WO2023182278A1 - Da converting device, display driver, and display device - Google Patents

Da converting device, display driver, and display device Download PDF

Info

Publication number
WO2023182278A1
WO2023182278A1 PCT/JP2023/010904 JP2023010904W WO2023182278A1 WO 2023182278 A1 WO2023182278 A1 WO 2023182278A1 JP 2023010904 W JP2023010904 W JP 2023010904W WO 2023182278 A1 WO2023182278 A1 WO 2023182278A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
signal
stage dac
selection
bit
Prior art date
Application number
PCT/JP2023/010904
Other languages
French (fr)
Japanese (ja)
Inventor
宏嘉 一倉
剛 野坂
Original Assignee
ラピステクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ラピステクノロジー株式会社 filed Critical ラピステクノロジー株式会社
Publication of WO2023182278A1 publication Critical patent/WO2023182278A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits

Definitions

  • the present invention relates to a DA conversion device, a display driver that drives a display panel according to a video signal, and a display device.
  • Active matrix display devices such as liquid crystal display devices or organic EL display devices include a display panel in which multiple data lines and multiple scanning lines are wired in an intersecting manner, and the display panel is driven based on video signals.
  • a display driver is included.
  • the display driver converts gradation data representing the brightness indicated by the video signal as a low-voltage digital value into an analog high-voltage signal that can drive the display panel, amplifies this signal, and sends it to the display panel.
  • a digital-to-analog conversion circuit (hereinafter referred to as DAC) for output is included.
  • the signal level of low-voltage gradation data is increased to a voltage that can drive the display panel using a level converter.
  • the first DA converter compatible with high voltage selects two reference voltages corresponding to the values of the upper bit group of the high-voltage gradation data signal from among the plurality of reference voltages having different voltage values. Select and output.
  • the second DA converter compatible with high voltage includes a plurality of switch elements that are on/off controlled based on the value of the lower bit group of the gradation data signal, and a plurality of switch elements that are controlled to turn on and off based on the value of the lower bit group of the gradation data signal.
  • the second DA converter supplies the amplifier with one of the two reference voltages supplied from the first DA converter, or a voltage that is a combination of both.
  • the amplifier outputs a signal obtained by amplifying the voltage supplied from the second DA converter.
  • the switching element (transistor) that controls charging and discharging of the capacitor is also compatible with high voltage, so switching noise is larger than that of a switching element compatible with low voltage. This causes variations in the amount of charge held in the capacitor, leading to a decrease in DA conversion accuracy, and as a result, a problem arises in that the displayed image deteriorates.
  • the present invention provides a DA conversion device that can improve the accuracy of DA conversion and reduce the size, and a display driver and display device that can improve the quality of display images and reduce the size.
  • the purpose is to provide.
  • the DA conversion device is a digital-to-analog conversion circuit that converts a digital data signal consisting of a plurality of bits from a reference voltage to an output voltage having an analog voltage value within a voltage range of a predetermined voltage higher than the reference voltage.
  • a pre-stage DAC that outputs a maximum voltage and a minimum voltage of one division range corresponding to a group of upper bits in the data signal as first and second selection voltages among a plurality of division ranges obtained by dividing the voltage range; , a shifted lower bit in which a binary signal level representing each bit of a lower bit group other than the upper bit group in the data signal is level-shifted to the first and second selection voltages output from the previous stage DAC, respectively; A voltage between the first selection voltage and the second selection voltage, based on the level shifter that generates the signal group and the first and second selection voltages output from the previous stage DAC, and the lower shift voltage.
  • the second stage DAC generates a voltage having a voltage value corresponding to a bit signal group and outputs the generated voltage as the output voltage.
  • the display driver sends n (n is an integer of 2 or more) display data signals representing the brightness level of each pixel using a plurality of bits, each within a voltage range from a reference voltage to a predetermined voltage higher than the reference voltage.
  • a data driver including first to n-th DA conversion circuits that convert into n drive signals having analog voltage values and supply the signals to n data lines of a display panel, the first to n-th DA conversion circuits
  • Each of the DA conversion circuits sets the maximum voltage and the minimum voltage of one division range corresponding to the upper bit group in the data signal as first and second selection voltages, among a plurality of division ranges obtained by dividing the voltage range.
  • a level shifter that generates a level-shifted shifted lower bit signal group; and a level shifter that generates a level-shifted shifted lower bit signal group; a second-stage DAC that generates a voltage having a voltage value corresponding to the shift lower bit signal group and outputs the generated voltage as an output voltage; and an amplifier that outputs a signal obtained by amplifying the output voltage as the drive signal.
  • the display device includes a display panel including n data lines each having a plurality of pixels (n is an integer of 2 or more), and a display panel including n data lines each having a plurality of pixels formed therein, and n data lines representing the brightness level of each pixel using a plurality of bits.
  • display data signals are converted into n drive signals each having an analog voltage value within a voltage range from a reference voltage to a predetermined voltage higher than the reference voltage, and the display panel
  • the display device includes first to n-th DA conversion circuits that supply data to the n data lines, each of the first to n-th DA conversion circuits having a plurality of divisions into which the voltage range is divided.
  • a pre-stage DAC that outputs the maximum voltage and minimum voltage of one divided range corresponding to the upper bit group in the data signal as first and second selection voltages; a level shifter that generates a shifted lower bit signal group in which a binary signal level representing each bit of the lower bit group is level-shifted to the first and second selection voltages output from the previous stage DAC; and the previous stage DAC; a voltage that is between the first selection voltage and the second selection voltage and has a voltage value corresponding to the shifted lower bit signal group, based on the first and second selection voltages output from and an amplifier that outputs a signal obtained by amplifying the output voltage as the drive signal.
  • the DA converter converts a digital data signal into an output voltage having an analog voltage value higher than the signal level of the data signal using the following front-stage DAC (digital analog converter), level shifter, and rear-stage DAC. Convert.
  • the front-stage DAC calculates the lowest voltage and highest voltage of the divided range corresponding to the upper bit group in the digital data signal among the divided ranges in which the range from a reference voltage based on a high voltage power supply to a predetermined voltage higher than the reference voltage is divided into a plurality of divided ranges. are output as the first and second selection voltages, respectively.
  • the level shifter generates a shifted lower bit signal group by level-shifting the binary signal level representing each bit of the lower bit group in the data signal to the first and second selection voltages output from the previous stage DAC, respectively.
  • the latter-stage DAC generates a voltage having a voltage value corresponding to the shifted lower bit signal group from the first and second selection voltages output from the former-stage DAC, and outputs the generated voltage as the output voltage.
  • circuit elements such as transistors constituting the latter-stage DAC that have a lower breakdown voltage (first selection voltage - second selection voltage) than the voltage from the high-voltage power supply.
  • the size of the device when converted into a semiconductor IC chip can be reduced. Furthermore, since the withstand voltage of the plurality of transistors that are circuit elements constituting the subsequent stage DAC can be lowered, switching noise is reduced and DA conversion accuracy is increased.
  • the DA conversion device including the above-mentioned post-stage DAC as the DA conversion circuit included in the display driver (data driver), it is possible to improve the quality and reduce the size of the displayed image. becomes possible.
  • FIG. 1 is a block diagram showing the configuration of a display device including a display driver according to the present invention.
  • FIG. 2 is a block diagram showing the internal configuration of a data driver 130 as a display driver according to the present invention.
  • FIG. 1 is a block diagram showing an example of the configuration of a DA conversion circuit according to the present invention.
  • FIG. 3 is a diagram for explaining the operation of the front-stage DAC 32.
  • FIG. 3 is a diagram illustrating an example of conversion processing results of the front-stage DAC 32 and the rear-stage DAC 34.
  • FIG. 7 is a diagram showing another example of the conversion processing results of the front-stage DAC 32 and the rear-stage DAC 34.
  • FIG. 7 is a diagram showing still another example of the conversion processing results of the front-stage DAC 32 and the rear-stage DAC 34.
  • FIG. FIG. 3 is a block diagram showing another example of the configuration of the DA conversion circuit according to the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a display device 100 including a display driver according to the present invention.
  • the display device 100 includes a display controller 10, a scan driver 110, a data driver 130 as a display driver, and a display panel 200.
  • the display panel 200 is made of, for example, a liquid crystal or organic EL panel, and has m scanning lines SL1 to SLm (m is an integer of 2 or more) extending in the horizontal direction of the two-dimensional screen, and scanning lines SL1 to SLm extending in the vertical direction of the two-dimensional screen. n data lines DL1 to DLn (n is a natural number of 2 or more).
  • a display cell PC serving as a pixel is formed at each intersection of the scanning line and the data line.
  • the display controller 10 receives the video signal VD and supplies the scan driver 110 with a scan timing signal for generating a horizontal scan pulse to be supplied to each scan line according to the video signal VD.
  • the display controller 10 generates various control signals (clock signal, synchronization signal, data acquisition signal, polarity inversion signal, etc.) and a display data piece representing the brightness level of each pixel in 12 bits, for example, based on the video signal VD.
  • a video digital signal DVS including a sequence of is generated. Note that the video digital signal DVS is a signal representing a signal level corresponding to binary logic levels 0 and 1 by a logic power supply VDD for driving a logic circuit.
  • the display controller 10 supplies the video digital signal DVS to the data driver 130.
  • the scan driver 110 sequentially applies a horizontal scan pulse synchronized with the scan timing signal supplied from the display controller 10 to each of the scan lines SL1 to SLm of the display panel 200.
  • the data driver 130 In response to the video digital signal DVS, the data driver 130 first takes in a series of display data pieces corresponding to each pixel included in the video digital signal DVS by the number of data lines, that is, n pieces. Next, the data driver 130 converts each of the n captured display data pieces into a drive signal having an analog voltage value corresponding to the brightness level indicated by the display data piece.
  • the drive signal is an analog voltage that is generated based on the high voltage power supply VDDH for driving the display panel 200 and changes each brightness level within the range from the lowest brightness to the highest brightness that can be expressed by the display panel 200 in stages. It is a signal expressed as a value.
  • the data driver 130 supplies the n drive signals generated as described above, each corresponding to the n display data pieces, to the data lines DL1 to DLn of the display panel 200 as drive signals G1 to Gn.
  • FIG. 2 is a block diagram schematically showing the internal configuration of the data driver 130.
  • the data driver 130 includes a latch circuit 131 and a DA (digital to analog) converter 132.
  • the latch circuit 131 captures n series of display data pieces included in the video digital signal DVS supplied from the display controller 10, and supplies them to the DA converter 132 as display data signals P1 to Pn, respectively.
  • each of the display data signals P1 to Pn is, for example, a 12-bit signal, as described above. At this time, each bit is a binary signal representing logic levels 0 and 1 depending on the reference voltage VSS and the low voltage LV.
  • the DA converter 132 individually converts each of the display data signals P1 to Pn into an analog voltage value within the range of a predetermined high voltage HV from the reference voltage VSS, corresponding to the brightness level indicated by the display data signal.
  • the high voltage HV is a DC voltage based on the high voltage power supply VDDH or a voltage slightly lower than the voltage.
  • the DA converter 132 outputs drive signals G1 to Gn, each of which has the n analog voltage values obtained by the conversion.
  • the DA conversion unit 132 includes a reference voltage generation circuit VG and DA conversion circuits DC1 to DCn provided corresponding to display data signals P1 to Pn, respectively.
  • the reference voltage generation circuit VG generates, for example, nine reference voltages GS1 to GS9 having different voltage values from each other based on the high voltage power supply VDDH.
  • Reference voltage generation circuit VG supplies reference voltages GS1 to GS9 to DA conversion circuits DC1 to DCn.
  • Each of the DA conversion circuits DC1 to DCn receives reference voltages GS1 to GS9, and also receives one of the display data signals P1 to Pn supplied from the latch circuit 131, which corresponds to the one corresponding to the DA conversion circuit DC1 to DCn. That is, for example, the DA conversion circuit DC1 receives the display data signal P1, the DA conversion circuit DC2 receives the display data signal P2, and the DA conversion circuit DCn receives the display data signal Pn.
  • Each of the DA conversion circuits DC1 to DCn converts the display data signal received as a digital data signal into an analog voltage value corresponding to the brightness level indicated by the display data signal, based on the reference voltages GS1 to GS9. do.
  • Each of the DA conversion circuits DC1 to DCn outputs the amplified analog voltage value as a drive signal. That is, the DA conversion circuits DC1 to DCn output the drive signals generated by each of them as drive signals G1 to Gn. Note that each of the DA conversion circuits DC1 to DCn has the same internal configuration.
  • FIG. 3 is a circuit diagram showing an example of the internal configuration of the DA conversion circuit according to the present invention, with DC1 extracted from the DA conversion circuits DC1 to DCn.
  • the DA conversion circuit DC1 includes level shifters 31 and 33, a DA converter 32 (hereinafter referred to as a front-stage DAC 32), a DA converter 34 (hereinafter referred to as a rear-stage DAC 34), and an amplifier 35.
  • a DA converter 32 hereinafter referred to as a front-stage DAC 32
  • a DA converter 34 hereinafter referred to as a rear-stage DAC 34
  • an amplifier 35 As shown in FIG. 3, the DA conversion circuit DC1 includes level shifters 31 and 33, a DA converter 32 (hereinafter referred to as a front-stage DAC 32), a DA converter 34 (hereinafter referred to as a rear-stage DAC 34), and an amplifier 35.
  • the level shifter 31 receives the high-voltage power supply VDDH and, for example, a group of upper bits [11:9] consisting of the upper 3 bits of the 12-bit display data signal P1 [11:0].
  • the level shifter 31 converts the amplitude of the binary (logic level 0, 1) signal level (LV, VSS) representing each bit of the upper bit group [11:9] into a high voltage HV based on the high voltage power supply VDDH and a reference level. The level is shifted to the amplitude based on the voltage VSS.
  • the level shifter 31 level-shifts the signal level of each of the upper three bits of the display data signal P1 as described above and supplies it to the preceding stage DAC 32 as the upper bit signal group MS.
  • the front-stage DAC 32 receives the high-voltage power supply VDDH, the upper bit signal group MS, and the reference voltages GS1 to GS9.
  • the reference voltages GS1 to GS9 are obtained by dividing the voltage range provided by the high voltage power supply VDDH by the number of all bit patterns [000] to [111] that can be expressed by the upper bit signal group MS, as shown in FIG. These are the highest and lowest voltages in each divided range when Here, the total number of bit patterns in the upper bit signal group MS is eight.
  • the range of the high voltage power supply VDDH is divided into eight divided ranges DV1 to DV8, and each divided range is associated with a bit pattern [000] to [111] corresponding to that divided range. be done.
  • the front-stage DAC 32 converts the upper bit signal group MS as digital data into two systems of analog voltages as described below, and outputs them as selection voltages Va and Vb, respectively.
  • the front-stage DAC 32 selects a division range corresponding to the bit pattern represented by the upper bit signal group MS from among the division ranges DV1 to DV8, and selects the highest voltage and lowest voltage of the selected division range, respectively. Output as voltages Va and Vb.
  • the pre-stage DAC 32 uses the reference voltage that is the highest voltage in the division range DV3 corresponding to the bit pattern [010] as shown in FIG.
  • the voltage GS4 is outputted as a selection voltage Va
  • the reference voltage GS3, which is the lowest voltage is outputted as a selection voltage Vb.
  • the level shifter 33 receives the lower bit group [8:0] consisting of the lower 9 bits of the 12-bit display data signal P1 [11:0] together with the selection voltages Va and Vb output from the previous stage DAC 32.
  • the level shifter 33 levels-shifts each binary (logic level 0, 1) signal level (LV, VSS) representing each bit of the lower bit group [8:0] to selection voltages Va and Vb, respectively.
  • the level shifter 33 supplies a 9-bit signal obtained by level-shifting the signal level of each bit of the lower bit group [8:0] to the subsequent stage DAC 34 as a shifted lower bit signal group LS.
  • the latter stage DAC 34 receives the shift lower bit signal group LS together with the selection voltages Va and Vb outputted from the former stage DAC 32.
  • the latter-stage DAC 34 is a so-called ladder resistance type DAC that is composed of a ladder resistance LDR and a selector SEL.
  • the ladder resistor LDR is a voltage divided by the voltage between the selection voltages Va and Vb by the number (512) of all bit patterns [000000000] to [111111111] that can be expressed by the 9-bit shift lower bit signal group LS. It generates piezoelectric voltages VP1 to VP512. It is assumed that among the divided voltages VP1 to VP512, VP512 has the maximum voltage value, and VP1 has the minimum voltage value.
  • the selector SEL selects only one divided voltage from among the divided voltages VP1 to VP512 based on the shifted lower bit signal group LS, and supplies this as the output voltage V0 to the amplifier 35 via the line L0.
  • Selector SEL includes switch elements Q1 to Q512 and a decoder DEC.
  • Switch elements Q1 to Q512 individually receive divided voltages VP1 to VP512 at one end of each. The other ends of each of the switching elements Q1 to Q512 are commonly connected to the line L0.
  • the decoder DEC individually performs on/off control for the switching elements Q1 to Q512 to set one of the switching elements Q1 to Q512 in an on state and all other switch groups to be in an off state based on the shifted lower bit signal group LS.
  • the decoder DEC turns on only Q1 of the switch elements Q1 to Q512 and turns on the other switch elements Q2 to Q512. All controls are turned off. Thereby, the selector SEL selects the divided voltage VP1 from among the divided voltages VP1 to VP512, and outputs the divided voltage VP1 as the output voltage V0 via the line L0. Further, when the shifted lower bit signal group LS is a bit pattern [111111111] showing the highest value, the decoder DEC turns on only Q512 of the switching elements Q1 to Q512 and turns on the other switching elements Q1 to Q511. All controls are turned off. Thereby, the selector SEL selects the divided voltage VP512 from among the divided voltages VP1 to VP512, and outputs the divided voltage VP512 as the output voltage V0 via the line L0.
  • the amplifier 35 is a voltage follower operational amplifier whose output terminal is connected to its inverting input terminal.
  • the amplifier 35 receives the output voltage V0 output from the selector SEL at its own non-inverting input terminal via the line L0, and outputs a signal obtained by amplifying the output voltage V0 from its own output terminal as a drive signal G1.
  • First state [111111001101]
  • Second state [111000110011]
  • Third state [000000110011] Taking as an example the case where the state changes to , the operations of the front-stage DAC 32 and the rear-stage DAC 34 in each state will be described with reference to FIGS. 5A to 5C.
  • each of the reference voltages GS1 to GS9 is a voltage at each boundary when the range of 0.5 volts to 8.5 volts is divided into 1 volt units as shown below.
  • GS1 0.5 volts GS2: 1.5 volts GS3: 2.5 volts GS4: 3.5 volts GS5: 4.5 volts GS6: 5.5 volts GS7: 6.5 volts GS8: 7.5 volts GS9: 8.5 volts
  • [111] is supplied to the previous stage DAC 32 as the upper bit signal group MS, and [111] is supplied as the shifted lower bit signal group LS. 111001101] is supplied to the subsequent DAC 34.
  • the previous stage DAC 32 selects a selection voltage Va of 8.5 volts as GS9, which is the highest voltage of the division range DV8, and GS8, which is the lowest voltage of the division range DV8, in accordance with the upper bit signal group MS[111].
  • a selection voltage Vb of 7.5 volts is supplied to the subsequent stage DAC 34.
  • the rear DAC 34 is 7.5+(8.5-7.5) ⁇ [111001101]/[111111111]
  • the voltage of 8.4 volts determined by is outputted as the output voltage V0.
  • bit pattern of the display data signal P1 transitions from the first state to the second state bit pattern [111000110011].
  • [111] of the upper bit signal group MS is continuously supplied to the preceding stage DAC 32, and [000110011] is supplied to the latter stage DAC 34 as the shifted lower bit signal group LS.
  • the front-stage DAC 32 continues to output the selection voltage Va of 8.5 volts as GS9, which is the highest voltage of the division range DV8, and the selection voltage Vb of 7.5 volts, as GS8, which is the lowest voltage of the division range DV8, to the rear stage. Supplied to DAC34.
  • the rear DAC 34 is 7.5+(8.5-7.5) ⁇ [000110011]/[111111111]
  • the voltage of 7.6 volts determined by is outputted as the output voltage V0.
  • bit pattern of the display data signal P1 transitions from the second state to the third state bit pattern [000000110011].
  • [000] of the upper bit signal group MS is supplied to the preceding stage DAC 32, and [000110011] is subsequently supplied to the latter stage DAC 34 as the shifted lower bit signal group LS.
  • the front-stage DAC 32 selects a selection voltage Va of 1.5 volts as GS2, which is the highest voltage of the division range DV1, and GS1, which is the lowest voltage of the division range DV1, according to the upper bit signal group MS[000].
  • a selection voltage Vb of 0.5 volts is supplied to the subsequent stage DAC 34.
  • the rear DAC 34 is 0.5+(1.5-0.5) ⁇ [000110011]/[111111111]
  • the voltage of 0.6 volts determined by is outputted as the output voltage V0.
  • the DA conversion circuit DC1 outputs the drive signal G1 having the output voltage V0.
  • the DA conversion circuit DC1 shown in FIG. 3 converts the 12-bit data signal (P1) as digital data into an analog voltage value of a high voltage (VDDH) higher than the signal level (VDD) of the data signal. It is converted into an output voltage V0 having a value of V0.
  • the pre-stage DAC 32 handles the high voltage signal between the reference voltage VSS and the high voltage HV as a processing target, so the high voltage signal that is at least the voltage between the reference voltage VSS and the high voltage HV is processed.
  • a voltage power supply VDDH is used. Therefore, as each circuit element such as a transistor constituting the front-stage DAC 32, one having a high breakdown voltage compatible with the high voltage power supply VDDH is used.
  • the second-stage DAC 34 uses a selected voltage Va which is the highest voltage of each of the divided ranges DV1 to DV8 obtained by dividing the voltage between the reference voltage VSS and the high voltage HV by the high voltage power supply VDDH into eight divided ranges as shown in FIG. and the selection voltage Vb, which is the lowest voltage, is treated as a processing target. Therefore, in the latter stage DAC 34, the voltage between the selection voltages Va and Vb is set using a bit signal (LS) in which the binary signal level of each of the lower 8 bits of the display data signal P1 is level-shifted to the selection voltages Va and Vb, respectively.
  • the selector SEL is controlled to select one of the divided voltages VP1 to VP512.
  • the circuit elements constituting the subsequent stage DAC 34 for example, the switch elements S1 to S512 included in the selector SEL, the transistors constituting the decoder DEC, etc., have a withstand voltage (Va-Vb), that is, approximately 1 of the high voltage power supply VDDH (HV). It becomes possible to use one with a breakdown voltage of /8.
  • the transistors used have lower breakdown voltages, which reduces switching noise and improves DA conversion accuracy.
  • the DA conversion circuit according to the present invention including the latter-stage DAC 34, it is possible to improve the DA conversion accuracy and reduce the size.
  • a DA conversion circuit including the rear-stage DAC 34 as the DA conversion circuit included in the display driver (data driver), it is possible to improve the quality and reduce the size of the displayed image.
  • a ladder resistance type DAC is used as the subsequent stage DAC 34, but a capacitance type DAC may be used.
  • FIG. 6 is a circuit diagram showing another example of the internal configuration of the DA conversion circuit DC1, which was created in view of this point.
  • DA conversion circuit DC1 shown in FIG. 6 has a different configuration (31 , 32, 35) are the same as shown in FIG.
  • the latter-stage DAC 44 includes voltage protection circuits 11 and 12, a sample circuit 13, a hold circuit 14, and an output circuit 15.
  • the breakdown voltage protection circuit 11 includes switch elements 11a and 11b that protect the sample circuit 13 from a voltage higher than the voltage difference (Va-Vb) between the selection voltage Va and the selection voltage Vb.
  • the switch element 11a When in the on state, the switch element 11a supplies the selection voltage Va output from the previous stage DAC 32 to the sample circuit 13 via the line La. On the other hand, in the off state, the switch element 11a prevents a voltage higher than the voltage (Va-Vb) from being applied to the sample circuit 13 via the line La by cutting off the connection between the pre-stage DAC 32 and the line La. do.
  • the switch element 11b When in the on state, the switch element 11b supplies the selection voltage Vb output from the previous stage DAC 32 to the sample circuit 13 via the line Lb. On the other hand, in the off state, the switch element 11b cuts off the connection between the pre-stage DAC 32 and the line Lb, thereby avoiding a state in which a voltage higher than the voltage (Va-Vb) is applied to the sample circuit 13 via the line Lb. do.
  • the level shifter 43 includes a parallel-to-serial conversion circuit 43a (hereinafter referred to as a PS conversion circuit 43a), a first level shifter 43b, and a second level shifter 43c.
  • the PS conversion circuit 43a receives the lower bit group [8:0] consisting of the lower 9 bits of the 12-bit display data signal P1 [11:0].
  • the PS conversion circuit 43a converts the lower bit group [8:0] in the 9-bit parallel format into a bit series in the 1-bit serial format, and supplies a serial bit signal SD representing the bit series to the first level shifter 43b.
  • the first level shifter 43b receives selection voltages Va and Vb via the withstand voltage protection circuit 11 and lines La and Lb, along with the serial bit signal SD representing the lower bit group [8:0].
  • the first level shifter 43b converts each binary signal level (LV, VSS) of each bit (logic level 0, 1) of the 9-bit series represented by the serial bit signal SD to selection voltages Va and Vb, respectively. Shift levels.
  • the first level shifter 43b supplies a serial bit signal representing the level-shifted shifted lower bit signal group to the second level shifter 43c and the sample circuit 13 of the subsequent stage DAC 44 as a serial bit signal SSD.
  • the first level shifter 43b cannot receive the selection voltages Va and Vb while the breakdown voltage protection circuit 11 cuts off the connection between the preceding stage DAC 32 and the line La (Lb), so in this case, The level shift operation described above and the output of the serial bit signal SSD are stopped.
  • the second level shifter 43c receives selection voltages Va and Vb via lines La and Lb along with the serial bit signal SSD.
  • the second level shifter 43c converts each binary signal level (LV, VSS) of each bit (logic level 0, 1) of a 9-bit series in a 1-bit serial format represented by the serial bit signal SSD to a selected voltage.
  • Level shift to Va and Vb The second level shifter 43c supplies a serial bit signal representing the level-shifted shifted lower bit signal group to the hold circuit 14 of the subsequent stage DAC 44 as a serial bit signal SSDa.
  • the sample circuit 13 of the latter stage DAC 44 includes switch elements 13a, 13b and a capacitor 13c.
  • the switch elements 13a and 13b are turned on or off in a complementary manner for each bit of the serial bit signal SSD consisting of a bit sequence of the lower 9 bits of the display data signal P1, depending on the logic level of that bit signal. For example, when each bit in the serial bit signal SSD indicates a logic level 0, the switch element 13a is turned off and the switch element 13b is turned on, and when each bit indicates a logic level 1, the switch element 13a is turned on and the switch element 13b is turned on. is in the off state. When the switch element 13a is turned on, the selection voltage Va received via the line La, that is, the divided range (DV1 to DV8) corresponding to the value of the upper 3 bits (MS) of the display data signal P1. Apply the highest voltage to line Lc.
  • the selection voltage Vb received via the line Lb that is, the division range (DV1 to DV8) corresponding to the value of the upper 3 bits (MS) of the display data signal P1. ) is applied to line Lc.
  • the capacitor 13c has one end connected to the line Lc, and is charged according to the selection voltage Va or Vb supplied via the switch element 13a or 13b. As a result, an amount of charge corresponding to the value represented by the lower 9 bits of the display data signal P1 between the selection voltages Va and Vb is accumulated in the capacitor 13c. As a result, a voltage Vj corresponding to the amount of charge, that is, a voltage Vj having a voltage value corresponding to the value represented by the lower 9 bits of the display data signal P1 between the selection voltages Va and Vb is generated on the line Lc. Ru.
  • the breakdown voltage protection circuit 12 includes a switch element 12a that protects the sample circuit 13 from a voltage higher than the above voltage (Va-Vb).
  • the switch element 12a When in the on state, the switch element 12a supplies the voltage Vj output from the sample circuit 13 to the hold circuit 14 via the line Ld. On the other hand, in the off state, the switch element 12a cuts off the connection between the sample circuit 13 and the line Ld, so that a voltage higher than the voltage (Va-Vb) accumulated in the hold circuit 14 is passed to the sample circuit via the line Ld. 13 is avoided.
  • the hold circuit 14 includes a switch element 14a and a capacitor 14b.
  • the switch element 14a is turned on or off by the serial bit signal SSDa output from the level shifter 43c at a timing opposite to the timing at which the switch elements 13a and 13b are turned on according to the serial bit signal SSD output from the level shifter 43b. state. For example, when each bit in the serial bit signal SSDa indicates a logic level 0, it becomes an OFF state, and when it indicates a logic level 1, it becomes an ON state. When the switch element 14a is turned on, it applies the voltage Vj received via the line Ld to the line Le.
  • the capacitor 14b has one end connected to the line Le, and is charged by the voltage Vj applied to the line Le via the switch element 14a. As a result, an amount of charge corresponding to the value of the lower 9 bits of the display data signal P1 between the selection voltages Va and Vb is accumulated in the capacitor 14b.
  • the capacitor 14b has the lowest voltage (Vb) and the highest voltage in the divided range corresponding to the upper three bits (MS) of the display data signal P1, that is, one of the divided ranges DV1 to DV8 shown in FIG.
  • a voltage VQ between voltages (Va) and having a voltage value corresponding to the lower 9 bits (LS) of the display data signal P1 is held.
  • voltage VQ held in capacitor 14b is supplied to output circuit 15 via line Le.
  • the output circuit 15 includes a switch element 15a that connects the line Le and the line L0 when in the on state, and cuts off the connection between the line Le and the line L0 when in the off state. That is, when the switch element 15a is in the on state, the voltage VQ held in the capacitor 14b of the hold circuit 14 is supplied to the amplifier 35 via the line L0.
  • the front-stage DAC 32 selects the lowest voltage of the division range (one of DV1 to DV8) corresponding to the bit pattern represented by the upper three bits [11:9] of the display data signal P1, the selected voltage Vb, and the highest voltage. is output as the selection voltage Va.
  • the switch elements 13a, 13b of the sample circuit 13 and the switch element 14a of the hold circuit 14 repeat on and off according to the logic level of each bit of the series of lower 9 bits [8:0] of the display data signal P1.
  • the voltage VQ corresponding to the luminance level represented by the 12-bit display data signal P1[11:0] is held in the capacitor 14b of the hold circuit 14.
  • the switch element 13a is turned on, and the potential of Va is held at Vj.
  • the switch element 14b is turned off, and the switch element 13b is then turned on, so that the potential of Vb is held at Vj.
  • the amplifier 35 outputs the drive signal G1 having the voltage VQ corresponding to the brightness level represented by the display data signal P1[11:0]. .
  • the subsequent stage DAC 44 selects the highest voltage in the division range obtained by dividing the voltage between the reference voltage VSS and the high voltage HV by the high voltage power supply VDDH into eight as shown in FIG.
  • the voltage between the voltage Va and the selection voltage Vb, which is the lowest voltage, is treated as a processing target. Therefore, the subsequent DAC 44 sets the selection voltage to the sample circuit 13 and the hold circuit 14 based on the bit signals (SSD, SSDa) obtained by level-shifting the binary signal level of the display data signal P1 to the selection voltages Va and Vb, respectively.
  • the charging and discharging of the capacitors (13c, 14b) is controlled by Va and Vb.
  • the latter-stage DAC 44 it is possible to reduce the size when it is made into a semiconductor IC chip, compared to the case of using one that operates on the high-voltage power supply VDDH. Furthermore, in the latter-stage DAC 44, the switching noise is reduced because the withstand voltage of the transistor used is lowered, and the DA conversion accuracy is increased.
  • the configuration of the DA conversion circuit shown in FIG. 3 or 6 was explained by taking as an example the DA conversion circuit included in the data driver 130 that drives the display panel.
  • the present invention may also be applied to a DA conversion circuit.
  • the DA conversion circuit that converts a data signal into an output voltage (V0) having an analog voltage value within a voltage range of a predetermined voltage (HV) from a reference voltage (VSS) includes the following pre-stage DAC. , a level shifter, and a post-stage DAC.
  • the front-stage DAC (32) divides one of the divided ranges (DV1 to DV8) into which the voltage range from the reference voltage to the predetermined voltage (HV) is divided, corresponding to the upper bit group (MS) in the data signal.
  • the maximum voltage and minimum voltage are output as first and second selection voltages (Va, Vb).
  • the level shifters (33, 43) convert the binary signal levels representing each bit of the lower bit group other than the upper bit group (MS) in the data signal to the first and second signals output from the previous stage DAC (32), respectively.
  • a shifted lower bit signal group (LS, SSD, SSDa) whose level is shifted to the selection voltage (Va, Vb) is generated.
  • the second stage DAC (34, 44) has a voltage between the first selection voltage (Va) and the second selection voltage (Vb) based on the first and second selection voltages output from the previous stage DAC. , and a voltage having a voltage value corresponding to the shifted lower bit signal group (LS, SSD, SSDa), and outputs this as an output voltage (V0).

Abstract

A DA converting device according to the present invention includes: a pre-stage DAC which outputs, as first and second selected voltages, a maximum voltage and a minimum voltage of one divided range corresponding to a higher-order bit group in a data signal, from among a plurality of divided ranges obtained by dividing a voltage range from a reference voltage to a prescribed voltage higher than the reference voltage; a level shifter for generating a shifted lower-order bit signal group obtained by level-shifting binary signal levels representing each bit in a lower-order bit group in the data signal respectively to the first and second selected voltages output from the pre-stage DAC; and a post-stage DAC which, on the basis of the first and second selected voltages output from the pre-stage DAC, outputs as an output voltage a voltage which is between the first selected voltage and the second selected voltage and which has a voltage value corresponding to the shifted lower-order bit signal group.

Description

DA変換装置、表示ドライバ及び表示装置DA converter, display driver and display device
 本発明は、DA変換装置、映像信号に応じて表示パネルを駆動する表示ドライバ及び表示装置に関する。 The present invention relates to a DA conversion device, a display driver that drives a display panel according to a video signal, and a display device.
 液晶表示装置、或いは有機EL表示装置等のアクティブマトリクス型の表示装置には、複数のデータ線と複数の走査線が交差状に配線されている表示パネルと共に、映像信号に基づき当該表示パネルを駆動する表示ドライバが搭載されている。 Active matrix display devices such as liquid crystal display devices or organic EL display devices include a display panel in which multiple data lines and multiple scanning lines are wired in an intersecting manner, and the display panel is driven based on video signals. A display driver is included.
 表示ドライバには、映像信号にて示される輝度を低電圧のデジタル値で表す階調データを、表示パネルを駆動し得るアナログの高電圧を有する信号に変換し、これを増幅して表示パネルに出力するデジタルアナログ変換回路(以下、DACと称する)が含まれている。 The display driver converts gradation data representing the brightness indicated by the video signal as a low-voltage digital value into an analog high-voltage signal that can drive the display panel, amplifies this signal, and sends it to the display panel. A digital-to-analog conversion circuit (hereinafter referred to as DAC) for output is included.
 このようなDACとして、以下のレベル変換器、第1及び第2のDA変換器、及びアンプを有するものが知られている(例えば、特許文献1参照)。 As such a DAC, one having the following level converter, first and second DA converters, and amplifier is known (see, for example, Patent Document 1).
 当該特許文献1に記載のDACでは、先ず、低電圧の階調データの信号レベルをレベル変換器によって表示パネルを駆動し得る電圧まで高電圧化する。次に、高電圧対応の第1のDA変換器が、互いに異なる電圧値を有する複数の参照電圧のうちから、高電圧化した階調データ信号の上位ビット群の値に対応した2つの参照電圧を選択し出力する。高電圧対応の第2のDA変換器は、階調データ信号の下位ビット群の値に基づきオンオフ制御される複数のスイッチ素子と、当該スイッチ素子によって、第1のDA変換器から供給された2つの参照電圧の一方又は双方で充放電制御される複数のキャパシタを含む。かかる構成により、第2のDA変換器は、第1のDA変換器から供給された2つの参照電圧のうちの一方の電圧、又は両者を合成した電圧をアンプに供給する。当該アンプは、第2のDA変換器から供給された電圧を増幅した信号を出力する。 In the DAC described in Patent Document 1, first, the signal level of low-voltage gradation data is increased to a voltage that can drive the display panel using a level converter. Next, the first DA converter compatible with high voltage selects two reference voltages corresponding to the values of the upper bit group of the high-voltage gradation data signal from among the plurality of reference voltages having different voltage values. Select and output. The second DA converter compatible with high voltage includes a plurality of switch elements that are on/off controlled based on the value of the lower bit group of the gradation data signal, and a plurality of switch elements that are controlled to turn on and off based on the value of the lower bit group of the gradation data signal. It includes a plurality of capacitors whose charging and discharging are controlled by one or both of two reference voltages. With this configuration, the second DA converter supplies the amplifier with one of the two reference voltages supplied from the first DA converter, or a voltage that is a combination of both. The amplifier outputs a signal obtained by amplifying the voltage supplied from the second DA converter.
特開2011-239378号公報Japanese Patent Application Publication No. 2011-239378
 しかしながら、上記した特許文献1に記載のDACでは、第1及び第2のDA変換器が高電圧対応である為、これら第1及び第2のDA変換器を構成する素子、特にトランジスタとして高電圧のものを用いる必要がある。これにより、当該DACの装置規模が大きくなり、それに伴い表示ドライバを構築するICチップのサイズが大きくなるという問題が生じる。 However, in the DAC described in Patent Document 1 mentioned above, since the first and second DA converters are compatible with high voltages, the elements constituting these first and second DA converters, especially transistors, are capable of high voltages. It is necessary to use the following. This causes a problem in that the scale of the DAC increases, and the size of the IC chip on which the display driver is constructed increases accordingly.
 更に、特許文献1に記載のDACでは、キャパシタの充放電を制御するスイッチ素子(トランジスタ)も高電圧対応であることから、低電圧対応のスイッチ素子に比べてスイッチングノイズが大きくなる。これにより、キャパシタに保持された電荷量にバラツキが生じてDA変換精度の低下を招き、その結果、表示画像が劣化するという問題も生じる。 Further, in the DAC described in Patent Document 1, the switching element (transistor) that controls charging and discharging of the capacitor is also compatible with high voltage, so switching noise is larger than that of a switching element compatible with low voltage. This causes variations in the amount of charge held in the capacitor, leading to a decrease in DA conversion accuracy, and as a result, a problem arises in that the displayed image deteriorates.
 そこで、本発明は、DA変換精度の向上及びサイズの縮小化を図ることが可能なDA変換装置、及び表示画像の高品質化及びサイズの縮小化を図ることが可能な表示ドライバ及び表示装置を提供することを目的とする。 Therefore, the present invention provides a DA conversion device that can improve the accuracy of DA conversion and reduce the size, and a display driver and display device that can improve the quality of display images and reduce the size. The purpose is to provide.
 本発明に係るDA変換装置は、複数ビットからなるデジタルのデータ信号を基準電圧から前記基準電圧より高い所定電圧の電圧範囲内のアナログの電圧値を有する出力電圧に変換するデジタルアナログ変換回路であって、前記電圧範囲を分割した複数の分割範囲のうちで前記データ信号における上位ビット群に対応した1の分割範囲の最大電圧及び最小電圧を第1及び第2の選択電圧として出力する前段DACと、前記データ信号における前記上位ビット群以外の下位ビット群の各ビットを表す2値の信号レベルを、夫々前記前段DACから出力された前記第1及び第2の選択電圧にレベルシフトしたシフト下位ビット信号群を生成するレベルシフタと、前記前段DACから出力された前記第1及び第2の選択電圧に基づき、前記第1の選択電圧と前記第2の選択電圧との間の電圧であり前記シフト下位ビット信号群に対応した電圧値を有する電圧を生成し、生成した電圧を前記出力電圧として出力する後段DACと、を含む。 The DA conversion device according to the present invention is a digital-to-analog conversion circuit that converts a digital data signal consisting of a plurality of bits from a reference voltage to an output voltage having an analog voltage value within a voltage range of a predetermined voltage higher than the reference voltage. a pre-stage DAC that outputs a maximum voltage and a minimum voltage of one division range corresponding to a group of upper bits in the data signal as first and second selection voltages among a plurality of division ranges obtained by dividing the voltage range; , a shifted lower bit in which a binary signal level representing each bit of a lower bit group other than the upper bit group in the data signal is level-shifted to the first and second selection voltages output from the previous stage DAC, respectively; A voltage between the first selection voltage and the second selection voltage, based on the level shifter that generates the signal group and the first and second selection voltages output from the previous stage DAC, and the lower shift voltage. The second stage DAC generates a voltage having a voltage value corresponding to a bit signal group and outputs the generated voltage as the output voltage.
 本発明に係る表示ドライバは、各画素の輝度レベルを複数ビットで表すn(nは2以上の整数)個の表示データ信号を、夫々が基準電圧から前記基準電圧より高い所定電圧の電圧範囲内のアナログの電圧値を有するn個の駆動信号に変換して表示パネルのn個のデータ線に供給する第1乃至第nのDA変換回路を含むデータドライバであって、前記第1乃至第nのDA変換回路の各々は、前記電圧範囲を分割した複数の分割範囲のうちで前記データ信号における上位ビット群に対応した1の分割範囲の最大電圧及び最小電圧を第1及び第2の選択電圧として出力する前段DACと、前記データ信号における前記上位ビット群以外の下位ビット群の各ビットを表す2値の信号レベルを、夫々前記前段DACから出力された前記第1及び第2の選択電圧にレベルシフトしたシフト下位ビット信号群を生成するレベルシフタと、前記前段DACから出力された前記第1及び第2の選択電圧に基づき、前記第1の選択電圧と前記第2の選択電圧との間の電圧であり前記シフト下位ビット信号群に対応した電圧値を有する電圧を生成し、生成した電圧を出力電圧として出力する後段DACと、前記出力電圧を増幅した信号を前記駆動信号として出力するアンプと、を含む。 The display driver according to the present invention sends n (n is an integer of 2 or more) display data signals representing the brightness level of each pixel using a plurality of bits, each within a voltage range from a reference voltage to a predetermined voltage higher than the reference voltage. A data driver including first to n-th DA conversion circuits that convert into n drive signals having analog voltage values and supply the signals to n data lines of a display panel, the first to n-th DA conversion circuits Each of the DA conversion circuits sets the maximum voltage and the minimum voltage of one division range corresponding to the upper bit group in the data signal as first and second selection voltages, among a plurality of division ranges obtained by dividing the voltage range. and a binary signal level representing each bit of a lower bit group other than the upper bit group in the data signal to the first and second selection voltages output from the previous stage DAC, respectively. a level shifter that generates a level-shifted shifted lower bit signal group; and a level shifter that generates a level-shifted shifted lower bit signal group; a second-stage DAC that generates a voltage having a voltage value corresponding to the shift lower bit signal group and outputs the generated voltage as an output voltage; and an amplifier that outputs a signal obtained by amplifying the output voltage as the drive signal. ,including.
 また、本発明に係る表示装置は、夫々に複数の画素が形成されているn(nは2以上の整数)個のデータ線を含む表示パネルと、各画素の輝度レベルを複数ビットで表すn(nは2以上の整数)個の表示データ信号を、夫々が基準電圧から前記基準電圧より高い所定電圧の電圧範囲内のアナログの電圧値を有するn個の駆動信号に変換して前記表示パネルの前記n個のデータ線に供給する第1乃至第nのDA変換回路を含む表示装置であって、前記第1乃至第nのDA変換回路の各々は、前記電圧範囲を分割した複数の分割範囲のうちで前記データ信号における上位ビット群に対応した1の分割範囲の最大電圧及び最小電圧を第1及び第2の選択電圧として出力する前段DACと、前記データ信号における前記上位ビット群以外の下位ビット群の各ビットを表す2値の信号レベルを、夫々前記前段DACから出力された前記第1及び第2の選択電圧にレベルシフトしたシフト下位ビット信号群を生成するレベルシフタと、前記前段DACから出力された前記第1及び第2の選択電圧に基づき、前記第1の選択電圧と前記第2の選択電圧との間の電圧であり前記シフト下位ビット信号群に対応した電圧値を有する電圧を生成し、生成した電圧を出力電圧として出力する後段DACと、前記出力電圧を増幅した信号を前記駆動信号として出力するアンプと、を含む。 Further, the display device according to the present invention includes a display panel including n data lines each having a plurality of pixels (n is an integer of 2 or more), and a display panel including n data lines each having a plurality of pixels formed therein, and n data lines representing the brightness level of each pixel using a plurality of bits. (n is an integer of 2 or more) display data signals are converted into n drive signals each having an analog voltage value within a voltage range from a reference voltage to a predetermined voltage higher than the reference voltage, and the display panel The display device includes first to n-th DA conversion circuits that supply data to the n data lines, each of the first to n-th DA conversion circuits having a plurality of divisions into which the voltage range is divided. a pre-stage DAC that outputs the maximum voltage and minimum voltage of one divided range corresponding to the upper bit group in the data signal as first and second selection voltages; a level shifter that generates a shifted lower bit signal group in which a binary signal level representing each bit of the lower bit group is level-shifted to the first and second selection voltages output from the previous stage DAC; and the previous stage DAC; a voltage that is between the first selection voltage and the second selection voltage and has a voltage value corresponding to the shifted lower bit signal group, based on the first and second selection voltages output from and an amplifier that outputs a signal obtained by amplifying the output voltage as the drive signal.
 本発明に係るDA変換装置は、以下の前段DAC(digital analog converter)、レベルシフタ及び後段DACにより、デジタルのデータ信号をそのデータ信号の信号レベルよりも高電圧のアナログの電圧値を有する出力電圧に変換する。 The DA converter according to the present invention converts a digital data signal into an output voltage having an analog voltage value higher than the signal level of the data signal using the following front-stage DAC (digital analog converter), level shifter, and rear-stage DAC. Convert.
 前段DACは、高電圧電源に基づく基準電圧から当該基準電圧より高い所定電圧の範囲を複数に分割した分割範囲のうちでデジタルのデータ信号における上位ビット群に対応した分割範囲の最低電圧及び最高電圧を夫々第1及び第2の選択電圧として出力する。レベルシフタは、当該データ信号における下位ビット群の各ビットを表す2値の信号レベルを、夫々前段DACから出力された第1及び第2の選択電圧にレベルシフトしたシフト下位ビット信号群を生成する。後段DACは、前段DACから出力された第1及び第2の選択電圧から、シフト下位ビット信号群に対応した電圧値を有する電圧を生成し、生成した電圧を上記出力電圧として出力する。 The front-stage DAC calculates the lowest voltage and highest voltage of the divided range corresponding to the upper bit group in the digital data signal among the divided ranges in which the range from a reference voltage based on a high voltage power supply to a predetermined voltage higher than the reference voltage is divided into a plurality of divided ranges. are output as the first and second selection voltages, respectively. The level shifter generates a shifted lower bit signal group by level-shifting the binary signal level representing each bit of the lower bit group in the data signal to the first and second selection voltages output from the previous stage DAC, respectively. The latter-stage DAC generates a voltage having a voltage value corresponding to the shifted lower bit signal group from the first and second selection voltages output from the former-stage DAC, and outputs the generated voltage as the output voltage.
 かかる構成によれば、後段DACを構成するトランジスタ等の回路素子として、高電圧電源による電圧よりも低い耐圧(第1の選択電圧-第2の選択電圧)のものを用いることが可能となる。 According to such a configuration, it is possible to use circuit elements such as transistors constituting the latter-stage DAC that have a lower breakdown voltage (first selection voltage - second selection voltage) than the voltage from the high-voltage power supply.
 よって、この後段DACを含むDA変換装置によれば、これを半導体ICチップ化した際のサイズを小さくすることができる。更に、後段DACを構成する回路素子である複数のトランジスタの耐圧を低くすることができるので、スイッチングノイズが小さくなり、DA変換精度が高くなる。 Therefore, according to the DA converter including this latter-stage DAC, the size of the device when converted into a semiconductor IC chip can be reduced. Furthermore, since the withstand voltage of the plurality of transistors that are circuit elements constituting the subsequent stage DAC can be lowered, switching noise is reduced and DA conversion accuracy is increased.
 また、表示ドライバ(データドライバ)に含まれているDA変換回路として、上記した後段DACを含む本発明に係るDA変換装置を採用することで、表示画像の高品質化及びサイズの縮小化を図ることが可能となる。 Furthermore, by employing the DA conversion device according to the present invention including the above-mentioned post-stage DAC as the DA conversion circuit included in the display driver (data driver), it is possible to improve the quality and reduce the size of the displayed image. becomes possible.
本発明に係る表示ドライバを含む表示装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a display device including a display driver according to the present invention. 本発明に係る表示ドライバとしてのデータドライバ130の内部構成を示すブロック図である。FIG. 2 is a block diagram showing the internal configuration of a data driver 130 as a display driver according to the present invention. 本発明に係るDA変換回路の構成の一例を表すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a DA conversion circuit according to the present invention. 前段DAC32の動作を説明するための図である。FIG. 3 is a diagram for explaining the operation of the front-stage DAC 32. FIG. 前段DAC32、後段DAC34の変換処理結果の一例を示す図である。3 is a diagram illustrating an example of conversion processing results of the front-stage DAC 32 and the rear-stage DAC 34. FIG. 前段DAC32、後段DAC34の変換処理結果の他の一例を示す図である。7 is a diagram showing another example of the conversion processing results of the front-stage DAC 32 and the rear-stage DAC 34. FIG. 前段DAC32、後段DAC34の変換処理結果の更に他の一例を示す図である。7 is a diagram showing still another example of the conversion processing results of the front-stage DAC 32 and the rear-stage DAC 34. FIG. 本発明に係るDA変換回路の構成の他の一例を示すブロック図である。FIG. 3 is a block diagram showing another example of the configuration of the DA conversion circuit according to the present invention.
 図1は、本発明に係る表示ドライバを含む表示装置100の概略構成を示すブロック図である。 FIG. 1 is a block diagram showing a schematic configuration of a display device 100 including a display driver according to the present invention.
 図1に示すように、表示装置100は、表示コントローラ10、走査ドライバ110、表示ドライバとしてのデータドライバ130、及び表示パネル200を含む。 As shown in FIG. 1, the display device 100 includes a display controller 10, a scan driver 110, a data driver 130 as a display driver, and a display panel 200.
 表示パネル200は、例えば液晶又は有機ELパネル等からなり、2次元画面の水平方向に伸張するm個(mは2以上の整数)の走査線SL1~SLmと、2次元画面の垂直方向に伸張するn個(nは2以上の自然数)のデータ線DL1~DLnと、を含む。走査線及びデータ線の各交叉部には、画素を担う表示セルPCが形成されている。 The display panel 200 is made of, for example, a liquid crystal or organic EL panel, and has m scanning lines SL1 to SLm (m is an integer of 2 or more) extending in the horizontal direction of the two-dimensional screen, and scanning lines SL1 to SLm extending in the vertical direction of the two-dimensional screen. n data lines DL1 to DLn (n is a natural number of 2 or more). A display cell PC serving as a pixel is formed at each intersection of the scanning line and the data line.
 表示コントローラ10は、映像信号VDを受け、当該映像信号VDに応じて各走査線に供給する水平走査パルスを生成するための走査タイミング信号を走査ドライバ110に供給する。 The display controller 10 receives the video signal VD and supplies the scan driver 110 with a scan timing signal for generating a horizontal scan pulse to be supplied to each scan line according to the video signal VD.
 更に、表示コントローラ10は、映像信号VDに基づき、各種の制御信号(クロック信号、同期信号、データ取込信号、極性反転信号等)、及び各画素の輝度レベルを例えば12ビットで表す表示データ片の系列を含む映像デジタル信号DVSを生成する。尚、映像デジタル信号DVSは、ロジック回路を駆動するためのロジック電源VDDによって論理レベル0及び1の2値に対応した信号レベルを表す信号である。表示コントローラ10は、かかる映像デジタル信号DVSをデータドライバ130に供給する。 Further, the display controller 10 generates various control signals (clock signal, synchronization signal, data acquisition signal, polarity inversion signal, etc.) and a display data piece representing the brightness level of each pixel in 12 bits, for example, based on the video signal VD. A video digital signal DVS including a sequence of is generated. Note that the video digital signal DVS is a signal representing a signal level corresponding to binary logic levels 0 and 1 by a logic power supply VDD for driving a logic circuit. The display controller 10 supplies the video digital signal DVS to the data driver 130.
 走査ドライバ110は、表示コントローラ10から供給された走査タイミング信号に同期した水平走査パルスを、表示パネル200の走査線SL1~SLmの各々に順次印加する。 The scan driver 110 sequentially applies a horizontal scan pulse synchronized with the scan timing signal supplied from the display controller 10 to each of the scan lines SL1 to SLm of the display panel 200.
 データドライバ130は、映像デジタル信号DVSに応じて、先ず、当該映像デジタル信号DVSに含まれる各画素に対応した表示データ片の系列をデータ線の数、つまりn個ずつ取り込む。次に、データドライバ130は、取り込んだn個の表示データ片の各々を、その表示データ片にて示される輝度レベルに対応したアナログの電圧値を有する駆動信号に変換する。 In response to the video digital signal DVS, the data driver 130 first takes in a series of display data pieces corresponding to each pixel included in the video digital signal DVS by the number of data lines, that is, n pieces. Next, the data driver 130 converts each of the n captured display data pieces into a drive signal having an analog voltage value corresponding to the brightness level indicated by the display data piece.
 尚、駆動信号は、表示パネル200を駆動するための高電圧電源VDDHに基づき生成された、表示パネル200で表現可能な最低輝度~最高輝度の範囲内の各輝度レベルを段階的にアナログの電圧値で表す信号である。 The drive signal is an analog voltage that is generated based on the high voltage power supply VDDH for driving the display panel 200 and changes each brightness level within the range from the lowest brightness to the highest brightness that can be expressed by the display panel 200 in stages. It is a signal expressed as a value.
 データドライバ130は、上記したように生成した、n個の表示データ片に夫々対応したn個の駆動信号を駆動信号G1~Gnとして表示パネル200のデータ線DL1~DLnに供給する。 The data driver 130 supplies the n drive signals generated as described above, each corresponding to the n display data pieces, to the data lines DL1 to DLn of the display panel 200 as drive signals G1 to Gn.
 図2は、データドライバ130の内部構成を概略的に示すブロック図である。 FIG. 2 is a block diagram schematically showing the internal configuration of the data driver 130.
 図2に示すように、データドライバ130は、ラッチ回路131及びDA(digital to analog)変換部132を含む。 As shown in FIG. 2, the data driver 130 includes a latch circuit 131 and a DA (digital to analog) converter 132.
 ラッチ回路131は、表示コントローラ10から供給された映像デジタル信号DVSに含まれる表示データ片の系列をn個ずつ取り込み、夫々を表示データ信号P1~PnとしてDA変換部132に供給する。尚、表示データ信号P1~Pnの各々は、前述したように例えば12ビットの信号である。この際、各ビットは、基準電圧VSS及び低電圧LVによって論理レベル0及び1の状態を表す2値の信号である。 The latch circuit 131 captures n series of display data pieces included in the video digital signal DVS supplied from the display controller 10, and supplies them to the DA converter 132 as display data signals P1 to Pn, respectively. Note that each of the display data signals P1 to Pn is, for example, a 12-bit signal, as described above. At this time, each bit is a binary signal representing logic levels 0 and 1 depending on the reference voltage VSS and the low voltage LV.
 DA変換部132は、表示データ信号P1~Pnを夫々個別に、その表示データ信号によって示される輝度レベルに対応した、基準電圧VSSから所定の高電圧HVの範囲内のアナログの電圧値に変換する。尚、高電圧HVは、高電圧電源VDDHに基づく直流の電圧又は当該電圧よりも僅かに低い電圧である。 The DA converter 132 individually converts each of the display data signals P1 to Pn into an analog voltage value within the range of a predetermined high voltage HV from the reference voltage VSS, corresponding to the brightness level indicated by the display data signal. . Note that the high voltage HV is a DC voltage based on the high voltage power supply VDDH or a voltage slightly lower than the voltage.
 そして、DA変換部132は、当該変換によって得られたn個のアナログの電圧値を夫々が有する駆動信号G1~Gnを出力する。 Then, the DA converter 132 outputs drive signals G1 to Gn, each of which has the n analog voltage values obtained by the conversion.
 DA変換部132は、図2に示すように、参照電圧生成回路VGと、表示データ信号P1~Pnに夫々対応して設けられたDA変換回路DC1~DCnと、を含む。 As shown in FIG. 2, the DA conversion unit 132 includes a reference voltage generation circuit VG and DA conversion circuits DC1 to DCn provided corresponding to display data signals P1 to Pn, respectively.
 参照電圧生成回路VGは、高電圧電源VDDHに基づき、互いに電圧値が異なる例えば9個の参照電圧GS1~GS9を生成する。参照電圧生成回路VGは、参照電圧GS1~GS9をDA変換回路DC1~DCnに供給する。 The reference voltage generation circuit VG generates, for example, nine reference voltages GS1 to GS9 having different voltage values from each other based on the high voltage power supply VDDH. Reference voltage generation circuit VG supplies reference voltages GS1 to GS9 to DA conversion circuits DC1 to DCn.
 DA変換回路DC1~DCnの各々は、参照電圧GS1~GS9を受けると共に、ラッチ回路131から供給された表示データ信号P1~Pnのうちの自身に対応した1つを受ける。すなわち、例えばDA変換回路DC1は表示データ信号P1を受け、DA変換回路DC2は表示データ信号P2を受け、DA変換回路DCnは表示データ信号Pnを受ける。 Each of the DA conversion circuits DC1 to DCn receives reference voltages GS1 to GS9, and also receives one of the display data signals P1 to Pn supplied from the latch circuit 131, which corresponds to the one corresponding to the DA conversion circuit DC1 to DCn. That is, for example, the DA conversion circuit DC1 receives the display data signal P1, the DA conversion circuit DC2 receives the display data signal P2, and the DA conversion circuit DCn receives the display data signal Pn.
 DA変換回路DC1~DCnの各々は、参照電圧GS1~GS9に基づき、デジタルデータ信号として自身が受けた表示データ信号を、当該表示データ信号にて示される輝度レベルに対応したアナログの電圧値に変換する。そして、DA変換回路DC1~DCnの各々は、当該アナログの電圧値を増幅したものを駆動信号として出力する。すなわち、DA変換回路DC1~DCnは、夫々が生成した駆動信号を駆動信号G1~Gnとして出力する。尚、DA変換回路DC1~DCnの各々は同一の内部構成を有する。 Each of the DA conversion circuits DC1 to DCn converts the display data signal received as a digital data signal into an analog voltage value corresponding to the brightness level indicated by the display data signal, based on the reference voltages GS1 to GS9. do. Each of the DA conversion circuits DC1 to DCn outputs the amplified analog voltage value as a drive signal. That is, the DA conversion circuits DC1 to DCn output the drive signals generated by each of them as drive signals G1 to Gn. Note that each of the DA conversion circuits DC1 to DCn has the same internal configuration.
 図3は、DA変換回路DC1~DCnからDC1を抜粋して、本願発明に係るDA変換回路の内部構成の一例を示す回路図である。 FIG. 3 is a circuit diagram showing an example of the internal configuration of the DA conversion circuit according to the present invention, with DC1 extracted from the DA conversion circuits DC1 to DCn.
 図3に示すように、DA変換回路DC1は、レベルシフタ31及び33、DAコンバータ32(以下、前段DAC32と称する)、DAコンバータ34(以下、後段DAC34と称する)及びアンプ35を含む。 As shown in FIG. 3, the DA conversion circuit DC1 includes level shifters 31 and 33, a DA converter 32 (hereinafter referred to as a front-stage DAC 32), a DA converter 34 (hereinafter referred to as a rear-stage DAC 34), and an amplifier 35.
 レベルシフタ31は、高電圧電源VDDHと共に、例えば12ビットの表示データ信号P1[11:0]中の上位3ビットからなる上位ビット群[11:9]を受ける。レベルシフタ31は、かかる上位ビット群[11:9]の各ビットを表す2値(論理レベル0、1)の信号レベル(LV、VSS)の振幅を、高電圧電源VDDHに基づく高電圧HV及び基準電圧VSSによる振幅にレベルシフトする。 The level shifter 31 receives the high-voltage power supply VDDH and, for example, a group of upper bits [11:9] consisting of the upper 3 bits of the 12-bit display data signal P1 [11:0]. The level shifter 31 converts the amplitude of the binary (logic level 0, 1) signal level (LV, VSS) representing each bit of the upper bit group [11:9] into a high voltage HV based on the high voltage power supply VDDH and a reference level. The level is shifted to the amplitude based on the voltage VSS.
 レベルシフタ31は、表示データ信号P1の上位3ビット各々の信号レベルを上述したようにレベルシフトしたものを、上位ビット信号群MSとして前段DAC32に供給する。 The level shifter 31 level-shifts the signal level of each of the upper three bits of the display data signal P1 as described above and supplies it to the preceding stage DAC 32 as the upper bit signal group MS.
 前段DAC32は、高電圧電源VDDHと共に、上位ビット信号群MS、及び参照電圧GS1~GS9を受ける。尚、参照電圧GS1~GS9は、高電圧電源VDDHによる電圧範囲を、図4に示すように上位ビット信号群MSにて表現可能な全ビットパターン[000]~[111]の数の分だけ分割した際の各分割範囲の最高電圧及び最低電圧である。ここで、上位ビット信号群MSの全ビットパターン数は8である。これにより、図4に示すように、高電圧電源VDDHの範囲は8つの分割範囲DV1~DV8に区分けされ、各分割範囲にその分割範囲に対応したビットパターン[000]~[111]が対応付けされる。 The front-stage DAC 32 receives the high-voltage power supply VDDH, the upper bit signal group MS, and the reference voltages GS1 to GS9. Note that the reference voltages GS1 to GS9 are obtained by dividing the voltage range provided by the high voltage power supply VDDH by the number of all bit patterns [000] to [111] that can be expressed by the upper bit signal group MS, as shown in FIG. These are the highest and lowest voltages in each divided range when Here, the total number of bit patterns in the upper bit signal group MS is eight. As a result, as shown in FIG. 4, the range of the high voltage power supply VDDH is divided into eight divided ranges DV1 to DV8, and each divided range is associated with a bit pattern [000] to [111] corresponding to that divided range. be done.
 前段DAC32は、デジタルデータとしての上位ビット信号群MSを、以下のように、2系統のアナログ電圧に変換し、夫々を選択電圧Va及びVbとして出力する。 The front-stage DAC 32 converts the upper bit signal group MS as digital data into two systems of analog voltages as described below, and outputs them as selection voltages Va and Vb, respectively.
 すなわち、前段DAC32は、分割範囲DV1~DV8のうちから、上位ビット信号群MSにて表されるビットパターンに対応した分割範囲を選択し、この選択した分割範囲の最高電圧及び最低電圧を夫々選択電圧Va及びVbとして出力する。 That is, the front-stage DAC 32 selects a division range corresponding to the bit pattern represented by the upper bit signal group MS from among the division ranges DV1 to DV8, and selects the highest voltage and lowest voltage of the selected division range, respectively. Output as voltages Va and Vb.
 例えば、上位ビット信号群MSにて表されるビットパターンが[010]である場合、前段DAC32は、図4に示すようにビットパターン[010]に対応した分割範囲DV3での最高電圧である参照電圧GS4を選択電圧Va、最低電圧である参照電圧GS3を選択電圧Vbとして出力する。 For example, when the bit pattern represented by the upper bit signal group MS is [010], the pre-stage DAC 32 uses the reference voltage that is the highest voltage in the division range DV3 corresponding to the bit pattern [010] as shown in FIG. The voltage GS4 is outputted as a selection voltage Va, and the reference voltage GS3, which is the lowest voltage, is outputted as a selection voltage Vb.
 レベルシフタ33は、前段DAC32から出力された選択電圧Va及びVbと共に、12ビットの表示データ信号P1[11:0]中の下位9ビットからなる下位ビット群[8:0]を受ける。レベルシフタ33は、かかる下位ビット群[8:0]の各ビットを表す2値(論理レベル0、1)の各信号レベル(LV、VSS)を、夫々選択電圧Va及びVbにレベルシフトする。レベルシフタ33は、このように下位ビット群[8:0]の各ビットの信号レベルをレベルシフトした9ビット分の信号を、シフト下位ビット信号群LSとして後段DAC34に供給する。 The level shifter 33 receives the lower bit group [8:0] consisting of the lower 9 bits of the 12-bit display data signal P1 [11:0] together with the selection voltages Va and Vb output from the previous stage DAC 32. The level shifter 33 levels-shifts each binary (logic level 0, 1) signal level (LV, VSS) representing each bit of the lower bit group [8:0] to selection voltages Va and Vb, respectively. The level shifter 33 supplies a 9-bit signal obtained by level-shifting the signal level of each bit of the lower bit group [8:0] to the subsequent stage DAC 34 as a shifted lower bit signal group LS.
 後段DAC34は、前段DAC32から出力された選択電圧Va及びVbと共に、シフト下位ビット信号群LSを受ける。 The latter stage DAC 34 receives the shift lower bit signal group LS together with the selection voltages Va and Vb outputted from the former stage DAC 32.
 後段DAC34は、ラダー抵抗LDR及びセレクタSELから構成される、いわゆるラダー抵抗型のDACである。 The latter-stage DAC 34 is a so-called ladder resistance type DAC that is composed of a ladder resistance LDR and a selector SEL.
 ラダー抵抗LDRは、選択電圧Va及びVb間の電圧を、9ビットのシフト下位ビット信号群LSにて表現可能な全ビットパターン[000000000]~[111111111]の数(512個)だけ分圧した分圧電圧VP1~VP512を生成する。尚、分圧電圧VP1~VP512のうちでVP512が最大の電圧値を有し、VP1が最小の電圧値を有するものとする。 The ladder resistor LDR is a voltage divided by the voltage between the selection voltages Va and Vb by the number (512) of all bit patterns [000000000] to [111111111] that can be expressed by the 9-bit shift lower bit signal group LS. It generates piezoelectric voltages VP1 to VP512. It is assumed that among the divided voltages VP1 to VP512, VP512 has the maximum voltage value, and VP1 has the minimum voltage value.
 セレクタSELは、シフト下位ビット信号群LSに基づき、分圧電圧VP1~VP512のうちから分圧電圧を1つだけ選択し、これを出力電圧V0としてラインL0を介してアンプ35に供給する。 The selector SEL selects only one divided voltage from among the divided voltages VP1 to VP512 based on the shifted lower bit signal group LS, and supplies this as the output voltage V0 to the amplifier 35 via the line L0.
 セレクタSELは、スイッチ素子Q1~Q512及びデコーダDECを含む。 Selector SEL includes switch elements Q1 to Q512 and a decoder DEC.
 スイッチ素子Q1~Q512は、夫々の一端で分圧電圧VP1~VP512を個別に受ける。スイッチ素子Q1~Q512各々の他端はラインL0に共通に接続されている。 Switch elements Q1 to Q512 individually receive divided voltages VP1 to VP512 at one end of each. The other ends of each of the switching elements Q1 to Q512 are commonly connected to the line L0.
 デコーダDECは、シフト下位ビット信号群LSに基づき、スイッチ素子Q1~Q512のうちの1つをオン状態、他のスイッチ群を全てオフ状態に設定するオンオフ制御をスイッチ素子Q1~Q512に対して個別に施す。 The decoder DEC individually performs on/off control for the switching elements Q1 to Q512 to set one of the switching elements Q1 to Q512 in an on state and all other switch groups to be in an off state based on the shifted lower bit signal group LS. give to
 例えば、デコーダDECは、シフト下位ビット信号群LSが最低値を示すビットパターン[000000000]である場合には、スイッチ素子Q1~Q512のうちのQ1のみをオン状態、他のスイッチ素子Q2~Q512を全てオフ状態に制御する。これにより、セレクタSELは、分圧電圧VP1~VP512のうちから分圧電圧VP1を選択し、当該分圧電圧VP1を出力電圧V0としてラインL0を介して出力する。また、デコーダDECは、シフト下位ビット信号群LSが最高値を示すビットパターン[111111111]である場合には、スイッチ素子Q1~Q512のうちのQ512のみをオン状態、他のスイッチ素子Q1~Q511を全てオフ状態に制御する。これにより、セレクタSELは、分圧電圧VP1~VP512のうちから分圧電圧VP512を選択し、当該分圧電圧VP512を出力電圧V0としてラインL0を介して出力する。 For example, when the shift lower bit signal group LS is a bit pattern [000000000] indicating the lowest value, the decoder DEC turns on only Q1 of the switch elements Q1 to Q512 and turns on the other switch elements Q2 to Q512. All controls are turned off. Thereby, the selector SEL selects the divided voltage VP1 from among the divided voltages VP1 to VP512, and outputs the divided voltage VP1 as the output voltage V0 via the line L0. Further, when the shifted lower bit signal group LS is a bit pattern [111111111] showing the highest value, the decoder DEC turns on only Q512 of the switching elements Q1 to Q512 and turns on the other switching elements Q1 to Q511. All controls are turned off. Thereby, the selector SEL selects the divided voltage VP512 from among the divided voltages VP1 to VP512, and outputs the divided voltage VP512 as the output voltage V0 via the line L0.
 アンプ35は、自身の出力端が自身の反転入力端に接続されているボルテージフォロワのオペアンプである。アンプ35は、セレクタSELから出力された出力電圧V0を、ラインL0を介して自身の非反転入力端で受け、当該出力電圧V0を増幅した信号を駆動信号G1として自身の出力端から出力する。 The amplifier 35 is a voltage follower operational amplifier whose output terminal is connected to its inverting input terminal. The amplifier 35 receives the output voltage V0 output from the selector SEL at its own non-inverting input terminal via the line L0, and outputs a signal obtained by amplifying the output voltage V0 from its own output terminal as a drive signal G1.
 以下に、表示データ信号P1のビットパターンが、
       第1の状態:[111111001101]
    第2の状態:[111000110011]
    第3の状態:[000000110011]
 に遷移した場合を例にとって、各状態での前段DAC32及び後段DAC34の動作について、図5A~図5Cを参照しつつ説明する。
The bit pattern of the display data signal P1 is shown below.
First state: [111111001101]
Second state: [111000110011]
Third state: [000000110011]
Taking as an example the case where the state changes to , the operations of the front-stage DAC 32 and the rear-stage DAC 34 in each state will be described with reference to FIGS. 5A to 5C.
 尚、参照電圧GS1~GS9の各々を、以下のように0.5ボルト~8.5ボルトの範囲を1ボルト毎に区切った際の各境界の電圧とする。 Note that each of the reference voltages GS1 to GS9 is a voltage at each boundary when the range of 0.5 volts to 8.5 volts is divided into 1 volt units as shown below.
       GS1:0.5ボルト
       GS2:1.5ボルト
       GS3:2.5ボルト
       GS4:3.5ボルト
       GS5:4.5ボルト
       GS6:5.5ボルト
       GS7:6.5ボルト
       GS8:7.5ボルト
       GS9:8.5ボルト
 まず、第1の状態のビットパターン[111111001101]によれば、図5Aに示すように上位ビット信号群MSとして[111]が前段DAC32に供給され、シフト下位ビット信号群LSとして[111001101]が後段DAC34に供給される。
GS1: 0.5 volts GS2: 1.5 volts GS3: 2.5 volts GS4: 3.5 volts GS5: 4.5 volts GS6: 5.5 volts GS7: 6.5 volts GS8: 7.5 volts GS9: 8.5 volts First, according to the bit pattern [111111001101] in the first state, as shown in FIG. 5A, [111] is supplied to the previous stage DAC 32 as the upper bit signal group MS, and [111] is supplied as the shifted lower bit signal group LS. 111001101] is supplied to the subsequent DAC 34.
 これにより、前段DAC32は、上位ビット信号群MS[111]に応じて、分割範囲DV8の最高電圧であるGS9としての8.5ボルトの選択電圧Va、及び分割範囲DV8の最低電圧であるGS8としての7.5ボルトの選択電圧Vbを後段DAC34に供給する。 As a result, the previous stage DAC 32 selects a selection voltage Va of 8.5 volts as GS9, which is the highest voltage of the division range DV8, and GS8, which is the lowest voltage of the division range DV8, in accordance with the upper bit signal group MS[111]. A selection voltage Vb of 7.5 volts is supplied to the subsequent stage DAC 34.
 一方、後段DAC34は、
  7.5+(8.5-7.5)×[111001101]/[111111111]
 にて求められる8.4ボルトの電圧を出力電圧V0として出力する。
On the other hand, the rear DAC 34 is
7.5+(8.5-7.5)×[111001101]/[111111111]
The voltage of 8.4 volts determined by is outputted as the output voltage V0.
 次に、表示データ信号P1のビットパターンが第1の状態から第2の状態のビットパターン[111000110011]に遷移する。この場合、図5Bに示すように上位ビット信号群MSの[111]が引き続き前段DAC32に供給され、シフト下位ビット信号群LSとして[000110011]が後段DAC34に供給される。 Next, the bit pattern of the display data signal P1 transitions from the first state to the second state bit pattern [111000110011]. In this case, as shown in FIG. 5B, [111] of the upper bit signal group MS is continuously supplied to the preceding stage DAC 32, and [000110011] is supplied to the latter stage DAC 34 as the shifted lower bit signal group LS.
 これにより、前段DAC32は、引き続き分割範囲DV8の最高電圧であるGS9としての8.5ボルトの選択電圧Va、及び分割範囲DV8の最低電圧であるGS8としての7.5ボルトの選択電圧Vbを後段DAC34に供給する。 As a result, the front-stage DAC 32 continues to output the selection voltage Va of 8.5 volts as GS9, which is the highest voltage of the division range DV8, and the selection voltage Vb of 7.5 volts, as GS8, which is the lowest voltage of the division range DV8, to the rear stage. Supplied to DAC34.
 一方、後段DAC34は、
 7.5+(8.5-7.5)×[000110011]/[111111111]
 にて求められる7.6ボルトの電圧を出力電圧V0として出力する。
On the other hand, the rear DAC 34 is
7.5+(8.5-7.5)×[000110011]/[111111111]
The voltage of 7.6 volts determined by is outputted as the output voltage V0.
 次に、表示データ信号P1のビットパターンが第2の状態から第3の状態のビットパターン[000000110011]に遷移する。この場合、図5Cに示すように上位ビット信号群MSの[000]が前段DAC32に供給され、シフト下位ビット信号群LSとして[000110011]が引き続き後段DAC34に供給される。 Next, the bit pattern of the display data signal P1 transitions from the second state to the third state bit pattern [000000110011]. In this case, as shown in FIG. 5C, [000] of the upper bit signal group MS is supplied to the preceding stage DAC 32, and [000110011] is subsequently supplied to the latter stage DAC 34 as the shifted lower bit signal group LS.
 これにより、前段DAC32は、上位ビット信号群MS[000]に応じて、分割範囲DV1の最高電圧であるGS2としての1.5ボルトの選択電圧Va、及び分割範囲DV1の最低電圧であるGS1としての0.5ボルトの選択電圧Vbを後段DAC34に供給する。 As a result, the front-stage DAC 32 selects a selection voltage Va of 1.5 volts as GS2, which is the highest voltage of the division range DV1, and GS1, which is the lowest voltage of the division range DV1, according to the upper bit signal group MS[000]. A selection voltage Vb of 0.5 volts is supplied to the subsequent stage DAC 34.
 一方、後段DAC34は、
 0.5+(1.5-0.5)×[000110011]/[111111111]
 にて求められる0.6ボルトの電圧を出力電圧V0として出力する。
On the other hand, the rear DAC 34 is
0.5+(1.5-0.5)×[000110011]/[111111111]
The voltage of 0.6 volts determined by is outputted as the output voltage V0.
 よって、図5A~図5Cに示すように後段DAC34から出力された出力電圧V0をアンプ35で増幅することで、DA変換回路DC1は、当該出力電圧V0を有する駆動信号G1を出力する。 Therefore, as shown in FIGS. 5A to 5C, by amplifying the output voltage V0 output from the subsequent stage DAC 34 with the amplifier 35, the DA conversion circuit DC1 outputs the drive signal G1 having the output voltage V0.
 このように、図3に示すDA変換回路DC1は、デジタルデータとしての12ビットのデータ信号(P1)を、そのデータ信号の信号レベル(VDD)より高い高電圧(VDDH)のアナログの電圧値を有する出力電圧V0に変換する。 In this way, the DA conversion circuit DC1 shown in FIG. 3 converts the 12-bit data signal (P1) as digital data into an analog voltage value of a high voltage (VDDH) higher than the signal level (VDD) of the data signal. It is converted into an output voltage V0 having a value of V0.
 ところで、図3に示す構成では、前段DAC32は、基準電圧VSS及び高電圧HV間の高電圧の信号を処理対象として扱っているので、少なくとも基準電圧VSS及び高電圧HV間の電圧以上である高電圧電源VDDHを用いている。よって、前段DAC32を構成するトランジスタ等の各回路素子としては、高電圧電源VDDHに対応した高耐圧のものが用いられる。 By the way, in the configuration shown in FIG. 3, the pre-stage DAC 32 handles the high voltage signal between the reference voltage VSS and the high voltage HV as a processing target, so the high voltage signal that is at least the voltage between the reference voltage VSS and the high voltage HV is processed. A voltage power supply VDDH is used. Therefore, as each circuit element such as a transistor constituting the front-stage DAC 32, one having a high breakdown voltage compatible with the high voltage power supply VDDH is used.
 一方、後段DAC34は、高電圧電源VDDHによる基準電圧VSS及び高電圧HV間の電圧を図4に示すように8個に分割した分割範囲DV1~DV8の各分割範囲の最高電圧である選択電圧Va及び最低電圧である選択電圧Vb間の電圧を処理対象として扱っている。そこで、後段DAC34では、表示データ信号P1の下位8ビットの各ビットの2値の信号レベルを夫々選択電圧Va及びVbにレベルシフトしたビット信号(LS)により、選択電圧Va及びVb間の電圧である分圧電圧VP1~VP512のうちから1つを選択させる制御をセレクタSELに施している。 On the other hand, the second-stage DAC 34 uses a selected voltage Va which is the highest voltage of each of the divided ranges DV1 to DV8 obtained by dividing the voltage between the reference voltage VSS and the high voltage HV by the high voltage power supply VDDH into eight divided ranges as shown in FIG. and the selection voltage Vb, which is the lowest voltage, is treated as a processing target. Therefore, in the latter stage DAC 34, the voltage between the selection voltages Va and Vb is set using a bit signal (LS) in which the binary signal level of each of the lower 8 bits of the display data signal P1 is level-shifted to the selection voltages Va and Vb, respectively. The selector SEL is controlled to select one of the divided voltages VP1 to VP512.
 これにより、後段DAC34を構成する回路素子、例えばセレクタSELに含まれるスイッチ素子S1~S512やデコーダDEC等を構成するトランジスタとして、耐圧(Va-Vb)、つまり高電圧電源VDDH(HV)の約1/8の耐圧のものを用いることが可能となる。 As a result, the circuit elements constituting the subsequent stage DAC 34, for example, the switch elements S1 to S512 included in the selector SEL, the transistors constituting the decoder DEC, etc., have a withstand voltage (Va-Vb), that is, approximately 1 of the high voltage power supply VDDH (HV). It becomes possible to use one with a breakdown voltage of /8.
 よって、後段DAC34によれば、高電圧電源VDDHで動作するものを用いた場合に比べて、これを半導体ICチップ化した際のサイズを小さくすることが可能となる。更に、後段DAC34では、使用するトランジスタの耐圧が低くなることでスイッチングノイズが小さくなり、DA変換精度が高くなる。 Therefore, according to the latter-stage DAC 34, it is possible to reduce the size when it is made into a semiconductor IC chip, compared to the case of using one that operates on the high-voltage power supply VDDH. Furthermore, in the latter-stage DAC 34, the transistors used have lower breakdown voltages, which reduces switching noise and improves DA conversion accuracy.
 したがって、後段DAC34を含む本願発明に係るDA変換回路によれば、DA変換精度の向上及びサイズの縮小化を図ることが可能となる。 Therefore, according to the DA conversion circuit according to the present invention including the latter-stage DAC 34, it is possible to improve the DA conversion accuracy and reduce the size.
 また、表示ドライバ(データドライバ)に含まれているDA変換回路として、後段DAC34を含むDA変換回路を採用することで、表示画像の高品質化及びサイズの縮小化を図ることが可能となる。 Furthermore, by employing a DA conversion circuit including the rear-stage DAC 34 as the DA conversion circuit included in the display driver (data driver), it is possible to improve the quality and reduce the size of the displayed image.
 尚、図3に示すDA変換回路DC1では、後段DAC34としてラダー抵抗型のDACを用いているが、容量型のDACを採用しても良い。 Note that in the DA conversion circuit DC1 shown in FIG. 3, a ladder resistance type DAC is used as the subsequent stage DAC 34, but a capacitance type DAC may be used.
 図6は、かかる点に鑑みて為された、DA変換回路DC1の内部構成の他の一例を示す回路図である。 FIG. 6 is a circuit diagram showing another example of the internal configuration of the DA conversion circuit DC1, which was created in view of this point.
 尚、図6に示すDA変換回路DC1では、ラダー抵抗型の後段DAC34に代えて容量型の後段DAC44を採用し、それに伴いレベルシフタ33に代えてレベルシフタ43を採用した点を除く他の構成(31、32、35)は、図3に示すものと同一である。 Note that the DA conversion circuit DC1 shown in FIG. 6 has a different configuration (31 , 32, 35) are the same as shown in FIG.
 後段DAC44は、耐圧保護回路11、12、サンプル回路13、ホールド回路14及び出力回路15を含む。 The latter-stage DAC 44 includes voltage protection circuits 11 and 12, a sample circuit 13, a hold circuit 14, and an output circuit 15.
 耐圧保護回路11は、選択電圧Vaと選択電圧Vbとの差分の電圧(Va-Vb)よりも高い電圧からサンプル回路13を保護するスイッチ素子11a及び11bを含む。 The breakdown voltage protection circuit 11 includes switch elements 11a and 11b that protect the sample circuit 13 from a voltage higher than the voltage difference (Va-Vb) between the selection voltage Va and the selection voltage Vb.
 スイッチ素子11aは、オン状態時には前段DAC32から出力された選択電圧VaをラインLaを介してサンプル回路13に供給する。一方、オフ状態時には、スイッチ素子11aは前段DAC32及びラインLa間の接続を遮断することで、電圧(Va-Vb)よりも高い電圧がラインLaを介してサンプル回路13に印加される状態を回避する。 When in the on state, the switch element 11a supplies the selection voltage Va output from the previous stage DAC 32 to the sample circuit 13 via the line La. On the other hand, in the off state, the switch element 11a prevents a voltage higher than the voltage (Va-Vb) from being applied to the sample circuit 13 via the line La by cutting off the connection between the pre-stage DAC 32 and the line La. do.
 スイッチ素子11bは、オン状態時には前段DAC32から出力された選択電圧VbをラインLbを介してサンプル回路13に供給する。一方、オフ状態時には、スイッチ素子11bは前段DAC32及びラインLb間の接続を遮断することで、電圧(Va-Vb)よりも高い電圧がラインLbを介してサンプル回路13に印加される状態を回避する。 When in the on state, the switch element 11b supplies the selection voltage Vb output from the previous stage DAC 32 to the sample circuit 13 via the line Lb. On the other hand, in the off state, the switch element 11b cuts off the connection between the pre-stage DAC 32 and the line Lb, thereby avoiding a state in which a voltage higher than the voltage (Va-Vb) is applied to the sample circuit 13 via the line Lb. do.
 レベルシフタ43は、パラレルシリアル変換回路43a(以降、PS変換回路43aと称する)、第1レベルシフタ43b、及び第2レベルシフタ43cを含む。 The level shifter 43 includes a parallel-to-serial conversion circuit 43a (hereinafter referred to as a PS conversion circuit 43a), a first level shifter 43b, and a second level shifter 43c.
 PS変換回路43aは、12ビットの表示データ信号P1[11:0]中の下位9ビットからなる下位ビット群[8:0]を受ける。PS変換回路43aは、9ビットパラレル形態の下位ビット群[8:0]を1ビットシリアル形態のビット系列に変換し、当該ビット系列を表すシリアルビット信号SDを第1レベルシフタ43bに供給する。 The PS conversion circuit 43a receives the lower bit group [8:0] consisting of the lower 9 bits of the 12-bit display data signal P1 [11:0]. The PS conversion circuit 43a converts the lower bit group [8:0] in the 9-bit parallel format into a bit series in the 1-bit serial format, and supplies a serial bit signal SD representing the bit series to the first level shifter 43b.
 第1レベルシフタ43bは、下位ビット群[8:0]を表すシリアルビット信号SDと共に、耐圧保護回路11及びラインLa及びLbを介して選択電圧Va及びVbを受ける。第1レベルシフタ43bは、シリアルビット信号SDにて表される9ビットの系列の各ビットの2値(論理レベル0、1)の各信号レベル(LV、VSS)を、夫々選択電圧Va及びVbにレベルシフトする。第1レベルシフタ43bは、当該レベルシフトの施されたシフト下位ビット信号群を表すシリアルビット信号を、シリアルビット信号SSDとして第2レベルシフタ43c、及び後段DAC44のサンプル回路13に供給する。 The first level shifter 43b receives selection voltages Va and Vb via the withstand voltage protection circuit 11 and lines La and Lb, along with the serial bit signal SD representing the lower bit group [8:0]. The first level shifter 43b converts each binary signal level (LV, VSS) of each bit (logic level 0, 1) of the 9-bit series represented by the serial bit signal SD to selection voltages Va and Vb, respectively. Shift levels. The first level shifter 43b supplies a serial bit signal representing the level-shifted shifted lower bit signal group to the second level shifter 43c and the sample circuit 13 of the subsequent stage DAC 44 as a serial bit signal SSD.
 尚、第1レベルシフタ43bは、耐圧保護回路11が前段DAC32及びラインLa(Lb)間の接続を遮断している間は、選択電圧Va及びVbの供給を受けることができなくなるので、この場合、上記したレベルシフト動作及びシリアルビット信号SSDの出力を停止する。 Note that the first level shifter 43b cannot receive the selection voltages Va and Vb while the breakdown voltage protection circuit 11 cuts off the connection between the preceding stage DAC 32 and the line La (Lb), so in this case, The level shift operation described above and the output of the serial bit signal SSD are stopped.
 第2レベルシフタ43cは、シリアルビット信号SSDと共に、ラインLa及びLbを介して選択電圧Va及びVbを受ける。第2レベルシフタ43cは、シリアルビット信号SSDにて表される1ビットシリアル形態の9ビット系列の各ビットの2値(論理レベル0、1)の各信号レベル(LV、VSS)を、夫々選択電圧Va及びVbにレベルシフトする。第2レベルシフタ43cは、当該レベルシフトの施されたシフト下位ビット信号群を表すシリアルビット信号を、シリアルビット信号SSDaとして後段DAC44のホールド回路14に供給する。 The second level shifter 43c receives selection voltages Va and Vb via lines La and Lb along with the serial bit signal SSD. The second level shifter 43c converts each binary signal level (LV, VSS) of each bit (logic level 0, 1) of a 9-bit series in a 1-bit serial format represented by the serial bit signal SSD to a selected voltage. Level shift to Va and Vb. The second level shifter 43c supplies a serial bit signal representing the level-shifted shifted lower bit signal group to the hold circuit 14 of the subsequent stage DAC 44 as a serial bit signal SSDa.
 後段DAC44のサンプル回路13は、スイッチ素子13a、13b及びキャパシタ13cを含む。 The sample circuit 13 of the latter stage DAC 44 includes switch elements 13a, 13b and a capacitor 13c.
 スイッチ素子13a及び13bは、表示データ信号P1の下位9ビットのビット系列からなるシリアルビット信号SSDの各ビット毎に、そのビット信号の論理レベルに応じて相補的にオン状態又はオフ状態となる。例えば、シリアルビット信号SSD中の各ビットが論理レベル0を示す場合にはスイッチ素子13aがオフ、スイッチ素子13bがオン状態となり、論理レベル1を示す場合にはスイッチ素子13aがオン、スイッチ素子13bがオフ状態となる。スイッチ素子13aは、自身がオン状態となった場合にラインLaを介して受けた選択電圧Va、つまり表示データ信号P1の上位3ビット(MS)の値に対応した分割範囲(DV1~DV8)の最高電圧をラインLcに印加する。一方、スイッチ素子13bは、自身がオン状態となった場合にラインLbを介して受けた選択電圧Vb、つまり表示データ信号P1の上位3ビット(MS)の値に対応した分割範囲(DV1~DV8)の最低電圧をラインLcに印加する。 The switch elements 13a and 13b are turned on or off in a complementary manner for each bit of the serial bit signal SSD consisting of a bit sequence of the lower 9 bits of the display data signal P1, depending on the logic level of that bit signal. For example, when each bit in the serial bit signal SSD indicates a logic level 0, the switch element 13a is turned off and the switch element 13b is turned on, and when each bit indicates a logic level 1, the switch element 13a is turned on and the switch element 13b is turned on. is in the off state. When the switch element 13a is turned on, the selection voltage Va received via the line La, that is, the divided range (DV1 to DV8) corresponding to the value of the upper 3 bits (MS) of the display data signal P1. Apply the highest voltage to line Lc. On the other hand, when the switch element 13b is turned on, the selection voltage Vb received via the line Lb, that is, the division range (DV1 to DV8) corresponding to the value of the upper 3 bits (MS) of the display data signal P1. ) is applied to line Lc.
 キャパシタ13cは、自身の一端がラインLcに接続されており、スイッチ素子13a又は13bを介して供給された選択電圧Va又はVbに応じて充電される。これにより、キャパシタ13cには、選択電圧Va及びVb間における、表示データ信号P1の下位9ビットで表される値に対応した電荷量の電荷が蓄積される。その結果、ラインLcには、当該電荷量に対応した電圧、つまり選択電圧Va及びVb間における、表示データ信号P1の下位9ビットで表される値に対応した電圧値を有する電圧Vjが生成される。 The capacitor 13c has one end connected to the line Lc, and is charged according to the selection voltage Va or Vb supplied via the switch element 13a or 13b. As a result, an amount of charge corresponding to the value represented by the lower 9 bits of the display data signal P1 between the selection voltages Va and Vb is accumulated in the capacitor 13c. As a result, a voltage Vj corresponding to the amount of charge, that is, a voltage Vj having a voltage value corresponding to the value represented by the lower 9 bits of the display data signal P1 between the selection voltages Va and Vb is generated on the line Lc. Ru.
 耐圧保護回路12は、上記した電圧(Va-Vb)よりも高い電圧からサンプル回路13を保護するスイッチ素子12aを含む。 The breakdown voltage protection circuit 12 includes a switch element 12a that protects the sample circuit 13 from a voltage higher than the above voltage (Va-Vb).
 スイッチ素子12aは、オン状態時にはサンプル回路13から出力された電圧VjをラインLdを介してホールド回路14に供給する。一方、オフ状態時には、スイッチ素子12aはサンプル回路13及びラインLd間の接続を遮断することで、ホールド回路14に蓄積された電圧(Va-Vb)よりも高い電圧がラインLdを介してサンプル回路13に印加される状態を回避する。 When in the on state, the switch element 12a supplies the voltage Vj output from the sample circuit 13 to the hold circuit 14 via the line Ld. On the other hand, in the off state, the switch element 12a cuts off the connection between the sample circuit 13 and the line Ld, so that a voltage higher than the voltage (Va-Vb) accumulated in the hold circuit 14 is passed to the sample circuit via the line Ld. 13 is avoided.
 ホールド回路14は、スイッチ素子14a及びキャパシタ14bを含む。 The hold circuit 14 includes a switch element 14a and a capacitor 14b.
 スイッチ素子14aは、レベルシフタ43bから出力されたシリアルビット信号SSDに応じてスイッチ素子13a及び13bがONされるタイミングとは相反するタイミングでレベルシフタ43cから出力されるシリアルビット信号SSDaにより、オン状態又はオフ状態となる。例えば、シリアルビット信号SSDa中の各ビットが論理レベル0を示す場合にはオフ、論理レベル1を示す場合にオン状態となる。スイッチ素子14aは、自身がオン状態となった場合にラインLdを介して受けた電圧VjをラインLeに印加する。 The switch element 14a is turned on or off by the serial bit signal SSDa output from the level shifter 43c at a timing opposite to the timing at which the switch elements 13a and 13b are turned on according to the serial bit signal SSD output from the level shifter 43b. state. For example, when each bit in the serial bit signal SSDa indicates a logic level 0, it becomes an OFF state, and when it indicates a logic level 1, it becomes an ON state. When the switch element 14a is turned on, it applies the voltage Vj received via the line Ld to the line Le.
 キャパシタ14bは、自身の一端がラインLeに接続されており、スイッチ素子14aを介してラインLeに印加された電圧Vjによって充電される。これにより、キャパシタ14bには、選択電圧Va及びVb間における、表示データ信号P1の下位9ビットの値に対応した電荷量の電荷が蓄積される。 The capacitor 14b has one end connected to the line Le, and is charged by the voltage Vj applied to the line Le via the switch element 14a. As a result, an amount of charge corresponding to the value of the lower 9 bits of the display data signal P1 between the selection voltages Va and Vb is accumulated in the capacitor 14b.
 その結果、キャパシタ14bには、表示データ信号P1の上位3ビット(MS)に対応した分割範囲、つまり図4に示す分割範囲DV1~DV8のうちの1の分割範囲の最低電圧(Vb)及び最高電圧(Va)間における、表示データ信号P1の下位9ビット(LS)に対応した電圧値を有する電圧VQが保持される。この際、キャパシタ14bに保持された電圧VQはラインLeを介して出力回路15に供給される。 As a result, the capacitor 14b has the lowest voltage (Vb) and the highest voltage in the divided range corresponding to the upper three bits (MS) of the display data signal P1, that is, one of the divided ranges DV1 to DV8 shown in FIG. A voltage VQ between voltages (Va) and having a voltage value corresponding to the lower 9 bits (LS) of the display data signal P1 is held. At this time, voltage VQ held in capacitor 14b is supplied to output circuit 15 via line Le.
 出力回路15は、オン状態時にラインLeとラインL0とを接続し、オフ状態時には当該ラインLe及びラインL0間の接続を遮断するスイッチ素子15aを含む。すなわち、スイッチ素子15aがオン状態のときに、ホールド回路14のキャパシタ14bに保持されていた電圧VQがラインL0を介してアンプ35に供給される。 The output circuit 15 includes a switch element 15a that connects the line Le and the line L0 when in the on state, and cuts off the connection between the line Le and the line L0 when in the off state. That is, when the switch element 15a is in the on state, the voltage VQ held in the capacitor 14b of the hold circuit 14 is supplied to the amplifier 35 via the line L0.
 以下に、図6に示すDA変換回路DC1の動作について説明する。 The operation of the DA conversion circuit DC1 shown in FIG. 6 will be explained below.
 まず、前段DAC32が、表示データ信号P1の上位3ビット[11:9]によって表されるビットパターンに対応した分割範囲(DV1~DV8のうちの1つ)の最低電圧を選択電圧Vb、最高電圧を選択電圧Vaとして出力する。 First, the front-stage DAC 32 selects the lowest voltage of the division range (one of DV1 to DV8) corresponding to the bit pattern represented by the upper three bits [11:9] of the display data signal P1, the selected voltage Vb, and the highest voltage. is output as the selection voltage Va.
 次に、耐圧保護回路11のスイッチ素子11a及び11bをオン状態にする。 Next, the switch elements 11a and 11b of the voltage protection circuit 11 are turned on.
 次に、サンプル回路13のスイッチ素子13b及びホールド回路14のスイッチ素子14aを共にオン状態にすることで、ホールド回路14のキャパシタ14bを選択電圧Vbの保持状態にリセットする。 Next, by turning on both the switch element 13b of the sample circuit 13 and the switch element 14a of the hold circuit 14, the capacitor 14b of the hold circuit 14 is reset to the state where the selection voltage Vb is held.
 次に、表示データ信号P1の下位9ビット[8:0]の系列の各ビットの論理レベルに従ってサンプル回路13のスイッチ素子13a、13b及びホールド回路14のスイッチ素子14aがオン及びオフを繰り返す。これにより、ホールド回路14のキャパシタ14bには、12ビットの表示データ信号P1[11:0]にて表される輝度レベルに対応した電圧VQが保持される。例えば、まずスイッチ素子13aがオン状態となり、VjにVaの電位が保持される。次にスイッチ素子13aがオフ状態、スイッチ素子14aがオン状態となることで、Vj(=Va)の電位とLe(=Vb)の電位が平均化され、Vj=Ld=Le=(Va+Vb)/2の電位となる。スイッチ素子14bがオフ状態となり、今度はスイッチ素子13bがオン状態となることでVjにVbの電位が保持される。次にスイッチ素子13bがオフ状態、スイッチ素子14aがオン状態となることで、Vj(=Vb)の電位とLe{=(Va+Vb)/2}の電位が平均化され、Vj=Ld=Le={(Va+Vb)/2+Vb}/2=(Va+Vb)/4の電位となる。この動作を表示データ信号P1の下位9ビット[8:0]の数だけ繰り返すことで、VaとVbの間の所望の電位までLeの保持電圧が変化する。 Next, the switch elements 13a, 13b of the sample circuit 13 and the switch element 14a of the hold circuit 14 repeat on and off according to the logic level of each bit of the series of lower 9 bits [8:0] of the display data signal P1. As a result, the voltage VQ corresponding to the luminance level represented by the 12-bit display data signal P1[11:0] is held in the capacitor 14b of the hold circuit 14. For example, first, the switch element 13a is turned on, and the potential of Va is held at Vj. Next, the switch element 13a is turned off and the switch element 14a is turned on, so that the potential of Vj (=Va) and the potential of Le (=Vb) are averaged, and Vj=Ld=Le=(Va+Vb)/ The potential becomes 2. The switch element 14b is turned off, and the switch element 13b is then turned on, so that the potential of Vb is held at Vj. Next, the switch element 13b is turned off and the switch element 14a is turned on, so that the potential of Vj (=Vb) and the potential of Le{=(Va+Vb)/2} are averaged, and Vj=Ld=Le= The potential becomes {(Va+Vb)/2+Vb}/2=(Va+Vb)/4. By repeating this operation as many times as the lower 9 bits [8:0] of the display data signal P1, the holding voltage of Le changes to a desired potential between Va and Vb.
 そして、出力回路15のスイッチ素子15aがオン状態になることで、アンプ35が、表示データ信号P1[11:0]にて表される輝度レベルに対応した電圧VQを有する駆動信号G1を出力する。 Then, when the switch element 15a of the output circuit 15 is turned on, the amplifier 35 outputs the drive signal G1 having the voltage VQ corresponding to the brightness level represented by the display data signal P1[11:0]. .
 ところで、図6に示す容量型DA変換回路では、後段DAC44は、高電圧電源VDDHによる基準電圧VSS及び高電圧HV間の電圧を図4に示すように8分割した分割範囲の最高電圧である選択電圧Va及び最低電圧である選択電圧Vb間の電圧を処理対象として扱っている。そこで、後段DAC44では、表示データ信号P1における2値の信号レベルを夫々選択電圧Va及びVbにレベルシフトしたビット信号(SSD、SSDa)に基づき、サンプル回路13及びホールド回路14に対して、選択電圧Va及びVbによるキャパシタ(13c、14b)への充放電制御を施している。 By the way, in the capacitive DA converter circuit shown in FIG. 6, the subsequent stage DAC 44 selects the highest voltage in the division range obtained by dividing the voltage between the reference voltage VSS and the high voltage HV by the high voltage power supply VDDH into eight as shown in FIG. The voltage between the voltage Va and the selection voltage Vb, which is the lowest voltage, is treated as a processing target. Therefore, the subsequent DAC 44 sets the selection voltage to the sample circuit 13 and the hold circuit 14 based on the bit signals (SSD, SSDa) obtained by level-shifting the binary signal level of the display data signal P1 to the selection voltages Va and Vb, respectively. The charging and discharging of the capacitors (13c, 14b) is controlled by Va and Vb.
 これにより、図6に示す後段DAC44を構成する回路素子、例えばサンプル回路13に含まれるスイッチ素子13a及び13bやホールド回路14に含まれるスイッチ素子14a等を構成するトランジスタとして、耐圧(Va-Vb)、つまり高電圧電源VDDH(HV)の約1/8の耐圧のものを用いることが可能となる。 As a result, as transistors forming the circuit elements forming the latter-stage DAC 44 shown in FIG. In other words, it is possible to use a device with a withstand voltage of about 1/8 of the high voltage power supply VDDH (HV).
 よって、後段DAC44によれば、高電圧電源VDDHで動作するものを用いた場合に比べて、これを半導体ICチップ化した際のサイズを小さくすることが可能となる。更に、後段DAC44では、使用するトランジスタの耐圧が低くなることでスイッチングノイズが小さくなり、DA変換精度が高くなる。 Therefore, according to the latter-stage DAC 44, it is possible to reduce the size when it is made into a semiconductor IC chip, compared to the case of using one that operates on the high-voltage power supply VDDH. Furthermore, in the latter-stage DAC 44, the switching noise is reduced because the withstand voltage of the transistor used is lowered, and the DA conversion accuracy is increased.
 したがって、後段DAC44を含む図6に示すDA変換回路においても、図3に示すものと同様に、DA変換精度の向上及びサイズの縮小化を図ることが可能となる。 Therefore, in the DA conversion circuit shown in FIG. 6 including the subsequent stage DAC 44, it is possible to improve the DA conversion accuracy and reduce the size, similarly to the circuit shown in FIG.
 また、表示ドライバ(データドライバ)に含まれているDA変換回路として、後段DAC44を含む容量型のDA変換回路を採用することで、表示画像の高品質化及びサイズの縮小化を図ることが可能となる。 In addition, by adopting a capacitive DA conversion circuit including a subsequent stage DAC 44 as the DA conversion circuit included in the display driver (data driver), it is possible to improve the quality and reduce the size of the displayed image. becomes.
 また、上記実施例では、後段DACのDA変換方式としてラダー抵抗型及び容量型を採用した場合の構成について説明せしたが、後段DACのDA変換方式としては、ラダー抵抗型及び容量型に限定されず、例えば、反転増幅器を利用したものであっても良い。 Furthermore, in the above embodiment, a configuration was explained in which a ladder resistance type and a capacitance type were adopted as the DA conversion method of the rear-stage DAC, but the DA conversion method of the rear-stage DAC was limited to the ladder resistance type and the capacitance type. Alternatively, for example, an inverting amplifier may be used.
 尚、上記実施例では、表示パネルを駆動するデータドライバ130に含まれるDA変換回路を例にとって、図3又は図6に示すDA変換回路の構成を説明したが、その用途を限定しない、いわゆる汎用のDA変換回路に適用しても良い。 In the above embodiment, the configuration of the DA conversion circuit shown in FIG. 3 or 6 was explained by taking as an example the DA conversion circuit included in the data driver 130 that drives the display panel. The present invention may also be applied to a DA conversion circuit.
 要するに、データ信号を基準電圧(VSS)から所定電圧(HV)の電圧範囲内のアナログの電圧値を有する出力電圧(V0)に変換する、本発明に係るDA変換回路としては、以下の前段DAC、レベルシフタ及び後段DACを含むものであればよい。 In short, the DA conversion circuit according to the present invention that converts a data signal into an output voltage (V0) having an analog voltage value within a voltage range of a predetermined voltage (HV) from a reference voltage (VSS) includes the following pre-stage DAC. , a level shifter, and a post-stage DAC.
 前段DAC(32)は、基準電圧から所定電圧(HV)の電圧範囲を分割した複数の分割範囲(DV1~DV8)のうちでデータ信号における上位ビット群(MS)に対応した1の分割範囲の最大電圧及び最小電圧を第1及び第2の選択電圧(Va、Vb)として出力する。レベルシフタ(33、43)は、データ信号における上位ビット群(MS)以外の下位ビット群の各ビットを表す2値の信号レベルを、夫々前段DAC(32)から出力された第1及び第2の選択電圧(Va、Vb)にレベルシフトしたシフト下位ビット信号群(LS、SSD、SSDa)を生成する。後段DAC(34、44)は、前段DACから出力された第1及び第2の選択電圧に基づき、第1の選択電圧(Va)と第2の選択電圧(Vb)との間の電圧であり、且つシフト下位ビット信号群(LS、SSD、SSDa)に対応した電圧値を有する電圧を生成し、これを出力電圧(V0)として出力する。 The front-stage DAC (32) divides one of the divided ranges (DV1 to DV8) into which the voltage range from the reference voltage to the predetermined voltage (HV) is divided, corresponding to the upper bit group (MS) in the data signal. The maximum voltage and minimum voltage are output as first and second selection voltages (Va, Vb). The level shifters (33, 43) convert the binary signal levels representing each bit of the lower bit group other than the upper bit group (MS) in the data signal to the first and second signals output from the previous stage DAC (32), respectively. A shifted lower bit signal group (LS, SSD, SSDa) whose level is shifted to the selection voltage (Va, Vb) is generated. The second stage DAC (34, 44) has a voltage between the first selection voltage (Va) and the second selection voltage (Vb) based on the first and second selection voltages output from the previous stage DAC. , and a voltage having a voltage value corresponding to the shifted lower bit signal group (LS, SSD, SSDa), and outputs this as an output voltage (V0).
31、33   レベルシフタ
32      前段DAC
34      後段DAC
100     表示装置
130     データドライバ
132     DA変換部
200     表示パネル
DC1-DCn DA変換回路
31, 33 Level shifter 32 Front stage DAC
34 Second stage DAC
100 Display device 130 Data driver 132 DA converter 200 Display panel DC1-DCn DA converter circuit

Claims (11)

  1.  複数ビットからなるデジタルのデータ信号を基準電圧から前記基準電圧より高い所定電圧の電圧範囲内のアナログの電圧値を有する出力電圧に変換するデジタルアナログ変換回路であって、
     前記電圧範囲を分割した複数の分割範囲のうちで前記データ信号における上位ビット群に対応した1の分割範囲の最大電圧及び最小電圧を第1及び第2の選択電圧として出力する前段DACと、
     前記データ信号における前記上位ビット群以外の下位ビット群の各ビットを表す2値の信号レベルを、夫々前記前段DACから出力された前記第1及び第2の選択電圧にレベルシフトしたシフト下位ビット信号群を生成するレベルシフタと、
     前記前段DACから出力された前記第1及び第2の選択電圧に基づき、前記第1の選択電圧と前記第2の選択電圧との間の電圧であり前記シフト下位ビット信号群に対応した電圧値を有する電圧を生成し、生成した電圧を前記出力電圧として出力する後段DACと、を含むことを特徴とするデジタルアナログ変換回路。
    A digital-to-analog conversion circuit that converts a digital data signal consisting of a plurality of bits from a reference voltage to an output voltage having an analog voltage value within a voltage range of a predetermined voltage higher than the reference voltage,
    a pre-stage DAC that outputs a maximum voltage and a minimum voltage of one division range corresponding to a group of upper bits in the data signal as first and second selection voltages among a plurality of division ranges obtained by dividing the voltage range;
    a shifted lower bit signal in which a binary signal level representing each bit of a lower bit group other than the upper bit group in the data signal is level-shifted to the first and second selection voltages output from the previous stage DAC, respectively; a level shifter that generates a group;
    A voltage value corresponding to the shift lower bit signal group, which is a voltage between the first selection voltage and the second selection voltage, based on the first and second selection voltages output from the previous stage DAC. 1. A digital-to-analog conversion circuit comprising: a second-stage DAC that generates a voltage having a value of 1, and outputs the generated voltage as the output voltage.
  2.  前記後段DACは、前記前段DACから出力された前記第1の選択電圧及び前記第2の選択電圧間の電圧を分圧した複数の分圧電圧を生成するラダー抵抗と、
     前記複数の分圧電圧のうちから前記シフト下位ビット信号群に基づく1の分圧電圧を選択し、選択した分圧電圧を前記出力電圧として出力するセレクタと、を含むことを特徴とする請求項1に記載のデジタルアナログ変換回路。
    The latter-stage DAC includes a ladder resistor that generates a plurality of divided voltages obtained by dividing a voltage between the first selection voltage and the second selection voltage output from the former-stage DAC;
    Claim comprising: a selector that selects one divided voltage based on the shifted lower bit signal group from among the plurality of divided voltages and outputs the selected divided voltage as the output voltage. 1. The digital-to-analog conversion circuit according to 1.
  3.  前記後段DACは、
     前記シフト下位ビット信号群を1ビットシリアルのシリアルビット信号に変換するパラレルシリアル変換回路と、
     第1のキャパシタを含み、前記シリアルビット信号における各ビットの論理レベルに従って順に、前記前段DACから出力された前記第1の選択電圧及び前記第2の選択電圧のうちの一方を選択して前記第1のキャパシタに印加するサンプル回路と、
     第2のキャパシタを含み、前記シリアルビット信号における各ビットの論理レベルに従って順に、前記第1のキャパシタの電圧を前記第2のキャパシタに印加することで、前記第2のキャパシタに前記データ信号に対応した前記アナログの電圧値を有する電圧を保持するホールド回路と、
     前記第2のキャパシタに保持された電圧を出力電圧として出力する出力回路と、を含むことを特徴とする請求項1に記載のデジタルアナログ変換回路。
    The latter stage DAC is
    a parallel-serial conversion circuit that converts the shifted lower bit signal group into a 1-bit serial serial bit signal;
    a first capacitor, which selects one of the first selection voltage and the second selection voltage outputted from the previous-stage DAC in order according to the logic level of each bit in the serial bit signal; a sample circuit that applies voltage to the capacitor No. 1;
    a second capacitor, the voltage of the first capacitor is applied to the second capacitor in order according to the logic level of each bit in the serial bit signal, so that the voltage of the first capacitor is applied to the second capacitor in response to the data signal; a hold circuit that holds a voltage having the analog voltage value;
    The digital-to-analog conversion circuit according to claim 1, further comprising: an output circuit that outputs the voltage held in the second capacitor as an output voltage.
  4.  前記複数の分割範囲各々の前記最大電圧及び前記最小電圧を生成して前記前段DACに供給する電圧生成部を含むことを特徴とする請求項1乃至3のいずれか1に記載のデジタルアナログ変換回路。 4. The digital-to-analog conversion circuit according to claim 1, further comprising a voltage generation section that generates the maximum voltage and the minimum voltage of each of the plurality of divided ranges and supplies the generated voltages to the pre-stage DAC. .
  5.  前記後段DACは、夫々が前記分割範囲の最大電圧及び最小電圧間の電圧以上の耐圧を有する複数のトランジスタを含むことを特徴とする請求項1乃至4のいずれか1に記載のデジタルアナログ変換回路。 5. The digital-to-analog conversion circuit according to claim 1, wherein the latter-stage DAC includes a plurality of transistors, each of which has a withstand voltage greater than or equal to a voltage between a maximum voltage and a minimum voltage in the division range. .
  6.  各画素の輝度レベルを複数ビットで表すn(nは2以上の整数)個の表示データ信号を、夫々が基準電圧から前記基準電圧より高い所定電圧の電圧範囲内のアナログの電圧値を有するn個の駆動信号に変換して表示パネルのn個のデータ線に供給する第1乃至第nのDA変換回路を含むデータドライバであって、
     前記第1乃至第nのDA変換回路の各々は、
     前記電圧範囲を分割した複数の分割範囲のうちで前記データ信号における上位ビット群に対応した1の分割範囲の最大電圧及び最小電圧を第1及び第2の選択電圧として出力する前段DACと、
     前記データ信号における前記上位ビット群以外の下位ビット群の各ビットを表す2値の信号レベルを、夫々前記前段DACから出力された前記第1及び第2の選択電圧にレベルシフトしたシフト下位ビット信号群を生成するレベルシフタと、
     前記前段DACから出力された前記第1及び第2の選択電圧に基づき、前記第1の選択電圧と前記第2の選択電圧との間の電圧であり前記シフト下位ビット信号群に対応した電圧値を有する電圧を生成し、生成した電圧を出力電圧として出力する後段DACと、
     前記出力電圧を増幅した信号を前記駆動信号として出力するアンプと、を含むことを特徴とする表示ドライバ。
    n (n is an integer of 2 or more) display data signals representing the brightness level of each pixel in multiple bits, each having an analog voltage value within a voltage range from a reference voltage to a predetermined voltage higher than the reference voltage. A data driver including first to n-th DA conversion circuits that convert the driving signals into n data lines of a display panel and supply the converted signals to n data lines of a display panel,
    Each of the first to n-th DA conversion circuits,
    a pre-stage DAC that outputs a maximum voltage and a minimum voltage of one division range corresponding to a group of upper bits in the data signal as first and second selection voltages among a plurality of division ranges obtained by dividing the voltage range;
    a shifted lower bit signal in which a binary signal level representing each bit of a lower bit group other than the upper bit group in the data signal is level-shifted to the first and second selection voltages output from the previous stage DAC, respectively; a level shifter that generates a group;
    A voltage value corresponding to the shift lower bit signal group, which is a voltage between the first selection voltage and the second selection voltage, based on the first and second selection voltages output from the previous stage DAC. a latter-stage DAC that generates a voltage having a
    A display driver comprising: an amplifier that outputs a signal obtained by amplifying the output voltage as the drive signal.
  7.  前記後段DACは、前記前段DACから出力された前記第1の選択電圧及び前記第2の選択電圧間の電圧を分圧した複数の分圧電圧を生成するラダー抵抗と、
     前記複数の分圧電圧のうちから前記シフト下位ビット信号群に基づく1の分圧電圧を選択し、選択した分圧電圧を前記出力電圧として出力するセレクタと、を含むことを特徴とする請求項6に記載の表示ドライバ。
    The latter-stage DAC includes a ladder resistor that generates a plurality of divided voltages obtained by dividing a voltage between the first selection voltage and the second selection voltage output from the former-stage DAC;
    Claim comprising: a selector that selects one divided voltage based on the shifted lower bit signal group from among the plurality of divided voltages and outputs the selected divided voltage as the output voltage. 6. The display driver described in 6.
  8.  前記後段DACは、
     前記シフト下位ビット信号群を1ビットシリアルのシリアルビット信号に変換するパラレルシリアル変換回路と、
     第1のキャパシタを含み、前記シリアルビット信号における各ビットの論理レベルに従って順に、前記前段DACから出力された前記第1の選択電圧及び前記第2の選択電圧のうちの一方を選択して前記第1のキャパシタに印加するサンプル回路と、
     第2のキャパシタを含み、前記シリアルビット信号における各ビットの論理レベルに従って順に、前記第1のキャパシタの電圧を前記第2のキャパシタに印加することで、前記第2のキャパシタに前記データ信号に対応した前記アナログの電圧値を有する電圧を保持するホールド回路と、
     前記第2のキャパシタに保持された電圧を出力電圧として出力する出力回路と、を含むことを特徴とする請求項6に記載の表示ドライバ。
    The latter stage DAC is
    a parallel-serial conversion circuit that converts the shifted lower bit signal group into a 1-bit serial serial bit signal;
    a first capacitor, which selects one of the first selection voltage and the second selection voltage outputted from the previous-stage DAC in order according to the logic level of each bit in the serial bit signal; a sample circuit that applies voltage to the capacitor No. 1;
    a second capacitor, the voltage of the first capacitor is applied to the second capacitor in order according to the logic level of each bit in the serial bit signal, so that the voltage of the first capacitor is applied to the second capacitor in response to the data signal; a hold circuit that holds a voltage having the analog voltage value;
    7. The display driver according to claim 6, further comprising: an output circuit that outputs the voltage held in the second capacitor as an output voltage.
  9.  前記複数の分割範囲各々の前記最大電圧及び前記最小電圧を生成して前記前段DACに供給する電圧生成部を含むことを特徴とする請求項6乃至8のいずれか1に記載の表示ドライバ。 The display driver according to any one of claims 6 to 8, further comprising a voltage generation unit that generates the maximum voltage and the minimum voltage of each of the plurality of divided ranges and supplies the generated voltages to the pre-stage DAC.
  10.  前記後段DACは、夫々が前記分割範囲の最大電圧及び最小電圧間の電圧以上の耐圧を有する複数のトランジスタを含むことを特徴とする請求項6乃至9のいずれか1に記載の表示ドライバ。 The display driver according to any one of claims 6 to 9, wherein the latter-stage DAC includes a plurality of transistors, each of which has a withstand voltage greater than or equal to a voltage between the maximum voltage and minimum voltage of the division range.
  11.  夫々に複数の画素が形成されているn(nは2以上の整数)個のデータ線を含む表示パネルと、
     各画素の輝度レベルを複数ビットで表すn(nは2以上の整数)個の表示データ信号を、夫々が基準電圧から前記基準電圧より高い所定電圧の電圧範囲内のアナログの電圧値を有するn個の駆動信号に変換して前記表示パネルの前記n個のデータ線に供給する第1乃至第nのDA変換回路を含む表示装置であって、
     前記第1乃至第nのDA変換回路の各々は、
     前記電圧範囲を分割した複数の分割範囲のうちで前記データ信号における上位ビット群に対応した1の分割範囲の最大電圧及び最小電圧を第1及び第2の選択電圧として出力する前段DACと、
     前記データ信号における前記上位ビット群以外の下位ビット群の各ビットを表す2値の信号レベルを、夫々前記前段DACから出力された前記第1及び第2の選択電圧にレベルシフトしたシフト下位ビット信号群を生成するレベルシフタと、
     前記前段DACから出力された前記第1及び第2の選択電圧に基づき、前記第1の選択電圧と前記第2の選択電圧との間の電圧であり前記シフト下位ビット信号群に対応した電圧値を有する電圧を生成し、生成した電圧を出力電圧として出力する後段DACと、
     前記出力電圧を増幅した信号を前記駆動信号として出力するアンプと、を含むことを特徴とする表示装置。
    a display panel including n (n is an integer of 2 or more) data lines each having a plurality of pixels;
    n (n is an integer of 2 or more) display data signals representing the brightness level of each pixel in multiple bits, each having an analog voltage value within a voltage range from a reference voltage to a predetermined voltage higher than the reference voltage. A display device comprising first to nth DA conversion circuits that convert the driving signals into n driving signals and supply the n data lines of the display panel,
    Each of the first to n-th DA conversion circuits,
    a pre-stage DAC that outputs a maximum voltage and a minimum voltage of one division range corresponding to a group of upper bits in the data signal as first and second selection voltages among a plurality of division ranges obtained by dividing the voltage range;
    a shifted lower bit signal in which a binary signal level representing each bit of a lower bit group other than the upper bit group in the data signal is level-shifted to the first and second selection voltages output from the previous stage DAC, respectively; a level shifter that generates a group;
    A voltage value corresponding to the shift lower bit signal group, which is a voltage between the first selection voltage and the second selection voltage, based on the first and second selection voltages output from the previous stage DAC. a latter-stage DAC that generates a voltage having a
    A display device comprising: an amplifier that outputs a signal obtained by amplifying the output voltage as the drive signal.
PCT/JP2023/010904 2022-03-25 2023-03-20 Da converting device, display driver, and display device WO2023182278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-049556 2022-03-25
JP2022049556 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182278A1 true WO2023182278A1 (en) 2023-09-28

Family

ID=88100979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010904 WO2023182278A1 (en) 2022-03-25 2023-03-20 Da converting device, display driver, and display device

Country Status (1)

Country Link
WO (1) WO2023182278A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056463A (en) * 2002-07-19 2004-02-19 Sharp Corp D/a converter circuit, portable terminal equipment having the same, and audio device
JP2011129978A (en) * 2009-12-15 2011-06-30 Renesas Electronics Corp Digital-to-analog converter
KR20160028030A (en) * 2014-09-02 2016-03-11 엘지디스플레이 주식회사 Ditigal to analog converting device, data driver and display device using the same
JP2018152754A (en) * 2017-03-14 2018-09-27 セイコーエプソン株式会社 D-a inversion circuit, circuit arrangement, oscillator, electronic apparatus and mobile body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056463A (en) * 2002-07-19 2004-02-19 Sharp Corp D/a converter circuit, portable terminal equipment having the same, and audio device
JP2011129978A (en) * 2009-12-15 2011-06-30 Renesas Electronics Corp Digital-to-analog converter
KR20160028030A (en) * 2014-09-02 2016-03-11 엘지디스플레이 주식회사 Ditigal to analog converting device, data driver and display device using the same
JP2018152754A (en) * 2017-03-14 2018-09-27 セイコーエプソン株式会社 D-a inversion circuit, circuit arrangement, oscillator, electronic apparatus and mobile body

Similar Documents

Publication Publication Date Title
US9275595B2 (en) Output buffer circuit and source driving circuit including the same
KR100432554B1 (en) organic light emitting device display driving apparatus and the method thereof
JP4367308B2 (en) Display driver, electro-optical device, electronic apparatus, and gamma correction method
JP2000183747A (en) D/a converter and liquid crystal driver using the same
US10204547B2 (en) Display device and method for driving the same
KR102140250B1 (en) Output buffer, source driver and display apparatus including the same
CN101290743B (en) Active type matrix organic led circuit drive circuit possessing gamma correction
JP2003280596A (en) Display driving apparatus and display apparatus using the same
US20160098968A1 (en) Digital-to-analog-conversion circuit and data driver for display device
JP2007310361A (en) Display apparatus, driving device and method therefor
KR101147121B1 (en) Apparatus and method for transmission data, apparatus and method for driving image display device using the same
CN114694603B (en) Display device and driving method thereof
CN101540151B (en) Source driving circuit of LCD apparatus and LCD apparatus having same
JP2016018197A (en) Voltage transfer circuit, voltage transmission circuit, and voltage reception circuit
JP2007288787A (en) Digital-to-analog converter and driving method of display device
KR102174918B1 (en) Driving circuit of display device and method for driving thereof
JP4676183B2 (en) Gradation voltage generator, liquid crystal drive, liquid crystal display
WO2023182278A1 (en) Da converting device, display driver, and display device
CN113570993A (en) Data driver, display device including the same
WO2018233053A1 (en) Display panel driving circuit and method, and display device
US11532262B2 (en) Display panel driver, source driver, and display device including the source driver
US20170092206A1 (en) Pre-emphasis circuit
KR20140025169A (en) Driver circuit and display device having them
JP2011123100A (en) Liquid crystal display device, electronic equipment, drive device of liquid crystal display and drive method of liquid crystal display
JP2009284426A (en) Da converting circuit and driving device for display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774873

Country of ref document: EP

Kind code of ref document: A1