WO2023182532A1 - Grease composition - Google Patents

Grease composition Download PDF

Info

Publication number
WO2023182532A1
WO2023182532A1 PCT/JP2023/012227 JP2023012227W WO2023182532A1 WO 2023182532 A1 WO2023182532 A1 WO 2023182532A1 JP 2023012227 W JP2023012227 W JP 2023012227W WO 2023182532 A1 WO2023182532 A1 WO 2023182532A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid lubricant
mass
grease composition
grease
base oil
Prior art date
Application number
PCT/JP2023/012227
Other languages
French (fr)
Japanese (ja)
Inventor
佳之 永澤
智絵実 中山
大介 筒井
Original Assignee
協同油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協同油脂株式会社 filed Critical 協同油脂株式会社
Publication of WO2023182532A1 publication Critical patent/WO2023182532A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/20Lubricating compositions characterised by the base-material being a macromolecular compound containing oxygen
    • C10M107/30Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M107/32Condensation polymers of aldehydes or ketones; Polyesters; Polyethers
    • C10M107/34Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/30Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms
    • C10M129/34Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 7 or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/40Six-membered ring containing nitrogen and carbon only
    • C10M133/42Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/06Metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M147/00Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
    • C10M147/02Monomer containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives

Definitions

  • This case relates to a grease composition that can be suitably used for mechanical parts that require load-bearing properties, such as reduction gears and ball screws.
  • Non-Patent Document 1 Reactive load-bearing additives perform their role by reacting on the metal surface to form a protective film.
  • Solid lubricants work by adhering to metal surfaces and preventing metal-to-metal contact. That is, the solid lubricant can also be called a non-reactive load-bearing additive.
  • NBR nitrile rubber
  • the sealing material may deteriorate due to low temperatures in winter or heat damage in tropical climates. Deterioration of the sealing material also occurs when the base oil contained in the grease that comes into contact with the sealing material causes the sealing material to swell. Therefore, if a mechanical component equipped with a sealing material is used for a long period of time, there is a risk that foreign matter may enter from the outside, leading to poor lubrication and shortening the life of the mechanical component.
  • approaches have been taken from two viewpoints: selection of sealing material and selection of base oil for grease.
  • EPDM ethylene propylene rubber
  • NBR water resistance
  • Patent Document 1 polyoxyalkylene or polyoxyalkylene derivatives as the base oil of the grease to suppress the swelling of EPDM or natural rubber.
  • polyoxyalkylene or polyoxyalkylene derivatives are used as base oils that have excellent compatibility with rubber and can be applied to mechanical parts where EPDM or natural rubber is used for sealing members.
  • a grease composition that can extend the life of mechanical parts by suppressing the occurrence of seizing of the mechanical parts even under high temperatures or high surface pressures.
  • the acid component generated when the load-bearing additive in the reaction system forms a reaction film on the metal surface accelerates the decomposition of the polyoxyalkylene or polyoxyalkylene derivative.
  • the reactive load-bearing additive effectively exhibits a seizure suppressing effect in non-polar base oils such as polyalphaolefins.
  • polyoxyalkylene or a polyoxyalkylene derivative has polarity, it is dispersed in the base oil and becomes difficult to adsorb to a lubricating field, resulting in a problem that it is difficult to obtain a seizure suppressing effect.
  • a solid lubricant such as polytetrafluoroethylene (PTFE) or melamine cyanurate
  • PTFE polytetrafluoroethylene
  • melamine cyanurate a non-reactive load-bearing additive
  • the resulting grease lacks versatility.
  • the problem to be solved by the present invention is to improve the load carrying capacity of a grease composition containing polyoxyalkylene or a polyoxyalkylene derivative as a base oil, even under high temperature or high surface pressure. The purpose is to improve the load capacity without using additives and to suppress thermal deterioration of the base oil.
  • the present inventors solved the above-mentioned problem of improving load resistance by using a non-reactive solid lubricant. That is, the present invention provides the following grease composition. 1. A grease composition containing a base oil, a thickener, and an additive, The base oil is at least one selected from the group consisting of polyoxyalkylene, ether derivatives of polyoxyalkylene, and mixtures thereof, The additive contains polytetrafluoroethylene as the first solid lubricant, and at least one selected from the group consisting of melamine cyanurate, tricalcium phosphate, and sodium sebacate as the second solid lubricant; The above-mentioned grease composition, wherein the content of the solid lubricant of No.
  • the present invention enables grease compositions to withstand high temperatures or high surface pressures without using load-bearing additives in the reaction system and without accelerating the decomposition of polyoxyalkylene and/or ether derivatives of polyoxyalkylene. Load capacity and heat resistance can be improved.
  • the base oil used in the grease composition of the present invention is a polyoxyalkylene and/or an ether derivative of a polyoxyalkylene.
  • Polyoxyalkylene and/or ether derivatives of polyoxyalkylene have low adverse effects on rubber, which is a sealing material.
  • the polyoxyalkylene and/or the ether derivative of polyoxyalkylene is represented by the following formula (1).
  • Polyoxyalkylene or its ether derivative means that R 1 and R 3 in formula (1) are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, or pentyl group. is an alkyl group having 1 to 6 carbon atoms such as hexyl group, R 2 is hydrogen or an alkyl group having 1 to 2 carbon atoms, and n is a compound having a number of 5 to 55.
  • Polyoxyalkylene is a diol obtained by ring-opening polymerization of alkylene oxide such as ethylene oxide and propylene oxide.
  • the ether derivative is a monoether in which either R 1 or R 3 is an alkyl group having one or more carbon atoms, or a diether in which both R 1 and R 3 are an alkyl group having one or more carbon atoms.
  • polyoxyalkylene diols include polyoxyethylene, polyoxypropylene, poly(oxypropyleneoxyethylene), poly(oxybutyleneoxyethylene), poly(oxybutyleneoxypropylene), and poly(oxypentyleneoxyethylene).
  • ether derivatives of polyoxyalkylene include polyoxypropylene monopropyl ether, polyoxypropylene monobutyl ether, polyoxybutylene monobutyl ether, polyoxyethylene oxypropylene monopropyl ether, polyoxyethylene oxypropylene monobutyl ether, polyoxy Examples include ethylene oxypropylene monopentyl ether.
  • suitable base oils for the present invention are polyoxyalkylene in which R 2 is an alkyl group having 1 or more carbon atoms or its ether derivative, preferably polyoxypropylene monobutyl ether, and particularly preferably n is 10 to 10. 25, more particularly preferably polyoxypropylene monobutyl ether where n is 10 to 22.
  • the base oil of the present invention may be a so-called biomass oil that is produced using biological resources derived from animals and plants as raw materials.
  • the base oil of the present invention preferably has a kinematic viscosity of 2 to 100 mm 2 /s at 100°C. This provides excellent low temperature properties.
  • the kinematic viscosity at 100° C. is more preferably 2 to 50 mm 2 /s, even more preferably 2 to 20 mm 2 /s, and particularly preferably 6 to 19 mm 2 /s.
  • the base oil of the present invention preferably has a pour point of -10°C or lower. This provides excellent low temperature properties.
  • the pour point is more preferably -20°C or lower, even more preferably -30°C or lower, particularly preferably -35°C or lower.
  • the base oil of the present invention is a polyoxypropylene monomer having a kinematic viscosity of 6 to 19 mm 2 /s at 100°C, a pour point of -35°C or lower, and in which n is 10 to 22 in formula (1). Butyl ether is most preferred.
  • the base oil content in the grease composition of the present invention is, for example, preferably 60 to 90% by mass, more preferably 60 to 80% by mass.
  • the first solid lubricant in the present invention is polytetrafluoroethylene.
  • the content of the first solid lubricant is preferably 0.5% by mass or more based on the total mass of the composition. This provides excellent load resistance. More preferably, it is 1% by mass or more. From the viewpoint of grease inflow, the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less.
  • the second solid lubricant in the present invention is at least one selected from the group consisting of melamine cyanurate, tricalcium phosphate, and sodium sebacate. Among these, melamine cyanurate is preferred from the viewpoint of wear resistance.
  • the second solid lubricant is preferably larger in particle size than the first solid lubricant, PTFE, from the viewpoint of the effect of improving load resistance when used in combination.
  • the content of the second solid lubricant is 0.5% by mass or more based on the total mass of the composition. This provides excellent load resistance.
  • the content does not need to be the same as that of the first solid lubricant. More preferably, it is 1% by mass or more. From the viewpoint of grease inflow, the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the load bearing properties of the grease composition are particularly excellent. Therefore, from the viewpoint of load resistance, it is particularly preferable to contain 3 to 5 parts by mass of melamine cyanurate, which has a particle size larger than that of PTFE, per 10 parts by mass of PTFE.
  • the total amount of the first solid lubricant and the second solid lubricant in the grease composition of the present invention is preferably 1 to 20% by mass, more preferably 5 to 15% by mass. It is preferable that the total amount of the first solid lubricant and the second solid lubricant be within such a range, since the influence of grease inflow properties on performance is small.
  • first and second solid lubricants of the present invention do not have polarity, even if they are included in polyoxyalkylene and/or ether derivatives of polyoxyalkylene, they can withstand load without being affected by the base oil. can improve sex.
  • the presence of polytetrafluoroethylene, which has a smaller particle size than that of the second solid lubricant, in the lubrication field provides excellent load bearing capacity, while the second solid lubricant This makes it possible to stably supply the lubricant to the lubrication field, which is thought to significantly improve load carrying capacity.
  • the thickener for the grease of the present invention can be used without particular limitations. Specifically, soap-based thickeners such as Li soap and Li-complex soap, urea-based thickeners such as diurea, inorganic thickeners such as organic bentonite and silica, and sodium terephthalate are used. Examples include organic thickeners typified by . Among these, Li soap and diurea compounds are preferred. This is because these are practical thickeners because they have few drawbacks and are not expensive.
  • Li-(12OH)St lithium 12-hydroxystearate
  • Li-St lithium stearate
  • Li-St lithium stearate
  • Li complex soaps include complexes of lithium salts of aliphatic carboxylic acids such as stearic acid and 12-hydroxystearic acid and lithium salts of dibasic acids.
  • dibasic acids include succinic acid, malonic acid, adipic acid, pimelic acid, azelaic acid, and sebacic acid.
  • Azelaic acid and sebacic acid are preferred.
  • a Li complex soap which is a mixture of a salt of azelaic acid and lithium hydroxide and a salt of 12-hydroxystearic acid and lithium hydroxide.
  • a diurea compound is generally represented by the following formula (2).
  • R 4 -NHCONH-R 5 -NHCONH-R 6 (2) (In the formula, R 4 and R 6 may be the same or different and represent a C6-30 alkyl group, a C5-8 cycloalkyl group, or a C6-10 aryl group, and R 5 is a C6-15 (Indicates a divalent aromatic hydrocarbon group.)
  • Examples of diurea compounds include aliphatic diureas in which R 4 and R 6 are C6-30 alkyl groups which may be the same or different; one of R 4 and R 6 is a C5-8 cycloalkyl group, and the other is a C6-30 alkyl group; A cycloaliphatic diurea which is a -30 alkyl group, or an aromatic diurea where R 4 and R 6 are a C6-10 aryl group which may be the same or different from each other is preferred.
  • the aliphatic diureas include aliphatic diureas in which both R 4 and R 6 are C8 alkyl groups, aliphatic diureas in which both R 4 and R 6 are C18 alkyl groups, and aliphatic diureas in which one of R 4 and R 6 is C8 alkyl groups. More preferred are aliphatic diureas in which one is an alkyl group and the other is a C18 alkyl group. Particularly preferred are aliphatic diureas in which one of R 4 and R 6 is a C8 alkyl group and the other is a C18 alkyl group.
  • aliphatic diureas in which the ratio of the number of moles of the C8 alkyl group to the total number of moles of the C8 alkyl group and the C18 alkyl group is 30 to 70 mol %.
  • an alicyclic aliphatic diurea in which one of R 4 and R 6 is a cyclohexyl group and the other is a C18 alkyl group is more preferable.
  • an alicycloaliphatic diurea in which the ratio of the number of moles of the cyclohexyl group to the total number of moles of the cyclohexyl group and the C18 alkyl group is 30 to 90 mol%.
  • an aromatic diurea an aromatic diurea in which both R 4 and R 6 are p-tolyl groups is particularly preferred.
  • the content of the thickener in the grease composition of the present invention is, for example, preferably 4 to 25% by mass, more preferably 5 to 20% by mass.
  • the grease has appropriate hardness and prevents leakage from lubricated parts, which is preferable.
  • the grease composition of the present invention can optionally contain any additives commonly used in grease compositions. Examples include antioxidants, rust preventives, corrosion inhibitors, oiliness agents, viscosity index improvers, and the like. Preferably, it contains an antioxidant and/or a rust inhibitor. However, it does not contain reactive additives (i.e., additives that react on lubricated surfaces to produce components that degrade the base oil, such as molybdenum disulfide, zinc dialkyldithiophosphate, and molybdenum dialkyldithiocarbamate). preferable.
  • reactive additives i.e., additives that react on lubricated surfaces to produce components that degrade the base oil, such as molybdenum disulfide, zinc dialkyldithiophosphate, and molybdenum dialkyldithiocarbamate.
  • antioxidants include amine-based, phenol-based, quinoline-based, and sulfur-based antioxidants, with amine-based and quinoline-based antioxidants being preferred.
  • rust preventives include zinc-based, carboxylic acid-based, carboxylate-based, succinic acid-based, amine-based, sulfonate-based, and naphthenic acid-based. Amine type and naphthenic acid type are preferred. Mixtures of these are more preferred.
  • corrosion inhibitors include thiadiazole, benzimidazole, and benzotriazole.
  • oily agents include fatty acids, fatty acid esters, and phosphoric acid esters.
  • the consistency of the grease composition of the present invention is adjusted depending on the intended use, but is preferably 235 to 370. By setting the consistency to 235 or more, a grease composition with excellent low-temperature properties can be obtained, and by setting the consistency to 370 or less, a grease composition with excellent adhesion to mechanical parts can be obtained.
  • the term "penetration" refers to 60 times worked penetration. Consistency is JIS K2220 7. It can be measured according to
  • the use of the grease composition of the present invention does not matter.
  • rolling bearings, ball screws, linear guide bearings, reducers, injection molding machines, linear guides, machine tools, various gears, cams, constant velocity joints, journal bearings (sliding bearings), pistons, screws, ropes, chains, etc. can be mentioned.
  • reduction gears, ball screws, and the like require severe levels of heat resistance and load resistance, and the grease composition of the present invention can satisfy such high demands.
  • the type of sealing material provided in the mechanical parts is not particularly limited, and examples thereof include NBR, EPDM, natural rubber, and the like.
  • Test grease composition in which the thickener is a diurea compound 1 mole of 4.4'-diphenylmethane diisocyanate was reacted with 2 moles of a predetermined amine in a base oil, and the mixture was cooled to obtain a base grease. Additives were added to the above base grease in the proportions shown in Table 1, additional base oil was added to give the amount of thickener in the proportions shown in Table 1, and the test grease was prepared by dispersing with a three-roll mill. A composition was prepared. The consistency of the test grease composition is 280.
  • Test grease composition in which the thickener is lithium soap Lithium 12-hydroxystearate was added and stirred in base oil, and then heated to 230°C. Thereafter, the mixture was cooled to 100° C. or lower while stirring to obtain a base grease. Additives were blended into the above base grease in the proportions shown in Tables 1 and 2, additional base oil was added so that the amount of thickener was in the proportions shown in Tables 1 and 2, and the mixture was processed using a three-roll mill. Test grease compositions were prepared by dispersing. The consistency of the test grease composition is 280. The mass % of each component in each test grease composition is as shown in Tables 1 and 2.
  • the kinematic viscosity of the base oil at 100°C is JIS K2220 23. Measured according to The pour point of the base oil was measured according to JIS K2269. The consistency of the grease composition is JIS K2220 7. Measured according to The grease composition obtained above was tested and evaluated by the method shown below.
  • first solid lubricant polytetrafluoroethylene, and the second solid lubricant, at least one selected from melamine cyanurate, tricalcium phosphate, and sodium sebacate, are used together as additives.
  • Samples Nos. 1 to 12 have better load resistance than Comparative Examples 1 to 5.
  • Examples 1 to 12 have better heat resistance than Comparative Examples 6 to 8.
  • the heat resistance of grease differs depending on the type of thickener, but the improvement in heat resistance in the examples was observed for both Li soap and urea-based thickener.
  • the first solid additive and the second solid additive prescribed in the present application together as additives, it is possible to eliminate the need for using a load-bearing additive in the reaction system and without selecting a thickener. , it is possible to improve the load carrying capacity and heat resistance of grease even under high temperatures or high surface pressures.

Abstract

The present invention pertains to a grease composition containing a base oil, a thickener, and additives. The base oil is at least one selected from the group consisting of polyoxyalkylenes, polyoxyalkylene ether derivatives, and mixtures thereof. The additives include polytetrafluoroethylene as a first solid lubricant, and at least one selected from the group consisting of melamine cyanurate, tricalcium phosphate, and sodium sebacate as a second solid lubricant. The content of the second solid lubricant is at least 0.5 mass% relative to the total mass of the composition.

Description

グリース組成物grease composition
 本件は、減速機やボールねじ等、耐荷重性が求められる機械部品に好適に使用できるグリース組成物に関する。 This case relates to a grease composition that can be suitably used for mechanical parts that require load-bearing properties, such as reduction gears and ball screws.
 近年、機械部品は、軽量化のため小型化、高出力化が求められている。そのため、このような機械部品中の潤滑部に使用されるグリースも、高速化、高面圧化、使用温度範囲の高温側への拡大等、従来よりも厳しい使用環境への対応が求められている。特に、高温・高面圧下における部品において使用されるグリースの長寿命化は、重要な技術課題のひとつとなっている。
 グリースの長寿命化は、機械部品の焼付きを抑制することにより達成することができる。これまでに、グリース中に、二硫化モリブデン、ジアルキルジチオリン酸亜鉛、ジアルキルジチオカルバミン酸モリブデン等の、いわゆる反応系の耐荷重添加剤や、固体潤滑剤を含ませることにより、グリースの焼き付き寿命を延ばすことができることが知られている(非特許文献1)。反応系の耐荷重添加剤は、金属表面において反応して保護膜を形成することにより役割を果たす。他方、固体潤滑剤は、金属表面に接着し、金属間の接触を妨げることにより役割を果たす。すなわち、固体潤滑剤は、非反応系の耐荷重添加剤ということもできる。
 ところで、機械部品に使用されるシール材としては、耐油性、耐摩耗性、耐熱性、加工性、低価格等の理由により、ニトリルゴム(NBR)が広く使用されている。しかし、冬季の低温や熱帯気候の熱害等によって、シール材が劣化してしまうことがある。シール材の劣化はまた、シール材に接触するグリースに含まれる基油が、シール材を膨潤させることによっても起こる。したがって、シール材を備えた機械部品を長期間使用すると、外部からの異物の浸入を許し、潤滑不良を誘発し、機械部品の寿命を低下させてしまうおそれがある。この問題への対策としては、シール材の選択と、グリースの基油の選択という2つの観点からのアプローチがなされてきた。すなわち、シール材として、NBRよりも耐熱性、耐寒性、耐候性、耐水性に優れるエチレンプロピレンゴム(EPDM)を使用すると、機械部品の寿命を延長できる。EPDMや天然ゴムが潤滑部もしくはその周辺部材のシール材として使用される機械部品には、ポリオキシアルキレンまたはポリオキシアルキレン誘導体をグリースの基油とすることにより、EPDMや天然ゴムの膨潤を抑制することができる(特許文献1)。
In recent years, mechanical parts have been required to be smaller in size and higher in output to reduce weight. Therefore, the grease used in the lubricating parts of such mechanical parts is required to be able to handle harsher operating environments than before, such as higher speeds, higher surface pressures, and an expanded operating temperature range to higher temperatures. There is. In particular, extending the lifespan of grease used in parts that are exposed to high temperatures and high surface pressures is an important technical issue.
Longer life of grease can be achieved by suppressing seizure of mechanical parts. Until now, efforts have been made to extend the seizing life of grease by incorporating so-called reactive load-bearing additives and solid lubricants such as molybdenum disulfide, zinc dialkyldithiophosphate, and molybdenum dialkyldithiocarbamate into grease. It is known that this can be done (Non-Patent Document 1). Reactive load-bearing additives perform their role by reacting on the metal surface to form a protective film. Solid lubricants, on the other hand, work by adhering to metal surfaces and preventing metal-to-metal contact. That is, the solid lubricant can also be called a non-reactive load-bearing additive.
By the way, nitrile rubber (NBR) is widely used as a sealing material for mechanical parts due to its oil resistance, abrasion resistance, heat resistance, workability, low cost, and other reasons. However, the sealing material may deteriorate due to low temperatures in winter or heat damage in tropical climates. Deterioration of the sealing material also occurs when the base oil contained in the grease that comes into contact with the sealing material causes the sealing material to swell. Therefore, if a mechanical component equipped with a sealing material is used for a long period of time, there is a risk that foreign matter may enter from the outside, leading to poor lubrication and shortening the life of the mechanical component. As a countermeasure to this problem, approaches have been taken from two viewpoints: selection of sealing material and selection of base oil for grease. That is, when ethylene propylene rubber (EPDM), which has better heat resistance, cold resistance, weather resistance, and water resistance than NBR, is used as a sealing material, the life of mechanical parts can be extended. For mechanical parts where EPDM or natural rubber is used as a sealant for lubricated parts or surrounding parts, use polyoxyalkylene or polyoxyalkylene derivatives as the base oil of the grease to suppress the swelling of EPDM or natural rubber. (Patent Document 1).
特許第2960561号Patent No. 2960561
 このような事情のもと、優れたゴムへの適合性を有することでシール部材にEPDMや天然ゴムが使用される機械部品にも適用できる基油として、ポリオキシアルキレンまたはポリオキシアルキレン誘導体を含有するグリース組成物について、高温または高面圧下でも機械部品の焼付きの発生を抑制することにより、機械部品の寿命を延長させることができるグリース組成物が求められている。
 ポリオキシアルキレン又はポリオキシアルキレン誘導体を基油とするグリースに、反応系の耐荷重添加剤を含ませることにより、EPDMや天然ゴムの膨潤と、機械部品の焼付きは抑制できる。しかし、このグリースを高温下で使用すると、前記反応系の耐荷重添加剤が金属表面において反応膜を形成する際に生成する酸成分により、ポリオキシアルキレン又はポリオキシアルキレン誘導体の分解が促進されてしまうという問題があった。
 また、反応系の耐荷重添加剤は、ポリアルファオレフィンなど極性をもたない基油中では、焼付き抑制効果を有効に発揮する。しかし、ポリオキシアルキレン又はポリオキシアルキレン誘導体の様に極性をもつ場合、基油中に分散して潤滑場に吸着しにくくなってしまい、焼付き抑制効果が得られにくいという問題もあった。
 反応系の耐荷重添加剤に代えて、ポリテトラフルオロエチレン(PTFE)やメラミンシアヌレートなどの固体潤滑剤、すなわち非反応系の耐荷重添加剤を使用すると、基油の分解は抑制できる。しかし、非反応系の耐荷重添加剤は、反応系の耐荷重添加剤と比較して耐荷重性が大きく劣るため、得られるグリースは汎用性に欠けるものであった。
 このような技術の流れにおいて、本発明が解決しようとする課題は、ポリオキシアルキレン又はポリオキシアルキレン誘導体を基油とするグリース組成物の耐荷重性を、高温または高面圧下でも、反応系の耐荷重添加剤を使用せずに向上させ、かつ基油の熱劣化を抑制することである。
Under these circumstances, polyoxyalkylene or polyoxyalkylene derivatives are used as base oils that have excellent compatibility with rubber and can be applied to mechanical parts where EPDM or natural rubber is used for sealing members. There is a need for a grease composition that can extend the life of mechanical parts by suppressing the occurrence of seizing of the mechanical parts even under high temperatures or high surface pressures.
By including a reactive load-bearing additive in a grease containing polyoxyalkylene or a polyoxyalkylene derivative as a base oil, swelling of EPDM or natural rubber and seizure of mechanical parts can be suppressed. However, when this grease is used at high temperatures, the acid component generated when the load-bearing additive in the reaction system forms a reaction film on the metal surface accelerates the decomposition of the polyoxyalkylene or polyoxyalkylene derivative. There was a problem with putting it away.
In addition, the reactive load-bearing additive effectively exhibits a seizure suppressing effect in non-polar base oils such as polyalphaolefins. However, when polyoxyalkylene or a polyoxyalkylene derivative has polarity, it is dispersed in the base oil and becomes difficult to adsorb to a lubricating field, resulting in a problem that it is difficult to obtain a seizure suppressing effect.
If a solid lubricant such as polytetrafluoroethylene (PTFE) or melamine cyanurate, that is, a non-reactive load-bearing additive is used instead of a reactive load-bearing additive, decomposition of the base oil can be suppressed. However, since non-reactive load-bearing additives have significantly inferior load-bearing properties than reactive load-bearing additives, the resulting grease lacks versatility.
In this technological trend, the problem to be solved by the present invention is to improve the load carrying capacity of a grease composition containing polyoxyalkylene or a polyoxyalkylene derivative as a base oil, even under high temperature or high surface pressure. The purpose is to improve the load capacity without using additives and to suppress thermal deterioration of the base oil.
 本発明者らは、上記耐荷重性の向上の課題を、非反応系の固体潤滑剤を併用することにより解決した。すなわち、本発明により、以下のグリース組成物を提供する。
1.基油、増ちょう剤、添加剤を含有するグリース組成物であって、
 基油が、ポリオキシアルキレン、ポリオキシアルキレンのエーテル誘導体及びこれらの混合物からなる群から選ばれる少なくとも1種であり、
 添加剤が、第1の固体潤滑剤としてポリテトラフルオロエチレン、および第2の固体潤滑剤として、メラミンシアヌレート、リン酸三カルシウム及びセバシン酸ナトリウムからなる群から選ばれる少なくとも1種を含み、第2の固体潤滑剤の含有量が、組成物の全質量を基準として0.5質量%以上である、前記グリース組成物。
2.第1の固体潤滑剤の含有量が、組成物の全質量を基準にして、0.5~20質量%である前記1項記載のグリース組成物。
3.第2の固体潤滑剤の含有量が、組成物の全質量を基準にして、0.5~10質量%である前記1又は2項記載のグリース組成物。
4.第2の固体潤滑剤がメラミンシアヌレートである前記1~3のいずれか1項記載のグリース組成物。
5.第1の固体潤滑剤10質量%に対して、第2の固体潤滑剤を3~5質量%となる割合で、第1及び第2の固体潤滑剤を含む、前記1~4のいずれか1項記載のグリース組成物。
6.前記1~5のいずれか1項記載のグリース組成物を適用した機械部品。
The present inventors solved the above-mentioned problem of improving load resistance by using a non-reactive solid lubricant. That is, the present invention provides the following grease composition.
1. A grease composition containing a base oil, a thickener, and an additive,
The base oil is at least one selected from the group consisting of polyoxyalkylene, ether derivatives of polyoxyalkylene, and mixtures thereof,
The additive contains polytetrafluoroethylene as the first solid lubricant, and at least one selected from the group consisting of melamine cyanurate, tricalcium phosphate, and sodium sebacate as the second solid lubricant; The above-mentioned grease composition, wherein the content of the solid lubricant of No. 2 is 0.5% by mass or more based on the total mass of the composition.
2. 1. The grease composition according to item 1, wherein the content of the first solid lubricant is 0.5 to 20% by mass based on the total mass of the composition.
3. 3. The grease composition according to item 1 or 2 above, wherein the content of the second solid lubricant is 0.5 to 10% by mass based on the total mass of the composition.
4. 4. The grease composition according to any one of 1 to 3 above, wherein the second solid lubricant is melamine cyanurate.
5. Any one of 1 to 4 above, comprising the first and second solid lubricants at a ratio of 3 to 5% by mass of the second solid lubricant to 10% by mass of the first solid lubricant. Grease composition as described in .
6. A mechanical part to which the grease composition according to any one of items 1 to 5 is applied.
 本発明により、高温または高面圧下でも、反応系の耐荷重添加剤を使用しなくても、ポリオキシアルキレン及び/又はポリオキシアルキレンのエーテル誘導体の分解を促進せずに、グリース組成物の耐荷重性及び耐熱性を向上させることができる。 The present invention enables grease compositions to withstand high temperatures or high surface pressures without using load-bearing additives in the reaction system and without accelerating the decomposition of polyoxyalkylene and/or ether derivatives of polyoxyalkylene. Load capacity and heat resistance can be improved.
<基油>
 本発明のグリース組成物に使用される基油は、ポリオキシアルキレン及び/又はポリオキシアルキレンのエーテル誘導体である。ポリオキシアルキレン及び/又はポリオキシアルキレンのエーテル誘導体は、シール材であるゴムに対する悪影響が低い。ポリオキシアルキレン及び/又はポリオキシアルキレンのエーテル誘導体は、下記式(1)で表される。
<Base oil>
The base oil used in the grease composition of the present invention is a polyoxyalkylene and/or an ether derivative of a polyoxyalkylene. Polyoxyalkylene and/or ether derivatives of polyoxyalkylene have low adverse effects on rubber, which is a sealing material. The polyoxyalkylene and/or the ether derivative of polyoxyalkylene is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ポリオキシアルキレンまたはそのエーテル誘導体とは、式(1)中のR1およびR3が、それぞれ独立して、水素またはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基等の炭素数1~6のアルキル基であり、R2は水素あるいは炭素数1~2のアルキル基であり、nが5~55の数を表わす化合物である。
 ポリオキシアルキレンは、エチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを開環重合させたジオールである。そのエーテル誘導体は、R1,R3のどちらか一方が炭素数1以上のアルキル基であるモノエーテルであるか、またはR1,R3共に炭素数1以上のアルキル基であるジエーテルである。
Polyoxyalkylene or its ether derivative means that R 1 and R 3 in formula (1) are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, or pentyl group. is an alkyl group having 1 to 6 carbon atoms such as hexyl group, R 2 is hydrogen or an alkyl group having 1 to 2 carbon atoms, and n is a compound having a number of 5 to 55.
Polyoxyalkylene is a diol obtained by ring-opening polymerization of alkylene oxide such as ethylene oxide and propylene oxide. The ether derivative is a monoether in which either R 1 or R 3 is an alkyl group having one or more carbon atoms, or a diether in which both R 1 and R 3 are an alkyl group having one or more carbon atoms.
 ポリオキシアルキレンジオールの具体例としては、ポリオキシエチレン、ポリオキシプロピレン、ポリ(オキシプロピレンオキシエチレン)、ポリ(オキシブチレンオキシエチレン)、ポリ(オキシブチレンオキシプロピレン)、ポリ(オキシペンチレンオキシエチレン)、ポリ(オキシペンチレンオキシプロピレン)があげられる。
 ポリオキシアルキレンのエーテル誘導体の具体例としては、ポリオキシプロピレンモノプロピルエーテル、ポリオキシプロピレンモノブチルエーテル、ポリオキシブチレンモノブチルエーテル、ポリオキシエチレンオキシプロピレンモノプロピルエーテル、ポリオキシエチレンオキシプロピレンモノブチルエーテル、ポリオキシエチレンオキシプロピレンモノペンチルエーテルがあげられる。
 尚、このうちポリオキシエチレン、ポリ(オキシプロピレンオキシエチレン)とそのエーテル誘導体は水溶性であるため、これらを基油としたグリースは耐水性に劣る。この為、本発明の基油として適切なのは、R2が炭素数1以上のアルキル基のポリオキシアルキレンまたはそのエーテル誘導体であり、好ましくはポリオキシプロピレンモノブチルエーテルであり、特に好ましくはnが10~25であるポリオキシプロピレンモノブチルエーテルであり、さらに特に好ましくはnが10~22であるポリオキシプロピレンモノブチルエーテルである。
 本発明の基油は、動植物などから生まれた生物資源を原料として製造される、所謂バイオマス油でもよい。
Specific examples of polyoxyalkylene diols include polyoxyethylene, polyoxypropylene, poly(oxypropyleneoxyethylene), poly(oxybutyleneoxyethylene), poly(oxybutyleneoxypropylene), and poly(oxypentyleneoxyethylene). , poly(oxypentylene oxypropylene).
Specific examples of ether derivatives of polyoxyalkylene include polyoxypropylene monopropyl ether, polyoxypropylene monobutyl ether, polyoxybutylene monobutyl ether, polyoxyethylene oxypropylene monopropyl ether, polyoxyethylene oxypropylene monobutyl ether, polyoxy Examples include ethylene oxypropylene monopentyl ether.
Note that among these, polyoxyethylene, poly(oxypropyleneoxyethylene), and their ether derivatives are water-soluble, so greases using these as base oils have poor water resistance. Therefore, suitable base oils for the present invention are polyoxyalkylene in which R 2 is an alkyl group having 1 or more carbon atoms or its ether derivative, preferably polyoxypropylene monobutyl ether, and particularly preferably n is 10 to 10. 25, more particularly preferably polyoxypropylene monobutyl ether where n is 10 to 22.
The base oil of the present invention may be a so-called biomass oil that is produced using biological resources derived from animals and plants as raw materials.
 本発明の基油は、100℃における動粘度が2~100mm2/sであるのが好ましい。これにより、低温性に優れる。100℃における動粘度は2~50mm2/sであるのがより好ましく、2~20mm2/sであるのがさらに好ましく、6~19mm2/sであるのが特に好ましい。
 本発明の基油は、流動点が-10℃以下であるのが好ましい。これにより、低温性に優れる。流動点は、-20℃以下であるのがより好ましく、-30℃以下であるのがさらに好ましく、-35℃以下であるのが特に好ましい。
 本発明の基油としては、100℃における動粘度が6~19mm2/sであり、流動点が-35℃以下である、式(1)中、nが10~22であるポリオキシプロピレンモノブチルエーテルが最も好ましい。
 本発明のグリース組成物における基油の含有量は、例えば、60~90質量%であるのが好ましく、60~80質量%であるのがより好ましい。
The base oil of the present invention preferably has a kinematic viscosity of 2 to 100 mm 2 /s at 100°C. This provides excellent low temperature properties. The kinematic viscosity at 100° C. is more preferably 2 to 50 mm 2 /s, even more preferably 2 to 20 mm 2 /s, and particularly preferably 6 to 19 mm 2 /s.
The base oil of the present invention preferably has a pour point of -10°C or lower. This provides excellent low temperature properties. The pour point is more preferably -20°C or lower, even more preferably -30°C or lower, particularly preferably -35°C or lower.
The base oil of the present invention is a polyoxypropylene monomer having a kinematic viscosity of 6 to 19 mm 2 /s at 100°C, a pour point of -35°C or lower, and in which n is 10 to 22 in formula (1). Butyl ether is most preferred.
The base oil content in the grease composition of the present invention is, for example, preferably 60 to 90% by mass, more preferably 60 to 80% by mass.
<固体潤滑剤>
 本発明における第1の固体潤滑剤は、ポリテトラフルオロエチレンである。
 第1の固体潤滑剤の含有量は、組成物の全質量を基準として、0.5質量%以上であるのが好ましい。これにより、耐荷重性に優れる。1質量%以上であるのがより好ましい。上限は、グリースの流入性の観点から、20質量%以下であるのが好ましく、15質量%以下であるのがより好ましい。
<Solid lubricant>
The first solid lubricant in the present invention is polytetrafluoroethylene.
The content of the first solid lubricant is preferably 0.5% by mass or more based on the total mass of the composition. This provides excellent load resistance. More preferably, it is 1% by mass or more. From the viewpoint of grease inflow, the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less.
 本発明における第2の固体潤滑剤は、メラミンシアヌレート、リン酸三カルシウム及びセバシン酸ナトリウムからなる群から選ばれる少なくとも1種である。このうち、耐摩耗の観点から、メラミンシアヌレートが好ましい。
 第2の固体潤滑剤は、併用による耐荷重性向上効果の観点から、第1の固体潤滑剤であるPTFEの粒径よりも大きいものが好ましい。
The second solid lubricant in the present invention is at least one selected from the group consisting of melamine cyanurate, tricalcium phosphate, and sodium sebacate. Among these, melamine cyanurate is preferred from the viewpoint of wear resistance.
The second solid lubricant is preferably larger in particle size than the first solid lubricant, PTFE, from the viewpoint of the effect of improving load resistance when used in combination.
 第2の固体潤滑剤の含有量は、組成物の全質量を基準として、0.5質量%以上である。これにより、耐荷重性に優れる。第1の固体潤滑剤の含有量と同じである必要は無い。1質量%以上であるのがより好ましい。上限は、グリースの流入性の観点から、10質量%以下であるのが好ましく、5質量%以下であるのがより好ましい。
 第2の固体潤滑剤の種類を問わず、PTFE10質量部に対して、3~5質量部の量の第2の固体潤滑剤を含ませると、グリース組成物の耐荷重性が特に優れる。したがって、耐荷重性の観点からは、PTFE10質量部に対して、PTFEよりも粒子径の大きいメラミンシアヌレートが3~5質量部となる割合で含むのがとりわけ好ましい。
The content of the second solid lubricant is 0.5% by mass or more based on the total mass of the composition. This provides excellent load resistance. The content does not need to be the same as that of the first solid lubricant. More preferably, it is 1% by mass or more. From the viewpoint of grease inflow, the upper limit is preferably 10% by mass or less, more preferably 5% by mass or less.
Regardless of the type of the second solid lubricant, when the second solid lubricant is included in an amount of 3 to 5 parts by mass based on 10 parts by mass of PTFE, the load bearing properties of the grease composition are particularly excellent. Therefore, from the viewpoint of load resistance, it is particularly preferable to contain 3 to 5 parts by mass of melamine cyanurate, which has a particle size larger than that of PTFE, per 10 parts by mass of PTFE.
 本発明のグリース組成物における第1の固体潤滑剤及び第2固体潤滑剤の総量は、1~20質量%であるのが好ましく、5~15質量%であるのがより好ましい。第1の固体潤滑剤及び第2の固体潤滑剤の総量がこのような範囲にあると、グリースの流入性による性能への影響が小さいので好ましい。 The total amount of the first solid lubricant and the second solid lubricant in the grease composition of the present invention is preferably 1 to 20% by mass, more preferably 5 to 15% by mass. It is preferable that the total amount of the first solid lubricant and the second solid lubricant be within such a range, since the influence of grease inflow properties on performance is small.
 本発明の第1及び第2の固体潤滑剤は、極性をもたないことから、ポリオキシアルキレン及び/又はポリオキシアルキレンのエーテル誘導体に含ませても、基油の影響を受けることなく耐荷重性を向上させることができる。
 如何なる理論にも拘束されるものではないが、第2の固体潤滑剤よりも粒子径の小さいポリテトラフルオロエチレンが潤滑場に介在することで、耐荷重性に優れる一方、第2の固体潤滑剤を安定して潤滑場へ供給することが可能となり、耐荷重性を著しく向上させていると考えられる。
Since the first and second solid lubricants of the present invention do not have polarity, even if they are included in polyoxyalkylene and/or ether derivatives of polyoxyalkylene, they can withstand load without being affected by the base oil. can improve sex.
Without being bound by any theory, the presence of polytetrafluoroethylene, which has a smaller particle size than that of the second solid lubricant, in the lubrication field provides excellent load bearing capacity, while the second solid lubricant This makes it possible to stably supply the lubricant to the lubrication field, which is thought to significantly improve load carrying capacity.
<増ちょう剤>
 本発明のグリースの増ちょう剤としては、特に制限無く用いることができる。具体的には、Li石けんやLiコンプレックス石けんに代表される石けん系増ちょう剤、ジウレアに代表されるウレア系増ちょう剤、有機化ベントナイトやシリカに代表される無機系増ちょう剤、ナトリウムテレフタラートに代表される有機系増ちょう剤などが挙げられる。
 このうち、Li石けん及びジウレア化合物が好ましい。これらは、欠点が少なく、かつ高価でないため、実用性のある増ちょう剤であるからである。
<Thickener>
The thickener for the grease of the present invention can be used without particular limitations. Specifically, soap-based thickeners such as Li soap and Li-complex soap, urea-based thickeners such as diurea, inorganic thickeners such as organic bentonite and silica, and sodium terephthalate are used. Examples include organic thickeners typified by .
Among these, Li soap and diurea compounds are preferred. This is because these are practical thickeners because they have few drawbacks and are not expensive.
 Li石けんとしては、12-ヒドロキシステアリン酸リチウム(Li-(12OH)St)又はステアリン酸リチウム(Li-St)が好ましい。これらは潤滑性に優れる。
 Liコンプレックス石けんは、ステアリン酸や12-ヒドロキシステアリン酸等の脂肪族カルボン酸のリチウム塩と二塩基酸リチウム塩とのコンプレックス等が挙げられる。二塩基酸としては、コハク酸、マロン酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸等が挙げられる。アゼライン酸、セバシン酸が好ましい。特に、アゼライン酸と水酸化リチウムとの塩と、12-ヒドロキシステアリン酸と水酸化リチウムとの塩との混合物であるLiコンプレックス石けんが好ましい。
As the Li soap, lithium 12-hydroxystearate (Li-(12OH)St) or lithium stearate (Li-St) is preferable. These have excellent lubricity.
Li complex soaps include complexes of lithium salts of aliphatic carboxylic acids such as stearic acid and 12-hydroxystearic acid and lithium salts of dibasic acids. Examples of dibasic acids include succinic acid, malonic acid, adipic acid, pimelic acid, azelaic acid, and sebacic acid. Azelaic acid and sebacic acid are preferred. Particularly preferred is a Li complex soap which is a mixture of a salt of azelaic acid and lithium hydroxide and a salt of 12-hydroxystearic acid and lithium hydroxide.
 ジウレア化合物は、一般的に、下記式(2)で表される。
      R4-NHCONH-R5-NHCONH-R6  (2)
(式中、R4及びR6は、互いに同一でも異なっていてもよく、C6-30アルキル基、C5-8シクロアルキル基、又はC6-10アリール基を示し、R5は、C6-15の2価の芳香族炭化水素基を示す。)
 ジウレア化合物としては、R4及びR6が互いに同一でも異なっていてもよいC6-30アルキル基である脂肪族ジウレア、R4及びR6の一方がC5-8シクロアルキル基であり、他方がC6-30アルキル基である脂環式脂肪族ジウレア、又はR4及びR6が互いに同一でも異なっていてもよいC6-10アリール基である芳香族ジウレアが好ましい。
A diurea compound is generally represented by the following formula (2).
R 4 -NHCONH-R 5 -NHCONH-R 6 (2)
(In the formula, R 4 and R 6 may be the same or different and represent a C6-30 alkyl group, a C5-8 cycloalkyl group, or a C6-10 aryl group, and R 5 is a C6-15 (Indicates a divalent aromatic hydrocarbon group.)
Examples of diurea compounds include aliphatic diureas in which R 4 and R 6 are C6-30 alkyl groups which may be the same or different; one of R 4 and R 6 is a C5-8 cycloalkyl group, and the other is a C6-30 alkyl group; A cycloaliphatic diurea which is a -30 alkyl group, or an aromatic diurea where R 4 and R 6 are a C6-10 aryl group which may be the same or different from each other is preferred.
 脂肪族ジウレアとしては、R4及びR6の両方がC8アルキル基である脂肪族ジウレア、R4及びR6の両方がC18アルキル基である脂肪族ジウレア、及びR4及びR6の一方がC8アルキル基であり、他方がC18アルキル基である脂肪族ジウレアがより好ましい。R4及びR6の一方がC8アルキル基であり、他方がC18アルキル基である脂肪族ジウレアが特に好ましい。C8アルキル基とC18アルキル基の総モル数に対するC8アルキル基のモル数の割合が、30~70モル%である脂肪族ジウレアがさらに特に好ましい。
 脂環式脂肪族ジウレアとしては、R4及びR6の一方がシクロヘキシル基であり、他方がC18アルキル基である脂環式脂肪族ジウレアがより好ましい。シクロヘキシル基とC18アルキル基の総モル数に対するシクロヘキシル基のモル数の割合が、30~90モル%であるである脂環式脂肪族ジウレアが特に好ましい。
 芳香族ジウレアとしては、R4及びR6がいずれもp-トルイル基である芳香族ジウレアが特に好ましい。
The aliphatic diureas include aliphatic diureas in which both R 4 and R 6 are C8 alkyl groups, aliphatic diureas in which both R 4 and R 6 are C18 alkyl groups, and aliphatic diureas in which one of R 4 and R 6 is C8 alkyl groups. More preferred are aliphatic diureas in which one is an alkyl group and the other is a C18 alkyl group. Particularly preferred are aliphatic diureas in which one of R 4 and R 6 is a C8 alkyl group and the other is a C18 alkyl group. More particularly preferred are aliphatic diureas in which the ratio of the number of moles of the C8 alkyl group to the total number of moles of the C8 alkyl group and the C18 alkyl group is 30 to 70 mol %.
As the alicyclic aliphatic diurea, an alicyclic aliphatic diurea in which one of R 4 and R 6 is a cyclohexyl group and the other is a C18 alkyl group is more preferable. Particularly preferred is an alicycloaliphatic diurea in which the ratio of the number of moles of the cyclohexyl group to the total number of moles of the cyclohexyl group and the C18 alkyl group is 30 to 90 mol%.
As the aromatic diurea, an aromatic diurea in which both R 4 and R 6 are p-tolyl groups is particularly preferred.
 本発明のグリース組成物における増ちょう剤の含有量は、例えば、4~25質量%であるのが好ましく、5~20質量%であるのがより好ましい。増ちょう剤の含有量がこのような範囲にあると、グリースが適度な硬さを有し、潤滑部からの漏洩を防止するので好ましい。 The content of the thickener in the grease composition of the present invention is, for example, preferably 4 to 25% by mass, more preferably 5 to 20% by mass. When the content of the thickener is within this range, the grease has appropriate hardness and prevents leakage from lubricated parts, which is preferable.
<その他の添加剤>
 本発明のグリース組成物には、一般にグリース組成物に使用される任意の添加剤を必要に応じて含ませることができる。例えば、酸化防止剤、防錆剤、腐食防止剤、油性剤、粘度指数向上剤などが挙げられる。酸化防止剤及び/又は防錆剤を含むのが好ましい。しかし、反応系の添加剤(すなわち、潤滑表面で反応して、基油を分解する成分を生成する添加剤、例えば、二硫化モリブデン、ジアルキルジチオリン酸亜鉛、ジアルキルジチオカルバミン酸モリブデン)を含まないのが好ましい。
 酸化防止剤としては、アミン系、フェノール系、キノリン系、硫黄系等が挙げられるが、アミン系、キノリン系酸化防止剤が好ましい。
 防錆剤としては、亜鉛系、カルボン酸系、カルボン酸塩系、コハク酸系、アミン系、スルホン酸塩系、ナフテン酸系が挙げられる。アミン系、ナフテン酸系が好ましい。これらの混合物がさらに好ましい。
 腐食防止剤としては、チアジアゾール系、ベンゾイミダゾール系、ベンゾトリアゾール系が挙げられる。
 油性剤としては、脂肪酸、脂肪酸エステル、リン酸エステルが挙げられる。
 本発明のグリース組成物がその他の添加剤を含む場合、その含有量は、グリース組成物の全量を基準として、通常0.5~10質量%、好ましくは0.5~5質量%である。
<Other additives>
The grease composition of the present invention can optionally contain any additives commonly used in grease compositions. Examples include antioxidants, rust preventives, corrosion inhibitors, oiliness agents, viscosity index improvers, and the like. Preferably, it contains an antioxidant and/or a rust inhibitor. However, it does not contain reactive additives (i.e., additives that react on lubricated surfaces to produce components that degrade the base oil, such as molybdenum disulfide, zinc dialkyldithiophosphate, and molybdenum dialkyldithiocarbamate). preferable.
Examples of antioxidants include amine-based, phenol-based, quinoline-based, and sulfur-based antioxidants, with amine-based and quinoline-based antioxidants being preferred.
Examples of rust preventives include zinc-based, carboxylic acid-based, carboxylate-based, succinic acid-based, amine-based, sulfonate-based, and naphthenic acid-based. Amine type and naphthenic acid type are preferred. Mixtures of these are more preferred.
Examples of corrosion inhibitors include thiadiazole, benzimidazole, and benzotriazole.
Examples of oily agents include fatty acids, fatty acid esters, and phosphoric acid esters.
When the grease composition of the present invention contains other additives, the content thereof is usually 0.5 to 10% by mass, preferably 0.5 to 5% by mass, based on the total amount of the grease composition.
〔ちょう度〕
 本発明のグリース組成物のちょう度は、使用目的に合わせて調整されるが、好ましくは235~370である。ちょう度を235以上に設定することにより、低温性に優れたグリース組成物を得ることが出来、370以下にすることにより、機械部品への付着性に優れたグリース組成物を得ることが出来る。なお、本明細書において、用語「ちょう度」は、60回混和ちょう度を指す。ちょう度は、JIS K2220 7.に従って測定することができる。
[Consistency]
The consistency of the grease composition of the present invention is adjusted depending on the intended use, but is preferably 235 to 370. By setting the consistency to 235 or more, a grease composition with excellent low-temperature properties can be obtained, and by setting the consistency to 370 or less, a grease composition with excellent adhesion to mechanical parts can be obtained. In addition, in this specification, the term "penetration" refers to 60 times worked penetration. Consistency is JIS K2220 7. It can be measured according to
 本発明のグリース組成物の用途、すなわちグリース組成物が塗布される機械部品の種類は問わない。例えば、転がり軸受、ボールねじ、直動案内軸受、減速機、射出成型機、リニアガイド、工作機械、各種ギア、カム、等速ジョイント、ジャーナル軸受(滑り軸受)、ピストン、ねじ、ロープ、チェーンなどが挙げられる。なかでも、減速機やボールねじ等は、求められる耐熱性及び耐荷重性のレベルが厳しいが、本発明のグリース組成物は、そのような高い要求も満足し得る。
 機械部品に備えられるシール材の種類は特に限定されず、例えば、NBR,EPDM,天然ゴム等があげられる。
The use of the grease composition of the present invention, that is, the type of mechanical parts to which the grease composition is applied, does not matter. For example, rolling bearings, ball screws, linear guide bearings, reducers, injection molding machines, linear guides, machine tools, various gears, cams, constant velocity joints, journal bearings (sliding bearings), pistons, screws, ropes, chains, etc. can be mentioned. Among these, reduction gears, ball screws, and the like require severe levels of heat resistance and load resistance, and the grease composition of the present invention can satisfy such high demands.
The type of sealing material provided in the mechanical parts is not particularly limited, and examples thereof include NBR, EPDM, natural rubber, and the like.
 実施例及び比較例のグリース組成物を、以下の成分を用いて調製した。
<基油>
・PPG:ポリオキシプロピレンモノブチルエーテル(製品名「ユニルーブMB-7」、日油株式会社製、プロピレンオキシド付加モル数12、平均分子量700、40℃における動粘度:32.8mm2/s、100℃における動粘度:6.7mm2/s、流動点:-47.5℃)
<増ちょう剤>
・リチウム石けん:12-ヒドロキシステアリン酸リチウム
・脂肪族ジウレア:ジフェニルメタンジイソシアネートと、オクチルアミン及びステアリルアミンとの反応物(オクチルアミンとステアリルアミンとのモル比は5:5)
・脂環式脂肪族ジウレア:ジフェニルメタンジイソシアネートと、シクロヘキシルアミン及びステアリルアミンとの反応物(シクロヘキセンとステアリルアミンとのモル比は7:1)
・芳香族ジウレア:ジフェニルメタンジイソシアネートとp-トルイジンとの反応物
<第1及び第2の固体潤滑剤>
・PTFE:ポリテトラフルオロエチレン(固体)
・メラミンシアヌレート(固体)
・リン酸三カルシウム(固体)
・セバシン酸ナトリウム(固体)
・MoDTC:ジチオカルバミン酸モリブデン(液体)
・MoS2:二硫化モリブデン(固体)
・ZnDTP:ジチオリン酸亜鉛(液体)
 なお、MoDTC、MoS2及びZnDTPは、比較用の、反応系の耐荷重添加剤である。
<その他の添加剤>
・酸化防止剤:2,2,4-トリメチル-1,2-ジヒドロキノリン重合体
・防錆剤
Grease compositions of Examples and Comparative Examples were prepared using the following ingredients.
<Base oil>
・PPG: Polyoxypropylene monobutyl ether (product name "Unilube MB-7", manufactured by NOF Corporation, number of moles of propylene oxide added 12, average molecular weight 700, kinematic viscosity at 40°C: 32.8 mm 2 /s, 100°C kinematic viscosity: 6.7 mm 2 /s, pour point: -47.5°C)
<Thickener>
・Lithium soap: Lithium 12-hydroxystearate ・Aliphatic diurea: Reaction product of diphenylmethane diisocyanate and octylamine and stearylamine (molar ratio of octylamine and stearylamine is 5:5)
・Alicycloaliphatic diurea: reaction product of diphenylmethane diisocyanate, cyclohexylamine and stearylamine (molar ratio of cyclohexene and stearylamine is 7:1)
・Aromatic diurea: reaction product of diphenylmethane diisocyanate and p-toluidine <first and second solid lubricants>
・PTFE: Polytetrafluoroethylene (solid)
・Melamine cyanurate (solid)
・Tricalcium phosphate (solid)
・Sodium sebacate (solid)
・MoDTC: Molybdenum dithiocarbamate (liquid)
・MoS 2 : Molybdenum disulfide (solid)
・ZnDTP: Zinc dithiophosphate (liquid)
Note that MoDTC, MoS 2 and ZnDTP are reactive load-bearing additives for comparison.
<Other additives>
・Antioxidant: 2,2,4-trimethyl-1,2-dihydroquinoline polymer ・Rust inhibitor
<試験グリース>
調製例1 増ちょう剤がジウレア化合物である試験グリース組成物
 基油中で、4.4'-ジフェニルメタンジイソシアネート1モルに対し、所定のアミン2モルの比率で反応させ、冷却してベースグリースとした。
 上記ベースグリースに、添加剤を、表1に示す割合で配合し、表1に示す割合の増ちょう剤量になるように追加の基油を添加し、3本ロールミルで分散することにより試験グリース組成物を調製した。試験グリース組成物のちょう度は280である。
<Test grease>
Preparation Example 1 Test grease composition in which the thickener is a diurea compound 1 mole of 4.4'-diphenylmethane diisocyanate was reacted with 2 moles of a predetermined amine in a base oil, and the mixture was cooled to obtain a base grease.
Additives were added to the above base grease in the proportions shown in Table 1, additional base oil was added to give the amount of thickener in the proportions shown in Table 1, and the test grease was prepared by dispersing with a three-roll mill. A composition was prepared. The consistency of the test grease composition is 280.
調製例2 増ちょう剤がリチウム石けんである試験グリース組成物
 基油中で、12-ヒドロキシステアリン酸リチウムを添加攪拌し、その後230℃まで加熱した。その後、攪拌しながら100℃以下まで冷却し、ベースグリースとした。
 上記ベースグリースに、添加剤を、表1及び表2に示す割合で配合し、表1及び表2に示す割合の増ちょう剤量になるように追加の基油を添加し、3本ロールミルで分散することにより試験グリース組成物を調製した。試験グリース組成物のちょう度は280である。
 各試験グリース組成物中の各成分の質量%は表1及び表2に示したとおりである。
 なお、基油の100℃における動粘度は、JIS K2220 23.に従って測定した。基油の流動点は、JIS K2269に従って測定した。グリース組成物のちょう度は、JIS K2220 7.に従って測定した。
 上で得られたグリース組成物を、以下に示す方法で試験し、評価した。
Preparation Example 2 Test grease composition in which the thickener is lithium soap Lithium 12-hydroxystearate was added and stirred in base oil, and then heated to 230°C. Thereafter, the mixture was cooled to 100° C. or lower while stirring to obtain a base grease.
Additives were blended into the above base grease in the proportions shown in Tables 1 and 2, additional base oil was added so that the amount of thickener was in the proportions shown in Tables 1 and 2, and the mixture was processed using a three-roll mill. Test grease compositions were prepared by dispersing. The consistency of the test grease composition is 280.
The mass % of each component in each test grease composition is as shown in Tables 1 and 2.
Note that the kinematic viscosity of the base oil at 100°C is JIS K2220 23. Measured according to The pour point of the base oil was measured according to JIS K2269. The consistency of the grease composition is JIS K2220 7. Measured according to
The grease composition obtained above was tested and evaluated by the method shown below.
<試験方法>
・高温薄膜試験による耐熱性の評価
 下記鋼板にグリースを塗布し、規定温度の恒温槽内に規定時間静置後、ゲル浸透クロマトグラフィー分析を実施し、基油の分解の発生有無を確認する。
[試験条件]
  鋼板  :SPCC-SD 80mm×60mm×1mm
  温度  :120℃
  時間  :1152h
  塗布厚 :2mm
  GPC測定溶媒 :クロロホルム
  GPC検出器 :RI検出器
[評価基準]
  基油の分解なし・・・〇(合格)
  基油の分解あり・・・×(不合格)
<Test method>
・Evaluation of heat resistance by high-temperature thin film test Apply grease to the following steel plate, leave it in a constant temperature bath at a specified temperature for a specified period of time, and then perform gel permeation chromatography analysis to confirm whether or not base oil decomposition occurs.
[Test condition]
Steel plate: SPCC-SD 80mm x 60mm x 1mm
Temperature: 120℃
Time: 1152h
Coating thickness: 2mm
GPC measurement solvent: Chloroform GPC detector: RI detector [Evaluation criteria]
No decomposition of base oil...〇 (passed)
Base oil decomposed...× (fail)
・高速四球式耐荷重性能試験による耐摩耗性及び耐荷重性の評価
 ASTM D 2596に従って実施し、L.W.I.(Load Wear Index:荷重摩耗指数)及びW.P.(Weld Point;溶着荷重)を求めた。
[評価基準]
  L.W.I.551以上・・・◎(合格)
  L.W.I.451~550・・・○(合格)
  L.W.I.351~450・・・△(不合格)
  L.W.I.350以下・・・×(不合格)
[評価基準]
  W.P. 3923N以上・・・◎(合格)
  W.P. 3089N・・・○(合格)
  W.P. 1961N~2451N・・・△(不合格)
  W.P. 1569N以下・・・×(不合格)
 結果を表1及び表2に示す。
・Evaluation of wear resistance and load resistance by high-speed four-ball load-bearing performance test Conducted in accordance with ASTM D 2596, L. W. I. (Load Wear Index) and W. P. (Weld Point; welding load) was determined.
[Evaluation criteria]
L. W. I. 551 or above...◎ (pass)
L. W. I. 451-550...○ (pass)
L. W. I. 351-450...△ (fail)
L. W. I. 350 or less...× (fail)
[Evaluation criteria]
W. P. 3923N or more...◎ (pass)
W. P. 3089N...○ (passed)
W. P. 1961N~2451N...△ (fail)
W. P. 1569N or less...× (fail)
The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 添加剤として、第1の固体潤滑剤であるポリテトラフルオロエチレンと、第2の固体潤滑剤であるメラミンシアヌレート、リン酸三カルシウム、セバシン酸ナトリウムから選ばれる少なくとも1種とを併用した実施例1~12は、比較例1~5に比べ、耐荷重性に優れる。実施例1~12は、比較例6~8に比べ、耐熱性に優れる。一般的に、増ちょう剤の種類によりグリースの耐熱性は異なるが、実施例における耐熱性の改善は、Li石けん、ウレア系増ちょう剤の両者ともに認められる。したがって、添加剤として、本願所定の第1の固体添加剤と第2の固体添加剤とを併用することにより、反応系の耐荷重添加剤を使用しなくても、増ちょう剤を選ばずに、高温又は高面圧下でも、グリースの耐荷重性及び耐熱性を向上させることが可能である。 An example in which the first solid lubricant, polytetrafluoroethylene, and the second solid lubricant, at least one selected from melamine cyanurate, tricalcium phosphate, and sodium sebacate, are used together as additives. Samples Nos. 1 to 12 have better load resistance than Comparative Examples 1 to 5. Examples 1 to 12 have better heat resistance than Comparative Examples 6 to 8. Generally, the heat resistance of grease differs depending on the type of thickener, but the improvement in heat resistance in the examples was observed for both Li soap and urea-based thickener. Therefore, by using the first solid additive and the second solid additive prescribed in the present application together as additives, it is possible to eliminate the need for using a load-bearing additive in the reaction system and without selecting a thickener. , it is possible to improve the load carrying capacity and heat resistance of grease even under high temperatures or high surface pressures.

Claims (6)

  1.  基油、増ちょう剤、添加剤を含有するグリース組成物であって、
     基油が、ポリオキシアルキレン、ポリオキシアルキレンのエーテル誘導体及びこれらの混合物からなる群から選ばれる少なくとも1種であり、
     添加剤が、第1の固体潤滑剤としてポリテトラフルオロエチレン、および第2の固体潤滑剤として、メラミンシアヌレート、リン酸三カルシウム及びセバシン酸ナトリウムからなる群から選ばれる少なくとも1種を含み、第2の固体潤滑剤の含有量が、組成物の全質量を基準として0.5質量%以上である、前記グリース組成物。
    A grease composition containing a base oil, a thickener, and an additive,
    The base oil is at least one selected from the group consisting of polyoxyalkylene, ether derivatives of polyoxyalkylene, and mixtures thereof,
    The additive contains polytetrafluoroethylene as the first solid lubricant, and at least one selected from the group consisting of melamine cyanurate, tricalcium phosphate, and sodium sebacate as the second solid lubricant; The above-mentioned grease composition, wherein the content of the solid lubricant of No. 2 is 0.5% by mass or more based on the total mass of the composition.
  2.  第1の固体潤滑剤の含有量が、組成物の全質量を基準にして、0.5~20質量%である請求項1記載のグリース組成物。 The grease composition according to claim 1, wherein the content of the first solid lubricant is 0.5 to 20% by mass based on the total mass of the composition.
  3.  第2の固体潤滑剤の含有量が、組成物の全質量を基準にして、0.5~10質量%である請求項1又は2記載のグリース組成物。 The grease composition according to claim 1 or 2, wherein the content of the second solid lubricant is 0.5 to 10% by mass based on the total mass of the composition.
  4.  第2の固体潤滑剤がメラミンシアヌレートである請求項1~3のいずれか1項記載のグリース組成物。 The grease composition according to any one of claims 1 to 3, wherein the second solid lubricant is melamine cyanurate.
  5.  第1の固体潤滑剤10質量%に対して、第2の固体潤滑剤を3~5質量%となる割合で、第1及び第2の固体潤滑剤を含む、請求項1~4のいずれか1項記載のグリース組成物。 Any one of claims 1 to 4, wherein the first and second solid lubricants are contained in a ratio of 3 to 5% by mass of the second solid lubricant to 10% by mass of the first solid lubricant. The grease composition according to item 1.
  6.  請求項1~5のいずれか1項記載のグリース組成物を適用した機械部品。 A mechanical component to which the grease composition according to any one of claims 1 to 5 is applied.
PCT/JP2023/012227 2022-03-25 2023-03-27 Grease composition WO2023182532A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022049291 2022-03-25
JP2022-049291 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182532A1 true WO2023182532A1 (en) 2023-09-28

Family

ID=88101177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012227 WO2023182532A1 (en) 2022-03-25 2023-03-27 Grease composition

Country Status (1)

Country Link
WO (1) WO2023182532A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266995A (en) * 1991-02-20 1992-09-22 Kyodo Yushi Kk Grease composition for speed reducer
JPH11246886A (en) * 1998-01-05 1999-09-14 Nippon Seiko Kk Rolling device
JP2002180076A (en) * 2000-10-06 2002-06-26 Nippon Mitsubishi Oil Corp Grease composition
WO2006090779A1 (en) * 2005-02-23 2006-08-31 Kyodo Yushi Co., Ltd. Grease composition and bearing
WO2008004613A1 (en) * 2006-07-05 2008-01-10 Kyodo Yushi Co., Ltd. Grease composition and bearing
JP2008031249A (en) * 2006-07-27 2008-02-14 Cosmo Sekiyu Lubricants Kk Grease composition for resin
JP2009013350A (en) * 2007-07-06 2009-01-22 Nok Kluber Kk Grease composition
JP2009013351A (en) * 2007-07-06 2009-01-22 Nok Kluber Kk Grease composition
JP2009227958A (en) * 2007-08-28 2009-10-08 Showa Shell Sekiyu Kk Lubricating composition
JP2010185043A (en) * 2009-02-13 2010-08-26 Kyodo Yushi Co Ltd Grease composition for resin lubrication
WO2017094602A1 (en) * 2015-12-04 2017-06-08 Nokクリューバー株式会社 Lubricant composition
WO2017131059A1 (en) * 2016-01-27 2017-08-03 株式会社ニッペコ Foreign substance removing lubricating composition, member coated with foreign substance removing lubricating composition, and use of foreign substance removing lubricating composition
WO2017146257A1 (en) * 2016-02-26 2017-08-31 協同油脂株式会社 Grease composition for ball joint
WO2020026915A1 (en) * 2018-07-31 2020-02-06 株式会社ハーベス Grease composition, multiple base oil grease composition, lubricant composition, and polypropylene resin member

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04266995A (en) * 1991-02-20 1992-09-22 Kyodo Yushi Kk Grease composition for speed reducer
JPH11246886A (en) * 1998-01-05 1999-09-14 Nippon Seiko Kk Rolling device
JP2002180076A (en) * 2000-10-06 2002-06-26 Nippon Mitsubishi Oil Corp Grease composition
WO2006090779A1 (en) * 2005-02-23 2006-08-31 Kyodo Yushi Co., Ltd. Grease composition and bearing
WO2008004613A1 (en) * 2006-07-05 2008-01-10 Kyodo Yushi Co., Ltd. Grease composition and bearing
JP2008031249A (en) * 2006-07-27 2008-02-14 Cosmo Sekiyu Lubricants Kk Grease composition for resin
JP2009013350A (en) * 2007-07-06 2009-01-22 Nok Kluber Kk Grease composition
JP2009013351A (en) * 2007-07-06 2009-01-22 Nok Kluber Kk Grease composition
JP2009227958A (en) * 2007-08-28 2009-10-08 Showa Shell Sekiyu Kk Lubricating composition
JP2010185043A (en) * 2009-02-13 2010-08-26 Kyodo Yushi Co Ltd Grease composition for resin lubrication
WO2017094602A1 (en) * 2015-12-04 2017-06-08 Nokクリューバー株式会社 Lubricant composition
WO2017131059A1 (en) * 2016-01-27 2017-08-03 株式会社ニッペコ Foreign substance removing lubricating composition, member coated with foreign substance removing lubricating composition, and use of foreign substance removing lubricating composition
WO2017146257A1 (en) * 2016-02-26 2017-08-31 協同油脂株式会社 Grease composition for ball joint
WO2020026915A1 (en) * 2018-07-31 2020-02-06 株式会社ハーベス Grease composition, multiple base oil grease composition, lubricant composition, and polypropylene resin member

Similar Documents

Publication Publication Date Title
EP2540813B1 (en) Grease composition for hub unit bearing equipped with angular contact ball bearing, and hub unit bearing
EP3187572B1 (en) Use of grease composition
EP2794828B1 (en) Grease composition
EP1878785B1 (en) Grease composition and bearing
EP1930400B1 (en) Lubricant composition
EP2785821B1 (en) Grease composition
EP2687584B1 (en) Grease composition
JP5707589B2 (en) Lubricant composition and lubricating liquid composition
KR20060019596A (en) Grease composition
EP2489721A1 (en) Grease composition for bearing of wind power generator
EP2913385A1 (en) Grease composition
JP2011037975A (en) Grease composition and machine part
US20130310292A1 (en) Grease composition
EP2634239B1 (en) Lubricating grease composition
EP2631284B1 (en) Grease composition
WO2009027428A2 (en) Lubricating composition comprising fluorine oil and tricalcium phosphate
JP7397629B2 (en) grease composition
JP2960561B2 (en) Grease composition for resin speed reducer
RU2720004C1 (en) Protective grease
WO2023182532A1 (en) Grease composition
JP6857985B2 (en) Lithium composite soap-based grease composition
EP3178910B1 (en) Grease composition
WO2023182533A1 (en) Grease composition
EP3587541B1 (en) Lubricant composition for a speed reducer, and speed reducer
JP2006316082A (en) Grease composition and grease-sealed rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775125

Country of ref document: EP

Kind code of ref document: A1