WO2023182376A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2023182376A1
WO2023182376A1 PCT/JP2023/011297 JP2023011297W WO2023182376A1 WO 2023182376 A1 WO2023182376 A1 WO 2023182376A1 JP 2023011297 W JP2023011297 W JP 2023011297W WO 2023182376 A1 WO2023182376 A1 WO 2023182376A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
insulating film
floating gate
silicon layer
semiconductor device
Prior art date
Application number
PCT/JP2023/011297
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 山本
Original Assignee
ラピスセミコンダクタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ラピスセミコンダクタ株式会社 filed Critical ラピスセミコンダクタ株式会社
Publication of WO2023182376A1 publication Critical patent/WO2023182376A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND

Definitions

  • the present disclosure relates to a semiconductor device using silicon (Si), and particularly to a semiconductor device having a PPS (Poly-Si/Insulator/Poly-Si/Insulator/Si-substrate) element structure.
  • Si silicon
  • PPS Poly-Si/Insulator/Poly-Si/Insulator/Si-substrate
  • a PPS element structure in which a polycrystalline silicon layer and an insulating layer are laminated has the effect of suppressing the leakage of charge from the element to the substrate by suppressing the generation of stray capacitance within the element.
  • nonvolatile storage devices such as flash memory.
  • JP 2019-75414 A discloses a method that includes a polycrystalline silicon layer for a control gate and a polycrystalline silicon layer for forming a control gate of a peripheral circuit, and creates a PPS capacitor element by using these polycrystalline silicon layers.
  • a typical structure and manufacturing method of a possible memory cell for a flash memory having a floating gate with a protrusion at one end and a control gate are described.
  • JP 2016-51822 A describes a planar structure and a cross-sectional structure of a PPS capacitor that uses a gate electrode, a memory gate electrode, and silicon of a substrate as electrodes, which are required in the manufacture of nonvolatile memory.
  • the active contact is connected to the N-well over a long distance via the element isolation region, resulting in high resistance and making it difficult to set the potential of the active contact. There was a risk that it would become unstable.
  • the capacitive element disclosed in Japanese Patent Application Laid-open No. 2016-51822 is used in a booster circuit, etc. to generate the high voltage necessary for the operation of flash memory. Since it is assumed that the semiconductor device is formed outside the memory cell area, the area of the entire semiconductor device becomes large.
  • the present disclosure provides a semiconductor device in which a capacitive element used in a booster circuit or the like is arranged adjacent to a cell array of a memory element by using a part of the structure of a flash memory cell for a PPS capacitive element.
  • a first aspect of the present disclosure is a semiconductor device, which includes: a first silicon layer provided with a first contact to which a voltage is applied; a first insulating film formed directly under the first silicon layer; , a second silicon layer formed directly below the first insulating film, a second insulating film formed directly below the second silicon layer, and between the second insulating film and the semiconductor substrate.
  • a floating gate provided on the main surface of the semiconductor substrate substantially parallel to the main surface with a third insulating film interposed therebetween; and a floating gate provided on the floating gate.
  • a spacer provided between the floating gate and the spacer and covering each of the side surface on one end side of the spacer, the side surface on the one end side of the floating gate, and the main surface of the semiconductor substrate.
  • the insulating film No. 4 and the second silicon layer are stretched and formed, and the insulating film is formed on each of the main surface of the semiconductor substrate, the side surface on the one end side of the floating gate, and the side surface on the one end side of the spacer.
  • a control gate that is in contact with a fourth insulating film and has a second contact; a contact portion that is formed by extending the first silicon layer and is electrically connected to the first contact; and a surface layer of the semiconductor substrate.
  • a conductive layer which has one end connected to the diffusion layer, is in contact with the floating gate and the side surface of the other end of the spacer via a fifth insulating film, and has a third contact at the other end; It includes a member.
  • the capacitor element used in the booster circuit or the like can be placed adjacent to the cell array of the memory element.
  • FIG. 1 is a plan view showing an example of the configuration of a semiconductor device according to an exemplary embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1.
  • FIG. FIG. 2 is a sectional view taken along line BB in FIG. 1.
  • FIG. FIG. 2 is a sectional view taken along line CC in FIG. 1.
  • FIG. FIG. 2 is a sectional view taken along line DD in FIG. 1.
  • FIG. 1 is a schematic diagram showing the configuration of a general memory cell and a booster circuit. 1 is a schematic diagram of a memory cell and a booster circuit to which the semiconductor device according to the exemplary embodiment is applied;
  • FIG. 1 is a plan view showing an example of the configuration of a PPS capacitive element that has been commonly used in the past.
  • 8 is a comparison diagram of a cross-sectional view taken along line EE in FIG. 7 and a capacitive element portion of the semiconductor device according to the exemplary embodiment.
  • FIG. 1 is a plan view showing an example of the configuration of a semiconductor device 10 according to this exemplary embodiment.
  • a memory element section 100 which is a flash memory
  • a capacitive element section 200 are formed on a semiconductor substrate 11.
  • the semiconductor substrate 11 a Si substrate is used, for example.
  • the capacitive element section 200 has a PPS structure in which a first gate polycrystalline silicon layer 107, a memory polysilicon layer 103, which is a polycrystalline silicon layer, and an N-well 114 are stacked with an insulating layer in between. have
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • an HTO (High Temperature Oxide) tunnel 118 which is an insulating film, is provided in the upper layer of the N well 114 formed on the semiconductor substrate 11.
  • a memory poly layer 103 which is a polycrystalline silicon layer, is formed.
  • a first gate polycrystalline silicon layer 107 is formed on the memory poly layer 103 with a first gate oxide film 116, which is an insulating layer, interposed therebetween.
  • the capacitive element section 200 has a PPS element structure in which a polycrystalline silicon layer and an insulating layer are stacked.
  • the first gate polycrystalline silicon layer 107 is Poly-Si
  • the first gate oxide film 116 is an insulator
  • the memory poly layer 103 is Poly-Si
  • the HTO tunnel 118 is an insulator
  • the first gate oxide film 116 is an insulator.
  • the wells 114 correspond to Si-substrate.
  • a first contact 220 which is an electrical contact, is provided at the right end of the first gate polycrystalline silicon layer 107 in FIG.
  • An element isolation insulating film 120A which is an insulating layer, is provided at a portion of the N well 114 and the semiconductor substrate 11 corresponding to the first contact 220.
  • an element isolation insulating film 120B which is an insulating layer, is also provided at a portion where the first gate polycrystalline silicon layer 107 contacts the N well 114 and the semiconductor substrate 11 via the first gate oxide film 116.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 1.
  • the memory element section 100 includes a memory cell 111a and a memory cell 111b, which are formed between two element isolation insulating films and are arranged symmetrically to each other. It is composed of a pair of Memory cells 111a and 111b share a source wiring 101 and a source 105 formed by an N+ diffusion layer. Since the memory cells 111a and 111b have the same configuration except for their orientations, the memory cell 111a will be described below as an example.
  • the memory cell 111a formed on the main surface 112 of the semiconductor substrate 11 includes a source 105, a source wiring 101, a gate insulating film 109a, a floating gate 108a, a spacer 102a, a memory poly layer 103, and a sidewall 104a. , a drain 106a, and a first gate polycrystalline silicon layer 107.
  • the memory poly layer 103 is formed by extending the memory poly layer 103 of the capacitive element section 200, and is configured to function as a control gate in the memory element section 100.
  • the first gate polycrystalline silicon layer 107 is formed by stretching the first gate polycrystalline silicon layer 107 of the capacitive element section 200, and functions as a contact section that electrically connects the first contact 220 and the semiconductor substrate 11. is configured to do so.
  • the source 105 is formed by diffusing impurities into the semiconductor substrate 11.
  • the source wiring 101 is connected to the source 105 and constitutes a source line of the memory element section 100.
  • the floating gate 108a is provided on a gate insulating film 109a formed on the semiconductor substrate 11.
  • a spacer 102a is formed on the floating gate 108a.
  • each of the floating gates 108a and 108b has a sharp portion that protrudes upward at a portion corresponding to the memory poly layer 103 via the tunnel insulating films 110a and 110b. Since electric field concentration occurs at the sharp parts of the floating gates 108a and 108b, the memory element section 100 can rewrite data at a relatively low voltage.
  • the memory poly layer 103 is formed on the semiconductor substrate 11 via the tunnel insulating film 110a, and constitutes a word line.
  • the memory poly layer 103 is arranged adjacent to the gate insulating film 109a, the floating gate 108a, and the spacer 102a via the tunnel insulating film 110a.
  • Sidewall 104a is formed adjacent to memory poly layer 103.
  • the drain 106a is formed by diffusing impurities into the semiconductor substrate 11.
  • a bit contact is formed by the drain 106a and the first gate polycrystalline silicon layer 107 connected to the drain 106a.
  • a gate insulating film 109 (109a, 109b) is formed on the surface of the semiconductor substrate 11 on which the source 105 is formed by diffusing impurities into the semiconductor substrate 11, and the surface of the gate insulating film 109 is formed by a CVD (chemical vapor deposition) method or the like.
  • Floating gates 108 (108a, 108b), which are polycrystalline silicon layers, are formed.
  • layers corresponding to the memory poly layer 103, spacers 102a, 102b, sidewalls 104a, 104b, and source wiring 101 are stacked, and etching is performed as appropriate to form memory cells 111a, 111b.
  • the memory element section 100 is formed by forming the first gate polycrystalline silicon layer 107 so as to cover the first gate polycrystalline silicon layer 107.
  • FIG. 4 is a cross-sectional view taken along line CC in FIG. 1.
  • the floating gates 108 (108a, 108b) are disposed in the storage element portion 100 shown in FIG.
  • each of the floating gate 108, the source 105, and one end of the source wiring 101 in contact with the source 105 is provided adjacent to the capacitive element section 200.
  • a portion of each of the floating gate 108, the source 105, and one end of the source wiring 101 may be in a positional relationship overlapping with the N-well 114 forming the capacitive element section 200. Therefore, the floating gate 108 is not provided in the cross-sectional view shown in FIG.
  • the source 105 is not formed on the semiconductor substrate 11 in contact with the source wiring 101.
  • a second contact 222 is provided at the upper end of the memory poly layer 103a, and by applying a voltage through the second contact 222, the memory poly layer 103 (103a, 103b) functions as a control gate in the flash memory. do.
  • FIG. 5 is a cross-sectional view taken along line DD in FIG. 1. Similar to the cross-sectional view shown in FIG. 4, the cross-sectional view shown in FIG. 5 does not include the floating gate 108, but the third contact 224 is connected to the source wiring 101.
  • writing is performed by injecting channel hot electrons generated in the semiconductor substrate 11 into the floating gate 108a. Further, data is erased by extracting electrons from the floating gate 108a to the memory poly layer 103 via the tunnel insulating film 110a. Furthermore, by applying a read voltage to the memory poly layer 103, the state (on, off) of the memory cell 111a is detected.
  • the voltage of the semiconductor substrate 11 is set to 0V, for example, and a predetermined voltage is applied to the memory poly layer 103 via the second contact 222 and to the source wiring 101 via the third contact 224, respectively.
  • a predetermined voltage is applied to the memory poly layer 103 via the second contact 222 and to the source wiring 101 via the third contact 224, respectively.
  • current flows in the channel region directly under the memory poly layer 103 and the floating gates 108 (108a, 108b), and channel hot electrons are injected into the floating gate 108 via the gate insulating films 109a, 109b.
  • the injected channel hot electrons are accumulated in the floating gate 108. Injection of channel hot electrons into the floating gate 108 increases the threshold voltage of the memory element portion 100.
  • the voltage of the drains 106a and 106b is set to 0V, and the third contact 224 is connected to the ground area.
  • a predetermined voltage is applied to the memory poly layer 103 via the second contact 222.
  • a Fowler-Nordheim tunneling current flows through the tunnel insulating films 110a and 110b, and electrons accumulated in the floating gate 108 are extracted to the memory poly layer 103 functioning as a control gate.
  • the threshold voltage of the memory element section 100 becomes lower than when electrons are accumulated in the floating gate 108. Note that a state in which electrons are accumulated in the floating gate 108 may be set as data "1", and a state in which electrons are not accumulated in the floating gate 108 may be set as data "0".
  • FIG. 6A is a schematic diagram showing the configuration of a general memory cell 240 and a booster circuit 242.
  • a booster circuit 242 that generates a voltage to be applied to the memory cell 240 is configured separately from the memory cell 240. If the memory cell 240 is a flash memory, a booster circuit 242 that generates a high voltage is required for operation, but if the booster circuit 242 is provided outside the area of the memory cell 240, the area of the entire device increases.
  • FIG. 6B is a schematic diagram of a memory cell 250 and a booster circuit 252 to which the semiconductor device 10 according to the present exemplary embodiment is applied.
  • the semiconductor device 10 according to the exemplary embodiment has a memory element section 100 and a capacitive element section in which a part of the structure of the memory element section 100, which is a flash memory, is used for a capacitive element section 200, which is a PPS capacitive element. 200 are inseparable from each other.
  • FIG. 6B it is possible to realize a structure in which memory cells 250 and booster circuits 252 are arranged adjacently and alternately on the same semiconductor substrate. With this structure, the area of the semiconductor device can be made smaller than the structure shown in FIG. 6A.
  • FIG. 7 is a plan view showing an example of the configuration of a capacitive element 300, which is a conventionally commonly used PPS capacitive element.
  • the first contact 320 is provided on the first gate polycrystalline silicon layer 307, as in the semiconductor device 10 according to the exemplary embodiment described above.
  • This exemplary embodiment also has a PPS structure in which the first gate polycrystalline silicon layer 307, the memory polysilicon layer 303, which is a polycrystalline silicon layer, and the N-well 314 are stacked with an insulating layer in between. This is common to the semiconductor device 10 according to the above.
  • the second contact 322 is connected to the memory poly layer 303 through the recess 330 created by removing the first gate oxide film 316, and the third contact 324 is connected to the end of the N-well 114. This is different from the semiconductor device 10 according to the exemplary embodiment.
  • FIG. 8(1) is a cross-sectional view taken along line EE in FIG. 7.
  • the capacitive element 300 includes an HTO tunnel 318, which is an insulating film, provided in the upper layer of an N well 314 formed on the main surface 311 of the semiconductor substrate, and the HTO tunnel 318, which is an insulating film, A memory poly layer 303 is formed therein. Furthermore, a first gate polycrystalline silicon layer 307 is formed on the memory poly layer 303 with a first gate oxide film 316, which is an insulating layer, interposed therebetween. As a result, the capacitive element 300 has a PPS element structure in which a polycrystalline silicon layer and an insulating layer are stacked.
  • the first gate polycrystalline silicon layer 307 is Poly-Si
  • the first gate oxide film 316 is an insulator
  • the memory poly layer 303 is Poly-Si
  • the HTO tunnel 318 is an insulator
  • the first gate oxide film 316 is an insulator.
  • the wells 314 correspond to Si-substrate.
  • An element isolation insulating film 326A which is an insulating layer, is provided at a portion of the N-well 114 and the semiconductor substrate 11 corresponding to the first contact 220. Further, an element isolation insulating film 326B, which is an insulating layer, is also provided at each portion of the N well 114 and the semiconductor substrate 11 corresponding to the second contact 322 and the recess 330.
  • the yield of the capacitive element 300 deteriorates due to damage to the memory poly layer 103 or the HTO tunnel 318 due to dry etching or the like when forming the recess 330 and arranging the second contact 322.
  • the element isolation insulating film 326B is enlarged, the area of the N well 314 is reduced, and there is a possibility that the performance as a capacitor element will be degraded.
  • FIG. 8(2) is a cross-sectional view of the capacitive element section 200 of the semiconductor device 10 according to the present exemplary embodiment, and is the same drawing as FIG. 2 described above.
  • the semiconductor device 10 according to the present exemplary embodiment has a recess 330 and a second It is not necessary to provide the contact 222 in the capacitive element section 200.
  • the element isolation insulating film 120B for suppressing deterioration in yield of the semiconductor device 10 can be reduced in size compared to the structure shown in FIG. 8(1).
  • the capacitive element portion 200 of the semiconductor device 10 Comparing (1) and (2) of FIG. 8, the capacitive element portion 200 of the semiconductor device 10 according to the present exemplary embodiment has a larger element size by ⁇ D than the capacitive element 300 shown in (2).
  • the isolation insulating film 120B By reducing the isolation insulating film 120B, the area of the N well 114 can be expanded more than in the configuration shown in (1).
  • each of the second contact 222 and the third contact 224 of the PPS capacitive element is connected to the structure of a part of the storage element section 100 constituting a flash memory.
  • the capacitive element section 200 can be formed adjacent to the cell array of the memory element section 100, which is a flash memory, it is possible not only to reduce the chip area, but also to reduce the chip area. Since a part of the terminal structure of the PPS capacitive element can be shared with the memory element section 100, there is also an effect that voltage drop due to parasitic resistance in the voltage applied to the memory element section 100 can be suppressed.
  • the semiconductor device according to the exemplary embodiment of the present disclosure described above is only an example, and it is possible to omit, add, or modify the configuration, change the materials used, etc. without departing from the spirit of the present disclosure. .
  • first silicon layer is the “first gate polycrystalline silicon layer 107”
  • first insulating film is the “first gate oxide film 116”
  • second silicon layer is the “memory polycrystalline silicon layer 107.”
  • second insulating film is connected to the "HTO tunnel 118”
  • third insulating film is connected to the "gate insulating films 109a, 109b”
  • fourth insulating film is connected to the "tunnel insulating film 110a”.
  • the "diffusion layer” is connected to the "source 105”
  • the "conductive member” is connected to the “source wiring 101”
  • the "first contact” is connected to the “first contact 220”
  • the “second contact” is connected to the “second contact”. 2 contact 222”
  • the "third contact” corresponds to "third contact 224”, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

In this semiconductor device: each of a source that is formed on a main surface of a semiconductor substrate and a floating gate that contacts the main surface with an insulating film therebetween is provided adjacent to a capacitive element portion, the source and the floating gate forming a storage element portion; a first gate polycrystalline silicon layer of the capacitive element portion is extended to form a contact portion of the storage element portion, and a memory poly-layer of the capacitive element portion is extended to form a control gate of the storage element portion; a first contact is provided on the capacitive element portion side of the first gate polycrystalline silicon layer; a second contact is provided in a position spaced apart from the capacitive element portion in the control gate; and a third contact is provided in a position spaced apart from the capacitive element portion in a source wire in contact with the source.

Description

半導体装置semiconductor equipment
 本開示は、シリコン(Si)を用いた半導体装置であり、特にPPS(Poly-Si/Insulator/Poly-Si/ Insulator/Si-substrate)素子構造を有する半導体装置に関する。 The present disclosure relates to a semiconductor device using silicon (Si), and particularly to a semiconductor device having a PPS (Poly-Si/Insulator/Poly-Si/Insulator/Si-substrate) element structure.
 多結晶シリコン層と絶縁層とが積層されたPPS素子構造は、素子内での浮遊容量の発生を抑制することにより、素子からサブストレートへの電荷のリーク抑制する効果があることから、容量素子、又はフラッシュメモリ等の不揮発性記憶装置に応用されている。 A PPS element structure in which a polycrystalline silicon layer and an insulating layer are laminated has the effect of suppressing the leakage of charge from the element to the substrate by suppressing the generation of stray capacitance within the element. , or nonvolatile storage devices such as flash memory.
 特開2019-75414号公報には、コントロールゲート用の多結晶シリコン層と、周辺回路の制御ゲート形成用の多結晶シリコン層とを備え、これら多結晶シリコン層を用いることでPPS容量素子を作成可能な、一端部に突起を持つフローティングゲートとコントロールゲートを持つフラッシュメモリ用のメモリセルの代表的な構造及び製造方法が記載されている。 JP 2019-75414 A discloses a method that includes a polycrystalline silicon layer for a control gate and a polycrystalline silicon layer for forming a control gate of a peripheral circuit, and creates a PPS capacitor element by using these polycrystalline silicon layers. A typical structure and manufacturing method of a possible memory cell for a flash memory having a floating gate with a protrusion at one end and a control gate are described.
 特開2016-51822号公報には、不揮発性メモリの製造で必要となるゲート電極とメモリゲート電極と基板のシリコンを電極と使用するPPS容量の平面構造及び断面構造が記載されている。 JP 2016-51822 A describes a planar structure and a cross-sectional structure of a PPS capacitor that uses a gate electrode, a memory gate electrode, and silicon of a substrate as electrodes, which are required in the manufacture of nonvolatile memory.
 しかしながら、特開2019-75414号公報に開示されたフラッシュメモリセルは、メモリ多結晶シリコン層、制御ゲート多結晶シリコン層、アクティブコンタクトの3端子に引き出しのコンタクトを形成する必要がある。その結果、メモリ多結晶シリコン層のエッジ部及び制御ゲート多結晶シリコン層のエッジ部等が容量素子領域内に形成されるため、寄生容量が多くなり、容量素子としての精度の低下、アクティブコンタクトのエッジ部での絶縁膜の薄膜化等によって素子の信頼性低下、又は素子の歩留まり低下のおそれがあった。 However, in the flash memory cell disclosed in Japanese Unexamined Patent Application Publication No. 2019-75414, it is necessary to form lead-out contacts at three terminals: the memory polycrystalline silicon layer, the control gate polycrystalline silicon layer, and the active contact. As a result, the edges of the memory polycrystalline silicon layer and the control gate polycrystalline silicon layer are formed within the capacitive element region, resulting in an increase in parasitic capacitance, a decrease in the accuracy of the capacitive element, and an active contact. There is a risk that the reliability of the device or the yield of the device will decrease due to thinning of the insulating film at the edge portion.
 特開2016-51822号公報に開示されたPPS容量素子は、アクティブコンタクトが素子分離領域を介してNウェルで長い距離を経て接続されているため、高抵抗となり、アクティブコンタクトの電位の設定が不安定になりやすいおそれがあった。また、特開2016-51822号公報に開示された容量素子は、フラッシュメモリの動作に必要な高電圧を形成するための、昇圧回路等に使用されるものの、かかる昇圧回路を含む電源回路をフラッシュメモリセル領域の外に作成することを前提とするため、半導体装置全体の面積が大きくなる。 In the PPS capacitive element disclosed in Japanese Patent Application Laid-open No. 2016-51822, the active contact is connected to the N-well over a long distance via the element isolation region, resulting in high resistance and making it difficult to set the potential of the active contact. There was a risk that it would become unstable. Furthermore, the capacitive element disclosed in Japanese Patent Application Laid-open No. 2016-51822 is used in a booster circuit, etc. to generate the high voltage necessary for the operation of flash memory. Since it is assumed that the semiconductor device is formed outside the memory cell area, the area of the entire semiconductor device becomes large.
 本開示は、フラッシュメモリセルの構造の一部をPPS容量素子に流用することにより、昇圧回路等に用いる容量素子を記憶素子のセルアレイに隣接して配置した半導体装置を提供する。 The present disclosure provides a semiconductor device in which a capacitive element used in a booster circuit or the like is arranged adjacent to a cell array of a memory element by using a part of the structure of a flash memory cell for a PPS capacitive element.
 本開示の第1の態様は、半導体装置であって、電圧が印加される第1接点が設けられた第1シリコン層と、前記第1シリコン層の直下に形成された第1の絶縁膜と、前記第1の絶縁膜の直下に形成された第2シリコン層と、前記第2シリコン層の直下に形成された第2の絶縁膜と、前記第2の絶縁膜と半導体基板との間に形成されたNウェルと、を含む容量素子を備え、前記半導体基板の主面上に第3の絶縁膜を介して前記主面と略平行に設けられたフローティングゲートと、前記フローティングゲート上に設けられたスペーサと、前記フローティングゲートと前記スペーサとの間に設けられ、且つ前記スペーサの一端側の側面、前記フローティングゲートの前記一端側の側面、及び前記半導体基板の前記主面の各々を覆う第4の絶縁膜と、前記第2シリコン層が延伸されて形成され、前記半導体基板の前記主面、前記フローティングゲートの前記一端側の側面、及び前記スペーサの前記一端側の側面の各々に、前記第4の絶縁膜を介して接し、第2接点を備えたコントロールゲートと、前記第1シリコン層が延伸されて形成され、前記第1接点と導通するコンタクト部と、前記半導体基板の表層部に設けられた拡散層と、一端が前記拡散層に接続され、且つ前記フローティングゲート及び前記スペーサの他端側の側面に、第5の絶縁膜を介して接し、他端に第3接点を有する導電部材と、を含むものである。 A first aspect of the present disclosure is a semiconductor device, which includes: a first silicon layer provided with a first contact to which a voltage is applied; a first insulating film formed directly under the first silicon layer; , a second silicon layer formed directly below the first insulating film, a second insulating film formed directly below the second silicon layer, and between the second insulating film and the semiconductor substrate. a floating gate provided on the main surface of the semiconductor substrate substantially parallel to the main surface with a third insulating film interposed therebetween; and a floating gate provided on the floating gate. a spacer provided between the floating gate and the spacer and covering each of the side surface on one end side of the spacer, the side surface on the one end side of the floating gate, and the main surface of the semiconductor substrate. The insulating film No. 4 and the second silicon layer are stretched and formed, and the insulating film is formed on each of the main surface of the semiconductor substrate, the side surface on the one end side of the floating gate, and the side surface on the one end side of the spacer. a control gate that is in contact with a fourth insulating film and has a second contact; a contact portion that is formed by extending the first silicon layer and is electrically connected to the first contact; and a surface layer of the semiconductor substrate. a conductive layer, which has one end connected to the diffusion layer, is in contact with the floating gate and the side surface of the other end of the spacer via a fifth insulating film, and has a third contact at the other end; It includes a member.
 上記態様によれば、本開示の半導体装置は、フラッシュメモリセルの構造の一部をPPS容量素子に流用することにより、昇圧回路等に用いる容量素子を記憶素子のセルアレイに隣接して配置できる。 According to the above aspect, in the semiconductor device of the present disclosure, by using a part of the structure of the flash memory cell for the PPS capacitor element, the capacitor element used in the booster circuit or the like can be placed adjacent to the cell array of the memory element.
本例示的実施形態に係る半導体装置の構成の一例を示した平面図である。1 is a plan view showing an example of the configuration of a semiconductor device according to an exemplary embodiment. 図1のAA線に沿った断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. FIG. 図1のBB線に沿った断面図である。FIG. 2 is a sectional view taken along line BB in FIG. 1. FIG. 図1のCC線に沿った断面図である。FIG. 2 is a sectional view taken along line CC in FIG. 1. FIG. 図1のDD線に沿った断面図である。FIG. 2 is a sectional view taken along line DD in FIG. 1. FIG. 一般的なメモリセルと、昇圧回路との構成を示した概略図である。1 is a schematic diagram showing the configuration of a general memory cell and a booster circuit. 本例示的実施形態に係る半導体装置を応用したメモリセルと昇圧回路との概略図である。1 is a schematic diagram of a memory cell and a booster circuit to which the semiconductor device according to the exemplary embodiment is applied; FIG. 従来、一般的に用いられてきたPPS容量素子の構成の一例を示した平面図である。1 is a plan view showing an example of the configuration of a PPS capacitive element that has been commonly used in the past. 図7のEE線に沿った断面図と、本例示的実施形態に係る半導体装置の容量素子部の比較図である。8 is a comparison diagram of a cross-sectional view taken along line EE in FIG. 7 and a capacitive element portion of the semiconductor device according to the exemplary embodiment. FIG.
 以下、図面を参照して、本開示を実施するための形態について詳細に説明する。図1は、本例示的実施形態に係る半導体装置10の構成の一例を示した平面図である。図1に示したように、半導体装置10は、半導体基板11上に、フラッシュメモリである記憶素子部100と、容量素子部200とが形成されている。半導体基板11は、一例としてSi基板を用いている。後述するように、容量素子部200は、第1ゲート多結晶シリコン層107と、多結晶シリコン層であるメモリポリ層103と、Nウェル114とが、各々絶縁層を介して積層されたPPS構造を有する。 Hereinafter, embodiments for carrying out the present disclosure will be described in detail with reference to the drawings. FIG. 1 is a plan view showing an example of the configuration of a semiconductor device 10 according to this exemplary embodiment. As shown in FIG. 1, in the semiconductor device 10, a memory element section 100, which is a flash memory, and a capacitive element section 200 are formed on a semiconductor substrate 11. As the semiconductor substrate 11, a Si substrate is used, for example. As will be described later, the capacitive element section 200 has a PPS structure in which a first gate polycrystalline silicon layer 107, a memory polysilicon layer 103, which is a polycrystalline silicon layer, and an N-well 114 are stacked with an insulating layer in between. have
 図2は、図1のAA線に沿った断面図である。図2に示したように、容量素子部200は、半導体基板11上に形成されたNウェル114の上層に絶縁膜であるHTO(High Temperature Oxide)トンネル118が設けられ、HTOトンネル118の上層には、多結晶シリコン層であるメモリポリ層103が形成されている。さらに、メモリポリ層103の上層には絶縁層である第1ゲート酸化膜116を介して第1ゲート多結晶シリコン層107が形成されている。その結果、容量素子部200は、多結晶シリコン層と絶縁層とが積層されたPPS素子構造を有する。具体的には、第1ゲート多結晶シリコン層107はPoly-Siであり、第1ゲート酸化膜116はInsulatorであり、メモリポリ層103はPoly-Siであり、HTOトンネル118はInsulatorであり、Nウェル114はSi-substrateに各々該当する。 FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. As shown in FIG. 2, in the capacitive element section 200, an HTO (High Temperature Oxide) tunnel 118, which is an insulating film, is provided in the upper layer of the N well 114 formed on the semiconductor substrate 11. A memory poly layer 103, which is a polycrystalline silicon layer, is formed. Furthermore, a first gate polycrystalline silicon layer 107 is formed on the memory poly layer 103 with a first gate oxide film 116, which is an insulating layer, interposed therebetween. As a result, the capacitive element section 200 has a PPS element structure in which a polycrystalline silicon layer and an insulating layer are stacked. Specifically, the first gate polycrystalline silicon layer 107 is Poly-Si, the first gate oxide film 116 is an insulator, the memory poly layer 103 is Poly-Si, the HTO tunnel 118 is an insulator, and the first gate oxide film 116 is an insulator. The wells 114 correspond to Si-substrate.
 第1ゲート多結晶シリコン層107の、図2における右側端部には、電気接点である第1コンタクト220が設けられている。第1コンタクト220に対応するNウェル114及び半導体基板11の部位には、絶縁層である素子分離絶縁膜120Aが設けられている。また、第1ゲート多結晶シリコン層107が、第1ゲート酸化膜116を介してNウェル114及び半導体基板11に接する部位にも絶縁層である素子分離絶縁膜120Bが設けられている。 A first contact 220, which is an electrical contact, is provided at the right end of the first gate polycrystalline silicon layer 107 in FIG. An element isolation insulating film 120A, which is an insulating layer, is provided at a portion of the N well 114 and the semiconductor substrate 11 corresponding to the first contact 220. Further, an element isolation insulating film 120B, which is an insulating layer, is also provided at a portion where the first gate polycrystalline silicon layer 107 contacts the N well 114 and the semiconductor substrate 11 via the first gate oxide film 116.
 図3は、図1のBB線に沿った断面図である。図3に示すように、本実施の形態に係る記憶素子部100は、2つの素子分離絶縁膜の間に形成された、互いに面対称に対向して配置されたメモリセル111aおよびメモリセル111bからなる対を含んで構成されている。メモリセル111aと111bとは、ソース配線101およびN+拡散層で形成されるソース105を共用している。メモリセル111aと111bとは向きが異なる以外同様の構成であるので、以下メモリセル111aを例示して説明する。 FIG. 3 is a cross-sectional view taken along line BB in FIG. 1. As shown in FIG. 3, the memory element section 100 according to the present embodiment includes a memory cell 111a and a memory cell 111b, which are formed between two element isolation insulating films and are arranged symmetrically to each other. It is composed of a pair of Memory cells 111a and 111b share a source wiring 101 and a source 105 formed by an N+ diffusion layer. Since the memory cells 111a and 111b have the same configuration except for their orientations, the memory cell 111a will be described below as an example.
 図3に示すように、半導体基板11の主面112上に形成されたメモリセル111aは、ソース105、ソース配線101、ゲート絶縁膜109a、フローティングゲート108a、スペーサ102a、メモリポリ層103、サイドウォール104a、ドレイン106a、および第1ゲート多結晶シリコン層107を含んで構成されている。メモリポリ層103は、図1に示したように、容量素子部200のメモリポリ層103が延伸されて形成され、記憶素子部100においては、コントロールゲートして機能するように構成されている。第1ゲート多結晶シリコン層107は、容量素子部200の第1ゲート多結晶シリコン層107が延伸されて形成され、第1コンタクト220と、半導体基板11とを電気的に接続するコンタクト部として機能するように構成されている。 As shown in FIG. 3, the memory cell 111a formed on the main surface 112 of the semiconductor substrate 11 includes a source 105, a source wiring 101, a gate insulating film 109a, a floating gate 108a, a spacer 102a, a memory poly layer 103, and a sidewall 104a. , a drain 106a, and a first gate polycrystalline silicon layer 107. As shown in FIG. 1, the memory poly layer 103 is formed by extending the memory poly layer 103 of the capacitive element section 200, and is configured to function as a control gate in the memory element section 100. The first gate polycrystalline silicon layer 107 is formed by stretching the first gate polycrystalline silicon layer 107 of the capacitive element section 200, and functions as a contact section that electrically connects the first contact 220 and the semiconductor substrate 11. is configured to do so.
 ソース105は半導体基板11に不純物を拡散させて形成されている。ソース配線101はソース105に接続され、記憶素子部100のソースラインを構成している。 The source 105 is formed by diffusing impurities into the semiconductor substrate 11. The source wiring 101 is connected to the source 105 and constitutes a source line of the memory element section 100.
フローティングゲート108aは半導体基板11上に形成されたゲート絶縁膜109a上に設けられている。フローティングゲート108a上にはスペーサ102aが形成されている。図3に示したように、フローティングゲート108a、108bの各々がトンネル絶縁膜110a、110bを介して、メモリポリ層103に対応する部位は上部に突き出たような尖鋭部を呈する。フローティングゲート108a、108bは、かかる尖鋭部において電界集中が生じるので、記憶素子部100は、比較的低い電圧でデータの書き替えを行うことが可能である。 The floating gate 108a is provided on a gate insulating film 109a formed on the semiconductor substrate 11. A spacer 102a is formed on the floating gate 108a. As shown in FIG. 3, each of the floating gates 108a and 108b has a sharp portion that protrudes upward at a portion corresponding to the memory poly layer 103 via the tunnel insulating films 110a and 110b. Since electric field concentration occurs at the sharp parts of the floating gates 108a and 108b, the memory element section 100 can rewrite data at a relatively low voltage.
 メモリポリ層103は、トンネル絶縁膜110aを介して半導体基板11上に形成され、ワードラインを構成している。メモリポリ層103は、トンネル絶縁膜110aを介して、ゲート絶縁膜109a、フローティングゲート108a、およびスペーサ102aに隣接して配置されている。サイドウォール104aは、メモリポリ層103に隣接して形成されている。ドレイン106aは半導体基板11に不純物を拡散させて形成されている。ドレイン106aおよびドレイン106aに接続された第1ゲート多結晶シリコン層107によりビットコンタクトが構成されている。 The memory poly layer 103 is formed on the semiconductor substrate 11 via the tunnel insulating film 110a, and constitutes a word line. The memory poly layer 103 is arranged adjacent to the gate insulating film 109a, the floating gate 108a, and the spacer 102a via the tunnel insulating film 110a. Sidewall 104a is formed adjacent to memory poly layer 103. The drain 106a is formed by diffusing impurities into the semiconductor substrate 11. A bit contact is formed by the drain 106a and the first gate polycrystalline silicon layer 107 connected to the drain 106a.
 以下に、図3に示した記憶素子部100を形成する手順の一例について簡単に説明する。まず、半導体基板11に不純物を拡散させてソース105を形成した半導体基板11の表面にゲート絶縁膜109(109a、109b)を形成し、CVD(chemicalvapor deposition)法等によりゲート絶縁膜109の表面に多結晶シリコン層であるフローティングゲート108(108a、108b)を形成する。以後、メモリポリ層103、スペーサ102a、102b、サイドウォール104a、104b、及びソース配線101に各々該当する層を積層し、適宜、エッチング処理を行うことでメモリセル111a、111bを形成し、メモリセル111a、111bを覆うように第1ゲート多結晶シリコン層107を形成することにより、記憶素子部100が形成される。 An example of a procedure for forming the memory element section 100 shown in FIG. 3 will be briefly described below. First, a gate insulating film 109 (109a, 109b) is formed on the surface of the semiconductor substrate 11 on which the source 105 is formed by diffusing impurities into the semiconductor substrate 11, and the surface of the gate insulating film 109 is formed by a CVD (chemical vapor deposition) method or the like. Floating gates 108 (108a, 108b), which are polycrystalline silicon layers, are formed. Thereafter, layers corresponding to the memory poly layer 103, spacers 102a, 102b, sidewalls 104a, 104b, and source wiring 101 are stacked, and etching is performed as appropriate to form memory cells 111a, 111b. , 111b, the memory element section 100 is formed by forming the first gate polycrystalline silicon layer 107 so as to cover the first gate polycrystalline silicon layer 107.
 図4は、図1のCC線に沿った断面図である。本例示的実施形態では、図1に示すように、フローティングゲート108(108a、108b)は、図1に示した記憶素子部100に配設されている。具体的には、フローティングゲート108、ソース105、及びソース105と接するソース配線101の一端の各々は、容量素子部200に隣接して設けられる。フローティングゲート108、ソース105、及びソース配線101の一端の各々の一部は、容量素子部200を構成するNウェル114と重複する位置関係にあってもよい。従って、図4で示した断面図の箇所にフローティングゲート108は設けられず、ソース配線101が接する半導体基板11上にはソース105は形成されていない。しかしながら、メモリポリ層103aの上端部には第2コンタクト222が設けられ、第2コンタクト222を介して電圧が印加されることにより、メモリポリ層103(103a、103b)は、フラッシュメモリにおけるコントロールゲートとして機能する。 FIG. 4 is a cross-sectional view taken along line CC in FIG. 1. In the exemplary embodiment, as shown in FIG. 1, the floating gates 108 (108a, 108b) are disposed in the storage element portion 100 shown in FIG. Specifically, each of the floating gate 108, the source 105, and one end of the source wiring 101 in contact with the source 105 is provided adjacent to the capacitive element section 200. A portion of each of the floating gate 108, the source 105, and one end of the source wiring 101 may be in a positional relationship overlapping with the N-well 114 forming the capacitive element section 200. Therefore, the floating gate 108 is not provided in the cross-sectional view shown in FIG. 4, and the source 105 is not formed on the semiconductor substrate 11 in contact with the source wiring 101. However, a second contact 222 is provided at the upper end of the memory poly layer 103a, and by applying a voltage through the second contact 222, the memory poly layer 103 (103a, 103b) functions as a control gate in the flash memory. do.
 図5は、図1のDD線に沿った断面図である。図5に示した断面図は、図4に示した断面図と同様に、フローティングゲート108は設けられていないが、第3コンタクト224がソース配線101に接続されている。 FIG. 5 is a cross-sectional view taken along line DD in FIG. 1. Similar to the cross-sectional view shown in FIG. 4, the cross-sectional view shown in FIG. 5 does not include the floating gate 108, but the third contact 224 is connected to the source wiring 101.
 以上のように構成された記憶素子部100では、半導体基板11に発生したチャネルホットエレクトロンが、フローティングゲート108aに注入されることで、書き込みが行われる。また、フローティングゲート108aからトンネル絶縁膜110aを介してメモリポリ層103に電子を引き抜くことでデータの消去が行われる。さらに、メモリポリ層103に読み出し用の電圧を印加することで、メモリセル111aの状態(オン、オフ)を検出している。 In the memory element section 100 configured as described above, writing is performed by injecting channel hot electrons generated in the semiconductor substrate 11 into the floating gate 108a. Further, data is erased by extracting electrons from the floating gate 108a to the memory poly layer 103 via the tunnel insulating film 110a. Furthermore, by applying a read voltage to the memory poly layer 103, the state (on, off) of the memory cell 111a is detected.
 より具体的には、半導体基板11の電圧を例えば0Vとし、第2コンタクト222を介してメモリポリ層103に、及び第3コンタクト224を介してソース配線101にそれぞれ、所定の電圧を印加する。これにより、メモリポリ層103及びフローティングゲート108(108a、108b)の直下のチャネル領域に電流が流れ、ゲート絶縁膜109a、109bを介してフローティングゲート108にチャネルホットエレクトロンが注入される。注入されたチャネルホットエレクトロンは、フローティングゲート108に蓄積される。フローティングゲート108へのチャネルホットエレクトロンの注入により記憶素子部100のスレッショルド電圧が高くなる。一方、記憶素子部100に書き込まれたデータ“0”を、データ“1”に書き換える場合(データを消去する場合)、ドレイン106a、106bの電圧を0Vにすると共に、第3コンタクト224を接地領域に接続することによりソース105の電圧を例えば0Vとし、第2コンタクト222を介してメモリポリ層103に所定の電圧を印加する。これにより、トンネル絶縁膜110a、110bに、ファウラー・ノルドハイム・トンネル電流(Fowler-Nordheim Tunneling Current)が流れ、フローティングゲート108に蓄積された電子が、コントロールゲートとして機能するメモリポリ層103に引き抜かれる。これにより、フローティングゲート108に電子が蓄積されている場合と比較して、記憶素子部100のスレッショルド電圧が低くなる。なお、フローティングゲート108に電子が蓄積されている状態をデータ“1”とし、フローティングゲートに電子が蓄積されていない状態をデータ“0”としてもよい。 More specifically, the voltage of the semiconductor substrate 11 is set to 0V, for example, and a predetermined voltage is applied to the memory poly layer 103 via the second contact 222 and to the source wiring 101 via the third contact 224, respectively. As a result, current flows in the channel region directly under the memory poly layer 103 and the floating gates 108 (108a, 108b), and channel hot electrons are injected into the floating gate 108 via the gate insulating films 109a, 109b. The injected channel hot electrons are accumulated in the floating gate 108. Injection of channel hot electrons into the floating gate 108 increases the threshold voltage of the memory element portion 100. On the other hand, when rewriting data "0" written in the memory element section 100 to data "1" (when erasing data), the voltage of the drains 106a and 106b is set to 0V, and the third contact 224 is connected to the ground area. By connecting the source 105 to, for example, 0V, a predetermined voltage is applied to the memory poly layer 103 via the second contact 222. As a result, a Fowler-Nordheim tunneling current flows through the tunnel insulating films 110a and 110b, and electrons accumulated in the floating gate 108 are extracted to the memory poly layer 103 functioning as a control gate. As a result, the threshold voltage of the memory element section 100 becomes lower than when electrons are accumulated in the floating gate 108. Note that a state in which electrons are accumulated in the floating gate 108 may be set as data "1", and a state in which electrons are not accumulated in the floating gate 108 may be set as data "0".
 図6Aは、一般的なメモリセル240と、昇圧回路242との構成を示した概略図である。図6Aに示したように、メモリセル240に印加する電圧を生成する昇圧回
路242をメモリセル240とは別体で構成している。メモリセル240がフラッシュメモリの場合、動作させるには高電圧を生成する昇圧回路242が必要となるが、昇圧回路242をメモリセル240の領域外に設けると、装置全体の面積が大きくなる。
FIG. 6A is a schematic diagram showing the configuration of a general memory cell 240 and a booster circuit 242. As shown in FIG. 6A, a booster circuit 242 that generates a voltage to be applied to the memory cell 240 is configured separately from the memory cell 240. If the memory cell 240 is a flash memory, a booster circuit 242 that generates a high voltage is required for operation, but if the booster circuit 242 is provided outside the area of the memory cell 240, the area of the entire device increases.
 図6Bは、本例示的実施形態に係る半導体装置10を応用したメモリセル250と昇圧回路252との概略図である。本例示的実施形態に係る半導体装置10は、フラッシュメモリである記憶素子部100の構造の一部を、PPS容量素子である容量素子部200に流用するような、記憶素子部100と容量素子部200とが一体不可分な構成となっている。その結果、図6Bに示したように、同一の半導体基板上にメモリセル250と昇圧回路252とを各々隣接させて、交互に配設した構造を実現できる。かかる構造により、半導体装置の面積を図6Aに示した構造よりも縮小できる。 FIG. 6B is a schematic diagram of a memory cell 250 and a booster circuit 252 to which the semiconductor device 10 according to the present exemplary embodiment is applied. The semiconductor device 10 according to the exemplary embodiment has a memory element section 100 and a capacitive element section in which a part of the structure of the memory element section 100, which is a flash memory, is used for a capacitive element section 200, which is a PPS capacitive element. 200 are inseparable from each other. As a result, as shown in FIG. 6B, it is possible to realize a structure in which memory cells 250 and booster circuits 252 are arranged adjacently and alternately on the same semiconductor substrate. With this structure, the area of the semiconductor device can be made smaller than the structure shown in FIG. 6A.
 図7は、従来、一般的に用いられてきたPPS容量素子である容量素子300の構成の一例を示した平面図である。図7に示したように、第1ゲート多結晶シリコン層307に第1コンタクト320が配設されているのは、上述の本例示的実施形態に係る半導体装置10と同様である。また、第1ゲート多結晶シリコン層307と、多結晶シリコン層であるメモリポリ層303と、Nウェル314とが、各々絶縁層を介して積層されたPPS構造を有する点でも、本例示的実施形態に係る半導体装置10と共通する。 FIG. 7 is a plan view showing an example of the configuration of a capacitive element 300, which is a conventionally commonly used PPS capacitive element. As shown in FIG. 7, the first contact 320 is provided on the first gate polycrystalline silicon layer 307, as in the semiconductor device 10 according to the exemplary embodiment described above. This exemplary embodiment also has a PPS structure in which the first gate polycrystalline silicon layer 307, the memory polysilicon layer 303, which is a polycrystalline silicon layer, and the N-well 314 are stacked with an insulating layer in between. This is common to the semiconductor device 10 according to the above.
 しかしながら、図7に示した容量素子300は、大気圧プラズマエッチング、反応性イオンエッチング(RIE)、不活性ガスによるプラズマエッチング、レーザー、イオンビーム等によるエッチングで第1ゲート多結晶シリコン層307及び第1ゲート酸化膜316を除去することによって生成された凹部330を介して第2コンタクト322がメモリポリ層303に接続され、Nウェル114の端部に第3コンタクト324が接続されている点で、本例示的実施形態に係る半導体装置10とは相違する。 However, the capacitive element 300 shown in FIG. The second contact 322 is connected to the memory poly layer 303 through the recess 330 created by removing the first gate oxide film 316, and the third contact 324 is connected to the end of the N-well 114. This is different from the semiconductor device 10 according to the exemplary embodiment.
 図8の(1)は、図7のEE線に沿った断面図である。図8の(1)に示したように、容量素子300は、半導体基板の主面311上に形成されたNウェル314の上層に絶縁膜であるHTOトンネル318が設けられ、HTOトンネル318の上層には、メモリポリ層303が形成されている。さらに、メモリポリ層303の上層には絶縁層である第1ゲート酸化膜316を介して第1ゲート多結晶シリコン層307が形成されている。その結果、容量素子300は、多結晶シリコン層と絶縁層とが積層されたPPS素子構造を有する。具体的には、第1ゲート多結晶シリコン層307はPoly-Siであり、第1ゲート酸化膜316はInsulatorであり、メモリポリ層303はPoly-Siであり、HTOトンネル318はInsulatorであり、Nウェル314はSi-substrateに各々該当する。 FIG. 8(1) is a cross-sectional view taken along line EE in FIG. 7. As shown in (1) of FIG. 8, the capacitive element 300 includes an HTO tunnel 318, which is an insulating film, provided in the upper layer of an N well 314 formed on the main surface 311 of the semiconductor substrate, and the HTO tunnel 318, which is an insulating film, A memory poly layer 303 is formed therein. Furthermore, a first gate polycrystalline silicon layer 307 is formed on the memory poly layer 303 with a first gate oxide film 316, which is an insulating layer, interposed therebetween. As a result, the capacitive element 300 has a PPS element structure in which a polycrystalline silicon layer and an insulating layer are stacked. Specifically, the first gate polycrystalline silicon layer 307 is Poly-Si, the first gate oxide film 316 is an insulator, the memory poly layer 303 is Poly-Si, the HTO tunnel 318 is an insulator, and the first gate oxide film 316 is an insulator. The wells 314 correspond to Si-substrate.
 第1コンタクト220に対応するNウェル114及び半導体基板11の部位には、絶縁層である素子分離絶縁膜326Aが設けられている。また、第2コンタクト322及び凹部330に対応するNウェル114及び半導体基板11の各々の部位にも絶縁層である素子分離絶縁膜326Bが設けられている。 An element isolation insulating film 326A, which is an insulating layer, is provided at a portion of the N-well 114 and the semiconductor substrate 11 corresponding to the first contact 220. Further, an element isolation insulating film 326B, which is an insulating layer, is also provided at each portion of the N well 114 and the semiconductor substrate 11 corresponding to the second contact 322 and the recess 330.
 図8の(1)に示した構成では、凹部330を設けて第2コンタクト322を配設する際のドライエッチング等によって、メモリポリ層103又はHTOトンネル318が損傷する等による容量素子300の歩留まり悪化を抑制するために、素子分離絶縁膜326Bを十分な大きさで設ける必要がある。しかしながら、素子分離絶縁膜326Bを大きくすると、Nウェル314の領域が減殺され、容量素子としての性能が低下するおそれがある。 In the configuration shown in FIG. 8(1), the yield of the capacitive element 300 deteriorates due to damage to the memory poly layer 103 or the HTO tunnel 318 due to dry etching or the like when forming the recess 330 and arranging the second contact 322. In order to suppress this, it is necessary to provide the element isolation insulating film 326B with a sufficient size. However, if the element isolation insulating film 326B is enlarged, the area of the N well 314 is reduced, and there is a possibility that the performance as a capacitor element will be degraded.
 図8の(2)は、本例示的実施形態に係る半導体装置10の容量素子部200の断面図で、前述の図2と同一の図面である。本例示的実施形態に係る半導体装置10は、第2コンタクト222を容量素子部200から隔離したメモリポリ層103aの上端部に設けることにより、図8の(1)にあるような凹部330及び第2コンタクト222を容量素子部200に設けることを要しない。その結果、半導体装置10の歩留まり悪化を抑制するための素子分離絶縁膜120Bを、図8の(1)に示した構成に比して縮小することができる。 FIG. 8(2) is a cross-sectional view of the capacitive element section 200 of the semiconductor device 10 according to the present exemplary embodiment, and is the same drawing as FIG. 2 described above. The semiconductor device 10 according to the present exemplary embodiment has a recess 330 and a second It is not necessary to provide the contact 222 in the capacitive element section 200. As a result, the element isolation insulating film 120B for suppressing deterioration in yield of the semiconductor device 10 can be reduced in size compared to the structure shown in FIG. 8(1).
 図8の(1)と(2)とを比較すると、本例示的実施形態に係る半導体装置10の容量素子部200は、(2)に示した容量素子300に比して、ΔD分、素子分離絶縁膜120Bを縮小することにより、(1)に示した構成よりも、Nウェル114の領域を拡大できる。 Comparing (1) and (2) of FIG. 8, the capacitive element portion 200 of the semiconductor device 10 according to the present exemplary embodiment has a larger element size by ΔD than the capacitive element 300 shown in (2). By reducing the isolation insulating film 120B, the area of the N well 114 can be expanded more than in the configuration shown in (1).
 以上説明したように、本例示的実施形態に係る半導体装置10は、PPS容量素子の第2コンタクト222、及び第3コンタクト224の各々を、フラッシュメモリを構成する記憶素子部100の一部の構造を延伸して生成した部位に配設することで、Nウェル114の領域を従来の容量素子よりも拡大することが可能で、寄生容量の増加、信頼性の低下、及び歩留まりの低下等を抑制できるという効果を奏する。 As described above, in the semiconductor device 10 according to the present exemplary embodiment, each of the second contact 222 and the third contact 224 of the PPS capacitive element is connected to the structure of a part of the storage element section 100 constituting a flash memory. By arranging the N-well 114 in a region created by stretching it, it is possible to expand the area of the N-well 114 compared to conventional capacitive elements, thereby suppressing increases in parasitic capacitance, decreases in reliability, and decreases in yield. It has the effect of being able to do it.
 また、本例示的実施形態に係る半導体装置10は、容量素子部200を、フラッシュメモリである記憶素子部100のセルアレイに隣接して形成できるため、チップ面積の縮小が可能になるだけでなく、PPS容量素子の一部の端子構造を記憶素子部100と共用できることから、記憶素子部100に印加する電圧の、寄生抵抗による電圧降下を抑制できるという効果も奏する。 Further, in the semiconductor device 10 according to the present exemplary embodiment, since the capacitive element section 200 can be formed adjacent to the cell array of the memory element section 100, which is a flash memory, it is possible not only to reduce the chip area, but also to reduce the chip area. Since a part of the terminal structure of the PPS capacitive element can be shared with the memory element section 100, there is also an effect that voltage drop due to parasitic resistance in the voltage applied to the memory element section 100 can be suppressed.
 上記した本開示の例示的実施形態に係る半導体装置は一例にすぎず、本開示の趣旨を逸脱しない限りにおいて、構成の省略、追加、改変、使用する材料の変更等を行うことが可能である。 The semiconductor device according to the exemplary embodiment of the present disclosure described above is only an example, and it is possible to omit, add, or modify the configuration, change the materials used, etc. without departing from the spirit of the present disclosure. .
 なお、「第1シリコン層」は「第1ゲート多結晶シリコン層107」に、「第1の絶縁膜」は同「第1ゲート酸化膜116」に、「第2シリコン層」は「メモリポリ層103」に、「第2の絶縁膜」は「HTOトンネル118」に、「第3の絶縁膜」は「ゲート絶縁膜109a、109b」に、「第4の絶縁膜」は「トンネル絶縁膜110a、110b」に、「拡散層」は「ソース105」に、「導電部材」は「ソース配線101」に、「第1接点」は「第1コンタクト220」に、「第2接点」は「第2コンタクト222」に、「第3接点」は「第3コンタクト224」に、各々該当する。 Note that the "first silicon layer" is the "first gate polycrystalline silicon layer 107," the "first insulating film" is the "first gate oxide film 116," and the "second silicon layer" is the "memory polycrystalline silicon layer 107." 103", the "second insulating film" is connected to the "HTO tunnel 118", the "third insulating film" is connected to the "gate insulating films 109a, 109b", and the "fourth insulating film" is connected to the "tunnel insulating film 110a". , 110b", the "diffusion layer" is connected to the "source 105", the "conductive member" is connected to the "source wiring 101", the "first contact" is connected to the "first contact 220", and the "second contact" is connected to the "second contact". 2 contact 222", and the "third contact" corresponds to "third contact 224", respectively.
 2022年3月22日出願の日本国特許出願2022-046025号の開示は、その全体が参照により本明細書に取り込まれる。 The disclosure of Japanese Patent Application No. 2022-046025 filed on March 22, 2022 is incorporated herein by reference in its entirety.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  電圧が印加される第1接点が設けられた第1シリコン層と、
     前記第1シリコン層の直下に形成された第1の絶縁膜と、
     前記第1の絶縁膜の直下に形成された第2シリコン層と、
     前記第2シリコン層の直下に形成された第2の絶縁膜と、
     前記第2の絶縁膜と半導体基板との間に形成されたNウェルと、
     を含む容量素子を備え、
     前記半導体基板の主面上に第3の絶縁膜を介して前記主面と略平行に設けられたフローティングゲートと、
     前記フローティングゲート上に設けられたスペーサと、
     前記フローティングゲートと前記スペーサとの間に設けられ、且つ前記スペーサの一端側の側面、前記フローティングゲートの前記一端側の側面、及び前記半導体基板の前記主面の各々を覆う第4の絶縁膜と、
     前記第2シリコン層が延伸されて形成され、前記半導体基板の前記主面、前記フローティングゲートの前記一端側の側面、及び前記スペーサの前記一端側の側面の各々に、前記第4の絶縁膜を介して接し、第2接点を備えたコントロールゲートと、
     前記第1シリコン層が延伸されて形成され、前記第1接点と導通するコンタクト部と、
     前記半導体基板の表層部に設けられた拡散層と、
     一端が前記拡散層に接続され、且つ前記フローティングゲート及び前記スペーサの他端側の側面に、第5の絶縁膜を介して接し、他端に第3接点を有する導電部材と、
     を含む記憶素子と、
     を備えた半導体装置。
    a first silicon layer provided with a first contact to which a voltage is applied;
    a first insulating film formed directly under the first silicon layer;
    a second silicon layer formed directly under the first insulating film;
    a second insulating film formed directly under the second silicon layer;
    an N-well formed between the second insulating film and the semiconductor substrate;
    Equipped with a capacitive element including
    a floating gate provided substantially parallel to the main surface of the semiconductor substrate with a third insulating film interposed therebetween;
    a spacer provided on the floating gate;
    a fourth insulating film provided between the floating gate and the spacer and covering each of the side surface on one end side of the spacer, the side surface on the one end side of the floating gate, and the main surface of the semiconductor substrate; ,
    The second silicon layer is stretched and formed, and the fourth insulating film is formed on each of the main surface of the semiconductor substrate, the side surface on the one end side of the floating gate, and the side surface on the one end side of the spacer. a control gate connected through the gate and having a second contact;
    a contact portion formed by stretching the first silicon layer and electrically connected to the first contact point;
    a diffusion layer provided on the surface layer of the semiconductor substrate;
    a conductive member whose one end is connected to the diffusion layer and which is in contact with the other end side of the floating gate and the spacer via a fifth insulating film, and has a third contact at the other end;
    a memory element including;
    A semiconductor device equipped with
  2.  前記フローティングゲート、前記拡散層、及び前記導電部材の一端の各々は、前記容量素子に隣接して設けられ、
     前記第2接点、及び前記第3接点は、前記容量素子から離されて設けられた、
     請求項1に記載の半導体装置。
    Each of the floating gate, the diffusion layer, and one end of the conductive member is provided adjacent to the capacitor,
    The second contact and the third contact are provided apart from the capacitive element.
    The semiconductor device according to claim 1.
  3.  前記容量素子は、
     前記半導体基板、及び前記Nウェルの各々において、前記第1接点に対応する部位と、前記第1シリコン層の端部に対応する部位とに素子分離絶縁膜が各々設けられた、
     請求項1に記載の半導体装置。
    The capacitive element is
    In each of the semiconductor substrate and the N-well, an element isolation insulating film is provided at a portion corresponding to the first contact point and a portion corresponding to an end portion of the first silicon layer, respectively.
    The semiconductor device according to claim 1.
  4.  前記容量素子は、
     前記半導体基板、及び前記Nウェルの各々において、前記第1接点に対応する部位と、前記第1シリコン層の端部に対応する部位とに素子分離絶縁膜が各々設けられた、
     請求項2に記載の半導体装置。
    The capacitive element is
    In each of the semiconductor substrate and the N-well, an element isolation insulating film is provided at a portion corresponding to the first contact point and a portion corresponding to an end portion of the first silicon layer, respectively.
    The semiconductor device according to claim 2.
  5.  前記フローティングゲートは、一端側に先端が尖った尖鋭部を有し、
     前記尖鋭部の先端部分が前記第4の絶縁膜を介して前記コントロールゲートと接している、
     請求項1に記載の半導体装置。
    The floating gate has a sharp tip at one end,
    a tip portion of the sharp portion is in contact with the control gate via the fourth insulating film;
    The semiconductor device according to claim 1.
  6.  前記フローティングゲートは、一端側に先端が尖った尖鋭部を有し、
     前記尖鋭部の先端部分が前記第4の絶縁膜を介して前記コントロールゲートと接している、
     請求項2に記載の半導体装置。
    The floating gate has a sharp tip at one end,
    a tip portion of the sharp portion is in contact with the control gate via the fourth insulating film;
    The semiconductor device according to claim 2.
  7.  前記フローティングゲートは、一端側に先端が尖った尖鋭部を有し、
     前記尖鋭部の先端部分が前記第4の絶縁膜を介して前記コントロールゲートと接している、
     請求項3に記載の半導体装置。
    The floating gate has a sharp tip at one end,
    a tip portion of the sharp portion is in contact with the control gate via the fourth insulating film;
    The semiconductor device according to claim 3.
  8.  前記フローティングゲートは、一端側に先端が尖った尖鋭部を有し、
     前記尖鋭部の先端部分が前記第4の絶縁膜を介して前記コントロールゲートと接している、
     請求項4に記載の半導体装置。
    The floating gate has a sharp tip at one end,
    a tip portion of the sharp portion is in contact with the control gate via the fourth insulating film;
    The semiconductor device according to claim 4.
PCT/JP2023/011297 2022-03-22 2023-03-22 Semiconductor device WO2023182376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022046025 2022-03-22
JP2022-046025 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182376A1 true WO2023182376A1 (en) 2023-09-28

Family

ID=88101598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011297 WO2023182376A1 (en) 2022-03-22 2023-03-22 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2023182376A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024604A (en) * 2004-07-06 2006-01-26 Sanyo Electric Co Ltd Method of manufacturing semiconductor device
JP2008041832A (en) * 2006-08-03 2008-02-21 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2011103332A (en) * 2009-11-10 2011-05-26 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
JP2014078661A (en) * 2012-10-12 2014-05-01 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024604A (en) * 2004-07-06 2006-01-26 Sanyo Electric Co Ltd Method of manufacturing semiconductor device
JP2008041832A (en) * 2006-08-03 2008-02-21 Renesas Technology Corp Semiconductor device and its manufacturing method
JP2011103332A (en) * 2009-11-10 2011-05-26 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
JP2014078661A (en) * 2012-10-12 2014-05-01 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
KR100801078B1 (en) Non volatile memory integrate circuit having vertical channel and fabricating method thereof
KR100389130B1 (en) Non-Volatile Memory Device with 2 transistors for 2-bit operation
JP2817500B2 (en) Nonvolatile semiconductor memory device
US6373096B1 (en) Method of manufacturing semiconductor device, nonvolatile semiconductor memory device and method of manufacturing the same
US8289782B2 (en) Semiconductor memory device
JP2013093546A (en) Semiconductor device and manufacturing method therefor
KR20090098675A (en) Manufacturing method of nonvolatile semiconductor storage device and nonvolatile semiconductor storage device
US9368506B2 (en) Integrated circuits and methods for operating integrated circuits with non-volatile memory
TWI390713B (en) Non-volatile semiconductor memory device and method of manufacturing the same
TW201606930A (en) Semiconductor device and manufacturing method thereof
JPS6341240B2 (en)
KR100297720B1 (en) Flash memory cell and method of fabricating the same
JP2007149997A (en) Nonvolatile memory cell and eeprom
KR20100045856A (en) Non-volatile memory device and method of operating the same
KR20100031855A (en) Semiconductor devices and method of fabricating the same
WO2023182376A1 (en) Semiconductor device
JP2011142246A (en) Semiconductor storage device
US6703662B1 (en) Semiconductor device and manufacturing method thereof
JP4854375B2 (en) Semiconductor memory device, manufacturing method thereof, and portable electronic device
JP2643860B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US7572700B2 (en) EEPROM and method of manufacturing the same
JP2006310564A (en) Nonvolatile semiconductor memory and its manufacturing method
US8390052B2 (en) Nonvolatile semiconductor memory device
JPS63166A (en) Nonvolatile semiconductor memory
JPS6352478A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774971

Country of ref document: EP

Kind code of ref document: A1