组一种示例性实施例的正视图,图6为图5所示背光模组沿虚线AA的剖视图,图7为图5所示背光模组局部区域B的立体图。其中,所述背光模组可以包括:电路板3、多个发光单元41、微结构膜层5,多个发光单元41可以阵列分布于所述电路板3上,多个所述发光单元41形成多个发光单元组4,每个所述发光单元组4可以包括至少一个所述发光单元41。微结构膜层5位于电路板3上,且与所述发光单元41位于所述电路板3的同一侧,所述微结构膜层5上形成有与所述发光单元组4对应设置的第一开孔51,所述发光单元组4位于与其对应的所述第一开孔51内;所述微结构膜层5包括环绕所述第一开孔的反射壁52,所述反射壁52用于反射被环绕于其中的所述发光单元组4发出的光线。
本示例性实施例中,所述反射壁52可以用于反射被环绕于其中的所述发光单元组4发出的光线,从而各个发光单元组4所在的背光区域被反射壁52隔离成独立空间,各个发光单元组4所在的背光区域不会向其他背光区域漏光,同时位于电路板3边沿的发光单元也不会漏光到显示装置显示区的边沿,从而该背光模组可以改善显示装置光晕和显示区边沿偏色的问题。
本示例性实施例中,发光单元可以发出第一颜色的光,第一颜色的光可以为蓝光。如图6所示,该背光模组还可以包括第二波长转换层6,第二波长转换层6可以将第一颜色的光转换为白色的光,以使该背光模组提供白色的背光源。其中,第二波长转换层6可以为量子点层、荧光层等。量子点层可以包括透明基材和封装在透明基材中的量子点,例如,本示例性实施例中,形成第二波长转换层的量子点层可以包括红色量子点和绿色量子点,红色量子点可以在蓝光激发下产生红光,绿色量子点可以在蓝光激发下产生绿光,从而包括红色量子点和绿色量子点的量子点层可以将蓝 光转换为白光。同样的,荧光层中可以包括受激发射红光的荧光材料和受激发射绿光的荧光材料。
本示例性实施例中,如图6所示,发光单元41可以包括发光芯片411,发光芯片411可以为次毫米发光二极管,次毫米发光二极管的尺寸介于50-200μm。电路板可以为柔性电路板、印制电路板等。电路板上可以集成有用于独立控制各个发光单元组4发光的控制电路,即控制电路可以控制各个发光单元组4发出相同或不同亮度的光。
本示例性实施例中,如图8所示,为图6所示背光模组局部区域C的放大图。其中,所述微结构膜层5可以包括:发泡反射层53,所述发泡反射层53位于电路板3上,且与所述发光单元41位于所述电路板3的同一侧,所述发泡反射层53上形成有与所述发光单元组4对应设置的第二开孔56,所述发光单元组4位于与其对应的所述第二开孔56内,所述第二开孔56的侧壁可以形成所述反射壁52。其中,发泡反射层53可以包括发泡基材,发泡基材中形成有多个密集分布的气泡,气泡越微细、密度越高,发泡反射层的反射率就越高。发泡反射层的基材可以为聚对苯二甲酸乙二醇酯,该发泡反射层中还可以包括封装于基材中的母粒,发泡反射层在形成过程中可以通过拉扯基材,从而使得母粒所在位置形成气泡。其中,母粒可以为氧化钛、硫酸钡、碳酸钙等材料。该发泡反射层可以实现98%的反射率。
本示例性实施例中,如图8所示,所述微结构膜层还可以包括:第一波长转换层54,第一波长转换层54可以用于转换透过其光线的波长,所述第一波长转换层54可以随形覆盖于所述第二开孔56的侧壁。第一波长转换层54可以为量子点层或荧光层,第一波长转换层54可以对背光模组出光的颜色进行微调,例如,当背光模组出光颜色偏蓝时,可以将第一波长转换层54配置为将蓝色光转化为红色光和绿色光。再例如,当背光模组出光颜色偏紫时,可以将第一波长转换层54配置为将蓝色光转化为绿色光。如图8所示,第一波长转换层54还可以随形覆盖于整个发泡反射层53背离电路板3的一侧。
本示例性实施例中,如图8所示,所述微结构膜层还可以包括:透明保护层55,透明保护层55可以随形覆盖于所述第一波长转换层54背离所 述发泡反射层53的一侧。透明保护层55可以为聚对苯二甲酸乙二醇酯材料。透明保护层55可以用于保护第一波长转换层54。
如图8中箭头所示,发光单元41发出的光存在两种传输途径,发光单元41发出的部分光可以直接通过第二波长转换层6,以形成出射于第二波长转换层6的白光。发光单元41发出的部分光可以通过透明保护层55、第一波长转换层54,且反射于第二开孔56的侧壁,再通过第一波长转换层54、透明保护层55入射到第二波长转换层6,进而从第二波长转换层6射出。
本示例性实施例中,如图8所示,发光单元41还可以包括透明胶412,透明胶412封装于发光芯片411背离电路板3的一侧,用于将发光芯片411固定到电路板3上,且透明胶412可以对发光芯片411进行物理保护。
本示例性实施例中,如图8所示,所述第二开孔56可以包括:渐变延伸段561,所述渐变延伸段561远离所述电路板3一侧的开孔面积大于所述渐变延伸段561靠近所述电路板3一侧的开孔面积。即渐变延伸段561的开孔面积自线路板3一侧向远离电路板3一侧逐渐增加。该设置可以使得微结构膜层5具有较大的出光口,从而降低了非出光口区域形成暗区的风险。如图8所示,所述渐变延伸段561的侧壁可以形成一曲面,且所述渐变延伸段561侧壁上任意位置的切线D可以位于所述所述渐变延伸段561侧壁面向所述电路板3的一侧,该设置可以使得在平行于电路板3的方向上,渐变延伸段561侧壁靠近发光单元41位置的斜率小于远离发光单元41位置的斜率,从而在平行于电路板3的方向上,靠近发光单元41位置的高强度光线可以通过斜率较小的侧壁反射到远离发光单元41的位置,且远离发光单元41位置的低强度光线可以反射于斜率较大的侧壁从而沿与第一开孔51延伸方向夹角较小的方向射出,其中,第一开孔51延伸方向可以为垂直电路板3的方向。一方面,该设置可以使得发光单元41发出的光线在第一开孔51内混光均匀,从而提高第一开孔51出光口光强的均一性;另一方面,该设置可以提高发光单元发出光线的准直度。
需要说明的是,本示例性实施例中,由于第一波长转换层54随形覆盖于所述第二开孔56的侧壁,且透明保护层55随形覆盖于所述第一波长转换层54背离所述发泡反射层53的一侧,因此,第一开孔51和第二开 孔56可以具有相同的形状。
本示例性实施例中,发泡反射层53可以通过模具塑形而成。制作背光模组时,可以将成型的发泡反射层53装配在设置有发光单元的电路板上。
如图6、8所示,第一开孔51包括背离电路板3一侧的第一开口511和面向电路板3一侧的第二开口512。第二开口512在电路板3上的正投影在经过其形心方向上的最小尺寸为S3,发光单元41在电路板上的正投影在经过其形心方向上的最大尺寸为S4,其中,S3大于S4。如图5所示,发光单元41在电路板上的正投影为矩形,则发光单元41在电路板上正投影在经过其形心方向上的最大尺寸即为该发光单元41在电路板上正投影对角线的长度,第二开口512在电路板上的正投影为圆形,第二开口512在电路板3上正投影在经过其形心方向上的最小尺寸即为该圆形的直径。本示例性实施例将S3设置为略大于S4,从而可以在装配发泡反射层53时,预留一定的装配误差,以便于装配发泡反射层53。本示例性实施例中,S3-S4可以为0.2mm-0.6mm,例如,S3-S4可以为0.2mm、0.3mm、0.4mm、0.5mm、0.6mm等。
应该理解的是,在其他示例性实施例中,所述第一开口511还可以为多边形、椭圆形、异形中的任意一种,所述第二开口512还可以为多边形、椭圆形、异形中的任意一种。
本示例性实施例中,如图6、8所示,渐变延伸段561可以包括背离电路板3一侧的第三开口5613和面向电路板3一侧的第四开口5614。第三开口5613和第四开口5614在垂直于电路板方向上的距离为S2。第三开口5613在电路板上正投影的边沿和第四开口5614在电路板上正投影的边沿在第一水平方向上的最小距离为S1。其中,第一水平方向为平行电路板且经过第四开口5614在电路板上正投影形心的方向。本示例性实施例中,第三开口5613和第四开口5614在电路板上的正投影的形心可以重合,且第三开口5613和第四开口5614在电路板上的正投影均为圆形,相应的,第三开口5613在电路板上正投影的边沿和第四开口5614在电路板上正投影的边沿在第一水平方向上的最小距离为第三开口5613在电路板上正投影的边沿和第四开口5614在电路板上正投影的边沿所形成的环形的宽度。 本示例性实施例中,S1/S2可以为1-4,例如,S1/S2可以为1、2、3、4等。其中,S2可以为0.15mm-0.3mm,例如,S2可以为0.15mm、0.18mm、0.2mm、0.25mm、0.3mm。
应该理解的是,在其他示例性实施例中,所述第三开口5613还可以为多边形、椭圆形、异形中的任意一种,所述第四开口5614还可以为多边形、椭圆形、异形中的任意一种。例如,第三开口5613和第四开口5614在电路板上的正投影可以为同心方形,且第三开口5613的一侧边可以和第四开口5614的一侧边在电路板上的正投影平行,相应的,第三开口5613在电路板上正投影的边沿和第四开口5614在电路板上正投影的边沿在第一水平方向上的最小距离为上述相互平行侧边在衬底基板上正投影之间的距离。
本示例性实施例中,电路板3的厚度较薄,例如,电路板3的厚度可以为0.12mm,且电路板3材质较为柔软,该特性容易导致电路板表面不平整。电路板表面的不平整会影响微结构膜层5的平整度,进而影响显示效果。如图9所示,为本公开背光模组另一种示例性实施例的结构示意图。所述发泡反射层53面向所述电路板3的一侧还形成有凹槽7;所述凹槽7靠近所述电路板3的槽口面积大于所述凹槽7远离所述电路板一侧的槽口面积。即凹槽7的槽口自电路板3一侧向远离电路板3一侧逐渐减小。所述凹槽7的侧壁71在所述电路板3上的正投影与所述渐变延伸段561的侧壁在所述电路板上的正投影相交。该设置可以在保证微结构膜层5在具有较好支撑作用前提下,降低微结构膜层5与电路板3之间的接触面积,从而避免由于电路板3不平整导致的微结构膜层5不平整。
如图9所示,所述凹槽7的侧壁71可以形成一曲面,凹槽侧壁71上任意位置的切线E可以位于所述凹槽侧壁71面向所述电路板3的一侧。该结构的发泡反射层53具有一定的弹性形变能力,从而可以降低发泡反射层被破坏的风险。此外,凹槽7和第二开孔56配合设置,可以使得发泡反射层53形成厚度较为均匀的膜层。其中,所述凹槽侧壁71与所述渐变延伸段侧壁之间发泡反射层的最大厚度为X,所述凹槽侧壁与所述渐变延伸段侧壁之间发泡反射层的最小厚度为Y,其中,(X-Y)/Y可以大于等于0且小于等于1.8。例如,(X-Y)/Y可以为0、0.5、1、1.5、1.8等。
如图10、11所示,图10为本公开背光模组另一种示例性实施例的结构示意图,图11为图10中区域D的局部放大图。其中,发光单元41还可以包括:扩散功能层413,所述扩散功能层413可以封装于所述透明胶412背离发光芯片411的一侧,扩散功能层413可以用于扩散透过其的光线。扩散功能层413可以包括扩散基材层4132和位于所述扩散基材层4132中的扩散粒子4131,扩散基材层4132和扩散粒子4131具有不同的折射率,入射到扩散功能层413的光会不断在两个折射率相异的介质中发生许多折射、反射与散射的现象,从而使得入射到扩散功能层413的光可以从不同的方向出射。
本示例性实施例中,如图10、11所示,靠近所述电路板3一侧的所述扩散功能层413的厚度h2小于远离所述电路板3一侧的所述扩散功能层的厚度h1。由于发光芯片411向上方发出的光线强度强于发光芯片411向周围发出光线的强度,本申请可以通过增厚远离所述电路板3一侧的所述扩散功能层的厚度,以使得较厚的扩散功能层413对强度大的光线进行更为充分的散射,从而提高第一开孔51中光线混合的均一性。如图10、11所示,本申请中,靠近所述电路板一侧的所述扩散功能层413中扩散粒子4131的浓度可以小于远离所述电路板3一侧的所述扩散功能层413中扩散粒子4131的浓度。该设置可以使得扩散功能层413中扩散粒子浓度较大的部分对强度大的光线进行更为充分的散射,从而提高第一开孔51中光线混合的均一性。应该理解的是,扩散功能层413的设置也可以应用于图5-9中的实施例。
如图10所示,发光单元41可以支撑于电路板3和第二波长转换层6之间。发光单元41可以提高第二波长转换层6与电路板3的稳定性。应该理解的是,在其他示例性实施例中,发光单元41和第二波长转换层6之间也可以具有预设的间隙,发光单元41发出的光线可以在预设的间隙中进行散射,从而提高第一开孔51中光线混合的均一性。
如图11所示,发光芯片411的高度h3可以为0.12mm-0.15mm,例如,h3可以为0.12mm、0.13mm、0.15mm。发光芯片411到扩散功能层413最高点的距离h4可以为0.25mm-0.3mm,例如,h4可以为0.25mm、0.28mm、0.3mm。
如图12所示,为图10中局部区域E的局部放大图。所述微结构膜层还可以包括:多个反射粒子8,多个反射粒子8可以分布于所述反射壁的至少部分反射面,所述反射粒子8可以用于漫反射环绕于所述反射壁中的所述发光单元组4发出的光线。其中,在与所述电路板3平行的方向上,环绕所述发光单元组4的同一反射壁中,远离所述发光单元组4的所述反射粒子8的分布密度可以小于靠近所述发光单元组4的所述反射粒子8的分布密度。由于靠近发光单元组的光线强度较大,远离发光单元组的光线强度较小,该设置可以通过更为密集的反射粒子对强度较大的光线进行漫反射,从而提高第一开孔51中光线混合的均一性。应该理解的是,反射粒子8的设置也可以应用于图5-9中的实施例。
本示例性实施例中,反射粒子8可以为圆形或椭圆形,反射粒子8可以与发泡反射层53通过模具一体成型,反射粒子的材料可以与发泡反射层53的材料相同。在其他示例性实施例中,反射粒子8也可以通过涂覆工艺形成于发泡反射层53的反射壁上。相应的,反射粒子的材料可以为氧化钛、氧化锌、氧化镁、碳酸镁、氢氧化镁、硅中的一种。
本示例性实施例中,如图13、14所示,图13为本公开背光模组另一种示例性实施例的正视图,图14为图13所示背光模组沿虚线BB的部分剖视图。多个所述发光单元41可以在第一方向X和第二方向Y上等间距阵列分布,所述第一方向X和所述第二方向Y相交。每个发光单元组4可以包括4个二乘二阵列分布的发光单元。所述第一开口511可以为四边形,例如,所述第一开口511可以为方形,所述第一开口511可以包括相交的第一侧边C1和第二侧边C2,所述第一侧边C1与所述第一方向X平行,所述第二侧边C2与所述第二方向Y平行,且多个所述第一开口511可以在所述第一方向X和第二方向Y上阵列分布。该设置可以使得相邻第一开口511之间具有较小的非出光口面积,从而降低了非出光口区域形成暗区的风险。
如图13、14所示,在所述第一方向X上相邻的两所述第一开口511的相邻侧边可以重合,在所述第二方向Y上相邻的第一开口511的相邻侧边可以重合,即相邻第一开口511之间没有间隙,该设置可以极大降低了非出光口区域形成暗区的风险。本示例性实施例中,如图13、14所示, 所述第一侧边C1和位于其两侧的发光单元41在所述第二方向Y上的最小距离S8和S9可以相等,所述第二侧边C2和位于其两侧的发光单元41在所述第一方向X上的最小距离S5和S6可以相等。如图13、14所示,由于发光单元41等间距分布,从而在同一第一开孔51中在第一方向X上相邻发光单元41之间的距离S7等于S5和S6之和。如图13所示,第二开口512也可以为方形,第二开口512可以包括第三侧边C3,第二开口512的第三侧边C3与第一开口的第二侧边C2平行,其中,第三侧边C3和第二侧边C2在第一方向X上的距离为S10,第三侧边C3和与其邻近的发光单元在第一方向X上的距离为S11,位于发光单元组4两侧的相邻第三侧边C3在第一方向X上的距离为S112,第一开口511在第一方向X上的尺寸为L,S11可以为0.3mm。则:2*(S10+S11)+S7=L,S10=(L-S7)/2-S11,S12=S7+2*S11,其中,S7=L/2。需要说明的是,当发光单元组包括n*n个阵列分布的发光单元时,S10=L/2n-S11,S12=L(n-1)/n+2*S11。
应该理解的是,在其他示例性实施例中,发光单元组还可以包括其他数量的发光单元,例如,如图15、16所示,图15为本公开背光模组另一种示例性实施例的正视图,图16为图15所示背光模组沿虚线CC的剖视图。该背光模组中发光单元组4可以包括两个发光单元41。再例如,如图17、18所示,图17为本公开背光模组另一种示例性实施例的正视图,图18为图17所示背光模组沿虚线DD的剖视图。该背光模组中发光单元组4可以包括九个发光单元41。
此外,相关技术中,灯胶16的表面较为平整,灯胶16会与波长转换层17发生局部吸附,从而使得背光模组出光侧出现牛顿环。本示例性实施例中,微结构膜层5与第二波长转换层6接触面较小,从而可以避免上述牛顿环的问题。
本示例性实施例还提供一种显示装置,如图19所示,为本公开显示装置一种示例性实施例的结构示意图。该显示装置可以包括上述的背光模组和显示模组。如图19所示,背光模组还可以包括:背板11、双面胶12、均光膜18、均光膜19、均光膜20、均光膜21、棱镜膜22、口子胶15、胶框27。显示模组可以包括:第一偏光片23、阵列基板24、彩膜25、第二偏光片26,阵列基板24和彩膜25之间可以具有液晶层。该显示装置可 以为手机、平板电脑、电视等显示装置。
本领域技术人员在考虑说明书及实践这里公开的内容后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限定。

Claims (22)

  1. 一种背光模组,其中,所述背光模组包括:
    电路板;
    多个发光单元,阵列分布于所述电路板上,多个所述发光单元形成多个发光单元组,每个所述发光单元组包括至少一个所述发光单元;
    微结构膜层,位于电路板上,且与所述发光单元位于所述电路板的同一侧,所述微结构膜层上形成有与所述发光单元组对应设置的第一开孔,所述发光单元组位于与其对应的所述第一开孔内;
    所述微结构膜层包括环绕所述第一开孔的反射壁,所述反射壁用于反射被其环绕的所述发光单元组发出的光线。
  2. 根据权利要求1所述的背光模组,其中,所述微结构膜层包括:
    发泡反射层,所述发泡反射层位于电路板上,且与所述发光单元位于所述电路板的同一侧,所述发泡反射层上形成有与所述发光单元组对应设置的第二开孔,所述发光单元组位于与其对应的所述第二开孔内,所述第二开孔的侧壁形成所述反射壁。
  3. 根据权利要求2所述的背光模组,其中,所述微结构膜层还包括:
    第一波长转换层,用于转换透过其光线的波长,所述第一波长转换层随形覆盖于所述第二开孔的侧壁。
  4. 根据权利要求3所述的背光模组,其中,所述微结构膜层还包括:
    透明保护层,随形覆盖于所述第一波长转换层背离所述发泡反射层的一侧。
  5. 根据权利要求2所述的背光模组,其中,所述第二开孔包括:
    渐变延伸段,所述渐变延伸段远离所述电路板一侧的开孔面积大于所述渐变延伸段靠近所述电路板一侧的开孔面积。
  6. 根据权利要求5所述的背光模组,其中,所述渐变延伸段的侧壁形成一曲面,所述渐变延伸段侧壁上任意位置的切线位于所述所述渐变延伸段侧壁面向所述电路板的一侧。
  7. 根据权利要求5所述的背光模组,其中,所述发泡反射层面向所述电路板的一侧还形成有凹槽。
  8. 根据权利要求7所述的背光模组,其中,所述凹槽面向所述电路 板的槽口面积大于所述凹槽远离所述电路板一侧的槽口面积;
    所述凹槽的侧壁在所述电路板上的正投影与所述渐变延伸段的侧壁在所述电路板上的正投影相交。
  9. 根据权利要求8所述的背光模组,其中,所述凹槽的侧壁形成一曲面,所述凹槽侧壁上任意位置的切线位于所述凹槽侧壁面向所述电路板的一侧。
  10. 根据权利要求8所述的背光模组,其中,所述凹槽侧壁与所述渐变延伸段侧壁之间发泡反射层的最大厚度为X,所述凹槽侧壁与所述渐变延伸段侧壁之间发泡反射层的最小厚度为Y,其中,(X-Y)/Y大于等于0且小于等于1.8。
  11. 根据权利要求1所述的背光模组,其中,所述第一开孔包括背离所述电路板一侧的第一开口,以及面向所述电路板一侧的第二开口,所述第一开口为圆形、多边形、椭圆形中的任意一种,所述第二开口为圆形、多边形、椭圆形中的任意一种。
  12. 根据权利要求11所述的背光模组,其中,多个所述发光单元在第一方向和第二方向上等间距阵列分布,所述第一方向和所述第二方向相交;
    所述第一开口为四边形,所述第一开口包括相交的第一侧边和第二侧边,所述第一侧边与所述第一方向平行,所述第二侧边与所述第二方向平行,且多个所述第一开口在所述第一方向和第二方向上阵列分布。
  13. 根据权利要求12所述的背光模组,其中,在所述第一方向上相邻的两所述第一开口的相邻侧边重合,在所述第二方向上相邻的相邻侧边重合。
  14. 根据权利要求5所述的背光模组,其中,所述渐变延伸段包括背离所述电路板一侧的第三开口和面向所述电路板一侧的第四开口,所述第三开口和所述第四开口在垂直于所述电路板方向上的距离为S2;
    所述第三开口在所述电路板上正投影的边沿和所述第四开口在所述电路板上正投影的边沿在第一水平方向上的最小距离为S1,其中,所述第一水平方向经过所述第四开口在所述电路板上正投影的形心;
    S1/S2大于等于1且小于等于4。
  15. 根据权利要求1所述的背光模组,其中,所述发光单元包括:
    发光芯片;
    扩散功能层,包括扩散基材层和位于所述扩散基材层中的扩散粒子,所述扩散功能层封装于所述发光芯片背离所述电路板的一侧,用于扩散透过其的光线。
  16. 根据权利要求15所述的背光模组,其中,所述扩散功能层靠近所述电路板一侧的的厚度小于远离所述电路板一侧的厚度。
  17. 根据权利要求15所述的背光模组,其中,所述扩散功能层靠近所述电路板一侧的扩散粒子浓度小于远离所述电路板一侧的扩散粒子浓度。
  18. 根据权利要求1所述的背光模组,其中,所述背光模组还包括:
    第二波长转换层,位于所述微结构膜层背离所述电路板的一侧,所述发光单元支撑于所述第二波长转换层和所述电路板之间。
  19. 根据权利要求1所述的背光模组,其中,所述背光模组还包括:
    第二波长转换层,位于所述微结构膜层背离所述电路板的一侧,所述发光单元与所述第二波长转换层之间具有预设间隙。
  20. 根据权利要求1所述的背光模组,其中,所述微结构膜层还包括:
    多个反射粒子,分布于所述反射壁的至少部分反射面,所述反射粒子用于漫反射环绕于所述反射壁中的所述发光单元组发出的光线;
    其中,在与所述电路板平行的方向上,环绕所述发光单元组的同一反射壁中,远离所述发光单元组的所述反射粒子的分布密度小于靠近所述发光单元组的所述反射粒子的分布密度。
  21. 根据权利要求1所述的背光模组,其中,所述电路板包括:
    控制电路,所述控制电路用于独立控制各个所述发光单元组的发光亮度。
  22. 一种显示装置,其中,包括:权利要求1-21任一项所述的背光模组。
PCT/CN2022/084533 2022-03-31 2022-03-31 背光模组、显示装置 WO2023184388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/084533 WO2023184388A1 (zh) 2022-03-31 2022-03-31 背光模组、显示装置
CN202280000673.XA CN117546080A (zh) 2022-03-31 2022-03-31 背光模组、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084533 WO2023184388A1 (zh) 2022-03-31 2022-03-31 背光模组、显示装置

Publications (1)

Publication Number Publication Date
WO2023184388A1 true WO2023184388A1 (zh) 2023-10-05

Family

ID=88198686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084533 WO2023184388A1 (zh) 2022-03-31 2022-03-31 背光模组、显示装置

Country Status (2)

Country Link
CN (1) CN117546080A (zh)
WO (1) WO2023184388A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2751328Y (zh) * 2004-12-23 2006-01-11 福华电子股份有限公司 具有光扩散元件的背光模组
CN201992470U (zh) * 2010-12-29 2011-09-28 康佳集团股份有限公司 Led背光模组
US20190049762A1 (en) * 2016-04-08 2019-02-14 Fujifilm Corporation Planar light source, backlight unit, and liquid crystal display device
CN111208671A (zh) * 2018-11-21 2020-05-29 三星显示有限公司 背光单元
US20210074693A1 (en) * 2019-01-31 2021-03-11 Lg Electronics Inc. Backlight unit and display device comprising same
CN113448122A (zh) * 2020-03-24 2021-09-28 三星显示有限公司 光源构件以及包括其的显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2751328Y (zh) * 2004-12-23 2006-01-11 福华电子股份有限公司 具有光扩散元件的背光模组
CN201992470U (zh) * 2010-12-29 2011-09-28 康佳集团股份有限公司 Led背光模组
US20190049762A1 (en) * 2016-04-08 2019-02-14 Fujifilm Corporation Planar light source, backlight unit, and liquid crystal display device
CN111208671A (zh) * 2018-11-21 2020-05-29 三星显示有限公司 背光单元
US20210074693A1 (en) * 2019-01-31 2021-03-11 Lg Electronics Inc. Backlight unit and display device comprising same
CN113448122A (zh) * 2020-03-24 2021-09-28 三星显示有限公司 光源构件以及包括其的显示装置

Also Published As

Publication number Publication date
CN117546080A (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
JP4996747B2 (ja) 面状照明装置および液晶ディスプレイ装置
WO2021051787A1 (zh) 一种显示装置及背光模组
JP5179651B2 (ja) 照明装置、表示装置、及びテレビ受信装置
US8021033B2 (en) Light guide member, planar light source device provided with the light guide member, and display apparatus using the planar light source device
JP5329548B2 (ja) 薄型側面発光ledを用いた薄型バックライト
EP2082160B1 (en) Thin illumination device, display device and luminary device
JP6152264B2 (ja) ライトユニット及びそれを用いた照明システム
TWI735826B (zh) 背光模組
JP2010277982A (ja) 面状照明装置およびこれを備えた液晶表示装置
JP2004311353A (ja) 面状光源装置および該装置を用いた液晶表示装置
JP2006286906A (ja) 発光ダイオード装置とこれを用いたバックライト装置及び液晶表示装置
KR102461530B1 (ko) 이형 액정표시장치
CN114442371B (zh) 显示背板及显示装置
CN110221479B (zh) 一种背光模组及显示装置
TW202329479A (zh) 顯示裝置
CN111308778B (zh) 背光单元及包括背光单元的显示装置
US11320574B2 (en) Light guide plate, backlight module and display device
WO2023184388A1 (zh) 背光模组、显示装置
KR101473840B1 (ko) 액정표시장치
JP2007184493A (ja) 光源装置、表示装置
CN114236905A (zh) 背光模组和液晶显示装置
KR102391395B1 (ko) 광학렌즈 및 이를 포함하는 백라이트 유닛과 액정표시장치
KR20110127387A (ko) 백라이트 유닛 및 이를 포함하는 디스플레이 장치
WO2023173869A1 (zh) 一种显示设备
CN216647023U (zh) 一种背光模组及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934228

Country of ref document: EP

Kind code of ref document: A1