WO2023184210A1 - Composition for caring for keratin materials - Google Patents

Composition for caring for keratin materials Download PDF

Info

Publication number
WO2023184210A1
WO2023184210A1 PCT/CN2022/083971 CN2022083971W WO2023184210A1 WO 2023184210 A1 WO2023184210 A1 WO 2023184210A1 CN 2022083971 W CN2022083971 W CN 2022083971W WO 2023184210 A1 WO2023184210 A1 WO 2023184210A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
alcohol
composition
denotes
acid
Prior art date
Application number
PCT/CN2022/083971
Other languages
French (fr)
Inventor
Di Wu
Lingling Sun
Hongjuan WANG
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Priority to PCT/CN2022/083971 priority Critical patent/WO2023184210A1/en
Priority to FR2203972A priority patent/FR3134007A1/en
Publication of WO2023184210A1 publication Critical patent/WO2023184210A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0295Liquid crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/604Alkylpolyglycosides; Derivatives thereof, e.g. esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/68Sphingolipids, e.g. ceramides, cerebrosides, gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/927Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of insects, e.g. shellac

Definitions

  • transepidermal water loss should be good attributes to characterize the barrier function.
  • normal products with superior transepidermal water loss results usually deliver greasy sensation.
  • the present invention provides a composition in the form of an oil-in-water emulsion for caring for keratin materials, comprising:
  • composition of the present invention is in the form of an oil-in-water emulsion.
  • said composition comprises a continuous aqueous phase and a dispersed fatty phase.
  • composition of the present invention has a lamellar structure or liquid crystals.
  • the present invention provides a non-therapeutic method for caring for keratin materials, comprising applying the composition according to the first aspect of the present invention to the keratin materials.
  • Fig. 1 shows a photo of the composition of invention example 1 (IE. 1) taken with a polarized light microscopy.
  • Fig. 2 shows a photo of the composition of invention example 2 (IE. 2) taken with a polarized light microscopy.
  • keratin materials is intended to cover human skin, mucous membranes such as the lips. Facial skin is most particularly considered according to the present invention.
  • the present invention provides a composition in the form of an oil-in-water emulsion for caring for keratin materials, comprising:
  • Non-ionic surfactants selected from sugar ethers of C 8 -C 22 fatty alcohols
  • alkylpolyglucosides APGs
  • An alkylpolyglucoside can be used alone or as a mixture of two or more alkylpolyglucosides.
  • An alkylpolyglucoside generally has a formula (I) of:
  • R is a linear or branched C 8-22 alkyl, preferably C 8-16 alkyl; G is a residual of a sugar; and n ranges from 1 to 5, preferably from 1.05 to 2.
  • the sugar for the residue G of formula (I) can be selected from the group consisting of glucose, dextrose, fructose, galactose, sucrose, ribose, lactose, maltose, xylose, mannose, cellulose dextran, or starch.
  • - caprylyl/capryl glucoside for instance the product sold under the name Oramix CG 110 by the company SEPPIC or under the name Lutensol GD 70 by the company BASF;
  • the APG can be used as a mixture with a fatty alcohol, especially a fatty alcohol having 8-30 carbon atoms, e.g., 10-20 carbon atoms.
  • a fatty alcohol especially a fatty alcohol having 8-30 carbon atoms, e.g., 10-20 carbon atoms.
  • the alkylpolyglucoside and the fatty alcohol have similar carbon atoms, e.g., with a difference less than 5, in particular less than 3, or less than 2. More preferably, the alkylpolyglucoside and the fatty alcohol used in the mixture have same carbon atoms.
  • the alkylpolyglucoside and the fatty alcohol in the mixture can have a same alkyl moiety.
  • mixtures of alkylpolyglucoside/fatty alcohol can comprise the products sold under the name of Montanov series by the company SEPPIC:
  • APGs can comprise, such as: decyl glucoside and lauryl glucoside, sold, for example, by the company Henkel under the respective names Plantaren 2000 and Plantaren 1200.
  • the non-ionic surfactant selected from sugar ethers of C 8 -C 22 fatty alcohols is present in the composition of the present invention in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 5 wt. %, more preferably from 0.5 wt. %to 5 wt. %, relative to the total weight of the composition.
  • Non-ionic surfactant of ester type is N-ionic surfactant of ester type
  • the non-ionic surfactant of ester type comprises:
  • R1 and R2 represent, respectively, a C18 to C44 fatty chain, at least one of R1 or R2 is monounsaturated;
  • R3 and R4 represent, respectively, a saturated C18 to C44 fatty chain, linear or branched.
  • R1 and R2 represent, respectively, a C18-C40 fatty chain, more preferably a C18-C30 fatty chain. At least one of R1 or R2 is monounsaturated.
  • the R1-C (O) -group corresponds to the carbon chain of the fatty acid.
  • This chain may be linear or monounsaturated, and comprises at least 18 carbon atoms. Mention can be made of oleic (C18: 1) , gadoleic (C20: 1) , erucic (C22: 1) acid, up to hexaconenoic (C26: 1) acid for unsaturated acids.
  • the R1-C (O) group may also consist of branched and saturated acids of at least 18 carbon atoms, also called Guerbet acids.
  • the R2-O-group may consist of monounsaturated linear fatty alcohols with at least 18 carbon atoms.
  • the carbon chain of the alcohol may also be branched and saturated and comprise at least 18 carbon atoms. Such alcohols are also called Guerbet alcohols.
  • the monounsaturated ester of the formula (II) is a mixture of esters comprising various lengths of fatty chains in their structures. More preferably, such a monounsaturated ester is liquid at ambient temperature.
  • a preferred monounsaturated ester can be mentioned is, for example, the product commonly called jojoba oil (or jojoba esters) , the liquid nature being due to the presence of monounsaturated chains.
  • This oil comprises in particular C18: 1 (preferably minority) , C20: 1 and C22: 1 (preferably majority with C20: 1>C22: 1) unsaturated fatty acid esters, with C20: 1, C22: 1 and C24: 1 unsaturated fatty alcohols.
  • the R3-C (O) -group corresponds to the carbon chain of C18 to C44 fatty acid, said acid usually being linear and saturated, preferably corresponds to a linear and saturated C20 to C34 fatty acid.
  • This therefore includes eicosanoic (or arachidic) acid (C20) , docosanoic (or behenic) acid (C22) , tetracosanoic (or lignoceric) acid (C24) , hexacosanoic (or cerotic) acid (C26) .
  • the R4group corresponds to the hydrocarbon chain of the alcohol, said alcohol usually being saturated linear and having a C18 to C44 chain, preferably C20 to C34 chain.
  • n is an integer between 2 to 6.
  • the polyglyceryl diester is obtained by esterification of a solid wax in the presence of at least one polyol.
  • Solid waxes suitable for obtaining the polyglyceryl diester have a melting point between 50 and 90°C. They correspond to mixtures essentially comprising monoesters having the formula R 1 -C (O) -O-R 2 , where the R 1 -C (O) -group corresponds to the carbon chain of the fatty acid, said acid usually being linear and saturated and having a number of carbon atoms of at least 18, and in particular 20, and preferably up to 44 and preferably 34.
  • the mixture of monoesters may also contain a certain proportion of hydroxyacid esters such as hydroxypalmitic or hydroxystearic acid. This is the case for example of beeswax.
  • the R 2 group corresponds to the hydrocarbon chain of the alcohol, said alcohol usually being saturated linear and having a number of carbon atoms of at least 18, and in particular 20, and preferably up to 44 and preferably 34.
  • said alcohol is eicosanol, docosanol or tetracosanol.
  • Beeswax, carnauba wax, candelilla wax, rice bran wax, sunflower wax, ouricury wax, Shellac wax and sugarcane wax are examples of natural solid waxes.
  • the solid wax suitable for the esterification reaction is beeswax.
  • the polyol used for esterification is selected from the group comprising ethylene glycol, diethylene glycol, triethylene glycol, 2-methyl propanediol, propylene glycol, butylene glycol, neopentyl glycol, hexylene glycol, octylene glycol, polyethylene glycol, polypropylene glycol, trimethylol propane, sorbitol, erythritol, pentaerythritol, dipentaerythritol, glycerol, diglycerol and polyglycerol (i.e. a polymer of glycerol units) . More preferably, the polyol is a polyglycerol, having an average degree of polymerization between 2 and 6, preferably of 3. Preferably, the polyol is polyglycerol-3.
  • the non-ionic ester surfactant also comprises the acid part of a solid wax.
  • Waxes have a complex composition. They have the common feature of containing a mixture of acid monoesters and very long chain fatty alcohols.
  • the non-ionic ester surfactant is a wax derivative obtained by reacting together at least one solid wax and at least one monounsaturated ester of formula (II) in the presence of at least one polyol and optionally at least one catalyst.
  • a transesterification reaction occurs between the various chemical entities yielding the wax derivative.
  • the preferred catalysts are hydroxides or alkaline or alkaline earth alkoxides, calcium hydroxide, potassium or sodium carbonates or catalysts based on tin or titanium.
  • the solid wax is advantageously selected from the group comprising carnauba wax, candelilla wax, rice bran wax, sunflower wax, sugarcane wax, ouricury wax, beeswax and Shellac wax.
  • the wax derivative is obtained by reacting jojoba oil (also called as jojoba wax) , beeswax and a polyglycerol, such as polyglycerol-3.
  • the reaction is preferably conducted at a temperature of between 100°Cand 220°C, advantageously between 150°C and 200°C.
  • the monounsaturated ester/solid wax mass ratio varies between 5/95 and 95/5, advantageously between 30/70 and 75/25.
  • the esters of formulas (II) and (III) /polyol mass ratio preferablyvaries between 1/99 and 99/1, advantageously between 95/5 and 50/50.
  • the proportion of esterified polyol represents between 0.5 and 50%by weight of the mixture
  • the proportion of esterified fatty acids represents between 20 and 60%by weight of the mixture
  • the proportion of esterified fatty alcohols between 20 and 60%by weight of the mixture.
  • the non-ionic surfactant of ester type comprises a diester of a C 14 -C 22 fatty acid with a polyglycerol.
  • the C 14 -C 22 fatty acid may be selected from the group of myristic acid, stearic acid, isostearic acid, palmitic acid, oleic acid, behenic acid, erucic acid and arachidic acid, and mixtures thereof.
  • the polyglycerol may be a polymer of glycerol units, preferably a polymer having an average degree of polymerization between 4 and 8, preferably of 6.
  • said diester is a diester of distearic acid with hexaglycerol.
  • it is polyglyceryl-6 distearate.
  • the non-ionic surfactant of ester type according to the present invention is present with at least one fatty alcohol containing from 10 to 30 carbon atoms.
  • Use is preferably made of a fatty alcohol comprising from 20 to 26 carbon atoms, preferably from 10 to 24 carbon atoms and more preferentially from 12 to 22 carbon atoms.
  • fatty alcohols that may be used in the context of the present invention, mention may in particular be made of lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, isostearyl alcohol, palmityl alcohol, oleyl alcohol, cetearyl alcohol (mixture of cetyl alcohol and stearyl alcohol) , behenyl alcohol, erucyl alcohol and arachidyl alcohol, and mixtures thereof.
  • the non-ionic surfactant of ester type is present in the composition of the present invention in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 5 wt. %, more preferably from 0.5 wt. %to 5 wt. %, relative to the total weight of the composition.
  • R 7 a saturated or unsaturated and linear or branched C 1 -C 50 , preferably C 5 -C 50 , hydrocarbon radical, it being possible for this radical to be substituted by one or more hydroxyl groups optionally esterified by an acid R 7 COOH, R 7 being an optionally mono-or polyhydroxylated, saturated or unsaturated and linear or branched C 1 -C 35 hydrocarbon radical, it being possible for the hydroxyl or hydroxyls of the R 7 radical to be esterified by an optionally mono-or polyhydroxylated, saturated or unsaturated and linear or branched C 1 -C 35 fatty acid;
  • R denotes a hydrogen atom or a mono-or polyhydroxylated, preferably monohydroxylated, C 1 -C 20 hydrocarbon radical, R’ and R” are hydrocarbon radicals, the sum of the carbon atoms of which is between 9 and 30, R’ being a divalent radical;
  • R 8 denotes a C 1 -C 20 hydrocarbon radical and p is an integer varying from 1 to 12;
  • Use may also be made of specific mixtures, such as, for example, the mixtures of ceramide (s) 2 and ceramide (s) 5 according to the Downing classification.
  • Said fatty phase preferably comprises at least one oil.
  • Said oil can be selected from hydrocarbonated, silicone or fluorinated oils.
  • hydrocarbon-based oil means an oil formed essentially from, or even constituted by, carbon and hydrogen atoms, and optionally O and N atoms, and free of Si and F heteroatoms. Such oil can contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.
  • composition of the present invention may comprise an additional cosmetic active ingredient in addition to the compound of ceramide type.
  • composition of the present invention comprises a cosmetic active compound selected from C-glycosides of formula (V) :
  • -R represents a saturated C 1 to C 10 , in particular C 1 to C 4 , alkyl radical which can optionally be substituted by at least one radical selected from OH, COOH or COOR” 2 , with R” 2 being a saturated C 1 -C 4 alkyl radical,
  • - X represents a radical selected from the–CO-, -CH (OH) -, -CH (NH 2 ) -, -CH (NHCH 2 CH 2 CH 2 OH) -, -CH (NHPh) -and–CH (CH 3 ) -groups and in particular a–CO-, -CH (OH) -or–CH (NH 2 ) -radical and more particularly a–CH (OH) -radical,
  • - S represents a monosaccharide as described above and selected in particular from D-glucose, D-xylose, N-acetyl-D-glucosamine or L-fucose, and in particular D-xylose;
  • the acceptable salts of the compounds described in the present invention comprise conventional non-toxic salts of the said compounds, such as those formed from organic or inorganic acids. Mention may be made, by way of example, of the salts of inorganic acids, such as sulfuric acid, hydrochloric acid. Mention may also be made of the salts of organic acids, which can comprise one or more carboxylic, sulfonic or phosphonic acid groups. Mention may in particular be made of propionic acid, acetic acid, terephthalic acid, citric acid and tartaric acid.
  • C- ⁇ -D-xylopyranoside-2-hydroxypropane or C- ⁇ -D-xylopyranoside-2-hydroxypropane and better still C- ⁇ -D-xylopyranoside-2-hydroxypropane can advantageously be used for the preparation of a composition according to the invention.
  • composition of the present invention may comprise may also contain conventional cosmetic adjuvants or additives, for instance fragrances, chelating agents, preserving agents and bactericides, thickeners, pH regulators, fillers and mixtures thereof.
  • conventional cosmetic adjuvants or additives for instance fragrances, chelating agents, preserving agents and bactericides, thickeners, pH regulators, fillers and mixtures thereof.
  • the hydrophobically associative water-soluble polymer is selected from nonionic associative polyether-polyurethanes, polyacrylate crosspolymers, and a combination thereof.
  • these polyether-polyurethanes comprise at least two lipophilic hydrocarbon chains having from 6 to 30 carbon atoms, preferably from 8 to 30, separated by a hydrophilic sequence. It is possible for the hydrocarbon chains to be pendent chains or chains at the end of a hydrophilic sequence. In particular, it is possible for one or more pendent chains to be envisaged.
  • the polymer may comprise a hydrocarbon chain at one end or at both ends of a hydrophilic sequence.
  • the polyether-polyurethanes may be polyblocks, in particular in triblock form.
  • the hydrophobic sequences may be at each end of the chain (for example: triblock copolymer with hydrophilic central sequence) or distributed both at the ends and in the chain (polyblock copolymers for example) .
  • These same polymers may also be in the form of graft units or may be star-shaped.
  • the polyether-polyurethanes containing a fatty chain may be triblock copolymers whose hydrophilic sequence is a polyoxyethylenated chain comprising from 50 to 1000 oxyethylenated groups.
  • the polyether-polyurethanes comprise a urethane bond between the hydrophilic sequences, hence the origin of the name.
  • nonionic polyether-polyurethanes containing a hydrophobic chain which can be used in the present invention, it is also possible to use 205 containing a urea functional group sold by the company RHEOX or the 208, 204 or 212, as well as 1840.
  • the product DW from ROHM & HAAS containing a C 20 alkyl chain and with a urethane bond, sold at 20%dry matter content in water, may also be used.
  • the polyether-polyurethanes comprise at least two hydrocarbon-based lipophilic chains having from 8 to 30 carbon atoms, separated by a hydrophilic block, and wherein the hydrocarbon-based chains are selected from pendent chains and chains at the end of the hydrophilic block.
  • a polyether-polyurethane that may be obtained by polycondensation of at least three compounds comprising (i) at least one polyethylene glycol comprising from 150 to 180 mol of ethylene oxide, (ii) a polyoxyethylenated stearyl alcohol comprising 100 mol of ethylene oxide, and (iii) a diisocyanate.
  • Such polyurethane/polyethers are sold especially by the company Elementis under the name Rheolate FX and Rheoluxe 8118, which is a polycondensate of polyethylene glycol containing 136 mol of ethylene oxide, of stearyl alcohol polyoxyethylenated with 100 mol of ethylene oxide and of hexamethylene diisocyanate (HDI) with a weight-average molecular weight of 40000 (INCI name: PEG-136/Steareth-100/HDI Copolymer) .
  • Rheolate FX and Rheoluxe 8118 is a polycondensate of polyethylene glycol containing 136 mol of ethylene oxide, of stearyl alcohol polyoxyethylenated with 100 mol of ethylene oxide and of hexamethylene diisocyanate (HDI) with a weight-average molecular weight of 40000 (INCI name: PEG-136/Steareth-100/HDI Copolymer) .
  • Aculyn having the INCI name: PEG-150/Stearyl Alcohol/SMDI Copolymer is a polycondensate of polyethylene glycol comprising 150 or 180 mol of ethylene oxide, of stearyl alcohol and of methylenebis (4-cyclohexyl isocyanate) (SMDI) at 15%by weight in a matrix of maltodextrin (4%) and water (81%) (INCI name: PEG-150/Stearyl Alcohol/SMDI Copolymer) .
  • R 1 represents a hydrocarbon group
  • R 2 and R 4 independently represent alkylene groups having 2 to 4 carbon atoms, which alkylene groups may be identical or different from each other, or a phenylethylene group
  • R 3 represents a hydrocarbon group, which may optionally have a urethane bond
  • R 5 represents a branched chain or secondary hydrocarbon group
  • m represents a number of at least 2
  • h represents a number of at least l
  • k represents a number within the range of 1 to 500
  • n represents a number within the range of 1 to 200.
  • the hydrophobically modified polyurethane that is represented by the general formula (1) shown above is obtained by, for example, reacting at least one polyether polyol that is represented by the formula R 1 - [ (O-R 2 ) k -OH] m , at least one polyisocyanate that is represented by the formula R 3 - (NCO) h+1 , and at least one polymonoalcohol that is represented by the formula HO- (R 4 -O) n -R 5 .
  • R 1 to R 5 in the general formula (1) are determined by the compounds R 1 - [ (O-R 2 ) k -OH] m , R 3 - (NCO) h+1 and HO- (R 4 -O) n -R 5 .
  • the loading ratios among the three compounds are not limited particularly and should preferably be such that the ratio of the isocyanate group derived from the polyisocyanate to the hydroxyl group derived from the polyether polyol and the polyether monoalcohol is selected within the range of NCO/OH of between 0.8: 1 and 1.4: 1.
  • the polyether polyol compound that is represented by the formula R 1 - [ (O-R 2 ) k -OH] m and that may be used preferablyfor obtaining the associative thickener represented by the general formula (1) may be obtained from addition polymerization of an m-hydric polyol with an alkylene oxide, such as ethylene oxide, propylene oxide, butylene oxide, or epichlorohydrin, or with styrene oxide, and the like.
  • an alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide, or epichlorohydrin, or with styrene oxide, and the like.
  • the polyols should preferably be di-to octa-hydric polyols.
  • di-to octa-hydric polyols include dihydric alcohols, such as ethylene glycol, propylene glycol, butylene glycol, hexamethylene glycol, and neopenthyl glycol; trihydric alcohols, such as glycerol, trioxyisobutane, 1, 2, 3-butanetriol, 1, 2, 3-pentanetriol, 2-methyl-1, 2, 3-propanetriol, 2-methyl-2, 3, 4-butanetriol, 2-ethyl-1, 2, 3-butanetriol, 2, 3, 4-pentanetriol, 2, 3, 4-hexanetriol, 4-propyl-3, 4, 5-heptanetriol, 2, 4-dimethyl-2, 3, 4-pentanetriol, pentamethylglycerol, pentaglycerol, 1, 2, 4-butanetriol, 1, 2, 4-pentanetriol, trimethylolethane, and trimethylolprop
  • R 2 is determined by the alkylene oxide, styrene oxide, or the like, which is subjected to the addition. Particularly, for availability and excellent effects, an alkylene oxide having 2 to 4 carbon atoms, or styrene oxide is preferable.
  • the alkylene oxide, styrene oxide, or the like, to be subjected to the addition may be subjected to single polymerization, or random polymerization or block polymerization of at least two members.
  • the procedure for the addition may be a conventional procedure.
  • the polymerization degree k may be selected within the range of 0 to 1,000, preferably within the range of 1 to 500, and more preferably within the range of 10 to 200.
  • the ratio of the ethylene group occupying R 2 should preferably be within the range of 50 to 100 mass%with respect to the total quantity of R 2 . In such cases, the associative thickener appropriate for the purposes of the present invention is obtained.
  • the molecular weight of the polyether polyol compound that is represented by the formula R 1 - [ (O-R 2 ) k -OH] m should preferably be selected within the range of 500 to 100,000, and should more preferably be selected within the range of 1,000 to 50,000.
  • the polyisocyanate that is represented by the formula R 3 - (NCO) h+1 and that may be used preferably for obtaining the hydrophobically modified polyether urethane represented by the general formula (1) employed in accordance with the present invention is not limited particularly in so far as the polyisocyanate has at least two isocyanate groups in the molecule.
  • the polyisocyanates include aliphatic diisocyanates, aromatic diisocyanates, alicyclic diisocyanates, biphenyl diisocyanate, phenylmethane diisocyanate, phenylmethane triisocyanate, and phenylmethane tetraisocyanate.
  • dimers and trimers are dimers and trimers (isocyanurate bonds) of the above-enumerated polyisocyanates.
  • biuret obtained by a reaction with an amine.
  • a polyisocyanate having a urethane bond obtained by a reaction of the aforesaid polyisocyanate compound and a polyol.
  • the polyol di-to octa-hydric polyols are preferable, and the above-enumerated polyols are preferable.
  • a tri-or higher-hydric polyisocyanate is used as the polyisocyanate that is represented by the formula R 3 - (NCO) n+1 , it is preferable to employ the aforesaid polyisocyanate having the urethane bond.
  • the polyether monoalcohol that is represented by the formula HO- (R 4 -O) n -R 5 and that may be used preferably for obtaining the hydrophobically modified polyether urethane represented by the general formula (1) employed in accordance with the present invention is not limited particularly in so far as the polyether monoalcohol is a polyether of a straight chain, branched chain, or secondary monohydric alcohol.
  • the polyether monoalcohol may be obtained by addition polymerization of the straight chain, branched chain, or secondary monohydric alcohol with an alkylene oxide, such as ethylene oxide, propylene oxide, butylene oxide, or epichlorohydrin, or with styrene oxide, and the like.
  • polyethyleneglycol-240/decyltetradeceth-20/hexamethylene diisocyanate copolymer is preferable.
  • the polyethyleneglycol-240/decyltetradeceth-20/hexamethylene diisocyanate copolymer is referred to also as PEG-240/HDI copolymer bis-decyltetradeceth-20 ether.
  • polycrylates crosspolymer refers to a copolymer of acrylic acid, methacrylic acid or one of its esters, crosslinked with glycol dimethacrylate.
  • Polyacrylate Crosspolymer-1 is a copolymer of one or more simple esters of acrylic or methacrylic acid, C 1-4 dialkylamino C 1-6 alkyl methacrylate, PEG/PPG-30/5 allyl ether, PEG 20-25 C 10-30 alkyl ether methacrylate, hydroxy C 2-6 alkyl methacrylate crosslinked with ethylene glycol dimethacrylate.
  • This copolymer is commercially available under the tradename Carbopol Aqua CC Polymer from Lubrizol Advanced Materials, Inc. (Cleveland, Ohio) .
  • Polyacrylate Crosspolymer-2 is a copolymer of PEG/PPG-23/6 Dimethicone citraconate, C 10-30 alkyl PEG-25 methacrylate, and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters, crosslinked with trimethylolpropane PEG-15 triacrylate.
  • This copolymer is commercially available under the tradename Fixate Superhold Polymer from Lubrizol Advanced Materials, Inc. (Cleveland, Ohio) .
  • Polyacrylate Crosspolymer-3 is a copolymer of butyl acrylate, PEG-10 acrylate, PPG-6 acrylate and dimethylacrylamide, crosslinked by PEG-23 Diacrylate. This copolymer is commercially available under the tradename Plascize L-64S from Goo Chemical Company, Ltd. (Kyoto, Japan) .
  • Polyacrylate Crosspolymer-5 is commercially available under the tradename COSP23 from Miyoshi Kasei, Inc. (Urawa, Japan) .
  • Polyacrylate Crosspolymer-6 is a copolymer of ammonium acryloyldimethyl-taurate, dimethylacrylamide, lauryl methacrylate and laureth-4 methacrylate, crosslinked with trimethylolpropane triacrylate.
  • This copolymer is commercially available under the tradename Sepimax Zen from Seppic Afttles Reglementaires (Puteux, France) .
  • Polyacrylate Crosspolymer-7 is a copolymer of methacrylate PPG-6 phosphate and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters, crosslinked with dimethicone PEG/PPG-25/29 acrylate.
  • This copolymer is commercially available under the tradename Y-17552 from Momentive Performance Materials (Friendly, W. Va. ) .
  • Polyacrylate Crosspolymer-8 is a copolymer of t-butyl methacrylate, stearyl methacrylate, methoxy PEG-23 methacrylate, and dimethylacrylamide, crosslinked with ethylene glycol dimethacrylate.
  • Polyacrylate Crosspolymer-9 is a copolymer of t-butylaminoethyl methacrylate and carboxyethyl acrylate, crosslinked with a combination of pentaerythritol tetraacrylate and a hexafunctional acrylate formed by reacting pentaerythritol triacrylate with toluene diisocyanate.
  • Polyacrylate Crosspolymer-10 is the crosslinked polymer prepared by polymerizing a mixture of trimethoxysilylpropylmethacrylate with trimethyloylpropane trimethacrylate.
  • Polyacrylate Crosspolymer-11 is a polymer of methacrylic acid, acryloyl dimethyltaurate and dimethylacrylamide, crosslinked with PPG-3 glyceryl triacrylate, and partially neutralized with ammonia.
  • This copolymer is commercially available under the tradename Aristoflex Velvet from Clariant International Ltd. (Muttenz, Switzerland) .
  • Polyacrylate Crosspolymer-12 is a copolymer of t-butyl methacrylate, stearyl methacrylate, methoxy PEG-23 methacrylate, and dimethylacrylamide, crosslinked with methylene bis-acrylamide.
  • Polyacrylate Crosspolymer-14 is a copolymer of acrylic acid, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, and phosphorylcholine glycol methacrylate, crosslinked by an allyl ether of pentaerythritol.
  • This copolymer is commercially available under the tradename Phosphomer ST610KC from KCl Ltd. (Seoul, South Korea) .
  • the composition according to the present invention comprises a polyacrylate crosspolymer selected from polyacrylate crosspolymer-1, polyacrylate crosspolymer-2, polyacrylate crosspolymer-3, polyacrylate crosspolymer-4, polyacrylate crosspolymer-5, polyacrylate crosspolymer-6, polyacrylate crosspolymer-7, polyacrylate crosspolymer-8, polyacrylate crosspolymer-9, polyacrylate crosspolymer-10, polyacrylate crosspolymer-11, polyacrylate crosspolymer-12, polyacrylate crosspolymer-14, and a combination thereof.
  • a polyacrylate crosspolymer selected from polyacrylate crosspolymer-1, polyacrylate crosspolymer-2, polyacrylate crosspolymer-3, polyacrylate crosspolymer-4, polyacrylate crosspolymer-5, polyacrylate crosspolymer-6, polyacrylate crosspolymer-7, polyacrylate crosspolymer-8, polyacrylate crosspolymer-9, polyacrylate crosspolymer-10, polyacrylate crosspolymer-11,
  • the composition according to the present invention comprises one or more selected from polyacrylate crosspolymer-1, polyacrylate crosspolymer-6, polyacrylate crosspolymer-9, and polyacrylate crosspolymer-11.
  • the present invention provides a composition in the form of an oil-in-water emulsion for caring for keratin materials comprising, relative to the total weight of the composition:
  • a hydrophobically associative water-soluble polymer selected from polyacrylate crosspolymer-6, Steareth-100/PEG-136/HDI Copolymer, PEG-240/HDI Copolymer Bis-decyltetradeceth-20 ether, and a combination thereof.
  • composition of the present invention is in the form of oil-in-water emulsion.
  • composition according to the present invention has a lamellar structure.
  • Lamellar structure means a liquid crystal structure, or a swollen or non-swollen crystalline lamellar hydrate phase with plane symmetry, comprising several amphiphilic bilayers arranged in parallel and separated by a liquid medium which is generally water.
  • Lamellar structure has a characteristic optical effect when observed with a light microscope under 90°cross polarized light with unique optical effects, as shown in Figures 1 and 2. If the unique optical effect has been observed, it means that the lamellar structure is formed.
  • composition of the present invention can be used for caring for keratin materials.
  • the present invention provides a non-therapeutic method for caring for keratin materials, comprising applying the composition according to the first aspect of the present invention to the keratin materials.

Abstract

It relates to a composition in the form of an oil-in-water emulsion for caring for keratin materials, comprising: (i) at least one non-ionic surfactant selected from sugar ethers of C8-C22fatty alcohols; (ii) at least one non-ionic surfactant of ester type comprising a combination of at least one monounsaturated ester and at least one polyglyceryl diester; and (iii) at least one compound of ceramide type. It also relates to a non-therapeutic method for caring for keratin materials, comprising applying said composition to the skin.

Description

COMPOSITION FOR CARING FOR KERATIN MATERIALS TECHNICAL FIELD
The present invention relates to a cosmetic composition. In particular, the present invention relates to a composition for caring for keratin materials. The present invention also relates to a non-therapeutic method for caring for keratin materials.
BACKGROUND ART
Skin acts as a natural barrier between internal and external environments and therefore plays an important role in vital biological functions such as protection against mechanical and chemical injury, micro-organisms, and ultraviolet damage. The health and appearance of skin, however, can deteriorate due to environmental factors, genetic makeup, nutrition, and sun exposure. With aging, the outer skin layer (epidermis) thins, even though the number of cell layers remains unchanged. The number of pigment-containing cells (melanocytes) , however, decreases. Therefore, the skin appears pale and translucent. Large pigmented spots (age spots, liver spots, or lentigos) may appear in sun-exposed areas. Changes in the connective tissue reduce the skin's strength and elasticity. This is known as elastosis. It is more noticeable in sun-exposed areas (solar elastosis) . Elastosis produces the leathery, weather-beaten appearance common to farmers, sailors, and others who spend a large amount of time outdoors. Dehydration increases the risk of skin injury. Poor nutrition can also negatively impact the skin, causing dryness, rash, and puffiness.
Ceramides are a group of natural waxy, fatty substances in the skin, composed of sphingosine and lipids (fatty acids) bonded together. Ceramides make up about 50%of all skin lipids and are manufactured in the lower, living cells of the epidermis. As the cells mature and move to the surface, ceramides are released to the topmost layer, the stratum corneum. In the stratum corneum layer, ceramides combine with cholesterol (another important lipid found in the skin) and fatty acids to form an ordered, tightly-packed, layered, sheet-like arrangement between the dead cells. Ceramides and cholesterol protect against moisture loss to keep skin youthful and supple, and support the skin's matrix, keeping it firm. Young individuals manufacture ample ceramides and cholesterol to keep the skin healthy. However, with aging, production of ceramides and cholesterol declines, and skin begins to sag and wrinkle.
In order to achieve stabilization and repairing efficacy, skin barrier function enhancement is an essential parameter, which means transepidermal water loss (TEWL)  should be good attributes to characterize the barrier function. However, normal products with superior transepidermal water loss results usually deliver greasy sensation.
Hence, there is a need to formulate a composition for caring for the skin, which can enhance the skin barrier function without greasy sensation.
SUMMARY OF THE INVENTION
The inventors have now discovered that it is possible to formulate a composition for caring for the skin, which can enhance the skin barrier function without greasy sensation.
Accordingly, according to a first aspect, the present invention provides a composition in the form of an oil-in-water emulsion for caring for keratin materials, comprising:
(i) at least one non-ionic surfactant selected from sugar ethers of C 8-C 22 fatty alcohols;
(ii) at least one non-ionic surfactant of ester type comprising a combination of at least one monounsaturated ester and at least one polyglyceryl diester; and
(iii) at least one compound of ceramide type.
The composition of the present invention is in the form of an oil-in-water emulsion. Thus, said composition comprises a continuous aqueous phase and a dispersed fatty phase.
The inventors found that the composition of the present invention has a lamellar structure or liquid crystals.
The composition of the present invention can provide good skin barrier function and non-oily skin finish.
According to a second aspect, the present invention provides a non-therapeutic method for caring for keratin materials, comprising applying the composition according to the first aspect of the present invention to the keratin materials.
Other advantages of the present invention will emerge more clearly on reading the description and the examples that follow.
BRIEF DESCRIPTION OF THE DRAWINGS
Implementations of the present invention will now be described, by way of example only, with reference to the attached figure, wherein:
Fig. 1 shows a photo of the composition of invention example 1 (IE. 1) taken with a polarized light microscopy.
Fig. 2 shows a photo of the composition of invention example 2 (IE. 2) taken with a polarized light microscopy.
DETAILED DESCRIPTION OF THE INVENTION
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art the present invention belongs to. When the definition of a term in the present description conflicts with the meaning as commonly understood by those skilled in the art the present invention belongs to, the definition described herein shall apply.
In that which follows and unless otherwise indicated, the limits of a range of values are included within this range, in particular in the expressions "between... and…" and "ranging from... to... " .
Moreover, the expression "at least one" used in the present description is equivalent to the expression "one or more" .
Throughout the instant application, the term “comprising” is to be interpreted as encompassing all specifically mentioned features as well as optional, additional, unspecified ones. As used herein, the use of the term “comprising” also discloses the embodiment wherein no features other than the specifically mentioned features are present (i.e. “consisting of” ) .
Unless otherwise specified, all numerical values expressing amount of ingredients and the like which are used in the description and claims are to be understood as being modified by the term “about” . Accordingly, unless indicated to the contrary, the numerical values and parameters described herein are approximate values which are capable of being changed according to the desired purpose as required.
For the purposes of the present invention, the term “keratin materials” is intended to cover human skin, mucous membranes such as the lips. Facial skin is most particularly considered according to the present invention.
All percentages in the present invention refer to weight percentage, unless otherwise specified.
According to the first aspect, the present invention provides a composition in the form of an oil-in-water emulsion for caring for keratin materials, comprising:
(i) at least one non-ionic surfactant selected from sugar ethers of C 8-C 22 fatty alcohols;
(ii) at least one non-ionic surfactant of ester type comprising a combination of at least one monounsaturated ester and at least one polyglyceryl diester; and
(iii) at least one compound of ceramide type.
Non-ionic surfactants selected from sugar ethers of C 8-C 22 fatty alcohols
According to the first aspect, the present invention comprises at least one non-ionic surfactant selected from sugar ethers of C 8-C 22 fatty alcohols.
Sugar ethers that may especially be mentioned are alkylpolyglucosides (APGs) . An alkylpolyglucoside can be used alone or as a mixture of two or more alkylpolyglucosides. An alkylpolyglucoside generally has a formula (I) of:
R (O) (G)  n       (I)
wherein:
R is a linear or branched C 8-22 alkyl, preferably C 8-16 alkyl; G is a residual of a sugar; and n ranges from 1 to 5, preferably from 1.05 to 2.
The sugar for the residue G of formula (I) can be selected from the group consisting of glucose, dextrose, fructose, galactose, sucrose, ribose, lactose, maltose, xylose, mannose, cellulose dextran, or starch.
Alkylpolyglucosides useful according to the present invention comprise, for example,
- decylglucoside, for instance the product sold under the name Mydol 10 by the company Kao Chemicals, the product sold under the name Plantaren 2000 by the company Henkel, and the product sold under the name Oramix NS 10 by the company SEPPIC;
- caprylyl/capryl glucoside, for instance the product sold under the name Oramix CG 110 by the company SEPPIC or under the name Lutensol GD 70 by the company BASF;
- laurylglucoside, for instance the products sold under the names Plantaren 1200 N and Plantacare 1200 by the company Henkel;
- cocoglucoside, for instance the product sold under the name Plantacare 818/UP by the company Henkel;
- cetostearyl glucoside optionally as a mixture with cetostearyl alcohol, sold, for example, under the name Montanov 68 by the company SEPPIC, under the name Tego-Care CG90 by the company Goldschmidt and under the name Emulgade KE3302 by the company Henkel;
- arachidyl glucoside.
According to an embodiment of the present invention, the APG can be used as a mixture with a fatty alcohol, especially a fatty alcohol having 8-30 carbon atoms, e.g., 10-20 carbon atoms. Preferably, for such a mixture, the alkylpolyglucoside and the fatty alcohol have similar carbon atoms, e.g., with a difference less than 5, in particular less than 3, or less than 2. More preferably, the alkylpolyglucoside and the  fatty alcohol used in the mixture have same carbon atoms. For example, the alkylpolyglucoside and the fatty alcohol in the mixture can have a same alkyl moiety.
The mixtures of alkylpolyglucoside/fatty alcohol are known in the art, see, for example, WO 9847610 and WO 9513863.
Examples of mixtures of alkylpolyglucoside/fatty alcohol can comprise the products sold under the name of Montanov series by the company SEPPIC:
- myristyl alcohol/myristyl glucoside: Montanov 14;
- isostearyl alcohol/isostearyl glucoside: Montanov WO 18.
- cetylstearyl alcohol/cetylstearyl glucoside: Montanov 68;
- cetylstearyl alcohol/coco glucoside: Montanov 82;
- arachidyl alcohol/behenyl alcohol/arachidyl glucoside: Montanov 202;
- C 14-22 alcohol/C 14-22 alkyl glucoside: Montanov L; and
- coconut alcohol/coco glucoside: Montanov S.
Other useful APGs can comprise, such as: decyl glucoside and lauryl glucoside, sold, for example, by the company Henkel under the respective names Plantaren 2000 and Plantaren 1200. In addition, a mixture of cetostearyl glucoside with cetostearyl alcohol, in addition to Montanov 68, is also sold, for example, under the name Tegocare CG90 by the company Goldschmidt and under the name Emulgade KE3302 by the company Henkel.
Advantageously, the non-ionic surfactant selected from sugar ethers of C 8-C 22 fatty alcohols is present in the composition of the present invention in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 5 wt. %, more preferably from 0.5 wt. %to 5 wt. %, relative to the total weight of the composition.
Non-ionic surfactant of ester type
According to the first aspect, the composition according to the present invention comprises at least one non-ionic surfactant of ester type comprising a combination of at least one monounsaturated ester and at least one polyglyceryl diester.
Preferably, the non-ionic surfactant of ester type comprises:
i) at least one monounsaturated ester of formula (II) ,
R1-C (O) -O-R2    (II)
wherein:
R1 and R2 represent, respectively, a C18 to C44 fatty chain, at least one of R1 or R2 is monounsaturated; and
ii) at least one polyglyceryl diester of formula (III) ,
R3-C (O) - (O-CH2-CH (OH) -CH2) n-O-C (O) -R4    (III)
wherein:
R3 and R4 represent, respectively, a saturated C18 to C44 fatty chain, linear or branched.
Specifically, in the formula (II) , R1 and R2 represent, respectively, a C18-C40 fatty chain, more preferably a C18-C30 fatty chain. At least one of R1 or R2 is monounsaturated.
More specifically, in formula (II) , the R1-C (O) -group corresponds to the carbon chain of the fatty acid. This chain may be linear or monounsaturated, and comprises at least 18 carbon atoms. Mention can be made of oleic (C18: 1) , gadoleic (C20: 1) , erucic (C22: 1) acid, up to hexaconenoic (C26: 1) acid for unsaturated acids. The R1-C (O) group may also consist of branched and saturated acids of at least 18 carbon atoms, also called Guerbet acids. The R2-O-group may consist of monounsaturated linear fatty alcohols with at least 18 carbon atoms. Mention can therefore be made of octadecenol, eicosenol, docosenol and hexacosenol. The carbon chain of the alcohol may also be branched and saturated and comprise at least 18 carbon atoms. Such alcohols are also called Guerbet alcohols.
Preferably, the monounsaturated ester of the formula (II) is a mixture of esters comprising various lengths of fatty chains in their structures. More preferably, such a monounsaturated ester is liquid at ambient temperature.
A preferred monounsaturated ester can be mentioned is, for example, the product commonly called jojoba oil (or jojoba esters) , the liquid nature being due to the presence of monounsaturated chains. This oil comprises in particular C18: 1 (preferably minority) , C20: 1 and C22: 1 (preferably majority with C20: 1>C22: 1) unsaturated fatty acid esters, with C20: 1, C22: 1 and C24: 1 unsaturated fatty alcohols.
Preferably, in the formula (III) , the R3-C (O) -group corresponds to the carbon chain of C18 to C44 fatty acid, said acid usually being linear and saturated, preferably corresponds to a linear and saturated C20 to C34 fatty acid. This therefore includes eicosanoic (or arachidic) acid (C20) , docosanoic (or behenic) acid (C22) , tetracosanoic (or lignoceric) acid (C24) , hexacosanoic (or cerotic) acid (C26) . The R4group corresponds to the hydrocarbon chain of the alcohol, said alcohol usually being saturated linear and having a C18 to C44 chain, preferably C20 to C34 chain. n is an integer between 2 to 6.
According to the present invention, the polyglyceryl diester is obtained by esterification of a solid wax in the presence of at least one polyol.
Solid waxes suitable for obtaining the polyglyceryl diester have a melting point between 50 and 90℃. They correspond to mixtures essentially comprising monoesters having the formula R 1-C (O) -O-R 2, where the R 1-C (O) -group corresponds to the carbon chain of the fatty acid, said acid usually being linear and saturated and having a  number of carbon atoms of at least 18, and in particular 20, and preferably up to 44 and preferably 34. This therefore includes eicosanoic (or arachidic) acid (C20) , docosanoic (or behenic) acid (C22) , tetracosanoic (or lignoceric) acid (C24) , hexacosanoic (or cerotic) acid (C26) . Depending on the source of the wax, the mixture of monoesters may also contain a certain proportion of hydroxyacid esters such as hydroxypalmitic or hydroxystearic acid. This is the case for example of beeswax. The R 2group corresponds to the hydrocarbon chain of the alcohol, said alcohol usually being saturated linear and having a number of carbon atoms of at least 18, and in particular 20, and preferably up to 44 and preferably 34. Preferably said alcohol is eicosanol, docosanol or tetracosanol. Beeswax, carnauba wax, candelilla wax, rice bran wax, sunflower wax, ouricury wax, Shellac wax and sugarcane wax are examples of natural solid waxes.
Preferably, the solid wax suitable for the esterification reaction is beeswax.
Preferably, the polyol used for esterification is selected from the group comprising ethylene glycol, diethylene glycol, triethylene glycol, 2-methyl propanediol, propylene glycol, butylene glycol, neopentyl glycol, hexylene glycol, octylene glycol, polyethylene glycol, polypropylene glycol, trimethylol propane, sorbitol, erythritol, pentaerythritol, dipentaerythritol, glycerol, diglycerol and polyglycerol (i.e. a polymer of glycerol units) . More preferably, the polyol is a polyglycerol, having an average degree of polymerization between 2 and 6, preferably of 3. Preferably, the polyol is polyglycerol-3.
The non-ionic ester surfactant also comprises the acid part of a solid wax. Waxes have a complex composition. They have the common feature of containing a mixture of acid monoesters and very long chain fatty alcohols.
Preferably, the non-ionic ester surfactant is a wax derivative obtained by reacting together at least one solid wax and at least one monounsaturated ester of formula (II) in the presence of at least one polyol and optionally at least one catalyst. In such a case, a transesterification reaction occurs between the various chemical entities yielding the wax derivative.
The preferred catalysts are hydroxides or alkaline or alkaline earth alkoxides, calcium hydroxide, potassium or sodium carbonates or catalysts based on tin or titanium.
Preferably, the solid wax is advantageously selected from the group comprising carnauba wax, candelilla wax, rice bran wax, sunflower wax, sugarcane wax, ouricury wax, beeswax and Shellac wax.
In a preferred embodiment, the wax derivative is obtained by reacting jojoba oil (also called as jojoba wax) , beeswax and a polyglycerol, such as polyglycerol-3.
In practice, the reaction is preferably conducted at a temperature of between 100℃and 220℃, advantageously between 150℃ and 200℃. Preferably, the monounsaturated ester/solid wax mass ratio varies between 5/95 and 95/5, advantageously between 30/70 and 75/25. The esters of formulas (II) and (III) /polyol mass ratio preferablyvaries between 1/99 and 99/1, advantageously between 95/5 and 50/50. Preferably, the proportion of esterified polyol represents between 0.5 and 50%by weight of the mixture, the proportion of esterified fatty acids represents between 20 and 60%by weight of the mixture and the proportion of esterified fatty alcohols between 20 and 60%by weight of the mixture.
Preferably, the non-ionic surfactant of ester type comprises a diester of a C 14-C 22 fatty acid with a polyglycerol.
Typically, the C 14-C 22 fatty acid may be selected from the group of myristic acid, stearic acid, isostearic acid, palmitic acid, oleic acid, behenic acid, erucic acid and arachidic acid, and mixtures thereof.
The polyglycerol may be a polymer of glycerol units, preferably a polymer having an average degree of polymerization between 4 and 8, preferably of 6.
Preferably, said diester is a diester of distearic acid with hexaglycerol. Preferably, it is polyglyceryl-6 distearate.
According to one particular mode of the present invention, the non-ionic surfactant of ester type according to the present invention is present with at least one fatty alcohol containing from 10 to 30 carbon atoms.
As examples of fatty alcohols that may be used, mention may be made of linear or branched fatty alcohols, of synthetic origin or alternatively of natural origin, for instance alcohols originating from vegetable material (coconut, palm kernel, palm, etc. ) or animal material (tallow, etc. ) . Use is preferably made of a fatty alcohol comprising from 20 to 26 carbon atoms, preferably from 10 to 24 carbon atoms and more preferentially from 12 to 22 carbon atoms.
As particular examples of fatty alcohols that may be used in the context of the present invention, mention may in particular be made of lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, isostearyl alcohol, palmityl alcohol, oleyl alcohol, cetearyl alcohol (mixture of cetyl alcohol and stearyl alcohol) , behenyl alcohol, erucyl alcohol and arachidyl alcohol, and mixtures thereof.
In addition, it is particularly advantageous, according to the present invention, to use a mixture of polyglyceryl-6 distearate and polyglyceryl-3 beeswax, with cetyl alcohol and jojoba wax. Among the mixtures that are particularly preferred, mention may be made of the product sold by the company Gattefosse under the name 
Figure PCTCN2022083971-appb-000001
Mellifera,  comprising jojoba wax, cetyl alcohol, polyglyceryl-6 distearate, and polyglyceryl-3 beeswax (INCI name: Polyglyceryl-6 Distearate (and) Jojoba Esters (and) Polyglyceryl-3 Beeswax (and) Cetyl Alcohol) . Said mixture comprises from 5 to 30%by weight of the total weight of the mixture of jojoba wax; from 3 to 15%by weight of cetyl alcohol; at least 50%by weight of polyglyceryl-6 distearate; and from 3 to 15%by weight of polyglyceryl-3 beeswax.
Advantageously, the non-ionic surfactant of ester type is present in the composition of the present invention in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 5 wt. %, more preferably from 0.5 wt. %to 5 wt. %, relative to the total weight of the composition.
Compounds of ceramide type
According to the first aspect, the composition of the present invention comprises at least one compound of ceramide type.
According to the present invention, the term “compound of ceramide type” is understood to mean natural or synthetic ceramides and/or glycoceramides and/or pseudoceramides and/or neoceramides.
Compounds of ceramide type are disclosed, for example, in Patent Applications DE 4424530, DE 4424533, DE 4402929, DE 4420736, WO 95/23807, WO 94/07844, EP-A-0 646 572, WO 95/16665, FR-2 673 179, EP-A-0 227 994, WO 94/07844, WO 94/24097 and WO 94/10131, the teachings of which are included here by way of reference.
The compounds of ceramide type which can be used according to the present invention preferably correspond to the general formula (I) :
Figure PCTCN2022083971-appb-000002
in which:
- R 1 denotes:
- either a saturated or unsaturated and linear or branched C 1-C 50, preferably C 5-C 50, hydrocarbon radical, it being possible for this radical to be substituted by one or more hydroxyl groups optionally esterified by an acid R 7COOH, R 7 being an optionally mono-or polyhydroxylated, saturated or unsaturated and linear or branched C 1-C 35 hydrocarbon radical, it being possible for the hydroxyl or hydroxyls of the R 7 radical to be esterified by  an optionally mono-or polyhydroxylated, saturated or unsaturated and linear or branched C 1-C 35 fatty acid;
- or an R”- (NR-CO) -R’ radical, in which R denotes a hydrogen atom or a mono-or polyhydroxylated, preferably monohydroxylated, C 1-C 20 hydrocarbon radical, R’ and R” are hydrocarbon radicals, the sum of the carbon atoms of which is between 9 and 30, R’ being a divalent radical;
- or an R 8-O-CO- (CH 2p radical, in which R 8 denotes a C 1-C 20 hydrocarbon radical and p is an integer varying from 1 to 12;
- R 2 is chosen from a hydrogen atom, a radical of saccharide type, in particular a (glycosyl)  n, (galactosyl)  m or sulphogalactosyl radical, a sulphate or phosphate residue, a phosphorylethylamine radical and a phosphorylethylammonium radical, in which n is an integer varying from 1 to 4 and m is an integer varying from 1 to 8;
- R 3 denotes a hydrogen atom or a hydroxylated or nonhydroxylated and saturated or unsaturated C 1-C 33 hydrocarbon radical, it being possible for the hydroxyl or hydroxyls to be esterified by an inorganic acid or an acid R 7COOH, R 7 having the same meanings as hereinabove, and it being possible for the hydroxyl or hydroxyls to be etherified by a (glycosyl)  n, (galactosyl)  m, sulphogalactosyl, phosphorylethylamine or phosphorylethylammonium radical, it also being possible for R 3 to be substituted by one or more C 1-C 14 alkyl radicals;
preferably, R 3 denotes a C 15-C 26α-hydroxyalkyl radical, the hydroxyl group optionally being esterified by a C 16-C 30α-hydroxy acid;
- R 4 denotes a hydrogen atom, a methyl or ethyl radical, an optionally hydroxylated, saturated or unsaturated and linear or branched C 3-C 50 hydrocarbon radical or a-CH 2-CHOH-CH 2-O-R 6 radical, in which R 6 denotes a C 10-C 26 hydrocarbon radical, or an R 8-O-CO- (CH 2p radical, in which R 8 denotes a C 1-C 20 hydrocarbon radical and p is an integer varying from 1 to 12;
- R 5 denotes a hydrogen atom or an optionally mono-or polyhydroxylated, saturated or unsaturated and linear or branched C 1-C 30 hydrocarbon radical, it being possible for the hydroxyl or hydroxyls to be etherified by a (glycosyl)  n, (galactosyl)  m, sulphogalactosyl, phosphorylethylamine or phosphorylethylammonium radical;
with the proviso that, when R 3 and R 5 denote hydrogen or when R 3 denotes hydrogen and R 5 denotes methyl, then R 4 does not denote a hydrogen atom or a methyl or ethyl radical.
Preference is given, among the compounds of formula (I) , to the ceramides and/or glycoceramides with the structure described by Downing in Journal of Lipid Research, Vol.  35, 2060-2068, 1994, or those disclosed in French Patent Application FR-2 673 179, the teachings of which are included here by way of reference.
The compounds of ceramide type which are more particularly preferred according to the invention are the compounds of formula (I) for which R 1 denotes an optionally hydroxylated and saturated or unsaturated alkyl derived from C 14-C 22 fatty acids; R 2 denotes a hydrogen atom; and R 3 denotes an optionally hydroxylated and linear C 11-C 17 radical and preferably C 13-C 15 radical. R 3 preferably denotes anα-hydroxycetyl radical and R 2, R 4 and R 5 denote a hydrogen atom.
Such compounds are, for example:
- 2-N-linoleoylaminooctadecane-1, 3-diol,
- 2-N-oleoylaminooctadecane-1, 3-diol (N-oleoyldihydrosphingosine) ,
- 2-N-palmitoylaminooctadecane-1, 3-diol,
- 2-N-stearoylaminooctadecane-1, 3-diol,
- 2-N-behenoylaminooctadecane-1, 3-diol,
- 2-N- [2-hydroxypalmitoyl] aminooctadecane-1, 3-diol,
- 2-N-stearoylaminooctadecane-1, 3, 4-triol and in particular N-stearoylphytosphingosine,
- 2-N-palmitoylaminohexadecane-1, 3-diol, or the mixtures of these compounds.
Use may also be made of specific mixtures, such as, for example, the mixtures of ceramide (s) 2 and ceramide (s) 5 according to the Downing classification.
Use may also be made of the compounds of formula (I) for which R 1 denotes a saturated or unsaturated alkyl radical derived from C 12-C 22 fatty acids; R 2 denotes a galactosyl or sulphogalactosyl radical; and R 3 denotes a saturated or unsaturated C 12-C 22 hydrocarbon radical and preferably a-CH=CH- (CH 212-CH 3 group.
Mention may be made, by way of example, of the product composed of a mixture of glycoceramides sold under the trade name Glycocer by Waitaki International Biosciences.
Use may also be made of the compounds of formula (I) disclosed in Patent Applications EP-A-0 227 994, EP-A-0 647 617, EP-A-0 736 522 and WO 94/07844.
Such compounds are, for example, Questamide H (bis (N-hydroxyethyl-N-cetyl) malonamide) , sold by Quest, or the N- (2-hydroxyethyl) -N- (3-cetyloxy-2-hydroxy-propyl) amide of cetylic acid.
Use may also be made of N-docosanoyl-N-methyl-D-glucamine, disclosed in Patent Application WO 94/24097.
Most preferably, the ceramide may be selected from 2-oleamido-1, 3-octadecanediol (its CTFA name) , sold, for example, as MEXANYL GZ by Chimex, and  ceramide NP (CTFA name N-stearoylphytosphingosine) , sold, for example, as CERAMIDE III by EVONIK GOLDSCHMIDT.
Advantageously, the compound of ceramide type is present in an amount ranging from 0.01 wt. %to 10 wt. %, preferably from 0.05 wt. %to 5 wt. %, more preferably from 0.1 wt. %to 2 wt. %, relative to the total weight of the composition.
Aqueous phase
As an oil-in-water emulsion, the cosmetic composition of the present invention comprises a continuous aqueous phase.
Said aqueous phase comprises water.
Advantageously, said aqueous phase is present in an amount ranging from 80 wt. %to 99 wt. %, preferably from 90 wt. %to 99 wt. %, and more preferably from 95 wt. %to 99 wt. %of the total weight of the composition.
Oily phase
As an oil-in-water emulsion, the composition of the present invention comprises at least one dispersed oily phase.
Said fatty phase preferably comprises at least one oil.
The oil can be volatile or non-volatile.
The term “oil” means a water-immiscible non-aqueous compound that is liquid at room temperature (25℃) and at atmospheric pressure (760 mmHg) . The term “non-volatile oil” means an oil that may remain on keratin materials at room temperature and atmospheric pressure for at least several hours and that especially has a vapour pressure of less than 10 -3 mmHg (0.13 Pa) . A non-volatile oil may also be defined as having an evaporation rate such that, under the conditions defined previously, the amount evaporated after 30 minutes is less than 0.07 mg/cm 2.
These oils may be of plant, mineral or synthetic origin.
Said oil can be selected from hydrocarbonated, silicone or fluorinated oils.
The term “hydrocarbon-based oil” means an oil formed essentially from, or even constituted by, carbon and hydrogen atoms, and optionally O and N atoms, and free of Si and F heteroatoms. Such oil can contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.
The term “silicone oil” means an oil containing at least one silicon atom, especially containing Si-O groups.
The term “fluorinated oil” means an oil containing at least one fluorine atom.
Advantageously, the oily phase is present in an amount ranging from 0.5 wt. %to 15 wt. %, preferably from 1 wt. %to 10 wt. %, more preferably from 1 wt. %to 5 wt. %, relative to the total weight of the composition of the present invention.
Additional cosmetic active ingredients
The composition of the present invention may comprise an additional cosmetic active ingredient in addition to the compound of ceramide type.
As examples of cosmetic active ingredient, mention can be made of natural extracts; vitamins such as vitamin A (retinol) , vitamin E (tocopherol) , vitamin C (ascorbic acid) , vitamin B5 (panthenol) , vitamin B3 (niacinamide) , and derivatives of said vitamins (in particular esters) and mixtures thereof; urea; caffeine; salicylic acid and derivatives thereof; alpha-hydroxy acids such as lactic acid or glycolic acid and derivatives thereof; sunscreens; extracts from algae, fungi, plants, yeasts and bacteria; enzymes; agents acting on the microcirculation, and so on.
It is easy for the skilled in the art to adjust the amount of the additional cosmetic active ingredient based on the final use of the composition according to the present invention.
Preferably, the composition of the present invention comprises a cosmetic active compound selected from C-glycosides of formula (V) :
Figure PCTCN2022083971-appb-000003
in which:
-R represents a saturated C 1 to C 10, in particular C 1 to C 4, alkyl radical which can optionally be substituted by at least one radical selected from OH, COOH or COOR” 2, with R” 2 being a saturated C 1-C 4 alkyl radical,
- S represents a monosaccharide or a polysaccharide comprising up to 20 sugar units, in particular up to 6 sugar units, in pyranose and/or furanose form and of the L and/or D series, it being possible for the said monosaccharide or polysaccharide to be substituted by a hydroxyl group which is necessarily free and optionally one or more optionally protected amine functional group (s) , and
- X represents a radical selected from the–CO-, -CH (OH) -, -CH (NH 2) -, -CH (NHCH 2CH 2CH 2OH) -, -CH (NHPh) -and–CH (CH 3) -groups and in particular a–CO-, -CH (OH) -or–CH (NH 2) -radical and more particularly a–CH (OH) -radical,
the S-CH 2-X bond represents a bond of C-anomeric nature, which can be α or β,  and also their physiologically acceptable salts, their solvates, such as the hydrates, and their optical and geometrical isomers.
The C-glycosides of formula (V) of use for the implementation of the invention are in particular those for which R denotes a saturated linear C 1 to C 6, in particular C 1 to C 4, preferentially C 1 to C 2, alkyl radical and more preferably a methyl radical.
Mention may in particular be made, among the alkyl groups suitable for the implementation of the invention, of the methyl, ethyl, isopropyl, n-propyl, n-butyl, t-butyl, isobutyl, sec-butyl, pentyl, n-hexyl, cyclopropyl, cyclopentyl or cyclohexyl groups.
According to one embodiment of the invention, use may be made of a C-glycoside compound corresponding to the formula (V) for which S can represent a monosaccharide or a polysaccharide comprising up to 6 sugar units, in pyranose and/or furanose form and of L and/or D series, the said mono-or polysaccharide exhibiting at least one necessarily free hydroxyl functional group and/or optionally one or more necessarily protected amine functional groups, X and R otherwise retaining all of the definitions given above.
Advantageously, a monosaccharide of the invention can be selected from D-glucose, D-galactose, D-mannose, D-xylose, D-lyxose or L-fucose, L-arabinose, L-rhamnose, D-glucuronic acid, D-galacturonic acid, D-iduronic acid, N-acetyl-D-glucosamine or N-acetyl-D-galactosamine and advantageously denotes D-glucose, D-xylose, N-acetyl-D-glucosamine or L-fucose and in particular D-xylose.
More particularly, a polysaccharide of the invention comprising up to 6 sugar units can be selected from D-maltose, D-lactose, D-cellobiose, D-maltotriose, a disaccharide combining a uronic acid selected from D-iduronic acid or D-glucuronic acid with a hexosamine selected from D-galactosamine, D-glucosamine, N-acetyl-D-galactosamine or N-acetyl-D-glucosamine, an oligosaccharide comprising at least one xylose which can advantageously be selected from xylobiose, methyl-β-xylobioside, xylotriose, xylotetraose, xylopentaose and xylohexaose and in particular xylobiose, which is composed of two xylose molecules linked via a 1-4 bond.
More particularly, Scan represent a monosaccharide selected from D-glucose, D-xylose, L-fucose, D-galactose or D-maltose and in particular D-xylose.
Preferably, use is made of a C-glycoside derivative of formula (V) for which:
- R denotes an unsubstituted linear C 1-C 4, in particular C 1-C 2, alkyl radical, especially a methyl radical;
- S represents a monosaccharide as described above and selected in particular from D-glucose, D-xylose, N-acetyl-D-glucosamine or L-fucose, and in particular D-xylose;
- X represents a group selected from-CO-, -CH (OH) -or-CH (NH 2) -and preferably a-CH (OH) -group.
The acceptable salts of the compounds described in the present invention comprise conventional non-toxic salts of the said compounds, such as those formed from organic or inorganic acids. Mention may be made, by way of example, of the salts of inorganic acids, such as sulfuric acid, hydrochloric acid. Mention may also be made of the salts of organic acids, which can comprise one or more carboxylic, sulfonic or phosphonic acid groups. Mention may in particular be made of propionic acid, acetic acid, terephthalic acid, citric acid and tartaric acid.
When the compound of formula (V) comprises an acid group, neutralization of the acid group (s) can be carried out with an inorganic base, such as LiOH, NaOH, KOH, Ca (OH)  2, NH 4OH, Mg (OH)  2 or Zn (OH)  2, or with an organic base, such as a primary, secondary or tertiary alkylamine, for example triethylamine or butylamine. This primary, secondary or tertiary alkylamine can comprise one or more nitrogen and/or oxygen atoms and can thus comprise, for example, one or more alcohol functional groups; mention may in particular be made of 2-amino-2-methylpropanol, triethanolamine, 2- (dimethylamino) propanol or 2-amino-2- (hydroxymethyl) -1, 3-propanediol. Mention may also be made of lysine or 3- (dimethylamino) propylamine.
The solvates which are acceptable for the compounds described in the present invention comprise conventional solvates, such as those formed during the final stage of preparation of the said compounds due to the presence of solvents. Mention may be made, by way of example, of the solvates due to the presence of water or of linear or branched alcohols, such as ethanol or isopropanol.
Of course, according to the invention, a C-glycoside derivative corresponding to the formula (V) can be used alone or as a mixture with other C-glycoside derivatives and in any proportion.
A C-glycoside derivative which is suitable for the invention can in particular be obtained by the synthetic method described in the document WO 02/051828.
Mention may in particular be made, by way of non-limiting illustration of the C-glycoside compounds which are particularly suitable for the invention, of the following compounds:
- C-β-D-xylopyranoside-n-propane-2-one,
- C-α-D-xylopyranoside-n-propan-2-one,
- C-β-D-xylopyranoside-2-hydroxypropane,
- C-α-D-xylopyranoside-2-hydroxypropane,
- 1- (C-β-D-fucopyranoside) propan-2-one,
- 1- (C-α-D-fucopyranoside) propan-2-one,
- 1- (C-β-L-fucopyranoside) propan-2-one,
- 1- (C-α-L-fucopyranoside) propan-2-one,
- 1- (C-β-D-fucopyranoside) -2-hydroxypropane,
- 1- (C-α-D-fucopyranoside) -2-hydroxypropane,
- 1- (C-β-L-fucopyranoside) -2-hydroxypropane,
- 1- (C-α-L-fucopyranoside) -2-hydroxypropane,
- 1- (C-β-D-glucopyranosyl) -2-hydroxypropane,
- 1- (C-α-D-glucopyranosyl) -2-hydroxypropane,
- 1- (C-β-D-galactopyranosyl) -2-hydroxypropane,
- 1- (C-α-D-galactopyranosyl) -2-hydroxypropane,
- 1- (C-β-D-fucofuranosyl) propan-2-one,
- 1- (C-α-D-fucofuranosyl) propan-2-one,
- 1- (C-β-L-fucofuranosyl) propan-2-one,
- 1- (C-α-L-fucofuranosyl) propan-2-one,
- C-β-D-maltopyranoside-n-propane-2-one,
- C-α-D-maltopyranoside-n-propan-2-one,
- C-β-D-maltopyranoside-2-hydroxypropane,
- C-α-D-maltopyranoside-2-hydroxypropane, their isomers and their mixtures.
According to one embodiment, C-β-D-xylopyranoside-2-hydroxypropane or C-α-D-xylopyranoside-2-hydroxypropane and better still C-β-D-xylopyranoside-2-hydroxypropane can advantageously be used for the preparation of a composition according to the invention.
According to a specific embodiment, the C-glycoside compound can be C-β-D-xylopyranoside-2-hydroxypropane (or hydroxypropyl tetrahydropyrantriol) provided in the form of a solution containing 35%by weight of active material in propylene glycol.
If presents, advantageously, the cosmetic active compound selected from C-glycosides of formula (V) is present in the composition in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 7 wt. %, preferably from 1 wt. %to 5 wt. %, relative to the total weight of the composition.
Additional adjuvants or additives
The composition of the present invention may comprise may also contain conventional cosmetic adjuvants or additives, for instance fragrances, chelating agents, preserving agents and bactericides, thickeners, pH regulators, fillers and mixtures thereof.
The skilled in the art can select the amount of the additional adjuvants or additive so as not to adversely impact the final use of the composition according to the present invention.
Preferably, the composition of the present invention comprises at least one hydrophobically associative water-soluble polymer.
As used herein, hydrophobically associative water-soluble polymer means any amphiphilic polymer having in its structure at least one fatty chain as hydrophobic end and a least one hydrophilic portion as blockbone.
Preferably, the hydrophobically associative water-soluble polymer is selected from nonionic associative polyether-polyurethanes, polyacrylate crosspolymers, and a combination thereof.
● Nonionic associative polyether-polyurethanes:
said polymers may contain in their chain both hydrophilic sequences most often of a polyoxyethylenated nature and hydrophobic sequences which may be aliphatic linkages alone and/or cycloaliphatic and/or aromatic linkages.
Preferably, these polyether-polyurethanes comprise at least two lipophilic hydrocarbon chains having from 6 to 30 carbon atoms, preferably from 8 to 30, separated by a hydrophilic sequence. It is possible for the hydrocarbon chains to be pendent chains or chains at the end of a hydrophilic sequence. In particular, it is possible for one or more pendent chains to be envisaged. In addition, the polymer may comprise a hydrocarbon chain at one end or at both ends of a hydrophilic sequence.
The polyether-polyurethanes may be polyblocks, in particular in triblock form. The hydrophobic sequences may be at each end of the chain (for example: triblock copolymer with hydrophilic central sequence) or distributed both at the ends and in the chain (polyblock copolymers for example) . These same polymers may also be in the form of graft units or may be star-shaped.
The polyether-polyurethane can increase viscosity or consistency of the composition according to the present invention. Thus, after application of the composition according to the present invention, it can recover the original elasticity of the composition quickly.
The polyether-polyurethanes containing a fatty chain may be triblock copolymers whose hydrophilic sequence is a polyoxyethylenated chain comprising from 50 to 1000 oxyethylenated groups.
The polyether-polyurethanes comprise a urethane bond between the hydrophilic sequences, hence the origin of the name.
By extension, those whose hydrophilic sequences are linked by other chemical bonds to the hydrophobic sequences are also included among the nonionic polyether-polyurethanes containing a hydrophobic chain.
By way of examples of nonionic polyether-polyurethanes containing a hydrophobic chain which can be used in the present invention, it is also possible to use
Figure PCTCN2022083971-appb-000004
205 containing a urea functional group sold by the company RHEOX or the
Figure PCTCN2022083971-appb-000005
208, 204 or 212, as well as
Figure PCTCN2022083971-appb-000006
1840.
There may also be mentioned the product ELFACOS
Figure PCTCN2022083971-appb-000007
containing a C 12-C 14 alkyl chain and the product ELFACOS
Figure PCTCN2022083971-appb-000008
containing a C 18 alkyl chain from AKZO.
The product DW
Figure PCTCN2022083971-appb-000009
from ROHM & HAAS containing a C 20 alkyl chain and with a urethane bond, sold at 20%dry matter content in water, may also be used.
It is also possible to use solutions or dispersions of these polymers in particular in water or in an aqueous-alcoholic medium. By way of examples of such polymers, there may be mentioned
Figure PCTCN2022083971-appb-000010
255, 
Figure PCTCN2022083971-appb-000011
278 and
Figure PCTCN2022083971-appb-000012
244 sold by the company RHEOX. It is also possible to use the product DW 1206F and DW 1206J provided by the company ROHM & HAAS.
The above-described polyether-polyurethanes which can be used can also be selected from those described in the article by G Fonnum, J. Bakke and Fk. Hansen-Colloid Polym. Sci 271, 380-389 (1993) .
As the above-described polyether-polyurethanes, mention may be made of polyether-polyurethanes comprising in their chain at least one polyoxyethylenated hydrophilic block and at least one of hydrophobic blocks containing at least one sequence selected from aliphatic sequences, cycloaliphatic sequences, and aromatic sequences.
It may be preferable that the polyether-polyurethanes comprise at least two hydrocarbon-based lipophilic chains having from 8 to 30 carbon atoms, separated by a hydrophilic block, and wherein the hydrocarbon-based chains are selected from pendent chains and chains at the end of the hydrophilic block.
According to a specific form of the present invention, use will be made of a polyether-polyurethane that may be obtained by polycondensation of at least three compounds comprising (i) at least one polyethylene glycol comprising from 150 to 180 mol of ethylene oxide, (ii) a polyoxyethylenated stearyl alcohol comprising 100 mol of ethylene oxide, and (iii) a diisocyanate.
Such polyurethane/polyethers are sold especially by the company Elementis under the name Rheolate FX
Figure PCTCN2022083971-appb-000013
and Rheoluxe 8118, which is a polycondensate of polyethylene glycol containing 136 mol of ethylene oxide, of stearyl alcohol polyoxyethylenated with 100 mol of ethylene oxide and of hexamethylene diisocyanate  (HDI) with a weight-average molecular weight of 40000 (INCI name: PEG-136/Steareth-100/HDI Copolymer) .
According to another specific form of the present invention, use will be made of a polyether-polyurethane that may be obtained by polycondensation of at least three compounds comprising (i) at least one polyethylene glycol comprising from 150 to 180 mol of ethylene oxide, (ii) stearyl alcohol or decyl alcohol, and (iii) at least one diisocyanate.
Such polyurethane/polyethers are sold in particular by the company Rohm & Haas under the names Aculyn
Figure PCTCN2022083971-appb-000014
and Aculyn
Figure PCTCN2022083971-appb-000015
Aculyn
Figure PCTCN2022083971-appb-000016
having the INCI name: PEG-150/Stearyl Alcohol/SMDI Copolymer, is a polycondensate of polyethylene glycol comprising 150 or 180 mol of ethylene oxide, of stearyl alcohol and of methylenebis (4-cyclohexyl isocyanate) (SMDI) at 15%by weight in a matrix of maltodextrin (4%) and water (81%) (INCI name: PEG-150/Stearyl Alcohol/SMDI Copolymer) .
Aculyn
Figure PCTCN2022083971-appb-000017
 (PEG-150/Decyl Alcohol/SMDI Copolymer) is a polycondensate of polyethylene glycol comprising 150 or 180 mol of ethylene oxide, of decyl alcohol and of methylenebis (4-cyclohexyl isocyanate) (SMDI) at 35%by weight in a mixture of propylene glycol (39%) and water (26%) (INCI name: PEG-150/Decyl Alcohol/SMDI Copolymer) .
As the associative polyurethanes, it may be preferable to use a compound represented by the following formula (1) :
R 1- { (O-R 2k-OCONH-R 3 [-NHCOO- (R 4-O)  n-R 5hm     (1)
wherein R 1 represents a hydrocarbon group, R 2and R 4independently represent alkylene groups having 2 to 4 carbon atoms, which alkylene groups may be identical or different from each other, or a phenylethylene group, R 3 represents a hydrocarbon group, which may optionally have a urethane bond, R 5 represents a branched chain or secondary hydrocarbon group, m represents a number of at least 2, h represents a number of at least l, k represents a number within the range of 1 to 500, and n represents a number within the range of 1 to 200.
The hydrophobically modified polyurethane that is represented by the general formula (1) shown above is obtained by, for example, reacting at least one polyether polyol that is represented by the formula R 1- [ (O-R 2k-OH]  m, at least one polyisocyanate that is represented by the formula R 3- (NCO)  h+1, and at least one polymonoalcohol that is represented by the formula HO- (R 4-O)  n-R 5.
In such cases, R 1to R 5 in the general formula (1) are determined by the compounds R 1- [ (O-R 2k-OH]  m, R 3- (NCO)  h+1and HO- (R 4-O)  n-R 5. The loading ratios among the three compounds are not limited particularly and should preferably be such that the ratio  of the isocyanate group derived from the polyisocyanate to the hydroxyl group derived from the polyether polyol and the polyether monoalcohol is selected within the range of NCO/OH of between 0.8: 1 and 1.4: 1.
The polyether polyol compound that is represented by the formula R 1- [ (O-R 2k-OH]  m and that may be used preferablyfor obtaining the associative thickener represented by the general formula (1) may be obtained from addition polymerization of an m-hydric polyol with an alkylene oxide, such as ethylene oxide, propylene oxide, butylene oxide, or epichlorohydrin, or with styrene oxide, and the like.
The polyols should preferably be di-to octa-hydric polyols. Examples of the di-to octa-hydric polyols include dihydric alcohols, such as ethylene glycol, propylene glycol, butylene glycol, hexamethylene glycol, and neopenthyl glycol; trihydric alcohols, such as glycerol, trioxyisobutane, 1, 2, 3-butanetriol, 1, 2, 3-pentanetriol, 2-methyl-1, 2, 3-propanetriol, 2-methyl-2, 3, 4-butanetriol, 2-ethyl-1, 2, 3-butanetriol, 2, 3, 4-pentanetriol, 2, 3, 4-hexanetriol, 4-propyl-3, 4, 5-heptanetriol, 2, 4-dimethyl-2, 3, 4-pentanetriol, pentamethylglycerol, pentaglycerol, 1, 2, 4-butanetriol, 1, 2, 4-pentanetriol, trimethylolethane, and trimethylolpropane; tetrahydric alcohols, such as pentaerythritol, 1, 2, 3, 4-pentanetetrol, 2, 3, 4, 5-hexanetetrol, 1, 2, 4, 5-pentanetetrol, and 1, 3, 4, 5-hexanetetrol; pentahydric alcohols, such as adonitol, arabitol, and xylitol; hexahydric alcohols, such as dipentaerythritol, sorbitol, mannitol, and iditol; and octahydric alcohols, such as sucrose.
Also, R 2 is determined by the alkylene oxide, styrene oxide, or the like, which is subjected to the addition. Particularly, for availability and excellent effects, an alkylene oxide having 2 to 4 carbon atoms, or styrene oxide is preferable.
The alkylene oxide, styrene oxide, or the like, to be subjected to the addition may be subjected to single polymerization, or random polymerization or block polymerization of at least two members. The procedure for the addition may be a conventional procedure. Also, the polymerization degree k may be selected within the range of 0 to 1,000, preferably within the range of 1 to 500, and more preferably within the range of 10 to 200. Further, the ratio of the ethylene group occupying R 2should preferably be within the range of 50 to 100 mass%with respect to the total quantity of R 2. In such cases, the associative thickener appropriate for the purposes of the present invention is obtained.
Furthermore, the molecular weight of the polyether polyol compound that is represented by the formula R 1- [ (O-R 2k-OH]  mshould preferably be selected within the range of 500 to 100,000, and should more preferably be selected within the range of 1,000 to 50,000.
The polyisocyanate that is represented by the formula R 3- (NCO)  h+1and that may be used preferably for obtaining the hydrophobically modified polyether urethane represented by the general formula (1) employed in accordance with the present invention is not limited particularly in so far as the polyisocyanate has at least two isocyanate groups in the molecule. Examples of the polyisocyanates include aliphatic diisocyanates, aromatic diisocyanates, alicyclic diisocyanates, biphenyl diisocyanate, phenylmethane diisocyanate, phenylmethane triisocyanate, and phenylmethane tetraisocyanate.
Also, it is possible to employ dimers and trimers (isocyanurate bonds) of the above-enumerated polyisocyanates. Further, it is possible to employ biuret obtained by a reaction with an amine.
Furthermore, it is possible to employ a polyisocyanate having a urethane bond obtained by a reaction of the aforesaid polyisocyanate compound and a polyol. As the polyol, di-to octa-hydric polyols are preferable, and the above-enumerated polyols are preferable. In cases where a tri-or higher-hydric polyisocyanate is used as the polyisocyanate that is represented by the formula R 3- (NCO)  n+1, it is preferable to employ the aforesaid polyisocyanate having the urethane bond.
The polyether monoalcohol that is represented by the formula HO- (R 4-O)  n-R 5 and that may be used preferably for obtaining the hydrophobically modified polyether urethane represented by the general formula (1) employed in accordance with the present invention is not limited particularly in so far as the polyether monoalcohol is a polyether of a straight chain, branched chain, or secondary monohydric alcohol. The polyether monoalcohol may be obtained by addition polymerization of the straight chain, branched chain, or secondary monohydric alcohol with an alkylene oxide, such as ethylene oxide, propylene oxide, butylene oxide, or epichlorohydrin, or with styrene oxide, and the like.
As the compound represented by the general formula (1) , polyethyleneglycol-240/decyltetradeceth-20/hexamethylene diisocyanate copolymer is preferable. The polyethyleneglycol-240/decyltetradeceth-20/hexamethylene diisocyanate copolymer is referred to also as PEG-240/HDI copolymer bis-decyltetradeceth-20 ether.
According to the present invention, it is preferable that the polyether-polyurethane be selected from Steareth-100/PEG-136/HDI Copolymer sold by the company Rheox under the name of Rheolate FX 1100, PEG-240/HDI Copolymer Bis-decyltetradeceth-20 ether sold by the company Asahi Denka under the name of Adekanol GT-700, and a combination thereof.
● Polyacrylate crosspolymers
The term “polycrylates crosspolymer” as used in the present application refers to a copolymer of acrylic acid, methacrylic acid or one of its esters, crosslinked with glycol dimethacrylate.
The following is a non-limiting list of polyacrylates crosspolymers, which can be used in the composition of the present invention.
Polyacrylate Crosspolymer-1 is a copolymer of one or more simple esters of acrylic or methacrylic acid, C 1-4 dialkylamino C 1-6 alkyl methacrylate, PEG/PPG-30/5 allyl ether, PEG 20-25 C 10-30 alkyl ether methacrylate, hydroxy C 2-6 alkyl methacrylate crosslinked with ethylene glycol dimethacrylate. This copolymer is commercially available under the tradename Carbopol Aqua CC Polymer from Lubrizol Advanced Materials, Inc. (Cleveland, Ohio) .
Polyacrylate Crosspolymer-2 is a copolymer of PEG/PPG-23/6 Dimethicone citraconate, C 10-30 alkyl PEG-25 methacrylate, and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters, crosslinked with trimethylolpropane PEG-15 triacrylate. This copolymer is commercially available under the tradename Fixate Superhold Polymer from Lubrizol Advanced Materials, Inc. (Cleveland, Ohio) .
Polyacrylate Crosspolymer-3 is a copolymer of butyl acrylate, PEG-10 acrylate, PPG-6 acrylate and dimethylacrylamide, crosslinked by PEG-23 Diacrylate. This copolymer is commercially available under the tradename Plascize L-64S from Goo Chemical Company, Ltd. (Kyoto, Japan) .
Polyacrylate Crosspolymer-4 is a copolymer of sodium acryloyldimethyltaurate, dimethyl acrylamide, sodium acrylate, acrylic acid and hydroxyethylacrylate crosslinked with methylene bis-propenamide. This copolymer is commercially available under the tradename Sepinov P500 from Seppic (Paris, France) .
Polyacrylate Crosspolymer-5 is commercially available under the tradename COSP23 from Miyoshi Kasei, Inc. (Urawa, Japan) .
Polyacrylate Crosspolymer-6 is a copolymer of ammonium acryloyldimethyl-taurate, dimethylacrylamide, lauryl methacrylate and laureth-4 methacrylate, crosslinked with trimethylolpropane triacrylate. This copolymer is commercially available under the tradename Sepimax Zen from Seppic Affaires Reglementaires (Puteux, France) .
Polyacrylate Crosspolymer-7 is a copolymer of methacrylate PPG-6 phosphate and one or more monomers of acrylic acid, methacrylic acid or one of their simple esters, crosslinked with dimethicone PEG/PPG-25/29 acrylate. This copolymer is commercially available under the tradename Y-17552 from Momentive Performance Materials (Friendly, W. Va. ) .
Polyacrylate Crosspolymer-8 is a copolymer of t-butyl methacrylate, stearyl methacrylate, methoxy PEG-23 methacrylate, and dimethylacrylamide, crosslinked with ethylene glycol dimethacrylate.
Polyacrylate Crosspolymer-9 is a copolymer of t-butylaminoethyl methacrylate and carboxyethyl acrylate, crosslinked with a combination of pentaerythritol tetraacrylate and a hexafunctional acrylate formed by reacting pentaerythritol triacrylate with toluene diisocyanate.
Polyacrylate Crosspolymer-10 is the crosslinked polymer prepared by polymerizing a mixture of trimethoxysilylpropylmethacrylate with trimethyloylpropane trimethacrylate.
Polyacrylate Crosspolymer-11 is a polymer of methacrylic acid, acryloyl dimethyltaurate and dimethylacrylamide, crosslinked with PPG-3 glyceryl triacrylate, and partially neutralized with ammonia. This copolymer is commercially available under the tradename Aristoflex Velvet from Clariant International Ltd. (Muttenz, Switzerland) .
Polyacrylate Crosspolymer-12 is a copolymer of t-butyl methacrylate, stearyl methacrylate, methoxy PEG-23 methacrylate, and dimethylacrylamide, crosslinked with methylene bis-acrylamide.
Polyacrylate Crosspolymer-14 is a copolymer of acrylic acid, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, and phosphorylcholine glycol methacrylate, crosslinked by an allyl ether of pentaerythritol. This copolymer is commercially available under the tradename Phosphomer ST610KC from KCl Ltd. (Seoul, South Korea) .
According to some embodiments, the composition according to the present invention comprises a polyacrylate crosspolymer selected from polyacrylate crosspolymer-1, polyacrylate crosspolymer-2, polyacrylate crosspolymer-3, polyacrylate crosspolymer-4, polyacrylate crosspolymer-5, polyacrylate crosspolymer-6, polyacrylate crosspolymer-7, polyacrylate crosspolymer-8, polyacrylate crosspolymer-9, polyacrylate crosspolymer-10, polyacrylate crosspolymer-11, polyacrylate crosspolymer-12, polyacrylate crosspolymer-14, and a combination thereof.
Preferably, the composition according to the present invention comprises one or more selected from polyacrylate crosspolymer-1, polyacrylate crosspolymer-6, polyacrylate crosspolymer-9, and polyacrylate crosspolymer-11.
More preferably, the composition according to the present invention comprises a hydrophobically associative water-soluble polymer selected from polyacrylate crosspolymer-6, Steareth-100/PEG-136/HDI Copolymer, PEG-240/HDI Copolymer Bis-decyltetradeceth-20 ether, and a combination thereof.
If presents, advantageously, the hydrophobically associative water-soluble polymer is present in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 5  wt. %, more preferably from 0.3 wt. %to 3 wt. %, relative to the total weight of the composition.
According to a particularly preferred embodiment, the present invention provides a composition in the form of an oil-in-water emulsion for caring for keratin materials comprising, relative to the total weight of the composition:
(i) from 0.5 wt. %to 5 wt. %ARACHIDYL ALCOHOL (and) BEHENYL ALCOHOL (and) ARACHIDYL GLUCOSIDE;
(ii) from 0.5 wt. %to 5 wt. %of POLYGLYCERYL-6 DISTEARATE (and) JOJOBA ESTERS (and) CETYL ALCOHOL (and) POLYGLYCERYL-3 BEESWAX;
(iii) from 0.1 wt. %to 2 wt. %of compound selected from 2-oleamido-1, 3-octadecanediol and ceramide NP;
(iv) from 1 wt. %to 5 wt. %of hydroxypropyl tetrahydropyrantriol; and
(v) from 0.3 wt. %to 3 wt. %of a hydrophobically associative water-soluble polymer selected from polyacrylate crosspolymer-6, Steareth-100/PEG-136/HDI Copolymer, PEG-240/HDI Copolymer Bis-decyltetradeceth-20 ether, and a combination thereof.
Galenic form and method
The composition of the present invention is in the form of oil-in-water emulsion.
The composition according to the present invention has a lamellar structure.
The term "lamellar structure" means a liquid crystal structure, or a swollen or non-swollen crystalline lamellar hydrate phase with plane symmetry, comprising several amphiphilic bilayers arranged in parallel and separated by a liquid medium which is generally water. Lamellar structure has a characteristic optical effect when observed with a light microscope under 90°cross polarized light with unique optical effects, as shown in Figures 1 and 2. If the unique optical effect has been observed, it means that the lamellar structure is formed.
The composition of the present invention can be used for caring for keratin materials.
According to the second aspect, the present invention provides a non-therapeutic method for caring for keratin materials, comprising applying the composition according to the first aspect of the present invention to the keratin materials.
The following examples serve to illustrate the present invention without, however, being limiting in nature.
EXAMPLES
Main raw materials used, trade names and supplier thereof are listed in Table 1.
Table 1
Figure PCTCN2022083971-appb-000018
Invention examples 1-2 and comparative examples 1-2
Compositions of invention examples (IE. ) 1-2 and comparative examples (CE. ) 1-2 were prepared according to the amounts given in Table 2. The amount of each component is given in%by weight of the total weight of the composition containing it.
Table 2
Figure PCTCN2022083971-appb-000019
Figure PCTCN2022083971-appb-000020
ARACHIDYL ALCOHOL (and) BEHENYLALCOHOL (and) ARACHIDYL GLUCOSIDE  1) : comprising 55 wt. %of ARACHIDYL ALCOHOL, 30 wt. %of BEHENYL ALCOHOL and 15 wt. %of ARACHIDYL GLUCOSIDE.
POLYGLYCERYL-6 DISTEARATE (and) JOJOBA ESTERS (and) CETYL ALCOHOL (and) POLYGLYCERYL-3 BEESWAX: comprising 64 wt. %of POLYGLYCERYL-6 DISTEARATE, 19 wt. %of JOJOBA ESTERS 8.5 wt. %of CETYL ALCOHOL and 8.5 wt. %of POLYGLYCERYL-3 BEESWAX
Preparation process:
The compositions listed above were prepared as follows, taking the composition of invention example 1 as an example:
1) . Mixt the ingredients for a water phase (glycerin, sodium dilauramidoglutamide lysine, phenoxyethanol, and water) with homogenizer and heat to 70 ℃.
2) . Mix ARACHIDYL ALCOHOL (and) BEHENYL ALCOHOL (and) ARACHIDYL GLUCOSIDE, POLYGLYCERYL-6 DISTEARATE (and) JOJOBA ESTERS (and) CETYL ALCOHOL (and) POLYGLYCERYL-3 BEESWAX, 2-oleamido-1, 3-octadecanediol, C15-19 alkane, hexyldecanol with homogenizer to obtain a mixture and heat to 70 ℃.
3) . Introduce the mixture into the water phase and keep homogenizing at 60 ℃ for 10 min to get an o/w emulsion.
4) . Add polymers (PEG-240/HDI COPOLYMER BIS-DECYLTETRADECETH-20 ETHER, and POLYACRYLATE CROSSPOLYMER-6) into the emulsion and homogenize for 10 min.
5) . Remove the emulsion to a disperser and cool the emulsion to room temperature, keep agitation and add hydroxypropyl tetrahydropyrantriol.
6) . Adjust the pH value with sodium hydroxide to obtain the composition.
Evaluation
Each composition of invention examples 1-2 and comparative examples 1-2 was evaluated in terms of lamellar structure, skin barrier function and skin finish.
Lamellar structure
Whether a lamellar structure is formed was evaluated as follows.
Compositions was observed using a Leica DLMB microscope under 90°cross polarized light, and microscopic pictures were taken. If characteristic optical effects of lamellar structure were observed, it means that lamellar structure was formed.
Fig. 1 shows a photo of the composition of invention example 1 (IE. 1) taken with a polarized light microscopy.
Fig. 2 shows a photo of the composition of invention example 2 (IE. 2) taken with a polarized light microscopy.
Skin finish
The skin finish each composition of invention Examples 1-2 and comparative examples 1-2 will deliver was evaluated by inviting 10 Chinese female volunteers to apply each composition on their face and to score the skin finish on a scale of 1-5 and average, wherein 1 stands for very oily skin finish and 5 stands for very refresh skin finish. All of the 10 volunteers report the score for skin finish 10 minutes after application.
The results of lamellar structure of each composition prepared above and skin finish delivered were listed in Table 3.
Table 3
Item IE. 1 IE. 2 CE. 1 CE. 2
lamellar structure YES YES YES YES
Skin finish 4 4 2 3
NA: not observed.
Transepidermal water loss (TEWL)
Transepidermal water loss (TEWL) for compositions of invention examples 1-2 and comparative examples 1-2 as well as a commercial product (La Mer concentrate serum from the company Estee Lauder) was determined with a vapometer on forearms of 6 female volunteers of 18-40 years old as follows.
18μl (2 mg/cm 2) of each tested sample was transferred and gently spread evenly on each test area of 3*3 cm 2. And transepidermal water loss (TEWL) obtained on an untreated area was used as a blank control.
Lower TEWL indicates better skin barrier function.
The results are summarized in Table 4.
Table 4
Figure PCTCN2022083971-appb-000021
It can be seen that compositions of invention examples 1-2 deliver better skin barrier function as compared with compositions of comparative examples 1-2 and the commercial product.

Claims (14)

  1. A composition in the form of an oil-in-water emulsion for caring for keratin materials, comprising:
    (i) at least one non-ionic surfactant selected from sugar ethers of C 8-C 22 fatty alcohols;
    (ii) at least one non-ionic surfactant of ester type comprising a combination of at least one monounsaturated ester and at least one polyglyceryl diester; and
    (iii) at least one compound of ceramide type.
  2. Composition according to claim 1, wherein the sugar ethers are alkylpolyglucosides having a formula (I) of:
    R (O) (G)  n    (I)
    wherein:
    R is a linear or branched C 8-22 alkyl, preferably C 8-16 alkyl;
    G is a residual of a sugar selected from the group consisting of glucose, dextrose, fructose, galactose, sucrose, ribose, lactose, maltose, xylose, mannose, cellulose dextran, or starch; and
    n ranges from 1 to 5, preferably from 1.05 to 2.
  3. Composition according to claim 2, wherein the alkylpolyglucoside is used as a mixture with a fatty alcohol having 8-30 carbon atoms, e.g., 10-20 carbon atoms, wherein the alkylpolyglucoside and the fatty alcohol have similar carbon atoms with a difference less than 5, or less than 2, or being 0.
  4. Composition according to claim 3, wherein the mixture of alkylpolyglucoside with the fatty alcohol is selected from: myristyl alcohol/myristyl glucoside, isostearyl alcohol/isostearyl glucoside, cetylstearyl alcohol/cetylstearyl glucoside, cetylstearyl alcohol/coco glucoside, arachidyl alcohol/behenyl alcohol/arachidyl glucoside, arachidyl alcohol/behenyl alcohol/arachidyl glucoside, C 14-22 alcohol/C 14-22 alkyl glucoside, and coconut alcohol/coco glucoside.
  5. Composition according to any of claims 1 to 4, wherein the non-ionic surfactant selected from sugar ethers of C 8-C 22 fatty alcohols is present in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 5 wt. %, more preferably from 0.5 wt. %to 5 wt. %, relative to the total weight of the composition.
  6. Cosmetic composition according to any of claims 1 to 5, wherein the non-ionic surfactant of ester type comprises:
    i) at least one monounsaturated ester of formula (II) ,
    R1-C (O) -O-R2  (II)
    wherein:
    R1 and R2 represent, respectively, a C18 to C44 fatty chain, at least one of R1 or R2 is monounsaturated; and
    ii) at least one polyglyceryl diester of formula (III) ,
    R3-C (O) - (O-CH2-CH (OH) -CH2) n-O-C (O) -R4  (III)
    wherein:
    R3 and R4 represent, respectively, a saturated C18 to C44 fatty chain, linear or branched,
    preferably, the non-ionic surfactant of ester type comprises at least one monounsaturated ester of formula (II) wherein R1 and R2 represent, respectively, a C18-C30 fatty chain, and at least one of R1 or R2 is monounsaturated; and at least one polyglyceryl diester of formula (III) wherein, R3-C (O) -and R4 each represent a saturated C20 to C34 fatty chain, linear or branched,
    more preferably, the non-ionic surfactant of ester type is a mixture of polyglyceryl-6 distearate, jojoba esters, polyglyceryl-3 beeswax, and cetyl alcohol.
  7. Composition of any one of claims 1 to 6, wherein the non-ionic surfactant of ester type is present in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 5 wt. %, more preferably from 0.5 wt. %to 5 wt. %, relative to the total weight of the composition.
  8. Composition of any one of claims 1 to 7, wherein the compound of ceramide type corresponds to the general formula (I) :
    Figure PCTCN2022083971-appb-100001
    in which:
    - R 1 denotes:
    - either a saturated or unsaturated and linear or branched C 1-C 50, preferably C 5-C 50, hydrocarbon radical, it being possible for this radical to be substituted by one or more hydroxyl groups optionally esterified by an acid R 7COOH, R 7 being an optionally mono-or polyhydroxylated, saturated or unsaturated and linear or branched C 1-C 35 hydrocarbon radical, it being possible for the hydroxyl or hydroxyls of the R 7 radical to be esterified by an optionally mono-or polyhydroxylated, saturated or unsaturated and linear or branched C 1-C 35 fatty acid;
    - or an R”- (NR-CO) -R’ radical, in which R denotes a hydrogen atom or a mono-or polyhydroxylated, preferably monohydroxylated, C 1-C 20 hydrocarbon radical, R’ and R” are hydrocarbon radicals, the sum of the carbon atoms of which is between 9 and 30, R' being a divalent radical;
    - or an R 8-O-CO- (CH 2p radical, in which R 8 denotes a C 1-C 20 hydrocarbon radical and p is an integer varying from 1 to 12;
    - R 2 is chosen from a hydrogen atom, a radical of saccharide type, in particular a (glycosyl)  n, (galactosyl)  m or sulphogalactosyl radical, a sulphate or phosphate residue, a phosphorylethylamine radical and a phosphorylethylammonium radical, in which n is an integer varying from 1 to 4 and m is an integer varying from 1 to 8;
    - R 3 denotes a hydrogen atom or a hydroxylated or nonhydroxylated and saturated or unsaturated C 1-C 33 hydrocarbon radical, it being possible for the hydroxyl or hydroxyls to be esterified by an inorganic acid or an acid R 7COOH, R 7 having the same meanings as hereinabove, and it being possible for the hydroxyl or hydroxyls to be etherified by a (glycosyl)  n, (galactosyl)  m, sulphogalactosyl, phosphorylethylamine or phosphorylethylammonium radical, it also being possible for R 3 to be substituted by one or more C 1-C 14 alkyl radicals;
    preferably, R 3 denotes a C 15-C 26α-hydroxyalkyl radical, the hydroxyl group optionally being esterified by a C 16-C 30α-hydroxy acid;
    - R 4 denotes a hydrogen atom, a methyl or ethyl radical, an optionally hydroxylated, saturated or unsaturated and linear or branched C 3-C 50 hydrocarbon radical or a-CH 2-CHOH-CH 2-O-R 6 radical, in which R 6 denotes a C 10-C 26 hydrocarbon radical, or an R 8-O-CO- (CH 2p radical, in which R 8 denotes a C 1-C 20 hydrocarbon radical and p is an integer varying from 1 to 12;
    - R 5 denotes a hydrogen atom or an optionally mono-or polyhydroxylated, saturated or unsaturated and linear or branched C 1-C 30 hydrocarbon radical, it being possible for the hydroxyl or hydroxyls to be etherified by a (glycosyl)  n, (galactosyl)  m, sulphogalactosyl, phosphorylethylamine or phosphorylethylammonium radical;
    with the proviso that, when R 3 and R 5 denote hydrogen or when R 3 denotes hydrogen and R 5 denotes methyl, then R 4 does not denote a hydrogen atom or a methyl or ethyl radical.
  9. Composition of any one of claims 1 to 7, wherein the compound of ceramide type is chosen from:
    - 2-N-linoleoylaminooctadecane-1, 3-diol,
    - 2-N-oleoylaminooctadecane-1, 3-diol,
    - 2-N-palmitoylaminooctadecane-1, 3-diol,
    - 2-N-stearoylaminooctadecane-1, 3-diol,
    - 2-N-behenoylaminooctadecane-1, 3-diol,
    - 2-N- [2-hydroxypalmitoyl] aminooctadecane-1, 3-diol,
    - 2-N-stearoylaminooctadecane-1, 3, 4-triol, and in particular N-
    stearoylphytosphingosine,
    - 2-N-palmitoylaminohexadecane-1, 3-diol,
    and a combination thereof.
  10. Composition of any one of claims 1 to 9, wherein the compound of ceramide type is present in an amount ranging from 0.01 wt. %to 10 wt. %, preferably from 0.05 wt. %to 5 wt. %, more preferably from 0.1 wt. %to 2 wt. %, relative to the total weight of the composition.
  11. Composition according to any of claims 1 to 10, further comprises a hydrophobically associative water-soluble polymer selected from nonionic associative polyether-polyurethanes, polyacrylate crosspolymers, and a combination thereof.
  12. Composition according to claim 11, wherein the hydrophobically associative water-soluble polymer is present in an amount ranging from 0.1 wt. %to 10 wt. %, preferably from 0.5 wt. %to 5 wt. %, more preferably from 0.3 wt. %to 3 wt. %, relative to the total weight of the composition.
  13. Composition according to claim 1, comprising, relative to the total weight of the composition:
    (i) from 0.5 wt. %to 5 wt. %ARACHIDYL ALCOHOL (and) BEHENYL ALCOHOL (and) ARACHIDYL GLUCOSIDE;
    (ii) from 0.5 wt. %to 5 wt. %of POLYGLYCERYL-6 DISTEARATE (and) JOJOBA ESTERS (and) CETYL ALCOHOL (and) POLYGLYCERYL-3 BEESWAX;
    (iii) from 0.1 wt. %to 2 wt. %of compound selected from 2-oleamido-1, 3-octadecanediol and ceramide NP;
    (iv) from 1 wt. %to 5 wt. %of hydroxypropyl tetrahydropyrantriol; and
    (v) from 0.3 wt. %to 3 wt. %of a hydrophobically associative water-soluble polymer selected from polyacrylate crosspolymer-6, Steareth-100/PEG-136/HDI Copolymer, PEG-240/HDI Copolymer Bis-decyltetradeceth-20 ether, and a combination thereof.
  14. A non-therapeutic method for caring for keratin materials, comprising applying the composition according to any of claims 1 to 13 to the keratin materials.
PCT/CN2022/083971 2022-03-30 2022-03-30 Composition for caring for keratin materials WO2023184210A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/083971 WO2023184210A1 (en) 2022-03-30 2022-03-30 Composition for caring for keratin materials
FR2203972A FR3134007A1 (en) 2022-03-30 2022-04-28 Composition for the care of keratinous materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083971 WO2023184210A1 (en) 2022-03-30 2022-03-30 Composition for caring for keratin materials

Publications (1)

Publication Number Publication Date
WO2023184210A1 true WO2023184210A1 (en) 2023-10-05

Family

ID=88198404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083971 WO2023184210A1 (en) 2022-03-30 2022-03-30 Composition for caring for keratin materials

Country Status (2)

Country Link
FR (1) FR3134007A1 (en)
WO (1) WO2023184210A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106998A1 (en) * 2012-01-17 2013-07-25 L'oreal Colour changing composition in o/w emulsion form
US20170189297A1 (en) * 2016-01-02 2017-07-06 L'oreal Cosmetic compositions comprising ceramides and cholesterol
WO2018113985A1 (en) * 2016-12-22 2018-06-28 L'oreal Cosmetic balm with ester and alkylpolyglycoside surfactants
CN109288687A (en) * 2018-12-11 2019-02-01 华东理工大学 A kind of more effect liquid crystal facial mask liquids and preparation method thereof
WO2020087273A1 (en) * 2018-10-30 2020-05-07 L'oreal Cosmetic composition for skin care
US20200206114A1 (en) * 2019-01-02 2020-07-02 Cosmax, Inc. Emulsion structure for enhancing skin absorption and method of preparing the same
CN113476346A (en) * 2021-06-16 2021-10-08 西安德诺海思医疗科技有限公司 Skin barrier repair composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY100343A (en) 1985-12-20 1990-08-28 Kao Corp Amide derivative and external medicament comprising same
FR2673179B1 (en) 1991-02-21 1993-06-11 Oreal CERAMIDES, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS IN COSMETICS AND DERMOPHARMACY.
ATE164831T1 (en) 1992-10-07 1998-04-15 Quest Int HYDROXY-ALKYL AMIDES OF DICARBONIC ACID AND THEIR USE IN COSMETIC PREPARATIONS
WO1994010131A1 (en) 1992-11-03 1994-05-11 Unilever Plc Method of synthesising phytosphingosine-containing ceramides and cosmetic compositions comprising them
FR2703993B1 (en) 1993-04-15 1995-06-09 Oreal Cosmetic use of lipophilic derivatives of amino deoxyalditols, cosmetic compositions containing them, and new alkyl carbamates.
EP0646572B1 (en) 1993-10-04 1997-07-23 Quest International B.V. Process for the preparation of ceramides
FR2711138B1 (en) 1993-10-12 1995-11-24 Oreal Ceramides, their preparation process and their applications in cosmetics and dermopharmacy.
FR2712595B1 (en) 1993-11-19 1995-12-22 Seppic Sa A concentrate comprising alkyl glycosides and its uses.
AU1315095A (en) 1993-12-17 1995-07-03 Unilever Plc Synthetic ceramides and their use in cosmetic compositions
DE4402929C1 (en) 1994-02-01 1995-06-22 Henkel Kgaa Pseudoceramides, process for their preparation and their use
DE4407016C1 (en) 1994-03-03 1995-04-06 Henkel Kgaa Pseudoceramides
DE4420736C1 (en) 1994-06-15 1995-08-10 Henkel Kgaa New pseudo-ceramide cpds.
DE4424530A1 (en) 1994-07-12 1996-01-18 Henkel Kgaa Pseudoceramides
DE4424533A1 (en) 1994-07-12 1996-01-18 Henkel Kgaa Oligohydroxydicarboxylic acid derivatives
FR2732680B1 (en) 1995-04-05 1997-05-09 Oreal CERAMID-LIKE COMPOUNDS, PROCESS FOR THEIR PREPARATION AND THEIR USE
FR2762317B1 (en) 1997-04-21 1999-07-09 Seppic Sa COMPOSITION BASED ON ALKYLPOLYGLYCOSIDES AND FATTY ALCOHOLS AND USES THEREOF
FR2818547B1 (en) 2000-12-22 2006-11-17 Oreal NOVEL C-GLYCOSIDE DERIVATIVES AND USE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106998A1 (en) * 2012-01-17 2013-07-25 L'oreal Colour changing composition in o/w emulsion form
US20170189297A1 (en) * 2016-01-02 2017-07-06 L'oreal Cosmetic compositions comprising ceramides and cholesterol
WO2018113985A1 (en) * 2016-12-22 2018-06-28 L'oreal Cosmetic balm with ester and alkylpolyglycoside surfactants
WO2020087273A1 (en) * 2018-10-30 2020-05-07 L'oreal Cosmetic composition for skin care
CN109288687A (en) * 2018-12-11 2019-02-01 华东理工大学 A kind of more effect liquid crystal facial mask liquids and preparation method thereof
US20200206114A1 (en) * 2019-01-02 2020-07-02 Cosmax, Inc. Emulsion structure for enhancing skin absorption and method of preparing the same
CN113476346A (en) * 2021-06-16 2021-10-08 西安德诺海思医疗科技有限公司 Skin barrier repair composition

Also Published As

Publication number Publication date
FR3134007A1 (en) 2023-10-06

Similar Documents

Publication Publication Date Title
US10561587B2 (en) Composition in the form of nano- or micro-emulsion
EP2000123B1 (en) Stable, low viscosity cosmetic compounds containing esterquat and/or dialkylquat
EP1609464B1 (en) Intimate hygiene products
FR3015246A1 (en) COSMETIC COMPOSITION COMPRISING AN OIL, A NON-IONIC SURFACTANT AND A C-GLYCOSIDE COMPOUND
US10576031B1 (en) Exfoliating and hydrating makeup removing compositions
CN113616559B (en) Scrub cream and preparation method thereof
EP1704897B1 (en) Foamable cosmetic compositions
WO2012168309A2 (en) Styling agents with an interesting texture
WO2023184210A1 (en) Composition for caring for keratin materials
JP7308952B2 (en) Compositions containing polysaccharides, polyols and specific esters
US11179307B2 (en) Foamable composition
WO2020220277A1 (en) Cosmetic composition in the form of oil-in-water emulsion
JP7308953B2 (en) Compositions containing polysaccharides, polyols and certain esters and oils
WO2023141981A1 (en) Composition for skincare
WO2023028807A1 (en) Composition for caring for and/or making up keratin materials
EP1343456A1 (en) Hair care products with disperse liquid crystals exhibiting the cubic phases
WO2024000388A1 (en) Composition for caring for and/or making up keratin materials
DE102005001820A1 (en) Hair spray formulations with high VOC contents and with a terpolymer of methacrylic acid, methyl methacrylate, hydroxyethyl methacrylate and butyl acrylate
US11642293B2 (en) Composition for caring for skin, method and use thereof
WO2024000398A1 (en) Composition for caring for and/or making up keratin materials
KR20190082795A (en) Cosmetic composition
JP7339041B2 (en) gel cosmetics
WO2017029085A1 (en) Conditioning shampoo with ester mixtures of plant oils
KR20220148632A (en) High hardness liquid crystal cosmetic composition with bouncy texture and manufacturing method thereof
EP3253363B1 (en) Body cleansing and care agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934064

Country of ref document: EP

Kind code of ref document: A1