WO2023184242A1 - 显示控制方法及装置、图像处理装置、显示设备 - Google Patents

显示控制方法及装置、图像处理装置、显示设备 Download PDF

Info

Publication number
WO2023184242A1
WO2023184242A1 PCT/CN2022/084092 CN2022084092W WO2023184242A1 WO 2023184242 A1 WO2023184242 A1 WO 2023184242A1 CN 2022084092 W CN2022084092 W CN 2022084092W WO 2023184242 A1 WO2023184242 A1 WO 2023184242A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame image
image
frame
area
data
Prior art date
Application number
PCT/CN2022/084092
Other languages
English (en)
French (fr)
Inventor
孟昭晖
丛林
段欣
宋一帆
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000615.7A priority Critical patent/CN117157697A/zh
Priority to PCT/CN2022/084092 priority patent/WO2023184242A1/zh
Publication of WO2023184242A1 publication Critical patent/WO2023184242A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a display control method and device, an image processing device, a display device, an electronic device, and a computer-readable medium.
  • the refresh rate refers to the frequency with which the screen is updated or refreshed. Refresh rate is typically measured in Hertz (Hz), which is used by manufacturers to emphasize a smooth user experience. In recent years, high refresh rate has become a popular research direction in display technology. Many manufacturers regard high refresh rate as one of the main selling points of high display quality.
  • the present disclosure aims to solve at least one of the technical problems existing in the related art, and provide a display control method and device, an image processing device, a display device, an electronic device, and a computer-readable medium.
  • embodiments of the present disclosure provide a display control method, which is applied to a display control device of a display device.
  • the method includes:
  • the data stream format includes an entire frame transmission format and a region transmission format.
  • the entire frame transmission format is used to transmit the entire frame.
  • Image data the area transmission format is used to transmit image data of dynamic areas with content updates, t is an integer greater than 1;
  • the t-th frame image When the data stream format of the t-th frame image is a zone transfer format, determine the dynamic area of the t-th frame image and the image of the dynamic area from the received data stream of the t-th frame image. Data, the t-th frame image also includes a static area outside the dynamic area;
  • the transmission end identifier in the data stream of the t-th frame image and the configuration instruction of the t-th frame image transmit the image data of the dynamic area of the t-th frame image and/or to the display component of the display device The image data of the t-1th frame image in the cache space of the display control device, so that the display component updates the display screen.
  • the transmission end identification includes a region transmission end identification and an entire frame transmission end identification.
  • the region transmission end identification is used to indicate the end of image data transmission in the dynamic area of the t-th frame image.
  • the entire frame transmission end identification The frame transmission end flag is used to indicate the end of image data transmission of the t-th frame image,
  • the image of the dynamic area of the t-th frame image is transmitted to the display component of the display device according to the transmission end identifier in the data stream of the t-th frame image and the configuration instruction of the t-th frame image.
  • the data and/or the image data of the t-1th frame image in the buffer space of the display control device include:
  • the dynamic information of the t-th frame image is transmitted to the display component of the display device.
  • the transmission end identification includes a region transmission end identification and an entire frame transmission end identification.
  • the region transmission end identification is used to indicate the end of image data transmission in the dynamic area of the t-th frame image.
  • the entire frame transmission end identification The frame transmission end flag is used to indicate the end of image data transmission of the t-th frame image,
  • the image of the dynamic area of the t-th frame image is transmitted to the display component of the display device according to the transmission end identifier in the data stream of the t-th frame image and the configuration instruction of the t-th frame image.
  • the data and/or the image data of the t-1th frame image in the buffer space of the display control device include:
  • the method further includes:
  • the data transmission format of the t-th frame image is the entire frame transmission format, determine the entire frame image data of the t-th frame image from the received multi-line image data stream of the t-th frame image;
  • the entire frame transmission end identifier in the data stream of the t-th frame image is received and the corresponding configuration instruction indicates an update of the entire frame
  • the entire frame of the t-th frame image is transmitted to the display component of the display device.
  • Frame image data so that the display component updates the entire frame display screen.
  • the transmission end identification includes a region transmission end identification and an entire frame transmission end identification.
  • the region transmission end identification is used to indicate the end of image data transmission in the dynamic area of the t-th frame image.
  • the entire frame transmission end identification The frame transmission end flag is used to indicate the end of image data transmission of the t-th frame image,
  • the image of the dynamic area of the t-th frame image is transmitted to the display component of the display device according to the transmission end identifier in the data stream of the t-th frame image and the configuration instruction of the t-th frame image.
  • the data and/or the image data of the t-1th frame image in the buffer space of the display control device include:
  • the t-1-th frame image is transmitted to the display component of the display device.
  • Image data in the static area so that the display component updates the display screen of the static area;
  • the multi-line image data stream of the t-th frame image includes at least one region transfer end indicator.
  • the transmission end identification includes a region transmission end identification and an entire frame transmission end identification.
  • the region transmission end identification is used to indicate the end of image data transmission in the dynamic area of the t-th frame image.
  • the entire frame transmission end identification The frame transmission end flag is used to indicate the end of image data transmission of the t-th frame image,
  • the image of the dynamic area of the t-th frame image is transmitted to the display component of the display device according to the transmission end identifier in the data stream of the t-th frame image and the configuration instruction of the t-th frame image.
  • the data and/or the image data of the t-1th frame image in the buffer space of the display control device include:
  • the multi-line image data stream of the t-th frame image includes at least one region transfer end indicator.
  • determining the dynamic area of the t-th frame image and the image data of the dynamic area from the received data stream of the t-th frame image includes:
  • the captured image data is determined to be the image data of the dynamic area of the t-th frame image.
  • the method further includes:
  • embodiments of the present disclosure provide a display control method, which is applied to an image processing device of a display device.
  • the method includes:
  • the image data of the t-th frame image and the image data of the t-1th frame image determine the dynamic area with updated content and the static area without content update in the t-th frame image, where t is an integer greater than 1;
  • the data flow format of the t-th frame image is a region transmission format, wherein the data flow format includes a whole frame transmission format and a region transmission format. Format, the whole frame transmission format is used to transmit the whole frame image data, and the area transmission format is used to transmit the image data of the dynamic area;
  • the image data of the dynamic area of the t-th frame image use the area transmission format to generate the data stream of the t-th frame image;
  • the data stream of the t-th frame image is sent to the display control device of the display device, so that the display control device controls the display component of the display device to display the t-th frame image.
  • using the region transfer format to generate the data stream of the t-th frame image based on the image data of the dynamic area of the t-th frame image includes:
  • the transmission start data stream includes a start grabbing instruction.
  • the start grabbing instruction includes the starting coordinates and the starting coordinates of the dynamic area of the t-th frame image. Area size; the start grabbing instruction is used to: instruct the display control device to determine the position of the dynamic area, and instruct the display control device to start grabbing image data in the data stream;
  • the image data of the dynamic area of the t-th frame image use the area transmission format to generate a multi-line image data stream;
  • the transmission end data stream includes an end capture instruction.
  • the end capture instruction is used to instruct the display control device to end capturing image data in the data stream.
  • the captured image data is determined as the image data of the dynamic area of the t-th frame image.
  • sending the data stream of the t-th frame image to the display control device of the display device includes: sending multiple data streams to the display control device within a time period corresponding to the t-th frame image.
  • the data stream of the t-th frame image includes: sending multiple data streams to the display control device within a time period corresponding to the t-th frame image.
  • the data stream of the t-th frame image includes a transmission end identifier
  • the transmission end identifier includes a region transmission end identifier and a whole frame transmission end identifier
  • the region transmission end identifier is used to indicate the th.
  • the image data transmission of the dynamic area of the t-frame image is completed, and the whole-frame transmission end flag is used to indicate the end of the image data transmission of the t-th frame image
  • the data stream of the t-th frame image also includes configuration instructions, including a start grabbing instruction and an end grabbing instruction.
  • the configuration instructions are used to indicate the data stream format of the t-th frame image, and indicate the
  • the display control device controls the display component to update the display picture of the dynamic area and/or the display picture of the static area of the t-th frame image.
  • the image processing device includes a graphics processing unit GPU
  • the display control device includes a timing controller Tcon.
  • embodiments of the present disclosure provide a display device, which includes an image processing device, a display control device, and a display component.
  • the image processing device is connected to the display control device and is used to render the t-th frame image to be displayed, and determine the dynamic area with content update and the static area without content update in the t-th frame image, according to the The dynamic area generates the data stream of the t-th frame image and sends it to the display control device, where t is an integer greater than 1;
  • the display control device is connected to the display component and is used to receive the data stream of the t-th frame image, determine the image data of the dynamic area of the t-th frame image, and determine the image data of the dynamic area of the t-th frame image according to the transmission end identification and
  • the configuration instruction transmits to the display component the image data of the dynamic area of the t-th frame image and/or the cached image data of the t-1 th frame image in the static area;
  • the display component is used to update the display screen according to the image data transmitted by the display control device.
  • an embodiment of the present disclosure provides a display control device, which includes:
  • a format determination module configured to determine the data stream format of the t-th frame image according to the received data stream of the t-th frame image.
  • the data stream format includes a whole frame transmission format and a regional transmission format.
  • the whole frame transmission format The format is used to transmit the entire frame of image data, and the area transmission format is used to transmit the image data of the dynamic area with updated content, and t is an integer greater than 1;
  • An image data determination module configured to determine the dynamic area of the t-th frame image from the received data stream of the t-th frame image when the data stream format of the t-th frame image is a region transfer format. And the image data of the dynamic area, the t-th frame image also includes a static area outside the dynamic area;
  • a data transmission module configured to transmit the dynamic area of the t-th frame image to the display component of the display device according to the transmission end identifier in the data stream of the t-th frame image and the configuration instruction of the t-th frame image.
  • an image processing device which includes:
  • the area determination module is used to determine the dynamic area with content update and the static area without content update in the t-th frame image based on the image data of the rendered t-th frame image and the image data of the t-1th frame image, t is an integer greater than 1;
  • a transmission format determination module configured to determine that the data stream format of the t-th frame image is a regional transmission format when the dynamic area is a local area of the t-th frame image, wherein the data stream format includes The whole frame transmission format and the area transmission format, the whole frame transmission format is used to transmit the entire frame image data, and the area transmission format is used to transmit the image data of the dynamic area;
  • a data stream generation module configured to generate the data stream of the t-th frame image using the area transmission format according to the image data of the dynamic area of the t-th frame image;
  • a data stream sending module is configured to send the data stream of the t-th frame image to a display control device of the display device, so that the display control device controls the display component of the display device to display the t-th frame image.
  • embodiments of the present disclosure provide an electronic device, including: one or more processors; a memory for storing one or more programs; when the one or more programs are processed by the one or more The processor is executed, so that the one or more processors implement the above display control method.
  • embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, wherein the computer program implements the steps in the above display control method when executed by a processor.
  • Figure 1 is a schematic diagram of area refresh according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a data structure of an image data stream according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart of a display control method according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIGS 6a, 6b, 6c, and 6d are schematic diagrams of display screen refreshing according to embodiments of the present disclosure.
  • FIG. 7 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a display control method according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 13 is a block diagram of a display control device according to an embodiment of the present disclosure.
  • Figure 15 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • the screen refresh rate of display devices has gradually moved closer to 120HZ/144HZ or even higher refresh rates from a fixed 60HZ refresh rate.
  • the graphics card usually renders the full frame data and then outputs the full frame data at a very high frequency, thereby achieving a high refresh rate of the screen.
  • the display control method of the embodiment of the present disclosure it can be determined that there is a dynamic area with updated content in each frame of image, only the image data of the dynamic area is transmitted, and a transmission end flag is set in the data stream of the image to indicate the end of the transmission, so as to based on the configuration
  • the instructions implement area refresh or full frame refresh of the image, thereby reducing the amount of transmitted data, reducing the power consumption of the display device at the normal refresh rate, or significantly increasing the refresh rate without increasing the amount of transmitted data.
  • a display device may include an image processing device, a display control device, and a display component.
  • the image processing device is the sending end of the display data, such as the graphics processing unit GPU, which is used to render the image, determine the dynamic area with content update and the static area without content update in the image, generate and send the data stream of the image to display controls.
  • the display control device is the receiving end of the display data, such as the timing controller Tcon, which is used to receive the image data stream and obtain the image data, and transmit the image data to the display component according to the transmission end identifier and configuration instructions in the data stream.
  • the display component is, for example, a display panel, which is used for performing area refresh or whole frame refresh according to the input image data. This disclosure does not limit the types of various components in the display device.
  • the display control device caches the data of the first frame image into its own cache space (for example, a remote frame buffer). RFB).
  • the static area of the image after the first frame of image can directly call the corresponding image data from the cache space.
  • the image processing device may determine that there is an updated content in the t-th frame image when performing image rendering. Dynamic areas and static areas without content updates; if the dynamic area is a local area in the t-th frame image, then determine that the data flow format of the t-th frame image is a regional transmission format.
  • the data stream format includes the whole frame transmission format and the area transmission format. The whole frame transmission format is used to transmit the entire frame image data, and the area transmission format is used to transmit the image data of the dynamic area.
  • Table 1 and Table 2 respectively show the data stream format for whole frame transmission and the data stream format for region transmission according to embodiments of the present disclosure. Among them, Table 1 and Table 2 are one row of data flow respectively.
  • each noun in Table 1 and Table 2 are as follows: BS: start of blank area; VB-ID: video signal identity; Mvid: video data set; Maud: audio data set; VSC: video data stream configuration; Dummy symbols: blank Signal; SS: signal start; CTL: control signal; SE: signal end; BE: blank area end; FS: filling start; FE: filling end; Pixel1 ⁇ PixelN: display data of pixel 1 ⁇ pixel N; PixelN+1 ⁇ Pixel2N: display data of pixel N+1 ⁇ pixel 2N; AS: area transfer end flag; VBP: whole frame transfer end flag.
  • the number of pixels to be transferred determines the number of pixel segments. This disclosure places no restrictions on the specific values of the number of pixel segments and the number of pixels per segment N.
  • the image processing device can generate a multi-line data stream according to the format shown in Table 1, and send the whole frame image data to the display control device; under the area transmission format, the image processing device can according to the format shown in Table 2 format, generate a multi-line data stream, and send the image data of the dynamic area to the display control device.
  • FIG. 1 is a schematic diagram of area refresh according to an embodiment of the present disclosure.
  • V-Blank column blank area
  • FIG. 1 there will be a V-Blank (column blank area) interval between every two frames, which is used as a data adjustment area between frames.
  • the filling of empty data and the next step can be achieved.
  • the next frame (the t-th frame) is transmitted in the form of a multi-line data stream, and the beginning of each line requires HBS (line-directed blank area start) and HBE (line-directed blank area end) to define whether It is necessary to fill the rows with data into the blank area, and send the configuration command (VSC) in the first and last rows.
  • the VSC includes the X, Y coordinates of the starting position of the dynamic area and the size of the dynamic area (width W and height H), also includes information such as the update method and update time of the t-th frame.
  • FIG. 2 is a schematic diagram of a data structure of an image data stream according to an embodiment of the present disclosure.
  • a blank area data stream before the image data stream including the V-Blank column blank area and the VBE indicating the end of the column blank area.
  • TX (send data) and RX (receive data) can be sent ) synchronization signal to achieve synchronization of transmission and reception between the image processing device and the display control device.
  • data filling is required at the beginning of each line to determine whether HBS (line blank area start) and HBE (line blank area end) are required.
  • the first line transmits the starting data stream, including the start grabbing instruction VSC Star , the start grabbing command VSC Star includes the starting coordinates and area size of the dynamic area.
  • the start grabbing command VSC Star is used to instruct the display control device to determine the position of the dynamic area, and instructs the display control device to start grabbing images in the data stream. data.
  • the transmission of the initial data stream is followed by a multi-line image data stream, and the image data of each line of the dynamic area is sequentially transmitted, that is, Data Line 1, Data Line 2... in Figure 2.
  • the data format adopts the format of Table 2.
  • the last line of the transmission end data stream includes the end capture command VSC End and the area transfer end identification AS (also called the identification beacon).
  • the end capture command VSC End is used to Instructs the display control device to end capturing the image data in the data stream; the area transfer end flag AS is used to identify that the image data of the dynamic area has been sent.
  • the start capturing instruction and/or the ending capturing instruction may also include information such as the update method and update time of the t-th frame, so that the display control device performs area refresh or full frame refresh.
  • the transmission end data stream may also include a line of check data stream, including a cyclic redundancy detection signal VSC CRC, which is used to determine whether there is an error in RX signal reception.
  • VSC CRC cyclic redundancy detection signal
  • the image data of the second dynamic area can continue to be transmitted. k%) until the image data transmission of all dynamic areas is completed.
  • a display control method is provided.
  • the method is applied to the display control device of the display device, that is, the receiving end of the display data, such as the timing controller Tcon, or other types of components.
  • This method There are no restrictions on disclosure.
  • FIG. 3 is a flowchart of a display control method according to an embodiment of the present disclosure. As shown in Figure 3, the method includes:
  • Step S31 Determine the data stream format of the t-th frame image according to the received data stream of the t-th frame image.
  • the data stream format includes a whole frame transmission format and a regional transmission format.
  • the whole frame transmission format is used for Transmitting the entire frame of image data, the area transmission format is used to transmit image data of dynamic areas with updated content, t is an integer greater than 1;
  • Step S32 When the data stream format of the t-th frame image is a region transfer format, determine the dynamic area and the dynamic area of the t-th frame image from the received data stream of the t-th frame image. Image data of the area, the t-th frame image also includes a static area outside the dynamic area;
  • Step S33 Transmit the image data of the dynamic area of the t-th frame image to the display component of the display device according to the transmission end flag in the data stream of the t-th frame image and the configuration instruction of the t-th frame image. And/or the image data of the t-1th frame image in the cache space of the display control device, so that the display component updates the display screen.
  • the first frame of image transmitted between the image processing device and the display control device is a full frame transmission, and the display control device will cache the data of the first frame of image into its own cache space.
  • the image processing device can determine the t-th frame image based on the difference between the t-th frame image and the t-1th frame image. There are dynamic areas in the image with updated content and static areas without updated content; then the image data of the dynamic area is transmitted through the zone transfer format.
  • the display control device may determine the data stream format of the t-th frame image.
  • the data stream format can be determined based on the configuration information set in the V-Blank column-oriented blank area; the data stream format can also be determined based on the start capture command VSC Star of the transmission start data stream. This disclosure has a detailed description of the data stream format. The method of determination is not limited.
  • the dynamic area of the t-th frame image can be determined from the received data stream of the t-th frame image. and dynamic area image data. That is, according to the starting coordinates and area size of the dynamic area in the start grabbing instruction VSC Star of the transmission start data stream, the position of the dynamic area is determined; and from the multi-line image data stream after the transmission start data stream (possibly Including the line of transmission starting data stream), capture the image data of the dynamic area.
  • the image of the dynamic area of the t-th frame image can be determined
  • the data or image data transmission of the t-th frame image is completed; in step S33, the image data of the dynamic area of the t-th frame image and/or the image data of the display control device are transmitted to the display component according to the update method and update time set in the configuration instruction.
  • the image data of the t-1th frame image in the cache space is used to achieve area refresh or whole frame refresh.
  • the update time may be synchronized with the time when the transmission end identifier is received, or may be after the time when the transmission end identifier is received. This disclosure does not limit the specific update method or update time.
  • the configuration instructions may include a start fetching instruction and an end fetching instruction.
  • the update method and update time may be set in the code of the start fetching instruction and/or the end fetching instruction. This disclosure does not make any reference to this. limit
  • the update method set in the configuration instruction may be that both the dynamic area and the static area are refreshed based on the timeline of the entire frame transmission end flag VBP of each frame.
  • the image data of the dynamic area of the t-th frame image and the t-1th frame in the cache space can be transmitted to the display component based on the update time set in the configuration instruction.
  • Image data in the static area thereby achieving full frame refresh. This method can reduce the amount of data transmitted.
  • the set update method may be that the dynamic area is updated after receiving the area transmission end identifier AS, and the static area is updated after receiving the entire frame transmission end identifier VBP.
  • the image data of the dynamic area of the t-th frame image can be transmitted to the display component, thereby realizing area refresh of the dynamic area; after receiving After the whole frame transmission end flag VBP is reached, based on the update time set in the configuration instruction, the image data of the t-1th frame image in the static area in the cache space is transmitted to the display component, thereby realizing regional refresh of the static area.
  • This method can increase the refresh rate of the dynamic area to improve the display effect of the dynamic area, or reduce the refresh rate of the static area to reduce power consumption.
  • the transmission link between the image processing device and the display control device may remain active and standby. Or in sleep state until the area transmission or whole frame transmission of the t+1th frame image is started.
  • the data flow format can be determined according to the data flow; the dynamic area and the image data of the dynamic area can be determined under the area transmission format; and the image data can be transmitted to the display component according to the transmission end identification and configuration instructions to realize the display screen.
  • Area refresh or full frame refresh thereby reducing the amount of data transmitted, can reduce the power consumption of the display device at the normal refresh rate, or significantly increase the refresh rate without increasing the amount of data transmitted.
  • the image processing device can send a data stream to the display control device according to the data structure in FIG. 2 .
  • the display control device may first determine the data stream format of the t-th frame image in step S31.
  • the data stream format is a zone transfer format
  • step S32 the dynamic area of the t-th frame image and the image data of the dynamic area are determined from the received data stream of the t-th frame image.
  • FIG. 4 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure. As shown in Figure 4, in some embodiments, step S32 may include:
  • Step S321 determine the starting coordinates and area size of the dynamic area of the t-th frame image according to the start grabbing instruction in the data stream of the t-th frame image;
  • Step S322 in response to the start capturing instruction, capture image data from the multi-line image data stream after the start capturing instruction;
  • Step S323 In response to the end capture instruction in the data stream of the t-th frame image, determine the captured image data as the image data of the dynamic area of the t-th frame image.
  • the starting coordinates of the dynamic area in the start grabbing instruction VSC Star can be determined in step S321 (XY coordinates) and area size (width and height); and, in response to the start grabbing instruction, the multi-line image data stream (such as HBS, HBE, Data Line 1) after the start grabbing instruction can be started in step S322; Capture image data in HBS, HBE, Data Line 2).
  • the multi-line image data stream can also include the transmission start data stream itself, such as HBS, VSC Star, HBE, and Data Line k in Figure 2.
  • the end grabbing instruction VSC End in the transmission end data stream can be obtained in step S323.
  • the captured image data is determined as the image data of the dynamic area of the t-th frame image.
  • steps S321-S323 may be repeated multiple times until image data of all dynamic areas is obtained.
  • the dynamic area and the image data of the dynamic area can be determined to perform subsequent processing based on the dynamic area and its data, thereby reducing the amount of transmitted data.
  • the transmission end identifier includes an area transmission end identifier AS and a whole frame transmission end identifier VBP.
  • the area transfer end flag is used to indicate the end of the image data transmission of the dynamic area of the t-th frame image
  • the whole frame transfer end flag is used to indicate the end of the image data transmission of the t-th frame image.
  • the data flow format shown in Table 2 and the transmission end data flow can all have the transmission end identification bit of the area transmission end identification AS; the data flow format shown in Table 1 and Table 2 and the transmission end data flow of the last dynamic area , can all have the transmission end flag bit of the entire frame transmission end flag VBP.
  • a signal such as 1 in the signal bit indicates the end of the transmission. This disclosure does not limit the position of the transmission end flag bit.
  • the signal in each transmission end identification bit is a transmission end identification (for example, whether it is 1). If the transmission end flag is detected, it can be determined that the transmission has ended, and in step S33, the update is implemented according to the set update method and update time.
  • FIG. 5 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure. As shown in Figure 5, in some embodiments, step S33 may include:
  • Step S331 When the entire frame transmission end identifier in the data stream of the t-th frame image is received and the corresponding configuration instruction indicates an update of the entire frame, transmit the t-th frame to the display component of the display device.
  • the image data of the dynamic area of the image and the image data of the t-1th frame image in the static area are used to enable the display component to update the entire frame of the display screen.
  • the update method set in the configuration instruction can be that both the dynamic area and the static area are refreshed based on the timeline of the entire frame transmission end flag VBP of each frame.
  • the image of the dynamic area of the t-th frame image can be transmitted to the display component according to the update time set in the configuration instruction. data; and, the image data of the t-1th frame image in the static area is called from the cache space and transmitted to the display component, so that the display component updates the entire frame display screen, thereby realizing the refresh of the entire frame.
  • the update time may be synchronized with the VBP receiving time, or may be after the VBP receiving time, and this disclosure does not limit this.
  • Figure 6a is a schematic diagram of display screen refreshing according to an embodiment of the present disclosure. As shown in Figure 6a, in the case where both the dynamic area and the static area are refreshed based on the timeline of the entire frame transmission end mark VBP of each frame, the refresh rates of the dynamic area and the static area are both 60HZ.
  • FIG. 7 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure. As shown in Figure 7, in some embodiments, step S33 may include:
  • Step S332 After receiving the entire frame transmission end flag in the data stream of the t-th frame image and the corresponding configuration instruction indicating dynamic area update, transmit the t-th frame to the display component of the display device. Image data of the dynamic area of the image, so that the display component updates the display screen of the dynamic area.
  • the update method set in the configuration instruction can be that the dynamic area is refreshed based on the entire frame transmission end flag VBP of each frame, while the static area is not refreshed under this area transmission format, and the display component achieves continuous display through the panel's save circuit.
  • the image of the dynamic area of the t-th frame image can be transmitted to the display component according to the update time set in the configuration instruction.
  • the data enables the display component to update the display screen of the dynamic area, thereby achieving area refresh.
  • the set update time may be synchronized with the VBP receiving time, or may be after the VBP receiving time. This disclosure does not limit this.
  • the amount of data transmitted can be reduced and the power consumption of the display device can be reduced.
  • the display control method according to the embodiment of the present disclosure may further include:
  • the data transmission format of the t-th frame image is the entire frame transmission format, determine the entire frame image data of the t-th frame image from the received multi-line image data stream of the t-th frame image;
  • the entire frame transmission end identifier in the data stream of the t-th frame image is received and the corresponding configuration instruction indicates an update of the entire frame
  • the entire frame of the t-th frame image is transmitted to the display component of the display device.
  • Frame image data so that the display component updates the entire frame display screen.
  • the update method set in the configuration instruction can be based on the refresh of the whole frame transmission end flag VBP under the whole frame transmission format.
  • the multi-line image data stream is in the format shown in Table 1, which can be obtained from the received t-th frame
  • the entire frame image data of the t-th frame image is determined.
  • the display component after receiving the entire frame transmission end flag VBP in the case of the whole frame transmission format (for example, the transmission end flag bit of VBP is 1), the display component can be informed according to the update time set in the configuration instruction.
  • the entire frame image data of the t-th frame image is transmitted, so that the display component updates the entire frame display screen, thereby realizing refresh of the entire frame.
  • the set update time may be synchronized with the VBP receiving time, or may be after the VBP receiving time. This disclosure does not limit this.
  • Figure 6b is a schematic diagram of display screen refreshing according to an embodiment of the present disclosure.
  • the refresh rate of the dynamic area is 60HZ
  • the static area is refreshed based on the entire frame transmission end identifier VBP in the entire frame transmission format.
  • the refresh rate of the area can be reduced to 10HZ.
  • the amount of data transmitted can be reduced, and the power consumption of the display device can be greatly reduced by reducing the refresh rate of the static area.
  • FIG. 8 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure. As shown in Figure 8, in some embodiments, step S33 may include:
  • Step S333 When the region transmission end flag in the data stream of the t-th frame image is received and the corresponding configuration instruction indicates dynamic region update, transmit the t-th frame image to the display component of the display device.
  • the image data of the dynamic area so that the display component updates the display screen of the dynamic area;
  • Step S334 After receiving the entire frame transmission end identifier in the data stream of the t-th frame image and the corresponding configuration instruction indicating static area update, transmit the t-th-th frame to the display component of the display device.
  • the image data of one frame of image in the static area so that the display component updates the display screen of the static area;
  • the multi-line image data stream of the t-th frame image includes at least one region transfer end indicator.
  • the update method set in the configuration instruction can be that the dynamic area is refreshed based on the area transmission end flag AS, and the static area is refreshed based on the entire frame transmission end flag VBP of each frame.
  • the image data of the dynamic area can be transmitted multiple times within the time period corresponding to the t-th frame image.
  • the area transfer end flag AS is sent (for example, the transfer end flag bit of AS is 1), so that the multi-line image data stream of the t-th frame image includes at least one area transfer end flag.
  • the image data of the dynamic area of the t-th frame image can be transmitted to the display component according to the update time set in the configuration instruction, so that the display component updates the display of the dynamic area. screen, thereby achieving high-speed refresh of dynamic areas.
  • the image data of the t-1th frame image in the static area can be called from the cache space according to the update time set in the configuration instruction. And transmitted to the display component, so that the display component updates the display screen of the static area, thereby achieving normal refresh of the static area.
  • Figure 6c is a schematic diagram of display screen refreshing according to an embodiment of the present disclosure. As shown in Figure 6c, when the dynamic area is refreshed based on the regional transmission end flag AS and the static area is refreshed based on the entire frame transmission end flag VBP of each frame, the refresh rate of the dynamic area can reach 600HZ, and the refresh rate of the static area can be maintained is 60HZ.
  • the refresh rate of the dynamic area can be significantly increased without increasing the amount of transmitted data, and local high frame rate refresh can be achieved, thereby improving the display effect.
  • FIG. 9 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure. As shown in Figure 9, in some embodiments, step S33 may include:
  • Step S335 When the region transmission end flag in the data stream of the t-th frame image is received and the corresponding configuration instruction indicates an update of the entire frame, the t-th frame image is transmitted to the display component of the display device.
  • the multi-line image data stream of the t-th frame image includes at least one region transfer end indicator.
  • the update method set in the configuration instruction can be that both the dynamic area and the static area are refreshed based on the area transfer end flag AS.
  • the image data of the dynamic area can be transmitted multiple times within the time period corresponding to the t-th frame image. After each dynamic area transmission is completed, the area transmission end flag AS is sent, so that the t-th frame image
  • the multi-line image data stream includes at least one area transfer end indicator.
  • the image data of the dynamic area of the t-th frame image can be transferred to the display component according to the update time set in the configuration instruction, and the th-th frame image can be called from the cache space.
  • the image data of the t-1 frame image in the static area is transmitted to the display component, so that the display component updates the display screen of the entire frame, thereby achieving high-speed refresh of the entire frame.
  • Figure 6d is a schematic diagram of display screen refreshing according to an embodiment of the present disclosure. As shown in Figure 6d, when both the dynamic area and the static area are refreshed based on the area transmission end flag AS, the refresh rate of the entire frame can reach 600HZ.
  • the refresh rate of the entire frame can be significantly improved without increasing the amount of transmitted data, achieving global low-power high frame rate refresh, and reducing display errors caused by inconsistent refresh rates between dynamic and static areas. differences, thereby further improving the display effect.
  • the display control method according to the embodiment of the present disclosure may further include:
  • the t-1th frame image in the cache space can be processed in the dynamic area.
  • the image data of the t-th frame is updated; the updated whole frame image data is used as the whole frame image data of the t-th frame image.
  • the image data of the static area of the tth frame image in the cache space can be directly called.
  • a display control method is provided, which method is applied to the image processing device of the display device, that is, the sending end of the display data, such as a graphics processing unit GPU, or other types of components. This method There are no restrictions on disclosure.
  • FIG. 10 is a flowchart of a display control method according to an embodiment of the present disclosure. As shown in Figure 10, in some embodiments, the method includes:
  • Step S51 Based on the image data of the t-th frame image and the image data of the t-1th frame image, determine the dynamic area with updated content and the static area without updated content in the t-th frame image, t is an integer greater than 1 ;
  • Step S52 When the dynamic area is a local area of the t-th frame image, determine that the data stream format of the t-th frame image is a regional transmission format, where the data stream format includes a whole-frame transmission format. and a region transmission format, the whole frame transmission format is used to transmit the entire frame of image data, and the region transmission format is used to transmit the image data of the dynamic region;
  • Step S53 Generate the data stream of the t-th frame image using the area transmission format according to the image data of the dynamic area of the t-th frame image;
  • Step S54 Send the data stream of the t-th frame image to the display control device of the display device, so that the display control device controls the display component of the display device to display the t-th frame image.
  • the image processing device may render the t-th frame image to be displayed.
  • the image data of the t-th frame image is compared with the image data of the t-1-th frame image to determine that the t-th frame image is to be displayed.
  • step S52 if there is a dynamic area in the t-th frame image, and the dynamic area is a local area of the t-th frame image, it may be determined that the data stream format of the t-th frame image is a regional transmission format, or That is, only the image data of the dynamic area is transmitted.
  • the data stream of the t-th frame image may be generated using a region transfer format based on the image data of the dynamic area of the t-th frame image. That is, the data stream is generated with the data structure shown in Figure 2, and the data format of each row of image data stream is in Table 2.
  • the data stream of the t-th frame image may be sent to the display control device in sequence, so that the display control device controls the display component to use area refresh based on the update method and update time set in the configuration instruction. Or display the t-th frame image by refreshing the entire frame.
  • the dynamic area in the image with updated content determines the dynamic area in the image with updated content, generate a data stream that only transmits the image data of the dynamic area under the area transmission format, and send it to the display control device, thereby reducing the amount of data transmitted and reducing the cost. Displays the power consumption of the device at normal refresh rate, or increases the refresh rate without increasing the amount of data transferred.
  • the image processing device can compare the image data of the t-th frame image with the image data of the t-1th frame image in step S51, and determine whether there is a dynamic area with updated content in the t-th frame image or no content update.
  • the static area and when the dynamic area is the local area of the t-th frame image, the data stream format of the t-th frame image is determined to be a regional transmission format.
  • step S53 a data stream of the t-th frame image is generated.
  • FIG. 11 is a flowchart of some steps of a display control method according to an embodiment of the present disclosure. As shown in Figure 11, in some embodiments, step S53 may include:
  • Step S531 Generate a transmission start data stream of the t-th frame image.
  • the transmission start data stream includes a start capture instruction.
  • the start capture instruction includes the start of the dynamic area of the t-th frame image. The starting coordinates and area size; the start grabbing instruction is used to: instruct the display control device to determine the position of the dynamic area, and instruct the display control device to start grabbing image data in the data stream;
  • Step S532 Based on the image data of the dynamic area of the t-th frame image, use the area transmission format to generate a multi-line image data stream;
  • Step S533 Generate a transmission end data stream of the t-th frame image.
  • the transmission end data stream includes an end capture instruction.
  • the end capture instruction is used to instruct the display control device to end the capture data stream.
  • the image processing device can generate a blank area data stream (V-Blank, VBE) as frame-to-frame
  • V-Blank VBE
  • TX transmit data
  • RX receive data
  • the image processing device may generate the data stream of the t-th frame image using a zone transfer format according to the data structure of FIG. 2 .
  • the transmission start data stream (HBS, VSC Star, HBE) of the t-th frame image is generated, and the transmission start data stream includes the start grabbing instruction VSC Star.
  • the start grabbing instruction VSC Star includes the starting coordinates and area size of the dynamic area of the t-th frame image, and the start grabbing instruction is used to: instruct the display control device to determine the position of the dynamic area, and instruct the display control device to start grabbing Capture image data from the multi-line image data stream (such as HBS, HBE, Data Line 1; HBS, HBE, Data Line 2) after fetching the instruction.
  • the multi-line image data stream can also include the transmission start data stream itself, such as HBS, VSC Star, HBE, and Data Line k in Figure 2.
  • a multi-line image data stream can be generated using a regional transmission format according to the image data of the dynamic area of the t-th frame image, that is, HBS, HBE, Data Line 1; HBS, HBE, Data Line 2.
  • the transmission end data stream (HBS, VSC End, HBE, AS; HBS, VSC CRC) of the t-th frame image can be generated, and the transmission end data
  • the stream includes the end capture instruction VSC End.
  • the end capture instruction is used to instruct the display control device to end capturing the image data in the data stream, and determine the captured image data as the image data of the dynamic area of the t-th frame image.
  • the transmission end data stream may also include a line of check data stream, including the cyclic redundancy detection signal VSC CRC, which is used to determine whether there is an error in the RX signal reception.
  • VSC CRC cyclic redundancy detection signal
  • steps S531-S533 may be repeated multiple times until the data streams of all dynamic areas are generated. As shown in Figure 2, if there are multiple dynamic areas in the image, you can continue to generate the data stream of the second dynamic area (HBS, VSC Star, HBE, Data Line k;%)
  • the data stream of the t-th frame image includes a transmission end identifier.
  • the transmission end identifier includes a region transmission end identifier and a whole frame transmission end identifier.
  • the region transmission end identifier is used to indicate the t-th frame image.
  • the image data transmission of the dynamic area is completed, and the whole frame transmission end flag is used to indicate that the image data transmission of the t-th frame image is completed.
  • the data stream includes a transmission end identifier, which includes an area transmission end identifier AS and a whole frame transmission end identifier VBP.
  • the data flow format shown in Table 2 and the transmission end data flow can all have the transmission end identification bit of the area transmission end identification AS; the data flow format shown in Table 1 and Table 2 and the transmission end data flow of the last dynamic area , can all have the transmission end flag bit of the entire frame transmission end flag VBP.
  • a signal 1 in the signal bit indicates the end of the transmission. This disclosure does not limit the position of the transmission end flag bit.
  • the area transmission end flag AS and/or the whole frame transmission end flag VBP can be set in the data stream, that is, the area transmission end flag AS and/or the whole frame transmission end flag VBP can be set in the data stream.
  • the signal bit of the frame transmission end flag VBP is set to be valid to indicate the end of transmission of the image data of the dynamic area of the t-th frame image or the image data of the t-th frame image.
  • the data stream of the t-th frame image includes configuration instructions, including a start grabbing instruction and an end grabbing instruction.
  • the configuration instruction is used to indicate the data flow format of the t-th frame image, and instruct the display control device to control the display component to update the display screen of the dynamic area and/or the display screen of the static area of the t-th frame image.
  • the update method and update time can be set in the configuration instruction, so that the display control device transmits the image data of the dynamic area to the display component to realize the refresh of the dynamic area; or, transmits the t-1th image data to the display component.
  • the image data of the frame image in the static area to achieve refresh of the static area or refresh of the entire frame.
  • the flexibility of the refresh method can be improved based on the setting of the area transfer end identifier, the entire frame transfer end identifier, and the configuration instructions.
  • step S54 may include:
  • the data stream of the t-th frame image is sent to the display control device multiple times.
  • the image of the dynamic area can be transmitted to the display control device multiple times within the time period corresponding to the t-th frame image.
  • the area transfer end flag AS is sent (for example, the transfer end flag bit of AS is 1), so that the multi-line image data stream of the t-th frame image includes multiple area transfer end flags.
  • the display control device can transmit the image data of the dynamic area of the t-th frame image to the display component according to the update method and update time set in the configuration instruction, so that the display component updates the dynamic area of the image.
  • the refresh rate of the entire frame can be significantly improved without increasing the amount of transmitted data, and low-power local high frame rate refresh or global high frame rate refresh can be achieved.
  • the refresh area can be determined for each frame of image, and only the image data of the dynamic area can be transmitted, thereby reducing the amount of transmitted data and reducing the power consumption of the display device at a normal refresh rate.
  • the data stream format of each line is set in the data transmission protocol, and a regional transmission end identifier AS (or called an identification beacon) is set, which can identify the regional transmission end AS and the end of the entire frame transmission.
  • a regional transmission end identifier AS or called an identification beacon
  • Mark VBP for differentiated control and use, and various update methods can be set to realize separate transmission of dynamic areas and static areas, and the dynamic area can adjust the number of transmissions according to its own data packet size, so that the end of transmission can be output at high speed on limited bandwidth Mark, in order to achieve high-frequency refresh of local areas or synchronous high-frequency refresh of the entire frame, which can significantly increase the refresh rate without increasing the amount of transmitted data.
  • it can reduce the display difference caused by inconsistent refresh rates between dynamic areas and static areas, thereby further improving the display effect.
  • FIG. 12 is a block diagram of a display device according to an embodiment of the present disclosure. As shown in Figure 12, the display device includes an image processing device 121, a display control device 122 and a display component 123.
  • the image processing device is connected to the display control device and is used to render the t-th frame image to be displayed, and determine the dynamic area with content update and the static area without content update in the t-th frame image, according to the The dynamic area generates the data stream of the t-th frame image and sends it to the display control device, where t is an integer greater than 1;
  • the display control device is connected to the display component and is used to receive the data stream of the t-th frame image, determine the image data of the dynamic area of the t-th frame image, and determine the image data of the dynamic area of the t-th frame image according to the transmission end identification and
  • the configuration instruction transmits to the display component the image data of the dynamic area of the t-th frame image and/or the cached image data of the t-1 th frame image in the static area;
  • the display component is used to update the display screen according to the image data transmitted by the display control device.
  • FIG. 13 is a block diagram of a display control device according to an embodiment of the present disclosure. As shown in Figure 13, the device includes:
  • the format determination module 131 is configured to determine the data stream format of the t-th frame image according to the received data stream of the t-th frame image.
  • the data stream format includes a whole frame transmission format and a regional transmission format.
  • the whole frame The transmission format is used to transmit the entire frame of image data, and the area transmission format is used to transmit the image data of the dynamic area with updated content, and t is an integer greater than 1;
  • the image data determination module 132 is configured to determine the dynamics of the t-th frame image from the received data stream of the t-th frame image when the data stream format of the t-th frame image is a zone transfer format.
  • the image data of the area and the dynamic area, the t-th frame image also includes a static area outside the dynamic area;
  • the data transmission module 133 is configured to transmit the dynamics of the t-th frame image to the display component of the display device according to the transmission end identifier in the data stream of the t-th frame image and the configuration instruction of the t-th frame image.
  • the transmission end identification includes a region transmission end identification and a whole frame transmission end identification.
  • the region transmission end identification is used to indicate the end of image data transmission in the dynamic area of the t-th frame image.
  • the whole frame transmission end identification Used to indicate the end of image data transmission of the t-th frame image,
  • the data transmission module 133 is configured to: upon receiving the entire frame transmission end identifier in the data stream of the t-th frame image, and the corresponding configuration instruction indicates the entire frame update, transmit the entire frame to the display device.
  • the display component transmits the image data of the dynamic area of the t-th frame image and the image data of the t-1 th frame image in the static area, so that the display component updates the entire frame display screen.
  • the transmission end identification includes a region transmission end identification and a whole frame transmission end identification.
  • the region transmission end identification is used to indicate the end of image data transmission in the dynamic area of the t-th frame image.
  • the whole frame transmission end identification Used to indicate the end of image data transmission of the t-th frame image,
  • the data transmission module 133 is configured to: upon receiving the entire frame transmission end identifier in the data stream of the t-th frame image, and the corresponding configuration instruction indicates dynamic area update, send the data to the display device.
  • the display component transmits the image data of the dynamic area of the t-th frame image, so that the display component updates the display screen of the dynamic area.
  • the device further includes: a determining module configured to obtain the multi-line image data from the received t-th frame image when the data transmission format of the t-th frame image is a whole frame transmission format. In the stream, determine the entire frame image data of the t-th frame image; the transmission module is used to receive the entire frame transmission end identifier in the data stream of the t-th frame image, and the corresponding configuration instruction indicates the entire frame In the case of updating, the entire frame image data of the t-th frame image is transmitted to the display component of the display device, so that the display component updates the entire frame display screen.
  • a determining module configured to obtain the multi-line image data from the received t-th frame image when the data transmission format of the t-th frame image is a whole frame transmission format. In the stream, determine the entire frame image data of the t-th frame image; the transmission module is used to receive the entire frame transmission end identifier in the data stream of the t-th frame image, and the corresponding configuration instruction indicates the entire frame In the case
  • the transmission end identification includes a region transmission end identification and a whole frame transmission end identification.
  • the region transmission end identification is used to indicate the end of image data transmission in the dynamic area of the t-th frame image.
  • the whole frame transmission end identification Used to indicate the end of image data transmission of the t-th frame image,
  • the data transmission module 133 is configured to: upon receiving the region transmission end identifier in the data stream of the t-th frame image, and the corresponding configuration instruction indicates dynamic region update, transmit the data to the display device.
  • the display component transmits the image data of the dynamic area of the t-th frame image, so that the display component updates the display screen of the dynamic area; upon receiving the entire frame transmission end identifier in the data stream of the t-th frame image , and when the corresponding configuration instruction indicates a static area update, transmit the image data of the t-1th frame image in the static area to the display component of the display device, so that the display component updates the static area.
  • the transmission end identification includes a region transmission end identification and a whole frame transmission end identification.
  • the region transmission end identification is used to indicate the end of image data transmission in the dynamic area of the t-th frame image.
  • the whole frame transmission end identification Used to indicate the end of image data transmission of the t-th frame image,
  • the data transmission module 133 is configured to: upon receiving the region transmission end identifier in the data stream of the t-th frame image, and the corresponding configuration instruction indicates a whole frame update, send a signal to the display device.
  • the display component transmits the image data of the dynamic area of the t-th frame image and the image data of the t-1 th frame image in the static area, so that the display component updates the entire frame display screen, wherein the The multi-line image data stream of the t-frame image includes at least one region transfer end indicator.
  • the image data determination module 132 is configured to: determine the starting coordinates and area of the dynamic area of the t-th frame image according to the start grabbing instruction in the data stream of the t-th frame image. Size; in response to the start grabbing instruction, grab image data from the multi-line image data stream after the start grabbing instruction; in response to the end grabbing instruction in the data stream of the t-th frame image, grab The captured image data is determined to be the image data of the dynamic area of the t-th frame image.
  • the device further includes: a data update module, configured to update the dynamic area of the t-1th frame image in the cache space based on the image data of the dynamic area of the tth frame image. image data of the area, so that the entire frame of image data of the t-th frame image is cached in the cache space.
  • a data update module configured to update the dynamic area of the t-1th frame image in the cache space based on the image data of the dynamic area of the tth frame image. image data of the area, so that the entire frame of image data of the t-th frame image is cached in the cache space.
  • an image processing device is also provided.
  • 14 is a block diagram of an image processing device according to an embodiment of the present disclosure. As shown in Figure 14, the device includes:
  • the area determination module 141 is used to determine the dynamic area with content update and the static area without content update in the t-th frame image based on the image data of the rendered t-th frame image and the image data of the t-1th frame image.
  • t is an integer greater than 1;
  • the transmission format determination module 142 is configured to determine that the data stream format of the t-th frame image is a regional transmission format when the dynamic area is a local area of the t-th frame image, wherein, the data stream format It includes a whole frame transmission format and a region transmission format, the whole frame transmission format is used to transmit the whole frame image data, and the region transmission format is used to transmit the image data of the dynamic area;
  • the data stream generation module 143 is configured to generate the data stream of the t-th frame image using the area transmission format according to the image data of the dynamic area of the t-th frame image;
  • the data stream sending module 144 is configured to send the data stream of the t-th frame image to the display control device of the display device, so that the display control device controls the display component of the display device to display the t-th frame image.
  • the data stream generation module 143 is configured to: generate a transmission start data stream of the t-th frame image, where the transmission start data stream includes a start grabbing instruction, and the start grabbing The instruction includes the starting coordinates and area size of the dynamic area of the t-th frame image; the start grabbing instruction is used to instruct the display control device to determine the position of the dynamic area, and instruct the display control device Start grabbing the image data in the data stream; use the area transmission format to generate a multi-line image data stream according to the image data of the dynamic area of the t-th frame image; generate a transmission end data stream of the t-th frame image, The transmission end data stream includes an end capture instruction, and the end capture instruction is used to instruct the display control device to end capturing image data in the data stream and determine the captured image data as the third The image data of the dynamic area of the t-frame image.
  • the data stream sending module 144 is configured to send the data stream of the t-th frame image to the display control device multiple times within a time period corresponding to the t-th frame image.
  • the data stream of the t-th frame image includes a transmission end identifier
  • the transmission end identifier includes a region transmission end identifier and a whole frame transmission end identifier
  • the region transmission end identifier is used to indicate the th.
  • the image data transmission of the dynamic area of the t-frame image is completed, and the whole-frame transmission end flag is used to indicate the end of the image data transmission of the t-th frame image
  • the data stream of the t-th frame image includes configuration instructions, including a start grabbing instruction and an end grabbing instruction.
  • the configuration instructions are used to indicate the data flow format of the t-th frame image and indicate the display
  • the control device controls the display component to update the display picture of the dynamic area and/or the display picture of the static area of the t-th frame image.
  • the image processing device includes a graphics processing unit GPU
  • the display control device includes a timing controller Tcon.
  • Figure 15 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an electronic device including: one or more processors 101, a memory 102, and one or more I/O interfaces 103.
  • One or more programs are stored on the memory 102.
  • the one or more processors implement the display control method as in any of the above embodiments;
  • one One or more I/O interfaces 103 are connected between the processor and the memory, and are configured to realize information exchange between the processor and the memory.
  • the processor 101 is a device with data processing capabilities, including but not limited to a central processing unit (CPU), etc.
  • the memory 102 is a device with data storage capabilities, including but not limited to random access memory (RAM, more specifically Such as SDRAM, DDR, etc.), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory (FLASH);
  • the I/O interface (read-write interface) 103 is connected between the processor 101 and the memory 102 , can realize information interaction between the processor 101 and the memory 102, which includes but is not limited to a data bus (Bus), etc.
  • processor 101 memory 102, and I/O interface 103 are connected to each other and, in turn, to other components of the computing device via bus 104.
  • the one or more processors 101 include a graphics processing unit GPU and a timing controller Tcon.
  • a computer-readable medium stores a computer program, wherein when the program is executed by the processor, the steps in the image display control method in any of the above embodiments are implemented.
  • embodiments of the present disclosure include a computer program product including a computer program carried on a machine-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via the communications component, and/or installed from removable media.
  • CPU central processing unit
  • the computer-readable medium shown in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program for use by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium that can send, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical cable, RF, etc., or any suitable combination of the foregoing.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components that implement the specified logical function(s). executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the circuits or sub-circuits described in the embodiments of the present disclosure can be implemented in software or hardware.
  • the described circuit or sub-circuit can also be provided in a processor.
  • a processor including: a receiving circuit and a processing circuit.
  • the processing module includes a writing sub-circuit and a reading sub-circuit.
  • the names of these circuits or sub-circuits do not constitute a limitation on the circuit or sub-circuit itself under certain circumstances.
  • a receiving circuit can also be described as "receiving video signals".

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

一种显示控制方法及装置、图像处理装置、显示设备,方法包括:根据第t帧图像的数据流,确定数据流格式(S31);在数据流格式为区域传输格式时,从第t帧图像的数据流中,确定出动态区域及其图像数据(S32);根据第t帧图像的数据流中的传输结束标识和第t帧图像的配置指令,向显示组件传输动态区域的图像数据和/或缓存空间中第t-1帧图像的图像数据(S33)。

Description

显示控制方法及装置、图像处理装置、显示设备 技术领域
本公开属于显示技术领域,具体涉及一种显示控制方法及装置、图像处理装置、显示设备、电子设备、计算机可读介质。
背景技术
在显示技术领域,显示设备的屏幕在显示新内容时,每个像素都需要更新,屏幕每次更新全部像素的过程就叫一次“刷新”。而刷新率指的就是屏幕更新或刷新的频率。刷新率通常以赫兹(Hz)为单位进行测量,厂商使用它来强调流畅的用户体验。近年来,高刷新率是显示技术较为流行的攻关方向,很多厂商将高刷新率当作高显示质量的主要卖点之一。
发明内容
本公开旨在至少解决相关技术中存在的技术问题之一,提供一种显示控制方法及装置、图像处理装置、显示设备、电子设备、计算机可读介质。
第一方面,本公开实施例提供一种显示控制方法,该方法应用于显示设备的显示控制装置,该方法包括:
根据接收到的第t帧图像的数据流,确定所述第t帧图像的数据流格式,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输有内容更新的动态区域的图像数据,t为大于1的整数;
在所述第t帧图像的数据流格式为区域传输格式时,从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据,所述第t帧图像还包括在所述动态区域之外的静态区域;
根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,以使所述显示组件更新显示画面。
在一些实施例中,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,包括:
在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新整帧显示画面。
在一些实施例中,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,包括:
在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示动态区域更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据,以使所述显示组件更新所述动态区域的显示画面。
在一些实施例中,所述方法还包括:
在所述第t帧图像的数据传输格式为整帧传输格式时,从接收到的所述第t帧图像的多行图像数据流中,确定出所述第t帧图像的整帧图像数据;
在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的整帧图像数据,以使所述显示组件更新整帧显示画面。
在一些实施例中,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,包括:
在接收到所述第t帧图像的数据流中的区域传输结束标识,且相应的配置指令指示动态区域更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据,以使所述显示组件更新所述动态区域的显示画面;
在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示静态区域更新的情况下,向所述显示设备的显示组件传输所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新所述静态区域的显示画面;
其中,所述第t帧图像的多行图像数据流中包括至少一个区域传输结束标识。
在一些实施例中,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态 区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,包括:
在接收到所述第t帧图像的数据流中的区域传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新整帧显示画面,
其中,所述第t帧图像的多行图像数据流中包括至少一个区域传输结束标识。
在一些实施例中,所述从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据,包括:
根据所述第t帧图像的数据流中的开始抓取指令,确定所述第t帧图像的动态区域的起始坐标和区域尺寸;
响应于所述开始抓取指令,从所述开始抓取指令之后的多行图像数据流中抓取图像数据;
响应于所述第t帧图像的数据流中的结束抓取指令,将已抓取的图像数据确定为所述第t帧图像的动态区域的图像数据。
在一些实施例中,所述方法还包括:
基于所述第t帧图像的动态区域的图像数据,更新所述缓存空间中所述第t-1帧图像在所述动态区域的图像数据,使得所述缓存空间中缓存有所述第t帧图像的整帧图像数据。
第二方面,本公开实施例提供一种显示控制方法,该方法应用于显示设备的图像处理装置,该方法包括:
根据第t帧图像的图像数据以及第t-1帧图像的图像数据,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,t为大于1的整数;
在所述动态区域为所述第t帧图像的局部区域的情况下,确定所述第t 帧图像的数据流格式为区域传输格式,其中,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输动态区域的图像数据;
根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成所述第t帧图像的数据流;
向所述显示设备的显示控制装置发送所述第t帧图像的数据流,以使所述显示控制装置控制所述显示设备的显示组件显示所述第t帧图像。
在一些实施例中,所述根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成所述第t帧图像的数据流,包括:
生成所述第t帧图像的传输起始数据流,所述传输起始数据流中包括开始抓取指令,所述开始抓取指令中包括所述第t帧图像的动态区域的起始坐标和区域尺寸;所述开始抓取指令用于:指示所述显示控制装置确定所述动态区域的位置,并指示所述显示控制装置开始抓取数据流中的图像数据;
根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成多行图像数据流;
生成所述第t帧图像的传输结束数据流,所述传输结束数据流中包括结束抓取指令,所述结束抓取指令用于:指示所述显示控制装置结束抓取数据流中的图像数据并将已抓取的图像数据确定为所述第t帧图像的动态区域的图像数据。
在一些实施例中,向所述显示设备的显示控制装置发送所述第t帧图像的数据流,包括:在与所述第t帧图像对应的时间段内,向所述显示控制装置发送多次所述第t帧图像的数据流。
在一些实施例中,所述第t帧图像的数据流中包括传输结束标识,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述第t帧图像的数据流中还包括配置指令,包括开始抓取指令 和结束抓取指令,所述配置指令用于指示所述第t帧图像的数据流格式,并指示所述显示控制装置控制所述显示组件更新所述第t帧图像的动态区域的显示画面和/或静态区域的显示画面。
在一些实施例中,所述图像处理装置包括图形处理单元GPU,所述显示控制装置包括定时控制器Tcon。
第三方面,本公开实施例提供一种显示设备,该显示设备包括图像处理装置、显示控制装置及显示组件,
所述图像处理装置连接到所述显示控制装置,用于对待显示的第t帧图像进行渲染,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,根据所述动态区域生成所述第t帧图像的数据流并发送到所述显示控制装置,t为大于1的整数;
所述显示控制装置连接到所述显示组件,用于接收所述第t帧图像的数据流,确定所述第t帧图像的动态区域的图像数据,根据所述数据流中的传输结束标识和配置指令向所述显示组件传输所述第t帧图像的动态区域的图像数据和/或已缓存的第t-1帧图像在静态区域的图像数据;
所述显示组件,用于根据所述显示控制装置传输的图像数据,更新显示画面。
第四方面,本公开实施例提供一种显示控制装置,该装置包括:
格式确定模块,用于根据接收到的第t帧图像的数据流,确定所述第t帧图像的数据流格式,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输有内容更新的动态区域的图像数据,t为大于1的整数;
图像数据确定模块,用于在所述第t帧图像的数据流格式为区域传输格式时,从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据,所述第t帧图像还包括在所述动态区域之外的静态区域;
数据传输模块,用于根据所述第t帧图像的数据流中的传输结束标识和 所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,以使所述显示组件更新显示画面。
第五方面,本公开实施例提供一种图像处理装置,该装置包括:
区域确定模块,用于根据已渲染的第t帧图像的图像数据以及第t-1帧图像的图像数据,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,t为大于1的整数;
传输格式确定模块,用于在所述动态区域为所述第t帧图像的局部区域的情况下,确定所述第t帧图像的数据流格式为区域传输格式,其中,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输所述动态区域的图像数据;
数据流生成模块,用于根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成所述第t帧图像的数据流;
数据流发送模块,用于向显示设备的显示控制装置发送所述第t帧图像的数据流,以使所述显示控制装置控制所述显示设备的显示组件显示所述第t帧图像。
第六方面,本公开实施例提供一种电子设备,包括:一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的显示控制方法。
第七方面,本公开实施例提供一种计算机可读介质,其上存储有计算机程序,其中,所述计算机程序在被处理器执行时实现上述显示控制方法中的步骤。
附图说明
图1为根据本公开实施例的区域刷新的示意图。
图2为根据本公开实施例的图像数据流的数据结构的示意图。
图3为根据本公开实施例的显示控制方法的流程图。
图4为根据本公开实施例的显示控制方法的部分步骤的流程图。
图5为根据本公开实施例的显示控制方法的部分步骤的流程图。
图6a、图6b、图6c、图6d为根据本公开实施例的显示画面刷新的示意图。
图7为根据本公开实施例的显示控制方法的部分步骤的流程图。
图8为根据本公开实施例的显示控制方法的部分步骤的流程图。
图9为根据本公开实施例的显示控制方法的部分步骤的流程图。
图10为根据本公开实施例的显示控制方法的流程图。
图11为根据本公开实施例的显示控制方法的部分步骤的流程图。
图12为根据本公开实施例的显示设备的框图。
图13为根据本公开实施例的显示控制装置的框图。
图15为根据本公开实施例的一种电子设备的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在显示技术领域,显示设备的屏幕刷新率已经从定格60HZ刷新率,逐 渐向120HZ/144HZ乃至更高的刷新率上靠拢。相关技术中,通常是由显卡渲染全帧数据,再以很高的频率输出整帧数据,从而实现屏幕的高刷新率。
然而,由于信号传输带宽和数据帧接收芯片的接收能力的影响,高频刷新所导致的IC硬件提升的压力很大,会遇到瓶颈,并且实现高刷新率所带来的功耗也是惊人的。
根据本公开实施例的显示控制方法,能够判断每帧图像中有内容更新的动态区域,仅传输动态区域的图像数据,并在图像的数据流中设置传输结束标识来指示传输结束,以基于配置指令实现图像的区域刷新或整帧刷新,从而减少传输数据量,降低显示设备在正常刷新率下的功耗,或者在不增加传输数据量的情况下显著提高刷新率。
根据本公开的实施例中,显示设备可包括图像处理装置、显示控制装置以及显示组件。其中,图像处理装置为显示数据的发送端,例如为图形处理单元GPU,用于对图像进行渲染,确定图像中有内容更新的动态区域及无内容更新的静态区域,生成图像的数据流并发送给显示控制装置。显示控制装置为显示数据的接收端,例如为定时控制器Tcon,用于接收图像的数据流并获取图像数据,根据数据流中的传输结束标识和配置指令向显示组件传输图像数据。显示组件例如为显示面板,用于根据输入的图像数据进行区域刷新或整帧刷新。本公开对显示设备中各个部件的类型不作限制。
在一些实施例中,在图像处理装置与显示控制装置之间进行第1帧图像的数据传输后,显示控制装置会将该第1帧图像的数据缓存到自身的缓存空间(例如为远程帧缓冲RFB)中。该第1帧图像之后的图像的静态区域,可直接从缓存空间中调用对应的图像数据。
在一些实施例中,对于第1帧图像之后的图像(称为第t帧图像,t为大于1的整数),图像处理装置在进行图像渲染时,可确定第t帧图像中有内容更新的动态区域及无内容更新的静态区域;如果动态区域为第t帧图像中的局部区域,则确定第t帧图像的数据流格式为区域传输格式。其中,数据流格式包括整帧传输格式和区域传输格式,整帧传输格式用于传输整帧图 像数据,区域传输格式用于传输动态区域的图像数据。
表1和表2分别为根据本公开实施例的整帧传输的数据流格式和区域传输的数据流格式。其中,表1和表2分别为一行数据流。
表1
Figure PCTCN2022084092-appb-000001
Figure PCTCN2022084092-appb-000002
表2
Figure PCTCN2022084092-appb-000003
Figure PCTCN2022084092-appb-000004
表1和表2中的各个名词的解释如下:BS:空白区开始;VB-ID:视频信号身份;Mvid:视频数据集;Maud:音频数据集;VSC:视频数据流配置;Dummy symbols:空白信号;SS:信号开始;CTL:控制信号;SE:信号结束;BE:空白区结束;FS:填充开始;FE:填充结束;Pixel1~PixelN:像素1~像素N的显示数据;PixelN+1~Pixel2N:像素N+1~像素2N的显示数据;AS:区域传输结束标识位;VBP:整帧传输结束标识位。
其中,每段的像素数量N可以根据硬件支持情况确定,例如N=100;表1和表2中示出的像素分段数量为2段,但应当理解,每行数据流可根据该行实际要传输像素数量确定像素分段数量。本公开对像素分段数量及每段的像素数量N的具体取值均不作限制。
在整帧传输格式下,图像处理装置可按表1所示的格式,生成多行数据流,向显示控制装置发送整帧图像数据;在区域传输格式下,图像处理装置可按表2所示的格式,生成多行数据流,向显示控制装置发送动态区域的图像数据。
图1为根据本公开实施例的区域刷新的示意图。如图1所示,在每两帧之间都会有一个V-Blank(列向空白区)区间,作为帧与帧之间的数据调整区,在这个时间内可以实现空数据的填充和下一帧(第t帧)的配置;在V-Blank区间结束时需要插入VBE(列向空白区结束)信号用来表示V-Blank区间结束,同时作为下一帧开始的标识位。
在一些实施例中,下一帧(第t帧)以多行数据流的方式传输,每行的开始都需要HBS(行向空白区开始)和HBE(行向空白区结束),以限定是否需要对行向空白区进行数据填充,在第一行和最后一行进行配置指令(VSC)的发送,VSC中包括动态区域的起始位置的X,Y坐标以及动态区域的尺寸(宽度W和高度H),还包括第t帧的更新方式和更新时间等信息。
图2为根据本公开实施例的图像数据流的数据结构的示意图。如图2所示,在图像数据流之前为空白区数据流,包括V-Blank列向空白区和VBE指示列空白区结束,V-Blank结束后可发送TX(发送数据)和RX(接收数据)同步信号,以实现图像处理装置与显示控制装置之间的发送与接收的同步。
在一些实施例中,每行的开始都需要对是否需要HBS(行空白区开始)和HBE(行空白区结束)进行数据填充,第一行为传输起始数据流,包括开始抓取指令VSC Star,开始抓取指令VSC Star中包括动态区域的起始坐标和区域尺寸,开始抓取指令VSC Star用于指示显示控制装置确定动态区域的位置,并指示显示控制装置开始抓取数据流中的图像数据。
在一些实施例中,传输起始数据流之后为多行图像数据流,依次传输动态区域各行的图像数据,即图2中的Data Line 1、Data Line 2……,数据格式采用表2的格式。在该动态区域的图像数据传输完成后,最后一行为传输结束数据流,包括结束抓取指令VSC End以及区域传输结束标识AS(也可称为标识信标),结束抓取指令VSC End用于指示显示控制装置结束抓取数据流中的图像数据;区域传输结束标识AS用于标识动态区域的图像数据发送完毕。
在一些实施例中,开始抓取指令和/或结束抓取指令中还可包括第t帧的更新方式和更新时间等信息,以使得显示控制装置进行区域刷新或整帧刷新。
在一些实施例中,传输结束数据流还可包括一行校验数据流,包括循环冗余检测信号VSC CRC,用于判断RX信号接收是否有错误。
在一些实施例中,如图2所示,如果图像中的动态区域为多个,则可在传输完第一块动态区域的图像数据后,继续传输第二块动态区域的图像数据(Data Line k……),直到所有动态区域的图像数据传输完成。
通过这种方式,能够实现动态区域的图像数据的传输。
根据本公开的实施例,提供了一种显示控制方法,该方法应用于显示设备的显示控制装置,也即显示数据的接收端,例如为定时控制器Tcon,也可为其它类型的部件,本公开对此不作限制。
图3为根据本公开实施例的显示控制方法的流程图。如图3所示,该方法包括:
步骤S31,根据接收到的第t帧图像的数据流,确定所述第t帧图像的数据流格式,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输有内容更新的动态区域的图像数据,t为大于1的整数;
步骤S32,在所述第t帧图像的数据流格式为区域传输格式时,从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据,所述第t帧图像还包括在所述动态区域之外的静态区域;
步骤S33,根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,以使所述显示组件更新显示画面。
举例来说,图像处理装置与显示控制装置之间的传输的第1帧图像为整 帧传输,显示控制装置会将该第1帧图像的数据缓存到自身的缓存空间。
在一些实施例中,对于第1帧图像之后任意一帧图像(称为第t帧图像),图像处理装置可根据第t帧图像与第t-1帧图像之间的差异,确定第t帧图像中的有内容更新的动态区域及无内容更新的静态区域;进而通过区域传输格式传输动态区域的图像数据。
在一些实施例中,显示控制装置在接收到第t帧图像的数据流时,可确定第t帧图像的数据流格式。可根据在V-Blank列向空白区中设定的配置信息,确定数据流格式;也可根据传输起始数据流的开始抓取指令VSC Star,确定数据流格式,本公开对数据流格式的确定方式不作限制。
在一些实施例中,如果第t帧图像的为区域传输格式,则可在步骤S32中,从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及动态区域的图像数据。也即,根据传输起始数据流的开始抓取指令VSC Star中的动态区域的起始坐标和区域尺寸,确定动态区域的位置;并从传输起始数据流之后的多行图像数据流(可能包括传输起始数据流这一行)中,抓取到动态区域的图像数据。
在一些实施例中,如果接收到第t帧图像的数据流中的传输结束标识,例如区域传输结束标识AS和/或整帧传输结束标识VBP,则可确定第t帧图像的动态区域的图像数据或第t帧图像的图像数据传输结束;在步骤S33中根据配置指令中设定的更新方式和更新时间,向显示组件传输第t帧图像的动态区域的图像数据和/或显示控制装置的缓存空间中第t-1帧图像的图像数据,以实现区域刷新或整帧刷新。其中,更新时间可与接收到传输结束标识的时间同步,或处于接收到传输结束标识的时间之后,本公开对具体的更新方式和更新时间均不作限制。
在一些实施例中,配置指令可包括包括开始抓取指令和结束抓取指令,可在开始抓取指令和/或结束抓取指令的代码中设定更新方式和更新时间,本公开对此不作限制
在一些实施例中,配置指令中设定的更新方式可为动态区域和静态区域 均基于每帧的整帧传输结束标识VBP的时间轴刷新。该情况下,可在接收到整帧传输结束标识VBP后,基于配置指令中设定的更新时间,向显示组件传输第t帧图像的动态区域的图像数据,以及缓存空间中第t-1帧图像在静态区域的图像数据,从而实现整帧刷新。该方式可减少传输的数据量。
在一些实施例中,设定的更新方式可为动态区域在接收到区域传输结束标识AS后更新,静态区域在接收到整帧传输结束标识VBP后更新。该情况下,可在接收到区域传输结束标识AS后,基于配置指令中设定的更新时间,向显示组件传输第t帧图像的动态区域的图像数据,从而实现动态区域的区域刷新;在接收到整帧传输结束标识VBP后,基于配置指令中设定的更新时间,向显示组件传输缓存空间中第t-1帧图像在静态区域的图像数据,从而实现静态区域的区域刷新。该方式可提高动态区域的刷新率以提高动态区域的显示效果,或者降低静态区域的刷新率以降低功耗。
在一些实施例中,在完成第t帧图像的数据流的传输,并使得第t帧进行区域刷新或整帧刷新后,图像处理装置与显示控制装置之间的传输链路可保持活跃、备用或休眠状态,直到开始第t+1帧图像的区域传输或整帧传输。本公开对传输完成后的链路状态设置不作限制。
根据本公开的实施例,能够根据数据流确定数据流格式;在区域传输格式下确定动态区域及动态区域的图像数据;根据传输结束标识和配置指令向显示组件传输图像数据,以实现显示画面的区域刷新或整帧刷新,从而减少传输的数据量,能够降低显示设备在正常刷新率下的功耗,或者在不增加传输数据量的情况下显著提高刷新率。
下面对根据本公开实施例的显示控制方法进行展开说明。
如前所述,图像处理装置可按图2的数据结构,向显示控制装置发送数据流。显示控制装置接收到数据流时,可先在步骤S31中确定第t帧图像的数据流格式。在数据流格式为区域传输格式时,在步骤S32中从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据。
图4为根据本公开实施例的显示控制方法的部分步骤的流程图。如图4所示,在一些实施例中,步骤S32可包括:
步骤S321,根据所述第t帧图像的数据流中的开始抓取指令,确定所述第t帧图像的动态区域的起始坐标和区域尺寸;
步骤S322,响应于所述开始抓取指令,从所述开始抓取指令之后的多行图像数据流中抓取图像数据;
步骤S323,响应于所述第t帧图像的数据流中的结束抓取指令,将已抓取的图像数据确定为所述第t帧图像的动态区域的图像数据。
也就是说,参考图2所示的数据结构,在接收到传输起始数据流(HBS、VSC Star、HBE),可在步骤S321中确定出开始抓取指令VSC Star中动态区域的起始坐标(XY坐标)和区域尺寸(宽度和高度);并且,响应于该开始抓取指令,可在步骤S322中从开始抓取指令之后的多行图像数据流(例如HBS、HBE、Data Line 1;HBS、HBE、Data Line 2)中抓取图像数据。多行图像数据流也可包括传输起始数据流本身,例如图2中的HBS、VSC Star、HBE、Data Line k。
在一些实施例中,在接收到传输结束数据流(HBS、VSC End、HBE、AS;HBS、VSC CRC)时,可在步骤S323中根据传输结束数据流中的结束抓取指令VSC End,结束数据抓取的过程,将已抓取的图像数据确定为第t帧图像的动态区域的图像数据。
在一些实施例中,如果存在多个动态区域,则可多次重复上述步骤S321-S323的处理过程,直到获取所有动态区域的图像数据。
通过这种方式,能够确定动态区域以及动态区域的图像数据,以根据动态区域及其数据进行后续的处理,从而减少传输的数据量。
在一些实施例中,传输结束标识包括区域传输结束标识AS和整帧传输结束标识VBP。区域传输结束标识用于指示第t帧图像的动态区域的图像数据传输结束,整帧传输结束标识用于指示第t帧图像的图像数据传输结束。
表2所示的数据流格式以及传输结束数据流中,均可具有区域传输结束 标识AS的传输结束标识位;表1和表2所示的数据流格式以及最后一个动态区域的传输结束数据流中,均可具有整帧传输结束标识VBP的传输结束标识位。信号位中的信号例如1为指示传输结束。本公开对传输结束标识位的位置不作限制。
在一些实施例中,在接收第t帧图像的数据流期间,可检测各个传输结束标识位中的信号是否为传输结束标识(例如是否为1)。如果检测到传输结束标识,则可确定传输结束,在步骤S33中根据设定的更新方式和更新时间实现更新。
图5为根据本公开实施例的显示控制方法的部分步骤的流程图。如图5所示,在一些实施例中,步骤S33可包括:
步骤S331,在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新整帧显示画面。
也就是说,配置指令中设定的更新方式可为动态区域和静态区域均基于每帧的整帧传输结束标识VBP的时间轴刷新。该情况下,在接收到整帧传输结束标识VBP(例如VBP的传输结束标识位为1)后,可根据配置指令中设定的更新时间,向显示组件传输第t帧图像的动态区域的图像数据;并且,从缓存空间中调用第t-1帧图像在静态区域的图像数据,向显示组件传输,使得显示组件更新整帧显示画面,从而实现整帧的刷新。其中,更新时间可与VBP的接收时间同步,也可在VBP的接收时间之后,本公开对此不作限制。
图6a为根据本公开实施例的显示画面刷新的示意图。如图6a所示,在动态区域和静态区域均基于每帧的整帧传输结束标识VBP的时间轴刷新的情况下,动态区域和静态区域的刷新率均为60HZ。
通过这种方式,能够减少传输的数据量。
图7为根据本公开实施例的显示控制方法的部分步骤的流程图。如图7 所示,在一些实施例中,步骤S33可包括:
步骤S332,在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示动态区域更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据,以使所述显示组件更新所述动态区域的显示画面。
也就是说,配置指令中设定的更新方式可为动态区域基于每帧的整帧传输结束标识VBP刷新,而静态区域在该区域传输格式下不刷新,显示组件通过面板的保存电路实现持续显示。
该情况下,在接收到整帧传输结束标识VBP(例如VBP的传输结束标识位为1)后,可根据配置指令中设定的更新时间,向显示组件传输第t帧图像的动态区域的图像数据,使得显示组件更新动态区域的显示画面,从而实现区域刷新。其中,设定的更新时间可与VBP的接收时间同步,也可在VBP的接收时间之后,本公开对此不作限制。
通过这种方式,能够减少传输的数据量,并且降低显示设备的功耗。
在一些实施例中,根据本公开实施例的显示控制方法还可包括:
在所述第t帧图像的数据传输格式为整帧传输格式时,从接收到的所述第t帧图像的多行图像数据流中,确定出所述第t帧图像的整帧图像数据;
在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的整帧图像数据,以使所述显示组件更新整帧显示画面。
也就是说,对于静态区域,配置指令中设定的更新方式可为基于整帧传输格式下的整帧传输结束标识VBP刷新。对于任意的第t帧图像,如果步骤S31中确定该第t帧图像的数据传输格式为整帧传输格式,则多行图像数据流为表1所示的格式,可从接收到的第t帧图像的多行图像数据流中,确定出第t帧图像的整帧图像数据。
在一些实施例中,在接收到该整帧传输格式情况下的整帧传输结束标识VBP(例如VBP的传输结束标识位为1)后,可根据配置指令中设定的更新 时间,向显示组件传输第t帧图像的整帧图像数据,使得显示组件更新整帧显示画面,从而实现整帧的刷新。其中,设定的更新时间可与VBP的接收时间同步,也可在VBP的接收时间之后,本公开对此不作限制。
图6b为根据本公开实施例的显示画面刷新的示意图。如图6b所示,在动态区域基于每帧的整帧传输结束标识VBP刷新,静态区域基于整帧传输格式下的整帧传输结束标识VBP刷新的情况下,动态区域的刷新率为60HZ,静态区域的刷新率可降低为10HZ。
通过这种方式,能够减少传输的数据量,并通过降低静态区域的刷新率的方式大幅降低显示设备的功耗。
图8为根据本公开实施例的显示控制方法的部分步骤的流程图。如图8所示,在一些实施例中,步骤S33可包括:
步骤S333,在接收到所述第t帧图像的数据流中的区域传输结束标识,且相应的配置指令指示动态区域更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据,以使所述显示组件更新所述动态区域的显示画面;
步骤S334,在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示静态区域更新的情况下,向所述显示设备的显示组件传输所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新所述静态区域的显示画面;
其中,所述第t帧图像的多行图像数据流中包括至少一个区域传输结束标识。
也就是说,配置指令中设定的更新方式可为动态区域基于区域传输结束标识AS刷新,静态区域均基于每帧的整帧传输结束标识VBP刷新。
在一些实施例中,由于在物理线路上只传输动态区域的图像数据,传输的数据量相对少很多,因此可在第t帧图像所对应的时间段内,多次传输动态区域的图像数据,每个动态区域传输结束后都发送区域传输结束标识AS(例如AS的传输结束标识位为1),使得第t帧图像的多行图像数据流中包 括至少一个区域传输结束标识。
在一些实施例中,在接收到区域传输结束标识AS后,可根据配置指令中设定的更新时间,向显示组件传输第t帧图像的动态区域的图像数据,使得显示组件更新动态区域的显示画面,从而实现动态区域的高速刷新。
在一些实施例中,在接收到该第t帧的整帧传输结束标识VBP后,可根据配置指令中设定的更新时间,从缓存空间中调用第t-1帧图像在静态区域的图像数据并向显示组件传输,使得显示组件更新静态区域的显示画面,从而实现静态区域的正常刷新。
图6c为根据本公开实施例的显示画面刷新的示意图。如图6c所示,在动态区域基于区域传输结束标识AS刷新,静态区域基于每帧的整帧传输结束标识VBP刷新的情况下,动态区域的刷新率可达到600HZ,静态区域的刷新率可保持为60HZ。
通过这种方式,能够在不增加传输数据量的情况下显著提高动态区域的刷新率,实现局部的高帧频刷新,从而提升显示效果。
图9为根据本公开实施例的显示控制方法的部分步骤的流程图。如图9所示,在一些实施例中,步骤S33可包括:
步骤S335,在接收到所述第t帧图像的数据流中的区域传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新整帧显示画面,
其中,所述第t帧图像的多行图像数据流中包括至少一个区域传输结束标识。
也就是说,配置指令中设定的更新方式可为动态区域和静态区域均基于区域传输结束标识AS刷新。该情况下,类似地,可在第t帧图像所对应的时间段内,多次传输动态区域的图像数据,每个动态区域传输结束后都发送区域传输结束标识AS,使得第t帧图像的多行图像数据流中包括至少一个区域传输结束标识。
在一些实施例中,在接收到区域传输结束标识AS后,可根据配置指令中设定的更新时间,向显示组件传输第t帧图像的动态区域的图像数据,并且,从缓存空间中调用第t-1帧图像在静态区域的图像数据,向显示组件传输,使得显示组件更新整帧的显示画面,从而实现整帧的高速刷新。
图6d为根据本公开实施例的显示画面刷新的示意图。如图6d所示,在动态区域和静态区域均基于区域传输结束标识AS刷新的情况下,整帧的刷新率均可达到600HZ。
通过这种方式,能够在不增加传输数据量的情况下显著提高整帧的刷新率,实现全局的低功耗高帧频刷新,并且,能够降低动态区域和静态区域由于刷新率不一致造成的显示差异,从而进一步提升显示效果。
在一些实施例中,根据本公开实施例的显示控制方法还可包括:
基于所述第t帧图像的动态区域的图像数据,更新所述缓存空间中所述第t-1帧图像在所述动态区域的图像数据,使得所述缓存空间中缓存有所述第t帧图像的整帧图像数据。
也就是说,在步骤S32中确定出第t帧图像的动态区域及所述动态区域的图像数据后,可基于该动态区域的图像数据,对缓存空间中的第t-1帧图像在动态区域的图像数据进行更新;将更新后的整帧图像数据作为第t帧图像的整帧图像数据。这样,可以在采用区域传输格式传输第t+1帧的图像数据时,能够直接调用缓存空间中第t帧图像的静态区域的图像数据。
通过这种方式,能够实现缓存空间的局部更新,以便于下一帧的数据传输及显示画面更新,从而实现多帧图像的显示控制。
根据本公开的实施例,提供了一种显示控制方法,该方法应用于显示设备的图像处理装置,也即显示数据的发送端,例如为图形处理单元GPU,也可为其它类型的部件,本公开对此不作限制。
图10为根据本公开实施例的显示控制方法的流程图。如图10所示,在一些实施例中,该方法包括:
步骤S51,根据第t帧图像的图像数据以及第t-1帧图像的图像数据,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,t为大于1的整数;
步骤S52,在所述动态区域为所述第t帧图像的局部区域的情况下,确定所述第t帧图像的数据流格式为区域传输格式,其中,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输动态区域的图像数据;
步骤S53,根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成所述第t帧图像的数据流;
步骤S54,向所述显示设备的显示控制装置发送所述第t帧图像的数据流,以使所述显示控制装置控制所述显示设备的显示组件显示所述第t帧图像。
举例来说,图像处理装置可对待显示的第t帧图像进行渲染,在渲染期间,在步骤S51中,对第t帧图像的图像数据与第t-1帧图像的图像数据进行比较,确定第t帧图像中有内容更新的动态区域及无内容更新的静态区域。
在一些实施例中,在步骤S52中,如果第t帧图像中存在动态区域,且动态区域为第t帧图像的局部区域,则可确定第t帧图像的数据流格式为区域传输格式,也即仅传输动态区域的图像数据。
在一些实施例中,在步骤S53中,可根据第t帧图像的动态区域的图像数据,采用区域传输格式生成第t帧图像的数据流。也即,以图2所示的数据结构生成数据流,各行图像数据流的采用表2的数据格式。
在一些实施例中,在步骤S54中,可向显示控制装置依次发送第t帧图像的数据流,以使显示控制装置基于配置指令中设定的更新方式和更新时间,控制显示组件采用区域刷新或整帧刷新的方式显示第t帧图像。
根据本公开的实施例,能够确定图像中有内容更新的动态区域,在区域传输格式下生成仅传输动态区域的图像数据的数据流,并向显示控制装置发送,从而减少传输的数据量,降低显示设备在正常刷新率下的功耗,或者在 不增加传输数据量的情况下提高刷新率。
下面对根据本公开实施例的显示控制方法进行展开说明。
如前所述,图像处理装置可在步骤S51中对第t帧图像的图像数据与第t-1帧图像的图像数据进行比较,确定第t帧图像中有内容更新的动态区域及无内容更新的静态区域;并在动态区域为第t帧图像的局部区域时确定第t帧图像的数据流格式为区域传输格式。进而,在步骤S53中生成第t帧图像的数据流。
图11为根据本公开实施例的显示控制方法的部分步骤的流程图。如图11所示,在一些实施例中,步骤S53可包括:
步骤S531,生成所述第t帧图像的传输起始数据流,所述传输起始数据流中包括开始抓取指令,所述开始抓取指令中包括所述第t帧图像的动态区域的起始坐标和区域尺寸;所述开始抓取指令用于:指示所述显示控制装置确定所述动态区域的位置,并指示所述显示控制装置开始抓取数据流中的图像数据;
步骤S532,根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成多行图像数据流;
步骤S533,生成所述第t帧图像的传输结束数据流,所述传输结束数据流中包括结束抓取指令,所述结束抓取指令用于:指示所述显示控制装置结束抓取数据流中的图像数据并将已抓取的图像数据确定为所述第t帧图像的动态区域的图像数据。
举例来说,在前一帧(第t-1帧)传输完成后,在第t帧图像的数据流之前,图像处理装置可生成空白区数据流(V-Blank、VBE),作为帧与帧之间的数据调整区,在这个时间内可以实现空数据的填充和下一帧(第t帧)的配置信息。V-Blank结束后可发送TX(发送数据)和RX(接收数据)同步信号,以实现图像处理装置与显示控制装置之间的发送与接收的同步。
在一些实施例中,图像处理装置可按图2的数据结构,采用区域传输格式生成第t帧图像的数据流。可在步骤S531中,生成第t帧图像的传输起始 数据流(HBS、VSC Star、HBE),传输起始数据流中包括开始抓取指令VSC Star。开始抓取指令VSC Star中包括第t帧图像的动态区域的起始坐标和区域尺寸,并且,开始抓取指令用于:指示显示控制装置确定动态区域的位置,并指示显示控制装置从开始抓取指令之后的多行图像数据流(例如HBS、HBE、Data Line 1;HBS、HBE、Data Line 2)中抓取图像数据。多行图像数据流也可包括传输起始数据流本身,例如图2中的HBS、VSC Star、HBE、Data Line k。
在一些实施例中,在步骤S532中,可根据第t帧图像的动态区域的图像数据,采用区域传输格式生成多行图像数据流,即HBS、HBE、Data Line 1;HBS、HBE、Data Line 2……。
在一些实施例中,在动态区域的图像数据的图像数据流生成完成后,可生成第t帧图像的传输结束数据流(HBS、VSC End、HBE、AS;HBS、VSC CRC),传输结束数据流中包括结束抓取指令VSC End,结束抓取指令用于指示显示控制装置结束抓取数据流中的图像数据,并将已抓取的图像数据确定为第t帧图像的动态区域的图像数据。
其中,传输结束数据流还可包括一行校验数据流,包括循环冗余检测信号VSC CRC,用于判断RX信号接收是否有错误。
在一些实施例中,如果存在多个动态区域,则可多次重复上述步骤S531-S533的处理过程,直到生成所有动态区域的数据流。如图2所示,如果图像中的动态区域为多个,则可在生成完第一块动态区域的数据流后,继续生成第二块动态区域的数据流(HBS、VSC Star、HBE、Data Line k;……)
通过这种方式,可以实现数据流的生成过程,减少传输的数据量。
在一些实施例中,第t帧图像的数据流中包括传输结束标识,传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束。
也就是说,数据流中包括传输结束标识,传输结束标识包括区域传输结 束标识AS和整帧传输结束标识VBP。表2所示的数据流格式以及传输结束数据流中,均可具有区域传输结束标识AS的传输结束标识位;表1和表2所示的数据流格式以及最后一个动态区域的传输结束数据流中,均可具有整帧传输结束标识VBP的传输结束标识位。例如,信号位中的信号1为指示传输结束。本公开对传输结束标识位的位置不作限制。
在一些实施例中,在生成第t帧图像的数据流时,可在数据流中设定区域传输结束标识AS和/或整帧传输结束标识VBP,也即将区域传输结束标识AS和/或整帧传输结束标识VBP的信号位设定为有效,以指示第t帧图像的动态区域的图像数据或第t帧图像的图像数据传输结束。
在一些实施例中,第t帧图像的数据流中包括配置指令,包括开始抓取指令和结束抓取指令。配置指令用于指示第t帧图像的数据流格式,并指示所述显示控制装置控制所述显示组件更新所述第t帧图像的动态区域的显示画面和/或静态区域的显示画面。
也就是说,可在配置指令中设定更新方式和更新时间,以使显示控制装置向显示组件传输动态区域的图像数据,以实现动态区域的刷新;或者,向的显示组件传输第t-1帧图像在静态区域的图像数据,以实现静态区域的刷新或整帧刷新。更新方式和更新时间的设置可参见前面的说明,此处不再赘述。
通过这种方式,能够基于区域传输结束标识和整帧传输结束标识以及配置指令的设定,提高刷新方式的灵活性。
在一些实施例中,可在步骤S54中向显示控制装置发送第t帧图像的数据流。其中,步骤S54可包括:
在与所述第t帧图像对应的时间段内,向所述显示控制装置发送多次所述第t帧图像的数据流。
举例来说,由于在物理线路上只传输动态区域的图像数据,传输的数据量相对少很多,因此可在第t帧图像所对应的时间段内,向显示控制装置多次传输动态区域的图像数据,每个动态区域传输结束后都发送区域传输结束 标识AS(例如AS的传输结束标识位为1),使得第t帧图像的多行图像数据流中包括多个区域传输结束标识。
这样,显示控制装置接收到区域传输结束标识AS后,可根据配置指令中设定的更新方式和更新时间,向显示组件传输第t帧图像的动态区域的图像数据,使得显示组件更新动态区域的显示画面,实现动态区域的高速刷新;或者,同时传输动态区域的图像数据和缓存空间中的第t-1帧图像在静态区域的图像数据,使得显示组件更新整帧的显示画面,实现整帧的高速刷新。
通过这种方式,能够在不增加传输数据量的情况下显著提高整帧的刷新率,实现低功耗的局部高帧频刷新或全局高帧频刷新。
根据本公开实施例的显示控制方法,能够对每一帧图像进行刷新区域的判断,仅传输动态区域的图像数据,从而减少传输数据量,降低显示设备在正常刷新率下的功耗。
根据本公开的实施例,在数据传输协议中设置了每行的数据流格式,并设置有区域传输结束标识AS(或称为标识信标),能够对区域传输结束标识AS和整帧传输结束标识VBP进行区分控制和使用,能够设定各种更新方式以实现动态区域和静态区域的分别传输,并且动态区域能够根据自身的数据包大小调整传输次数,从而能够在有限带宽上高速输出传输结束标识,以此实现局部区域的高频刷新或整帧的同步高频刷新,能够在不增加传输数据量的情况下显著提高刷新率。并且,能够降低动态区域和静态区域由于刷新率不一致造成的显示差异,从而进一步提升显示效果。
根据本公开的实施例,还提供了一种显示设备。图12为根据本公开实施例的显示设备的框图。如图12所示,该显示设备包括图像处理装置121、显示控制装置122及显示组件123,
所述图像处理装置连接到所述显示控制装置,用于对待显示的第t帧图像进行渲染,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,根据所述动态区域生成所述第t帧图像的数据流并发送到所述显示控制装置,t为大于1的整数;
所述显示控制装置连接到所述显示组件,用于接收所述第t帧图像的数据流,确定所述第t帧图像的动态区域的图像数据,根据所述数据流中的传输结束标识和配置指令向所述显示组件传输所述第t帧图像的动态区域的图像数据和/或已缓存的第t-1帧图像在静态区域的图像数据;
所述显示组件,用于根据所述显示控制装置传输的图像数据,更新显示画面。
根据本公开的实施例,还提供了一种显示控制装置。图13为根据本公开实施例的显示控制装置的框图。如图13所示,该装置包括:
格式确定模块131,用于根据接收到的第t帧图像的数据流,确定所述第t帧图像的数据流格式,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输有内容更新的动态区域的图像数据,t为大于1的整数;
图像数据确定模块132,用于在所述第t帧图像的数据流格式为区域传输格式时,从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据,所述第t帧图像还包括在所述动态区域之外的静态区域;
数据传输模块133,用于根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,以使所述显示组件更新显示画面。
在一些实施例中,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述数据传输模块133,用于:在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和所述第 t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新整帧显示画面。
在一些实施例中,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述数据传输模块133,用于:在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示动态区域更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据,以使所述显示组件更新所述动态区域的显示画面。
在一些实施例中,所述装置还包括:确定模块,用于在所述第t帧图像的数据传输格式为整帧传输格式时,从接收到的所述第t帧图像的多行图像数据流中,确定出所述第t帧图像的整帧图像数据;传输模块,用于在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的整帧图像数据,以使所述显示组件更新整帧显示画面。
在一些实施例中,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述数据传输模块133,用于:在接收到所述第t帧图像的数据流中的区域传输结束标识,且相应的配置指令指示动态区域更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据,以使所述显示组件更新所述动态区域的显示画面;在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示静态区域更新的情况下,向所述显示设备的显示组件传输所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新所述静态区域的显示画面;其中,所述第t 帧图像的多行图像数据流中包括至少一个区域传输结束标识。
在一些实施例中,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述数据传输模块133,用于:在接收到所述第t帧图像的数据流中的区域传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新整帧显示画面,其中,所述第t帧图像的多行图像数据流中包括至少一个区域传输结束标识。
在一些实施例中,所述图像数据确定模块132,用于:根据所述第t帧图像的数据流中的开始抓取指令,确定所述第t帧图像的动态区域的起始坐标和区域尺寸;响应于所述开始抓取指令,从所述开始抓取指令之后的多行图像数据流中抓取图像数据;响应于所述第t帧图像的数据流中的结束抓取指令,将已抓取的图像数据确定为所述第t帧图像的动态区域的图像数据。
在一些实施例中,所述装置还包括:数据更新模块,用于基于所述第t帧图像的动态区域的图像数据,更新所述缓存空间中所述第t-1帧图像在所述动态区域的图像数据,使得所述缓存空间中缓存有所述第t帧图像的整帧图像数据。
根据本公开的实施例,还提供了一种图像处理装置。图14为根据本公开实施例的图像处理装置的框图。如图14所示,该装置包括:
区域确定模块141,用于根据已渲染的第t帧图像的图像数据以及第t-1帧图像的图像数据,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,t为大于1的整数;
传输格式确定模块142,用于在所述动态区域为所述第t帧图像的局部区域的情况下,确定所述第t帧图像的数据流格式为区域传输格式,其中, 所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输所述动态区域的图像数据;
数据流生成模块143,用于根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成所述第t帧图像的数据流;
数据流发送模块144,用于向显示设备的显示控制装置发送所述第t帧图像的数据流,以使所述显示控制装置控制所述显示设备的显示组件显示所述第t帧图像。
在一些实施例中,所述数据流生成模块143,用于:生成所述第t帧图像的传输起始数据流,所述传输起始数据流中包括开始抓取指令,所述开始抓取指令中包括所述第t帧图像的动态区域的起始坐标和区域尺寸;所述开始抓取指令用于:指示所述显示控制装置确定所述动态区域的位置,并指示所述显示控制装置开始抓取数据流中的图像数据;根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成多行图像数据流;生成所述第t帧图像的传输结束数据流,所述传输结束数据流中包括结束抓取指令,所述结束抓取指令用于:指示所述显示控制装置结束抓取数据流中的图像数据并将已抓取的图像数据确定为所述第t帧图像的动态区域的图像数据。
在一些实施例中,所述数据流发送模块144,用于:在与所述第t帧图像对应的时间段内,向所述显示控制装置发送多次所述第t帧图像的数据流。
在一些实施例中,所述第t帧图像的数据流中包括传输结束标识,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
其中,所述第t帧图像的数据流中包括配置指令,包括开始抓取指令和结束抓取指令,所述配置指令用于指示所述第t帧图像的数据流格式,并指示所述显示控制装置控制所述显示组件更新所述第t帧图像的动态区域的显示画面和/或静态区域的显示画面。
在一些实施例中,所述图像处理装置包括图形处理单元GPU,所述显 示控制装置包括定时控制器Tcon。
图15为根据本公开实施例的一种电子设备的结构示意图。如图15所示,本公开实施例提供一种电子设备包括:一个或多个处理器101、存储器102、一个或多个I/O接口103。存储器102上存储有一个或多个程序,当该一个或多个程序被该一个或多个处理器执行,使得该一个或多个处理器实现如上述实施例中任一的显示控制方法;一个或多个I/O接口103连接在处理器与存储器之间,配置为实现处理器与存储器的信息交互。
其中,处理器101为具有数据处理能力的器件,其包括但不限于中央处理器(CPU)等;存储器102为具有数据存储能力的器件,其包括但不限于随机存取存储器(RAM,更具体如SDRAM、DDR等)、只读存储器(ROM)、带电可擦可编程只读存储器(EEPROM)、闪存(FLASH);I/O接口(读写接口)103连接在处理器101与存储器102间,能实现处理器101与存储器102的信息交互,其包括但不限于数据总线(Bus)等。
在一些实施例中,处理器101、存储器102和I/O接口103通过总线104相互连接,进而与计算设备的其它组件连接。
在一些实施例中,该一个或多个处理器101包括图形处理单元GPU、定时控制器Tcon。
根据本公开的实施例,还提供一种计算机可读介质。该计算机可读介质上存储有计算机程序,其中,该程序被处理器执行时实现如上述实施例中任一的图像显示控制方法中的步骤。
特别地,根据本公开实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在机器可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分从网络上被下载和安装,和/或从可拆卸介质被安装。在该计算机程序被中央处理单元(CPU)执行时,执行本公开的系统中限定的上述功能。
需要说明的是,本公开所示的计算机可读介质可以是计算机可读信号介 质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,前述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的电路或子电路可以通过软件的方式 实现,也可以通过硬件的方式来实现。所描述的电路或子电路也可以设置在处理器中,例如,可以描述为:一种处理器,包括:接收电路和处理电路,该处理模块包括写入子电路和读取子电路。其中,这些电路或子电路的名称在某种情况下并不构成对该电路或子电路本身的限定,例如,接收电路还可以被描述为“接收视频信号”。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (18)

  1. 一种显示控制方法,其特征在于,应用于显示设备的显示控制装置,所述方法包括:
    根据接收到的第t帧图像的数据流,确定所述第t帧图像的数据流格式,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输有内容更新的动态区域的图像数据,t为大于1的整数;
    在所述第t帧图像的数据流格式为区域传输格式时,从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据,所述第t帧图像还包括在所述动态区域之外的静态区域;
    根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,以使所述显示组件更新显示画面。
  2. 根据权利要求1所述的显示控制方法,其特征在于,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
    其中,所述根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,包括:
    在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新整帧显示画面。
  3. 根据权利要求1所述的显示控制方法,其特征在于,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
    其中,所述根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,包括:
    在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示动态区域更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据,以使所述显示组件更新所述动态区域的显示画面。
  4. 根据权利要求3所述的显示控制方法,其特征在于,所述方法还包括:
    在所述第t帧图像的数据传输格式为整帧传输格式时,从接收到的所述第t帧图像的多行图像数据流中,确定出所述第t帧图像的整帧图像数据;
    在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的整帧图像数据,以使所述显示组件更新整帧显示画面。
  5. 根据权利要求1所述的显示控制方法,其特征在于,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
    其中,所述根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,包括:
    在接收到所述第t帧图像的数据流中的区域传输结束标识,且相应的配置指令指示动态区域更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据,以使所述显示组件更新所述动态区域的显示画面;
    在接收到所述第t帧图像的数据流中的整帧传输结束标识,且相应的配置指令指示静态区域更新的情况下,向所述显示设备的显示组件传输所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新所述静态区域的显示画面;
    其中,所述第t帧图像的多行图像数据流中包括至少一个区域传输结束标识。
  6. 根据权利要求1所述的显示控制方法,其特征在于,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
    其中,所述根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,包括:
    在接收到所述第t帧图像的数据流中的区域传输结束标识,且相应的配置指令指示整帧更新的情况下,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和所述第t-1帧图像在所述静态区域的图像数据,以使所述显示组件更新整帧显示画面,
    其中,所述第t帧图像的多行图像数据流中包括至少一个区域传输结束标识。
  7. 根据权利要求1所述的显示控制方法,其特征在于,
    所述从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据,包括:
    根据所述第t帧图像的数据流中的开始抓取指令,确定所述第t帧图像的动态区域的起始坐标和区域尺寸;
    响应于所述开始抓取指令,从所述开始抓取指令之后的多行图像数据流中抓取图像数据;
    响应于所述第t帧图像的数据流中的结束抓取指令,将已抓取的图像数据确定为所述第t帧图像的动态区域的图像数据。
  8. 根据权利要求1所述的显示控制方法,其特征在于,所述方法还包括:
    基于所述第t帧图像的动态区域的图像数据,更新所述缓存空间中所述第t-1帧图像在所述动态区域的图像数据,使得所述缓存空间中缓存有所述第t帧图像的整帧图像数据。
  9. 一种显示控制方法,其特征在于,应用于显示设备的图像处理装置,所述方法包括:
    根据第t帧图像的图像数据以及第t-1帧图像的图像数据,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,t为大于1的整数;
    在所述动态区域为所述第t帧图像的局部区域的情况下,确定所述第t帧图像的数据流格式为区域传输格式,其中,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输动态区域的图像数据;
    根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成所述第t帧图像的数据流;
    向所述显示设备的显示控制装置发送所述第t帧图像的数据流,以使所述显示控制装置控制所述显示设备的显示组件显示所述第t帧图像。
  10. 根据权利要求9所述的显示控制方法,其特征在于,所述根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成所述第t帧图像的数据流,包括:
    生成所述第t帧图像的传输起始数据流,所述传输起始数据流中包括开始抓取指令,所述开始抓取指令中包括所述第t帧图像的动态区域的起始坐标和区域尺寸;所述开始抓取指令用于:指示所述显示控制装置确定所述动态区域的位置,并指示所述显示控制装置开始抓取数据流中的图像数据;
    根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成多行图像数据流;
    生成所述第t帧图像的传输结束数据流,所述传输结束数据流中包括结束抓取指令,所述结束抓取指令用于:指示所述显示控制装置结束抓取数据流中的图像数据并将已抓取的图像数据确定为所述第t帧图像的动态区域的图像数据。
  11. 根据权利要求9所述的显示控制方法,其特征在于,所述向所述显示设备的显示控制装置发送所述第t帧图像的数据流,包括:
    在与所述第t帧图像对应的时间段内,向所述显示控制装置多次发送所述第t帧图像的数据流。
  12. 根据权利要求10所述的显示控制方法,其特征在于,所述第t帧图像的数据流中包括传输结束标识,所述传输结束标识包括区域传输结束标识和整帧传输结束标识,所述区域传输结束标识用于指示所述第t帧图像的动态区域的图像数据传输结束,所述整帧传输结束标识用于指示所述第t帧图像的图像数据传输结束,
    其中,所述第t帧图像的数据流中包括配置指令,包括开始抓取指令和结束抓取指令,所述配置指令用于指示所述第t帧图像的数据流格式,并指示所述显示控制装置控制所述显示组件更新所述第t帧图像的动态区域的显示画面和/或静态区域的显示画面。
  13. 根据权利要求9所述的显示控制方法,其特征在于,所述图像处理装置包括图形处理单元GPU,所述显示控制装置包括定时控制器Tcon。
  14. 一种显示设备,其特征在于,所述显示设备包括图像处理装置、显示控制装置及显示组件,
    所述图像处理装置连接到所述显示控制装置,用于对待显示的第t帧图像进行渲染,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,根据所述动态区域生成所述第t帧图像的数据流并发送到所述显示控制装置,t为大于1的整数;
    所述显示控制装置连接到所述显示组件,用于接收所述第t帧图像的数据流,确定所述第t帧图像的动态区域的图像数据,根据所述数据流中的传输结束标识和配置指令向所述显示组件传输所述第t帧图像的动态区域的图像数据和/或已缓存的第t-1帧图像在静态区域的图像数据;
    所述显示组件,用于根据所述显示控制装置传输的图像数据,更新显示画面。
  15. 一种显示控制装置,其特征在于,所述装置包括:
    格式确定模块,用于根据接收到的第t帧图像的数据流,确定所述第t帧图像的数据流格式,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输有内容更新的动态区域的图像数据,t为大于1的整数;
    图像数据确定模块,用于在所述第t帧图像的数据流格式为区域传输格式时,从接收到的所述第t帧图像的数据流中,确定出所述第t帧图像的动态区域及所述动态区域的图像数据,所述第t帧图像还包括在所述动态区域之外的静态区域;
    数据传输模块,用于根据所述第t帧图像的数据流中的传输结束标识和所述第t帧图像的配置指令,向所述显示设备的显示组件传输所述第t帧图像的动态区域的图像数据和/或所述显示控制装置的缓存空间中第t-1帧图像的图像数据,以使所述显示组件更新显示画面。
  16. 一种图像处理装置,其特征在于,所述装置包括:
    区域确定模块,用于根据已渲染的第t帧图像的图像数据以及第t-1帧图像的图像数据,确定所述第t帧图像中有内容更新的动态区域及无内容更新的静态区域,t为大于1的整数;
    传输格式确定模块,用于在所述动态区域为所述第t帧图像的局部区域的情况下,确定所述第t帧图像的数据流格式为区域传输格式,其中,所述数据流格式包括整帧传输格式和区域传输格式,所述整帧传输格式用于传输整帧图像数据,所述区域传输格式用于传输所述动态区域的图像数据;
    数据流生成模块,用于根据所述第t帧图像的动态区域的图像数据,采用所述区域传输格式生成所述第t帧图像的数据流;
    数据流发送模块,用于向显示设备的显示控制装置发送所述第t帧图像的数据流,以使所述显示控制装置控制所述显示设备的显示组件显示所述第t帧图像。
  17. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1至8中任一所述的显示控制方法或实现如权利要求9至13中任一所述的显示控制方法。
  18. 一种计算机可读介质,其上存储有计算机程序,其中,所述计算机程序在被处理器执行时实现如权利要求1至8中任一所述的显示控制方法中的步骤或如权利要求9至13中任一所述的显示控制方法中的步骤。
PCT/CN2022/084092 2022-03-30 2022-03-30 显示控制方法及装置、图像处理装置、显示设备 WO2023184242A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000615.7A CN117157697A (zh) 2022-03-30 2022-03-30 显示控制方法及装置、图像处理装置、显示设备
PCT/CN2022/084092 WO2023184242A1 (zh) 2022-03-30 2022-03-30 显示控制方法及装置、图像处理装置、显示设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084092 WO2023184242A1 (zh) 2022-03-30 2022-03-30 显示控制方法及装置、图像处理装置、显示设备

Publications (1)

Publication Number Publication Date
WO2023184242A1 true WO2023184242A1 (zh) 2023-10-05

Family

ID=88198446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084092 WO2023184242A1 (zh) 2022-03-30 2022-03-30 显示控制方法及装置、图像处理装置、显示设备

Country Status (2)

Country Link
CN (1) CN117157697A (zh)
WO (1) WO2023184242A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140002739A1 (en) * 2012-06-28 2014-01-02 Seh Kwa Method and apparatus for reducing power usage during video presentation on a display
CN103680382A (zh) * 2012-09-24 2014-03-26 三星显示有限公司 显示器驱动方法及其集成驱动设备
CN104123906A (zh) * 2014-07-29 2014-10-29 厦门天马微电子有限公司 显示面板及其驱动方法
CN106782403A (zh) * 2016-04-12 2017-05-31 思博半导体股份有限公司 低功耗显示装置
CN112130790A (zh) * 2020-09-08 2020-12-25 Oppo(重庆)智能科技有限公司 一种画面刷新方法、装置及计算机可读存储介质
CN113741676A (zh) * 2020-05-29 2021-12-03 北京小米移动软件有限公司 显示屏帧率控制方法、装置及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140002739A1 (en) * 2012-06-28 2014-01-02 Seh Kwa Method and apparatus for reducing power usage during video presentation on a display
CN103680382A (zh) * 2012-09-24 2014-03-26 三星显示有限公司 显示器驱动方法及其集成驱动设备
CN104123906A (zh) * 2014-07-29 2014-10-29 厦门天马微电子有限公司 显示面板及其驱动方法
CN106782403A (zh) * 2016-04-12 2017-05-31 思博半导体股份有限公司 低功耗显示装置
CN113741676A (zh) * 2020-05-29 2021-12-03 北京小米移动软件有限公司 显示屏帧率控制方法、装置及存储介质
CN112130790A (zh) * 2020-09-08 2020-12-25 Oppo(重庆)智能科技有限公司 一种画面刷新方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN117157697A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2020207251A1 (zh) 图像更新方法、装置、终端及存储介质
WO2020207250A1 (zh) 垂直同步方法、装置、终端及存储介质
US10049642B2 (en) Sending frames using adjustable vertical blanking intervals
JP6742685B2 (ja) 映像処理装置、及び、装置
US9030481B2 (en) Method and apparatus for reducing power usage during video presentation on a display
TWI304967B (en) Continuous graphics display for dual display devices during the processor non-responding period
CN107493448B (zh) 图像处理系统、图像显示方法及显示装置
EP2857930B1 (en) Techniques to transmit commands to a target device
US10019971B2 (en) Switching video streams for a display without a visible interruption
CN103686314B (zh) 采用高清视频通道传输多路标清视频的解复用装置及方法
US9117297B2 (en) Reduced on-chip memory graphics data processing
US20180286345A1 (en) Adaptive sync support for embedded display
CN102625086B (zh) 一种用于高清数字矩阵的ddr2存储方法和系统
JP2006301724A (ja) メモリコントローラ、画像処理コントローラ及び電子機器
JP6811607B2 (ja) 受信装置および受信方法
WO2023184242A1 (zh) 显示控制方法及装置、图像处理装置、显示设备
WO2017113560A1 (zh) 一种显示控制电路及显示装置
CN115002304A (zh) 一种视频图像分辨率自适应转换装置
TW201018239A (en) Electronic device
US11551632B2 (en) Accelerated frame transmission
JP2002221952A (ja) 画像データ伝送方法並びに該伝送方法を用いた画像表示システム及び表示装置
JP2006011074A (ja) 表示コントローラ、電子機器及び画像データ供給方法
CN116112627B (zh) 一种视频帧率自适应变换的方法和电路
US11659136B2 (en) Data conversion and high definition multimedia interface receiving device
US11114058B2 (en) Method of V-By-One (VBO) signal processing for saving hardware resources, device, and terminal thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934094

Country of ref document: EP

Kind code of ref document: A1