WO2023184096A1 - 波束确定方法、装置、通信设备和存储介质 - Google Patents

波束确定方法、装置、通信设备和存储介质 Download PDF

Info

Publication number
WO2023184096A1
WO2023184096A1 PCT/CN2022/083441 CN2022083441W WO2023184096A1 WO 2023184096 A1 WO2023184096 A1 WO 2023184096A1 CN 2022083441 W CN2022083441 W CN 2022083441W WO 2023184096 A1 WO2023184096 A1 WO 2023184096A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
information
signal
measurement
sensing
Prior art date
Application number
PCT/CN2022/083441
Other languages
English (en)
French (fr)
Inventor
牟勤
洪伟
赵中原
许凯磊
王雨竹
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/083441 priority Critical patent/WO2023184096A1/zh
Priority to CN202280000982.7A priority patent/CN117136601A/zh
Publication of WO2023184096A1 publication Critical patent/WO2023184096A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular, to beam determination methods, devices, communication equipment and storage media.
  • the base station and the user equipment interact through shaped beams with narrow angles. Beam management can be done by measuring the beams in different directions. Beam pair, select the optimal beam pair to ensure the interaction quality between the base station and the user.
  • the fifth generation (5G, 5th Generation) mobile communication technology New Radio (NR, New Radio) uses beam management technology to greatly improve the coverage performance of wireless networks in the millimeter wave frequency band.
  • embodiments of the present disclosure provide a beam determination method, device, communication device, and storage medium.
  • a beam determination method includes:
  • the beam to be measured of the target UE is determined.
  • determining the sensing information of the target UE based on the echo signal reflected by the synaesthesia signal at the target UE includes:
  • the perception information of the target UE in the candidate UE is determined.
  • the estimated location information of the target UE is determined based on the access beam of the target UE and/or the first signal measurement result reported by the target UE;
  • the estimated location information of the target UE is pre-stored in the base station.
  • the method further includes: sending measurement configuration information of the beam to be measured to the target UE, wherein the measurement configuration information is used to indicate at least one of the following:
  • the beam to be measured The beam to be measured
  • the measurement period for measuring the measurement signal of the beam to be measured is the measurement period for measuring the measurement signal of the beam to be measured
  • the UE reports the number of the beams to be tested as a second measurement result, where the second measurement result is obtained by measuring the measurement signal of the beam to be tested by the target UE.
  • sending the measurement configuration information of the beam to be measured to the target UE includes one of the following:
  • downlink control information DCI and/or media access control unit MAC CE carrying the measurement configuration information is sent.
  • determining the sensing information of the target UE based on the echo signal reflected by the synaesthesia signal at the target UE includes:
  • the sensing information of the target UE is determined based on the echo signal reflected by the synaesthesia signal at the target UE, wherein one sensing period includes N measurement periods, where N Is a positive integer greater than or equal to 1.
  • the method further includes:
  • the method further includes:
  • the method further includes at least one of the following:
  • the second downlink beam of the target UE is determined based on the sensing information of the target UE and the interval time information between the current time and the time when the first downlink beam is indicated to the target UE;
  • the location of the target UE at the current moment is determined; based on the historical beam of the location of the target UE at the current moment, the second downlink beam of the target UE is determined.
  • the sensing information includes at least one of the following:
  • the synaesthesia signal includes: a signal carrying a synchronization signal block SSB.
  • a beam determination device configured to:
  • the beam to be measured of the target UE is determined.
  • the processing module is specifically configured as:
  • the perception information of the target UE in the candidate UE is determined.
  • the estimated location information of the target UE is determined based on the access beam of the target UE and/or the first signal measurement result reported by the target UE;
  • the estimated location information of the target UE is pre-stored in the base station.
  • the device further includes:
  • a transceiver module configured to send measurement configuration information of the beam to be measured to the target UE, where the measurement configuration information is used to indicate at least one of the following:
  • the beam to be measured The beam to be measured
  • the measurement period for measuring the measurement signal of the beam to be measured is the measurement period for measuring the measurement signal of the beam to be measured
  • the UE reports the number of the beams to be tested as a second measurement result, where the second measurement result is obtained by measuring the measurement signal of the beam to be tested by the target UE.
  • the transceiver module is specifically configured to be one of the following:
  • downlink control information DCI and/or media access control unit MAC CE carrying the measurement configuration information is sent.
  • the processing module is specifically configured as:
  • the sensing information of the target UE is determined based on the echo signal reflected by the synaesthesia signal at the target UE, wherein one sensing period includes N measurement periods, where N Is a positive integer greater than or equal to 1.
  • the processing module is further configured to determine the location change of the target UE based on the sensing information within the sensing period;
  • the processing module is further configured to determine, based on the location change of the target UE, configuration update information that updates the measurement configuration information;
  • the transceiver module is also configured to send DCI and/or MAC CE carrying the configuration update information to the target UE.
  • the transceiver module is further configured to receive the second measurement result of the target UE measuring the measurement signal of the beam to be measured based on the measurement configuration information;
  • the processing module is further configured to determine the first downlink beam of the target UE from the beam to be measured based on the second measurement result;
  • the transceiver module is further configured to send indication information indicating the first downlink beam to the target UE.
  • processing module is further configured to be at least one of the following:
  • the second downlink beam of the target UE is determined based on the sensing information of the target UE and the interval time information between the current time and the time when the first downlink beam is indicated to the target UE;
  • the location of the target UE at the current moment is determined; based on the historical beam of the location of the target UE at the current moment, the second downlink beam of the target UE is determined.
  • the sensing information includes at least one of the following:
  • the synaesthesia signal includes: a signal carrying a synchronization signal block SSB.
  • a communication equipment device including a processor, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program.
  • steps of the beam determination method described in the first aspect are performed.
  • a storage medium on which an executable program is stored, wherein the steps of the beam determination method as described in the first aspect are implemented when the executable program is executed by a processor.
  • Embodiments of the present disclosure provide beam determination methods, devices, communication equipment, and storage media.
  • the base station determines the sensing information of the target UE based on the echo signal reflected by the synaesthesia signal on the target UE; and determines the beam to be measured of the target UE based on the sensing information of the target UE. In this way, the location information of the target UE is determined through the synaesthesia signal. Since the synaesthesia signal has higher positioning accuracy compared with beam positioning, the base station can select fewer beams to be measured for the UE to perform beam measurement. In this way, the UE reduces the cost of beam positioning.
  • Figure 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • Figure 2 is a schematic flowchart of a beam determination method according to an exemplary embodiment
  • Figure 3 is a schematic diagram of synaesthesia signal transmission according to an exemplary embodiment
  • Figure 4 is a schematic flow chart of a method for determining sensory information according to an exemplary embodiment
  • Figure 5 is a schematic flowchart of a vector matrix determination method according to an exemplary embodiment
  • Figure 6 is a schematic flowchart of yet another method for determining sensing information of a target UE according to an exemplary embodiment
  • Figure 7 is a schematic flowchart of a method for estimating a UE location according to an exemplary embodiment
  • Figure 8 is a schematic flowchart of another beam determination method according to an exemplary embodiment
  • Figure 9 is a schematic timing diagram of a beam determination method according to an exemplary embodiment
  • Figure 10 is a schematic flowchart of a method for transmitting measurement configuration information according to an exemplary embodiment
  • Figure 11 is a schematic flowchart of yet another beam determination method according to an exemplary embodiment
  • Figure 12 is a schematic flowchart of yet another beam determination method according to an exemplary embodiment
  • Figure 13 is a schematic flowchart of yet another beam determination method according to an exemplary embodiment
  • Figure 14 is a schematic flowchart of yet another beam determination method according to an exemplary embodiment
  • Figure 15 is a block diagram of another beam determining device according to an exemplary embodiment
  • Figure 16 is a block diagram of an apparatus for beam determination according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology.
  • the wireless communication system may include several terminals 11 and several base stations 12 .
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • Terminal 11 can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • Terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or "cellular" phone) and a device with The computer of the Internet of Things terminal, for example, can be a fixed, portable, pocket-sized, handheld, computer-built-in or vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote terminal
  • user terminal user agent, user device, or user equipment (UE).
  • UE user equipment
  • the terminal 11 may be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be a vehicle-mounted device, for example, it may be an on-board computer with a wireless communication function, or a wireless communication device connected to an external on-board computer.
  • the terminal 11 may also be a roadside device, for example, it may be a streetlight, a signal light or other roadside device with wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also called new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
  • MTC system New Generation-Radio Access Network
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • an E2E (End to End) connection can also be established between terminals 11.
  • V2V vehicle to vehicle, vehicle to vehicle
  • V2I vehicle to infrastructure, vehicle to roadside equipment
  • V2P vehicle to pedestrian, vehicle to person
  • the above-mentioned wireless communication system may also include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device can also be other core network devices, such as serving gateway (Serving GateWay, SGW), public data network gateway (Public Data Network GateWay, PGW), policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or Home Subscriber Server (HSS), etc.
  • serving gateway Serving GateWay, SGW
  • public data network gateway Public Data Network GateWay, PGW
  • Policy and Charging Rules Policy and Charging Rules
  • PCRF Policy and Charging Rules
  • HSS Home Subscriber Server
  • the execution subjects involved in the embodiments of this disclosure include but are not limited to: mobile phone terminals in cellular mobile communication systems, as well as network-side equipment, such as access network equipment such as base stations, and core networks.
  • the basic components of beam management in related technologies can include the following aspects:
  • Beam scanning Beams in different directions achieve coverage in a specific area in a time division multiplexing manner. Each beam carries reference signals such as channel state information reference signal (CSI-RS, Channel State Information-Reference Signal). After beam scanning, The UE can obtain reference signals carried by beams in different directions.
  • CSI-RS channel state information reference signal
  • Channel State Information-Reference Signal Channel State Information-Reference Signal
  • Beam measurement The UE measures the reference signal carried by the received beam, and obtains the beam quality in that direction by calculating the signal quality of the reference signal.
  • Beam reporting The UE reports the measurement information of the reference signal carried by the beam.
  • the measurement information should at least include measurement quality and beam indication information.
  • Beam determination The base station and UE select the transmit/receive beam. For example, in the connected state, the base station should determine the transmission beam based on the feedback information from the UE and indicate the beam to the user.
  • the base station configures the beam measurement period and then loops into the following beam measurement process: First, the base station determines the general direction of the UE based on the user's access beam, and determines the set of beam pairs to be measured based on the direction of the UE, and the set of beam pairs required by the UE. The number of reported downlink beams L. Then the base station configures CSI-RS for the set of beam pairs to be tested, and notifies the UE of the CSI-RS configuration information. The base station sends CSI-RS, and the UE performs CSI-RS measurements based on the configuration information, and feeds back the best L downlink beam measurement results to the base station. Finally, the base station determines the downlink beam by comprehensively considering the load, beam measurement results and other factors and indicates it to the UE.
  • the base station determines the position of the UE based on the UE access beam. Due to the large beam positioning error, the current position of the UE obtained by the base station is inaccurate. Therefore, the base station needs to expand the measurement range to ensure the quality of the selected beam. This will cause the UE to measure a large number of beam pairs with mismatched competitiveness, resulting in large UE overhead.
  • the base station calls the optimal beam transmission service determined by previous measurements and does not consider the mobility of the UE within the measured service scheduling interval, which may result in lower quality of service transmission.
  • this exemplary embodiment provides a beam determination method that can be executed by a base station of a cellular mobile communication system, including:
  • Step 201 Determine the sensing information of the target UE based on the echo signal reflected by the synaesthesia signal on the target UE;
  • Step 202 Based on the sensing information of the target UE, determine the beam to be measured of the target UE.
  • the UE may be a terminal such as a mobile phone in a cellular mobile communication system.
  • a UE may be a communication device used to receive sensing information.
  • the UE may also transmit sensing information.
  • the target UE is the UE with which the base station needs to determine the beam for communication.
  • the network may include but is not limited to access network, and/or core network, etc.
  • the beam to be tested is a directional beam obtained by using beam forming.
  • the beams to be tested may include downlink beams. Since downlink beams and uplink beams have a one-to-one correspondence, the beam to be measured may also be a beam pair consisting of a downlink beam and an uplink beam.
  • the echo signal reflected by the target UE is the echo signal reflected by the target UE based on the synaesthesia signal at the target UE, or it can also be the echo signal reflected by the target UE based on other signals sent by the base station. , whose principles are similar and will not be described in detail.
  • Synaesthesia signals (communication perception signals) can be signals used for both data communication and environment sensing in cellular mobile communication systems.
  • the synaesthesia signal may be transmitted by the base station, and the echo signal may be a signal in which the synaesthesia signal is reflected back to the base station at the UE.
  • Synaesthesia signals include millimeter wave signals or terahertz signals.
  • the echo signal of the synaesthesia signal reflected on the UE may include but is not limited to: the echo signal of the synaesthesia signal reflected on the user holding the UE, the echo signal of the synaesthesia signal reflected on the device equipped with the UE, etc.
  • Synaesthesia signals may also be sent by other communication devices.
  • synaesthesia signals may also be sent by other base stations or UEs. The base station can determine the perception information of the UE based on the echo signals transmitted on the UE from synaesthesia signals sent by other communication devices.
  • base stations and the like can use a transmitting panel with a transmitting antenna array to transmit synaesthesia signals, and a receiving panel with a receiving antenna array to receive echo signals.
  • Synaesthetic signals can be continuous bursts of signals for continuous perception.
  • the synaesthesia signal includes: a signal carrying a synchronization signal block SSB.
  • the transmitting end of the synaesthesia signal can transmit the SSB Burst Set. Continuous reception is performed by the receiving end of the echo signal, such as the receiving panel of the base station.
  • the SSB signals (signals carrying SSB) in the SSB burst set can be separated by a predetermined time period to reduce the impact of the echo signal of the transmitted SSB signal on the currently transmitted SSB signal.
  • the next SSB signal can be transmitted to reduce interference (such as side lobe interference) between the echo signal of the previous SSB signal and the next SSB signal.
  • interference such as side lobe interference
  • the sensing information includes at least one of the following:
  • the orientation information may be relative orientation information of the UE relative to a reference object such as a base station, or may be geographical location orientation information.
  • the orientation information may include the azimuth angle of the UE relative to the base station, etc.
  • the orientation information can be determined based on the phase difference of echo signals received from adjacent antenna elements on the receiving antenna panel.
  • the distance information may be the relative orientation information of the UE relative to a reference object such as a base station.
  • the distance between the base station and the UE can be determined based on the signal flight time from when the base station transmits the synaesthesia signal to when it receives the echo signal.
  • the speed information can be determined based on the distance and orientation of the UE at multiple time points.
  • a perceptual model, a machine learning model, etc. may be used, but is not limited to, to determine the perceptual information based on the synaesthesia signal and the received synaesthesia echo signal.
  • the synaesthesia signal may be a signal carrying SSB; the specific steps for the base station to determine the sensing information include:
  • Step 401 The base station receives the echo signal of the SSB signal reflected by the target UE.
  • Step 402 The base station performs element-by-element complex division on the modulation symbol matrix received after reflection to obtain a vector matrix.
  • SSB is transmitted in the form of a narrow beam through the base station transmitting panel, and is reflected back when encountering a user; the base station captures the echo signal through the receiving panel, and extracts the sensing information from the echo signal. Further, the base station determines the modulation symbol matrix based on the echo signal.
  • step 402 specifically includes the following two steps:
  • Step 4021 The base station receives the received modulation symbol matrix obtained after the SSB is reflected by the object.
  • the received modulation symbol matrix (D Rx ) ⁇ ,n can be expressed by expression (1):
  • A( ⁇ ,n) represents the complex amplitude factor
  • (D Tx ) ⁇ ,n represents the transmitted modulation symbol matrix
  • indicates the OFDM symbol index
  • n indicates the subcarrier index.
  • the target UE may be in a moving state, it may be regarded as a moving object, and the received modulation symbol matrix obtained after the SSB is reflected by the target UE in the moving state is determined through step 4021.
  • Step 4022 The base station performs element-by-element complex division on the received modulation symbol matrix to obtain a vector matrix.
  • the vector matrix can be expressed by expression (2):
  • ⁇ f represents the subcarrier spacing
  • R represents the distance between the user and the base station
  • c 0 represents the speed of light
  • j represents a complex number
  • T OFDM represents the OFDM symbol duration
  • v rel represents the user's speed
  • f c represents the carrier frequency
  • j represents a complex number
  • Step 403 The base station performs discrete Fourier transform on each row of the vector matrix.
  • Step 404 The base station performs inverse discrete Fourier transform on each column of the matrix obtained in step 403.
  • Step 405 The base station separates the distance information and speed information of the user based on the matrix representing distance and Doppler obtained in step 404.
  • Step 406 The base station separates the user's azimuth angle information from the phase difference of signals received by adjacent antenna elements on the receiving antenna panel.
  • phase difference between signals received by adjacent antenna elements is:
  • the wavelength
  • ⁇ k the direction of the k-th signal source
  • d the distance between adjacent antenna elements.
  • the location information of the target UE is determined through the synaesthesia signal. Since the synaesthesia signal has higher positioning accuracy compared with beam positioning, the base station can select fewer beams to be measured for the UE to perform beam measurement. In this way, the UE reduces the cost of beam positioning. measurement overhead.
  • determining the sensing information of the target UE based on the echo signal reflected by the synaesthesia signal at the target UE includes:
  • the perception information of the target UE in the candidate UE is determined.
  • the communication sensing signal is used to sense the UE, which utilizes the echo characteristics of the synaesthesia signal.
  • the target UE cannot be identified from the multiple UEs through the synaesthesia signal.
  • the estimated location information of the target UE can be compared with the sensing information of the candidate UE, and the candidate UE with a difference value less than or equal to the comparison threshold is determined as the target UE; or, the sensing information of multiple candidate UEs can be combined with the target UE.
  • a candidate UE with the smallest difference value of the UE's estimated location information is determined as the target UE, and the sensing information of the candidate UE is determined as the sensing information of the target UE.
  • the distance information and speed information predicted by the target UE can be compared with the distance information and speed information of multiple candidate UEs, and a candidate UE with the smallest difference in distance information and speed information can be determined as the target UE, and the candidate UE can be compared with the distance information and speed information predicted by the target UE.
  • the sensing information is determined as the sensing information of the target UE.
  • the estimated location information of the target UE may be determined by the base station based on any of the following methods: the access beam of the target UE and the wireless signal measurement results reported by the target UE, the estimated location information reported by the target UE, and the The location information is determined and pre-stored in the base station during the previous sensing process.
  • the base station can determine the sensing information corresponding to the target UE.
  • the base station can narrow the selection range based on the more accurate sensing information of the target UE, reduce the number of uncompetitive beams to be tested, and select fewer beams to be tested for the UE to perform beam measurement. In this way, Reduce the measurement overhead of UE.
  • the estimated location information of the target UE is determined based on the access beam of the target UE and the first signal measurement result reported by the target UE;
  • the estimated location information of the target UE is pre-stored in the base station.
  • the specific steps of determining the perception information of the target UE in the candidate UE include:
  • Step 601 The base station determines the geographical location and movement speed of one or more UEs within the signal coverage through communication sensing technology.
  • the base station does not determine the corresponding relationship between the UE, the geographical location and the moving speed.
  • Step 602 The base station estimates the location of the UE based on the UE's access beam and the first reported wireless signal measurement result.
  • the first measurement result of the wireless signal may be, for example, Channel State Information Reference Signal Received Power (CSI-RSRP, Channel State Information Reference Signal Received Power).
  • CSI-RSRP Channel State Information Reference Signal Received Power
  • the specific steps for the base station to estimate the UE location through access beams and CSI-RSRP include:
  • Step 6021 The base station estimates the location of the UE based on the UE's access beam
  • the location of the UE may be an angle (azimuth angle).
  • Step 6022 The base station estimates the location parameters of the UE based on the UE's location, CSI-RSRP, CSI-RSRP change range, and/or stored UE spatial area information;
  • the estimated location parameters of the UE may be the estimated location and moving speed of the UE, and may also include other parameters.
  • Step 603 The base station corresponds the estimated location and moving speed of the UE with the determined specific location and moving speed of the user.
  • Step 604 Establish a corresponding relationship between the UE and the sensing information.
  • the base station can maintain and adjust the corresponding relationship between the UE and the sensing information; for example, in the subsequent sensing process or in the subsequent beam configuration process, adjust the corresponding relationship between the UE and the sensing information.
  • the determined specific location and movement speed of the user refers to the location and movement speed of the UE determined by the base station through communication sensing technology; it can be the specific location and movement speed of the user determined previously or the previous times.
  • the determined specific location and movement speed of the user can also be the specific location and movement speed of all determined users in history.
  • the estimated location information of the target UE may be determined by the base station based on the access beam of the target UE and the reported wireless signal measurement results, or may be reported by the target UE, or may be determined in a previous sensing process.
  • this exemplary embodiment provides a beam determination method, which can be executed by a base station of a cellular mobile communication system, including:
  • Step 801 Send measurement configuration information of the beam to be measured to the target UE, where the measurement configuration information is used to indicate at least one of the following:
  • the beam to be measured The beam to be measured
  • the measurement period for measuring the measurement signal of the beam to be measured is the measurement period for measuring the measurement signal of the beam to be measured
  • the UE reports the number of the beams to be tested as a second measurement result, where the second measurement result is obtained by measuring the measurement signal of the beam to be tested by the target UE.
  • Step 801 can be implemented alone or in combination with any embodiment of the present disclosure, for example, together with step 201 and step 202, which will not be described again here.
  • the base station After the base station determines the beam to be measured, it can indicate the measurement configuration to the UE through the measurement configuration information.
  • the measurement configuration information indicates the beam to be measured through the unique indication identifier of the beam to be measured.
  • the measurement configuration information may include: the beam (identification) ID of the beam to be measured.
  • the beam to be tested indicated by the base station may be a downlink beam or a beam pair.
  • the measurement signal may include but is not limited to channel state information reference signal (CSI-RSRP, Channel State Information Reference Signal), tracking reference signal (TRS, Tracking Reference Signal), etc.
  • CSI-RSRP channel state information reference signal
  • TRS Tracking Reference Signal
  • the configuration parameters of the measurement signal may include transmission resources of the measurement signal, such as frequency domain resources, time domain resources, and time-frequency domain resources.
  • the UE may receive measurement signals to perform measurements based on configuration parameters.
  • the UE may report upward the second measurement results of M beams to be measured, where M is a positive integer greater than or equal to 1.
  • the measurement configuration information may indicate the number M of the beams to be measured for reporting the second measurement result.
  • sending the measurement configuration information of the beam to be measured to the target UE includes:
  • downlink control information DCI and/or media access control unit MAC CE carrying the measurement configuration information is sent.
  • the base station can determine the beam to be measured based on the sensing information corresponding to the target UE, compared with the base station in related technologies that determines the beam to be measured based on the access beam, the base station can reduce the range of the beam to be measured, thereby reducing the amount of data in the measurement configuration information.
  • the base station may determine signaling carrying the measurement configuration information based on the data amount of the measurement configuration information.
  • the data volume threshold can be determined based on the data carrying capacity of DCI and/or MAC CE.
  • the measurement configuration information is carried in DCI and/or MAC CE and sent to the UE.
  • Relative to RRC messages, carrying measurement configuration information through DCI and/or MAC CE can reduce UE signaling overhead.
  • the RRC message can be used to carry the measurement configuration information to meet the transmission requirements of the measurement configuration information.
  • determining the sensing information of the target UE based on the echo signal reflected by the synaesthesia signal at the target UE includes:
  • the sensing information of the target UE is determined based on the echo signal reflected by the synaesthesia signal at the target UE, wherein one sensing period includes N measurement periods, where N Is a positive integer greater than or equal to 1.
  • the base station performs sensing tasks cyclically with the sensing cycle as the time interval.
  • the base station guides multiple beam measurements based on the sensing information, and the beam measurements are performed cyclically within one sensing cycle with the measurement cycle as the time interval.
  • the base station performs sensing tasks by sending synaesthesia signals, such as SSB burst sets, to obtain the user's sensing information, such as azimuth angle, distance, speed and other information.
  • synaesthesia signals such as SSB burst sets
  • the base station After the base station completes the measurement configuration based on the sensing information, it sends the measurement configuration information to the UE, sends periodic measurement signals at intervals of the measurement cycle, CSI-RS to support periodic beam measurement, and sends DCI to instruct the user to downlink after the measurement is completed. beam.
  • the method further includes:
  • the configuration update information can be sent through DCI or MAC CE.
  • the base station will send measurement configuration information to the target UE, including periodic CSI-RS, the number of upload beams L, and the measurement period.
  • the base station may determine signaling carrying the measurement configuration information based on the data amount of the measurement configuration information.
  • Measurement configuration information can be carried by RRC messages.
  • the base station can predict the location change of the target UE based on the sensing information of the target UE. For example, the base station obtains the time interval of the sensing information based on the distance at the current time, uses the distance, orientation and speed of the UE in the sensing information to predict the position changes of the UE at the current time, and then determines the target UE based on the position of the target UE at the current time.
  • the beam under test is measured, and the configuration update information is used to update the measurement configuration information.
  • the configuration update information can be measurement configuration information or other special information.
  • the base station can use DCI and/or MAC CE to carry configuration update information to reduce signaling overhead.
  • RRC messages when the data amount of the configuration update information is greater than the threshold, RRC messages may be used to carry it.
  • this exemplary embodiment provides a beam determination method, which can be executed by a base station of a cellular mobile communication system, including:
  • Step 1101 Receive the second measurement result of the target UE measuring the measurement signal of the beam to be measured based on the measurement configuration information;
  • Step 1102 Determine the first downlink beam of the target UE from the beam to be measured based on the second measurement result
  • Step 1103 Send indication information indicating the first downlink beam to the target UE.
  • Steps 1101 to 1103 can be implemented individually or in combination with other embodiments of the present disclosure.
  • steps 1101 to 1103 can be implemented in conjunction with step 201 and step 202; or steps 1101 to 1103 can be implemented in conjunction with step 801.
  • the UE Based on the measurement configuration information, the UE measures the measurement signal of the beam to be tested and obtains the second measurement result of each beam to be tested. Based on the requirements of the measurement configuration information, the UE can select a certain number of second measurement results of the beams to be measured and send them to the base station. For example, the UE selects a certain number of downlink beams with the best quality to form a downlink candidate beam set and reports it to the base station. The reported content includes downlink The second measurement results of the beam, such as: CSI-RS Resource Indicator (CRI, CSI-RS Resource Indicator) and Layer-1 Reference Signal Received Power (L1-RSRP, Layer-1 Reference Signal Received Power), etc.
  • CRI CSI-RS Resource Indicator
  • L1-RSRP Layer-1 Reference Signal Received Power
  • the base station determines the first downlink beam according to the second measurement result reported by the UE, and instructs the user.
  • the base station may carry the indication information of the first downlink beam through DCI.
  • this exemplary embodiment provides a beam determination method, which can be executed by a base station of a cellular mobile communication system, including at least one of the following:
  • Step 1201a Determine the second downlink beam of the target UE based on the sensing information of the target UE and the interval time information between the current time and the time when the first downlink beam is indicated to the target UE;
  • Step 1201b Based on the sensing information of the target UE, determine the location of the target UE at the current moment; determine the second downlink beam of the target UE based on the historical beam of the location of the target UE at the current moment. .
  • the first downlink beam After the first downlink beam is determined, due to the movement or other changes of the UE, the first downlink beam may not be applicable at this time. Therefore, in the embodiment of the present disclosure, it is necessary to determine the second downlink beam applicable at the current moment.
  • the second downlink beam may be re-determined periodically, or the determination of the second downlink beam may be initiated based on other trigger conditions.
  • the base station Based on the interval between the current time and the time when the base station indicates the first downlink beam, the base station uses the parameters of the UE in the sensing information to predict the beam in which the UE is located at the current time, determines the beam as the second beam, and sends the signal to the UE. Instructions are used to transmit services at the current moment.
  • the parameters of the UE in the sensing information may be: distance, orientation, speed, etc.
  • the base station can pre-store beams corresponding to different locations. Based on the interval between the current time and the time when the base station indicates the first downlink beam, the base station uses the parameters of the UE in the sensing information to predict the location of the UE at the current time, and based on the second beam corresponding to the location pre-stored by the base station Indicate to UE.
  • the base station may use DCI to indicate the second downlink beam.
  • the base station can select the optimal beam for service transmission, thereby improving beam management performance.
  • this embodiment provides a beam determination method, which includes the following steps:
  • Step 1301 The base station configures the sensing period and SSB burst set.
  • step 1301 includes the following two steps:
  • Step 13011 The base station configures a sensing cycle and performs sensing tasks cyclically with this cycle as a time interval.
  • Step 13012 At the beginning of the sensing cycle, the base station configures the SSB burst set used for sensing for this sensing task.
  • Step 1302 The base station sends an SSB burst set and obtains user perception information, including speed, azimuth, distance and other information by detecting the SSB echo signal.
  • step 1302 includes the following two steps:
  • Step 13021 The base station sending panel sends SSB according to the configuration of step 102.
  • Step 13022 The base station receiving panel detects the echo signal of the SSB, and obtains the angle, speed, distance and other information of the user's location based on the angle of the echo signal, Doppler frequency shift and other information.
  • Step 1303 The base station determines the set of optional beam pairs to be measured, the number of downlink candidate beams, and the measurement period for the user based on the sensing information, and configures periodic CSI-RS.
  • step 1303 includes the following three steps:
  • Step 13031 The base station selects a set of beam pairs that can be measured by the user and have similar competitiveness based on the angle, speed and other information of the user's location obtained in step 202, and configures the number of downlink beams and measurement periods that need to be reported for the user.
  • Step 13032 The base station configures periodic CSI-RS for beam measurement according to the set of optional beam pairs to be tested configured in step 301.
  • Step 13033 The base station updates the beam measurement configuration message to the user through RRC/DCI/MAC CE, including the number of downlink candidate beams L, periodic CSI-RS configuration information and measurement period, etc.
  • Step 1304 The base station sends periodic CSI-RS to the user, and the user measures the set of optional beam pairs to be measured and reports the measurement results.
  • step 1304 includes the following three steps:
  • Step 13041 The base station periodically sends the CSI-RS of the optional beam pair to be tested to the user based on the configuration results of steps 301 and 302.
  • Step 13042 The user receives the CSI-RS of the optional beam pair to be tested according to the RRC configuration message of the base station, and calculates the L1-RSRP of the CSI-RS of each beam pair.
  • Step 13043 The user selects the L downlink beams with the best quality based on the calculation results of step 13042 to form a downlink candidate beam set and reports it to the base station.
  • the reported content includes the CRI and L1-RSRP of the downlink beams.
  • Step 1305 The base station determines the downlink beam based on the feedback measurement results reported by the user and instructs the user.
  • step 1305 includes the following two steps:
  • Step 13051 The base station determines the downlink beam based on the user feedback results and the sensing information.
  • Step 13052 The base station directs the downlink beam to the user through DCI.
  • this embodiment provides a beam determination method, which includes the following steps:
  • Step 1401 The base station matches the optimal beam from the downlink candidate beam set based on user sensing data, historical data and other information.
  • step 1401 includes the following three steps:
  • Step 14011 The network side notifies the base station that the user's service data is about to arrive.
  • Step 14012 The base station matches the user's optimal beam at this time through sensing information such as the user's angle, distance, speed, and historical information such as the time interval of the user's beam indication and the historical selection of the beam at the user's location.
  • step 14011 is just an example and not the only implementation method.
  • the base station can also be triggered to determine the optimal beam for the user at this time based on other triggering conditions, which is not limited to service arrival triggering.
  • Step 1402 The base station indicates the optimal beam to the user.
  • step 1402 includes the following two steps:
  • Step 14021 The base station indicates the optimal beam matched in step 102 to the user.
  • the base station can indicate the optimal beam through DCI signaling.
  • step 1402 also includes:
  • Step 14022 The base station calls the beam to transmit service data.
  • the method also includes step 1403, where the user receives service data according to the beam corresponding to the indicated beam.
  • Embodiments of the present invention also provide a beam determination device for use in a base station for cellular mobile wireless communications.
  • the device can be configured to perform the method described in any of the above embodiments, or the device can be configured to perform both of the above. Or a method formed by combining two or more embodiments.
  • the device 100 includes: a processing module 110 configured as:
  • the beam to be measured of the target UE is determined.
  • processing module 110 is specifically configured as:
  • the perception information of the target UE in the candidate UE is determined.
  • the estimated location information of the target UE is determined based on the access beam of the target UE and/or the first signal measurement result reported by the target UE;
  • the estimated location information of the target UE is pre-stored in the base station.
  • the device further includes:
  • the transceiver module 120 is configured to send measurement configuration information of the beam to be measured to the target UE, where the measurement configuration information is used to indicate at least one of the following:
  • the beam to be measured The beam to be measured
  • the measurement period for measuring the measurement signal of the beam to be measured is the measurement period for measuring the measurement signal of the beam to be measured
  • the UE reports the number of the beams to be tested as a second measurement result, where the second measurement result is obtained by measuring the measurement signal of the beam to be tested by the target UE.
  • the transceiver module 120 is specifically configured to be one of the following:
  • downlink control information DCI and/or media access control unit MAC CE carrying the measurement configuration information is sent.
  • processing module 110 is specifically configured as:
  • the sensing information of the target UE is determined based on the echo signal reflected by the synaesthesia signal at the target UE, wherein one sensing period includes N measurement periods, where N Is a positive integer greater than or equal to 1.
  • the processing module 110 is further configured to determine the location change of the target UE based on the sensing information within the sensing period;
  • the processing module 110 is further configured to determine the configuration update information for updating the measurement configuration information based on the location change of the target UE;
  • the transceiver module 120 is also configured to send the DCI and/or MAC CE carrying the configuration update information to the target UE.
  • the transceiver module 120 is further configured to receive the second measurement result of the target UE measuring the measurement signal of the beam to be measured based on the measurement configuration information;
  • the processing module 110 is further configured to determine the first downlink beam of the target UE from the beam to be measured based on the second measurement result;
  • the transceiver module 120 is further configured to send indication information indicating the first downlink beam to the target UE.
  • processing module 110 is further configured to be at least one of the following:
  • the second downlink beam of the target UE is determined based on the sensing information of the target UE and the interval time information between the current time and the time when the first downlink beam is indicated to the target UE;
  • the target UE Based on the sensing information of the target UE, determine the location of the target UE at the current moment; determine the second downlink beam of the target UE based on the historical beam of the location of the target UE at the current moment.
  • the sensing information includes at least one of the following:
  • the synaesthesia signal includes: a signal carrying a synchronization signal block SSB.
  • the processing module 110 and the transceiver module 120 may be configured by one or more central processing units (CPU, Central Processing Unit), graphics processing unit (GPU, Graphics Processing Unit), baseband processor (BP, Baseband Processor), Application Specific Integrated Circuit (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field Programmable Gate Array ( FPGA, Field-Programmable Gate Array), general-purpose processor, controller, microcontroller (MCU, Micro Controller Unit), microprocessor (Microprocessor), or other electronic component implementation, used to execute the aforementioned method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP Baseband Processor
  • ASIC Application Specific Integrated Circuit
  • DSP Programmable Logic Device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • general-purpose processor controller, microcontroller (MCU, Micro Controller Unit
  • Figure 16 is a block diagram of an apparatus 3000 for beam determination according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device may be configured to perform the method described in any one of the above embodiments, or the device may be configured to perform the method formed by a combination of two or more embodiments.
  • device 3000 may include one or more of the following components: processing component 3002, memory 3004, power supply component 3006, multimedia component 3008, audio component 3010, input/output (I/O) interface 3012, sensor component 3014, and Communication Component 3016.
  • Processing component 3002 generally controls the overall operations of device 3000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the above method.
  • processing component 3002 may include one or more modules that facilitate interaction between processing component 3002 and other components.
  • processing component 3002 may include a multimedia module to facilitate interaction between multimedia component 3008 and processing component 3002.
  • Memory 3004 is configured to store various types of data to support operations at device 3000. Examples of such data include instructions for any application or method operating on device 3000, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 3004 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 3006 provides power to the various components of device 3000.
  • Power supply components 3006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 3000 .
  • Multimedia component 3008 includes a screen that provides an output interface between device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 3008 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 3010 is configured to output and/or input audio signals.
  • audio component 3010 includes a microphone (MIC) configured to receive external audio signals when device 3000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 3004 or sent via communications component 3016 .
  • audio component 3010 also includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 3014 includes one or more sensors for providing various aspects of status assessment for device 3000 .
  • the sensor component 3014 can detect the open/closed state of the device 3000, the relative positioning of components, such as the display and keypad of the device 3000, the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000, the user The presence or absence of contact with device 3000, device 3000 orientation or acceleration/deceleration, and temperature changes of device 3000.
  • Sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the apparatus 3000 and other devices.
  • Device 3000 may access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • communications component 3016 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 3000 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 3004 including instructions, which can be executed by the processor 3020 of the device 3000 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例是关于波束确定方法、装置、通信设备和存储介质,基站基于通感信号在目标用户设备(UE)反射的回波信号,确定目标UE的感知信息;基于所述目标UE的感知信息,确定所述目标UE的待测波束。

Description

波束确定方法、装置、通信设备和存储介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及波束确定方法、装置、通信设备和存储介质。
背景技术
蜂窝移动通信网络中,为了保证无线网络在毫米波频段的覆盖性能等,基站和用户设备(UE,User Equipment)之间通过角度较窄的赋形波束进行交互,波束管理可以通过测量不同方向的波束对,选择最优波束对以保证基站和用户的交互质量。第五代(5G,5 th Generation)移动通信技术新空口(NR,New Radio)通过波束管理技术使得无线网络在毫米波频段的覆盖性能大大提升。
发明内容
有鉴于此,本公开实施例提供了一种波束确定方法、装置、通信设备和存储介质。
根据本公开实施例的第一方面,提供一种波束确定方法,其中,所述方法包括:
基于通感信号在目标用户设备UE反射的回波信号,确定目标UE的感知信息;
基于所述目标UE的感知信息,确定所述目标UE的待测波束。
在一个实施例中,所述基于通感信号在目标UE反射的回波信号,确定目标UE的感知信息,包括:
所述基于通感信号在候选UE反射的回波信号,确定候选UE的感知信 息,其中,所述候选UE包括所述目标UE;
基于候选UE的感知信息,和所述目标UE的预估位置信息,确定所述候选UE中所述目标UE的感知信息。
在一个实施例中,所述目标UE的预估位置信息,是基于所述目标UE的接入波束、和/或所述目标UE上报的第一信号测量结果确定的;
或者,
所述目标UE的预估位置信息,是预存在基站内的。
在一个实施例中,所述方法还包括:向所述目标UE发送所述待测波束的测量配置信息,其中,所述测量配置信息用于指示至少以下之一:
所述待测波束;
对所述待测波束的测量信号进行测量的测量周期;
所述待测波束的测量信号的配置参数;
UE上报第二测量结果的所述待测波束的数量,其中,所述第二测量结果是所述目标UE针对所述待测波束的测量信号进行测量得到的。
在一个实施例中,所述向所述目标UE发送所述待测波束的测量配置信息,包括以下之一:
响应于所述测量配置信息的数据量大于数据量阈值,发送携带所述测量配置信息的无线资源控制RRC消息;
响应于所述测量配置信息的数据量小于或等于数据量阈值,发送携带所述测量配置信息的下行控制信息DCI和/或媒体访问控制单元MAC CE。
在一个实施例中,所述基于通感信号在目标UE反射的回波信号,确定目标UE的感知信息,包括:
按感知周期,基于所述通感信号在所述目标UE反射的所述回波信号,确定所述目标UE的感知信息,其中,一个所述感知周期包括N个所述测量周期,其中,N为大于或等于1的正整数。
在一个实施例中,所述方法还包括:
在所述感知周期内,基于所述感知信息确定所述目标UE的位置变化;
基于所述目标UE的位置变化,确定更新所述测量配置信息的配置更新信息;
向所述目标UE发送携带所述配置更新信息的DCI和/或MAC CE。
在一个实施例中,所述方法还包括:
接收所述目标UE基于所述测量配置信息对所述待测波束的测量信号进行测量的第二测量结果;
基于所述第二测量结果从所述待测波束中确定所述目标UE的第一下行波束;
向所述目标UE发送指示所述第一下行波束的指示信息。
在一个实施例中,所述方法还包括以下至少之一:
基于所述目标UE的感知信息,和当前时刻与向所述目标UE指示所述第一下行波束的时刻之间的间隔时间信息,确定的所述目标UE的第二下行波束;
基于所述目标UE的感知信息,确定当前时刻所述目标UE所处的位置;基于当前时刻所述目标UE所处的位置的历史波束,确定的所述目标UE的第二下行波束。
在一个实施例中,所述感知信息包括至少以下之一:
方位信息;
距离信息;
速度信息。
在一个实施例中,所述通感信号包括:承载同步信号块SSB的信号。
根据本公开实施例的第二方面,提供一种波束确定装置,其中,所述装置包括:处理模块,配置为:
基于通感信号在目标用户设备UE反射的回波信号,确定目标UE的感知信息;
基于所述目标UE的感知信息,确定所述目标UE的待测波束。
在一个实施例中,所述处理模块,具体配置为:
所述基于通感信号在候选UE反射的回波信号,确定候选UE的感知信息,其中,所述候选UE包括所述目标UE;
基于候选UE的感知信息,和所述目标UE的预估位置信息,确定所述候选UE中所述目标UE的感知信息。
在一个实施例中,所述目标UE的预估位置信息,是基于所述目标UE的接入波束、和/或所述目标UE上报的第一信号测量结果确定的;
或者,
所述目标UE的预估位置信息,是预存在基站内的。
在一个实施例中,所述装置还包括:
收发模块,配置为向所述目标UE发送所述待测波束的测量配置信息,其中,所述测量配置信息用于指示至少以下之一:
所述待测波束;
对所述待测波束的测量信号进行测量的测量周期;
所述待测波束的测量信号的配置参数;
UE上报第二测量结果的所述待测波束的数量,其中,所述第二测量结果是所述目标UE针对所述待测波束的测量信号进行测量得到的。
在一个实施例中,所述收发模块,具体配置为以下之一:
响应于所述测量配置信息的数据量大于数据量阈值,发送携带所述测量配置信息的无线资源控制RRC消息;
响应于所述测量配置信息的数据量小于或等于数据量阈值,发送携带所述测量配置信息的下行控制信息DCI和/或媒体访问控制单元MAC CE。
在一个实施例中,所述处理模块,具体配置为:
按感知周期,基于所述通感信号在所述目标UE反射的所述回波信号,确定所述目标UE的感知信息,其中,一个所述感知周期包括N个所述测量周期,其中,N为大于或等于1的正整数。
在一个实施例中,所述处理模块,还配置为在所述感知周期内,基于所述感知信息确定所述目标UE的位置变化;
所述处理模块,还配置为基于所述目标UE的位置变化,确定更新所述测量配置信息的配置更新信息;
所述收发模块,还配置为向所述目标UE发送携带所述配置更新信息的DCI和/或MAC CE。
在一个实施例中,所述收发模块,还配置为接收所述目标UE基于所述测量配置信息对所述待测波束的测量信号进行测量的第二测量结果;
所述处理模块,还配置为基于所述第二测量结果从所述待测波束中确定所述目标UE的第一下行波束;
所述收发模块,还配置为向所述目标UE发送指示所述第一下行波束的指示信息。
在一个实施例中,所述处理模块,还配置为以下至少之一:
基于所述目标UE的感知信息,和当前时刻与向所述目标UE指示所述第一下行波束的时刻之间的间隔时间信息,确定的所述目标UE的第二下行波束;
基于所述目标UE的感知信息,确定当前时刻所述目标UE所处的位置;基于当前时刻所述目标UE所处的位置的历史波束,确定的所述目标UE的第二下行波束。
在一个实施例中,所述感知信息包括至少以下之一:
方位信息;
距离信息;
速度信息。
在一个实施例中,所述通感信号包括:承载同步信号块SSB的信号。
根据本公开实施例的第三方面,提供一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面所述波束确定方法的步骤。
根据本公开实施例的第四方面,提供一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如第一方面所述波束确定方法的步骤。
本公开实施例提供的波束确定方法、装置、通信设备和存储介质。基站基于通感信号在目标UE反射的回波信号,确定目标UE的感知信息;基于所述目标UE的感知信息,确定所述目标UE的待测波束。如此,通过通感信号确定目标UE的位置信息,由于通感信号相较波束定位具有更高的定位精度,因此,基站可以选择更少的待测波束供UE进行波束测量,如此,从而降低UE的测量开销
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种波束确定方法的流程示意图;
图3是根据一示例性实施例示出的一种通感信号传输示意图;
图4是根据一示例性实施例示出的一种感知信息确定方法的流程示意 图;
图5是根据一示例性实施例示出的一种矢量矩阵确定方法的流程示意图;
图6是根据一示例性实施例示出的再一种目标UE的感知信息确定方法的流程示意图;
图7是根据一示例性实施例示出的一种预估UE位置方法的流程示意图;
图8是根据一示例性实施例示出的另一种波束确定方法的流程示意图;
图9是根据一示例性实施例示出的一种波束确定方法时序示意图;
图10是根据一示例性实施例示出的一种测量配置信息传输方法的流程示意图;
图11是根据一示例性实施例示出的又一种波束确定方法的流程示意图;
图12是根据一示例性实施例示出的再一种波束确定方法的流程示意图;
图13是根据一示例性实施例示出的再一种波束确定方法的流程示意图;
图14是根据一示例性实施例示出的再一种波束确定方法的流程示意图;
图15是根据一示例性实施例示出的另一种波束确定装置的框图;
图16是根据一示例性实施例示出的一种用于波束确定的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施 例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment, UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端) 连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:蜂窝移动通信系统中的手机终端,以及网络侧设备,如基站等接入网设备,以及核心网等。
相关技术中波束管理的基本组成可以包括如下几个方面:
一、波束扫描:不同方向的波束以时分复用的方式在特定区域实现覆盖,每个波束携带信道状态信息参考信号(CSI-RS,Channel State Information-Reference Signal)等参考信号,经过波束扫描,UE可获得不同方向的波束所携带的参考信号。
二、波束测量:UE测量接收波束所携带的参考信号,并通过计算参考信号的信号质量获取该方向的波束质量。
三、波束上报:UE报告波束所携带参考信号的测量信息,测量信息应至少包括测量质量和波束指示信息。
四、波束确定:基站和UE选择发送/接收波束。例如,在连接态下, 基站应根据UE的反馈信息确定发送波束,并向用户指示该波束。
上述波束管理过程中,基站配置波束测量周期后循环进入如下波束测量过程:首先,基站根据用户的接入波束,确定UE大致方向,并根据UE的方向确定待测波束对集合,以及UE所需上报的下行波束数量L。然后基站为待测波束对集合配置CSI-RS,并将CSI-RS的配置信息通知UE。基站发送CSI-RS,UE则根据配置信息进行CSI-RS测量,并将最好的L个下行波束测量结果反馈到基站。最后基站综合考虑负载、波束测量结果等因素确定下行波束并指示给UE。
一方面,基站依据UE接入波束确定UE位置,由于波束定位误差大,基站获取到的UE当前位置不精确,故而基站需要扩大测量范围保证所选波束的质量。这将导致UE测量大量竞争力不匹配的波束对,造成较大的UE开销。
另一方面,业务到达时,基站调用先前测量所定的最优波束传输业务,并不考虑测量到业务调度间隔内的UE的移动性,可能会造成业务传输的质量较低。
如何,减少待测波束的数量,减小UE测量负载,以及业务到达是基站能选择当前最有波束进行业务传输,提高业务传输质量,是亟待解决的问题。
如图2所示,本示例性实施例提供一种波束确定方法,可以被蜂窝移动通信系统的基站执行,包括:
步骤201:基于通感信号在目标UE反射的回波信号,确定目标UE的感知信息;
步骤202:基于所述目标UE的感知信息,确定所述目标UE的待测波束。
UE可以是蜂窝移动通信系统中的手机等终端。UE可以用于接收感知 信息的通信设备。UE也可以发射感知信息。目标UE是基站需要确定与其进行通信的波束的UE。网络可以包括但不限于接入网、和/或核心网等。待测波束是采用波束赋形后得到的具有指向性的波束。待测波束可以包括下行波束。由于下行波束和上行波束具有一一对应关系,因此待测波束也可以是下行波束和上行波束组成的波束对。
在一种可能的实现方式中,该目标UE反射的回波信号,是目标UE基于通感信号在目标UE反射的回波信号,也可以是目标UE基于基站发送的其他信号反射的回波信号,其原理相通不再赘述。通感信号(通信感知信号)可以是蜂窝移动通信系统中,同时用于数据通信和环境感知的信号。通感信号可以是由基站发射,回波信号可以是通感信号在UE反射回基站的信号。通感信号,包括毫米波信号、或太赫兹信号等。
通感信号在UE反射的回波信号,可以包括但不限于:通感信号在持有UE的用户反射的回波信号、通感信号在设置有UE的设备反射的回波信号等。通感信号也可以是其他通信设备发送的,如通感信号也可以是其他基站或UE发射的。基站可以基于其他通信设备发送的通感信号在UE上发射的回波信号,确定UE的感知信息。
如图3所示,基站等可以采用具有发射天线阵的发射面板发射通感信号,采用具有接收天线阵的接收面板接收回波信号。通感信号可以是连续的突发信号,以进行连续的感知。
在一个实施例中,所述通感信号包括:承载同步信号块SSB的信号。
通感信号的发射端,如基站的发射面板等,可以发射SSB突发集(SSB Burst Set)。由回波信号的接收端,如基站的接收面板进行连续接收。SSB突发集中的SSB信号(承载SSB的信号)之间可以间隔预定时长,以减少已发射SSB信号的回波信号对当前发射的SSB信号的影响。
例如,可以在前一个SSB信号的回波信号被接收后,再发射后一个SSB 信号,以减小前一个SSB信号的回波信号与后一个SSB信号的干扰(例如旁瓣干扰)等。
在一个实施例中,所述感知信息包括至少以下之一:
方位信息;
距离信息;
速度信息。
这里,方位信息可以是UE相对基站等参照物的相对方位信息,也可以是地理位置方位信息。方位信息可以包括,UE相对基站的方位角等。示例性的,可以根据从接收天线面板上相邻天线阵元接收的回波信号的相位差确定方位信息。
距离信息可以是UE相对基站等参照物的相对方位信息。示例性的,可以根据基站发射通感信号到接收回波信号的信号飞行时间等确定基站与UE之间的距离。
速度信息,可以基于多个时间点UE的距离和方位来确定。
在一个实施例中,可以但不限于采用感知模型、机器学习模型等,基于通感信号和接收到的通感回波信号确定感知信息。
在一个实施例中,如图4所示,其中所述通感信号可以为承载SSB的信号;基站确定感知信息的具体步骤包括:
步骤401:基站接收目标UE反射的SSB信号的回波信号。
步骤402:基站对反射后接收到的调制符号矩阵进行逐元素复除得到矢量矩阵。
一种实施例中,SSB以窄波束的形式通过基站发射面板发射,并在遇到用户时反射回来;基站通过接收面板捕获回波信号,并在回波信号中提取所述的感知信息。进一步的,基站基于回波信号确定调制符号矩阵。
如图5所示,步骤402具体包含如下两个步骤:
步骤4021:基站接收到SSB经过物体反射后得到的接收调制符号矩阵。
示例性的,接收调制符号矩阵(D Rx) μ,n可以采用表达式(1)表示:
Figure PCTCN2022083441-appb-000001
其中,A(μ,n)表示复振幅因子,(D Tx) μ,n表示发送的调制符号矩阵,
Figure PCTCN2022083441-appb-000002
表示反射符号的距离对接收调制符号的影响,
Figure PCTCN2022083441-appb-000003
表示多普勒对接收调制符号的影响,μ表示OFDM符号索引,n表示子载波索引。
由于目标UE可能是处于运动状态,因此其可以被视为运动物体,从而通过步骤4021确定该SSB经过在运动状态下的目标UE反射后得到的接收调制符号矩阵。
步骤4022:基站对接收调制符号矩阵进行逐元素复除得到矢量矩阵。
示例性的,矢量矩阵可以采用表达式(2)表示:
Figure PCTCN2022083441-appb-000004
反射符号的距离对接收调制符号的影响k R(n)可以采用表达式(3)表示:
Figure PCTCN2022083441-appb-000005
其中,Δf表示子载波间隔,R表示用户与基站间的距离,c 0表示光速,j表示复数。
多普勒对接收调制符号的影响k D(μ)可以采用表达式(4)表示:
Figure PCTCN2022083441-appb-000006
其中,T OFDM表示OFDM符号持续时间,v rel表示用户的速度,f c表示载波频率;其中j表示复数。
步骤403:基站对矢量矩阵的每一行进行离散傅立叶变换。
步骤404:基站对步骤403得到的矩阵的每一列进行逆离散傅立叶变换。
步骤405:基站基于步骤404得到的表示距离和多普勒的矩阵,分离出用户的距离息和速度信息。
步骤406:基站从接收天线面板上相邻天线阵元接收的信号的相位差中分离出用户的方位角信息。
示例性的,相邻天线阵元接收的信号之间的相位差为:
Figure PCTCN2022083441-appb-000007
其中,β=2π/λ表示相位传播因子,λ表示波长,θ k表示第k个信号源的方向,d表示相邻天线阵元之间的距离。
如此,通过通感信号确定目标UE的位置信息,由于通感信号相较波束定位具有更高的定位精度,因此,基站可以选择更少的待测波束供UE进行波束测量,如此,从而降低UE的测量开销。
在一个实施例中,所述基于通感信号在目标UE反射的回波信号,确定目标UE的感知信息,包括:
所述基于通感信号在候选UE反射的回波信号,确定候选UE的感知信息,其中,所述候选UE包括所述目标UE;
基于候选UE的感知信息,和所述目标UE的预估位置信息,确定所述候选UE中所述目标UE的感知信息。
采用通信感知信号对UE进行感知,利用的是通感信号的回波特性。当存在多个UE(即候选UE)时,通过通感信号无法从多个UE中识别目标UE。
这里,可以将目标UE的预估位置信息与候选UE的感知信息进行对比,将差异值小于或等于对比阈值的候选UE确定为目标UE;或者,可以将多个候选UE的感知信息中与目标UE的预估位置信息差异值最小的一个候选UE确定为目标UE,并将该候选UE的感知信息确定为目标UE的感知信息。
例如,可以对比目标UE预测的距离信息和速度信息,与多个候选UE 的距离信息和速度信息进行比较,将距离信息和速度信息差异最小的一个候选UE确定为目标UE,并将该候选UE的感知信息确定为目标UE的感知信息。
目标UE的预估位置信息,可以是基站基于以下的任一种方式确定的:目标UE的接入波束和目标UE上报的无线信号测量结果确定的、目标UE上报的预估位置信息、以及在之前的感知过程中确定并预存在基站内的位置信息。
如此,基站可以确定目标UE对应的感知信息。在选择待测波束时,基站可以基于较为精确的目标UE的感知信息,缩小选择范围,减少缺乏竞争力的待测波束的数量,选择更少的待测波束供UE进行波束测量,如此,从而降低UE的测量开销。
在一个实施例中,所述目标UE的预估位置信息,是基于所述目标UE的接入波束和所述目标UE上报的第一信号测量结果确定的;
或者,
所述目标UE的预估位置信息,是预存在基站内的。
示例性的,如图6所示,基于候选UE的感知信息,和所述目标UE的预估位置信息,确定所述候选UE中所述目标UE的感知信息的具体步骤包括:
步骤601,基站通过通信感知技术确定信号覆盖范围内一个或多个UE的地理位置和移动速度。
可以理解的,基站并不确定UE与地理位置以及移动速度之间的对应关系。
步骤602,基站通过UE的接入波束和上报的无线信号第一测量结果预估UE的位置。
其中,无线信号第一测量结果可以示例性的为信道状态信息参考信号 接收功率(CSI-RSRP,Channel State Information Reference Signal Received Power)。
具体的,如图7所示,以CSI-RSRP为例,基站通过接入波束和CSI-RSRP预估UE位置的具体步骤包括:
步骤6021,基站根据UE的接入波束预估UE所处方位;
示例性的,该UE所处方位可以为角度(方位角)。
步骤6022,基站根据UE所处方位、CSI-RSRP、CSI-RSRP变化幅度和/或存储的UE空间区域信息,预估UE的位置参数;
其中,预估UE的位置参数,可以为UE的预估位置和移动速度,还可以包括其他参数。
步骤603,基站将UE的预估位置和移动速度与已确定的用户具体位置和移动速度进行对应。
步骤604,建立UE与感知信息的对应关系。
进一步的,基站可以维持并调整该UE与感知信息的对应关系;例如,在后续的感知过程中,或在后续的波束配置过程,调整该UE与感知信息的对应关系。
在本公开实施例中,已确定的用户具体位置和移动速度,是指基站通过通信感知技术确定的UE的位置和移动速度;既可以是前一次确定的用户具体位置和移动速度或前几次确定的用户具体位置和移动速度,也可以是历史上所有确定的用户具体位置和移动速度。
目标UE的预估位置信息,可以是基站基于目标UE的接入波束和上报的无线信号测量结果确定的,也可以是目标UE上报的,还可以是在之前的感知过程中确定的。
图8所示,本示例性实施例提供一种波束确定方法,可以被蜂窝移动通信系统的基站执行,包括:
步骤801:向所述目标UE发送所述待测波束的测量配置信息,其中,所述测量配置信息用于指示至少以下之一:
所述待测波束;
对所述待测波束的测量信号进行测量的测量周期;
所述待测波束的测量信号的配置参数;
UE上报第二测量结果的所述待测波束的数量,其中,所述第二测量结果是所述目标UE针对所述待测波束的测量信号进行测量得到的。
步骤801可以单独实施,也可以与本公开的任意一个实施例结合实施,例如与步骤201和步骤202一起被实施,在此不再赘述。
基站确定待测波束后,可以通过测量配置信息向UE指示测量配置。
测量配置信息通过待测波束的唯一指示标识指示待测波束。例如,测量配置信息可以包括:待测波束的波束(标识)ID。基站指示的待测波束可以是下行波束,也可以是波束对。
测量信号可以包括但不限于信道状态信息参考信号(CSI-RSRP,Channel State Information Reference Signal)、跟踪参考信号(TRS,Tracking Reference Signal)等。
测量信号的配置参数可以包括测量信号的传输资源等,如频域资源、时域资源、时频域资源。UE可以基于配置参数接收测量信号进行测量。UE可以基于可以向上报M个待测波束的第二测量结果,其中,M为大于或等于1的正整数。测量配置信息可以指示上报第二测量结果的所述待测波束的数量M。
在一个实施例中,所述向所述目标UE发送所述待测波束的测量配置信息,包括:
响应于所述测量配置信息的数据量大于数据量阈值,发送携带所述测量配置信息的无线资源控制RRC消息;
响应于所述测量配置信息的数据量小于数据量阈值,发送携带所述测量配置信息的下行控制信息DCI和/或媒体访问控制单元MAC CE。
其中,若所述测量配置信息的数据量等于数据量阈值,可以采用上述的两种方式中的任一种,在此并不限定。
由于基站可以基于目标UE对应的感知信息确定待测波束,因此相对相关技术中基站基于接入波束确定待测波束,基站可以缩小待测波束的范围,进而减少测量配置信息的数据量。
基站可以基于测量配置信息的数据量确定携带测量配置信息的信令。
其中,数据量阈值可以基于DCI和/或MAC CE的数据承载能力确定,当测量配置信息的数据量小于或等于数据量阈值时,将测量配置信息携带在DCI和/或MAC CE中发送给UE,相对RRC消息,通过DCI和/或MAC CE携带测量配置信息可以减少UE信令开销。
当测量配置信息的数据量大于数据量阈值时,可以采用RRC消息携带测量配置信息,以满足测量配置信息的传输需求。
在一个实施例中,所述基于通感信号在目标UE反射的回波信号,确定目标UE的感知信息,包括:
按感知周期,基于所述通感信号在所述目标UE反射的所述回波信号,确定所述目标UE的感知信息,其中,一个所述感知周期包括N个所述测量周期,其中,N为大于或等于1的正整数。
如图9所示,基站以感知周期为时间间隔,循环执行感知任务。在一个感知周期中,基站根据的感知信息指导多次波束测量,且波束测量以测量周期为时间间隔在1个感知周期内循环执行。
一个感知周期中,基站通过发送通感信号,如SSB突发集,来执行感知任务获取用户的感知信息,如:方位角、距离和速度等信息。基站根据 感知信息完成测量配置后,向测量配置信息发送给UE,以测量周期为时间间隔发送周期性测量信号,CSI-RS以支持周期性的波束测量,并在测量结束后发送DCI指示用户下行波束。
在一个实施例中,所述方法还包括:
在所述感知周期内,基于所述感知信息确定所述目标UE的位置变化;
基于所述目标UE的位置变化,确定更新所述测量配置信息的配置更新信息;
向所述目标UE发送所述配置更新信息。
其中,可以通过DCI或MAC CE发送所述配置更新信息。
如图9和图10所示,感知周期内,基站确定目标UE的感知信息后,基站会向目标UE发送测量配置信息,包括周期性CSI-RS,上传波束个数L以及测量周期等信息。基站可以基于测量配置信息的数据量确定携带测量配置信息的信令。测量配置信息可以由RRC消息携带。
如图10所示,在后续测量周期中,基站可以基于目标UE的感知信息预测目标UE的位置变化。例如,基站基于当前时刻距离获取感知信息的时刻的时间间隔,以感知信息中UE的距离、方位以及速度等,预测当前时刻UE的位置变化情况,进而基于当前时刻目标UE的位置确定需要目标UE进行测量的待测波束,并采用配置更新信息更新测量配置信息。配置更新信息可以是测量配置信息,也可以是其他专用信息。基站可以采用DCI和/或MAC CE携带配置更新信息,以减小信令开销。
在一个实施例中,当配置更新信息的数据量大于阈值时,可以采用RRC消息携带。
图11所示,本示例性实施例提供一种波束确定方法,可以被蜂窝移动通信系统的基站执行,包括:
步骤1101:接收所述目标UE基于所述测量配置信息对所述待测波束 的测量信号进行测量的第二测量结果;
步骤1102:基于所述第二测量结果从所述待测波束中确定所述目标UE的第一下行波束;
步骤1103:向所述目标UE发送指示所述第一下行波束的指示信息。
步骤1101~1103可以单独实施,也可以与本公开的其他实施例一起结合实施。例如,步骤1101~1103可以结合步骤201和步骤202一起被实施;或步骤1101~1103可以结合步骤801一起被实施。
UE基于测量配置信息,对待测波束的测量信号进行测量,得到各待测波束的第二测量结果。UE可以基于测量配置信息的要求,选择一定数量待测波束的第二测量结果发送给基站,例如,UE挑选质量最好的一定数量个下行波束组成下行候选波束集并上报基站,上报内容包括下行波束的第二测量结果,如:CSI-RS资源指示(CRI,CSI-RS Resource Indicator)和层-1参考信号接收功率(L1-RSRP,Layer-1 Reference Signal Received Power)等。
基站根据UE上报的第二测量结果确定第一下行波束,并指示用户。基站可以通过DCI携带第一下行波束的指示信息。
图12所示,本示例性实施例提供一种波束确定方法,可以被蜂窝移动通信系统的基站执行,包括以下至少之一:
步骤1201a:基于所述目标UE的感知信息,和当前时刻与向所述目标UE指示所述第一下行波束的时刻之间的间隔时间信息,确定的所述目标UE的第二下行波束;
步骤1201b:基于所述目标UE的感知信息,确定当前时刻所述目标UE所处的位置;基于当前时刻所述目标UE所处的位置的历史波束,确定的所述目标UE的第二下行波束。
确定第一下行波束之后,由于UE发生了移动或是其他变化,此时第一 下行波束不一定适用。因此本公开实施例中,需要确定当前时刻适用的第二下行波束。其中,可以周期性的重新确定第二下行波束,也可以基于其他触发条件发起确定第二下行波束。基站基于当前时刻距离基站指示第一下行波束的时刻之间的间隔时间,以感知信息中UE的参数,预测当前时刻UE所处的波束,将该波束确定为第二波束,并向UE进行指示,用于传输当前时刻的业务。其中,感知信息中UE的参数可以为:距离、方位以及速度等。
基站可以预先存储不同位置对应的波束。基站基于当前时刻距离基站指示第一下行波束的时刻之间的间隔时间,以感知信息中UE的参数,预测当前时刻UE所处的位置,并基于基站预先存储的该位置对应的第二波束向UE指示。
基站可以采用DCI指示第二下行波束。
如此,基站可以选择最优波束用于业务传输,从而提升波束管理性能。
以下结合上述任意实施例提供一个具体示例:
如图13所述,本实施例提供一种波束确定方法,该方法包括如下步骤:
步骤1301,基站配置感知周期和SSB突发集。
在一种可能的实现方式中,步骤1301包含如下两个步骤:
步骤13011,基站配置感知周期,并以该周期为时间间隔循环执行感知任务。
步骤13012,基站在感知周期开始时,为本次感知任务配置用于感知的SSB突发集。
步骤1302,基站发送SSB突发集,并通过检测SSB的回波信号获取用户感知信息,包括速度,方位角,距离等信息。
在一种可能的实现方式中,步骤1302包含如下两个步骤:
步骤13021,基站发送面板按照步骤102的配置发送SSB。
步骤13022,基站接收面板检测SSB的回波信号,并根据回波信号的角度、多普勒频移等信息获取用户所在位置的角度、速度和距离等信息。
步骤1303,基站根据感知信息为用户确定待测可选波束对集合、下行候选波束个数以及测量周期,并配置周期性CSI-RS。
在一种可能的实现方式中,步骤1303包含如下三个步骤:
步骤13031,基站根据步骤202获取的用户所在位置的角度、速度等信息选择用户可以测量且具有相似竞争力的波束对集合,并为用户配置需要上报的下行波束个数和测量周期。
步骤13032,基站根据301中配置的待测可选波束对集合配置用于波束测量的周期性CSI-RS。
步骤13033,基站通过RRC/DCI/MAC CE向用户更新波束测量的配置消息,包括下行候选波束个数L,周期性CSI-RS配置信息和测量周期等。
步骤1304,基站向用户发送周期性CSI-RS,用户对待测可选波束对集合进行测量,并上报测量结果。
在一种可能的实现方式中,步骤1304包含如下三个步骤:
步骤13041,基站根据步骤301和步骤302的配置结果,向用户周期性地发送待测可选波束对的CSI-RS。
步骤13042,用户根据基站的RRC配置消息接收待测可选波束对的CSI-RS,并计算C每个波束对CSI-RS的L1-RSRP。
步骤13043,用户根据13042的计算结果挑选质量最好的L个下行波束组成下行候选波束集并上报基站,上报内容包括下行波束的CRI和L1-RSRP。
步骤1305,基站根据用户上报的反馈测量结果确定下行波束,并指示 用户。
在一种可能的实现方式中,步骤1305包含如下两个步骤:
步骤13051,基站根据用户的反馈结果结合感知信息确定下行波束。
步骤13052,基站通过DCI将下行波束指示用户。
如图14所述,本实施例提供一种波束确定方法,该方法包括如下步骤:
步骤1401,基站根据用户感知数据和历史数据等信息从下行候选波束集中匹配最优波束。
在一种可能的实现方式中,步骤1401包含如下三个步骤:
步骤14011,网络侧通知基站,用户的业务数据即将到达。
步骤14012,基站通过用户角度、距离、速度等感知信息配合用户波束指示的时间间隔以及用户所处位置波束的历史选择等历史信息匹配用户此时的最优波束。
当然,步骤14011中给出的只是一个举例说明,而并非唯一的实现方式。本领域内技术人员可以理解,还可以基于其他触发条件来触发基站确定用户此时的最优波束,不仅限于业务到达触发。
步骤1402,基站将最优波束指示给用户。
在一种可能的实现方式中,步骤1402包含如下两个步骤:
步骤14021:基站将步骤102匹配到的最优波束指示给用户。
在一种可能的实现方式中,基站可以通过DCI信令指示该最优波束。
进一步的,步骤1402还包括:
步骤14022:基站调用该波束传输业务数据。
进一步的,所述方法还包括步骤1403,用户根据指示波束对应的波束接收业务数据。
本发明实施例还提供了一种波束确定装置,应用于蜂窝移动无线通信 的基站中,该装置可以被配置为执行以上任一个实施例所述的方法,或装置可以被配置为执行以上两个或两个以上实施例组合形成的方法。
示例性的,如图15所示,其中,所述装置100包括:处理模块110,配置为:
基于通感信号在目标用户设备UE反射的回波信号,确定目标UE的感知信息;
基于所述目标UE的感知信息,确定所述目标UE的待测波束。
在一个实施例中,所述处理模块110,具体配置为:
所述基于通感信号在候选UE反射的回波信号,确定候选UE的感知信息,其中,所述候选UE包括所述目标UE;
基于候选UE的感知信息,和所述目标UE的预估位置信息,确定所述候选UE中所述目标UE的感知信息。
在一个实施例中,所述目标UE的预估位置信息,是基于所述目标UE的接入波束、和/或所述目标UE上报的第一信号测量结果确定的;
或者,
所述目标UE的预估位置信息,是预存在基站内的。
在一个实施例中,所述装置还包括:
收发模块120,配置为向所述目标UE发送所述待测波束的测量配置信息,其中,所述测量配置信息用于指示至少以下之一:
所述待测波束;
对所述待测波束的测量信号进行测量的测量周期;
所述待测波束的测量信号的配置参数;
UE上报第二测量结果的所述待测波束的数量,其中,所述第二测量结果是所述目标UE针对所述待测波束的测量信号进行测量得到的。
在一个实施例中,所述收发模块120,具体配置为以下之一:
响应于所述测量配置信息的数据量大于数据量阈值,发送携带所述测量配置信息的无线资源控制RRC消息;
响应于所述测量配置信息的数据量小于或等于数据量阈值,发送携带所述测量配置信息的下行控制信息DCI和/或媒体访问控制单元MAC CE。
在一个实施例中,所述处理模块110,具体配置为:
按感知周期,基于所述通感信号在所述目标UE反射的所述回波信号,确定所述目标UE的感知信息,其中,一个所述感知周期包括N个所述测量周期,其中,N为大于或等于1的正整数。
在一个实施例中,所述处理模块110,还配置为在所述感知周期内,基于所述感知信息确定所述目标UE的位置变化;
所述处理模块110,还配置为基于所述目标UE的位置变化,确定更新所述测量配置信息的配置更新信息;
所述收发模块120,还配置为向所述目标UE发送携带所述配置更新信息的DCI和/或MAC CE。
在一个实施例中,所述收发模块120,还配置为接收所述目标UE基于所述测量配置信息对所述待测波束的测量信号进行测量的第二测量结果;
所述处理模块110,还配置为基于所述第二测量结果从所述待测波束中确定所述目标UE的第一下行波束;
所述收发模块120,还配置为向所述目标UE发送指示所述第一下行波束的指示信息。
在一个实施例中,所述处理模块110,还配置为以下至少之一:
基于所述目标UE的感知信息,和当前时刻与向所述目标UE指示所述第一下行波束的时刻之间的间隔时间信息,确定的所述目标UE的第二下行波束;
基于所述目标UE的感知信息,确定当前时刻所述目标UE所处的位置; 基于当前时刻所述目标UE所处的位置的历史波束,确定的所述目标UE的第二下行波束。
在一个实施例中,所述感知信息包括至少以下之一:
方位信息;
距离信息;
速度信息。
在一个实施例中,所述通感信号包括:承载同步信号块SSB的信号。
在示例性实施例中,处理模块110和收发模块120等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,Baseband Processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图16是根据一示例性实施例示出的一种用于波束确定的装置3000的框图。例如,装置3000可以是移动电话、计算机、数字广播终端、消息收发设备、游戏控制台、平板设备、医疗设备、健身设备、个人数字助理等。该装置可以被配置为执行以上任一个实施例所述的方法,或装置可以被配置为执行以上两个或两个以上实施例组合形成的方法。
参照图16,装置3000可以包括以下一个或多个组件:处理组件3002、存储器3004、电源组件3006、多媒体组件3008、音频组件3010、输入/输出(I/O)接口3012、传感器组件3014、以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示、电话呼叫、数据通信、相机操作和记录操作相关联的操作。处理组件3002可以包 括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令、联系人数据、电话簿数据、消息、图片、视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、可擦除可编程只读存储器(EPROM)、可编程只读存储器(PROM)、只读存储器(ROM)、磁存储器、快闪存储器、磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统、一个或多个电源、及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当装置3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010 包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘、点击轮、按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到装置3000的打开/关闭状态、组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变、用户与装置3000接触的存在或不存在、装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器、陀螺仪传感器、磁传感器、压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi、2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术、红外数据协会(IrDA)技术、超宽带(UWB)技术、蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路 (ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种波束确定方法,其中,所述方法包括:
    基于通感信号在目标用户设备UE反射的回波信号,确定目标UE的感知信息;
    基于所述目标UE的感知信息,确定所述目标UE的待测波束。
  2. 根据权利要求1所述的方法,其中,所述基于通感信号在目标UE反射的回波信号,确定目标UE的感知信息,包括:
    所述基于通感信号在候选UE反射的回波信号,确定候选UE的感知信息,其中,所述候选UE包括所述目标UE;
    基于候选UE的感知信息,和所述目标UE的预估位置信息,确定所述候选UE中所述目标UE的感知信息。
  3. 根据权利要求2所述的方法,其中,
    所述目标UE的预估位置信息,是基于所述目标UE的接入波束、和/或所述目标UE上报的第一信号测量结果确定的;
    或者,
    所述目标UE的预估位置信息,是预存在基站内的。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:向所述目标UE发送所述待测波束的测量配置信息,其中,所述测量配置信息用于指示至少以下之一:
    所述待测波束;
    对所述待测波束的测量信号进行测量的测量周期;
    所述待测波束的测量信号的配置参数;
    UE上报第二测量结果的所述待测波束的数量,其中,所述第二测量结果是所述目标UE针对所述待测波束的测量信号进行测量得到的。
  5. 根据权利要求4所述的方法,其中,所述向所述目标UE发送所述待 测波束的测量配置信息,包括以下之一:
    响应于所述测量配置信息的数据量大于数据量阈值,发送携带所述测量配置信息的无线资源控制RRC消息;
    响应于所述测量配置信息的数据量小于或等于数据量阈值,发送携带所述测量配置信息的下行控制信息DCI和/或媒体访问控制单元MAC CE。
  6. 根据权利要求4所述的方法,其中,所述基于通感信号在目标UE反射的回波信号,确定目标UE的感知信息,包括:
    按感知周期,基于所述通感信号在所述目标UE反射的所述回波信号,确定所述目标UE的感知信息,其中,一个所述感知周期包括N个所述测量周期,其中,N为大于或等于1的正整数。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    在所述感知周期内,基于所述感知信息确定所述目标UE的位置变化;
    基于所述目标UE的位置变化,确定更新所述测量配置信息的配置更新信息;
    向所述目标UE发送携带所述配置更新信息的DCI和/或MAC CE。
  8. 根据权利要求4所述的方法,其中,所述方法还包括:
    接收所述目标UE基于所述测量配置信息对所述待测波束的测量信号进行测量的第二测量结果;
    基于所述第二测量结果从所述待测波束中确定所述目标UE的第一下行波束;
    向所述目标UE发送指示所述第一下行波束的指示信息。
  9. 根据权利要求8所述的方法,其中,所述方法还包括以下至少之一:
    基于所述目标UE的感知信息,和当前时刻与向所述目标UE指示所述第一下行波束的时刻之间的间隔时间信息,确定的所述目标UE的第二下行波束;
    基于所述目标UE的感知信息,确定当前时刻所述目标UE所处的位置;基于当前时刻所述目标UE所处的位置的历史波束,确定的所述目标UE的第二下行波束。
  10. 根据权利要求1至9任一项所述的方法,其中,所述感知信息包括至少以下之一:
    方位信息;
    距离信息;
    速度信息。
  11. 根据权利要求1至9任一项所述的方法,其中,所述通感信号包括:承载同步信号块SSB的信号。
  12. 一种波束确定装置,其中,所述装置包括:处理模块,配置为:
    基于通感信号在目标用户设备UE反射的回波信号,确定目标UE的感知信息;
    基于所述目标UE的感知信息,确定所述目标UE的待测波束。
  13. 一种通信设备装置,包括处理器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至11任一项所述波束确定方法的步骤。
  14. 一种存储介质,其上存储由可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求1至11任一项所述波束确定方法的步骤。
PCT/CN2022/083441 2022-03-28 2022-03-28 波束确定方法、装置、通信设备和存储介质 WO2023184096A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/083441 WO2023184096A1 (zh) 2022-03-28 2022-03-28 波束确定方法、装置、通信设备和存储介质
CN202280000982.7A CN117136601A (zh) 2022-03-28 2022-03-28 波束确定方法、装置、通信设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083441 WO2023184096A1 (zh) 2022-03-28 2022-03-28 波束确定方法、装置、通信设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023184096A1 true WO2023184096A1 (zh) 2023-10-05

Family

ID=88198505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083441 WO2023184096A1 (zh) 2022-03-28 2022-03-28 波束确定方法、装置、通信设备和存储介质

Country Status (2)

Country Link
CN (1) CN117136601A (zh)
WO (1) WO2023184096A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050277A (zh) * 2019-12-23 2020-04-21 华中科技大学 一种irs辅助的无线通信系统的优化方法及装置
CN113316970A (zh) * 2019-01-24 2021-08-27 高通股份有限公司 用于在无线通信随机接入中指示优选波束的技术
US20220006589A1 (en) * 2018-11-09 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) System and method for phase noise-based signal design for positioning in a communication system
WO2022015965A1 (en) * 2020-07-17 2022-01-20 Google Llc Determining a position of user equipment by using adaptive phase-changing devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220006589A1 (en) * 2018-11-09 2022-01-06 Telefonaktiebolaget Lm Ericsson (Publ) System and method for phase noise-based signal design for positioning in a communication system
CN113316970A (zh) * 2019-01-24 2021-08-27 高通股份有限公司 用于在无线通信随机接入中指示优选波束的技术
CN111050277A (zh) * 2019-12-23 2020-04-21 华中科技大学 一种irs辅助的无线通信系统的优化方法及装置
WO2022015965A1 (en) * 2020-07-17 2022-01-20 Google Llc Determining a position of user equipment by using adaptive phase-changing devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Enhancement for UL AoA positioning", 3GPP DRAFT; R1-2100237, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970869 *

Also Published As

Publication number Publication date
CN117136601A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2022000361A1 (zh) Ue之间的定位方法及装置、通信设备及存储介质
US20230189026A1 (en) Method and device for measuring channel state information
CN115053556A (zh) 通信方法及装置、用户设备、网络设备、及存储介质
JP2024516887A (ja) リソース設定方法、装置、通信デバイス及び記憶媒体
CN114096868A (zh) 位置确定方法、装置、通信设备及存储介质
WO2021248284A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2022178723A1 (zh) 测量间隔的配置方法、装置、通信设备及存储介质
WO2022141186A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
WO2023116756A1 (zh) 感知测量方法、装置、通信设备及可读存储介质
US20230075773A1 (en) Information transmission method and apparatus, and communication device and storage medium
WO2023184096A1 (zh) 波束确定方法、装置、通信设备和存储介质
WO2022126642A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2023197329A1 (zh) 定位方法、装置、通信设备和存储介质
CN116830671B (zh) Trp选择方法及装置、通信设备、通信系统及存储介质
WO2022110195A1 (zh) 测量数据处理方法、装置、通信设备和存储介质
WO2024020757A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2021223111A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2022266838A1 (zh) 小区测量方法、小区测量配置方法及装置、设备及介质
WO2023272513A1 (zh) 定位测量的方法、装置、通信设备及存储介质
WO2024021097A1 (zh) 信道状态信息的测量方法、装置、通信设备及存储介质
WO2022193093A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2024026670A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2023001184A1 (zh) 感知信号测量方法、装置、网络设备及终端
WO2022188073A1 (zh) 测量参考信号的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933954

Country of ref document: EP

Kind code of ref document: A1