WO2023182546A1 - 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법 - Google Patents

인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법 Download PDF

Info

Publication number
WO2023182546A1
WO2023182546A1 PCT/KR2022/004163 KR2022004163W WO2023182546A1 WO 2023182546 A1 WO2023182546 A1 WO 2023182546A1 KR 2022004163 W KR2022004163 W KR 2022004163W WO 2023182546 A1 WO2023182546 A1 WO 2023182546A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomaterial
photocurable
module
flat display
transfer
Prior art date
Application number
PCT/KR2022/004163
Other languages
English (en)
French (fr)
Inventor
전경휘
강민혁
Original Assignee
주식회사 클리셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 클리셀 filed Critical 주식회사 클리셀
Priority to PCT/KR2022/004163 priority Critical patent/WO2023182546A1/ko
Publication of WO2023182546A1 publication Critical patent/WO2023182546A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to an artificial living tissue molding device and a method of artificial living tissue molding using the same, and more specifically, to a material containing cells and capable of growing or a material containing living cells (hereinafter referred to as 'light-curing biological material'). It relates to an artificial living tissue molding device that crosslinks into a single three-dimensional hydrogel using various methods and a method of artificial living tissue molding using the same.
  • the human body or animals are composed of various organs organically combined.
  • the organs that make it up are made up of various types of cells, and with cells as the basic units, various cellular environments can help individual cells' metabolism, cell division, cell growth, and cell death (apoptosis).
  • regenerative medicine Tissue Engineering
  • stem cells are photocured biomaterials, but when cultured on a flat surface, they often lose their essential function, so it is ideal to combine individual cells in three dimensions like living tissue.
  • growth hormones cytokines and chemokines
  • angiogenic substances angiogenic substances and hematovascular cells required for normal growth of cells
  • ECM extra cellular matrix
  • conventional methods include creating a three-dimensional scaffold using biocompatible hydrogel and then planting cells therein, or using hydrogel containing cells.
  • a method using hydrogel as a three-dimensional structure was used.
  • a representative method is SLA (stereolithography). apparatus method, DLP (digital light processing) method, and MSLA (Masked stereolithography) method.
  • the laser beam that passes through the laser tube is reflected on a mirror (galvanometer) that rotates in the X and Y axes.
  • the reflected laser beam passes through the lens and is precisely focused on the surface of the liquid resin in the vat containing the photocurable resin.
  • the focused laser beam draws a drawing (patterning) in the form of a thin line on the photocurable resin surface, and the irradiated photocurable resin surface causes a crosslink reaction to change into a solid, which is then stacked on the printing bed.
  • the printing bed may come down from above the resin.
  • the DLP and MSLA methods draw on a layer-by-layer basis and crosslink them. Therefore, the DLP and MSLA methods crosslink liquid resin on a two-dimensional plane faster than the line-drawing SLA method.
  • the photocuring 3D modeling method that draws in the form of a surface usually uses a high-power lamp or LED as a separate light source. The light from the light source is collected in the form of a surface so as not to spread using a lens, and the collected light passes through the LCD (liquid-crystal display) panel and forms a liquid photocurable liquid filled between the LCD panel and the resin cured on the printing bed. The resin is crosslinked, and the solid resin is stacked under the printing bed.
  • the ideal 3D biological tissue mentioned above requires not only sophisticated molding technology, but also the ability to print a variety of biological materials and cells.
  • the resin tank (vat) is filled with only one material, so various materials cannot be used.
  • the conventional photocuring 3D molding method uses a UV (ultraviolet) light source with high output and short wavelength. The reason for this is to allow the liquid resin to quickly crosslink by receiving high light energy.
  • UV (ultraviolet) light source with high output and short wavelength. The reason for this is to allow the liquid resin to quickly crosslink by receiving high light energy.
  • high-output, low-wavelength UV (ultraviolet) light sources should not be used because they destroy the DNA of cells, lowering the survival rate or modifying the properties of cells.
  • the photocurable liquid resin used conventionally changes into a solid state after crosslinking and is piled on the printing bed.
  • cells can survive only in a hydrogel state, not a solid state, so photocurable resin that is stacked as a hard solid is It has the problem of not being usable.
  • the purpose of the present invention is to enable the use of various photocurable biological materials and cells without a tank (VAT) in the bio 3D photocuring molding method.
  • the purpose of the present invention is to dramatically reduce the mixing of various photocurable biomaterials and cells.
  • the purpose of the present invention is to change the high output and low wavelength light source to visible light frequency to increase the survival rate of cells and reduce damage.
  • a flat display is fixed on a mounting plate and outputs visible light for crosslinking photocurable biomaterials;
  • Hydrogel for output of artificial biological tissue or photocurable biomaterial containing living cells are stored, respectively, and the photocured biomaterial stored by pneumatic pressure is sprayed onto the flat display by opening the valve, and refrigerant or a plurality of biomaterial injection modules configured to control the temperature of each photocurable biomaterial by circulating supply of fruit and to store different photocurable biomaterials; an injection module elevating unit that elevates each of the biomaterial injection modules; a printing bed module that attaches the photocurable biomaterials sprayed onto the flat display from the biomaterial injection module by crosslinking them using visible light and sequentially stacks them on one surface; a bed module lifting unit that elevates the printing bed module for stacking the photocurable biomaterial; a transfer unit that adjusts a position at which the photocurable biomaterial is sprayed on the flat display by transfer of the
  • the flat display may be detachably fixed by a fixing clip provided on the mounting plate.
  • the biological material injection module includes a biological material tank in which the photo-cured biological material is stored; A pneumatic port provided to supply pneumatic pressure to the biological material tank; a biomaterial transfer tube that provides a passage for the photocured biomaterial stored in the biomaterial tank to be sprayed by pneumatic pressure; A valve installed to open and close the injection of photocurable biomaterial in the biomaterial transfer pipe; and a water jacket installed on the outside of the biological material tank and provided with an inlet port and an inlet/outlet port for supply and discharge of coolant or high-temperature water.
  • the printing bed module includes a plate-shaped printing bed that allows the photocurable biomaterial to be laminated on a lower surface; A binding tool provided on the upper surface of the printing bed; A mount coupled to the binding hole and provided with a ball at the end; a ball joint that is coupled to the ball to allow rotation of the mount in all directions and is fixed to the ball by tightening a first fixing bolt; a shaft provided to extend upward from the ball joint; and a shaft guide that is slidingly coupled to the shaft, allows the height of the shaft to be adjusted, fixes the position of the shaft by tightening a second fixing bolt, and is connected to the bed module lifting unit.
  • the transfer unit includes a transfer stage; A transfer body located on the transfer stage; a first transfer driving unit that reciprocates the transfer body in a first horizontal direction on the transfer stage; a second transport driving unit that transports the mounting plate positioned on the transport body in a second horizontal direction orthogonal to the first horizontal direction; and a stage lifting unit that elevates the transfer stage.
  • the desired biomaterial injection module is A spraying step of, in a state located above the flat display, descending by the spraying module lifting unit to spray photocurable biomaterial on the flat display, and then rising and returning by the spraying module lifting unit;
  • the flat display is positioned below the printing bed module by the transfer unit, the printing bed module is lowered by the bed module elevating unit, contacts the photocurable biomaterial on the flat display, and irradiates the lower surface of the printing bed from the flat display.
  • various photocurable biological materials and cells can be used without a tank (VAT) in the bio 3D photocuring molding method, and various photocurable biological materials It dramatically reduces the mixing of cells with each other, increases the survival rate of cells by converting high output and low wavelength light sources to visible light frequencies, and reduces damage to biological tissues by crosslinking biological tissues using visible light.
  • VAT tank
  • the reproducibility of research is increased based on numerical molding methods, and the reproducibility of research in the bio industry that requires the use of expensive photocurable biomaterials is increased. It has the effect of improving economic efficiency and productivity.
  • Figure 1 is a perspective view showing an artificial biological tissue molding device according to an embodiment of the present invention.
  • Figure 2 is a configuration diagram showing an artificial biological tissue molding device according to an embodiment of the present invention.
  • Figure 3 is a perspective view showing a mounting plate and a flat display of an artificial living tissue molding device according to an embodiment of the present invention.
  • Figure 4 is a perspective view showing the biological material tank module of the artificial biological tissue molding device according to an embodiment of the present invention.
  • Figure 5 is a perspective view showing the printing bed module of the artificial biological tissue molding device according to an embodiment of the present invention.
  • Figures 6 to 19 are schematic diagrams for sequentially explaining a method of forming artificial biological tissue according to another embodiment of the present invention and diagrams showing the state of stacking printing beds in each step.
  • the photocurable biomaterial D is applied to the flat display 120 to form the same layer as the photocurable biomaterial C.
  • the photocurable biomaterial C and the photocurable biomaterial D applied to the flat display 120 are stacked on the lower side of the printing bed 161 in the same manner as in the attachment step described above. Therefore, in FIGS. 15 and 17, photocurable biomaterial A and photocurable biomaterial B are sequentially stacked on the lower side of the printing bed 161, as shown in FIG. 19, on the lower side of the printing bed 161. Photocurable biomaterial C and photocurable biomaterial D are stacked on a structure in which photocurable biomaterial A and photocurable biomaterial B are laminated to form the same layer.
  • various photocuring biological materials and cells can be used without a tank (VAT) in the bio 3D photocuring molding method, and various photocuring methods can be used. It dramatically reduces the mixing of biological materials and cells, and changes high-output, low-wavelength light sources to visible light frequencies to increase cell survival and reduce damage.
  • VAT tank
  • a flat display that is fixed on a mounting plate and outputs visible light for crosslinking photocurable biomaterials; Hydrogel for output of artificial biological tissue or photocurable biomaterial containing living cells are stored, respectively, and the photocured biomaterial stored by pneumatic pressure is sprayed onto the flat display by opening the valve, and refrigerant or a plurality of biomaterial injection modules configured to control the temperature of each photocurable biomaterial by circulating supply of fruit and to store different photocurable biomaterials; an injection module elevating unit that elevates each of the biomaterial injection modules; a printing bed module that attaches the photocurable biomaterials sprayed onto the flat display from the biomaterial injection module by crosslinking them using visible light and sequentially stacks them on one surface; a bed module lifting unit that elevates the printing bed module for stacking the photocurable biomaterial; a transfer unit that adjusts a position at which the photocurable biomaterial is sprayed on the flat display by transfer of the mounting plate or transfer of the biomaterial injection module and the printing bed module; And a
  • the flat display may be detachably fixed by a fixing clip provided on the mounting plate.
  • the biological material injection module includes a biological material tank in which the photo-cured biological material is stored; A pneumatic port provided to supply pneumatic pressure to the biological material tank; a biomaterial transfer tube that provides a passage for the photocured biomaterial stored in the biomaterial tank to be sprayed by pneumatic pressure; A valve installed to open and close the injection of photocurable biomaterial in the biomaterial transfer pipe; and a water jacket installed on the outside of the biological material tank and provided with an inlet port and an inlet/outlet port for supply and discharge of coolant or high-temperature water.
  • the printing bed module includes a plate-shaped printing bed that allows the photocurable biomaterial to be laminated on a lower surface; A binding tool provided on the upper surface of the printing bed; A mount coupled to the binding hole and provided with a ball at the end; a ball joint that is coupled to the ball to allow rotation of the mount in all directions and is fixed to the ball by tightening a first fixing bolt; a shaft provided to extend upward from the ball joint; and a shaft guide that is slidingly coupled to the shaft, allows the height of the shaft to be adjusted, fixes the position of the shaft by tightening a second fixing bolt, and is connected to the bed module lifting unit.
  • the transfer unit includes a transfer stage; A transfer body located on the transfer stage; a first transfer driving unit that reciprocates the transfer body in a first horizontal direction on the transfer stage; a second transport driving unit that transports the mounting plate positioned on the transport body in a second horizontal direction orthogonal to the first horizontal direction; and a stage lifting unit that elevates the transfer stage.
  • the desired biomaterial injection module is A spraying step of, in a state located above the flat display, descending by the spraying module lifting unit to spray photocurable biomaterial on the flat display, and then rising and returning by the spraying module lifting unit;
  • the flat display is positioned below the printing bed module by the transfer unit, the printing bed module is lowered by the bed module elevating unit, contacts the photocurable biomaterial on the flat display, and irradiates the lower surface of the printing bed from the flat display.
  • the present invention has industrial applicability to improve the economics and productivity of research by increasing the reproducibility of research in the bio industry.
  • valve 145 water jacket
  • Spray module elevation unit 160 Printing bed module
  • transfer unit 181 transfer stage
  • first transport drive unit 183 transport body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 거치판재 상에 고정되고, 광경화 생체물질의 가교(Crosslink)를 위한 가시광선을 출력하는 평면디스플레이; 인공 생체조직 출력을 위한 수화젤(Hydrogel) 또는 살아있는 세포가 포함된 광경화 생체물질을 각각 저장하며, 공압에 의해 저장된 광경화 생체물질을 밸브의 개방에 의해 평면디스플레이에 각각 분사하고, 냉매 또는 열매의 순환 공급에 의해 광경화 생체물질의 온도가 각각 조절되도록 하며, 서로 상이한 광경화 생체물질을 각각 저장하도록 다수로 이루어지는 생체물질분사모듈; 생체물질분사모듈 각각을 승강시키는 분사모듈승강부; 생체물질분사모듈로부터 평면디스플레이 상에 각각 분사되는 광경화 생체물질을 가시광선에 의한 가교(Crosslink)에 의해 부착하여, 일면에 순차적으로 적층되도록 하는 프린팅베드모듈; 프린팅베드모듈이 광경화 생체물질의 적층을 위해 승강되도록 하는 베드모듈승강부; 거치판재의 이송 또는 생체물질분사모듈 및 프린팅베드모듈의 이송에 의해 평면디스플레이 상에 광경화 생체물질이 분사되는 위치를 조절하도록 하는 이송부; 및 평면디스플레이에 의한 광경화 생체물질의 가교 영역을 패터닝하도록 평면디스플레이의 가시광선 조사 영역을 제어하고, 프린팅베드모듈에 광경화 생체물질이 순차적으로 적층되도록 제어하는 제어부;를 포함하도록 한 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법에 관한 것이다.

Description

인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법
본 발명은 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법에 관한 것으로서, 보다 상세하게는 세포가 포함되어 성장할 수 있는 물질 또는 생체 세포가 포함된 물질(이하 '광경화 생체물질'이라 함)을 다양하게 사용하여, 하나의 3차원 수화젤(Hydrogel) 형태로 가교(crosslink)하는 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법에 관한 것이다.
일반적으로, 인체나 동물은 여러 가지의 장기가 유기적으로 결합되어 구성된다. 이를 구성하는 장기들은 여러 종류의 세포들로 구성되어 있고, 세포들을 기본단위로 다양한 세포환경이 개개인의 세포의 신진대사, 세포분열, 세포성장, 세포사망 (Apoptosis)을 도울 수 있게 한다.
최근 재생의학의 발전과 줄기세포의 발견으로, 질병에 걸린 특정 신체조직 및 장기를 건강한 신체조직으로 바꾸어 주는 소위, 재생의학(Tissue Engineering) 이 대두되었다. 여기서 중요한 사항은 세포(줄기세포 포함)가 광경화 생체물질이나, 평면에서 배양되면, 대부분 본질의 구실을 못하게 되는 경우가 많으므로, 개개의 세포들을 생체조직과 같이 3차원으로 조합하는 것이 이상적이며, 이를 위해 세포의 정상적 성장에 필요한 성장 호르몬(cytokine과 chemokine), 혈관생성물질 및 조혈관세포, 세포 사이에 분포되는 ECM(extra cellular matrix)도 세포와 아울러 3차원으로 구성되어야 한다.
그러나, 이와 같은 이상적이 조건들은 정밀하게 구현하기 어려울 뿐만 아니라, 구조물에 포함될 모든 물질의 특성과 세포의 종류에 맞는 분사방식과 가교(crosslink)방식을 필요로 하기 때문에 이 분야에 대한 많은 연구가 진행되고 있다.
이러한 문제점을 해결하기 위해 종래의 방법으로는, 생체적으로 호환 가능한 수화젤(Hydrogel)을 사용하여 3차원 비계(scaffold, 뼈대)를 만든 후, 그 안에 세포를 심어주거나, 세포가 포함된 수화젤(Hydrogel)을 3차원 구조물로 사용하는 방식이 이용되었다.
최근, 3차원 조형(3D Rapid prototyping)방식 중 가장 정밀한 구조체를 제작할 수 있는 광경화 방식은 평면의 성형물을 순차적으로 수직 조합하여, 복잡한 3차원 구조물을 모형으로 성형하는데, 대표적인 방식으로는 SLA(stereolithography apparatus)방식, DLP(digital light processing)와 MSLA(Masked stereolithography)방식 등이 있다.
SLA방식은 레이저 튜브를 거쳐 나온 레이저 빔이 X축과 Y축으로 회전하는 거울(Galvanometer)에 반사된다. 반사된 레이저 빔은 렌즈를 통과하여, 광경화성 레진을 담은 탱크(vat) 속의 액상 레진 표면에 정확하게 초점이 맞춰진다. 초점이 맞춰진 레이저 빔은 광경화성 레진 표면에서 얇은 선 형태로 도면을 그리고(patterning), 조사된 광경화성 레진 표면은 가교(Crosslink)반응을 일으켜 고체로 변화하며, 프린팅 베드 위에 쌓여서 적층된다. 여기서 프린팅베드는 레진(resin)의 위에서 내려올수도 있다.
DLP와 MSLA방식은 선으로 그리는(patterning) SLA 방식과는 달리, 면(layer)단위로 그려 가교(crosslink)시키는 방식이다. 따라서, DLP와 MSLA방식은 선으로 그리는 SLA방식보다 2차원 평면에 액상 레진을 가교시키는 속도가 빠르다. 이와 같이 면 형태로 그리는 광경화 3차원 조형 방식은 대게 높은 전력의 램프나 LED 등을 별도의 광원으로 사용한다. 광원에서 나온 빛은 렌즈를 사용하여 퍼지지 않게 면 형태로 모아주며, 모여진 광원은 LCD(liquid-crystal display) 패널을 통과하여 LCD 패널과 프린팅 베드(Printing bed) 위에 경화된 레진 사이에 채워진 액상 광경화성 레진을 가교 반응시키고, 고체로 변화된 레진은 프린팅 베드의 아래에 적층된다.
그러나, 이와 같은 종래의 광경화 방식의 3차원 성형방식은 광경화 생체물질과 실제 살아있는 세포를 사용해야 하는 바이오 3차원 성형기술에 적용하면 다음과 같은 심각한 문제점을 발생시킨다.
앞서 언급한 이상적인 3차원 생체 조직에서는 정교한 성형기술 뿐만 아니라, 다양한 생체 물질과 세포를 출력할 수 있어야 한다. 하지만, 종래의 광경화 방식의 3차원 성형방식에서는 레진 탱크(vat)에 한 가지 물질만을 채워 사용하기 때문에 다양한 물질을 사용할 수 없는 구조이다.
상기한 문제점을 해결하기 위하여, 종래의 광경화 방식의 3차원 성형기술에서도, 출력 도중에 탱크를 수시로 교환해주어 다양한 광경화 생체물질을 사용하는 방법도 생각해 볼 수 있지만, 이 경우 교환하기 전 광경화 생체물질이 프린팅 베드와 적층물 사이에 많은 양을 머금고 있기 때문에, 교환된 광경화성 생체 물질의 성분과 섞이게 되고, 이 과정으로 인하여 가교가 잘 안되거나, 원하는 적층물과는 다른 결과나 물질을 형성하게 된다.
또한, 종래의 광경화 방식의 3차원 성형방식에서는 높은 출력과 짧은 파장대의 UV(ultraviolet)광원을 사용한다. 이러한 이유는 액상 레진이 높은 빛 에너지를 받아 빠르게 가교되게 하기 위함이다. 그러나 실제 살아있는 세포를 사용해야하는 바이오 3차원 성형 방식에서는 높은 출력과 낮은 파장의 UV(ultraviolet)광원이 세포의 DNA를 파괴하여 생존율을 낮추거나, 세포의 성질을 변형시키기 때문에 사용해서는 안된다.
그리고, 종래 사용하는 광경화성 액상 레진은 가교된 후에 고체 상태로 변하여 프린팅 베드에 쌓이는데, 세포는 고체상태가 아닌 수화젤(hydrogel)상태 안에서만 생존할 수 있어서 딱딱한 고체로 쌓아 적층되는 광경화 레진은 사용할 수 없다는 문제점을 가진다.
상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여, 본 발명은 바이오 3D 광경화 성형방식에서 다양한 광경화 생체물질과 세포를 탱크(VAT)없이 사용할 수 있도록 하는데 목적이 있다.
또한 본 발명은 다양한 광경화 생체물질과 세포가 서로 섞이는 것을 획기적으로 줄이도록 하는데 목적이 있다.
또한 본 발명은 높은 출력과 낮은 파장의 광원을 가시광선 주파수로 바꿔 세포의 생존율을 높이고, 손상을 줄이도록 하는데 목적이 있다.
본 발명의 다른 목적들은 이하의 실시례에 대한 설명을 통해 쉽게 이해될 수 있을 것이다.
상기한 바와 같은 목적을 달성하기 위해, 본 발명의 일측면에 따르면, 거치판재 상에 고정되고, 광경화 생체물질의 가교(Crosslink)를 위한 가시광선을 출력하는 평면디스플레이; 인공 생체조직 출력을 위한 수화젤(Hydrogel) 또는 살아있는 세포가 포함된 광경화 생체물질을 각각 저장하며, 공압에 의해 저장된 광경화 생체물질을 밸브의 개방에 의해 상기 평면디스플레이에 각각 분사하고, 냉매 또는 열매의 순환 공급에 의해 상기 광경화 생체물질의 온도가 각각 조절되도록 하며, 서로 상이한 광경화 생체물질을 각각 저장하도록 다수로 이루어지는 생체물질분사모듈; 상기 생체물질분사모듈 각각을 승강시키는 분사모듈승강부; 상기 생체물질분사모듈로부터 상기 평면디스플레이 상에 각각 분사되는 광경화 생체물질을 상기 가시광선에 의한 가교(Crosslink)에 의해 부착하여, 일면에 순차적으로 적층되도록 하는 프린팅베드모듈; 상기 프린팅베드모듈이 상기 광경화 생체물질의 적층을 위해 승강되도록 하는 베드모듈승강부; 상기 거치판재의 이송 또는 상기 생체물질분사모듈 및 상기 프린팅베드모듈의 이송에 의해 상기 평면디스플레이 상에 상기 광경화 생체물질이 분사되는 위치를 조절하도록 하는 이송부; 및 상기 평면디스플레이에 의한 상기 광경화 생체물질의 가교 영역을 패터닝하도록 상기 평면디스플레이의 가시광선 조사 영역을 제어하고, 상기 프린팅베드모듈에 광경화 생체물질이 순차적으로 적층되도록 제어하는 제어부;를 포함하는, 인공 생체조직 성형 장치가 제공된다.
상기 평면디스플레이는, 상기 거치판재 상에 마련되는 고정클립에 의해 착탈 가능하게 고정될 수 있다.
상기 생체물질분사모듈은, 상기 광경화 생체물질이 저장되는 생체물질탱크; 상기 생체물질탱크에 공압을 공급하기 위해 마련되는 공압포트; 상기 생체물질탱크로부터 저장된 광경화 생체물질이 공압에 의해 분사되기 위한 통로를 제공하는 생체물질이동관; 상기 생체물질이동관에 광경화 생체물질의 분사를 개폐시키도록 설치되는 밸브; 및 상기 생체물질탱크의 외측에 설치되고, 냉각수 또는 고온수의 공급 및 배출을 위해 입수포트 및 입출포트가 마련되는 워터자켓;을 포함할 수 있다.
상기 프린팅베드모듈은, 상기 광경화 생체물질이 하면에 적층되도록 하는 판상의 프린팅베드; 상기 프린팅베드의 상면에 마련되는 결속구; 상기 결속구에 결속되고, 끝단에 볼이 마련되는 마운트; 상기 볼에 볼 결합됨으로써, 상기 마운트의 전방위 회전을 허용하고, 제 1 고정볼트의 조임에 의해 상기 볼에 고정되는 볼조인트; 상기 볼조인트에 상방으로 연장되도록 마련되는 샤프트; 및 상기 샤프트에 슬라이딩 결합됨으로써, 상기 샤프트의 높이 조절이 가능하고, 제 2 고정볼트의 조임에 의해 상기 샤프트의 위치를 고정시키며, 상기 베드모듈승강부에 연결되는 샤프트가이드;를 포함할 수 있다.
상기 이송부는, 이송스테이지; 상기 이송스테이지 상에 위치하는 이송체; 상기 이송체를 상기 이송스테이지 상에서 제 1 수평방향으로 왕복 이송시키는 제 1 이송구동부; 상기 이송체 상에 위치하는 거치판재를 상기 제 1 수평방향에 직교하는 제 2 수평방향으로 이송시키는 제 2 이송구동부; 및 상기 이송스테이지를 승강시키는 스테이지승강부;를 포함할 수 있다.
본 발명의 다른 측면에 따르면, 인공 생체조직 출력을 위한 수화젤(Hydrogel) 또는 살아있는 세포가 포함되는 광경화 생체물질을 서로 상이하도록 각각 저장하는 다수의 생체물질분사모듈 중에서, 원하는 생체물질분사모듈이 평면디스플레이의 상측에 위치한 상태에서, 분사모듈승강부에 의해 하강하여 평면디스플레이 상에 광경화 생체물질을 분사시킨 후, 분사모듈승강부에 의해 상승하여 복귀하도록 하는 분사단계; 이송부에 의해 프린팅베드모듈의 하방에 상기 평면디스플레이가 위치하면, 상기 프린팅베드모듈이 베드모듈승강부에 의해 하강하여 상기 평면디스플레이 상의 광경화 생체물질에 접촉하여 프린팅베드의 하면에 상기 평면디스플레이로부터 조사되는 가시광선의 영역에 해당하는 광경화 생체물질이 가교(Crosslink)되면서 부착되도록 한 후, 상기 베드모듈승강부에 의해 상승하여 복귀하도록 하는 부착단계; 및 상기 분사단계 및 상기 부착단계를 반복함으로써, 상기 프린팅베드의 하면에 원하는 광경화 생체물질이 순차적으로 적층되도록 하는 반복단계;를 포함하는, 인공 생체조직 성형 방법이 제공된다.
본 발명에 따른 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법에 의하면, 바이오 3D 광경화 성형방식에서 다양한 광경화 생체물질과 세포를 탱크(VAT)없이 사용할 수 있도록 하고, 다양한 광경화 생체물질과 세포가 서로 섞이는 것을 획기적으로 줄이도록 하며, 높은 출력과 낮은 파장의 광원을 가시광선 주파수로 바꿔 세포의 생존율을 높이고, 가시광선을 이용한 생체조직의 가교(Crosslink)에 의해 생체조직에 대한 손상을 줄이도록 하며, 연구의 다양성이 높아지도록 할 뿐만 아니라, 수치화된 성형방법을 바탕으로 연구의 재현성이 높이지도록 하고, 고가의 광경화 생체물질을 사용해야 하는 바이오 산업에서 연구의 재현성이 높아지도록 하여, 연구의 경제성과 생산성을 향상시키는 효과를 가진다.
도 1은 본 발명의 일 실시례에 따른 인공 생체조직 성형 장치를 도시한 사시도이다.
도 2는 본 발명의 일 실시례에 따른 인공 생체조직 성형 장치를 도시한 구성도이다.
도 3은 본 발명의 일 실시례에 따른 인공 생체조직 성형 장치의 거치판재와 평면디스플레이를 도시한 사시도이다.
도 4는 본 발명의 일 실시례에 따른 인공 생체조직 성형 장치의 생체물질탱크모듈을 도시한 사시도이다.
도 5는 본 발명의 일 실시례에 따른 인공 생체조직 성형 장치의 프린팅베드모듈을 도시한 사시도이다.
도 6 내지 도 19는 본 발명의 다른 실시례에 따른 인공 생체조직 성형 방법을 순차적으로 설명하기 위한 개략도 및 단계별 프린팅 베드 적층 상태를 나타낸 도면이다.
방법으로, 광경화 생체물질 D를 광경화 생체물질 C와 동일 층을 이루도록 평면디스플레이(120)에 도포한다. 이후, 도 18에서와 같이, 앞서 설명한 부착단계에서와 동일한 방법으로, 평면디스플레이(120)에 도포된 광경화 생체물질 C와 광경화 생체물질 D를 프린팅베드(161) 하측에 적층되도록 한다. 따라서, 도 15 및 도 17에서 프린팅베드(161)의 하측에 광경화 생체물질 A와 광경화 생체물질 B가 순차적으로 적층된 상태에서, 도 19에서와 같이, 프린팅베드(161)의 하측에서 광경화 생체물질 A와 광경화 생체물질 B가 적층된 구조체에 광경화 생체물질 C 및 광경화 생체물질 D가 동일한 층을 이루도록 적층된다.
이와 같은 본 발명에 따른 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법에 따르면, 바이오 3D 광경화 성형방식에서 다양한 광경화 생체물질과 세포를 탱크(VAT)없이 사용할 수 있도록 하고, 다양한 광경화 생체물질과 세포가 서로 섞이는 것을 획기적으로 줄이도록 하며, 높은 출력과 낮은 파장의 광원을 가시광선 주파수로 바꿔 세포의 생존율을 높이고, 손상을 줄이도록 한다.
또한 본 발명에 따르면, 연구의 다양성이 높아지도록 할 뿐만 아니라, 수치화된 성형방법을 바탕으로 연구의 재현성이 높이지도록 하고, 고가의 광경화 생체물질을 사용해야 하는 바이오 산업에서 연구의 재현성이 높아지도록 하여, 연구의 경제성과 생산성을 향상시킬 수 있다.
이와 같이 본 발명에 대해서 첨부된 도면을 참조하여 설명하였으나, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시례에 한정되어서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이러한 특허청구범위와 균등한 것들에 의해 정해져야 한다.
거치판재 상에 고정되고, 광경화 생체물질의 가교(Crosslink)를 위한 가시광선을 출력하는 평면디스플레이; 인공 생체조직 출력을 위한 수화젤(Hydrogel) 또는 살아있는 세포가 포함된 광경화 생체물질을 각각 저장하며, 공압에 의해 저장된 광경화 생체물질을 밸브의 개방에 의해 상기 평면디스플레이에 각각 분사하고, 냉매 또는 열매의 순환 공급에 의해 상기 광경화 생체물질의 온도가 각각 조절되도록 하며, 서로 상이한 광경화 생체물질을 각각 저장하도록 다수로 이루어지는 생체물질분사모듈; 상기 생체물질분사모듈 각각을 승강시키는 분사모듈승강부; 상기 생체물질분사모듈로부터 상기 평면디스플레이 상에 각각 분사되는 광경화 생체물질을 상기 가시광선에 의한 가교(Crosslink)에 의해 부착하여, 일면에 순차적으로 적층되도록 하는 프린팅베드모듈; 상기 프린팅베드모듈이 상기 광경화 생체물질의 적층을 위해 승강되도록 하는 베드모듈승강부; 상기 거치판재의 이송 또는 상기 생체물질분사모듈 및 상기 프린팅베드모듈의 이송에 의해 상기 평면디스플레이 상에 상기 광경화 생체물질이 분사되는 위치를 조절하도록 하는 이송부; 및 상기 평면디스플레이에 의한 상기 광경화 생체물질의 가교 영역을 패터닝하도록 상기 평면디스플레이의 가시광선 조사 영역을 제어하고, 상기 프린팅베드모듈에 광경화 생체물질이 순차적으로 적층되도록 제어하는 제어부;를 포함하는, 인공 생체조직 성형 장치가 제공된다.
상기 평면디스플레이는, 상기 거치판재 상에 마련되는 고정클립에 의해 착탈 가능하게 고정될 수 있다.
상기 생체물질분사모듈은, 상기 광경화 생체물질이 저장되는 생체물질탱크; 상기 생체물질탱크에 공압을 공급하기 위해 마련되는 공압포트; 상기 생체물질탱크로부터 저장된 광경화 생체물질이 공압에 의해 분사되기 위한 통로를 제공하는 생체물질이동관; 상기 생체물질이동관에 광경화 생체물질의 분사를 개폐시키도록 설치되는 밸브; 및 상기 생체물질탱크의 외측에 설치되고, 냉각수 또는 고온수의 공급 및 배출을 위해 입수포트 및 입출포트가 마련되는 워터자켓;을 포함할 수 있다.
상기 프린팅베드모듈은, 상기 광경화 생체물질이 하면에 적층되도록 하는 판상의 프린팅베드; 상기 프린팅베드의 상면에 마련되는 결속구; 상기 결속구에 결속되고, 끝단에 볼이 마련되는 마운트; 상기 볼에 볼 결합됨으로써, 상기 마운트의 전방위 회전을 허용하고, 제 1 고정볼트의 조임에 의해 상기 볼에 고정되는 볼조인트; 상기 볼조인트에 상방으로 연장되도록 마련되는 샤프트; 및 상기 샤프트에 슬라이딩 결합됨으로써, 상기 샤프트의 높이 조절이 가능하고, 제 2 고정볼트의 조임에 의해 상기 샤프트의 위치를 고정시키며, 상기 베드모듈승강부에 연결되는 샤프트가이드;를 포함할 수 있다.
상기 이송부는, 이송스테이지; 상기 이송스테이지 상에 위치하는 이송체; 상기 이송체를 상기 이송스테이지 상에서 제 1 수평방향으로 왕복 이송시키는 제 1 이송구동부; 상기 이송체 상에 위치하는 거치판재를 상기 제 1 수평방향에 직교하는 제 2 수평방향으로 이송시키는 제 2 이송구동부; 및 상기 이송스테이지를 승강시키는 스테이지승강부;를 포함할 수 있다.
본 발명의 다른 측면에 따르면, 인공 생체조직 출력을 위한 수화젤(Hydrogel) 또는 살아있는 세포가 포함되는 광경화 생체물질을 서로 상이하도록 각각 저장하는 다수의 생체물질분사모듈 중에서, 원하는 생체물질분사모듈이 평면디스플레이의 상측에 위치한 상태에서, 분사모듈승강부에 의해 하강하여 평면디스플레이 상에 광경화 생체물질을 분사시킨 후, 분사모듈승강부에 의해 상승하여 복귀하도록 하는 분사단계; 이송부에 의해 프린팅베드모듈의 하방에 상기 평면디스플레이가 위치하면, 상기 프린팅베드모듈이 베드모듈승강부에 의해 하강하여 상기 평면디스플레이 상의 광경화 생체물질에 접촉하여 프린팅베드의 하면에 상기 평면디스플레이로부터 조사되는 가시광선의 영역에 해당하는 광경화 생체물질이 가교(Crosslink)되면서 부착되도록 한 후, 상기 베드모듈승강부에 의해 상승하여 복귀하도록 하는 부착단계; 및 상기 분사단계 및 상기 부착단계를 반복함으로써, 상기 프린팅베드의 하면에 원하는 광경화 생체물질이 순차적으로 적층되도록 하는 반복단계;를 포함하는, 인공 생체조직 성형 방법이 제공된다.
본 발명은 바이오 산업에서 연구의 재현성이 높아지도록 하여, 연구의 경제성과 생산성을 향상시킬 수 있는 산업상 이용가능성이 있다.
110 : 거치판재 111 : 고정클립
120 : 평면디스플레이 130 : 상부설치재
140 : 생체물질분사모듈 141 : 생체물질탱크
142 : 공압포트 143 : 생체물질이동관
144 : 밸브 145 : 워터자켓
145a : 입수포트 145b : 입출포트
150 : 분사모듈승강부 160 : 프린팅베드모듈
161 : 프린팅베드 162 : 결속구
163 : 마운트 163a : 볼
164 : 볼조인트 164a : 제 1 고정볼트
165 : 샤프트 166 : 샤프트가이드
166a : 제 2 고정볼트 170 : 베드모듈승강부
180 : 이송부 181 : 이송스테이지
182 : 제 1 이송구동부 183 : 이송체
184 : 제 2 이송구동부 185 : 스테이지승강부
190 : 공압공급부 210 : 제어부
211 : 조작부

Claims (6)

  1. 거치판재 상에 고정되고, 광경화 생체물질의 가교(Crosslink)를 위한 가시광선을 출력하는 평면디스플레이;
    인공 생체조직 출력을 위한 수화젤(Hydrogel) 또는 살아있는 세포가 포함된 광경화 생체물질을 각각 저장하며, 공압에 의해 저장된 광경화 생체물질을 밸브의 개방에 의해 상기 평면디스플레이에 각각 분사하고, 냉매 또는 열매의 순환 공급에 의해 상기 광경화 생체물질의 온도가 각각 조절되도록 하며, 서로 상이한 광경화 생체물질을 각각 저장하도록 다수로 이루어지는 생체물질분사모듈;
    상기 생체물질분사모듈 각각을 승강시키는 분사모듈승강부;
    상기 생체물질분사모듈로부터 상기 평면디스플레이 상에 각각 분사되는 광경화 생체물질을 상기 가시광선에 의한 가교(Crosslink)에 의해 부착하여, 일면에 순차적으로 적층되도록 하는 프린팅베드모듈;
    상기 프린팅베드모듈이 상기 광경화 생체물질의 적층을 위해 승강되도록 하는 베드모듈승강부;
    상기 거치판재의 이송 또는 상기 생체물질분사모듈 및 상기 프린팅베드모듈의 이송에 의해 상기 평면디스플레이 상에 상기 광경화 생체물질이 분사되는 위치를 조절하도록 하는 이송부; 및
    상기 평면디스플레이에 의한 상기 광경화 생체물질의 가교 영역을 패터닝하도록 상기 평면디스플레이의 가시광선 조사 영역을 제어하고, 상기 프린팅베드모듈에 광경화 생체물질이 순차적으로 적층되도록 제어하는 제어부;
    를 포함하는, 인공 생체조직 성형 장치.
  2. 청구항 1에 있어서,
    상기 평면디스플레이는,
    상기 거치판재 상에 마련되는 고정클립에 의해 착탈 가능하게 고정되는, 인공 생체조직 성형 장치.
  3. 청구항 1에 있어서,
    상기 생체물질분사모듈은,
    상기 광경화 생체물질이 저장되는 생체물질탱크;
    상기 생체물질탱크에 공압을 공급하기 위해 마련되는 공압포트;
    상기 생체물질탱크로부터 저장된 광경화 생체물질이 공압에 의해 분사되기 위한 통로를 제공하는 생체물질이동관;
    상기 생체물질이동관에 광경화 생체물질의 분사를 개폐시키도록 설치되는 밸브; 및
    상기 생체물질탱크의 외측에 설치되고, 냉각수 또는 고온수의 공급 및 배출을 위해 입수포트 및 입출포트가 마련되는 워터자켓;
    을 포함하는, 인공 생체조직 성형 장치.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 프린팅베드모듈은,
    상기 광경화 생체물질이 하면에 적층되도록 하는 판상의 프린팅베드;
    상기 프린팅베드의 상면에 마련되는 결속구;
    상기 결속구에 결속되고, 끝단에 볼이 마련되는 마운트;
    상기 볼에 볼 결합됨으로써, 상기 마운트의 전방위 회전을 허용하고, 제 1 고정볼트의 조임에 의해 상기 볼에 고정되는 볼조인트;
    상기 볼조인트에 상방으로 연장되도록 마련되는 샤프트; 및
    상기 샤프트에 슬라이딩 결합됨으로써, 상기 샤프트의 높이 조절이 가능하고, 제 2 고정볼트의 조임에 의해 상기 샤프트의 위치를 고정시키며, 상기 베드모듈승강부에 연결되는 샤프트가이드;
    를 포함하는, 인공 생체조직 성형 장치.
  5. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 이송부는,
    이송스테이지;
    상기 이송스테이지 상에 위치하는 이송체;
    상기 이송체를 상기 이송스테이지 상에서 제 1 수평방향으로 왕복 이송시키는 제 1 이송구동부;
    상기 이송체 상에 위치하는 거치판재를 상기 제 1 수평방향에 직교하는 제 2 수평방향으로 이송시키는 제 2 이송구동부; 및
    상기 이송스테이지를 승강시키는 스테이지승강부;
    를 포함하는, 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 장치.
  6. 인공 생체조직 출력을 위한 수화젤(Hydrogel) 또는 살아있는 세포가 포함되는 광경화 생체물질을 서로 상이하도록 각각 저장하는 다수의 생체물질분사모듈 중에서, 원하는 생체물질분사모듈이 평면디스플레이의 상측에 위치한 상태에서, 분사모듈승강부에 의해 하강하여 평면디스플레이 상에 광경화 생체물질을 분사시킨 후, 분사모듈승강부에 의해 상승하여 복귀하도록 하는 분사단계;
    이송부에 의해 프린팅베드모듈의 하방에 상기 평면디스플레이가 위치하면, 상기 프린팅베드모듈이 베드모듈승강부에 의해 하강하여 상기 평면디스플레이 상의 광경화 생체물질에 접촉하여 프린팅베드의 하면에 상기 평면디스플레이로부터 조사되는 가시광선의 영역에 해당하는 광경화 생체물질이 가교(Crosslink)되면서 부착되도록 한 후, 상기 베드모듈승강부에 의해 상승하여 복귀하도록 하는 부착단계; 및
    상기 분사단계 및 상기 부착단계를 반복함으로써, 상기 프린팅베드의 하면에 원하는 광경화 생체물질이 순차적으로 적층되도록 하는 반복단계;
    를 포함하는, 인공 생체조직 성형 방법.
PCT/KR2022/004163 2022-03-24 2022-03-24 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법 WO2023182546A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/004163 WO2023182546A1 (ko) 2022-03-24 2022-03-24 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/004163 WO2023182546A1 (ko) 2022-03-24 2022-03-24 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법

Publications (1)

Publication Number Publication Date
WO2023182546A1 true WO2023182546A1 (ko) 2023-09-28

Family

ID=88101731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004163 WO2023182546A1 (ko) 2022-03-24 2022-03-24 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법

Country Status (1)

Country Link
WO (1) WO2023182546A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818494B1 (ko) * 2006-10-04 2008-04-01 유승식 세포용액의 분사장치, 이를 이용한 3차원 인공 생체조직성형장치 및 그 성형방법
KR20160072182A (ko) * 2013-10-11 2016-06-22 어드밴스드 솔루션즈 라이프 사이언스, 엘엘씨 바이오 물질 구성물의 설계, 제조 및 조립을 위한 시스템 및 워크스테이션
KR20170082971A (ko) * 2016-01-07 2017-07-17 주식회사 티앤알바이오팹 열민감성 세포프린팅 조성물의 세포 프린팅 장치
US20190232558A1 (en) * 2016-10-19 2019-08-01 Rokit Healthcare Inc. 3d bioprinter
KR101968967B1 (ko) * 2017-12-12 2019-08-21 에이온 주식회사 3d 프린터용 성형플랫폼장치
KR20220041991A (ko) * 2020-09-25 2022-04-04 주식회사 클리셀 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818494B1 (ko) * 2006-10-04 2008-04-01 유승식 세포용액의 분사장치, 이를 이용한 3차원 인공 생체조직성형장치 및 그 성형방법
KR20160072182A (ko) * 2013-10-11 2016-06-22 어드밴스드 솔루션즈 라이프 사이언스, 엘엘씨 바이오 물질 구성물의 설계, 제조 및 조립을 위한 시스템 및 워크스테이션
KR20170082971A (ko) * 2016-01-07 2017-07-17 주식회사 티앤알바이오팹 열민감성 세포프린팅 조성물의 세포 프린팅 장치
US20190232558A1 (en) * 2016-10-19 2019-08-01 Rokit Healthcare Inc. 3d bioprinter
KR101968967B1 (ko) * 2017-12-12 2019-08-21 에이온 주식회사 3d 프린터용 성형플랫폼장치
KR20220041991A (ko) * 2020-09-25 2022-04-04 주식회사 클리셀 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법

Similar Documents

Publication Publication Date Title
US11976294B2 (en) Hypothermic 3D bioprinting of living tissues supported by perfusable vasculature
AU2015345206B2 (en) Method and device for producing a three-dimensional, multi-cell object
EP1840207A1 (en) Method of culturing cells under regulation in the extension direction
EP3482260B1 (en) Apparatus for patterning hydrogels into multi-well plates
MX2011003462A (es) Mejoras para aparato de creacion rapida de prototipos.
CN1201826A (zh) 螺旋藻光辐射塔板式光生物反应器养殖系统及其控制方法
CN104924617B (zh) 一种滴液式光固化跟随打印系统及方法
KR20200035423A (ko) 프린터의 프린트 헤드, 프린터 및 인쇄 방법
WO2023182546A1 (ko) 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법
WO2020091368A1 (ko) 다중 노즐 3d 프린팅 시스템 및 이를 이용한 삼차원 바이오 프린팅 방법
KR20180074033A (ko) 웰 플레이트용 저출력 레이저 또는 led 조사 장치
KR20170113437A (ko) 단면 패턴을 갖는 인쇄물의 제조 방법 및 장치
KR100818494B1 (ko) 세포용액의 분사장치, 이를 이용한 3차원 인공 생체조직성형장치 및 그 성형방법
US20240117288A1 (en) Culture devices
CN110171128A (zh) 一种3d打印方法
US20230158501A1 (en) 3D-Gerüst aus biokompatiblem Polymer mit einem nach oben offenen Besiedlungsraum für biologische Zellen und mit einem den Besiedlungsraum umgebenden kanalförmigen Gefäß
KR102382214B1 (ko) 인공 생체조직 성형 장치 및 이를 이용한 인공 생체조직 성형 방법
JP2004154027A (ja) 細胞培養チャンバー
CN110171127A (zh) 一种3d打印系统
CN110171131A (zh) 一种用于光控3d打印的生物材料
CN208812547U (zh) 用于烧伤植皮的3d打印装置
CN113207502A (zh) 一种野生早樱组织培养快速繁殖系统及其方法
CN206514086U (zh) 一种led植物灯
KR102045271B1 (ko) 다중 패턴을 구현할 수 있는 3차원 프린팅 시스템 및 이를 이용한 3차원 프린팅 방법
CN219727216U (zh) 一种气动挤压式3d生物打印装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933719

Country of ref document: EP

Kind code of ref document: A1