WO2023184066A1 - 一种心脏内超声探头及导管系统 - Google Patents
一种心脏内超声探头及导管系统 Download PDFInfo
- Publication number
- WO2023184066A1 WO2023184066A1 PCT/CN2022/083278 CN2022083278W WO2023184066A1 WO 2023184066 A1 WO2023184066 A1 WO 2023184066A1 CN 2022083278 W CN2022083278 W CN 2022083278W WO 2023184066 A1 WO2023184066 A1 WO 2023184066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flexible circuit
- circuit board
- coaxial cable
- wires
- intracardiac
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 88
- 238000002592 echocardiography Methods 0.000 title abstract 4
- 238000002604 ultrasonography Methods 0.000 claims abstract description 69
- 239000002184 metal Substances 0.000 claims description 58
- 229910052751 metal Inorganic materials 0.000 claims description 58
- 238000003466 welding Methods 0.000 claims description 28
- 239000004020 conductor Substances 0.000 claims description 23
- 238000005452 bending Methods 0.000 claims description 10
- 238000005476 soldering Methods 0.000 claims description 8
- 239000004677 Nylon Substances 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 2
- 230000005670 electromagnetic radiation Effects 0.000 abstract description 17
- 238000003384 imaging method Methods 0.000 abstract description 13
- 238000001514 detection method Methods 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 8
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 230000002452 interceptive effect Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 68
- 238000000034 method Methods 0.000 description 20
- 230000005540 biological transmission Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 8
- 230000003047 cage effect Effects 0.000 description 6
- 238000010888 cage effect Methods 0.000 description 6
- 239000011889 copper foil Substances 0.000 description 6
- 230000008054 signal transmission Effects 0.000 description 6
- 238000002679 ablation Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000012285 ultrasound imaging Methods 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 206010003662 Atrial flutter Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 206010047281 Ventricular arrhythmia Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000013152 interventional procedure Methods 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
Definitions
- the present invention relates to the technical field of ultrasound detection equipment, and more specifically, to an intracardiac ultrasound probe and catheter system.
- Intracardiac ultrasound is a landmark advancement in cardiac imaging. Intracardiac ultrasound has gradually become an indispensable technology in a variety of percutaneous interventional and electrophysiological examinations. This technology can effectively reduce surgical risks while Improve the therapeutic effect of surgery.
- intracardiac ultrasound can provide surgeons with real-time assessment of cardiac anatomy and guide operations at different anatomical levels. Compared with traditional esophageal ultrasound, intracardiac ultrasound can be performed while the patient is conscious and sedated, without the need for airway intubation, thereby avoiding esophageal damage. This technology can not only shorten the operation time, but also reduce the radiation received by the surgeon and the patient during the operation, and improve the effectiveness of the operation. The application of intracardiac ultrasound also plays an early warning role in the occurrence of complications such as thrombosis. Intracardiac ultrasound is widely used in most electrophysiological surgeries. It has become an essential tool for atrial fibrillation ablation surgery.
- Intracardiac ultrasound can achieve real-time visualization of certain specific anatomical structures during ventricular arrhythmia ablation, while enabling continuous assessment of catheter and tissue contact, improving ablation efficiency and reducing surgical risks. This technology is also very helpful in areas such as myocardial biopsy and early identification of surgical complications.
- the intracardiac ultrasound probe Since the intracardiac ultrasound probe needs to establish a channel to enter the body through femoral vein puncture, its outer diameter is usually 8F-12F, F is the abbreviation of French, the inner diameter is generally within 2.8mm, and the front end length is generally 90cm, which is used to meet the length of entering the human body. 70cm-80cm, the front end of the probe is generally equipped with a 64-element ultrasonic phased array sound head. According to the needs of intracardiac imaging, the acoustic head part needs to be able to bend in 4 directions, with the maximum bending angle generally reaching 160 degrees. Intracardiac ultrasound probes are disposable consumables and require additional intermediate connections to expensive probe connectors on the imaging system host. In addition, intracardiac ultrasound probes also need to meet various medical device electromagnetic compatibility and electrical safety standards. These requirements make the wiring and connection of the ultrasonic head to the host machine as well as the design and assembly of the intermediate connection parts very critical.
- Intracardiac ultrasound catheters in the prior art basically use flexible circuit boards to connect the transducer electrodes and the intermediate connector from the transducer to the system host connector.
- flexible circuit boards with a length of 90cm to 120cm are expensive and long and flexible.
- the implementation and manufacturing process of electromagnetic shielding of circuit boards is relatively complex.
- the stacked flexible circuit boards are usually wrapped with copper foil.
- the thickness of the copper foil seriously affects its shielding effect on electromagnetic radiation.
- the copper foil is generally thin and the signal is susceptible to interference, resulting in strong environmental electromagnetic interference noise in the image.
- the width of the flexible circuit board is usually less than 2mm, and manufacturers usually need to select at least four long flexible circuit boards to connect 64 ultrasound array elements. In this way, each long flexible circuit board must place at least 16 signal lines in a space of less than 2mm. The demand for flexibility prevents flexible circuit boards from having multiple layers of circuits.
- the spacing between signal lines on flexible circuit boards is usually very small, larger than
- the long-distance transmission of 90cm results in very serious interference between signals, resulting in reduced image resolution and poor contrast.
- the softness requirement makes it difficult to add a shielding ground layer to flexible circuit boards.
- flexible circuit boards are usually stacked together due to size restrictions, so the transmission signals on multiple flexible circuit boards stacked together are very difficult. Signal cross-interference is prone to occur, further reducing image detail resolution and contrast, and the high cost of long flexible circuit boards often prohibits many patients.
- the present invention provides an intracardiac ultrasound probe and catheter system, which adopts an innovative flexible circuit board design and is used for wire connection by extending the flexible circuit board, and is compatible with the long flexible circuit board currently used in the market.
- the connection between the sound head and the system end is different.
- the double-shielded coaxial cable is further innovatively used, which greatly reduces the coupling interference between signals and improves the electromagnetic shielding effect between wires. It has good imaging effect, low cost and simple manufacturing. , suitable for widespread use.
- the ultrasonic probe of the present invention is suitable for ultrasonic detection, especially for intracardiac ultrasonic detection. It solves the problem of too small spacing between signals and insufficient shielding between signals during the long-distance transmission of a large number of signals when the intracardiac ultrasonic probe is connected in a narrow inner diameter space of the catheter. It solves the serious interactive interference problem between signals, and at the same time provides a better electromagnetic shielding effect, making the imaging effect of the intracardiac ultrasound probe better and easier to manufacture, thereby achieving the purpose of reducing costs and improving quality.
- the present invention discloses an intracardiac ultrasound probe, which includes a sound head unit and a flexible circuit board unit.
- the flexible circuit board unit includes a plurality of flexible circuit boards; the flexible circuit board includes a first connection laid on the sound head unit.
- the second connection part of the flexible circuit board extends in length or width according to the distribution of the pads.
- the width of the second connection part is extended to twice or more than the width of the first connection part or the middle connection part, and the pads are divided into two parallel groups, each group including a signal pad for connecting the signal wire and a signal pad for connecting the signal wire.
- Grounding pads there is a gap between the two groups, and the gap is used for the flexible circuit board to be folded after connecting the wires through the pads, and the two sides of the flexible circuit board without soldered wires to fit together after folding. Fold the flexible circuit board with the wires welded in reverse in half so that the unsoldered surfaces are attached back to back, and the two sides of the welded wires face outwards.
- the stacked thickness and width of the folded wires and the soldered pads must meet the inner diameter of the intracardiac ultrasound catheter. needs.
- the pads are divided into two groups juxtaposed in the length direction. Each group includes a signal pad used for connecting signal wires and a grounding pad used for grounding; a gap is left between the two groups.
- the expansion connection part is not provided with a soldering pad, and is used for the flexible circuit board to be folded after connecting the wires through the soldering pad, and the folded expansion connection part partially covers the signal pad.
- the pads are arranged in parallel. After the wires are welded to the flexible circuit board, since there is only one set of wires and pads at each position, its thickness and width can easily meet the needs of the inner diameter of the intracardiac ultrasound catheter. Both parallel arrangement and side-by-side arrangement avoid the increase in thickness caused by the overlapping and accumulation of multiple circuit boards after soldering, allowing the soldered part to be easily installed into the conduit.
- the end of the flexible circuit board is provided with a common ground pad that is perpendicular to the signal pad and the ground pad but is spaced at a certain distance for common grounding of the multi-core coaxial wire shielding layer; so
- the common ground pads include two groups, and a gap is provided between the two groups of common ground pads for welding the wire shield layer and then folding it.
- the acoustic head electrodes of multiple array elements of the intracardiac ultrasound probe acoustic head unit are led out through multiple flexible circuit boards, and each flexible circuit board is expanded after being led out to facilitate welding.
- each flexible circuit board and coaxial cable wire are soldered and properly grounded, the soldered flexible circuit board and the connected wires will be folded, or the extended connection portion of the flexible circuit board used for routing in the design that is extended in the length direction will be soldered after After being folded, the thickness and width of the flexible circuit board and multi-core coaxial cable are within the allowable range of the inner diameter of the bendable conduit, and then the multi-core coaxial cable will pass through the conduit.
- connection method of the present invention takes into account the ease of welding under the limit of extremely small inner diameter and the need for the welded plate to pass through the inner diameter of the conduit after being shielded, and provides electromagnetic compatibility requirements for the electromagnetic radiation of the connecting wires and the acoustic head unit in the ultrasonic probe. Very good shielding.
- each flexible circuit board in the flexible circuit board unit has a different length, and the length difference area between the flexible circuit boards is used to set the soldering pads and accommodate wires.
- the lengths of each flexible circuit board are different, and the positions of sufficient welding signal wires and shielded ground wires are staggered at the second connection part of the flexible circuit board to avoid the overlapping and crowding of the multi-strand wire welding parts to exceed the inner diameter of the heart catheter.
- the signal wire is a multi-core coaxial cable wire.
- the invention directly uses multi-core coaxial cable wires instead of flexible circuit boards to connect the lead-out circuit board of the sound head unit and the intermediate connector to the system end, thereby greatly reducing costs.
- each coaxial cable conductor is provided with a metal shielding net, and the outermost layer of all coaxial cable conductors combined is provided with a metal shielding layer.
- Multi-core coaxial cable has good electromagnetic shielding performance.
- Each conductor in the coaxial cable has a metal shielding net. After the metal shielding net is grounded, it forms a Faraday cage effect, which shields the electromagnetic signals generated by the conductors in the coaxial cable.
- the outermost layer of all coaxial cables has a metal shielding layer. This metal shielding layer will also form a Faraday cage effect when connected to the system shell ground.
- the double layer Shielding minimizes the electromagnetic radiation of the cable to the outside world and the electromagnetic interference of the outside world to the cable conductors.
- any two conductors in a multi-core coaxial cable are separated by at least two layers of metal shielding layers or Faraday cages, and the signal interference between them is also very small.
- ground pad is used to connect signal wires or shielding layers.
- the ground pad includes ground welding to the ground signal line and also includes ground welding to the coaxial cable shield.
- the invention innovatively designs an extended flexible circuit board, uses well-shielded multi-core coaxial cable conductors, and adopts unique wiring methods and connections to reduce the manufacturing cost of disposable intracardiac ultrasound probes while improving signal interaction interference. image quality issues and electromagnetic shielding issues to improve imaging quality.
- the present invention discloses a catheter system, which includes the ultrasonic probe, an ultrasonic catheter, a control handle and a connector.
- One end of the ultrasonic catheter is connected to the ultrasonic probe, and a flexible circuit board unit containing the ultrasonic probe is contained in the ultrasonic catheter.
- the other end of the ultrasonic catheter is connected to a control handle, and the other end of the control handle is connected to a plug connector, and the plug connector is used to connect the system end.
- the connector wires of the present invention are welded to the circuit board with EMC shielding, and the circuit board is connected to the golden finger slot socket from the system end through a golden finger to complete the connection between the probe and the system.
- the connector wire first passes through the magnetic ring through the plug connector and then is connected to the system end.
- the magnetic ring can suppress the electromagnetic radiation of the wire.
- metal shielding covers are used to shield electromagnetic radiation of signals and isolate external electromagnetic interference.
- the flexible circuit board unit and the connector are covered with a first layer of heat shrinkable tube.
- the outer layer of the heat shrinkable tube is wrapped with a metal shielding layer or metal mesh.
- the metal shielding layer or metal mesh and the outer shielding cover of the connector are connected through wires. connect.
- a second layer of heat shrinkable tube is provided outside the metal shielding layer or metal mesh.
- the welded parts of the four flexible circuit boards and the coaxial cables are covered with heat shrink tubes, such as Teflon heat shrink
- the heat shrinkable tube covers the welded coaxial cable section from the end of the ultrasonic probe sound head to the very end of the flexible circuit board.
- the outer layer of the heat shrink tube is wrapped with a copper shielding layer or copper mesh, and the copper shielding layer or copper mesh is connected to the outermost shielding layer of the multi-core coaxial cable through wires.
- a layer of Teflon heat shrink tubing is placed outside the shielding layer to ensure that the welding joint between the multi-core coaxial wire and the flexible circuit board has enough toughness and strength to withstand repeated bending of the conduit. force.
- control handle controls the bending of the ultrasonic probe in four vertical directions through the metal or nylon guide wire built into the ultrasonic catheter.
- the ultrasonic catheter is connected to the ultrasonic probe by being put on a cylindrical connecting unit of the ultrasonic probe, and the diameter of the cylindrical connecting unit is smaller than the diameter of the shell of the sound head unit of the ultrasonic probe.
- the present invention arranges the second connecting part of the flexible circuit board to extend in the width direction and length direction to provide enough space for the pad of the electrode lead wire, making it easy to weld with the coaxial cable; at the same time, the flexible circuit board The circuit board and the wires of the coaxial cable set are folded after welding, so that the combined width and thickness of the flexible circuit board and wires are within the allowable range of the inner diameter of the bendable conduit, making it easier for the welding combination to be placed in the conduit;
- the present invention uses multi-core coaxial cables and a special coaxial cable metal shielding layer grounding method so that the signals output by each array element of the ultrasonic probe form two layers of Faraday cage protection between the transmission lines during long-distance parallel transmission, producing sufficient and effective
- the ground wire is shielded to avoid mutual signal interference, resulting in poor image resolution, low image contrast, and increased noise during imaging;
- the outermost grounded metal shielding layer of the multi-core coaxial cable of the present invention also protects the transmission signal from interference from external electromagnetic signals in a complex electromagnetic working environment, and at the same time limits the interference of multiple transmission wires to the outside world during long-distance transmission. electromagnetic radiation;
- the present invention uses a multi-core coaxial cable to connect the sound head unit lead-out circuit board and the intermediate connector to the system end, which is more cost-effective than using a multi-strand flexible circuit board with a length greater than 90cm. It is suitable for disposable intracardiac ultrasound probes. It is said that this embodiment has lower manufacturing cost and is suitable for widespread promotion.
- Figure 1 is a schematic structural diagram of the ultrasonic catheter system of the present invention
- FIG. 2 is a schematic diagram of the structure and connection of the ultrasonic probe of the present invention.
- Figure 3 is a schematic structural diagram of the flexible circuit board in the ultrasonic probe of the present invention.
- Figure 4 is a schematic diagram of a connection method between the flexible circuit board and the coaxial cable wire in the ultrasonic probe of the present invention
- Figure 5 is a schematic diagram of the flexible circuit board in the ultrasonic probe of the present invention being folded after being connected through the method described in Figure 4;
- Figure 6 is a schematic diagram of the acoustic head signal derived from the flexible circuit board in the ultrasonic probe of the present invention after welding and folding with multiple coaxial cables;
- Figure 7 is a schematic diagram of the metal shielding layer of a single wire and the overall metal shielding layer in the multiple coaxial cable combination of the present invention.
- Figure 8 is a schematic diagram of the electrode signal connection method of a flexible circuit board for long-distance signal transmission in the prior art
- Figure 9 is a schematic diagram of another arrangement of the flexible circuit board in the ultrasonic probe of the present invention.
- Figure 10 is a schematic diagram of another connection method between the flexible circuit board and the coaxial cable wire in the ultrasonic probe of the present invention.
- Figure 11 is a schematic diagram of the flexible circuit board in the ultrasonic probe of the present invention being folded after being connected through the method described in Figure 10;
- Figure 12 is a schematic cross-sectional structural diagram of the ultrasonic catheter plus connecting wires of the present invention.
- Figure 13 is a schematic diagram of the golden finger circuit board and metal shielding cover of the present invention.
- Figure 14 is a schematic diagram of the heat shrinkable tube and shielding layer wrapped around the welding point of the flexible circuit board and the coaxial cable according to the present invention.
- the symbols in the figure represent: 100, ultrasonic probe; 101, acoustic head unit; 102, cylindrical connection unit;
- Flexible circuit board unit 111. First flexible circuit board; 111a, first connecting part; 111b, intermediate connecting part; 111c, second connecting part; 112. Second flexible circuit board; 113. Third flexible circuit board ;114. The fourth flexible circuit board;
- This embodiment discloses a catheter system that can be used for ultrasound detection, especially for intracardiac ultrasound detection; the structure of the catheter system is shown in Figure 1, including an ultrasound probe 100, an ultrasound catheter 200, a control handle 300 and a connector. 400, as shown in Figure 1, the electrodes of the ultrasonic probe 100 are led out through the flexible circuit board unit 110, that is, the flexible circuit board unit 110 is used to connect the ultrasonic probe 100; the flexible circuit board unit 110 includes multiple flexible circuit boards, and each flexible circuit board The golden fingers of the board are connected to the connector 500.
- One end of the ultrasonic catheter 200 is connected to the ultrasonic probe 100 by being put on the flexible circuit board unit 110 and the connector 500, and the ultrasonic probe 100 is connected to the flexible circuit board unit 110 and the connector 500.
- Bending portions 501 are provided at a certain distance at the connection points.
- the bending portion 501 is a turning point, so that the ultrasonic probe 100 can be arbitrarily bent at an angle of 0-160° in the four vertical directions given in space.
- the bending portion 501 is generally provided At the joint 10 mm towards the handle end.
- the other end of the ultrasonic catheter 200 is connected to the control handle 300, and the other end of the control handle 300 is connected to the plug connector 400.
- the plug connector 400 is used to connect to the probe cable assembly at the system end.
- the ultrasonic probe 100 of this embodiment is specifically described by taking a one-dimensional phased array linear array probe including 64 array elements as an example.
- the flexible circuit board unit 110 includes at least four flexible circuit boards.
- the outer surface of the ultrasonic catheter 200 The diameter is 8F to 12F, and F is the abbreviation of French; the control handle 300 controls the ultrasonic probe 100 to bend in four directions using the bending portion 501 as a turning point through the metal or nylon guide wire built into the ultrasonic catheter 200.
- the structure and connection schematic diagram of the ultrasonic probe 100 is shown in Figure 2, which includes a sound head unit 101, a cylindrical connection unit 102 and a flexible circuit board unit 110 as mentioned above; the sound head unit 101 includes the array element of the probe, Backing, matching layer and shell.
- the cylindrical connection unit 102 is used for welding with the ultrasonic catheter 200.
- the diameter of the cylindrical connection unit 102 is smaller than the diameter of the shell of the sound head unit 101.
- the ultrasonic catheter 200 is sleeved on the welded cylindrical connection of the ultrasonic probe 100.
- the flexible circuit board unit 110 is accommodated inside the ultrasound catheter 200.
- the 64 electrodes corresponding to the 64 array elements of the sound head unit 101 are led out through the four flexible circuit boards of the flexible circuit board unit 110.
- the four flexible circuit boards are respectively the first flexible circuit board 111 and the second flexible circuit in Figure 2. board 112, the third flexible circuit board 113 and the fourth flexible circuit board 114.
- Each flexible circuit board is responsible for extracting the electrode signals of 16 ultrasonic array elements, and also includes two ground signals.
- each flexible circuit board is different and arranged in a ladder shape, that is, the second flexible circuit board 112 is longer than the first flexible circuit board 111, and the third flexible circuit board 113 is longer than the second flexible circuit board 112. Longer, the fourth flexible circuit board 114 is longer than the third flexible circuit board 113.
- the length difference between the flexible circuit boards is exactly the distance required for the signal pad and the shielding layer's ground pad layout and for welding with the multi-core coaxial cable wires. .
- the flexible circuit board is simply divided into three parts. As shown in Figure 3, taking the first flexible circuit board 111 as an example, the first connecting portion 111a of the first flexible circuit board 111 is laid on the array of the sound head unit 101. Between the element and the matching layer, through the middle connection part 111b of the first flexible circuit board 111, the second connection part 111c of the first flexible circuit board 111 is used for welding wires.
- the first connecting portion of the circuit board is also referred to as the a-end or front end of the flexible circuit board in the following text
- the second connecting portion of the flexible circuit board is also referred to as the c-end or end of the flexible circuit board in the following text.
- four flexible circuit boards 111, 112, 113, 114 are used to connect the second connecting parts of the wires, and are expanded in the width direction to be at least twice as wide as the first connecting part and the middle connecting part of the circuit board. Above, the expanded second connection is used to place up to 18 pads. Still taking the first flexible circuit board 111 as an example, the 16 middle pads are divided into two groups, Group I and Group II. Each group includes 8 pads, and each pad corresponds to a signal line. Two groups There is a large gap 135 between them. Two ground pads are provided on the edge of the flexible circuit board, namely the first ground pad 131 and the second ground pad 132 .
- each of the first coaxial cable group 121 and the second coaxial cable group 122 has nine wires. As shown in Figure 4, 8 of the 9 wires in the first coaxial cable group 121 wire group Welded to the pad group I respectively, a grounded wire is welded to the first ground pad 131. The shielding net of each wire and the shielding layer of the wire group are led out to the third transverse end of the flexible circuit board through the wires.
- the third ground pad 133 and the fourth ground pad 134 are perpendicular to the pad group I and the pad group II as well as the ground pad 131 and the ground pad 132 to facilitate the first and second coaxial cable groups 121 and 132.
- each conductor in the cable set 122 is stripped and welded to ground.
- the third ground pad 133 and the fourth ground pad 134 are not provided in the first flexible circuit board 111, and the shielding layer of the nine wires of the first coaxial cable group 121 is peeled off during welding. They are directly welded together and then welded to the first ground pad 131 to achieve the purpose of grounding the shield layer.
- the shields of the nine wires of the second coaxial cable group 122 are peeled off and directly welded together and then welded to the second ground pad 132 to achieve the purpose.
- the purpose of shielding is grounding.
- the folded first flexible circuit board 111 is connected to two groups of first coaxial cable group 121 and second coaxial cable group 122 of nine coaxial cable conductors each, as shown in FIG. 5 .
- the width and stacking thickness of the flexible circuit board are within the allowable range of the inner diameter of the bendable ultrasonic catheter 200.
- the four flexible circuit boards and the coaxial cable welding part are covered with heat shrink tubes.
- Teflon is used. Taking the dragon heat shrink tube as an example, as shown in Figure 14, the first layer of heat shrink tube 701 covers the cylindrical connection unit 102 at the end of the ultrasonic probe 100 to the fourth flexible circuit board 114 at the end of the flexible circuit board unit 110 to weld the coaxial cable part .
- the outside of the first layer of heat shrink tube 701 will be wrapped with a metal shielding net 702 outside the heat shrink tube, or a metal shielding layer.
- the metal shielding net 702 outside the heat shrink tube will be The outermost shields of the multi-core coaxial cables in the connection part 500 are connected through wires.
- the bendable ultrasound catheter 200 can then be conveniently inserted.
- a second heat shrink tube 703 is placed outside the metal shielding net 702 of the heat shrink tube to ensure that the welding point between the multi-core coaxial wire and the flexible circuit board unit 110 has sufficient toughness and flexibility. Strength, able to withstand the force of multiple bends of the catheter.
- FIG. 6 use the same method to weld and fold the wires and ground shielding wires of the other three flexible circuit boards 112, 113, 114 and multiple coaxial cables.
- Four flexible circuit boards are combined with eight groups of nine coaxial cables.
- a total of 72 coaxial cable wires are used to connect the flexible circuit boards, which are the connection ends of the ultrasonic detection probe.
- a multi-core coaxial cable is used as the connecting wire to connect the ultrasonic probe electrode to the system. Because the multi-core coaxial cable has good electromagnetic shielding performance, it can avoid mutual interference between signals even in a small space.
- Each coaxial cable conductor in the multi-core coaxial cable of this embodiment is provided with a metal shielding layer.
- a metal shielding net 151 is provided outside the conductors 150 of the coaxial cable group. After the metal shielding net 151 is grounded The formation of a Faraday cage effect will shield the electromagnetic signal generated by the wire 150 in the coaxial cable.
- the outermost layer of all coaxial cable conductors 150 combined has a metal shielding layer 152. After the metal shielding layer 152 is grounded through the system shell, it will also form a Faraday cage effect.
- the double-layer shielding minimizes the electromagnetic radiation of the cable to the outside world and the electromagnetic interference of the outside world to the cable conductors.
- any two conductors 150 in the multi-core coaxial cable are separated by a two-layer Faraday cage formed by at least two layers of metal shielding nets 151.
- the signal interference between each other is also very small, which is better than directly using a flexible cable of 90cm to 100cm.
- the mutual interference between signals caused by the circuit board is much smaller. This is because the internal size of the intracardiac catheter is too small and the flexibility requirements of the flexible circuit board make it impossible for the flexible circuit board to shield the signal lines on the board with sufficient ground wires. And being separated will inevitably cause signal interaction interference in long-distance transmission.
- Figure 8 is an example of a circuit board in the prior art that uses a flexible circuit board to transmit signals collected by the acoustic head electrode over a long distance.
- the width of the flexible circuit board is usually about 2mm, and there are at least 16 signal lines on the 2mm width, that is, two The distance d between the signal transmission lines Trace N and Trace N+1 is about 0.13mm.
- the length of the intracardiac ultrasound detection device is generally at least 100cm.
- the adjacent signal transmission lines are so closely spaced that they must be transmitted in parallel for more than 100cm.
- the ultrasound imaging signal Usually it is a pulse signal, its electromagnetic radiation is very serious, and the electromagnetic field generated by the pulse signal around the signal line is very strong.
- the pitch of the array elements of a multi-element probe has a direct impact on the angle at which the grating lobe appears when the beam is deflected.
- ⁇ is the wavelength of the transmit waveform corresponding to the probe center frequency
- the angle at which the first-order format side lobe appears can be calculated as follows:
- ⁇ is the deflection angle of the transmitted waveform relative to the vertical direction of the array element arrangement. It can be seen that the larger the pitch is, the smaller the GL_ang is. However, a first-order format side lobe angle that is too small will deteriorate the image focus quality. In particular, the increase in side lobe noise will have a great impact on the main lobe, and the resolution and contrast of the image will be greatly reduced.
- this embodiment uses a multi-core coaxial cable, and the metal shielding net of each conductor of the multi-core coaxial cable and the overall metal shielding layer are grounded to form a Faraday cage effect, which can greatly reduce long-distance transmission.
- the mutual interference between the array element signals ensures a smaller effective array element spacing pitch.
- the first-order format calculated with this method has a larger side lobe angle and has little impact on the main lobe.
- the resolution, contrast and other image quality of the beamforming are also improved. better.
- This embodiment uses multi-core coaxial cables and a special coaxial cable metal shielding layer grounding method so that the signals output by each array element of the probe form two layers of Faraday cage protection between the transmission lines during long-distance parallel transmission, resulting in sufficient effective ground wire shielding. , to avoid the phenomenon that signal interference causes the image resolution to become worse, the image contrast to become lower, and the noise to increase during imaging.
- the outermost grounded metal shielding layer 152 of the multi-core coaxial cable further protects the transmission signal from interference from external electromagnetic signals in a complex electromagnetic working environment, and also limits the electromagnetic radiation of multiple transmission wires to the outside world during long-distance transmission.
- This embodiment uses a multi-core coaxial cable, which is more cost-effective than using a multi-strand flexible circuit board with a length greater than 90cm. For a disposable intracardiac ultrasound probe, cost reduction is crucial and is suitable for widespread promotion.
- This embodiment is basically the same as Embodiment 1, except that in this embodiment, the flexible circuit board and the multi-core coaxial cable are connected by extending the flexible circuit board in the length direction.
- the ultrasonic probe 100 includes four flexible circuit boards, namely a first flexible circuit board 111 , a second flexible circuit board 112 , a third flexible circuit board 113 and a fourth flexible circuit board 114 , which are similar to those in Embodiment 1 Similarly, the lengths of each flexible circuit board are distributed in a stepped manner, that is, the second flexible circuit board 112 is longer than the first flexible circuit board 111, the third flexible circuit board 113 is longer than the second flexible circuit board 112, and the fourth flexible circuit board 113 is longer than the second flexible circuit board 112. The board 114 is longer than the third flexible circuit board 113 .
- the part where the front end of the flexible circuit board (that is, the a-end or the first connection part of the flexible circuit board in Embodiment 1) and the matching layer of the ultrasonic probe 100 is the same as in Embodiment 1.
- the difference from Embodiment 1 is that in this In the embodiment, the end of the flexible circuit board (i.e., the c-end or the second connection part described in Embodiment 1) is not expanded along the width to place 16 parallel signal lines and 2 ground wire pads, but as shown in the figure As shown in 10, expand along the length direction, divide the signal lines into two groups, and set them side by side.
- the second connection part of the first flexible circuit board 111 is divided into two parts: A and B.
- Part A includes a pad group I with 8 parallel signal line pads, and an in-circuit circuit parallel to the signal line pads.
- the first ground pad 131 on the outer edge of the board is perpendicular to the pad group I and the first ground pad 131, and there is a horizontal third ground pad 133 at a certain interval for connecting to the coaxial cable shielding layer;
- Part B also includes the pad group II with 8 parallel signal line pads, the second ground pad 132 on the outer peripheral edge parallel to the signal line pad, and the pad group II and the second ground pad.
- 132 is vertical and has a horizontal fourth ground pad 134 with a small spacing for ground connection with the coaxial cable shielding layer.
- part A is close to the sound head unit 101, that is, relatively in front, and part B is at the end of the flexible circuit board 111.
- part B is at the end of the flexible circuit board 111.
- the signal line and ground line from the sound head unit 101 to part B turn at a certain distance in front of the signal line pad of part A and pass through the extended and widened Part C of the first flexible circuit board 111 passes to part B.
- part A and part B are respectively connected to a set of nine coaxial cables through welding.
- first coaxial cable group 121 of the nine coaxial cable combination is welded to the first flexible circuit board 111, as shown in Figure 10, eight of the nine wires will be welded to the pad group I respectively and grounded.
- One of the coaxial wires is welded to the first ground pad 131, and the shielding layer of each coaxial wire is led out through the wire to the third ground pad 133 transversely at the end of part A in the first flexible circuit board 111 and connected with the first The ground pad 131 is connected; similarly, eight signal lines among the nine conductors of the second coaxial cable group 122 of the nine coaxial cable combination will be welded to the signal lines of the end portion B of the first flexible circuit board 111 respectively.
- a ground wire is welded to the second ground pad 132, and the shielding layer of each coaxial wire is led out through the wire to the horizontal fourth ground pad 134 at the end and connected to the second ground Pad 132 is connected.
- the third lateral ground pad 133 at the end of part A and the lateral fourth ground pad 134 at the end of part B are not provided on parts A and B of the flexible circuit board 111, and the first coaxial The shielding layers of each wire of the cable group 121 and the second coaxial cable group 122 are welded together through wires and then connected to the first ground pad 131 and the second ground pad 132 . After the two sets of nine coaxial cable assemblies 121, 122 and parts A and B of the first flexible circuit board 111 are welded, after the gluing process, the extended and widened part C of part A connected to part B will be folded.
- the combination of the folded first flexible circuit board 111 and two coaxial cable sets 121 and 122 of nine coaxial cable conductors is shown in Figure 11. Its width and thickness fully meet the needs of the inner diameter of the ultrasound catheter inserted into the heart. After wrapping the heat shrink tube and shielding copper foil, the bendable ultrasonic catheter 200 can be conveniently inserted. Use the same method to weld and fold the other three flexible circuit boards 112, 113, 114 and the multi-core coaxial cable. After the welding of the four flexible circuit boards and the coaxial cable is completed, the coaxial cable portion welded from the cylindrical connection unit 102 at the end of the ultrasonic probe 100 to the fourth flexible circuit board 114 at the end of the flexible circuit board unit 110 will be covered with the first layer Heat shrink tube 701, as shown in Figure 14.
- the outside of the first layer of heat shrink tube 701 will be wrapped with a metal shielding net 702 outside the heat shrink tube, or a metal shielding layer.
- the metal shielding net 702 outside the heat shrink tube will be The outermost shields of the multi-core coaxial cable in the connecting part 500 are connected through wires to form a ground.
- a second heat shrinkable tube 703 is placed outside the metal shielding net 702 of the heat shrink tube to ensure that the welding point between the multi-core coaxial wire and the flexible circuit board unit 110 has sufficient toughness. And strength, able to withstand the force of multiple bends of the catheter. Based on the beneficial effects of the connection method in Embodiment 1, this embodiment extends the flexible circuit board according to the length, and divides the 18 pads and wires that need to be welded on each flexible circuit board, including 16 signal lines and 2 ground wires.
- the thickness at the same position may exceed the inner diameter of the conduit, making it easier for the wires and circuit board connections to pass through the conduit, making it easier to manufacture and install.
- this embodiment further discloses an intracardiac ultrasound detection device.
- the connector 500 connected to the flexible circuit board unit 110 of the ultrasound probe 100 passes through the bendable ultrasound catheter 200 and the bending control handle 300, it enters the intermediate connector 400, where the connector 500 There are eight groups of 9 coaxial cable wires in total, with a total of 72 coaxial cable wires. At the end of the wires, the wires first pass through the magnetic ring 601 and then are connected to the golden finger circuit board 602 of the intermediate connector connected to the system end to form a complete intracardiac ultrasound. Catheter probe combination.
- the magnetic ring 601 is set up to suppress the electromagnetic radiation of the connector 500 and ensure the integrity and fidelity of the signal.
- the golden finger circuit board 602 is provided with a special tuning circuit for impedance matching.
- the front and back of the golden finger circuit board 602 There are metal shields on both sides to shield the electromagnetic radiation of signals and isolate external electromagnetic interference.
- Figure 13 is a schematic diagram of the gold finger circuit board 602 and the metal shielding case of this embodiment, including a first shielding case 603 provided on the front side of the gold finger circuit board 602, and a second shielding case 604 provided on the back side of the gold finger circuit board 602.
- the golden finger circuit board 602 is connected to the connector on the system side, and the probe catheter assembly of this embodiment can be used for imaging.
- the intracardiac ultrasound probe of the present invention is a disposable ultrasound probe, and the entire probe will be discarded after use.
- the structural design and connection method of the present invention greatly reduce the long-distance transmission between probe array elements and the interference between array element signal transmission lines. Electromagnetic radiation and mutual electromagnetic field coupling interference improve the resolution and contrast of imaging. On the premise of improving imaging performance, it greatly facilitates processes such as wire connection and conduit insertion, and provides more reliable electromagnetic shielding than existing technology. The effect is to prevent the electromagnetic radiation of the probe from exceeding the standard or being interfered by external electromagnetic signals.
- the present invention uses coaxial cables to replace part of the flexible circuit board, which greatly reduces costs and allows disposable probes to be more conveniently used in practice.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
一种心脏内超声探头(100)及导管系统,属于超声检测设备技术领域。针对现有技术中存在的心脏内超声探头各阵元信号间交互干扰导致图像分辨率降低、对比度变差,图像质量下降和电磁屏蔽不足、电磁辐射容易超标等问题,采用创新的柔性电路板(110)加多芯同轴电缆导线设计,通过在长度或宽度上延展柔性电路板(110),使用多芯同轴电缆导线连接柔性电路板(110),使柔性电路板(110)和多芯同轴电缆的厚度和宽度在可折弯超声导管(200)内径允许范围内,多芯同轴电缆减小各阵元信号间的耦合窜扰,提高导线间的电磁屏蔽效果,避免了图像分辨率降低,对比度变差的现象,图像成像效果较好。而且,成本低制造简单,解决了现有技术中的心脏内超声探头制造成本高的问题,适合广泛使用。
Description
本发明涉及超声检测设备技术领域,更具体地说,涉及一种心脏内超声探头及导管系统。
心脏内超声是心脏影像学中一项里程碑式的进步,在多种经皮穿刺介入和电生理检查中,心脏内超声逐渐成为一项不可或缺的技术,该技术在有效降低手术风险的同时提高手术的治疗效果。
在介入手术中,心脏内超声可以为手术医生提供心脏解剖结构的实时评估并指导在不同解剖层次上的操作。和传统的食道超声相比,心脏内超声可以在患者神志清醒的镇静状态下实施,无需进行气道插管,进而避免食道损伤。该技术在缩短手术时间的同时还可以降低术者和患者在术中所受到的辐射,提高手术疗效。心脏内超声的应用对血栓等并发症的发生也起到了早期预警的作用。在大多数电生理手术中,心脏内超声应用极为广泛,它已成为房颤消融手术的必备工具,在房扑和其他房性失常消融中也有很多应用,例如,它有助于典型新房扑动患者峡部隔离消融。心脏内超声在室性心率失常消融中可以实现对某些特定解剖结构的是实时可视化,同时可对导管和组织接触进行连续评估,提高消融效率并降低手术风险。该技术还在心肌活检,早期识别手术并发症等领域有很好的帮助。
心脏内超声探头由于需要通过股静脉穿刺建立通道进入体内,其外径通常在8F-12F,F为French的简写,内径一般在2.8mm以内,前端长度一般为90cm,用于满足进入人体体内长度的70cm-80cm,探头前端一般安装有一个64阵元的超声相控阵声头。根据心脏内成像的需求,声头部分需要能够向4个方向弯折,弯折角度最大一般到160度。心脏内超声探头是一次性耗材,还需要和成像系统主机昂贵的探头连接器之间有额外的中间连接件。另外,心脏内超声探头还需要满足各种医疗器械电磁兼容和电气安规标准。这些需求使得超声声头到主机的连线和连接以及中间连接部分的设计和装配非常关键。
现有技术中的心脏内超声导管基本上都使用柔性电路板来连接声头电极和声头到系统主机连接器的中间连接件,但是长达90cm到120cm的柔性电路板价格昂贵,并且长柔性电路板的电磁屏蔽实现和制造工艺比较复杂,通常将叠放在一起的柔性电路板用铜箔包裹,铜箔的厚度严重影响其对电磁辐射的屏蔽作用,在医院手术室中经常有多种强电磁辐射设备存在的情况下,单层铜箔由于厚度不足屏蔽不够,常常引起阵元信号受到较强干扰;而采用太厚的铜箔则会因为导管内径的限制无法塞入导管。实际应用中一般是铜箔厚度较薄,信号易受干扰,导致图像中出现有较强的环境电磁干扰噪声。同时,受限于心脏内超声探头外导管的 内径,该柔性电路板宽度通常小于2mm,制造商通常需选择至少四个长柔性电路板来连接64个超声阵元。这样,每个长柔性电路板在2mm以下的空间内要放置至少16个信号线,柔软度的需求使柔性电路板无法有多层电路,因此柔性电路板上信号线间通常间距很小,大于90cm的长距离传输导致信号间交互干扰非常严重,导致图像分辨率降低、对比度变差。此外,柔软度的要求让柔性电路板很难加屏蔽地层,如上所说,柔性电路板间由于尺寸限制通常是叠放在一起,因而叠放在一起的多个柔性电路板上的传输信号很容易发生信号交互干扰,更进一步地造成图像成像细节分辨率和对比度下降,而且长柔性电路板昂贵的费用常常令很多病人望而却步。
发明内容
1.要解决的技术问题
针对现有技术中存在的心脏内超声探头各阵元信号间交互干扰导致图像分辨率降低、对比度变差,图像质量下降,电磁屏蔽不足,电磁辐射容易超标等问题,以及现有技术中的心脏内超声探头制造成本高现状,本发明提供一种心脏内超声探头及导管系统,采用创新的柔性电路板设计,通过延展柔性电路板用于导线连接,并且与现有市场上使用长柔性电路板连接声头和系统端不同,进一步创新性的采用双层屏蔽的同轴电缆,极大的减小了信号间的耦合窜扰,提高了导线间的电磁屏蔽效果,成像效果好,成本低制造简单,适合广泛使用。
2.技术方案
本发明的目的通过以下技术方案实现。
本发明超声探头适应于超声检测,尤其适用于心脏内超声检测,解决了心脏内超声探头在狭小导管内径空间内连线中大量信号长距离传输过程中信号间间距过小无足够信号间屏蔽造成的信号间严重交互干扰问题,同时提供了更好的电磁屏蔽效果,使心脏内超声探头的成像效果更好,制造更容易,从而达到降低成本提高质量的目的。
第一方面,本发明公开一种心脏内超声探头,包括声头单元和柔性电路板单元,所述柔性电路板单元包括多块柔性电路板;柔性电路板包括敷设在声头单元的第一连接部,用于引出信号的中间连接部和设置焊盘的第二连接部,柔性电路板的第二连接部根据焊盘的分布延展长度或宽度。
进一步的,延展第二连接部的宽度至第一连接部或中间连接部宽度的两倍及以上,焊盘分为平行的两组,每组包括用于连接信号导线的信号焊盘和用于接地的接地焊盘;两组间留有空隙,所述空隙用于柔性电路板在通过焊盘连接导线后折叠,折叠后柔性电路板未焊接导线的两面贴合。将焊有导线的柔性电路板反向对折,使未焊接面背靠背贴在一起,焊接导线 两面则各自朝外,折叠后的导线加焊接有导线的焊盘叠加厚度和宽度满足心脏内超声导管内径的需求。
进一步的,延展第二连接部的长度,焊盘分为长度方向并列的两组,每组包括用于连接信号导线的信号焊盘和用于接地的接地焊盘;两组间留有空隙,并通过扩展连接部相连,所述扩展连接部不设置焊盘,用于柔性电路板在通过焊盘连接导线后折叠,折叠后的扩展连接部部分覆盖在信号焊盘上。焊盘并列设置,导线焊接到柔性电路板上后由于每个位置只有一组导线和焊盘,其厚度和宽度可以轻易满足心脏内超声导管内径的需求。平行排列和并列排列两种方式都避免了焊线后多块电路板的叠合和堆积造成厚度增加的情况,从而让焊接部分可以轻松装入导管。
更进一步的,在一种实现方式中,柔性电路板末端设置与信号焊盘和接地焊盘相垂直,但间隔一定距离的公共接地焊盘,用于多芯同轴导线屏蔽层共同接地;所述公共接地焊盘包括两组,两组公共接地焊盘间设置空隙用于焊接导线屏蔽层后折叠。
心脏内超声探头声头单元多个阵元的声头电极通过多块柔性电路板引出,每块柔性电路板引出后展开以利于焊接。各柔性电路板和同轴电缆导线焊接并正确接地后,焊接的柔性电路板与相连导线将被折叠,或者在长度方向延展的设计中柔性电路板中用于走线的扩展连接部在焊接后被折叠,最终使柔性电路板和多芯同轴电缆的厚度和宽度在可折弯导管内径允许范围内,之后多芯同轴电缆线将穿过导管。
本发明的连线方式考虑了极小内径限制下焊接的容易性以及焊接后焊接板经屏蔽后穿越导管内径的需求,并为超声探头中连接导线和声头单元的电磁辐射电磁兼容需求提供了很好的屏蔽。
进一步的,柔性电路板单元中每块柔性电路板的长度均不相同,各柔性电路板之间长度差区域用于设置焊盘和容纳导线。各柔性电路板的长度不同,在柔性电路板的第二连接部错开足够焊接信号导线及屏蔽地线的位置,避免了多股导线焊接部位叠合拥挤超出心脏导管内径的情况。
进一步的,所述信号导线为多芯同轴电缆导线。本发明直接采用了多芯同轴电缆导线而不是柔性电路板来连接声头单元引出电路板和到系统端的中间连接器,大大降低了成本。
进一步的,每根同轴电缆导线外设置有金属屏蔽网,所有同轴电缆导线组合后的最外层设置有金属屏蔽层。多芯同轴电缆具有很好的电磁屏蔽性能,同轴电缆中的每根导线都有金属屏蔽网,金属屏蔽网接地后形成法拉第笼效应,将导线产生的电磁信号屏蔽在同轴电缆内,而所有同轴电缆组合后的最外层有一层金属屏蔽层,这层金属屏蔽层接系统外壳地后同样将形成法拉第笼效应,与每根导线的金属屏蔽网形成的法拉第笼一起,双层屏蔽将电缆对外界 的电磁辐射和外界对电缆导线的电磁干扰降到最低。同时,多芯同轴电缆内任意两个导线间都有至少两层金属屏蔽层或法拉第笼隔开,相互间的信号窜扰也很小。
进一步的,接地焊盘用于连接信号导线或屏蔽层。接地焊盘包括与接地信号线的接地焊接,也包括与同轴电缆屏蔽层的接地焊接。
本发明创新设计延展柔性电路板,使用有良好屏蔽的多芯同轴电缆导线,采用独特的连线方法和连接方式,降低一次性心脏内超声探头的制造成本,同时改善其信号交互干扰带来的图像质量问题和电磁屏蔽问题,提高成像的质量。
第二方面,本发明公开一种导管系统,包括所述的一种超声探头、超声导管、控制手柄和插接件,超声导管的一端连接超声探头,超声导管内容纳超声探头的柔性电路板单元和与柔性电路板单元连接的连接件导线,超声导管的另一端连接控制手柄,控制手柄的另一端连接插接件,插接件用于连接系统端。本发明的连接件导线焊接到有EMC屏蔽的电路板上,电路板通过金手指和来自系统端的金手指插槽插座连接,完成探头和系统的连接。
进一步的,连接件导线通过插接件先穿过磁环再与系统端连接。磁环可抑制导线的电磁辐射。
进一步的,所述系统端电路板的正反两面都设有金属屏蔽罩。金属屏蔽罩用于屏蔽信号的电磁辐射和隔绝外界电磁干扰。
进一步的,柔性电路板单元与连接件外部套设第一层热缩管,热缩管外层包裹金属屏蔽层或金属网,所述金属屏蔽层或金属网与连接件外层屏蔽罩通过导线连接。
进一步的,所述金属屏蔽层或金属网外设置第二层热缩管。
在上述两种实现方式中,多块柔性电路板和多组多芯同轴电缆焊接并折叠后,四块柔性电路板和同轴电缆焊接的部分套上热缩管,如特氟龙热缩管,热缩管覆盖从超声探头声头末端到柔性电路板最末端焊接同轴电缆部分。热缩管完成热缩后,在热缩管外层裹上铜屏蔽层或铜网,所述铜屏蔽层或铜网与多芯同轴电缆的最外层屏蔽层通过导线连接。在另一种实现方式中,屏蔽层外还会套上一层特氟龙热缩管确保多芯同轴导线和柔性电路板焊接处有足够韧性和强度,能够忍受导管多次弯折的受力。
进一步的,控制手柄通过超声导管内置的金属或尼龙导丝控制超声探头在四个空间垂直方向弯转。
进一步的,超声导管通过套在超声探头的柱形连接单元上连接超声探头,所述柱形连接单元的直径小于超声探头声头单元外壳的直径。
3.有益效果
相比于现有技术,本发明的优点在于:
(1)本发明设置柔性电路板第二连接部在宽度方向和长度方向上延展的方式给电极引出线的焊盘设置足够的空间,使和同轴电缆的焊接变的容易;同时,将柔性电路板和同轴电缆组的导线焊接后折叠,使柔性电路板和导线的组合宽度及厚度在可折弯导管内径允许范围内,方便焊接组合放入导管;
(2)本发明采用多芯同轴电缆以及特殊的同轴电缆金属屏蔽层接地方式使得超声探头各阵元输出的信号在长距离并行传输中传输线间形成两层法拉第笼保护,产生足够的有效地线屏蔽,避免信号相互干扰造成成像中图像分辨率变差,图像对比度变低,噪声变大的现象;
(3)本发明多芯同轴电缆最外层接地的金属屏蔽层还保护传输信号在复杂电磁工作环境下不受外界电磁信号的干扰,同时限制多根传输导线在长距离传输过程中对外界的电磁辐射;
(4)本发明采用多芯同轴电缆连接声头单元引出电路板和到系统端的中间连接器,比采用多股长度大于90cm的柔性电路板成本降低,对于一次性使用的心脏内超声探头来说,本实施例的制造成本更低,适合广泛推广。
图1为本发明超声导管系统结构示意图;
图2为本发明超声探头结构及连线示意图;
图3为本发明超声探头中柔性电路板结构示意图;
图4为本发明超声探头中柔性电路板与同轴电缆导线的一种连接方法示意图;
图5为本发明超声探头中柔性电路板通过图4所述方法连接后折叠示意图;
图6为本发明超声探头中柔性电路板与多根同轴电缆焊接折叠后引出声头信号示意图;
图7为本发明多根同轴电缆组合中单根导线金属屏蔽层及整体金属屏蔽层示意图;
图8为现有技术中长距离信号传输柔性电路板电极信号连接方式示意图;
图9为本发明超声探头中柔性电路板的另一种排布方式示意图;
图10为本发明超声探头中柔性电路板与同轴电缆导线的另一种连接方法示意图;
图11为本发明超声探头中柔性电路板通过图10所述方法连接后折叠示意图;
图12为本发明超声导管加连接导线剖面结构示意图;
图13为本发明金手指电路板及金属屏蔽罩示意图;
图14为本发明柔性电路板与同轴电缆焊接处外包裹热缩管和屏蔽层示意图;
图中标识代表:100、超声探头;101、声头单元;102、柱形连接单元;
110、柔性电路板单元;111、第一柔性电路板;111a、第一连接部;111b、中间连接部;111c、第二连接部;112、第二柔性电路板;113、第三柔性电路板;114、第四柔性电路板;
121、第一同轴电缆组;122、第二同轴电缆组;131、第一接地焊盘;132、第二接地焊盘;133、第三接地焊盘;134、第四接地焊盘;135、空隙;150、导线;151、金属屏蔽网;152、金属屏蔽层;
200、超声导管;300、控制手柄;400、插接件;500、连接件;501、弯折部;601、磁环;602、电路板;603、第一屏蔽罩;604、第二屏蔽罩。701、第一层热缩管;702、热缩管外金属屏蔽网;703、第二层热缩管。
下面结合说明书附图和具体的实施例,对本发明作详细描述。
实施例1
本实施例公开一种导管系统,可用于超声检测,尤其适用于心脏内超声检测;所述导管系统的结构如图1所示,包括超声探头100、超声导管200、控制手柄300和插接件400,如图1所示,超声探头100的电极通过柔性电路板单元110引出,即柔性电路板单元110用于超声探头100的连接;柔性电路板单元110包括多块柔性电路板,各柔性电路板的金手指与连接件500连接,超声导管200的一端以套在柔性电路板单元110和连接件500上的方式与超声探头100连接,且超声探头100从柔性电路板单元110和连接件500连接处间隔一定距离设置弯折部501,弯折部501为转折点,使超声探头100可以在空间给定的四个垂直方向以0-160°角度任意弯折,所述弯折部501一般设置在连接处向手柄端10毫米位置。超声导管200的另一端连接控制手柄300,控制手柄300的另一端连接插接件400,插接件400用于和系统端的探头电缆组件相连。
本实施例的超声探头100具体以包括64阵元的一维相控阵线阵声头为例进行说明,对应的,柔性电路板单元110至少包括四块柔性电路板,所述超声导管200的外径为8F至12F,F为French的简写;控制手柄300通过超声导管200内置的金属或尼龙导丝控制超声探头100以弯折部501为转折点向四个方向任意弯转。
超声探头100的结构及连线示意图如图2所示,包括声头单元101、柱形连接单元102和如前所述的柔性电路板单元110;所述声头单元101包括探头的阵元、背衬、匹配层和外壳,所述柱形连接单元102用于和超声导管200焊接,柱形连接单元102直径小于声头单元101外壳直径,超声导管200套在超声探头100的焊接柱形连接单元102上,此时柔性电路板单元110容纳在超声导管200内部。
声头单元101的64个阵元对应的64个电极通过柔性电路板单元110的四块柔性电路板引出,四块柔性电路板在图2中分别为第一柔性电路板111、第二柔性电路板112、第三柔性 电路板113和第四柔性电路板114,每块柔性电路板承担16个超声阵元的电极信号的引出,同时还包括两路接地信号。
由图2可得,每块柔性电路板的长度都不同,成阶梯状设置,即第二柔性电路板112比第一柔性电路板111长,第三柔性电路板113比第二柔性电路板112长,第四柔性电路板114比第三柔性电路板113长,各柔性电路板间长度的差距正好是信号焊盘与屏蔽层的接地焊盘布设和与多芯同轴电缆导线焊接需要的距离。
为了描述方便,将柔性电路板简单分为三部分,如图3所示,以第一柔性电路板111为例,第一柔性电路板111的第一连接部111a敷设在声头单元101的阵元和匹配层之间,经过第一柔性电路板111的中间连接部111b,第一柔性电路板111的第二连接部111c用于焊接导线,为了更直观的进行描述,本实施例中所有柔性电路板的第一连接部在后文也称为柔性电路板的a端或前端,柔性电路板的第二连接部在后文也称为柔性电路板的c端或末端。
如图4所示,四块柔性电路板111,112,113,114用于连接导线的第二连接部,在宽度方向上展开为该电路板第一连接部及中间连接部的至少两倍宽度以上,展开的第二连接部用于放置多达18个焊盘。仍以第一柔性电路板111为例,将其中16个中间焊盘分为两组,第Ⅰ组和第Ⅱ组,每组包括8个焊盘,每个焊盘对应一个信号线,两组间留有较大的空隙135。柔性电路板边缘设有两个接地焊盘,分别为第一接地焊盘131和第二接地焊盘132。焊接导线时,第一同轴电缆组121和第二同轴电缆组122,每组均有九根导线,如图4所示,第一同轴电缆组121导线组的9根导线其中8根将分别焊接到焊盘组Ⅰ上,接地的一根导线则焊接到第一接地焊盘131上,每跟导线的屏蔽网和导线组的屏蔽层通过导线引出到柔性电路板末端横向的第三接地焊盘133上并和第一接地焊盘131相连;同样的,第二同轴电缆组122导线组的9根导线其中8根将分别焊接到焊盘组Ⅱ上,接地的一根导线则焊接到第二接地焊盘132上,每根导线的屏蔽网和导线组的屏蔽层通过导线引出到柔性电路板末端横向的第四接地焊盘134上并和第二接地焊盘132相连。注意到第三接地焊盘133和第四接地焊盘134与焊盘组I和焊盘组II以及接地焊盘131以及接地焊盘132垂直,便于第一同轴电缆组121和第二同轴电缆组122中每根导线的屏蔽层剥开后与其焊接接地。在另一种实现方式中,第三接地焊盘133和第四接地焊盘134没有设置在第一柔性电路板111中,焊接时第一同轴电缆组121的九根导线屏蔽层剥开后直接焊接在一起再和第一接地焊盘131焊接达到屏蔽层接地的目的,第二同轴电缆组122的九根导线屏蔽层剥开后直接焊接在一起再和第二接地焊盘132焊接达到屏蔽层接地的目的。
通过图4可得,柔性电路板末端的横向第三接地焊盘133和第四接地焊盘134之间留有空隙,该空隙是空隙135的延伸,这是为了折叠方便。两组九根同轴电缆组121,122和第一 柔性电路板111焊接完成后,经过打胶工序,第一柔性电路板111空隙135上部加上柔性电路板上焊接的第一同轴电缆组121将被反向折叠,使第一柔性电路板111第二连接部未有焊接导线的两面贴合,焊有第一同轴电缆组121和第二同轴电缆组122的两面朝外,避免焊线间相互短路。
折叠后的第一柔性电路板111和两组每组九根同轴电缆导线的第一同轴电缆组121和第二同轴电缆组122连接如图5所示。折叠后柔性电路板的宽度以及叠合厚度均在可折弯超声导管200内径允许范围内,折叠后四块柔性电路板和同轴电缆焊接的部分套上热缩管,本实施例以特氟龙热缩管为例,如图14所示,第一层热缩管701覆盖在超声探头100末端柱形连接单元102到柔性电路板单元110最末端第四柔性电路板114焊接同轴电缆部分。第一层热缩管701完成热缩后,在第一层热缩管701外边会裹上热缩管外金属屏蔽网702,或裹上金属屏蔽层,热缩管外金属屏蔽网702与作为连接部500的多芯同轴电缆的最外层屏蔽罩通过导线连接。之后可以方便塞入可折弯超声导管200。
作为本实施例的一种改进,热缩管外金属屏蔽网702外还会再套上一层第二热缩管703,确保多芯同轴导线和柔性电路板单元110焊接处有足够韧性和强度,能够忍受导管多次弯折的受力。
如图6所示,采用同样方式将其他三块柔性电路板112,113,114和多根同轴电缆组合的导线及接地屏蔽线焊接并折叠。四块柔性电路板与八组的九根同轴电缆组合,共72根同轴电缆导线被用于连接柔性电路板,即超声检测探头的连接端。本实施例采用多芯同轴电缆做超声探头电极连接到系统的连接导线,因为多芯同轴电缆有很好的电磁屏蔽性能,即使在空间很小的时候也可以避免信号间的相互干扰。
本实施例的多芯同轴电缆内部每根同轴电缆导线都设有金属屏蔽层,如图7所示,同轴电缆组的导线150外设置有金属屏蔽网151,金属屏蔽网151接地后形成法拉第笼效应,会将导线150产生的电磁信号屏蔽在该同轴电缆内。而所有同轴电缆导线150组合后的最外层有一层金属屏蔽层152,该金属屏蔽层152通过系统外壳接地后同样将形成法拉第笼效应,与每根导线150的金属屏蔽网151形成的法拉第笼一起,形成双层屏蔽,双层屏蔽将电缆对外界的电磁辐射和外界对电缆导线的电磁干扰降到最低。同时,多芯同轴电缆内任意两个导线150间都有至少两层金属屏蔽网151所形成的两层法拉第笼隔开,相互间的信号窜扰也很小,比直接采用90cm到100cm的柔性电路板造成的信号间相互干扰要小很多,这是因为心脏内导管内部尺寸过小的限制以及柔性电路板对柔韧度的要求让柔性电路板无法把板上的信号线用足够的地线屏蔽并且分隔开,不可避免的会造成长距离传输中信号交互干扰。
图8为现有技术中采用柔性电路板长距离传输声头电极采集信号的电路板示例图,柔性电路板宽度width通常为2mm左右,2mm宽度上最少布有16根信号线,也就是两根信号传输线Trace N及Trace N+1的间距d在0.13mm左右,心脏内超声检测装置长度一般至少为100cm,相邻的信号传输线间隔如此近的距离还要并行传输100cm以上,加上超声成像信号通常为脉冲信号,其电磁辐射很严重,信号线周围因脉冲信号产生的电磁场很强。相邻的信号传输线由于信号间因电磁场作用产生的相互干扰与信号并行传输距离成正比,在100cm距离上每根信号传输线都成为一个对外发射的天线,该情况下信号间的相互干扰非常严重,邻近的传输线会以天线方式耦合,在超声成像中这相当于探头的阵元间距变大,对成像的质量有很大影响。
比如在波束成形中,多阵元探头的阵元间距pitch对波束偏转时的格式旁瓣(grating lobe)出现的角度有直接影响。假设λ是探头中心频率对应的发射波形的波长,那么在发射聚焦的波束成型中,一阶格式旁瓣出现的角度可以计算如下:
GL_ang=180*sin(sinθ±λ/pitch)/pi,
where/sinθ±λ/pitch/<1(in degrees)
其中,θ是发射波形相对于阵元排列的垂直方向的偏转角度。可以看到,等效阵元间距pitch越大,GL_ang越小。而太小的一阶格式旁瓣角度将使图像聚焦质量变差,尤其旁瓣噪声变大对主瓣影响大,图像的分辨率和对比度都有很大下降。如前所述,本实施例采用多芯同轴电缆,并将多芯同轴电缆每根导线的金属屏蔽网和总体的金属屏蔽层接地,形成法拉第笼效应,可以大幅度减小长距离传输的阵元信号间的相互干扰,从而确保较小的有效阵元间距pitch,以此计算的一阶格式旁瓣角度较大,对主瓣影响小,波束成形的分辨率,对比度等图像质量都较好。
本实施例通过在柔性电路板第二连接部的宽度方向延伸展开,给声头单元101电极引出线的焊盘留出足够的空间,使焊盘和同轴电缆导线的焊接变的容易;同时,柔性电路板和同轴电缆的导线组焊接后采用背向折叠,使柔性电路板和导线的组合宽度及厚度在可折弯导管内径允许范围内,方便焊接组合放入导管。
本实施例采用多芯同轴电缆以及特殊的同轴电缆金属屏蔽层接地方式使得探头各阵元输出的信号在长距离并行传输中传输线间形成两层法拉第笼保护,产生足够的有效地线屏蔽,避免信号相互干扰造成成像中图像分辨率变差,图像对比度变低,噪声变大的现象。多芯同轴电缆最外层接地的金属屏蔽层152进一步保护传输信号在复杂电磁工作环境下不受外界电磁信号的干扰,同时限制多根传输导线在长距离传输过程中对外界的电磁辐射。本实施例采 用多芯同轴电缆,比采用多股长度大于90cm的柔性电路板成本降低,对于一次性使用的心脏内超声探头来说,成本降低至关重要,适合广泛推广。
实施例2
本实施例与实施例1基本相同,不同之处在于,本实施例柔性电路板和多芯同轴电缆之间通过将柔性电路板在长度方向延展的方式连接。
如图9所示,超声探头100包括四块柔性电路板,分别为第一柔性电路板111、第二柔性电路板112、第三柔性电路板113和第四柔性电路板114,与实施例1相同,每块柔性电路板之间的长度呈阶梯分布,即第二柔性电路板112比第一柔性电路板111长,第三柔性电路板113比第二柔性电路板112长,第四柔性电路板114比第三柔性电路板113长。
柔性电路板的前端(即实施例1中所述柔性电路板的a端或第一连接部)与超声探头100匹配层相接部分与实施例1相同,与实施例1不同的是,在本实施例中,柔性电路板的末端(即实施例1中所述的c端或第二连接部)没有沿宽度展开用于放置16个并行信号线加2个地线焊盘,而是如图10所示,沿长度方向展开,将信号线分为两组,前后并列设置。
图10中,第一柔性电路板111的第二连接部分为A和B两部分,其中A部分包括拥有8个并行信号线焊盘的焊盘组Ⅰ,以及与信号线焊盘平行的在电路板外边缘的第一接地焊盘131,与焊盘组Ⅰ以及第一接地焊盘131垂直,并有一定间隔的用于和同轴电缆屏蔽层连接的横向第三接地焊盘133;末端的B部分则同样包含拥有8个并行信号线焊盘的焊盘组Ⅱ,与信号线焊盘平行的在外周边缘的第二接地焊盘132,还有与焊盘组Ⅱ以及第二接地焊盘132垂直,并有较小间隔距离的用于和同轴电缆屏蔽层接地连接的横向第四接地焊盘134。其中,A部分在靠近声头单元101也就是相对靠前面的位置,B部分则是在柔性电路板111的末端。A部分和B部分间有一定的距离;如图10所示,从声头单元101去往B部分的信号线和地线在A部分的信号线焊盘前一定距离处拐弯通过扩展加宽的第一柔性电路板111的C部分通到B部分。
本实施例中,A部分和B部分分别与一组9根同轴电缆通过焊接连接。其中,九根同轴电缆组合的第一同轴电缆组121与第一柔性电路板111焊接时,如图10中所示,九根导线其中八根将分别焊接到焊盘组Ⅰ上,接地的一根则焊接到第一接地焊盘131上,每根同轴导线的屏蔽层则通过导线引出到第一柔性电路板111中A部分末端横向的第三接地焊盘133上并和第一接地焊盘131相连;同样的,九根同轴电缆组合的第二同轴电缆组122的九根导线中的八根信号线将分别焊接到第一柔性电路板111中末端B部分的信号线焊盘组Ⅱ上,接地的一根线则焊接到第二接地焊盘132上,每根同轴导线的屏蔽层则通过导线引出到末端的横向第四接地焊盘134上并和第二接地焊盘132相连。在另一种实现方式中,A部分末端横向的第 三接地焊盘133以及B部分末端的横向第四接地焊盘134没有设置在柔性电路板111的A部分和B部分上,第一同轴电缆组121和第二同轴电缆组122的每根导线的屏蔽层通过导线焊接在一起然后和第一接地焊盘131以及第二接地焊盘132连接。两组九根同轴电缆组合121,122和第一柔性电路板111的A部分和B部分焊接完成后,经过打胶工序,A部分扩展加宽的与B部分连接的C部分将被折叠,折叠后的第一柔性电路板111和两组九根同轴电缆导线的同轴电缆组121和122的组合如图11所示,其宽度和厚度完全满足塞入心脏内超声导管内径的需求,包裹热缩管和屏蔽用铜箔后可以方便塞入可折弯超声导管200。采用同样方式将其他三块柔性电路板112,113,114和多芯同轴电缆焊接及折叠。四块柔性电路板和同轴电缆的焊接完成后,从超声探头100末端柱形连接单元102到柔性电路板单元110最末端第四柔性电路板114焊接同轴电缆部分将会套上第一层热缩管701,如图14所示。第一层热缩管701完成热缩后,在第一层热缩管701外边会裹上热缩管外金属屏蔽网702,或裹上金属屏蔽层,热缩管外金属屏蔽网702与作为连接部500的多芯同轴电缆的最外层屏蔽罩通过导线连接,形成接地。
作为本实施例的一种改进,,热缩管外金属屏蔽网702外还会再套上一层第二热缩管703,确保多芯同轴导线和柔性电路板单元110焊接处有足够韧性和强度,能够忍受导管多次弯折的受力。在实施例1连接方式有益效果的基础上,本实施例将柔性电路板按长度延展,将每块柔性电路板需要焊接的包括16根信号线和2根地线的18个焊盘和导线分为前后放置的两排,让各信号线的焊盘间有足够空间,方便同轴电缆导线及每根同轴电缆的金属屏蔽层和柔性电路板焊接;同时也避免两组九根同轴电缆焊接打胶折叠后在同一位置厚度可能超过导管内径的情况,让导线和电路板连接处更易穿过导管,便于制造安装。
实施例3
本实施例在实施例1与实施例2的基础上,进一步公开一种心脏内超声检测装置。
如图12所示,与超声探头100的柔性电路板单元110连接好的连接件500穿过可折弯超声导管200及折弯控制手柄300后,进入中间插接件400,其中,连接件500为八组各9根共72根同轴电缆导线,在导线末端,导线先穿过磁环601后再与和系统端连接的中间连接件的金手指电路板602相连,形成完整的心脏内超声导管探头组合。所述磁环601的设置是为了抑制连接件500的电磁辐射,保证信号的完整性和保真性,金手指电路板602上设有专门的调谐电路用于阻抗匹配,金手指电路板602正反两面都设有金属屏蔽罩,用于屏蔽信号的电磁辐射和隔绝外界电磁干扰。
图13为本实施例金手指电路板602及金属屏蔽罩示意图,包括设置在金手指电路板602正面的第一屏蔽罩603,和设置在金手指电路板602反面的第二屏蔽罩604,当金手指电路板602与系统端的连接器连接到一起,本实施例的探头导管组合即可用于成像。
本发明所述的心脏内超声探头为一次性超声探头,使用完毕后整个探头将被弃用,而本发明的结构设计和连接方法大幅减少探头阵元间长距离传输的阵元信号传输线间的电磁辐射及相互电磁场耦合干扰,提高成像的分辨率和对比度,并且在提高成像性能的前提下,最大限度的方便了导线连接、导管塞入等工艺,提供了比现有技术更可靠的电磁屏蔽效果,避免探头的电磁辐射超标或被外界电磁信号干扰。同时,本发明采用同轴电缆代替一部分的柔性电路板,极大程度的降低成本,让一次性的探头能够更方便的在实际中应用。
以上示意性地对本发明创造及其实施方式进行了描述,该描述没有限制性,在不背离本发明的精神或者基本特征的情况下,能够以其他的具体形式实现本发明。附图中所示的也只是本发明创造的实施方式之一,实际的结构并不局限于此,权利要求中的任何附图标记不应限制所涉及的权利要求。所以,如果本领域的普通技术人员受其启示,在不脱离本创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本专利的保护范围。此外,“包括”一词不排除其他元件或步骤,在元件前的“一个”一词不排除包括“多个”该元件。产品权利要求中陈述的多个元件也可以由一个元件通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
Claims (15)
- 一种心脏内超声探头,其特征在于,包括声头单元和柔性电路板单元,所述柔性电路板单元包括多块柔性电路板;柔性电路板包括敷设在声头单元的第一连接部,用于引出信号的中间连接部和设置焊盘的第二连接部,柔性电路板的第二连接部根据焊盘的分布延展长度或宽度。
- 根据权利要求1所述的一种心脏内超声探头,其特征在于,延展第二连接部的宽度至第一连接部或中间连接部宽度的两倍及以上,焊盘分为平行的两组,每组包括用于连接信号导线的信号焊盘和用于接地的接地焊盘;两组间留有空隙,所述空隙用于柔性电路板在通过焊盘连接导线后折叠,折叠后柔性电路板未焊接导线的两面贴合。
- 根据权利要求1所述的一种心脏内超声探头,其特征在于,延展第二连接部的长度,焊盘分为长度方向并列的两组,每组包括用于连接信号导线的信号焊盘和用于接地的接地焊盘;两组间留有空隙,并通过扩展连接部相连,所述扩展连接部不设置焊盘,用于柔性电路板在通过焊盘连接导线后折叠,折叠后的扩展连接部部分覆盖在信号焊盘上。
- 根据权利要求3所述的一种心脏内超声探头,其特征在于,柔性电路板末端设置与信号焊盘和接地焊盘相垂直,但间隔一定距离的公共接地焊盘,用于多芯同轴导线屏蔽层共同接地;所述公共接地焊盘包括两组,两组公共接地焊盘间设置空隙用于焊接导线屏蔽层后折叠。
- 根据权利要求2或3所述的一种心脏内超声探头,其特征在于,柔性电路板单元中每块柔性电路板的长度均不相同,各柔性电路板之间长度差区域用于设置焊盘和容纳导线。
- 根据权利要求2或3所述的一种心脏内超声探头,其特征在于,所述信号导线为多芯同轴电缆导线。
- 根据权利要求6所述的一种心脏内超声探头,其特征在于,每根同轴电缆导线外设置有金属屏蔽网,所有同轴电缆导线组合后的最外层设置有金属屏蔽层。
- 根据权利要求7所述的一种心脏内超声探头,其特征在于,接地焊盘用于连接信号导线或屏蔽层。
- 一种心脏内超声导管系统,其特征在于,包括如权利要求1-8任意一项所述的一种超声探头、超声导管、控制手柄和插接件,超声导管的一端连接超声探头,超声导管内容纳超声探头的柔性电路板单元和与柔性电路板单元连接的连接件导线,超声导管的另一端连接控制手柄,控制手柄的另一端连接插接件,插接件用于连接系统端。
- 根据权利要9所述的一种心脏内超声导管系统,其特征在于,连接件导线通过插接件先穿过磁环再与系统端连接。
- 根据权利要求10所述的一种心脏内超声导管系统,其特征在于,所述系统端电路板的正反两面都设有金属屏蔽罩。
- 根据权利要求11所述的一种心脏内超声导管系统,其特征在于,柔性电路板单元与连接件外部套设第一层热缩管,热缩管外层包裹金属屏蔽层或金属网,所述金属屏蔽层或金属网与连接件外层屏蔽罩通过导线连接。
- 根据权利要求12所述的一种心脏内超声导管系统,其特征在于,所述金属屏蔽层或金属网外设置第二层热缩管。
- 根据权利要求9所述的一种心脏内超声导管系统,其特征在于,控制手柄通过超声导管内置的金属或尼龙导丝控制超声探头在四个空间垂直方向弯转。
- 根据权利要求9所述的一种心脏内超声导管系统,其特征在于,超声导管通过套在超声探头的柱形连接单元上连接超声探头,所述柱形连接单元的直径小于超声探头声头单元外壳的直径。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/083278 WO2023184066A1 (zh) | 2022-03-28 | 2022-03-28 | 一种心脏内超声探头及导管系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/083278 WO2023184066A1 (zh) | 2022-03-28 | 2022-03-28 | 一种心脏内超声探头及导管系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023184066A1 true WO2023184066A1 (zh) | 2023-10-05 |
Family
ID=88198554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/083278 WO2023184066A1 (zh) | 2022-03-28 | 2022-03-28 | 一种心脏内超声探头及导管系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023184066A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5467779A (en) * | 1994-07-18 | 1995-11-21 | General Electric Company | Multiplanar probe for ultrasonic imaging |
JP2001093353A (ja) * | 1999-09-21 | 2001-04-06 | Daichu Denshi Co Ltd | 伝送シールドケーブル |
US6541896B1 (en) * | 1997-12-29 | 2003-04-01 | General Electric Company | Method for manufacturing combined acoustic backing and interconnect module for ultrasonic array |
CN111110281A (zh) * | 2020-01-20 | 2020-05-08 | 中国科学院苏州生物医学工程技术研究所 | 介入式三维超声成像装置 |
CN113490555A (zh) * | 2019-02-22 | 2021-10-08 | 维蒙股份公司 | 将高密度超声矩阵阵列换能器与集成电路接口连接的柔性印刷电路板设备 |
-
2022
- 2022-03-28 WO PCT/CN2022/083278 patent/WO2023184066A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5467779A (en) * | 1994-07-18 | 1995-11-21 | General Electric Company | Multiplanar probe for ultrasonic imaging |
US6541896B1 (en) * | 1997-12-29 | 2003-04-01 | General Electric Company | Method for manufacturing combined acoustic backing and interconnect module for ultrasonic array |
JP2001093353A (ja) * | 1999-09-21 | 2001-04-06 | Daichu Denshi Co Ltd | 伝送シールドケーブル |
CN113490555A (zh) * | 2019-02-22 | 2021-10-08 | 维蒙股份公司 | 将高密度超声矩阵阵列换能器与集成电路接口连接的柔性印刷电路板设备 |
CN111110281A (zh) * | 2020-01-20 | 2020-05-08 | 中国科学院苏州生物医学工程技术研究所 | 介入式三维超声成像装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5795299A (en) | Ultrasonic transducer assembly with extended flexible circuits | |
US8425421B2 (en) | Intracardiac catheters with image field electrodes | |
US20120283570A1 (en) | Multi-directional flexible wire harness for medical devices | |
JP6055081B2 (ja) | 医療装置用の多方向可撓性ワイヤ・ハーネス | |
EP3157103B1 (en) | Magnetic field-compatible connector using magnetic noise cancelation loops | |
JP2013545556A (ja) | 超音波デバイスおよび関連するケーブル組立体 | |
US11045110B2 (en) | System and method of cancellation of source induced errors | |
RU2656874C2 (ru) | Устройство для подавления индуктивных помех | |
CN102592721A (zh) | 一种心电导联线及其制作方法 | |
CN106943159A (zh) | Fpc板、超声换能器及其制作工艺和超声内镜 | |
WO2023184066A1 (zh) | 一种心脏内超声探头及导管系统 | |
US20070239023A1 (en) | Transesophageal ultrasound probe with thin and flexible wiring | |
CN107638195A (zh) | 柔性电路板超声换能器和超声内镜 | |
JP2006325985A (ja) | 検査用カテーテルおよび医療検査用器具 | |
US20190223758A1 (en) | Composite planarity member with integrated tracking sensors | |
CN207627345U (zh) | Fpc板、超声换能器和超声内镜 | |
CN220025078U (zh) | 一种使用双绞线的心腔内超声成像探头 | |
JP2022056405A (ja) | 表面に取り付けられた誘導性ナビゲーションセンサを有する円形ナビゲーションカテーテル | |
JP2021045545A (ja) | 軟質シールド位置センサ | |
CN118436377A (zh) | 心腔内超声导管以及心腔内超声成像设备 | |
CN221865759U (zh) | 一种介植入探头连接结构、超声导管及超声成像设备 | |
CN107647883A (zh) | 一种超声换能器及超声内镜 | |
CN219699963U (zh) | 超声诊断设备 | |
US20240277405A1 (en) | Electrode catheter | |
US20230052311A1 (en) | Elctrical wire connection in intraluminal ultrasound imaging devices and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22933925 Country of ref document: EP Kind code of ref document: A1 |